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ABSTRACT

FUNDAMENTAL DYNAMICAL EQUATIONS FOR

TWO AND FOUR-COMPONENT SPINORS

IN GALILEAN AND MINKOWSKI

SPACE-TIME

RANDAL HUEGELE, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Zdzislaw Musielak

A search for new fundamental (Galilean and Poincaré invariant) dynamical

equations for free elementary particles represented by spinor state functions is con-

ducted in Galilean and Minkowski space-time. A dynamical equation is considered as

fundamental if it is invariant under the symmetry operations of the group of the space-

time metric and if its state functions transform like the irreducible representations of

the group of the metric. It is shown that there are no Galilean invariant equations

for two-component spinor wave functions thus the Pauli equation is not fundamental.

It is formally proved that the Lévy-Leblond and Schrödinger equations are the only

Galilean invariant 4-component spinor equations for the Schrödinger phase factor.

New fundamental dynamical equations for four-component spinors are found using

generalized phase factors. For the extended Galilei group a generalized Lévy-Leblond

equation is found to be the only first order Galilean invariant four-component spinor

equation.

v



For the Poincaré group a generalized Dirac equation is found to be the only first

order Poincaré invariant four-component spinor equation. In the non-relativistic limit

the generalized Dirac equation is shown to reduce to the generalized Lévy-Leblond

equation. A new momentum-energy relation is derived from the analysis of stationary

states of the generalized Dirac equation. The new energy-momentum relationship is

used to show that the behavior of a particle obeying the generalized Dirac equation

is different from that of a particle governed by the standard Dirac equation because

of the existence of additional momentum and energy terms. Since this new energy-

momentum relationship differs from the well-known energy-momentum relationship

of Special Theory of Relativity, it cannot describe ordinary matter. Hence, it is

suggested that the new energy-momentum relationship represents a different form of

matter that may be identified as Dark Matter.
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Leblond Equation . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4 Deriving the Generalized Klein-Gordon Equation . . . . . . . 52

4.3.5 Free Motion of the Dirac Particle and Momentum Energy
Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Theoretical Predictions Based on the New Fundamental Equations . . 60

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix

A. DERIVING GALILEI INVARIANT SPINOR EQUATIONS . . . . . . . . 65

B. DERIVING POINCARE INVARIANT SPINOR EQUATIONS . . . . . . 114

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



CHAPTER 1

INTRODUCTION

1.1 History and Motivation

Astronomical observations show that our Universe is dominated by Dark Matter

(DM) and Dark Energy (DE), and that ordinary matter makes up only a very small

fraction of all matter in the Universe. The realization that some unknown form of

matter and mysterious form of energy dominate the structure and evolution of the

entire Universe is one of the most profound discoveries in science. Numerous ideas

have been put forward to explain DM and DE but so far explanations of their origin

and nature remains inconclusive.

The existence of DM was first suggested by Fritz Zwicky in the early 1930’s.

Zwicky determined the radial velocities of eight galaxies and found out that they

were 400 times greater than that expected by the shared gravity of luminous matter

in those galaxies. The explanation given by Zwicky for his extraordinary finding was

to suggest the existence of what he called “missing matter”, or matter which cannot

be directly observed but can be inferred indirectly by its gravitational influence on

visible matter. There is a large body of literature devoted to the subject with detailed

descriptions of both observational and theoretical research given in numerous research

papers (e.g. [1, 2, 3, 4, 5]), many review papers (e.g., [6, 7, 8, 9, 10]) and in some

books (e.g., [11, 12]). Since the main focus of this dissertation is on theoretical

research of dark matter, theoretical ideas relevant to the research presented in this

dissertation will now be briefly described.

1
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It is now believed that DM may be composed of many different constituents. A

small portion may be baryonic DM that falls into the category of Massive Compact

Halo Objects (MACHO’S). Most DM must be non-baryonic DM that is usually clas-

sified by its kinetic energy as either Cold Dark Matter (CDM): objects at classical

velocities, Warm Dark Matter (WDM): particles at relativistic velocities (< .1c), or

Hot Dark Matter (HDM): particles moving at ultra-relativistic velocities (> .95c).

The observation of galaxy sized clustering of the DM mass distribution in space

supports CDM as the most common constituent of non-baryonic DM. Other obser-

vations support this finding. For example, Cosmic Microwave Background Radiation

(CMBR) and studies of big bang nucleosynthesis require CDM to explain the present

day structure of the universe. There are at least two noteworthy discrepancies be-

tween the model and observation. The first is the cuspy halo problem and the second

is the missing satellites problem (e.g., [3, 13, 4]).

Standard proposals to explain the non-baryonic DM are based upon unification

of the fundamental forces, new forces, new particles in the standard model, string

theory and the so-called ‘fuzzy’ DM. There are some papers postulating that the

axion is a dark matter particle and that its mass is about 10-23 eV (e.g., [14] and

others are devoted to the idea of cold DM (CDM) particles with mass around 10-23

eV (e.g., [2, 3, 5]); often such particles are called Extremely Light Bosonic Dark

Matter (or ELBDM) to distinguish it from CDM axion. An interesting result is

that the uncertainty principle must operate on galactic scales because the considered

masses of these particles are so small. If the particles are bosons, then they form a

Bose-Einstein Condensate (BEC). A detailed description of formation and properties

of such astronomical BEC is given by [4] for non-relativistic scalar fields and by [15]

for relativistic scalar fields.
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A different approach to the DM problem has been taken by [16, 17, 18, 19]

who searched for new invariant dynamical equations. These equations are required

to describe state functions that transform like irreducible representations (irreps) of

the group of all transformations that leave the space-time metric invariant. This

approach follows Wigner [20] and others (e.g., [21, 22]) in their assessment that

an elementary particle must transform as one of the irreducible representations of

the group of the metric in a Hilbert space. The developed method is based on the

Principle of Analyticity and the Principle of Relativity, and it has been used to

formulate fundamental physical theories of waves and particles in the space-time of a

given metric [16, 17, 18, 19, 23].

The main focus of this dissertation is to establish new physics that will explain

the origin and nature of DM. To achieve this challenging goal, a search for new

invariant dynamical equations describing free elementary particles in both Galilean

and Poincaré space-time will be conducted. It is anticipated that one of the new

invariant dynamical equations to be obtained in this project can be used to formulate

a fundamental physical theory that correctly describes the nature and behavior of

DM, and that predictions of this theory can be verified in laboratory experiments

and by astronomical observations. The main goals of the research presented in this

dissertation will now be described.

1.2 Main Goals of this Dissertation

The subject of this work is to search for new fundamental dynamical equations

that describe free elementary particles. These equations may predict new forms of

matter that may be good candidates for DM. The work of this dissertation focuses

on searching for spinor equations that may have been overlooked in the two most

fundamental (Galilean and Minkowski) metrics of physics. The presented approach
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is different than that used by [16, 17] and [18] whose method was based on the

eigenvalue equations derived from the properties of the extended Galilei group and

the Poincaré group (e.g., [21]). Here, a general form of first order partial differential

equations is considered and their invariance with respect to all transformations that

leave the Galilean and Minkowski metrics invariant is investigated. Specific goals

include searches for invariant dynamical equations for

(i) two-component spinor wave functions in Galilean space-time;

(ii) four-component spinor wave functions in Galilean space-time;

(iii) four-component spinor wave functions in Minkowski space-time.

The searches have been completed and the obtained results are presented in

this dissertation. The obtained results can be divided into two groups, namely, the

previously known Lévy-Leblond, Schrödinger, and Dirac equations, which have been

formally derived, and new invariant dynamical equations, which have also been found.

The material of this dissertation is organized in the following chapters. A search

for new dynamical spinor equations in Galilean space-time with the Schrödinger phase

function is presented in Chapter 2. The most notable results of this investigation

are the proofs of uniqueness of the Schrödinger and Lévy-Leblond equations as the

only fundamental dynamical equations for 4-component spinors in Galilean space-

time with the Schrödinger phase function. Another result is a proof that there are

no Galilei invariant dynamical equations for 2-component spinors. The search for

dynamical equations in Galilean space-time is continued with alternative phase func-

tions in Chapter 3. A search for new dynamical equations in Minkowski space-time is

presented in Chapter 4. Physical consequences of the obtained results are discussed

in Chapter 5, which also contains conclusions and describes possible future directions

of this research.



CHAPTER 2

DYNAMICAL EQUATIONS FOR TWO AND FOUR-COMPONENT SPINOR

STATE FUNCTIONS IN GALILEAN SPACE-TIME

2.1 Background

A physical theory of free particles in Galilei space-time must be based on a

fundamental dynamical equation that has the same form in all isometric frames of

reference. All coordinate transformations that do not change the Galilei metric form

a representation of the group of the metric. In order for two observers with the same

metric to identify the same particle, the state functions describing this particle must

transform like one of the irreducible representations (irreps) of the Galilei group. This

definition was first formally introduced by Wigner [20], who determined all unitary

irreps of the Poincaré group [21] and used them to classify the elementary particles

in Minkowski space-time.

Vector irreps of the Galilei group have no physical interpretation [24] but there

is an infinite number of projective (ray) irreps, which are different from the vector

irreps of the group [25]. Typically, the projective irreps are determined by the method

of induced representations [26, 27], and they are characterized by a constant that

enters a phase factor in defining the projective irreps [21]. The process of introducing

the constant is the central extension of the Galilei Lie algebra and the corresponding

group is called the extended Galilei group [21, 28, 22].

In the previously obtained results, Lévy-Leblond [29] used the method of

Bargmann and Wigner [26] and derived a Galilei invariant dynamical equation for

free particles with arbitrary spin. The state function describing these particles is

5
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a four-component spinor. Similar studies were performed by Fushchich and Nikitin

[22], however, they used a different method. Lévy-Leblond [30] also derived the Pauli-

Schrödinger (PS) equation [31, 32] by adding the electromagnetic field to his Galilei

invariant equation. The fields were made Galilei invariant by dropping the Maxwell

term from Maxwell’s equations. He obtained the PS equation, a two-component

spinor equation but did not evaluate the Galilei invariance of the PS equation.

Four-component spinors were introduced to Quantum Field Theory (QFT) by

Dirac when he formulated his relativistic theory of electrons and positrons and ob-

tained Poincaré invariant dynamical equations for these particles [33, 34]. On the

other hand, two-component spinors are now widely used in General Relativity (GR)

primarily through the work of Penrose [35]. Extensive discussions of the role played

by four-components spinors in quantum mechanics and QFT, and two-component

spinors, in GR can be found in [36] and [37], respectively.

In a more recent work on free and spinless particles described by scalar and

analytic state functions in Galilei space-time, it was established that Schrödinger’s

equation [38] is Galilei invariant [39, 40, 41] and, therefore, the equation plays the

central role in Galilei relativity [16]. An important result is that Schrödinger-like

equations are the only Galilei invariant dynamical equations [17]. The fact that the

Dirac, Pauli-Schrödinger and Schrödinger equations are intimately related is well-

known [42, 43, 44]. The PS equation is an approximation to the Dirac equation for

small electron velocities and the Schrödinger equation can be obtained from the PS

equation by neglecting magnetic interaction of the spin.

One of the main goals of this dissertation is to search for new fundamental

(Galilei invariant) dynamical equations for two and four-component spinors or to

eliminate the possibility of their existence. The obtained results are based on the

extended Galilei group [21, 29, 40, 41] and therefore relies upon the Schrödinger
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phase factor [22]. We define a dynamical equation to be fundamental if it has the

following properties: (i) invariance under the symmetry operators of the group of

the metric; (ii) no mixed time and space partial derivatives; and (iii) state functions

that transform like the irreducible representations of the group of the metric. One

such fundamental dynamical equation in Galilei relativity is the first-order partial

differential equation for a four-component spinor wave function known as the Lévy-

Leblond equation [29, 30]. Here, this equation is derived by using a different method

and it is proved that the Lévy-Leblond equation is the only first order Galilei invariant

equation that can be obtained by using the Schrödinger phase factor.

Another interesting result is that there are no Galilei invariant equations for

two-component spinors. It is also proved that the Schrödinger equation which is first

order in time and second order in space is the only second order fundamental equation

and that there are no higher order fundamental equations for two and four-component

spinors. It is important to note that these results are obtained for the Schrödinger

phase factor of the extended Galilei group. Other phase factors are possible and they

are investigated in Chapter 3.

2.2 Scalar State Functions in Galilean Relativity

2.2.1 Group of the Galilei metric

Galilei space time is defined by the Galilei metric: ds2
1 = dx2 + dy2 + dz2 and

ds2
2 = dt2, where x, y, z, and t are spatial and time coordinates. The metric is

invariant under a set of transformations that forms the Galilei group. The group may

be decomposed into subgroups such that

G = [T (1)⊗R(3)]⊗s [T (3)⊗B(3)] , (2.1)
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where T (1), R(3), T (3), and B(3) are the subgroups of translation in time, rotations

in space, translations in space, and boosts respectively. The direct product and semi-

direct product are denoted ⊗ and ⊗s.

The Galilei transformations can be used to relate the coordinate systems of two

observers that are spatially rotated, translated, and boosted relative to one another.

A Galilei transformation can be defined by

x→ x′ = Rx + vt+ a and t→ t′ = t+ b , (2.2)

where R is a rotation matrix, v is the velocity vector of a boost relating the two

coordinate systems, and a is a spacial translation relating the two coordinate systems.

The inverse Galilei transformation is

x = R−1x′ −R−1vt′ −R−1 (a− vb) and t = t′ − b . (2.3)

The chain rule can be used to determine how the differential operators transform

under the Galilei transformation

∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂xi

∂t′
∂

∂xi
=

∂

∂t
−R−1

ij vj
∂

∂xi
, (2.4)

and

∂

∂x′i
=

∂t

∂x′i
∂

∂t
+
∂xj

∂x′i
∂

∂xj
= R−1

ij

∂

∂xj
. (2.5)

It has been demonstrated for scalar wave functions that the Galilei group does

not lead to any dynamical equations that satisfy the principles of analyticity and

relativity [16]. The first principle requires that state functions are analytic and the

second principle demands that dynamical equations governing the state function are

Galilei invariant. Therefore an additional symmetry |ψ∗ψ| = |ψ′∗ψ′| must be added

to the group of the metric.

The expanded symmetry group called the extended Galilei group is the universal

covering group of the Galilei group [27, 28]. The extended Galilei group exhibits



9

structure that is similar to the Poincare group [21, 29, 17]. The arguments used

in [16] for scalar wave functions apply equally well to n-component functions such

as spinors and vectors. Consequently, we begin this work with the extended Galilei

group, which has the structure

Ge = [R(3)⊗s B(3)]⊗s [T (3 + 1)⊗ U(1)] , (2.6)

where U(1) is a one-parameter unitary group [21]. We consider only the proper

isochronal subgroup G↑+ of Ge which omits the space and time inversions that can be

treated separately.

Measurements of the norm of the scalar state function must produce the same

results for all observers related by the Galilei transformations. Hence, the resulting

transformation of the wave function ψ is

ψ(x, t)→ ψ′(x′, t′) = eiφ(x,t)ψ(x, t) , (2.7)

with φ(x, t) being a phase function to be determined.

2.2.2 Galilei Invariant Equations for Scalar State Functions

In the previous work, Musielak and Fry [16] used the Galilei group of the

metric and the principles of analyticity and relativity to formally derive Schrödinger-

like equations. They concluded that the Galilei group was incomplete for forming

a fundamental theory of free particles and that the necessary modifications of the

group led to the extended Galilei group. The derived Schrödinger-like equation can

be written in the following form

i
∂ψ

∂t
+
ω

k2
∇2ψ = 0 , (2.8)

where ω and k are the eigenvalues of the translation operators in time and space.

Properties of the eigenvalue equations ensure that ω/k2 = 1/2M is a constant in all
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inertial frames of reference. M is referred to as the “wave mass” and is related to

the classical mass through the Planck constant m = h̄M [39, 45, 41, 16]. The phase

function

φ (x, t) = mv · x +
1

2
mv2t+mc (2.9)

makes equation (2.8) Galilei invariant.

The state function ψ in Eq. (2.8) is a scalar function. According to Musielak and Fry

[17], the Schrödinger-like equation is the only Galilei invariant equations for scalar

functions.

When the state function is a spinor it has two or more components and each

component must satisfy the Schrödinger-like equation [32, 46, 47]. Invariance of

the Schrödinger-like equation under transformations of the extended Galilei group

requires a phase factor eiφ(x,t) with a phase function (2.9) that is of the same form as

for scalars [22]. We will call this the Schrödinger phase factor and we will use this

condition when searching for fundamental (Galilei invariant) equations for two and

four-component spinor state functions.

2.3 Dynamical Equation for Spinor State Functions

We now search for fundamental dynamical equations for two and four-component

spinors. We consider a dynamical equation fundamental if it has the properties of (i)

invariance under the symmetry operators of the group of the metric, (ii) state func-

tions that transform like the irreducible representations of the group of the metric,

and (iii) no mixed time and space partial derivatives.
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We begin the search with first order differential equations acting on the N -

component spinor state functions ψ. The most general form of such a first order

equation is [
B1

∂

∂t
+B2j

∂

∂xj
+B3

]
ψ(r, t) = 0 , (2.10)

where B1, B2j, and B3 are arbitrary N ×N matrices that are assumed to be free of

any dependence on the space and time coordinates.

Dynamical equations must be invariant under Galilei transformations, so we

will require Galilei invariance of the first order differential equation in order to derive

a set of restrictions on the matrices B. In the next subsection, the restrictions will

be used to find a set of matrices that will allow the equation to be invariant under

Galilei transformations.

Applying a Galilei transformation to Eq. (2.10) and regrouping the terms, we

obtain [
B′1

∂

∂t
+ (B′1Rjkvk +B′2kRkj)

∂

∂xj

]
ψ(r, t)

+

[
− i

2
mv2B′1 − imRjlvkRklB

′
2j +B′3

]
ψ(r, t) = 0 . (2.11)

For Eq. (2.10) to be invariant under Galilei transformation, Eq. (2.11) must be of the

same form. This requirement leads to the following conditions on the set of matrices

B1 = GB1G
−1 , (2.12)

B2j = GB1G
−1Rijvj +GB2iG

−1Rij , (2.13)

and

B3 = − i
2
mv2GB1G

−1 − imviGB2iG
−1 +GB3G

−1 . (2.14)

These conditions will be used in our search for fundamental dynamical equations.
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2.3.1 First-Order Equations for Two-Component Spinors

Our main result obtained for two-component spinor state functions is given by

the following proposition.

Proposition 1.There are no Galilei invariant equations for two-component spinors.

Proof:

Applying rotations only (no boosts) in the conditions given by Eq. (2.12) through

Eq. (2.14) constrains the matrices to the following forms: B1 = c1I, B2j = c2σj and

B3 = c3I, where c1, c2, and c3 are arbitrary constants. This demonstrates that there

are first-order equations that are rotationally invariant. To be Galilei invariant the

equation must also be boost invariant.

It turns out that it is not possible to construct Galilei boost operators for two-

component spinors. In general, one may construct a boost matrix from the velocity

parameters vj and boost generators Xj as the exponential expression given by B(v) =

eiXjvj . The generators of Galilei boosts must obey the following commutation relations

of the Galilei group:
[
Xθi , Xθj

]
= iXθkεijk,

[
Xvi , Xvj

]
= 0 and

[
Xvi , Xθj

]
= iXvkεijk.

Because Galilei boosts commute, they form an Abelian subgroup and a one

dimensional irreducible representation exists. However, the composition of boosts

and rotations is the result of a semi-direct product and requires boosts and rotations

to obey the group composition law that can be written as

G(a, b, v, R(θ)) = T (b)S(a)B(v)R(θ)

= G(a2, b2, v2, R2)G(a1, b1, v1, R1)

= G(R2a1 + a2 − v2b1, b1 + b2, R2v1 + v2, R2R1) , (2.15)

which is composed of translations in time T (b), translations in space S(a), boosts

B(v), and rotations R(θ). For the 2 × 2 generators of rotations Xθi = σi/2, there
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are no 2 × 2 matrices that are able to satisfy the commutation relations as boost

generators.

