
LOW COMPLEXITY H.264 ENCODER USING MACHINE LEARNING FOR

STREAMING APPLICATIONS

by

SUCHETHAN SWAROOP VAIDYANATH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2011

Copyright c© by Suchethan Swaroop Vaidyanath 2011

All Rights Reserved

ACKNOWLEDGEMENTS

This thesis would not have been possible without the encouragement, inputs,

guidance and support of a number of people. First and foremost, I would like to

thank my thesis advisor Dr.K.R.Rao for taking me under his wings right from the

first semester. His zeal to try new trends and his expertize in the field has always been

an inspiration for me. I am truly grateful to him for giving me such a life changing

opportunity.

I would like to thank Dr.Dongil Han for his expert guidance and financial sup-

port. Working with him has been an invaluable experience. I would like to thank all

my team mates at Ericsson Inc for guiding me during my internship. Their constant

support helped me in completing my thesis. My sincere thanks to Thejaswini, Prag-

nesh, Aruna , Vineeth, Vidya and Jennie for their inputs on this research.

Last but not least, I would like to thank my Mom and Dad and my brothers

for being my backbone in whatever I have done till now.

April 8, 2011

iii

ABSTRACT

LOW COMPLEXITY H.264 ENCODER USING MACHINE LEARNING FOR

STREAMING APPLICATIONS

Suchethan Swaroop Vaidyanath, M.S

The University of Texas at Arlington, 2011

Supervising Professor: K.R.Rao

H.264, MPEG-4 part-10 or AVC, is the latest digital video codec standard which

has proven to be superior than earlier standards in terms of compression ratio, qual-

ity, bit rates and error resilience [1]. Joint model (JM) reference software is used for

academic reference and it was developed by the Joint Video Team (JVT) of ISO/IEC

MPEG and ITU-T VCEG (Video coding experts group). The Intel IPP H.264 (In-

tegrated Performance Primitives) is a product of Intel which uses Intel IPP libraries

and SIMD instructions available on modern processors. The Intel IPP H.264 is multi-

threaded and uses CPU optimized IPP routines. These two softwares are compared in

terms of execution time and video quality of the decoded sequences. The metrics used

for comparison are SSIM (Structural Similarity Index Metric), PSNR (Peak-to-Peak

Signal to Noise Ratio), MSE (Mean Square Error), motion estimation time, encoding

time, decoding time and the compression ratio of the H.264 file size (encoded out-

put). The compression ratio of H.264 file is found to be less in JM software at various

bit rates than in Intel IPP. Hence, it is preferred over Intel IPP for reduction in the

iv

motion estimation time during encoding.

Motion estimation takes about 60 to 70 percent of the encoding time. The time

consuming Sum of Absolute Differences (SAD) method adopted in the H.264 encoder

in JM 16.2 software is replaced with a classification rule using machine learning. This

tree is implemented in the form of if-else statements in the motion estimation block of

JM16.2. Hence, the motion estimation process is reduced to if else statements thereby

reducing the encoding time. H.264 is a video codec format. Its corresponding .AAC

(Advanced Audio Coding) audio format and the video format are then placed on

a MP4 container using an open source tool called MP4box. This MP4 file can be

streamed (after forming manifest files) using IIS (Internet Information Services) to

achieve smooth low complexity streaming of media over the Internet.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . x