An interesting result is that this problem does not exit in the Minkowski space-

time [35, 36]. Hence, one may try to take the limit c→∞ of the Lorentz boost for

two-component spinors. The result is [44]

Bvx =

 cosh vx/c sinh vx/c

sinh vx/c cosh vx/c

 (2.16)

Bvy =

 cosh vy/c i sinh vy/c

−i sinh vy/c cosh vy/c

 (2.17)

and

Bvz =

 evz/c 0

0 evz/c

 (2.18)

and it is seen that the diverging matrix elements are obtained. This is not surprising

since the Galilei spinor boosts cannot be represented with 2 × 2 matrices. Lorentz

boosts do not commute as their Galilei counterparts. As such the Lorentz group has

a different universal covering group, SL(2,C) and it can be represented with 2 × 2

matrices [35]. The physical implications of this result are that one cannot perform a

Galilei boost of two component spinors, which concludes the proof of Proposition 1.

2.3.2 First-Order Equations for Four-Component Spinors

After showing that there are no Galilei invariant dynamical equations for two-

component spinor wave functions, we searched for fundamental dynamical equations

describing evolution of four-component spinor wave functions in time and space. The

obtained results are summarized by the following proposition.
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Proposition 2. The only Galilei invariant first-order differential equation for four-

component spinors is the Lévy-Leblond equation [29, 30]
 0 0

I 0

 ∂

∂t
+

 σj 0

0 −σj

 ∂

∂xj
+

 0 2imI

0 0


ψ(r, t) = 0 (2.19)

where I is the 2× 2 identity matrix.

Proof: As in the case for two-component spinors, we seek a set of matrices that

satisfy the conditions for invariance given by Eq. (2.12) through Eq. (2.14). Let B1

be an arbitrary 4× 4 matrix, then

B1 =

 P Q

S T

 (2.20)

where P , Q, S, and T are arbitrary 2 × 2 matrices. Applying an arbitrary rotation

in the condition given by Eq. (2.12) results in four conditions on the 2× 2 matrices

P , Q, S, and T . The conditions are:

B1 = RB1R
−1 =

 U 0

0 U


 P Q

S T


 U−1 0

0 U−1



=

 UPU−1 UQU−1

USU−1 UTU−1

 (2.21)

Individually these four conditions are identical in form to that given by Eq. (2.12)

for two-component spinors and the results are the same. Therefore the 2×2 matrices

must be diagonal with arbitrary constant coefficients p, q, s, and t and

B1 =

 pI qI

sI tI

 . (2.22)
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For rotations only, the condition given by Eq. (2.14) has the same form as that

given by Eq. (2.12). Therefore, the matrix B3 is similarly constrained to

B3 =

 aI bI

cI dI

 . (2.23)

For rotations only, the condition given by Eq. (2.13) produces four 2 × 2 con-

ditions with the results as those found for two-component spinors. The matrices are

constrained to

B2j =

 eσj fσj

gσj hσj

 (2.24)

where σj are the 2× 2 Pauli matrices.

Applying boosts (without rotations), then the condition given by Eq. (2.12)

leads q = 0 and t = p, so that

B1 =

 pI 0

sI pI

 . (2.25)

In the case of boosts again without rotations, the condition given by Eq. (2.13)

leads to e = −h = s and f = 0, so that

B2j =

 sσj 0

gσj −sσj

 . (2.26)

Applying boosts without rotations in the condition given by Eq. (2.14) leads

to b = 2ims, p = 0, a = d, and g = 0, and the group of matrices become

B1 =

 0 0

sI 0

 , (2.27)

B2j =

 sσj 0

0 −sσj

 , (2.28)
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and

B3 =

 aI 2imsI

cI aI

 . (2.29)

Applying together rotations and boosts in the conditions leads to a = 0 and

c = 0, so that

B1 =

 0 0

sI 0

 , (2.30)

B2j =

 sσj 0

0 −sσj

 , (2.31)

and

B3 =

 0 2imsI

0 0

 . (2.32)

The constant s can now be factored out of the equation leaving the following

first-order differential equation
 0 0

I 0

 ∂

∂t
+

 σj 0

0 −σj

 ∂

∂xj
+

 0 2imI

0 0


ψ(r, t) = 0 (2.33)

which is known to be the the only Galilei invariant first-order dynamical equation for

four-component spinors. This concludes the proof of Proposition 2.

Although the obtained equation is unique, it can be cast into several differ-

ent but equivalent forms. This can be done by similarity transformations, which

corresponds to a change of basis. The equation can also be transformed into other

representations such as momentum representation [29, 30].

2.3.3 Higher-Order Equations for Four-Component Spinors

We also search for higher-order dynamical equations for four-component spinor

wave functions. The following proposition summarizes the obtained results.
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Proposition 3. The Lévy-Leblond equation with the operator raised to N-th power
 0 0

I 0

 ∂

∂t
+

 σj 0

0 −σj

 ∂

∂xj
+

 0 2imI

0 0



N

ψ(r, t) = 0 (2.34)

is Galilei invariant.

Proof: Let

L =

 0 0

I 0

 ∂

∂t
+

 σj 0

0 −σj

 ∂

∂xj
+

 0 2imI

0 0

 (2.35)

be the Lévy-Leblond operator. It has already been proven that the first-order equation

is invariant, therefore we have

GLG−1Gψ(~x, t) = GLG−1eiφψ(~x, t) = eiφLψ(~x, t) = 0. (2.36)

This process can be repeated for each power of L until the phase factor has

been commuted fully to the left.

GLNG−1Tψ(~x, t) = GLN−1G−1eiφLψ(~x, t) = eiφLNψ(~x, t) = 0. (2.37)

Corollary: The case of N = 2 produces the Schrödinger equation [38]

L2ψ(~x, t) =


 0 0

I 0

 ∂

∂t
+

 σj 0

0 −σj

 ∂

∂xj
+

 0 2imI

0 0




2

ψ(~x, t) = 0

=

2im

 I 0

0 I

 ∂

∂t
+

 {σj, σk} 0

0 {σj, σk}

 ∂

∂xj

∂

∂xk

ψ(~x, t) = 0

=

2im

 I 0

0 I

 ∂

∂t
+ 2δjk

 I 0

0 I

 ∂

∂xj

∂

∂xk

ψ(~x, t) = 0

=
[
imI∂t + I∂2

j

]
ψ(~x, t) = 0 . (2.38)
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2.3.4 Fundamental Dynamical Equations for 4-component Spinors

We have already shown that the only Galilei invariant first-order dynamical

equation is the Lévy-Leblond equation (see Proposition 2). Furthermore there is an

entire class of higher-order Galilei invariant equations that result from taking the N th

power of the Lévy-Leblond operator (see Proposition 3). Among this class of Galilei

invariant equations, there are the Lévy-Leblond [29, 30], the Schrödinger equation

[38], and Schrödinger-like equations [16, 17].

In addition to being Galilei invariant, the fundamental dynamical equations

must also have no mixed partial differentials. The Lévy-Leblond equation, the Schrödinger

and Schrödinger-like equations are fundamental because they have no mixed partial

differentials.

Proposition 4. The only fundamental equations for four-component spinors are the

Lévy-Leblond (see Eq. 2.19) and Schrödinger-like equations (see Eq. 2.8).

Proof: Let us first consider equations among the Lévy-Leblond class. The Nth order

equation is obtained by raising the Lévy-Leblond operator to the Nth power. The

even and odd powers can be examined separately such that

LN =

 L
2M Neven

L2Q+1 Nodd
(2.39)

where M = N/2 ≥ 1 and Q = (N − 1)/2 ≥ 1. Using the result given by Eq. (2.38)

for N = 2 and expanding the binomial to power M produces

L2M =
[
2imI∂t + 2I∂2

j

]M
=

p+q=M∑
p,q

M !

p!q!
(2im∂t)

p(2∂j)
q (2.40)

Mixed partial differentials are produced for every term where p > 0 and q > 0,

so there are no fundamental equations for M > 1. When N is odd, then

L2Q+1 =

p+q=Q∑
p,q

Q!

p!q!
(2im∂t)

p(2∂j)
q (2.41)
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In this case, the mixed partial differentials result for every Q > 0. There is no

fortuitous canceling of terms as it was found for N = 2, which gave the Schrödinger

equation, so there are no other fundamental equations.

Knowing that there are no other fundamental equations among the Lévy-Leblond

class does not rule out other 2nd and higher-order fundamental equations. To prove

that there are no other fundamental equations for four-component spinor state func-

tions, we must consider the most arbitrary N th order differential equation[
a+b≤N∑
a,b

Dabj∂
a
t ∂

b
j

]
ψ(~x, t) = 0 , (2.42)

where Dabj are assumed to be 4 × 4 constant matrices and there is an implied sum-

mation over the index j = 1, 2, 3. Eliminating mixed partial differential terms, Eq.

(2.42) becomes [
0<a≤N∑

a

Da0∂
a
t +

0<b≤N∑
b

D0bj∂
b
j +D00

]
ψ(~x, t) = 0 . (2.43)

The Galilei transformation rule (see Eqs 2.4 and 2.5)

G∂t
p∂i

qG−1eiϕ(~x,t) ψ (~x, t)

= eiϕ(~x,t)[k1 + ∂t + k2i∂i]
p[k3i + k4ji∂j]

q ψ (~x, t) (2.44)

where the constants introduced are defined

k1 = − i
2
mv2

k2i = Rjivj

k2i
2 = (Rjivj)

2 = v2

k3i = −imRjivkRjk

k3i
2 =

(
−imRjivkRjk

)2
= −m2v2
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k4ji = Rji.

transforms (Eq. 2.43) into

eiϕ(~x,t)

[
0<a≤N∑

a

D′a0 (k1 + ∂t + k2i∂i)
a

+

0<b≤N∑
b

D′0bj (k3j + k4ij∂i)
b +D′00

]
ψ(~x, t) = 0 (2.45)

The trinomial and binomials can be expanded by their respective powers

eiϕ(~x,t)

[
0<a≤N∑

a

D′a0

(
p+q+r=a∑
p,q,r

P (kp1, 1
q, kr2i) ∂

q
t ∂

r
i

)

+

0<b≤N∑
b

D′0bj

(
u+v=b∑
u,v

P
(
ku3j, k

v
4ij

)
∂vi

)
+D′00

]
ψ(~x, t) = 0 (2.46)

where the function P () produces the permutation of its arguments. To be Galilei

invariant this equation must be equal to the untransformed equation (see Eq. 2.43)

and terms with mixed partial differentials must vanish. The condition that must be

met for the sum of mixed partial differential terms of like powers e and f to vanish is

0<a≤N∑
a

D′a0

(
p+e+f=a∑

p

P
(
kp1, 1

e, kf2i

))
= 0 (2.47)

with e > 0 and f > 0.

The permuted terms do not vanish so the matrices must sum together to equal

zero. The remaining conditions for invariance are

De0 =

0<a≤N∑
a

D′a0

(
p+e=a∑
p

P
(
kp1, 1

e, k0
2i

))
(2.48)

D0fi =

0<a≤N∑
a

D′a0

(
p+f=a∑

p

P
(
kp1, 1

0, kf2i

))

+

0<b≤N∑
b

D′0bj

(
u+f=b∑
u

P
(
ku3j, k

f
4ij

))
(2.49)
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D00 =

0<a≤N∑
a

D′a0

(
P
(
ka1 , 1

0, k0
2i

))
+

0<b≤N∑
b

D′0bj
(
P
(
kb3j, k

0
4ij

))
+D′00 (2.50)

Setting f = 0 in Eq. (2.47) and combining with Eq. (2.48) proves that Da0 = 0.

So there are no other Galilei invariant dynamical equations that are free of mixed

partial differentials for 4-component spinors. This concludes the proof Proposition 4.

2.4 Discussion

There are three new and important results presented in this Chapter. First, we

demonstrated that there are no fundamental dynamical equations for two-component

spinor wave functions in Galilei space-time. Second, we derived the Lévy-Leblond

equation for a four-component spinor wave function by using a different method than

the original Lévy-Leblond approach [29, 30]. Finally, the most important result

is a formal proof that the Lévy-Leblond and Schrödinger equations are the only

fundamental dynamical equations for four-component spinor wave functions in Galilei

space-time that can be derived with the Schrödinger phase factor. The obtained

results have far reaching consequences that will be now discussed.

Quantum mechanics textbooks [41, 47] frequently present the Schrödinger equa-

tion for two-component spinors as a way of introducing the concept of spin. Rota-

tional invariance is expected of the equation and rotations are applied to the spinor

state functions. However it is not possible to do the same for Galilei boosts. Con-

sequently, in non-relativistic quantum mechanics there is no way to relate the spinor

state function of one observer to that of another observer moving with a constant

relative velocity. Furthermore even the Schrödinger equation with its identity ma-
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trix coefficients cannot be shown to be Galilei invariant for two-component spinors

because there are no 2× 2 Galilei boost matrices.

Now, the Pauli-Schrödinger (PS) equation can be derived from the Lévy-Leblond

equation [30]. Using phase invariance of the second kind the fields V and A are in-

troduced by the substitutions

i∂t → i∂t − V (x, t) , (2.51)

and

−i∂j → −i∂j − A(x, t) , (2.52)

where (V,A) is the 4-potential of the electro-magnetic field. Maxwell’s equations

break Galilei invariance but may be cast into a Galilei invariant form by the elimina-

tion of Maxwell’s term in the non-relativistic limit (c → ∞). Performing the above

substitution on the Lévy-Leblond equation produces a pair of coupled equations of

the form

σj(i∂j + Aj)φ− 2mχ = 0 (2.53)

and

(i∂t − v)φ+ σj(i∂j + Aj)χ = 0 (2.54)

Then the Pauli-Schrödinger equation [31, 38, 30] is obtained by eliminating χ

from the above pair of equations, and we have

i∂tφ = V φ+
1

2m

[
(i∂j + Aj)

2 + iσ · (i∂j + Aj)× (i∂j + Aj)
]
φ (2.55)

The PS equation is a second order differential equation governing the space

and time evolution of a two-component spinor. As a two-component spinor equation

it cannot be proven to be Galilei invariant as demonstrated by Proposition 1. This

means that the PS equation is not fundamental in Galilei space-time. It is interesting
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that the 2-component PS equation can be derived from the four-component Lévy-

Leblond equation, which is fundamental. Thus the validity of the two-component

PS equation follows from the existence of the fundamental (Galilei invariant) Lévy-

Leblond equation.

It has been suggested that the PS equation is covariant in the low velocity

limit [44]. However that proof uses the four-component boost matrix to determine

the effect of a boost on the separable two-components of the spinor. Normally the

four-component boost matrix mixes the components of the spinor but in the limit of

low velocity the four-component spinor boost matrix becomes an identity matrix and

no mixing occurs. As such it effectively applies no boost at all. Consequently, this

approach does not show Galilei boost invariance in a low velocity limit.

Based on the above results, some confusion may arise from the unusual fact that

the four-component Schrödinger equation is fundamental while the two-component

Schrödinger equation is not. Since the matrices of the Schrödinger equation are diag-

onal there is no mixing of the pair of two-component spinors in the four-component

equation. This makes it possible to separate the equations into two two-component

Schrödinger equations [47], which indicates that the validity of the (non-fundamental)

two-component Schrödinger equation is a consequence of the fundamental four-component

Schrödinger equation.

The above discussion of the PS equation clearly shows that the Lévy-Leblond

and Schrödinger equations for four-component spinor wave functions are the only

fundamental dynamical equation in Galilei space-time with the Schrödinger phase

factor. This is an important result as it shows that only the Lévy-Leblond and

Schrödinger equations are available to formulate field theories of elementary particles

described by four-component spinors in Galilei space-time.
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2.5 Summary

A search for fundamental dynamical equations for two and four-component

spinor wave functions was conducted in Galilei space-time represented by the ex-

tended Galilei group. For a dynamical equation to be considered as fundamental, it

was required that the equation was invariant under the symmetry operators of the

group of the Galilei metric, that the state functions transformed like the irreducible

representations of the group of the metric, and that the equation did not have mixed

time and space partial derivatives.

The main results obtained are: (i) there are no fundamental dynamical equa-

tions for two-component spinor wave functions in Galilei space-time; (ii) the Lévy-

Leblond equation for a four-component spinor wave function can be derived by using

a different method than the one originally used by Lévy-Leblond; (iii) a formal proof

that the Lévy-Leblond and Schrödinger equations are the only fundamental dynamical

equations for four-component spinor wave functions in Galilei space-time.

Among important physical implications of the obtained results is that the Pauli-

Schrödinger equation is not a fundamental (Galilei invariant) equation in Galilei

space-time. This remains true despite the fact that the original Lévy-Leblond equa-

tion for four-component spinor wave functions, from which the Pauli-Schrödinger

equation can be obtained, is a Galilei invariant dynamical equation.



CHAPTER 3

NEW INVARIANT DYNAMICAL EQUATIONS IN GALILEAN SPACE-TIME

3.1 Background

To find new fundamental physics equations that describe Dark Matter in Galilean

space-time, we must go beyond the work presented in the previous chapter. The rea-

son is that in Chapter 2 [48] all equations were derived using the Schrödinger phase

factor exclusively. It was shown that under this constraint, the Levy-Leblond and

Schrödinger equations are the only Galilei invariant dynamical equations for four-

component spinors. It is well-known that both equations describe ordinary matter in

Galilean space-time.

In this chapter, we conduct a search for new Galilei invariant dynamical equa-

tions by removing the requirement of a Schrödinger phase factor. This leads to new

invariant equations that are called here the generalized Lévy-Leblond and gener-

alized Schrödinger equations. Using these new equations, we obtain a new energy-

momentum relation, which generalizes the well-known non-relativistic energy-momentum

relationship. It is also demonstrated that these generalized equations reduce to

the standard Lévy-Leblond and Schrödinger equations as a special case when the

Schrödinger phase factor is applied. An important and new result is that the choice

of phase factor determines the form of the energy-momentum relation and that

the standard non-relativistic momentum-energy relation is obtained only when the

Schrödinger phase function is used. A physical interpretation of the of the new equa-

tions is also provided.

25
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3.2 Deriving New Fundamental Dynamical Equations

3.2.1 Conditions for Invariance of the First Order Equation

For convenience we will use the following notation throughout Chapter 3 when

dealing with Galilean space and time coordinates. Unless states otherwise in the

text there is an implied summation over repeated indices. For greek indices the sum

will run from 0 to 3 while latin indices will run from 1 to 3. The Galilei metric

tensor gµν = diag1, 1, 1, 1 implies for all quantities Xµ that Xµ = Xµ = (X0, Xj)

and XµX
µ = X2

0 + X2
j . The partial differential ∂µ is with respect to the coordinate

defined by the index such that ∂µ = ∂µ = ( ∂
∂t
, ∂
∂x
, ∂
∂y
, ∂
∂z

).

In order to search for Galilei invariant equations we begin with the most arbi-

trary first order differential equation

[B0∂t +Bj∂j +Bc]ψ(x, t) = [Bµ∂µ +Bc]ψ(x, t) = 0 (3.1)

where B0, Bj, and Bc are constant n × n matrices and ψ is an n-component state

function and we use the notation Bµ = Bµ = (B0, Bj).

A space time point in the coordinates of one observer xν = (t, x, y, z) is related

to the same point in the coordinates of another observer x′ν = (t, x, y, z) by a linear

transformation

x′ν = Λν
µx

µ + bν (3.2)

where there is an implied sum over repeated indices Under the linear transformation

a differential operator transforms like

∂′µ = Λρ
µ∂ρ (3.3)

Applying the linear transformations to the first order equation produces

[
B′µ∂′µ +B′c

]
eiφ(x,t)ψ(x, t) = 0 (3.4)
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Substitute the transformed differential operators to restore the equation to its original

variables [
B′µΛρ

µ∂ρ +B′c
]
eiφ(x,t)ψ(x, t) = 0 (3.5)

The phase factor can be commuted through the differential operator

Λρ
µ∂ρe

iφ(x,t) = eiφ(x,t)Λρ
µ (∂ρ + i∂ρφ) (3.6)

Commuting the phase factor through to the left side of the transformed first order

equation and dividing it out produces[
B′µΛρ

µ (∂ρ + i∂ρφ) +B′c
]
ψ(x, t) = 0 (3.7)

For the first order equation to be invariant under the transformation, the trans-

formed first order equation must be equal to the original first order equation. Equat-

ing terms of like differential powers then generates a set of conditions on the matrices

B that must be met for the dynamical equation to be invariant.

Bµ = B′βΛµ
β (3.8)

Bc = B′c + iB′βΛµ
β∂µφ (3.9)

The equation is invariant for phase functions of the form

φ(x, t) = ζµx
µ + ζc (3.10)

where ζµ, ζc are scalar functions of the transformation parameters aµ, vi, and θi and

potentially any number of other parameters that have yet to be introduced. The

extended Galilei group relies upon the introduction of one parameter in ζc. Using the

replacement ∂µφ = ζµ the condition for invariance (3.9) becomes

Bc = B′c + iB′βΛµ
βζµ (3.11)

which can be further simplified by substitution of (4.10)

Bc = B′c + iBµζµ (3.12)
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3.2.2 Matrices that Satisfy the Conditions for Galilean Invariance

The linear transformation used here is the Galilean transformation

Λ̂ = [Λµ
ν ] =

 I 0

Rv R

 (3.13)

Λ̂−1 =

 I 0

−v R−1

 (3.14)

The matrices Bµ and Bc must satisfy the conditions in order to form a Galilean

invariant first order equation.

Applying rotations only to the first condition constrains the matrices to the

form

Bt =

 pI qI

sI tI

 Bj =

 eσj fσj

gσj hσj

 (3.15)

where a, b, c, d, e, f, g, h, p, q, s, and t are as yet undetermined constants. Applying

boosts only to the first condition further constrains the matrices to

Bt =

 0 0

sI 0

 Bj =

 sσj 0

gσj −sσj

 (3.16)

Combining boosts and rotations in the conditions creates no further constraints.

The second condition contains the unknown function ζ(vi, θj) that must be de-

termined in addition to the matrix Bc. With the Galilean transformation substituted

in the second condition reads

Bc = B′c + iB′tζt + iB′iRj
i ζj (3.17)

Written explicitly in matrix form

Bc −B′c
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=

 A B

C D

−
 UR 0

−σ·v
2
UR UR


 A B

C D


 U−1

R 0

U−1
R

σ·v
2

U−1
R



=

 A− UAU−1 − UBU−1 σ·v
2

B − UBU−1

C − UCU−1 + σ·v
2
UAU−1 + σ·v

2
UBU−1 σ·v

2
+ UDU−1 σ·v

2
D − UDU−1 + σ·v

2
UBU−1


= iB′tζt + iB′iRj

i ζj

= iBtζt + iBjζj

= i

 0 0

sI 0

 ζt + i

 sσj 0

gσj −sσj

 ζj

=

 isσjζj 0

isIζt + igσjζj −isσjζj

 (3.18)

The second component of the matrix equation (3.18) requires

B = bI (3.19)

where b is a scalar constant and I is the 2× 2 identity matrix.

The first and fourth components of (3.18) add together to produce a relationship

between A and D

A+D = UAU−1 + UDU−1 = U(A+D)U−1. (3.20)

From (3.20) we can conclude that

A+D = qI (3.21)

where q is an as yet undetermined scalar constant.

The first component of (3.18) combined with (3.19) is

A− UAU−1 − bσjvj
2

= isσjζj (3.22)
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Solving for ζj

ζj(θi, vj) =
−ib
2s

σjσivi −
iσj
s

(A− UAU−1) (3.23)

we find that the functional dependence of ζj on θi is seperate from its dependence on

vi. Furthermore there exists a choice of constant terms A = aI that will remove the

rotational dependence from ζj leaving it simply proportional to velocity.

The third component of (3.18) provides the last piece of information that can

be extracted from the matrix equation. By substituting (3.19) and (3.23) into the

expression to eliminate ζj the functional dependence of ζt is found to be

ζt =
1

is

[
C − UCU−1 +

σ · v
2
UAU−1 +

1

4
bv2 − UDU−1σ · v

2

+
bg

2s
σ · v +

g

s

(
A− UAU−1

)]
(3.24)

and the first order equation is
 0 0

sI 0

 ∂0 +

 sσj 0

gσj −sσj

 ∂j +

 A bI

C qI − A


ψ(x, t) = 0. (3.25)

3.2.3 Requiring Hermiticity of the First Order Equation

Requiring hermiticity of the Hamiltonian can result in further constraint on the

matrices. First hermiticity of the Bi matrix requires g = 0. Second, hermiticity of

the sum κBt +Bc where κ is an arbitrary scalar constant requires C = (b− κs)I and

A† = A. Applying these constraints to (3.23) and (3.24) lead to far more constrained

conditions on the phase function. Redefining the constants to absorb s (i.e. b/s→ b,

q/s→ q, and A/s→ A).

ζj(θi, vj) =
−ib
2
σjσivi − iσj(A− UAU−1) (3.26)

ζt = −i
[
σ · v

2
UAU−1 +

1

4
bv2 − UDU−1σ · v

2

]
(3.27)



31

= − i
4
bv2 − iσ · v

2
UAU−1 + iUAU−1σ · v

2
− qσ · v

2
(3.28)

Dividing through by s and redefining constants the set of matrices is constrained to
 0 0

I 0

 ∂0 +

 σj 0

0 −σj

 ∂j +

 A bI

(b− κ)I qI − A


ψ(x, t) = 0 (3.29)

where A must be Hermitian A† = A and q, b, and κ must be real. Equation (3.29) is

the generalized Lévy-Leblond equation.

3.2.4 Deriving a Second Order Equation: the Generalized Schrödinger Equation

A second order equation can be created by squaring the first order operator on

the state function. This equation may also be true and it might be used to limit the

constants of the first order equation. The second order equation should not contain

any mixed partial differentials. The second order equation produced by squaring the

operator of the first order equation is
 0 0

I 0

 ∂0 +

 σj 0

0 −σj

 ∂j +

 A bI

(b− κ)I qI − A




2

ψ(x, t)

=


 bI 0

qI bI

 ∂t +

 I 0

0 I

 ∂2
j +

 σjA+ Aσj 0

0 −2qσj + Aσj + σjA

 ∂j

+

 A2 + b(b− κ)I bqI

q(b− κ)I b(b− κ)I + q2I − 2qA+ A2


ψ(x, t) = 0 (3.30)

If the second order equation is required to be a dynamical equation of the state

function then the Hamiltonian of the second order equation must also be Hermitian.

We have already established that A is Hermitian and q and b are real. Under these

restrictions the second and third terms of (3.30) are Hermitian. The sum of the first
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and fourth terms of (3.30) is also Hermitian. This second order equation (3.30) is the

generalized Schrödinger equation for four-component spinors.

3.2.5 Deriving a Momentum-Energy Relation

A momentum energy relation can be derived by looking for stationary states.

The first order dynamical equation can be transformed into a time-independent equa-

tion assuming that the space and time parts of the state function are separable i.e.

ψ(x, t) = ψ(x)e−iεt. (3.31)

The bispinor notation is used to break the four component spinor into a pair of two

component spinors φ and χ

ψ(x) =

 ϕ

χ

 . (3.32)

States with a definite momentum pj are also seperable ϕ

χ

 =

 ϕ0

χ0

 eipjxj . (3.33)

Furthermore we can substitute the constant 2×2 matrix A with a sum of the linearly

combination of the Pauli matrices and identity matrix. Substituting these expression

into the generalized Lévy-Leblond equation and replacing the momentum operator p̂j

with its eigenvalues pj produces the pair of linked equations

εϕ0 + ε̃ϕ0 − σj(pj + p̃j)χ0 = 0 (3.34)

−σj(pj + p̃j)ϕ0 + 2m0χ0 = 0. (3.35)

As a linear homogeneous system of equations for ϕ0 and χ0 non-trivial solutions exist

only when the determinant of the coefficients vanishes, i.e.∣∣∣∣∣∣∣
ε+ ε̃ σj(pj + p̃j)

σj(pj + p̃j) 2m0

∣∣∣∣∣∣∣ = 0. (3.36)



33

So we have

2m0(ε+ ε̃)− σj(pj + p̃j)σk(pk + wk) (3.37)

= 2m0ε− (pj + p̃j)
2 = 0 (3.38)

and the momentum-energy relation for the generalized Lévy-Leblond equation is

ε = −ε̃+ (pj + p̃j)
2/2m. (3.39)

3.3 Discussion

The main result of this chapter is a new Galilean invariant equation for four

component spinors that is called here the generalized Lévy-Leblond equation. It must

be pointed out that the state functions of this equation do not obey the standard

Schrödinger equation, which can be seen by squaring the operators of the generalized

Lévy-Leblond equation to produce a new second order equation that becomes a gen-

eralized Schrödinger equation; the latter has more terms and even more important

it mixes the spinor components. This is an important result as it shows that other

fundamental equations do exist in Galilean space-time. As expected, the generalized

Lévy-Leblond equation reduces to the standard Lévy-Leblond equation obtained in

Chapter 2 for the special case when the phase factor is set to the Schrödinger phase

factor. Based on equations (3.26-3.27), the Schrödinger phase factor is obtained when

A = 0. The free parameter b remains an arbitrary constant but can be set to b = 2m.

Using the generalized Lévy-Leblond equation, we obtain a new energy-momentum

relation, which generalizes the well-known non-relativistic energy-momentum rela-

tionship; note that the latter is obtained only when the Schrödinger phase factor is

used and the standard Lévy-Leblond equation is derived. This dependence of the non-

relativistic energy-momentum relationships on the phase factors is a new phenomenon

discovered here.
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The discovery of the new invariant dynamical equation and the resulting new

non-relativistic energy-momentum relationship may have important physical conse-

quences because the conditions under which this equation and the relationship were

derived do not apply to ordinary matter whose atomic structure is described by the

Schrödinger equation. The new equation is independent from the existence of the

Schrödinger equation because its Galilean invariance is guaranteed by another (non-

Schrödinger) phase function. This clearly indicates that the equation may describe an

extraordinary matter such as Dark Matter whose nature and origin remains currently

unknown. This interesting proposition will be further considered in Chapter 5 after

a search for fundamental dynamical equations in Minkowski space-time is presented

(see Chapter 4).

3.4 Summary

A new fundamental (Galilean invariant) dynamical equation for four-component

spinor state functions was found. The equation describes free particles represented

by such state functions. Since in a special case this new equation reduces to the stan-

dard Lévy-Leblond equation derived in Chapter 2, it is called here the generalized

Lévy-Leblond equation. The main difference between these equations is that they are

obtained with different phase factors and that energy-momentum relationships re-

sulting from the equations are also different. The dependence of the non-relativistic

energy-momentum relationship on the constant terms is a new phenomenon discov-

ered here. Moreover, the obtained results clearly show that the energy-momentum

resulting from the generalized Lévy-Leblond equation is not the same as the well-

known non-relativistic energy-momentum relationship. Hence, it is suggested that

such new energy-momentum relationship may describe an extraordinary matter such

as Dark Matter whose nature and origin still remains unknown.



CHAPTER 4

DIRAC EQUATION AND OTHER NEW FUNDAMENTAL EQUATIONS IN

MINKOWSKI SPACE-TIME

4.1 Background

In this dissertation, a physical theory is called fundamental in Minkowski space-

time when its dynamical equations are invariant with respect to all transformations

of coordinates that leave the Minkowski metric invariant. The transformations form

a representation of the inhomogeneous Lorentz group, which is also known as the

Poincaré group (e.g., [21, 22]). We refer to an invariant dynamical equation as a

Poincaré invariant equation. In 1939 Wigner [20] classified all irreducible representa-

tions (irreps) of the Poincaré group and used them to determine classes of elementary

particles that exist in Minkowski space-time (e.g., [21]).

The Klein-Gordon (KG) equation [49, 50] is one of the fundamental (Poincaré

invariant) equations of relativistic field theories. Particles described by the KG equa-

tion are bosons with spin zero and they are represented by scalar wave functions.

The difficulties with negative energy states and the probabilistic interpretation of

this equation are eliminated in quantum field theories (QFT) by the procedure of

field quantization (e.g., [47]). Other fundamental equations are the Dirac equa-

tion, which describes fermions with spin 1/2, and the Proca equation, which describe

bosons with spin 1. The state functions that represent fermions are spinors while

vector wave functions represent bosons. Typically, it is required that different com-

ponents of these state functions satisfy the KG equation. The non-relativistic limits

35
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of the KG, Dirac and Proca equations have also been investigated and the resulting

Galilean invariant equations were obtained [29, 30, 47, 22].

To obtain the KG equation, the relativistic energy-momentum relationship is

typically used and differential operators are substituted for the energy and momen-

tum. On the other hand, the Dirac equation is usually derived by using the trans-

formation properties of spinors under the Lorentz group. A similar procedure is also

used to obtain the Proca equation. All these equations can also be formally obtained

from the corresponding Lagrangians (e.g., [47]). Another method that is based on

group theory was introduced by Wigner and Bargmann (1948) [26], and used by these

authors to obtain the equations of relativistic field theories.

A different approach was used by Fry, Musielak & Chen (2011) [18], who used

a method based on the Poincaré group, which is the group of the Minkowski metric,

and formally derived the KG equation for free spin-zero particles. Using the same

approach, Musielak & Fry (2011) [18] demonstrated that the KG equation is the only

second-order differential equation, which is Poincaré invariant, and that there is also

an infinite set of higher-order KG-like equations, all of which are Poincaré invariant.

As already shown in the previous chapters, the approach developed in this

dissertation differs from those adopted in the previous works. Specific differences were

already discussed in Chapter 2 for Galilean space-time and they are also relevant for

Minkowski space-time. Now, the approach will be extended to the Minkowski metric

and free elementary particles represented by four-component spinor state functions

will be considered. Before the formal derivation of the results is given, we first briefly

summarize the basic properties of the Minkowski metric and the Poincaré group.

The Minkowski metric can be written as ds2 = dt2 − dx2 − dy2 − dz2, where

x, y and z are the spatial coordinates and t is the time coordinate given in natural

units where the speed of light is c = 1 so that space and time have the same units.
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The group of this metric is the Poincaré group P , whose structure is given by the

following semi-direct product: P = Hp ⊗s T (3 + 1), where T (3 + 1) is an invariant

subgroup of space-time translations and Hp is a non-invariant subgroup consisting of

the remaining transformations and the identity transformation. In this dissertation,

we consider the so-called proper orthochronous group P ↑+ that is a subgroup of P .

We now derive Poincaré invariant dynamical equations for 4-component spinor

wave functions in Minkowski space-time.

4.2 Poincaré Invariant Dynamical Equations

4.2.1 Deriving Conditions for Invariance of the First Order Equation

To find a fundamental dynamical equation we consider the most arbitrary first

order differential equation of the form

[Bµ∂µ +Bc]ψ(x, t) = 0 (4.1)

where Bµ and Bc are constant n×n matrices and ψ is an n-component state function.

A space time point in the coordinates of one observer xν is related to the same

point in the coordinates of another observer x′ν by a linear transformation

x′ν = Λν
µx

µ + bν . (4.2)

Under the linear transformation a differential operator transforms like

∂′µ = Λρ
µ∂ρ. (4.3)

The state function transforms like

Tψ(x, t) = ψ′(x′, t′). (4.4)

In general the state functions are related by a phase factor

eiφ(x,t)ψ(x, t) = ψ′(x′, t′). (4.5)
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The principle of relativity requires that if a dynamical equation such as equation

(4.1) is true for one observer that there exist an equations of the same form for all

other observers who have a coordinate system that is translated, rotated, and boosted

relative to the first observer. An arbitrary second observer would have an equation

that features objects such as B′µ, B′c, and ∂′µ that may have been changed by the

coordinate transformation such as

[
B′µ∂′µ +B′c

]
ψ′(x′, t′) = 0 (4.6)

Substituting the transformation rules of the differential operator (4.3) and state func-

tion (4.4) into equation (4.5) produces a first order equation that is now written in

terms of the original coordinate system xµ

[
B′µΛρ

µ∂ρ +B′c
]
eiφ(x,t)ψ(x, t) = 0 (4.7)

The phase factor can be commuted through the differential operator

Λρ
µ∂ρe

iφ(x,t) = eiφ(x,t)Λρ
µ (∂ρ + i∂ρφ) (4.8)

Commuting the phase factor through to the left side of the transformed first order

equation and dividing it out produces

[
B′µΛρ

µ (∂ρ + i∂ρφ) +B′c
]
ψ(x, t) = 0. (4.9)

For the first order equation to be invariant under the transformation the trans-

formed first order equation must be equal to the original first order equation. Equat-

ing terms of like differential powers then generates a set of conditions on the matrices

Bµ and Bc that must be met for the dynamical equation to be invariant.

Bµ = B′βΛµ
β (4.10)

Bc = B′c + iB′βΛµ
β∂µφ (4.11)
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The equation is invariant for phase functions of the form

φ(x, t) = ζµx
µ + ζc (4.12)

where ζµ, ζc are scalar functions of the transformation parameters aµ, vi, and θi and

potentially any number of other parameters that have yet to be introduced. The

extended Galilei group relies upon the introduction of one parameter in ζc. Using the

replacement ∂µφ = ζµ the condition for invariance (4.11) becomes

Bc = B′c + iB′βΛµ
βζµ. (4.13)

4.2.2 Finding Matrices that Satisfy the Conditions for Invariance

The matrices Bµ and Bc must satisfy the conditions (4.10) and (4.13) in order to

form a first order differential equation that is invariant under the linear transformation

Λ̂. From this point on the linear transformation will be a Poincare or inhomogeneous

Lorentz transformation. This transformation can be separated into rotations and

boosts to ease calculations. The rotations matrices for 4-component spinors are

Rθj = cos
θ

2
+ εjklγkγl sin

θ

2
(4.14)

where γj and γ0 form a basis for the 4×4 spinor matrices and θj is the rotation about

the j-axis and in the k − l-plane. The boost matrices for 4-component spinors are

Svj = cosh
η

2
+ iγjγ0 sinh

η

2
(4.15)

where η is the boost angle. The boost angle is related to the velocity by tanh η =

β = v/c where c = 1 is the speed of light in natural units. The Dirac representation

is chosen for this work whenever explicit representation of the gamma matrices γµ is

required

γj =

 0 iσj

−iσj 0

 γ0 =

 I 0

0 −I

 (4.16)
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where σj are the Pauli matrices.

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 (4.17)

In this representation the Minkowski metric gµν has signature (+−−−). The covari-

ant gamma matrices are related to the contravariant form by γµ = gµνγ
ν = {γ0,−γj}.

The gamma matrices satisfy the Clifford algebra

{γµ, γν} = 2δµνI. (4.18)

4.2.3 Invariant Equations for the Standard Phase Function φ = 0

Before dealing with the more general case we consider the consequences of

assuming the phase function φ(x, t) = 0. This case requires ζµ = ζc = 0 and simplifies

the condition (4.13) to

Bc = B′c. (4.19)

Applying rotations only to the conditions and (4.10) constrains the matrices to the

form

Bt =

 pI qI

sI tI

 Bj =

 eσj fσj

gσj hσj

 (4.20)

where e, f, g, h, p, q, s, and t are unknown scalar constants.

We re-write condition (4.10) with the boost transformation S

Λβ
µB

µ = B′β = SBβS−1 (4.21)

Applying a Lorentz boost along the z-direction in condition (4.21) the right hand side

becomes

SzB
βS−1

z =
(

cosh
η

2
− iγzγ0 sinh

η

2

)
Bβ
(

cosh
η

2
+ iγzγ0 sinh

η

2

)
(4.22)
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= Bβ cosh2 η

2
+ γzγ0B

βγzγ0 sinh2 η

2
(4.23)

+i
(
Bβγzγ0 − γzγ0B

β
)

sinh
η

2
cosh

η

2
(4.24)

=
1

2

(
Bβ + γzγ0B

βγzγ0

)
cosh η +

1

2

(
−Bβ + γzγ0B

βγzγ0

)
(4.25)

+
i

2

(
Bβγzγ0 − γzγ0B

β
)

sinh η (4.26)

While the left hand side of the equation (4.21) is

Λt
µB

µ = Bt cosh η − iBz sinh η (4.27)

for β = t and a boost in the z-direction. Alternately the left hand side is

Λz
µB

µ = Bz cosh η + iBt sinh η (4.28)

for β = z while Λx
µB

µ = Bx and Λy
µB

µ = By. Here we used the identities

sinh2 η

2
=

1

2
cosh η +

1

2
(4.29)

and

sinh
η

2
cosh

η

2
=

1

2
sinh η (4.30)

and

cosh2 η

2
=

1

2
cosh η − 1

2
(4.31)

The right hand side of (4.21) is equal the left hand side when

{
Bt, γzγ0

}
= 0 (4.32)

{Bz, γzγ0} = 0 (4.33)

[Bx, γzγ0] = 0 (4.34)

[By, γzγ0] = 0 (4.35)
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The above procedure may be repeated for boosts in the x and y directions to

produce a set of constraints similar to (4.32)-(4.35). Taken together the constraints

are equivalent to requiring the matrices Bµ obey the Clifford algebra

{Bµ, Bν} = 2δµνI. (4.36)

Returning to the condition on Bc, equation (4.19), application of a Lorentz

boost produces

Bc = SzBcS
−1
z (4.37)

=
(

cosh
η

2
− iγzγ0 sinh

η

2

)
Bc

(
cosh

η

2
+ iγzγ0 sinh

η

2

)
(4.38)

= Bc cosh2 η

2
+ γzγ0Bcγzγ0 sinh2 η

2
(4.39)

+i (Bcγzγ0 − γzγ0Bc) sinh
η

2
cosh

η

2
(4.40)

This leads to

[Bc, γzγ0] = 0 (4.41)

Applying rotations in equation (4.19)

Bc = RzBcR
−1
z =

(
cos

θ

2
− γxγy sin

θ

2

)
Bc

(
cos

θ

2
+ γxγy sin

θ

2

)
(4.42)

= Bc cos2 θ

2
− γxγyBcγxγy sin2 θ

2
+ (Bcγxγy − γxγyBc) sin

θ

2
cos

θ

2
(4.43)

Which leads to the constraint

[Bc, γxγy] = 0 (4.44)

This reasoning can be repeated for x- and y-directions as well to produce similar

constraints. Under these conditions the matrix Bc is constrained to

Bc = a

 I 0

0 I

 (4.45)
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where a remains a free parameter. Combining these results produces the equation
 0 σj

−σj 0

 ∂j +

 I 0

0 −I

 ∂t + a

 I 0

0 I


ψ(x, t) = 0. (4.46)

We have found a Poincaré invariant equation for 4-component spinor state func-

tions. This equation satisfies the principles of relativity and analyticity but we must

also insure that the state functions transform like irreducible representations of the

Poincaré group. This means that the state functions must obey the eigen equations

i∂tψ = ωψ and −i∂jψ = kjψ. This requirement can be used to remove the free

parameter a. Multiplying equation (4.46) by i and moving the time derivative to the

left hand side produces the equation

i

 I 0

0 −I

 ∂tψ(x, t) = −i


 0 σj

−σj 0

 ∂j + a

 I 0

0 I


ψ(x, t). (4.47)

The operator on the right hand side is the Hamiltonian and the principle of relativity

requires that the operator be Hermitian in order for the eigenvalues of this operator

to be real. The terms are all Hermitian under the condition that the constant a is

imaginary or that ia is real. Now we substitute the eigen-values for their operators

ω

 I 0

0 −I

ψ(x, t) = kj

 0 σj

−σj 0

ψ(x, t)− ia

 I 0

0 I

ψ(x, t). (4.48)

Substituting the bispinor

ψ(x, t) =

 φ

η

 (4.49)

for the state function in equation (4.48) produces a pair of linked equations

ωφ = kjσjη − iaφ (4.50)

and

−ωη = −kjσjφ− iaη. (4.51)
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The four momentum pµ contains the eigen-values of energy and momentum

pµ = (ω, kj) . (4.52)

There will always exist some frame of reference where the momentum is zero (kj = 0)

and the energy equals the rest mass, so that ω = ω0 where ω0 is called the invariant

frequency. When these values are substituted into the pair of equations the only

remaining free parameter a can be determined in terms of the invariant frequency

ia = ±ω0 and the equation (4.48) can be written

i

 I 0

0 −I

 ∂tψ(x, t) =

−i
 0 σj

−σj 0

 ∂j ± ω0

 I 0

0 I


ψ(x, t).. (4.53)

By identifying the wave mass with the rest mass we are able to identify equation

(4.53) as the Dirac equation [33, 34].

We began with the most arbitrary first order differential equation for 4-component

spinors. The constant matrices were constrained to insure that the dynamical equa-

tion would be Poincare invariant for the phase function φ = 0. Consequently this is

the only Poincare invariant first order differential equation for φ = 0.

4.2.4 Other Phase Functions

We now address the more general case where the phase function can be other

than φ = 0. Since φ is not present in the condition (4.10) there is no impact on the

results obtained for Bµ in the previous section. The matrix Bc however is constrained

by the condition (4.13) where the presence of φ will introduce the function ζµ(θi, vj).

Now the problem is to determine the value of the functions ζµ(θi, vj) in addition to

the matrix Bc.
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First notice that the condition (4.13) can be simplified by the substitution of

condition (4.10) and the use of the result Bµ = γµ

Bc = B′c + iB′βΛµ
βζµ = B′c + iBµζµ = B′c + iγµζµ. (4.54)

By setting θj = 0 and vj = 0 it is clear that ζµ(0, 0) = 0. To find the rotational

dependence we move the terms containing Bc to the left hand side and apply a z-

rotation

Bc −B′c = (Bc + γ1γ2Bcγ1γ2) sin2 θ3

2
− (Bcγ1γ2 − γ1γ2Bc) sin

θ3

2
cos

θ3

2
(4.55)

where we have used the identities

sin θ3 = 2 sin
θ3

2
cos

θ3

2
, cos θ3 = cos2 θ3

2
− sin2 θ3

2
, (4.56)

and

1− cos θ3

2
= sin2 θ3

2
. (4.57)

Any 4 × 4 matrix can be represented using the matrices I, γµ, σµν , γ5γµ, and

γ5 as a basis where

σµν =
i

2
[γµ, γν ] (4.58)

γ5 = iγ0γ1γ2γ3 = −i

 0 I

I 0

 (4.59)

γ5γj =

 −σj 0

0 −σj

 γ5γ0 = i

 0 I

−I 0

 (4.60)

are all given for γ in the Dirac basis. If a matrix is required to be hermitian then

the basis can be restricted to I, γµ, σµν , and γ5γµ excluding the anti-hermitian γ5.

Since the matrix Bc must be hermitian it can be written in a basis composed of the

hermitian matrices

Bc = aI + bµνσ
µν + cµγ

µ + dµγ
5γµ (4.61)
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where

cµγ
µ = c0γ0 − c1γ1 − c2γ2 − c3γ3 (4.62)

and where a, bi, cµ, and dµ are undetermined constants. Using this basis we can

calculate Bc + γxγyBcγxγy and Bcγxγy − γxγyBc. We do this for the aI term first

aI + γ1γ2aIγ1γ2 = 0 (4.63)

aIγ1γ2 − γ1γ2aI = 0. (4.64)

Since the quantities vanish a is allowed to remain a free parameter which it must in

order to have the Dirac equation as a possible result of the more general φ. For the

bµνσ
µν term

bµνσ
µν + γ1γ2bµνσ

µνγ1γ2 (4.65)

= i (−2b10γ0γ1 − b20γ0γ2 − b12 + b12γ1γ2 + 2b23γ2γ3 − 2b31γ1γ3) (4.66)

bµνσ
µνγ1γ2 − γ1γ2bµνσ

µν = −2i (b10γ0γ2 − b23γ1γ3 − b31γ2γ3) (4.67)

It is apparent that all but the b30 term must equal zero. For the cµγ
µ term

cµγ
µ + γxγycµγ

µγxγy = −2c1γ1 − 2c2γ2 (4.68)

and

cµγ
µγxγy − γxγycµγµ = −2c1γ2 + 2c2γ1. (4.69)

These terms will survive since they are coefficients of individual γ-matrices which

appear in γmuζmu. The dµγ5γµ term produces

dµγ5γµ + γ1γ2d
µγ5γµγ1γ2 = −2id1γ0γ2γ3 + 2id2γ0γ1γ3 (4.70)

dµγ5γµγ1γ2 − γ1γ2d
µγ5γµ = 2id1γ0γ1γ3 + 2id2γ0γ3 (4.71)

These terms must vanish to satisfy invariance of the first order equation so we conclude

d1 = 0 and d2 = 0.
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Putting these results together we have

γxγyBcγxγy = −c0γ0 − c1γ1 − c2γ2 + c3γ3 (4.72)

and

Bcγxγy − γxγyBc = −2c1γ2 + 2c2γ1. (4.73)

The remaining terms must vanish and thus provide a means of eliminating some of

the free parameters of equation (4.61). Inserting these results into the left hand side

of (4.55) produces

iγµζµ = Bc −B′c = (−2c1γ1 − 2c2γ2) sin2 θ3

2
− (−2c1γ2 + 2c2γ1) sin

θ3

2
cos

θ3

2
(4.74)

= (−c1γ1 − c2γ2) (1− cos θ3) + (c1γ2 − c2γ1) sin θ3 (4.75)

The γ-matrices are linearly independent so the coefficients of each matrix must vanish

independently. For a z-rotation we conclude that ζ3(θ3) = 0 and ζ0(θ3) = 0 and

ζ1 = ic1 (1− cos θ3) + ic2 sin θ3 (4.76)

ζ2 = ic2 (1− cos θ3)− ic1 sin θ3. (4.77)

Similar expressions can be produced for the dependence of ζ1 and ζ2 on the angles θ1

and θ2. All the free parameters of Bc in equation (4.61) will vanish except for the cµ

terms and a.

The phase function φ will also depend on the boost parameters vj. To find the

functional dependence of φ on vj we apply boosts in equation (4.13) and attempt to

solve for φ. Equation (4.13) is simplified by substituting in (4.10) to get

Bc = B′c + iB′βΛµ
βζµ = B′c + iBβζβ. (4.78)

Applying a Lorentz boost along the z-direction produces

Bc − SzBcS
−1
z = Bc −

(
cosh

η

2
− iγzγ0 sinh

η

2

)
Bc

(
cosh

η

2
+ iγzγ0 sinh

η

2

)
(4.79)
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= Bc −Bc cosh2 η

2
− γzγ0Bcγzγ0 sinh2 η

2
(4.80)

−i (Bcγzγ0 − γzγ0Bc) sinh
η

2
cosh

η

2
. (4.81)

With the remaining free parameters and Bc = aI + cνγν we calculate

Bcγ3γ0 − γ3γ0Bc = −2(c0γ3 + c3γ0) (4.82)

and

γ3γ0Bcγ3γ0 = c0γ0 + c1γ + c2γ2 − c3γ3. (4.83)

Then equation (4.81) is

iγµζmu = i [γ0ζ0 − γ1ζ1 − γ2ζ2 − γ3ζ3] (4.84)

= γ0

[
−2c0 sinh2 η

2
+ 2ic3 sinh

η

2
cosh

η

2

]
+ γ3

[
2c3 sinh2 η

2
+ 2ic0 sinh

η

2
cosh

η

2

]
(4.85)

and the z-boost dependence of ζ is ζ1 = 0, ζ2 = 0,

ζ0 = 2ic0 sinh2 η

2
+ 2c3 sinh

η

2
cosh

η

2
, (4.86)

and

ζ3 = 2ic3 sinh2 η

2
− 2c0 sinh

η

2
cosh

η

2
. (4.87)

Equations (4.86-4.87) show how the phase function φ depends upon a boost in

the z-direction. This procedure can be repeated for boosts in the x- and y-directions

with similar results.

After performing boosts and rotations in condition (4.54) the only remaining

free parameters for Bc from equation (4.61) are a and cµ. No other restriction is

available to eliminate these free parameters so they will appear in the first order

equation. These free parameters are allowed because of the added flexibility in the

state function that is afforded by the freedom to select any phase function φ to offset
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non-invariant terms generated by the transformation of the constant matrix Bc. The

free parameters cµ and a will appear in the first order equation making it more general

than the Dirac equation thus we have a generalized Dirac equation

[γµ∂µ + aI + cµγ
µ]ψ(x, t) = 0. (4.88)

Other generalized Dirac equations have appeared in the literature [51, 52].

These equations are of a completely different nature from equation (4.88). The gen-

eralized Dirac equation of [51] refers to a Dirac equation that was generalized to

account for a particle with two mass states. The context, purpose, and method of

that equations construction are not provided however the equation is a second order

differential equation. As a second order equation it resembles the Klein-Gordon equa-

tion but with the additional first order parameter found in the Dirac equation. Thus

it resembles the sum of a Dirac and Klein-Gordon equation. The equation described

in [52] follows from a generalized uncertainty principle and exists in the context of

spacetime with an assumed minimal distance on the order of the Planck length. This

system is not Poincaré invariant and therefore in no way related to the work of this

dissertation.

Equation (4.88) satisfies the principles of relativity and analyticity but we have

not yet required that the state functions transform like irreducible representation of

the Poincaré group. This will be done in the course of producing an energy momentum

relation in the next section.
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4.3 Analysis of the Generalized Dirac Equation

4.3.1 Alternate Form of the Generalized Dirac Equation

The first order equation can be transformed by multiplying by iγ0, using the

momentum operator p̂i = −i∂i, energy operator ε̂ = i∂t, and separating the time

derivative from the space derivative resulting in

ε̂ψ = H = [αip̂i + ãβ + c̃0I + αic̃i]ψ (4.89)

where αi = γ0γi, β = γ0, ã = −ia, c̃0 = −ic0, and c̃i = −ici. In this form the

right hand side can be identified as the Hamiltonian H acting on the state function

ψ. In order to satisfy the principle of relativity the eigenvalues of H must be real

and thus H must be hermitian. Since αi and β are hermitian the hermiticity of the

Hamiltonian is satisfied if ã and c̃µ are real.

4.3.2 Non-relativistic Limit: Derivation of the Generalized Pauli Equation

Its easier to interpret the non-relativistic limit by introducing the speed of light

c. The generalized Dirac equation is then

i∂tψ = H = [cαip̂i + cãβ + cc̃0I + cαic̃i]ψ. (4.90)

We now introduce the electromagnetic four potential

Aµ = (A0(x), Aj(x)) (4.91)

which can be incorporated into the generalized Dirac equation via the minimal cou-

pling

pµ → pµ − e

c
Aµ ≡ Πµ (4.92)

where Πµ is the kinetic momentum and e is the electric charge. The generalized Dirac

equation with electromagnetic potentials is

i∂tψ =
[
cαi

(
p̂i −

e

c
Ai

)
+ eA0 + cãβ + cc̃0I + cαic̃i

]
ψ. (4.93)
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The four-component spinor ψ can be decomposed into a pair of two-component spinors

φ̃ and χ̃

ψ =

 φ̃

χ̃

 (4.94)

The generalized Dirac equation then becomes

i∂t

 φ̃

χ̃

 = c

 σiΠiχ̃

σiΠiφ̃

+ eA0

 φ̃

χ̃

+ cã

 φ̃

−χ̃

+ cc̃0

 φ̃

χ̃

+ cc̃i

 σiχ̃

σiφ̃


(4.95)

after inserting explicit representations for the matrices αi, β, and I.

Producing the non-relativistic limit of the generalized Dirac equation requires

making some assumptions about the value of the free parameters ã and c̃µ. In the

standard Dirac equation ã = m̄c where m is the mass of the particle and c is the

speed of light. We will assume this value for ã in order to interpret the third term on

the right hand side as a rest mass energy. The similarity of the fifth term to the first

term is suggestive of a momentum interpretation while the similarity between the

fourth term and left hand side term suggests an energy interpretation. We will thus

set cc̃0 = −ε̃ where the negative sign is chosen to match the sign of ε as it will appear

on the left. Now if we assume m̄c2 is the largest energy, the spinor state function may

be further split into two parts φ̃

χ̃

 =

 φ

χ

 exp
[
−im̄c2t

]
. (4.96)

The generalized Dirac equation is now

i∂t

 φ

χ

 = c

 σiΠiχ

σiΠiφ

+ eA0

 φ

χ

− 2m̄c2

 0

χ

− ε̃
 φ

χ

+ cc̃i

 σiχ

σiφ

 .

(4.97)
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If we consider the second component of the equation when kinetic and potential

energies are small compared to the rest mass energy i.e. when |i∂χ/∂t| � |m̄c2χ|,

|ε̃χ| � |m̄c2χ|, and |eA0χ| � |m̄c2χ| then we find that

χ =
σj (Πj + c̃j)

2m̄c
φ. (4.98)

This relation can be substituted into the first component equation to produce the

generalized Pauli equation

i∂tφ =

[
1

2m̄

(
pj −

e

c
Aj + c̃j

)2

− eh̄

2m̄c
σjBj +

2m̄
σjεjkl∂kc̃l + eA0 − ε̃

]
φ. (4.99)

For a constant c̃j the curl term vanishes leaving one difference from the original Pauli

equation. Here the c̃j term contributes to the time rate of change of φ in the same

way as momentum.

4.3.3 Non-relativistic Limit: Derivation of the Generalized Lévi-Leblond Equation

Returning to the first component equation of (4.97), using the energy eigen-

operator ε̂ = i∂t and the eigen-equation ε̂ψ = εψ, and setting the electromagnetic

potential and charge to zero we obtain the first half of the generalized Lévy-Leblond

equation. Doing the same with equation (4.98) produces the second half of the gen-

eralized Lévy-Leblond equation.

(ε+ ε̃)φ = σj (pj + c̃j)χ (4.100)

2m̄χ = σj (pj + c̃j)φ. (4.101)

4.3.4 Deriving the Generalized Klein-Gordon Equation

A second order equation such as the Klein-Gordon equation [49, 50] can be

constructed by applying the operators of the generalized Dirac equation to the state
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function a second time. Starting with equation (4.90) and making substitutions ã =

m̄, c̃0 = −ε̃, c̃j = p̃j, and p̂j = −i∂j produces the first order equation

i∂tψ = [−iαj∂j + m̄β − ε̃+ αj p̃j]ψ (4.102)

After apply the operators to the state function a second time the equation is produced

−∂2
t ψ = −∂2

jψ + m̄2ψ + p̃2
jψ + ε̃2ψ − 2ip̃j∂jψ − 2m̄ε̃βψ

+2iε̃αj∂jψ − 2ε̃p̃jαjψ (4.103)

This is the generalized Klein-Gordon equation. The terms are all hermitian and the

equation is Poincaré invariant.

4.3.5 Free Motion of the Dirac Particle and Momentum Energy Relation

To examine the free motion of a particle described by the generalized Dirac

equation (4.102) we look for stationary states ψ(x) that have no time dependence.

The time dependent part of the wave function is assumed to be separable from the

stationary state such that

ψ(x, t) = ψ(x)exp[−iεt]. (4.104)

Under this condition the generalized Dirac equation is a time independent equation

of the stationary state

εψ(x) = [−iαj∂j + m̄β − ε̃+ αj p̃j]ψ(x). (4.105)

Splitting the four-component spinor into a pair of two-component spinors and using

explicit representations for the matrices α and β produces from equation (4.105) the

pair of equations

εφ = σjpjχ+ m̄φ− ε̃φ+ σj p̃jχ (4.106)
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and

εχ = σjpjφ− m̄χ− ε̃χ+ σj p̃jφ. (4.107)

States with a defined momentum pj φ

χ

 =

 φ0

χ0

 exp [ip̂jxj] (4.108)

can be substituted into the equations (4.106)-(4.107) while replacing the operator p̂j

with its eigenvalues pj.

(ε+ ε̃− m̄)φ0 − σj (pj + p̃j)χ0 = 0 (4.109)

−σj (pj + p̃j)φ0 + (ε+ ε̃+ m̄)χ0 = 0 (4.110)

This system of equations admits non-trivial solution only when

(ε+ ε̃− m̄) (ε+ ε̃+ m̄)− [σj (pj + p̃j)]
2 = 0. (4.111)

Simplifying the equation to

(ε+ ε̃)2 − m̄2 − (pj + p̃j)
2 = 0 (4.112)

leads to the solution

ε = −ε̃±
√
m̄2 + (pj + p̃j)2. (4.113)

This is an expression for the energy of a stable state system of the generalized Dirac

equation.

4.4 Discussion

In this chapter, we searched for fundamental, Poincaré invariant, dynamical

equations describing free elementary particles that were represented by four compo-

nent spinor state functions. The original Dirac equation was obtained and shown to
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be the only Poincaré invariant dynamical equation for 4-component spinor state func-

tions when the phase function is φ = 0. A more important result was the discovery

of a new fundamental Poincaré invariant equation, which was called the generalized

Dirac equation (4.88-4.89) because the original Dirac equation is obtained from it

as a special case when the phase function φ is set to zero. To be more specific, the

standard results are obtained when the phase function φ = 0 requires ζµ = 0 which

in turn requires the free parameters to vanish cµ = 0. Without these free parameters

the generalized Dirac equation becomes the standard Dirac equation.

To check the validity of this generalized Dirac equation, we evaluated it in

the non-relativistic limit and showed that the generalized Lévy-Leblond equation

(4.100-4.101) and the generalized Pauli-Schrödinger equation (4.99) were obtained.

Moreover, we also derived a second order equation that was called the generalized

Klein-Gordon (KG) equation (4.103). It was also found that the generalized KG

equation reduced to the standard KG equation when the phase function φ is set to

zero.

A new and important result is that the generalized Dirac equation gives an

energy-momentum relationship that is different than that required by the Special

Theory of Relativity (STR). The well-known STR energy-momentum relation is ob-

tained when φ is set to zero. Differences between the new and STR energy-momentum

relationships indicate that the new relation does not describe ordinary matter, which

means that the generalized Dirac equation provides new physics that goes beyond the

standard model.

There are several ways to interpret the generalized Dirac equation. One way

is to consider the free parameter c̃0 is a new energy term that we can call ε̃ while

the free parameter c̃j is a new momentum term that can be called p̃j and the free

paramter a is a mass term that can be called m̄. While the first two terms are
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energy-like and momentum-like they are different from the standard energy and mo-

mentum terms because the free parameters do not correspond to the existing energy ε̂

and momentum p̂j operators. It has already been established by the eigen-equations

that measurement of the energy produces the eigen-value ε and measurement of the

momentum produces the eigen-value pj. These quantities can be combined into the

four-momentum pµ = (ε, pj). The contraction of the four-momentum on itself pro-

duces an invariant quantity that can be assigned a label m that may be called the

rest mass

pµpµ = ε2 − p2
j = m2. (4.114)

The four-momentum of the alternative energy and momentum can be defined as

p̃µ = (ε̃, p̃j), which we will call the alternative four-momentum. The contraction of

the alternative four-momentum on itself then produces a constant of the motion that

can be assigned a label m̃ that may be called the alternative rest mass

p̃µp̃
µ = ε̃2 − p̃2

j = m̃2. (4.115)

Another four-momentum p̄µ can be determined from the momentum-energy relation

by solving for m̄2 to get

p̄µp̄µ = (ε+ ε̃)2 − (pj + p̃j)
2 = m̄2. (4.116)

From this the total four-momentum of the particle is

p̄µ = (ε′, p̄j) = (ε+ ε̃, pj + p̃j) . (4.117)

where we have defined the total energy ε′ = ε+ ε̃ and total momentum p̄j = pj + p̃j.

Furthermore, from the sum of the four-momenta

p̄µ = pµ + p̃µ (4.118)
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it follows that the total mass is m̄ = m+ m̃.

A consistent treatment requires that all measurable quantities of a quantum

theory must correspond to eigen-values that have associated operators. Thus we

could introduce an operator ˆ̃ε = i∂t̃ associated with the new alternative energy and

an operator ˆ̃pj = i∂j̃ associated with the new alternative momentum values. For each

operator there is an eigen-equation and using these eigen-equations the generalized

Dirac equation can be transformed into an equation with two energy operators and

two momentum operators.

[
ε̂+ ˆ̃ε

]
ψ =

[
αip̂i + (m+ m̃)β + αi ˆ̃pi

]
ψ (4.119)

In short it looks like the sum of two Dirac equations or a Dirac equation governing

the evolution of two distinct particles. Since the energy and momentum terms may

be split as many times as you like the equation can be interpretted as governing a

multi-particle system. In this interpretation, the only thing that makes this equation

different from the standard Dirac equation is that the existence of the alternative

particle depends upon a non-zero phase function. It is perhaps an interesting result

that non-zero phase functions are possible but yield the same results as could be

found with the standard Dirac equation.

A simpler way to interpret the generalized Dirac equation is to insist that the

eigen-values ε and pj represent the total energy and momentum of the particle. In

this case there is no escaping the conclusion that ε = ε + ε̃ and pj = pj + p̃j thus

the new energy and momentum terms vanish ε̃ = 0, p̃j = 0 and the generalized Dirac

equation reduces to the standard Dirac equation.

A more radical interpretation is to suppose that the alternative energy and

alternative momentum values are not directly measurable. Measurement of the mo-

mentum would result in the standard eigenvalues of momentum pj while measurement
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of the energy would result in the standard eigenvalue of energy ε. But if one then used

the standard momentum-energy relation ε2 = m2 + p2
j to find the mass m of the par-

ticle the result would be wrong. The particle must obey the new momentum-energy

relation so it would behave as if it had additional mass m̃. In this interpretation

the new momentum-energy relation (4.113) requires a generalized Dirac particle to

behave in a new way.

The fact that the new energy-momentum relationship does not describe ordinary

matter is an interesting result that is used here the generalized Dirac equation may

govern the evolution of a new form of matter that might fit the characteristics of DM.

A more detailed discussion of this idea is given in Chapter 5.

4.5 Summary

The search for new Poincaré invariant equations described in this Chapter al-

lowed us to formally derive the original Dirac equation and a generalized Dirac equa-

tion. The latter was used to derive a second order equation that was identified as a

generalized KG equation. The non-relativistic limit of these equations was evaluated

and as expected the generalized Lévy-Leblond equation and the original KG equa-

tions were obtained. It was also demonstrated how to reduce the generalized Dirac

equation to the generalized Pauli-Schrödinger equation.

A new energy-momentum relation was derived from the analysis of stationary

states of the generalized Dirac equation. The new energy-momentum relationship was

used to show that the behavior of a particle obeying the generalized Dirac equation

would be different from that of a particle governed by the standard Dirac equa-

tion because of the existence of additional momentum and energy terms. Since this

new energy-momentum relationship differs from the well-known energy-momentum

relationship of the Special Theory of Relativity, it cannot describe ordinary matter.
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Hence, it was suggested that the new energy-momentum relationship represents a

different form of matter that may be identified as DM.



CHAPTER 5

CONCLUSION

5.1 Theoretical Predictions Based on the New Fundamental Equations

The main purpose of the research described in this dissertation was to find new

fundamental Poincaré and Galilei invariant dynamical equations for free particles,

which are represented by spinor state functions. The motivation for finding new

equations was to predict new particles that could explain DM. To explain DM requires

new physics that must go beyond the Standard Model. In the previous proposals,

DM was explained by suggesting the existence of new kinds of fields or particles (see

Sec. 1.1), however, the new results presented in this dissertation are unique because

they clearly identified new fundamental equations that have been overlooked in the

previous studies (see Sec. 2.1 and 4.1).

Particles governed by the generalized fundamental equations obtained in this

research could make good candidates for DM. The standard Dirac equation describes

the behavior of many known particles within the standard model while the generalized

Dirac equation encompasses these known particles and may also describe new particles

that are beyond the Standard Model. A particle with low or zero rest mass similar

to the neutrino is one such possibility.

Neutrinos are spin half particles with no charge and a small mass. While it is

currently believed that neutrinos have a small mass they were originally proposed as

zero mass particles. Neutrinos have no electric charge and are detected through weak

force interactions. But even though neutrinos are hard to see they do not make good

DM candidates because the quantity of neutrinos predicted to exist in the universe

60
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can only account for a small fraction of the observed DM. Another problem is that

neutrinos have very low mass and thus move at high velocities. This prevents them

from forming galactic halo distributions such as have been determined by combining

astronomical observations with many body numerical simulations.

A particle governed by the generalized Dirac equation may provide a better

DM candidate. The new constants present in the generalized Dirac equation produce

new terms in the the resulting energy-momentum relation. The presence of these

constants in the momentum-energy relation allow us to infer several things about a

potential DM particle. First, the constant c̃0 is a new energy term while c̃j is a new

momentum term. The source of these alternative momentum and energy terms is

unknown but they create the possibility of a particle with new or hidden energy and

momentum.

A particle governed by the generalized Dirac equation may make a better DM

candidate because it can have alternative mass. A particle of this kind could resemble

a neutrino (having spin half, zero electric charge, and a negligible standard mass) but

have a high alternative mass. With characteristics like this the particle would be

difficult to detect since it only interacts gravitationally but unlike the neutrino the

additional alternative mass would allow for a slower moving particle that could form

galactic mass distributions like those that are observed.

5.2 Summary

A search for fundamental (Galilean and Poincaré invariant) dynamical equa-

tions in space-time with the Galilei and Minkowski metrics was conducted for free

elementary particles described by spinor state functions. The primary novel products

of this research are four new Galilei and Poincaré invariant spinor equations. The

work produced the generalized Lévy-Leblond and generalized Schrödinger equations
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for Galilean space-time. The work also produced the generalized Dirac and general-

ized Klein-Gordon equations for Minkowski space-time. The work of this dissertation

was also unique because it focused on finding dynamical spinor equations by a dif-

ferent approach than the previous research [16, 17] that focused on scalar fields and

used eigen equations to derive dynamical laws.

The main results obtained for Galilean space-time with the Schrödinger phase

factor are: (i) there are no fundamental dynamical equations for two-component

spinor wave functions; (ii) the Lévy-Leblond equation for a four-component spinor

wave function can be derived by using a different method than the one originally

used by Lévy-Leblond; (iii) a formal proof that the Lévy-Leblond and Schrödinger

equations are the only fundamental dynamical equations for four-component spinor

wave functions in Galilei space-time. Among important physical implications of the

obtained results is that the Pauli-Schrödinger equation is not a fundamental equation

in Galilei space-time.

A new fundamental (Galilean invariant) dynamical equation for state func-

tions being four component spinors was found. The equation describes free particles

represented by such state functions. Since in a special case this new equation re-

duces to the standard Lévy-Leblond equation, it is called here the generalized Lévy-

Leblond equation. The main difference between these equations is that they are

obtained with different phase factors and that energy-momentum relationships re-

sulting from the equations are also different. This dependence of the non-relativistic

energy-momentum relationships on the phase factors is a new phenomenon discovered

here. Moreover, the obtained results clearly show that the energy-momentum result-

ing from the generalized Lévy-Leblond equation is not the same as the well-known

non-relativistic energy-momentum relationship.



63

The search for new Poincaré invariant equations described in this dissertation

allowed us to formally derive the original Dirac equation and also the so-called gener-

alized Dirac equation. The latter was used to derive a second order equation that was

identified as the generalized KG equation. The non-relativistic limit of these equa-

tions was considered and as expected the generalized Lévy-Leblond equation and the

original KG equations were obtained. It was also demonstrated how to reduce the

generalized Dirac equation to the generalized Pauli-Schrödinger equation.

A new energy-momentum relation was derived from the analysis of stationary

states of the generalized Dirac equation. The new energy-momentum relationship was

used to show that the behavior of a particle obeying the generalized Dirac equation

would be different from that of a particle governed by the standard Dirac equation

because of the existence of additional momentum and energy terms. Since such new

energy-momentum relationship differs from the well-known energy-momentum rela-

tionship of Special Theory of Relativity, it cannot describe ordinary matter. Hence,

it was suggested that the new energy-momentum relationship represents a different

form of matter that may be identified as DM.

5.3 Future Research

Further work is required to fully explore the consequences and possibilities of

the new dynamical equations. The first step would be to quantize the obtained

fundamental equations and determine physical properties of free particles resulting

from quantization of the fields. Since the particle’s properties will depend on some

constants that are present in the theory, experiments must be suggested that could

measure the values of these constants. Once the physical properties of the free parti-

cles are determined, the form of interaction between the particles could be established

and then incorporated into the new theory. If the particles do account for DM, then
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gravity will be the only force acting between them. This will require formulating

quantum theories on galactic scales.

Hopefully, the results obtained in this dissertation may be used in other areas

of physics, such as solid state physics, where the method of deriving new dynamical

equations may be applied to finding dynamical laws governing quasiparticles. Quasi-

particles are an emergent phenomena that result when a many-body system is in a

low-level excited state. The excitation can be treated as a discrete particle interacting

with its surroundings in place of treating the more complicated many-body problem

[53]. Some examples of quasiparticles are electron holes (missing electrons), phonons

(quantized vibrations of repetitive structures), magnons (a collective excitations of

electron spin structures in a crystal lattice), as well as excitons, plasmons, polaritons,

politons, rotons, trions, etc. Composite fermions may be of special relevance to this

work. These are quasiparticles that may have less than an electron charge for exam-

ple, fractional charges like e/3, e/4, e/5, and e/7 are possible. Composite fermions

can also be anyons, quasiparticles that are neither bosons nor fermions. Future work

will determine whether the generalized Dirac equation derived in this dissertation will

be useful for explaining these kinds of quasiparticles.
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In appendix A concepts relevant to the Galilei group are developed.

A.1 Galilei Transformations

Classical and non-relativistic quantum mechanics take place in Galilean space-

time. Mathematically space-time is a manifold upon which is defined a metric that

provides infinitesimal measures of space and time intervals. Galilean space-time is

defined by the Galilei metric

ds2 = dx2 + dy2 + dz2 (A.1)

dτ = dt (A.2)

which displays the familiar dicotomy of space and time.

Galilean space-time also displays several symmetries that can be identified by

the transformations that leave the metric invariant. These Galilei transformations

~x→ ~x′ = R~x+ ~vt+ ~a (A.3)

t→ t′ = t+ b (A.4)

relate the coordinates ~x, t of one observer to those of another observer ~x′, t′ by a

velocity boost vector ~v, a spatial translation vector ~a, a time translation scalar b, and

a rotation matrix R(~θ) that is a function of three rotation angles ~θ.

A.2 The Galilei Group

The Galilei transformations form a group called the Galilei group G with trans-

formation operator G(~a, b, ~v, R(θ)). The group composition law can be worked out

by inserting one transformation into another thus

~x′′ = R2~x
′ + ~v2t

′ + ~a2 (A.5)
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= R2(R1~x+ ~v1t+ ~a1) + ~v2(t+ b1) + ~a2 (A.6)

and after regrouping terms

= (R2R1)~x+ (R2~v1 + ~v2)t+ (R2~a1 + ~v2b1 + ~a2). (A.7)

The combination can be identified as a single transformation from which the group

composition law is apparent

G(~a2, b2, ~v2, R2)G(~a1, b1, ~v1, R1) (A.8)

= G(R2~a1 + ~v2b1 + ~a2, b1 + b2, R2~v1 + ~v2, R2R1). (A.9)

This group composition law is an expression of the group multiplication operation

and shows how elements of the group behave when applied in conjunction.

It can now be proven that the Galilei transformations form a group by showing

that the elements satisfy all the properties of a group. The group composition law

already demonstrates the property of closure. It can also be used to demonstrate the

property of associativity

G(~a3, b3, ~v3, R3)G(R2~a1 + ~v2b1 + ~a2, b1 + b2, R2~v1 + ~v2, R2R1) (A.10)

= G(R3~a2 + ~v3b2 + ~a3, b2 + b3, R3~v2 + ~v3, R2R2)G(~a1, b1, ~v1, R1). (A.11)

Additionally the identity property requires the existence of the identity element

E = G(0, 0, 0, I) (A.12)

where the identity matrix I is used for rotations with a zero angle. Lastly the inverse

property is satisfied by the existence of a unique inverse

G−1 = G(−R−1(~a− ~vb),−b,−R−1~v,R−1) (A.13)
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which corresponds to the inverse Galilei transformation

~x = R−1~x′ −R−1~vt′ −R−1~a+R−1~vb (A.14)

t = t′ − b. (A.15)

A.3 The Extended Galilei Group

The Galilei metric can be extended by adding an additional measure to the

metric. This measure is the norm of the state function ψ(~x, t). The norm of the state

function is invariant under Galilei transformations

|ψ∗ψ| = |ψ′∗ψ′| . (A.16)

This means that measurements of the norm of the state function must produce the

same result for all observers related by the Galilei transformations. From the invari-

ance of the norm the transformation of the state function is found to be

ψ(~x, t)→ ψ′(~x′, t′) = eiφ(~x,t)ψ(~x, t). (A.17)

where the gauge function eiφ(~x,t) contains the phase function φ(~x, t) that is an unknown

function of space and time. Adding this transformation to the Galilei group forms

the extended Galilei group Ge which will provide some advantages when worked with

as we shall see later.

A.4 Group Decompositions

The Galilei group may be decomposed into subgroups such that

G = [T (1)⊗R(3)]⊗s [T (3)⊗B(3)] , (A.18)

where T (1), R(3), T (3), and B(3) are the subgroups of translation in time, rotations

in space, translations in space, and boosts respectively. The direct product and semi-

direct product are denoted ⊗ and ⊗s.
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It has been demonstrated for scalar wave functions that the Galilei group does

not lead to any dynamical equations that satisfy the principles of analyticity and

relativity [16]. Therefore an additional symmetry |ψ∗ψ| = |ψ′∗ψ′| must be added to

the group of the metric.

The expanded symmetry group called the extended Galilei group is the universal

covering group of the Galilei group [27, 28]. The extended Galilei group exhibits

structure that is similar to the Poincare group [21, 29, 17]. The arguments used in

[16] for scalar wave functions apply equally well to n-component functions such as

spinors and vectors. Consequently, we use the extended Galilei group, which has the

structure

Ge = [R(3)⊗s B(3)]⊗s [T (3 + 1)⊗ U(1)] , (A.19)

where U(1) is a one-parameter unitary group [21]. We consider only the proper

isochronal subgroup G of Ge which omits the space and time inversions which can be

treated separately.

A.5 Transforming Scalar Functions

A coordinate transformation is defined as a set of linear functions gα that per-

form a mapping from one set of coordinates xα to another set of coordinates x′α

according to a set of transformation parameters Πj such that

x′α = gα(xα,Πj). (A.20)

The inverse coordinate transformation performs the inverse of the mapping and can

be written as the inverse of the transformation function or as the transformation

function of the inverse parameters

xα = g−1
α (x′α,Πj) = gα(x′α,Π

−1
j ). (A.21)
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A scalar function F (xα) that is transformed and written in transformed coordinates

is identical to the original function in the original coordinates

F ′(x′α) = F ′ (g(xα)) = F (xα). (A.22)

A transformation operator TΠ that is a linear operator and function of the parameters

Πj can be defined by its effect on a function

F ′(xα) = TΠF (xα). (A.23)

A consequence of the two previous definitions is that the effect of a transformation

operator on a function is equal to the function given in its inversely transformed

coordinates

TΠF (xα) = F (g−1(xα,Πj)). (A.24)

For consistency notice that the transformation of the coordinates is itself a function

and when the transformation operator is applied it inverts the coordinate transfor-

mation

TΠjx
′
α = TΠjgα(xα) = g

(
g−1
α (xα)

)
= xα. (A.25)

A.6 Transforming Multi-Component Functions

The transformation operator defined in the previous section was for scalar quan-

tities. When dealing with multi-component objects such as spinors or vectors each

component may transform differently. Since we are assuming the transformation op-

erators are linear they can be represented by a matrix. The effect of the transforma-

tion operator T on a multi-component object Fβ(xα) then looks like a combination

of a matrix multiplication by matrix Mβγ on the components of F and an inverse

coordinate transformation of the functions in each component

F ′(xα) = TFβ(xα) = MβγFβ(g−1(xα)). (A.26)
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This is commonly written in terms of the transformed coordinates

F ′(x′α) = TFβ(x′α) = MβγFβ(xα). (A.27)

A.7 Transforming Operators

An operator O is transformed by a combination of covariant and contravariant

transformations

O′(xα) = TO(xα)T−1 = MO
(
g−1(xα)

)
M−1. (A.28)

The transformation operator transforms by this rule as well but remains invariant

under its own action

T ′ = TTT−1 = T. (A.29)

When a covariant and contravariant transformation is applied to a scalar function

f(x) the function can be treated as an operator by introducing the identity operator

I

Tf(xα)T−1 = T [If(xα)]T−1 = MIf(g−1(xα))M−1 = f
(
g−1(xα)

)
. (A.30)

A.8 Galilei Transformation of Differential Operators

The chain rule can be used to determine how differential operators ∂
∂t

and ∂
∂xi

transform. For a Galilean transformation G operating on the differential operators

G
∂

∂t
G−1 =

∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂xi

∂t′
∂

∂xi
=

∂

∂t
+Rjivj

∂

∂xi
=

∂

∂t
+Rv · ∇ (A.31)

G
∂

∂xi
G−1 =

∂

∂x′i
=

∂t

∂x′i
∂

∂t
+
∂xj

∂x′i
∂

∂xj
= Rji

∂

∂xj
(A.32)

where ∂
∂t′

and ∂
∂x′i

are the partial differentials in the primed frame. The same equation

can be expressed in vector notation

G∇G−1 = R∇. (A.33)
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Noting that R~v ·R~v = ~v · ~v for any vector ~v we conclude that

G∇2G−1 = G
∂

∂xi
G−1G

∂

∂xi
G−1 (A.34)

=
∂

∂x′i
∂

∂x′i
= Rki

∂

∂xk
Rji

∂

∂xj
=

∂

∂xi
∂

∂xi
= ∇2. (A.35)

Extending this argument to higher powers we find that for even powers of m the

gradient operator transforms like

G∇mG−1 = ∇m (A.36)

while odd powers of m produce

G∇mG−1 = ∇m−1R∇. (A.37)

Transformation of the time differential to a power n is

G

(
∂

∂t

)n
G−1 =

(
∂

∂t
+R~v · ∇

)n
. (A.38)

A.9 Deriving Differential Generators

A generator XΠ is defined through its operation on a function g(x)

XΠg(x) = i lim
Π→0

[
g(x′)− g(x)

Π

]
. (A.39)

The differential generator can be calculated from the coordinate transformation

x′j = fj(xi,Πk) as follows

XΠk = −i
∂f ′j(xi,Πl)

∂Πk

∣∣∣∣
Πk=0

∂

∂x′j
= −i

∂f ′j(xi,Πl)

∂Πk

∣∣∣∣
Πk=0

∂

∂xj
. (A.40)

Note that the transformation near the origin is equal to the inverse transformation

near the origin so the prime and unprimed coordinates can be exchanged

XΠk = −i

[
∂x′

∂Πk

∣∣∣∣
Πk=0

∂

∂x′
+

∂y′

∂Πk

∣∣∣∣
Πk=0

∂

∂y′
+

∂z′

∂Πk

∣∣∣∣
Πk=0

∂

∂z′

]
. (A.41)
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A.10 Differential Generators of the Galilei and Extended Galilei Groups

The differential generators of the Galilei group can be calculated from the Galilei

transformation functions. The differential generators for translations in space, trans-

lations in time, boosts, and rotations are

Xak = −i ∂
∂xk

, (A.42)

Xa0 = Xb = −i ∂
∂t
, (A.43)

Xvk = −it ∂
∂xk

, (A.44)

and

Xθl = −i
[
xj

∂

∂xk

]
εjkl. (A.45)

A.11 Commutation Relations of the Galilei and Extended Galilei Groups

The differential generators can be used to determine the commutation relations

of the group. For this particular operation its easier to calculate the commutators

by writing the generators in terms of momentum pi. The differential generators in

momentum representation are

Xak = pk = −i ∂
∂xk

, (A.46)

Xa0 = p0 = −i ∂
∂t
, (A.47)

Xvk = Bk = tpk, (A.48)

and

Xθl = Jθl = xjpkεjkl. (A.49)

From these generators we determine the commutation relations are

[pj, pk] = 0, (A.50)



74

[pj, p0] = 0, (A.51)

[p0, p0] = 0, (A.52)

[Bj, pk] = 0, (A.53)

[Bj, Bk] = 0, (A.54)

[t, p0] =

[
t,−i ∂

∂t

]
= −i

[
t,
∂

∂t

]
= −i

(
t
∂

∂t
− 1− t ∂

∂t

)
= i, (A.55)

[t, pj] = 0, (A.56)

[xk, pj] =

[
xk,−i

∂

∂xj

]
= −i

[
xk,

∂

∂xj

]
= −i

(
xk

∂

∂xj
− δkj − xk

∂

∂xj

)
= iδkj, (A.57)

[x, p0] = 0, (A.58)

[Bk, p0] = [tpk, p0] = t [pk, p0] + [t, p0] pk = ipk, (A.59)

[Jθl , Jθo ] = [xjpkεjkl, xmpnεmno] (A.60)

= (xj[pk, xmpn] + [xj, xmpn]pk) εjklεmno (A.61)

= (xjxm[pk, pn] + xj[pk, xm]pn + xm[xj, pn]pk + [xj, xm]pnpk) εjklεmno (A.62)

= (−ixjpn + ixmpk) εjklεmno (A.63)

= iJθpεlop, (A.64)

and

[Bk, Jθo ] = [tpk, xmpnεmno] = t [pk, xm] pnεmno = −iδmktpnεmno = iBnεkon. (A.65)

For every set of commutation relations there is one universal covering group

that is simply connected. The extended Galilei group is the universal covering group

for the Galilei group.
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A.12 Spinor Representations of the Extended Galilei Group

A representation is a set of matrices or linear transformations on a vector space

that is homomorphic to the group multiplication law. One way to find a representation

is to construct a set of generators that obey the commutation relations of the group.

The generators are chosen to have a number of dimensions equal to that of the desired

representation. However, the generators may form a representation of a different

group from the one that was started with because several groups may share the same

set of commutation relations (or Lie algebra). To insure the representation functions

properly the group composition law should be examined and compared to that of the

original group.

For the extended Galilei group we shall attempt to construct 2- and 4-dimensional

spinor representations starting with 2-component spinors. The Pauli and identity ma-

trices σi, I form a basis for 2×2 unitary matrices. It is evident that σi
2

are generators

of rotation because they obey the commutation relations of the rotation operators

[σi
2
,
σj
2

]
= iεijk

σk
2
. (A.66)

Boosts form an abelian subgroup of the Galilei group so that by themselves boosts

can be represented by diagonal matrices. However while boosts form an invariant

subgroup within the Galilei group the same cannot be said of rotations. Therefore

when boosts combine with rotations it is via a semi-direct product R(3)⊗s B(3) and

a 2× 2 boost generator matrix is required.

Finding a set of three 2 × 2 unitary matrices that satisfy all the commutation

relations of boosts and rotations is impossible. Therefore there is no 2×2 matrix gen-

erators for boosts and rotations. Without boost generators for 2-component spinors

Galilean transformations cannot be constructed for 2-component spinors and Galilean

invariance cannot exist for 2-component spinor equations.
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We now consider 4-component spinors. Rotation matrices can be constructed

from the Pauli matrices

Xθj =
1

2

 σj 0

0 σj

 . (A.67)

The boost generators can then be constructed from lower triangular matrices

Xvj =
−i
2

 0 0

σj 0

 . (A.68)

These matrices satisfy the commutation relations for rotations and boosts. Transla-

tions don’t need to be combined here because they split into subgroups differently.

A.13 Constructing Transformation Operators from Group Generators

Now that we have Galilean generators for 2- and 4-component spinors we can

use them to construct transformation operators that form the spinor representation of

the extended Galilei group. In general transformation operators can be constructed

from the generators Xj and parameters Πj of a group by the exponential function or

infinite series

T = e−iΠjXj =
∞∑
k=0

(−iΠj)
k

k!
Xk
j . (A.69)

Generators of a given dimension will result in operators of the same number of dimen-

sions. The 2× 2 and 4× 4 generator matrices found in the last section will produce

same sized transformation operators.

One-dimensional transformations are also important. A 1-dimensional genera-

tor will produce a scalar transformation. Remember that we started our analysis with

scalar transformations for the Galilei group. The scalar transformations were used to

construct the differential generators and these generators were then used to discover

the commutation relations of the group. The commutation relations were then used
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to find generators for various representations. It turns out that the scalar transforma-

tions are an essential part of constructing higher dimensional transformations as well.

While a matrix is needed to transform a multi-component object (a tensor) its also

necessary to simultaneously transform functions within the components that depend

upon the coordinates. In constructing every operator we must include a scalar as well

as matrix transformation.

We begin with 2-component spinors. Using the generators of rotation
σj
2

and

rotation parameters θi = {γ, β, α} the rotation operators can be found by

U
(2)
R (θj) = e−iσjθj/2 =

∞∑
k=0

(−iθj)k

k!
σkj . (A.70)

Working out the sum for each angle parameter and identifying the sum as an analytic

function produces the rotation matrices for 2-component spinors

UR(α) =

 eiα/2 0

0 e−iα/2

 , (A.71)

UR(β) =

 cos β/2 sin β/2

− sin β/2 cos β/2

 , (A.72)

and

UR(γ) =

 cos γ/2 i sin γ/2

i sin γ/2 cos γ/2

 . (A.73)

Since there isn’t a generator for 2 × 2 boosts there is no corresponding 2 × 2

boost operator. As an abelian subgroup the boosts can be represented by a diagonal

matrix or identity matrix combined with the scalar transformation. This would be

fine for representing boosts alone but not useful for the combination of boosts with

rotations. The combination must obey the group composition law (derived earlier)

which reflects the nature of the semi-direct product R(3)⊗s B(3).
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Turning to transformation operators for 4-component spinors it is easy enough

to produce the rotation matrix using the previous result for 2-component spinors

U
(4)
R =

∞∑
k=0

(−iθj)k

k!

1

2

 σj 0

0 σj


k

=

 U
(2)
R 0

0 U
(2)
R

 (A.74)

where U
(2)
R is the rotation matrix for 2×2 rotations. The boost matrix can be obtained

by similar calculation

U
(4)
B =

∞∑
k=0

(−ivj)k

k!

−i
2

 0 0

σj 0


k

=

 I 0

−1
2
σjvj I

 . (A.75)

Constructing a combined boost and rotation matrix is accomplished through the

product

U
(4)
RB =

 U
(2)
R 0

0 U
(2)
R


 0 0

−1
2
σjvj 0

 =

 U
(2)
R 0

−1
2
σjvjU

(2)
R U

(2)
R

 . (A.76)

The rotation-boost transformation operator on a 4-component state function is

Tψ(x, t) =

 U
(2)
R 0

−1
2
σjvjU

(2)
R U

(2)
R

ψ
(
R−1(x− vt), t

)
(A.77)

and it obeys the group composition law.

A.14 Transforming Equations

The phase function that makes the Schrodinger equation Galilei invariant is

ϕ (~x, t) = −m~v ·R~x+
1

2
mv2t+ C. (A.78)

Calculating the derivatives of the phase function produces

∂ϕ (~x, t)

∂t
=

1

2
mv2 (A.79)
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and

∂ϕ (~x, t)

∂xj
= −mviRki

∂

∂xj
x
k

= −mviRji. (A.80)

Combining equations derived earlier we see that application of a Galilei transforma-

tion to any combination of space and time differentials of arbitrary powers p and q

yield polynomial terms with like powers

TG
∂p

∂tp
∂i
qTG

−1 =

(
∂

∂t
+Rjivj

∂

∂xi

)p(
Rji

∂

∂xj

)q
. (A.81)

When this transformation is applied to the state function a phase factor results that

can be commuted through to the other side of the equation such that

TG
∂p

∂tp
∂i
qTG

−1eiϕ(~x,t) ψ (~x, t) =

(
∂

∂t
+Rjivj

∂

∂xi

)p(
Rji

∂

∂xj

)q
eiϕ(~x,t) ψ (~x, t) (A.82)

= eiϕ(~x,t)

[(
i
∂ϕ

∂t
+
∂

∂t

)
+Rjivj

(
i
∂ϕ

∂xi
+

∂

∂xi

)]p[
Rji

(
i
∂ϕ

∂xj
+

∂

∂xj

)]q
ψ (~x, t)

(A.83)

= eiϕ(~x,t)

[(
i

2
mv2 +

∂

∂t

)
+Rjivj

(
−imvkRik +

∂

∂xi

)]p
(A.84)

×
[
Rji

(
−imvkRjk +

∂

∂xj

)]q
ψ (~x, t) (A.85)

= eiϕ(~x,t)

[
i

2
mv2 − imRjivjvkRik +

∂

∂t
+Rjivj

∂

∂xi

]p
(A.86)

×
[
−imRjivkRjk +Rji

∂

∂xj

]q
ψ (~x, t) (A.87)

= eiϕ(~x,t)

[
k1 +

∂

∂t
+ k2i

∂

∂xi

]p[
k3i + k4ji

∂

∂xj

]q
ψ (~x, t) (A.88)

where the constants k1, k2i, k3i, and k4ij introduced here are defined

k1 =
i

2
mv2 − imRjivjvkRik, (A.89)

k2i = Rjivj, (A.90)

k2i
2 = (Rjivj)

2 = v2, (A.91)
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k3i = −imRjivkRjk, (A.92)

k3i
2 =

(
−imRjivkRjk

)2
= −m2v2, (A.93)

and

k4ji = Rji. (A.94)

A.15 Deriving the Conditions for Galilei Invariant Spinor Equations

A.15.1 Conditions for Invariance of First Order Differential Equations

The most arbitrary first order dynamical equation for an n-component state

function ψ is [
B1

∂

∂t
+B2i

∂

∂xi
+B3

]
ψ (~r, t) = 0. (A.95)

After transformation it becomes[
B′1

(
k1 +

∂

∂t
+ k2i

∂

∂xi

)
+B′2i

(
k3i + k4ji

∂

∂xj

)
+B′3

]
ψ (~r, t) = 0. (A.96)

The implied sums can be written explicitly[
B′1

(
k1 +

∂

∂t
+ k2x

∂

∂x
+ k2y

∂

∂y
+ k2z

∂

∂z

)

+B′2i

(
k3i + k4xi

∂

∂x
+ k4yi

∂

∂y
+ k4zi

∂

∂z

)
+B′3

]
ψ (~r, t) = 0. (A.97)

The terms can be grouped by differential powers[
B′1

∂

∂t
+ (B′1k2j +B′2ik4ji)

∂

∂xj
+ (B′1k1 +B′2ik3i +B′3)

]
ψ (~r, t) = 0. (A.98)

Requiring invariance of the equation yields a set of conditions on the matrices B

B1 = TB1T
−1, (A.99)

B2j = TB1T
−1k2j + TB2iT

−1k4ji, (A.100)
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and

B3 = TB1T
−1k1 + TB2iT

−1k3i + TB3T
−1. (A.101)

With the definition for k substituted in the conditions are

B1 = TB1T
−1, (A.102)

B2j = TB1T
−1Rijvi + TB2iT

−1Rji, (A.103)

and

B3 = TB1T
−1

(
i

2
mv2 − imRjivjvkRik

)
− TB2iT

−1imRjivkRjk + TB3T
−1.

(A.104)

A.15.2 Conditions for Invariance of Second Order Differential Equations

The starting equation for second order differentials is[
C1

(
∂

∂t

)2

+ C2i
∂

∂t

∂

∂xi
+ C

3

∂

∂t
+ C4ij

∂

∂xi
∂

∂xj
+ C5i

∂

∂xi
+ C6

]
ψ (~r, t) = 0. (A.105)

After transformation it becomes[
C ′1

(
k1 +

∂

∂t
+ k2i

∂

∂xi

)2

+ C ′2i

(
k1 +

∂

∂t
+ k2q

∂

∂xq

)(
k3i + k4ji

∂

∂xj

)

+C ′3

(
k1 +

∂

∂t
+ k2i

∂

∂xi

)
+ C ′4ij

(
k3i + k4qi

∂

∂xq

)(
k3j + k4qj

∂

∂xq

)
+C ′5i

(
k3i + k4ji

∂

∂xj

)
+ C ′6

]
ψ (~r, t) = 0. (A.106)

After multiplying out the polynomials and grouping the terms by differentials of like

powers the equation becomes[
C ′1

(
∂

∂t

)2

+ (C ′12k2i + C ′2jk4ij)
∂

∂t

∂

∂xi
+ (C ′12k1 + C ′2ik3i + C ′3)

∂

∂t

+C ′1

(
k2q

∂

∂xq

)(
k2r

∂

∂xr

)
+ C ′2ik2rk4qi

∂

∂xq
∂

∂xr
+ C ′4ij

(
k4qi

∂

∂xq

)(
k4rj

∂

∂xr

)
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+ (C ′1 (k1k2i + k2ik1) + C ′2qk2ik3q + C ′2qk1k4iq + C ′3k2i

+C ′4qr (k3qk4ir + k4iqk3r) + C ′5qk4iq

) ∂

∂xi

+
(
C ′1k1

2 + C ′2ik1k3i + C ′3k1 + C ′4ijk3ik3j + C ′5ik3i + C ′6
)]
ψ (~r, t) = 0. (A.107)

Requiring invariance of the second order equation therefore leads to the following six

conditions

C1 = TC1T
−1, (A.108)

C2j = 2TC1T
−1k2j + TC2iT

−1k4ji, (A.109)

C3 = 2TC1T
−1k1 + TC2iT

−1k3i + TC3T
−1, (A.110)

C4qr = TC1T
−1k2qk2r + TC2iT

−1k2rk4qi + TC4ijT
−1k4qik4rj, (A.111)

C5i = TC1T
−1 (k1k2i + k2ik1) + TC2qT

−1k2ik3q + TC2qT
−1k1k4iq

+TC3T
−1k2i + TC4qrT

−1 (k3qk4ir + k4iqk3r) + TC5qT
−1k4iq, (A.112)

and

C6 = TC1T
−1k1

2 + TC2iT
−1k1k3i + TC3T

−1k1 + TC4ijT
−1k3ik3j

+TC5iT
−1k3i + TC6T

−1. (A.113)

Notice that substituting C1 = 2C1 into the conditions would make the first three

conditions identical to the conditions onB (the conditions for the first order equation).

A.15.3 Conditions for Invariance of Higher Order Equations

The first two differential equations demonstrate a trend that will continue with higher

order differential equations. For every matrix introduced in the differential equation

there will be an equation that must be satisfied for the differential equation to be

invariant. As the number of matrices and conditions grows so does the number and

complexity of the conditions. Furthermore the set of conditions for a given order
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differential equation will always contain as a subset the set of conditions of the next

lower order differential equation.

A.16 Finding 2× 2 Matrices that Satisfy the Conditions for Invariance

A.16.1 Finding a 2× 2 Matrix to Satisfies the First Condition

Before working with 4 × 4 matrices we attempt to find a set of 2 × 2 matrices

that satisfy the conditions for invariance of a first order dynamical equation. We

begin by applying rotations to the first condition for invariance to see how the matrix

B1 is constrained. Let B1 be an arbitrary 2× 2 matrix

B1 =

 a b

c d

 (A.114)

where a, b, c, and d are unknown scalar constants. A rotation about the z-axis for

2-component spinors can be represented by the 2× 2 matrix

Rz =

 eiα/2 0

0 e−iα/2

 . (A.115)

Applying a z-rotation to the matrix B1 in the first condition produces the following

result

B1 = Rz
−1B1Rz =

 e−iα/2 0

0 eiα/2


 a b

c d


 eiα/2 0

0 e−iα/2



=

 ae−iα/2 be−iα/2

ceiα/2 deiα/2


 eiα/2 0

0 e−iα/2

 =

 a be−iα

ceiα d

 . (A.116)

From this we conclude that invariance of a 2×2 matrix under z-axis rotation constrains

the matrix to

B1 =

 a 0

0 d

 . (A.117)
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A rotation about the y-axis for 2-component spinors can be represented

Ry =

 cos β/2 sin β/2

−sin β/2 cos β/2

 . (A.118)

Applying this rotation to the matrix B1 in the first condition produces the following

result

Ry
−1B1Ry =

 cos β/2 −sin β/2

sin β/2 cos β/2


 a b

c d


 cos β/2 sin β/2

−sin β/2 cos β/2



=

 acos β/2 − csin β/2 bcos β/2 − dsin β/2

asin β/2 + ccos β/2 bsin β/2 + dcos β/2


 cos β/2 sin β/2

−sin β/2 cos β/2


=

 acos2β/2 − (c+ b) sin β
2

cos β
2

+ dsin2 β
2

ccos2 β
2

+ (a− d) sin β
2

cos β
2
− bsin2 β

2

bcos2 β
2

+ (a− d) sin β
2

cos β
2
− csin2 β

2

dcos2 β
2

+ (c+ b) sin β
2

cos β
2

+ asin2 β
2

 . (A.119)

When a y-axis rotation must leave a matrix invariant notice that the squared sin

and cos functions are symmetric but the product of sin and cos functions is anti-

symmetric. To make it equal to a constant requires the asymmetric part to vanish so

c+ b = 0 and a− d = 0. Also note that sin and cos squared terms sum to a constant

only when their coefficients are equal so a = d and b = −c. From this we conclude

the matrix B1 is constrained to

B1 =

 a b

−b a

 . (A.120)

A rotation about the x-axis for 2-component spinors can be represented as

Rx =

 cos γ/2 isin γ/2

isin γ/2 cos γ/2

 . (A.121)
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Applying this rotation to the matrix B1 in the first condition produces the following

result

Rx
−1B1Rx =

 cos γ/2 −isin γ/2

−isin γ/2 cos γ/2


 a b

c d


 cos γ/2 isin γ/2

isin γ/2 cos γ/2



=

 acos γ/2 − icsin γ/2 bcos γ/2 − idsin γ/2

ccos γ/2 − iasin γ/2 dcos γ/2 − ibsin γ/2


 cos γ/2 isin γ/2

isin γ/2 cos γ/2



=

 acos2γ/2 + dsin2 γ
2

+ i (b− c) sin γ/2 cos γ/2

ccos2γ/2 + bsin2 γ
2

+ i (d− a) sin γ/2 cos γ/2

bcos2γ/2 + csin2 γ
2

+ i (a− d) sin γ/2 cos γ/2

dcos2γ/2 + asin2 γ
2

+ i (c− b) sin γ/2 cos γ/2

 . (A.122)

From this result we see that invariance under a y-axis rotation constrains the matrix

to

B1 =

 a b

b a

 . (A.123)

We have taken a close look at the effect of rotations about each of the three

axes. Now these results can be combined. Requiring rotational invariance about all

three axes (or any two for that matter) forces the matrix B1 to be diagonal (i.e., a

constant multiple of the identity matrix)

B1 = a

 1 0

0 1

. (A.124)

A.16.2 Finding 2× 2 Matrices to Satisfy the Second Condition

We now wish to find a set of 2×2 matrices B2j that satisfies the second condition

for invariance. We begin with a set of 3 arbitrary matrices for j=1, 2, 3. Each matrix
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has a unique set of constants e, f, g, and h where we have dropped the subscript from

the individual constants and moved it outside the matrix such that

B2j =

 e f

g h


j

. (A.125)

Applying roations only simplifies the second condition for invariance. Notice that this

condition is almost identical to the first condition when the boost is zero. Applying

only a rotation about the z-axis produces the condition

B2j = Rz
−1B1RzRijvi +Rz

−1B2iRzRji. (A.126)

Substituting the matrix (A.125) and rotation matrices used earlier produces the fol-

lowing result  e f

g h


j

= a

 1 0

0 1

Rijvi

+

 e−iα/2 0

0 eiα/2


 e f

g h


i

 eiα/2 0

0 e−iα/2

Rji

= a

 1 0

0 1

Rijvi +

 e fe−iα

geiα h


i

Rji. (A.127)

Explicit representation of the matrices Rij then yields the equation

 e f

g h


1

×


1

0

0

+

 e f

g h


2

×


0

1

0

+

 e f

g h


3

×


0

0

1



=

 e fe−iα

geiα h


1

×


cosα

sinα

0

+

 e fe−iα

geiα h


2

×


−sinα

cosα

0


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+

 e fe−iα

geiα h


3

×


0

0

1

 . (A.128)

From the third component of this equation it is clear that f3 = g3 = 0 so

B23 =

 e3 0

0 h3

 . (A.129)

The first and second components of the equation (A.128) are equivalent to the re-

strictions

e1 (1− cosα ) = −e2sinα , (A.130)

e2 (1− cosα ) = e1sinα , (A.131)

h1 (1− cosα ) = −h2sinα , (A.132)

h2 (1− cosα ) = h1sinα , (A.133)

f1

(
1− e−iαcosα

)
= −f2e

−iαsinα , (A.134)

f2

(
1− e−iαcosα

)
= f1e

−iαsinα , (A.135)

g1

(
1− e−iαcosα

)
= −g2e

−iαsinα , (A.136)

and

g2

(
1− e−iαcosα

)
= g1e

−iαsinα . (A.137)

From these restrictions we deduce e1 = ±ie2 and h1 = ±ih2 and f1 = ±if2 and

g1 = ±ig2 and we conclude that invariance under z-rotations restricts the matrices

B2j to

B21 =

 e1 f1

g1 h1

 , B22 =

 ±ie1 ±if1

±ig1 ±ih1

 ,
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and

B23 =

 e3 0

0 h3

 . (A.138)

Rotations about the y-axis may be applied by the same method to produce the

equation

Ry
−1B2jRy =

 cos β/2 −sin β/2

sin β/2 cos β/2


 e f

g h


j

 cos β/2 sin β/2

−sin β/2 cos β/2



=

 ecos β/2 − gsin β/2 fcos β/2 − hsin β/2

esin β/2 + gcos β/2 fsin β/2 + hcos β/2


 cos β/2 sin β/2

−sin β/2 cos β/2



=

 ecos2β/2 − (g + f) sin β
2

cos β
2

+ hsin2 β
2

gcos2 β
2

+ (e− h) sin β
2

cos β
2
− fsin2 β

2

fcos2 β
2

+ (e− h) sin β
2

cos β
2
− gsin2 β

2

hcos2 β
2

+ (g + f) sin β
2

cos β
2

+ esin2 β
2

 . (A.139)

The same can be done for x-rotations and when the results of all three rotations are

combined the matrices B2j are restricted to a multiple of the Pauli matrices

B21 =

 0 1

1 0

 , B22 =

 0 −i

i 0

 ,

and

B23 =

 1 0

0 −1

 . (A.140)
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A.16.3 Finding a 2× 2 Matrix that Satisfies the Third Condition

With this result the third condition (without a boost) has an identical form to the

first condition and therefore leads to a similar result

B3 = c

 1 0

0 1

. (A.141)

where p is an unknown constant.

To summarize the results so far, rotational invariance constrains the matrix

coefficients of a first order dynamical equation for 2-component spinors to B1 = aI,

B2j = bσj, and B3 = cI.

A.17 Finding 4× 4 Matrices that Satisfy the Conditions for Rotational Invariance

A.17.1 Finding a 4 × 4 Matrix that Satisfies the First Condition for Rotational

Invariance

Let B1 be an arbitrary 4× 4 matrix

B1 =

 P Q

S T

 (A.142)

where P, Q, S, and T are unknown constant 2x2 matrices. The rotation matrix

about the z-axis on the four component spinor is

Rz =

 Rz 0

0 Rz

 (A.143)

where Rz is a 2 × 2 matrix for rotating a 2-component spinor. With these matrices

the first condition for a z=rotation is

B1 = Rz
−1
B1Rz =

 Rz
−1 0

0 Rz
−1


 P Q

S T


 Rz 0

0 Rz

 (A.144)
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=

 Rz
−1P Rz

−1Q

Rz
−1S Rz

−1T


 Rz 0

0 Rz

 (A.145)

=

 Rz
−1PRz Rz

−1QRz

Rz
−1SRz Rz

−1TRz

 . (A.146)

The same can be done for rotations about the y-axis and x-axis with similar results

B1 = Ry
−1
B1Ry =

 Ry
−1 0

0 Ry
−1


 P Q

S T


 Ry 0

0 Ry

 (A.147)

=

 Ry
−1PRy Ry

−1QRy

Ry
−1SRy Ry

−1TRy

 . (A.148)

These equations produce 4 conditions on the 2 × 2 matrices. The conditions are of

the same form as the conditions found for 2-component spinors, e.g. P = R−1
z PRz.

Since we have already found the constraints on the matrices P, Q, S, and T that

result from these conditions on 2x2 matrices we know that the 4x4 matrix must have

the form

B1 =

 pI qI

sI tI

 (A.149)

where p, q, s, and t are arbitrary scalar constants and I is the 2x2 identity matrix.

A.17.2 Finding 4 × 4 Matrices that Satisfy the Second Condition for Rotational

Invariance

The second condition for invariance is

B2j = TB1T
−1Rijvi + TB2iT

−1Rji. (A.150)
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Let B2j be an arbitrary 4x4 matrix for each j=1, 2, 3 such that

B2j =

 E F

G H


j

(A.151)

A rotation about the z-axis is applied to the second condition for invariance by sub-

stitution of the matrices into the equation for invariance E F

G H


1

×


1

0

0

+

 E F

G H


2

×


0

1

0

+

 E F

G H


3

×


0

0

1



=

 Rz
−1ERz Rz

−1FRz

Rz
−1GRz Rz

−1HRz


1

×


cosα

sinα

0



+

 Rz
−1ERz Rz

−1FRz

Rz
−1GRz Rz

−1HRz


2

×


−sinα

cosα

0



+

 Rz
−1ERz Rz

−1FRz

Rz
−1GRz Rz

−1HRz


3

×


0

0

1

 . (A.152)

Examining the components of this equation reveals the same condition on the 2x2

sub-matrices as the first condition on B for a rotation about z for 2x2 matrices. From

this we know that B23 is composed of diagonal matrices

E3 =

 e31 0

0 e34

 , F3 =

 f31 0

0 f34

 , G3 =

 g31 0

0 g34

 , (A.153)

and

H3 =

 h31 0

0 h34

 . (A.154)
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A rotation about the y-axis produces similar results

 E F

G H


1

×


1

0

0

+

 E F

G H


2

×


0

1

0

+

 E F

G H


3

×


0

0

1



=

 Ry
−1ERy Ry

−1FRy

Ry
−1GRy Ry

−1HRy


1

×


cos β

0

−sin β



+

 Ry
−1ERy Ry

−1FRy

Ry
−1GRy Ry

−1HRy


2

×


0

1

0



+

 Ry
−1ERy Ry

−1FRy

Ry
−1GRy Ry

−1HRy


31

×


sin β

0

cos β

 . (A.155)

The components of this equation contain the same conditions as was found for 2x2

matrices in the first condition under a rotation about the y-axis. Thus we may

conclude that the components of B22 are restricted to

E2 =

 e21 e22

−e22 e21

 , F2 =

 f21 f22

−f22 f21

 , G2 =

 g21 g22

−g22 g21

 , (A.156)

and

H2 =

 h21 h22

−h22 h21

 . (A.157)

A rotation about the x-axis is applied to second condition

 E F

G H


1

×


1

0

0

+

 E F

G H


2

×


0

1

0

+

 E F

G H


3

×


0

0

1


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=

 Rx
−1ERx Rx

−1FRx

Rx
−1GRx Rx

−1HRx


1

×


1

0

0



+

 Rx
−1ERx Rx

−1FRx

Rx
−1GRx Rx

−1HRx


2

×


0

cos γ

sin γ



+

 Rx
−1ERx Rx

−1FRx

Rx
−1GRx Rx

−1HRx


31

×


0

−sin γ

cos γ

 . (A.158)

The first component requires that B21 be rotationally invariant about the x-axis such

that it is constrained to

E1 =

 e11 e12

−e12 e11

 , F1 =

 f11 f12

−f 12 f11

 , G1 =

 g11 g12

−g12 g11

 , (A.159)

and

H1 =

 h11 h12

−h12 h11

 . (A.160)

Further restrictions can be found by using the first and second components of the

z-rotation equation

E1 = Rz
−1E1Rzcosα −Rz

−1E2Rzsinα (A.161)

E2 = Rz
−1E1Rzsinα +Rz

−1E2Rzcosα . (A.162)

Putting the 2× 2 matrices into these equations produces

E1 =

 e11 e12

e12 e11


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=

 e11 e12e
−iα/2

e12e
iα/2 e11

 cosα −

 e21 e22e
−iα/2

−e22e
iα/2 e21

 sinα (A.163)

and

E2 =

 e21 e22

−e22 e21



=

 e11 e12e
−iα/2

e12e
iα/2 e11

 sinα +

 e21 e22e
−iα/2

−e22e
iα/2 e21

 cosα . (A.164)

Combining these equations produces

e11 (1− cosα ) = −e21sinα , (A.165)

e21 (1− cosα ) = e11sinα , (A.166)

e12

(
1− e−iα/2cosα

)
= −e22e

−iα/2sinα , (A.167)

e22

(
1− e−iα/2cosα

)
= e12e

−iα/2sinα , (A.168)

e12

(
1− eiα/2cosα

)
= e22e

iα/2sinα , (A.169)

and

−e22

(
1− e

iα
2 cosα

)
= e12e

iα/2sinα (A.170)

which requires e21 = ±ie11 and e22 = ±ie12. The matrix E2 is then restricted to

E2 =

 ±ie11 ±ie12

∓ie12 ±ie11

 . (A.171)

Using the first and third components of the y-rotation equation we know that

E1 = Ry
−1E1Rycos β +Ry

−1E3Rysin β (A.172)

and

E3 = −Ry
−1E1Rysin β +Ry

−1E3Rycos β . (A.173)
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Explicit substitution produces

E1 =

 e11 e12

e12 e11

 =

 e11 − 2e12sin β
2

cos β
2

e12

(
cos2 β

2
− sin2 β

2

)
e12

(
cos2 β

2
− sin2 β

2

)
e11 + 2 e12sin β

2
cos β

2

 cos β

+

 e31cos2β/2 + e34sin2 β
2

(e31 − e34) sin β
2

cos β
2

(e31 − e34) sin β
2

cos β
2

e34cos2 β
2

+ e31sin2 β
2

 sin β (A.174)

and

E3 =

 e31 0

0 e34

 = −

 e11 − 2e12sin β
2

cos β
2

e12

(
cos2 β

2
− sin2 β

2

)
e12

(
cos2 β

2
− sin2 β

2

)
e11 + 2 e12sin β

2
cos β

2

 sin β

+

 e31cos2β/2 + e34sin2 β
2

(e31 − e34) sin β
2

cos β
2

(e31 − e34) sin β
2

cos β
2

e34cos2 β
2

+ e31sin2 β
2

 cos β . (A.175)

Adding the first and fourth components of the first equation produces

2e11 = 2e11cos β + (e31 + e34) sin β . (A.176)

Adding the first and fourth components of the second equation produces

(e31 + e34) = −2e11sin β + (e31 + e34) cos β . (A.177)

These equations may be combined to give

2e11 = ±i (e31 + e34) , (A.178)

e12 = e12

(
cos2β

2
− sin2β

2

)
cos β + (e31 − e34) sin

β

2
cos

β

2
sin β , (A.179)

and

0 = −e12

(
cos2β

2
− sin2β

2

)
sin β + (e31 − e34) sin

β

2
cos

β

2
cos β . (A.180)

From the second and third components of the x-rotation equation we know

E2 = Rx
−1E2Rxcos γ +Rx

−1E3Rxsin γ (A.181)
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and

E3 = −Rx
−1E2Rxsin γ +Rx

−1E3Rxcos γ . (A.182)

Explicit substitution produces

E2 =

 e21 e22

−e22 e21



=

 e21 + i2e22sin γ/2 cos γ/2 e22

(
cos2γ/2 − sin2 γ

2

)
e22

(
−cos2γ/2 + sin2 γ

2

)
e21 − i2e22sin γ/2 cos γ/2

 cos γ

+

 e31cos2γ/2 + e34sin2 γ
2

i (e31 − e34) sin γ/2 cos γ/2

i (e34 − e31) sin γ/2 cos γ/2 e34cos2γ/2 + e31sin2 γ
2

 sin γ (A.183)

and

E3 =

 e31 0

0 e34



= −

 e21 + i2e22sin γ/2 cos γ/2 e22

(
cos2γ/2 − sin2 γ

2

)
e22

(
−cos2γ/2 + sin2 γ

2

)
e21 − i2e22sin γ/2 cos γ/2

 sin γ

+

 e31cos2γ/2 + e34sin2 γ
2

i (e31 − e34) sin γ/2 cos γ/2

i (e34 − e31) sin γ/2 cos γ/2 e34cos2γ/2 + e31sin2 γ
2

 cos γ . (A.184)

Adding the first and fourth terms of the first and second equations produces

2e21 = 2e21cos γ + (e31 + e34) sin γ (A.185)

and

(e31 + e34) = −2e21sin γ + (e31 + e34) cos γ (A.186)

which may be combined to reveal

2e21 = ±i (e31 + e34) . (A.187)
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Similarly, the combination of

e22 = e22

(
cos2γ/2 − sin2γ

2

)
cos γ + i (e31 − e34) sin γ/2 cos γ/2 sin γ (A.188)

and

0 = −e22

(
cos2γ/2 − sin2γ

2

)
sin γ + i (e31 − e34) sin γ/2 cos γ/2 cos γ (A.189)

yields

2e22 = i (e31 − e34) . (A.190)

The components of the y-rotation equation requires

2e11 = ±i (e31 + e34) , (A.191)

e12 = e12

(
cos2β

2
− sin2β

2

)
cos β + (e31 − e34) sin

β

2
cos

β

2
sin β , (A.192)

and

0 = −e12

(
cos2β

2
− sin2β

2

)
sin β + (e31 − e34) sin

β

2
cos

β

2
cos β (A.193)

which yields the result

2e12 = (e31 − e34) . (A.194)

From these conditions we may conclude

e21 = e11, (A.195)

e22 = ie12, (A.196)

and

E1 =

 e11 e12

e12 e11

 , E2 =

 e11 ie12

−ie12 e11

 , (A.197)

and

E3 =

 e31 0

0 e34

 . (A.198)
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Comparing this result to the earlier result

E2 =

 ±ie11 ±ie12

∓ie12 ±ie11

 =

 e11 ie12

−ie12 e11

 (A.199)

allows us to conclude that e11 = 0 and thus

E1 =

 0 e12

e12 0

 , E2 = i

 0 −e12

e12 0

 , (A.200)

and

E3 =

 e12 0

0 −e12

 . (A.201)

The above arguments apply to the other sub-matrices F, G, H as well.

At this point we are able to combine the results of all the restrictions obtained

from applying rotations to the second condition for invariance.

B21 =

 E F

G H


1

=



0 e12

e12 0

0 f12

f12 0

0 g12

g12 0

0 h12

h12 0



=

 e12 f12

g12 h12

×
 0 1

1 0

 (A.202)

B22 =

 E F

G H


2

= i



0 −e12

e12 0

0 −f12

f12 0

0 −g12

g12 0

0 −h12

h12 0



=

 e12 f12

g12 h12

×
 0 −i

i 0

 (A.203)
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B23 =

 E F

G H


3

=



e12 0

0 −e12

f12 0

0 −f12

g12 0

0 −g12

h12 0

0 −h12



=

 e12 f12

g12 h12

×
 1 0

0 −1

 . (A.204)

This final result can be written more compactly as

B2j =

 e12σj f12σj

g12σj h12σj

 =

 eσj fσj

gσj hσj

 (A.205)

where

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , (A.206)

and

σz =

 1 0

0 −1

 (A.207)

are the Pauli matrices.

A.17.3 Finding a 4 × 4 Matrix that Satisfies the Third Condition for Rotational

Invariance

When rotations only are applied to the third condition it has an identical form

to the first condition. The constraints on the matrix are therefore identical and we

conclude

B3 =

 aI bI

cI dI

 . (A.208)
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A.18 Finding 4× 4 Matrices that Satisfy the Conditions for Boost Invariance

A.18.1 Finding a 4×4 Matrix that Satisfies the First Condition for Boost Invariance

The 5 matrices still have 12 of the original 80 free parameters remaining after

requiring rotational invariance. Boosts are applied now to further restrict the matrices

from their current form

B1 =

 pI qI

sI tI

 , B2j =

 eσj fσj

gσj hσj

 , (A.209)

and

B3 =

 aI bI

cI dI

 . (A.210)

The boost and inverse boost transformations are

T =

 I 0

−σ · v/2 I

 (A.211)

and

T−1 =

 I 0

σ · v/2 I

 . (A.212)

Plugging these matrices into the first condition produces the following equation

B1 =

 pI qI

sI tI



= TB1T
−1 =

 I 0

−σ · v/2 I


 pI qI

sI tI


 I 0

σ · v/2 I



=

 pI qI

−pσ · v
2

+ sI −qσ · v
2

+ tI


 1 0

σ · v/2 1


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=

 pI + qσ · v/2 qI

−pσ · v
2

+ sI − q
(
σ · v

2

)2
+ tσ · v/2 −qσ · v

2
+ tI

 . (A.213)

From the first and third components of this equation we can see that q = 0 and t = p

so we conclude that the matrix B1 is restricted to

B1 =

 pI 0

sI pI

 . (A.214)

A.18.2 Finding 4×4 Matrices that Satisfy the Second Condition for Boost Invariance

Further constraints can be derived from applying boosts only to the second

condition for invariance. Let B2j be an unknown 4× 4 matrix

B2j =

 E F

G H


j

. (A.215)

Inserting this matrix and the boost only transformation into the second condition

produces the following equation

B2j = TB1T
−1δijvi + TB2iT

−1δji

=

 pI 0

sI pI

 vj +

 I 0

−σ · v/2 I


 E F

G H


j

 I 0

σ · v/2 I



=

 pI 0

sI pI

 vj +

 E F

−σ · vE
2

+G −σ · vF
2

+H


j

 I 0

σ · v/2 I



=

 pI 0

sI pI

 vj +

 E + Fσ · v/2 F

−σ · vE
2

+G− σ · vF
2
σ · v/2 +Hσ · v/2 −σ · vF

2
+H


j

.

(A.216)

From the first comonent of this equation we know that

−pIvj =
Fjσivi

2
. (A.217)



102

Explicit representations of the 2× 2 matrices in this equation may be substituted in

to produce the equation

−pIvx =

 −pvx 0

0 −pvx

 =
1

2
f12

 0 1

1 0


 vz vx − ivy

vx + ivy −vz



=
1

2
f12

 vx + ivy −vz

vz vx − ivy

 . (A.218)

From this we must conclude f12 = p = 0 and Fj = 0.

The second and fourth terms of equation add nothing useful while the third

term is

0 = sIvj +−σ · vEj
2

+Hjσ · v/2. (A.219)

Rearranging the equation to seperate terms containing σ produces the equation

−2sIvj = −σ · vEj +Hjσ · v

= −σiviEj +Hjσivi

= −σivieσj + hσjσivi

= (hσjσi − eσiσj) vi. (A.220)

This can be seen explicitly for j=1 −2svx 0

0 −2svx



= −

 vz vx − ivy

vx + ivy −vz

 e

 0 1

1 0

+ h

 0 1

1 0


 vz vx − ivy

vx + ivy −vz



= −e

 vx − ivy vz

−vz vx + ivy

+ h

 vx + ivy −vz

vz vx − ivy

 . (A.221)
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Notice that from the second and third components we may conclude that e = −h.

From this we conclude the free parameters are restricted to h = −e = −s.

To summarize the results up to this point we have determined the matrices of

the first order equation are constrained to the form

B1 =

 pI 0

sI pI

 , B2j =

 sσj 0

gσj −sσj

 (A.222)

and

B3 =

 aI bI

cI dI

 . (A.223)

A.18.3 Finding a 4×4 Matrix that Satisfies the Third Condition for Boost Invariance

Further constraints may be obtained by applying boosts without rotations to

the third and final condition

B3 = TB1T
−1

(
i

2
mv2 − imRjivjvkRik

)
− TB2iT

−1imRjivkRjk + TB3T
−1. (A.224)

We begin by letting the B3 take the form of an unknown 4× 4 matrix

B3 =

 aI bI

cI dI

 . (A.225)

Putting the known matrices into the third condition produces the equation

=

 I 0

−σ · v/2 I


 pI 0

sI pI


 I 0

σ · v/2 I

(− i
2
mv2

)

−

 I 0

−σ · v/2 I


 sσj 0

gσj −sσj


 I 0

σ · v/2 I

 imvj

+

 I 0

−σ · v/2 I


 aI bI

cI dI


 I 0

σ · v/2 I


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=

 pI 0

sI pI

(− i
2
mv2

)
−

 sσj 0

−sσ · v
2
σj + gσj − sσjσ · v/2 −sσj

 imvj

+

 aI + bσ · v/2 bI

−aσ · v
2

+ cI − bσ · v
2
σ · v

2
+ dσ · v/2 −bσ · v

2
+ dI

 . (A.226)

The second component of this equation provides no information. The first or fourth

components can be extracted for closer examination

0 = − i
2
mv2pI − imsvjσj + bvjσj/2,

= − i
2
mv2p

 1 0

0 1

+

(
−ims+

b

2

) vz vx − ivy

vx + ivy −vz

 . (A.227)

This equation requires b = 2ims and thus p = 0. The third component can also be

examined more closely

0 = − i
2
mv2sI +

(
sσ · v

2
σj − gσj + sσjσ · v/2

)
imvj

−aσ · v
2
− bσ · v

2
σ · v

2
+ dσ · v

2

= − i
2
mv2sI +

(
sσ · v

2
σj + sσjσ · v/2

)
imvj − bσ ·

v

2
σ · v

2
+

(d− a− 2img)

2
(σ · v)

= −ims
2
v2I +

(
ims

2
v2 +

ims

2
v2

)
I − b

4
v2I +

(d− a− 2img)

2
(σ · v)

= −ims
2
v2I +

ims

2
v2I +

ims

2
v2I − ims

2
v2I +

(d− a− 2img)

2
(σ · v)

=
(d− a− 2img)

2
(σ · v)

=
(d− a− 2img)

2

 vz vx − ivy

vx + ivy −vz

 . (A.228)

This equation requires

img =
(d− a)

2
(A.229)
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So now we conclude that the matrices are constrained to the form

B1 =

 0 0

sI 0

 , B2j =

 sσj 0

−i(d−a)
2m

−sσj

 , (A.230)

and

B3 =

 aI 2misI

cI dI

 . (A.231)

A.19 Finding 4 × 4 Matrices that Satisfy the Conditions for Rotational and Boost

Invariance

A.19.1 Finding a 4× 4 Matrix that Satisfies the First Condition for Rotational and

Boost Invariance

Note the transformations can be defined with boosts before rotations or after

rotations. Each choice results in the condition equations and transformation matrices

having a different form.

Rotations and boosts can be applied to the first condition for invariance to

produce the result

B1 = TB1T
−1 =

 R 0

−σ · vR/2 R


 0 0

sI 0


 R−1 0

R−1σ · v/2 R−1R



=

 0 0

sR 0


 R−1 0

R−1σ · v/2 R−1R



=

 0 0

sI 0

 . (A.232)

This result provides no new restriction on the matrices.
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A.19.2 Finding 4×4 Matrices that Satisfy the Second Condition for Rotational and

Boost Invariance

Rotations and boosts can be applied to the second condition for invariance

leading to the following equation

B2j = TB1T
−1Rijvi + TB2iT

−1Rji

=

 0 0

sI 0

Rijvi

+

 R 0

−σ · vR/2 R


 sσi 0

−i(d−a)
2m

−sσi


 R−1 0

R−1σ · v/2 R−1R

Rji

=

 0 0

sI 0

Rijvi

+

 sRσi 0

−σ · vR
2
sσi + −i(d−a)

2m
R −sRσi


 R−1 0

R−1σ · v/2 R−1R

Rji

=

 0 0

sI 0

Rijvi+

 sRσiR
−1 0

−σ · vR
2
sσiR

−1 + −i(d−a)
2m

− sRσiR−1σ · v/2 −sRσiR−1

Rji. (A.233)

We already know the first, second, and fourth components work out from the earlier

rotational invariance calculations. That is we know

RσiR
−1Rji = σj. (A.234)

It yet remains to work out the third component equation.

sIRijvi +

[
−σ · vR

2
sσiR

−1 +
−i (d− a)

2m
− sRσiR−1σ · v/2

]
Rji =

−i (d− a)

2m
.

(A.235)



107

Which produces a new condition a = d in order for the remainder of the equation to

work out as follows

−2sIRijvi = s
[
−σ · vRσiR−1 −RσiR−1σ · v

]
Rji

= s
[
−σ · vRσiR−1Rji −RσiR−1Rjiσ · v

]
= s [−σ · vσj − σjσ · v]

= s [−σkvkσj − σjσkvk]

= svk [−σkσj − σjσk]

= −svk {σk, σj}

= −svk2δkjI

= −svj2I. (A.236)

No additional restrictions can be found from this equation and s remains a free

parameter. To summarize the results at this stage the matrices are

B1 =

 0 0

sI 0

 , B2j =

 sσj 0

0 −sσj

 , (A.237)

and

B3 =

 aI 2misI

cI aI

 . (A.238)

A.19.3 Finding a 4×4 Matrix that Satisfies the Third Condition for Rotational and

Boost Invariance

Rotations and boosts can be applied to the third condition for invariance to

produce an equation

B3 = TB1T
−1

(
i

2
mv2 − imRjivjvkRik

)
− TB2iT

−1imRjivkRjk + TB3T
−1
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=

 aI 2misI

cI aI



=

 0 0

sI 0

(− i
2
mv2

)

−

 sRσiR
−1 0

−σ · vR
2
sσiR

−1 − sRσiR−1σ · v/2 −sRσiR−1

 imRjivkRjk

+

 R 0

−σ · vR/2 R


 aI 2misI

cI aI


 R−1 0

R−1σ · v/2 R−1



=

 0 0

sI 0

(− i
2
mv2

)

−

 sRσiR
−1 0

−σ · vR
2
sσiR

−1 − sRσiR−1σ · v
2
−sRσiR−1

 imRjivkRjk

+

 aI + 2imsσ · v/2 2imsI

cI − ismv2/2 −ismσ · v + aI

 . (A.239)

All the components of this equation check out without providing new restrictions. In

conclusion, the only 4× 4 matrices that can satisfy the conditions for rotational and

boost invariance are

B1 =

 0 0

sI 0

 , B2j =

 sσj 0

0 −sσj

 , (A.240)

and

B3 =

 aI 2misI

cI aI

 (A.241)

where a, c, and s are scalar free parameters.
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A.20 Requiring Hermiticity of Observables

Observables in a quantum theory are represented by operators that act on the

state functions to produce eigenvalues that are measureable quantities. In order for

the eigenvalues to be real the observables (operators) must be Hermitian. The dy-

namical equation is restructured to help us impose this restriction. After multiplying

through by i and moving the time differential to the left hand side the dynamical

equation is

i

 0 0

sI 0

 ∂tψ(x, t) =

−i
 sσj 0

0 −sσj

 ∂j − i

 aI 2misI

cI aI


ψ(x, t).

(A.242)

The momentum operator p̂j = −i∂j and energy operator ε̂ = i∂t may be substituted

into the equation 0 0

sI 0

 ε̂ψ(x, t) =


 sσj 0

0 −sσj

 p̂j − i

 aI 2misI

cI aI


ψ(x, t). (A.243)

The matrix Bj is already Hermitian if s is real. The triangular matrix Bt by itself

cannot be Hermitian but in a linear combination κBt +Bc it can be made Hermitian

under the conditions that a is imaginary and (2ms)† = −ic + κs meaning that c is

imaginary and κ is real.

A.21 Finding State Functions that Transform like Irreducible Representations

A.21.1 Deriving the Eigen-Equations

A set of functions ψj forms a basis for an irreducible representation if the

transformation operations T of the group acting on the function can be written as a

linear combination of the functions

Tψj =
∑
k

Ajkψk (A.244)
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where Ajk is a matrix. When the elements of the sum are infinite and the functions

are analytic the series may be summed to an exponential. Therefore the state function

ψ(x, t) transformed by a space translation T (aj) can be written as

T (aj)ψ(x, t) = ψ(xj + aj, t) = eikjajψ(x, t) (A.245)

and a time translations T (at) of the state function can be written as

T (at)ψ(x, t) = ψ(x, t+ at) = eiωatψ(x, t). (A.246)

Since we require the state functions to be analytic the transformation operators can

be reformed by summing the Taylor series expansions of the transformed functions

into exponential functions

T (aj)ψ(x, t) = ψ(xj + aj, t) = ei(−iaj∂j)ψ(x, t) (A.247)

and

T (at)ψ(x, t) = ψ(xj, t+ at) = ei(−iat∂t)ψ(x, t) (A.248)

where we define the generators of space translations p̂j = −i∂j and time translations

Ê = i∂t and where aj and at are the parameters of the space and time translations

respectively. Combining these results produces the eigen-equations for space transla-

tions

−i∂jψ(x, t) = kjψ(x, t) (A.249)

and time translations

i∂tψ(x, t) = ωψ(x, t). (A.250)

The eigen-equations can be written in terms of the operators k̂j = −i∂j and ω̂ = i∂t

k̂jψ(x, t) = kjψ(x, t) (A.251)
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and

ω̂ψ(x, t) = ωψ(x, t). (A.252)

Furthermore, operators of momentum p̂j and energy ε̂ may be defined in terms of

the wave quantities p̂j = h̄k̂j and ε̂ = h̄ω̂ where h̄ relates the quantities by a choice

of units. Then the eigen-equations may be expressed in term of these energy and

momentum operators

p̂jψ(x, t) = pjψ(x, t) (A.253)

and

ε̂ψ(x, t) = εψ(x, t). (A.254)

In constructing irreducible representations we wish to accomplish several objec-

tives. First, we want a set of variables that are invariant under the transformations

of the group. This is accomplished when the operators correspond to the variables

form a commuting set. The benefit of this is that when the variables are invariant

the eigenvalues provide convenient labels for the state. Second, we want the vari-

ables to be interpreted as measurable values so they must be real. If the generators

χj of the group are Hermitian, representations of the group eiχjΠj will be unitary.

When operators are applied to the state function, eigenvalues are produced and the

eigenvalues will be real if the operators are unitary. Finally, in addition to finding

operator representations for the generators of the group we want to find any other

unique operators which can commute with them. The additional operators are called

Casimir operators. By Schur’s lemma this maximal or complete set of commuting

operators will form an irreducible representation if and only if the Casimir operators

are multiples of unity. In this case the eigenvalues of the Casimir operators can be

said to specify the representation.
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A.21.2 Restricting the Dynamical Equations to State Functions that Transform like

Irreducible Representations

The eigen-equations can be applied to further constrain the free parameters of

the matrices in the dynamical equation (A.243). Replacing the operators in equation

(A.243) with their eigen-values 0 0

sI 0

 εψ(x, t) =


 sσj 0

0 −sσj

 pj − i

 aI 2misI

cI aI


ψ(x, t). (A.255)

Writing the state functions in terms of a bispinor

ψ =

 φ

χ

 (A.256)

allows the equation to be split into a pair of linked equations

sσjpjφ− iaφ+ 2msχ = 0 (A.257)

and

sεφ+ icφ+ sσjpjχ+ iaχ = 0. (A.258)

These equations will admit plane wave solutions only when the determinant vanishes∣∣∣∣∣∣∣
sσjpj − ia 2ms

sε+ ic sσjpj + ia

∣∣∣∣∣∣∣ = 0. (A.259)

From equation (A.259) it follows that

(sσjpj − ia)(sσjpj + ia)− 2ms(sε+ ic) = 0. (A.260)

Solving for the energy ε produces a momentum-energy relation

ε = p2/2m+ a2/2ms2 − ic/s. (A.261)
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There always exists some frame of reference where momentum is zero pj = 0 and

energy ε = ε0 is the rest energy ε0. In this frame of reference the equation (A.261) is

ε0 = a2/2ms2 − ic/s. (A.262)

Employing this result we conclude that the momentum energy relation is

ε = p2/2m+ ε0. (A.263)

Furthermore, the remaining free parameters can be eliminated from the first order

equation by using the Hermiticity conditions derived earlier in combination with

equation (A.262). After dividing out the constant s the equation first order equation

is

i

 0 0

I 0

 ∂tψ(x, t) = −i

 σj 0

0 −σj

 ∂jψ(x, t)

−i

 (2mε0 − 4m2 + 2mκ)
1
2 I 2imI

i(2m− κ)I (2mε0 − 4m2 + 2mκ)
1
2 I

ψ(x, t). (A.264)

Setting κ = 2m and ε0 = 0 produces the Lévy-Leblond equation.
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In appendix B concepts relevant to the Poincaré group are developed.

B.1 Poincaré Transformations

Minkowski space-time is defined by the Minkowski metric

ds2 = dt2 − dx2 − dy2 − dz2. (B.1)

Minkowski space-time is characterized by a set of transformations that leave the

Minkowski metric invariant. These are the Poincaré transformations

x′ν = Λν
µx

µ + bν (B.2)

and they relate the coordinates xν of one observer to those of another observer x′ν by

a rotation and Lorentz boost Λ and a space-time translation vector bν . The rotation

matrices about the angles θj take the form

Λ(θ1) =



1 0 0 0

0 1 0 0

0 0 cos θ1 sin θ1

0 0 − sin θ1 cos θ1


. (B.3)

Λ(θ2) =



1 0 0 0

0 cos θ2 0 − sin θ2

0 0 1 0

0 sin θ2 0 cos θ2


, (B.4)

and

Λ(θ3) =



1 0 0 0

0 cos θ3 sin θ3 0

0 − sin θ3 cos θ3 0

0 0 0 1


, (B.5)
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The matrices of the Lorentz boost are

Λ(η1) =



cosh η1 sinh η1 0 0

sinh η1 cosh η1 0 0

0 0 1 0

0 0 0 1


, (B.6)

Λ(η2) =



cosh η2 0 sinh η2 0

0 1 0 0

sinh η2 0 cosh η2 0

0 0 0 1


, (B.7)

and

Λ(η3) =



cosh η3 0 0 sinh η3

0 1 0 0

0 0 1 0

sinh η3 0 0 cosh η3


(B.8)

where cosh ηj = (1− v2
j )
−1/2 and sinh ηj = vj(1− v2

j )
−1/2.

B.2 The Poincaré Group

The Poincaré transformations form a group called the Poincaré group P with

transformation operator P (Λ, bµ) where Λ is the rotation and boost transformation

matrix. The group composition law can be worked out by inserting one transformation

into another thus

x′′ν = Λν
2µx
′µ + bν2

= Λν
2µ(Λµ

1ρx
ρ + bµ1) + bν2

= Λν
2µΛµ

1ρx
ρ + Λν

2µb
µ
1 + bν2 (B.9)

P (Λ2Λ1,Λ2b
µ
1 + bµ2) = P (Λ2, b

µ
2)P (Λ1, b

µ
1) (B.10)
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This group composition law is an expression of the group multiplication operation

and shows how elements of the group behave when applied in conjunction.

It can now be proven that the Poincaré transformations form a group by showing

that the elements satisfy all the properties of a group. The group composition law

already demonstrates the property of closure. It can also be used to demonstrate the

property of associativity

P (Λ3Λ2,Λ3b
µ
2 + bµ3)P (Λ1, b

µ
1)

= P (Λ3, b
µ
3)P (Λ2Λ1,Λ2b

µ
1 + bµ2). (B.11)

Additionally the identity property requires the existence of the identity element

E = P (I, 0) (B.12)

where the identity matrix I is used for rotations with a zero angle and boosts with

zero velocity. Lastly the inverse property is satisfied by the existence of a unique

inverse

P−1(Λ, bµ) = P (Λ−1,−Λ−1bµ) (B.13)

such that

P (Λ−1,−Λ−1bµ)P (Λ, bµ) = P (I, 0) = E. (B.14)

B.3 Poincaré Transformation of Differential Operators

Under the Lorentz transformation a differential operator transforms like

∂′µ = Λρ
µ∂ρ. (B.15)
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B.4 Differential Generators of the Poincaré Group

The differential generators of the Poincaré group can be calculated from the

Poincaré transformation functions. The differential generators for translations in

space-time, boosts, and rotations are

Xbµ = −i ∂
∂xµ

, (B.16)

Xvk = −i
[
t
∂

∂xk
+ xk

∂

∂t

]
, (B.17)

and

Xθl = −i
[
xj

∂

∂xk

]
εjkl. (B.18)

B.5 Commutation Relations of the Poincaré Group

The differential generators can be used to determine the commutation relations

of the group. [
Xθi , Xθj

]
= iεijkXθk , (B.19)[

Xθi , Xvj

]
= iεijkXvk , (B.20)[

Xvi , Xvj

]
= −iεijkXθk , (B.21)

B.6 Spinor Representations of the Extended Poincaré Group

A representation is a set of matrices or linear transformations on a vector space

that is homomorphic to the group multiplication law. The rotations matrices for

4-component spinors are

Rθj = cos
θ

2
+ εjklγkγl sin

θ

2
(B.22)

where γj and γ0 form a basis for the 4×4 spinor matrices and θj is the rotation about

the j-axis and in the k − l-plane. The boost matrices for 4-component spinors are

Svj = cosh
η

2
+ iγjγ0 sinh

η

2
(B.23)
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where η is the boost angle. The boost angle is related to the velocity by tanh η =

β = v/c where c = 1 is the speed of light in natural units. The Dirac representation

is chosen for this work whenever explicit representation of the gamma matrices γµ is

required

γj =

 0 iσj

−iσj 0

 γ0 =

 I 0

0 −I

 (B.24)

where σj are the Pauli matrices.

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 (B.25)

In this representation the Minkowski metric gµν has signature (+−−−). The covari-

ant gamma matrices are related to the contravariant form by γµ = gµνγ
ν = {γ0,−γj}.

The gamma matrices satisfy the Clifford algebra

{γµ, γν} = 2δµνI. (B.26)
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