LIST OF TABLES . xii

Chapter Page

1. INTRODUCTION . 1

1.1 H.264 . 2

1.2 The New Industry Standard . 3

2. PROFILES AND WORKING OF H.264 CODEC 4

2.1 The AVC/H.264 profiles . 4

2.1.1 Common coding parts for all profiles 5

2.1.2 Baseline Profile . 6

2.1.3 Extended Profile . 7

2.1.4 Main Profile . 7

2.1.5 High Profile . 7

2.2 Encoder . 8

2.3 Decoder . 10

2.4 Inter Prediction . 11

2.5 Intra Prediction . 13

2.6 Test Sequences . 13

2.7 Joint Model (JM) Reference Software 15

2.8 Intel IPP H.264 compiler . 15

vi

2.9 Input Parameters . 16

2.10 Summary . 16

3. RESULTS OBTAINED FROM JM AND INTEL IPP 18

3.1 Results for ”Foreman.yuv” sequence from JM 16.2 and Intel IPP . . . 18

3.1.1 Encoding time and ME time taken by JM 16.2 19

3.1.2 Encoding time and ME time taken by Intel IPP 19

3.1.3 Decoding time taken by JM 16.2 for Foreman sequence 20

3.1.4 Decoding time taken by Intel IPP for Foreman sequence . . . 20

3.1.5 H.264 file size comparison . 21

3.1.6 Compression ratios for JM and Intel IPP 21

3.2 Quality Metrics . 22

3.2.1 SSIM values obtained for JM 16.2 and Intel IPP 22

3.2.2 PSNR obtained for JM 16.2 and Intel IPP 23

3.2.3 MSE obtained for JM H.264 and Intel IPP 24

3.3 Results obtained for “Football.yuv” [2] sequence 25

3.3.1 Encoding time and ME time taken by JM 16.2 26

3.3.2 Encoding time and ME time taken by Intel IPP 26

3.3.3 Decoding time taken by JM 16.2 for Football sequence 27

3.3.4 Decoding time taken by Intel IPP 27

3.3.5 H.264 file size comparison . 28

3.3.6 Compression ratios for JM 16.2 and Intel IPP 28

3.4 Quality Metrics . 29

3.4.1 SSIM obtained for JM 16.2 and Intel IPP H.264 29

3.4.2 PSNR obtained for JM 16.2 and Intel IPP H.264 30

3.4.3 MSE obtained for JM H.264 and Intel IPP H.264 31

3.5 Discussion . 31

vii

3.6 Summary . 32

4. MACHINE LEARNING . 33

4.1 Machine Learning . 33

4.1.1 Decision Tree Learning . 33

4.2 WEKA . 34

4.3 C4.5 Algorithm . 35

4.3.1 Pseudo code of the C4.5 Tree-Construction Algorithm 36

4.4 Approach . 39

4.5 Summary . 41

5. EXPERIMENTAL RESULTS . 43

5.1 Machine Learning . 43

5.2 Quality Metrics . 46

5.2.1 PSNR and MSE results obtained 46

5.2.2 SSIM results . 47

5.3 Discussion . 48

5.4 Summary . 49

6. SMOOTH STREAMING . 50

6.1 Smooth Streaming . 50

6.2 MP4 . 51

6.3 Summary . 53

7. CONCLUSIONS AND FUTURE WORK 55

7.1 Conclusions . 55

7.2 Future Work . 56

Appendix

A. VIDEO SEQUENCES USED IN THIS THESIS 57

REFERENCES . 60

viii

BIOGRAPHICAL STATEMENT . 63

ix

LIST OF FIGURES

Figure Page

2.1 Various profiles of H.264 . 6

2.2 Encoder block diagram of H.264 [3] 8

2.3 Decoder block diagram of H.264 [3] 10

2.4 Multi-frame bidirectional motion compensation in H.264 [4] 11

2.5 Block sizes used for motion compensation [5] 12

2.6 Intra 4*4 prediction modes and prediction directions 13

2.7 Supporting picture format-4:2:0 chroma sampling for CIF 14

2.8 Supporting picture format:4:2:0 chroma sampling for QCIF 14

3.1 Encoding time and ME time taken by JM 16.2 19

3.2 Encoding time and ME time taken by Intel IPP H.264 20

3.3 Decoding time taken by JM 16.2 for variable bit rates 20

3.4 Decoding time taken by Intel IPP for variable bit rates 21

3.5 H.264 file size comparison of JM 16.2 and Intel IPP 21

3.6 Compression ratio comparison for JM 16.2 and Intel IPP 22

3.7 SSIM achieved by JM 16.2 and Intel IPP 23

3.8 PSNR in dB achieved by JM 16.2 and Intel IPP 24

3.9 Comparison of MSE achieved by JM 16.2 and Intel IPP 25

3.10 Encoding time and ME time taken by JM 16.2 26

3.11 Encoding time and ME time taken by Intel IPP 27

3.12 Decoding time taken by JM 16.2 for Football sequence 27

3.13 Decoding time taken by Intel IPP for Football sequence 28

x

3.14 H.264 file size obtained from JM 16.2 and Intel IPP 28

3.15 Compression ratio achieved by JM 16.2 and Intel IPP 29

3.16 SSIM achieved by JM 16.2 and Intel IPP for Football sequence 30

3.17 PSNR in dB achieved by JM and Intel IPP 31

3.18 MSE achieved by JM 16.2 and Intel IPP 32

4.1 Flow chart used to achieve the low complexity encoder 40

5.1 Classification tree for Susie sequence from Weka tool 44

5.2 Motion Estimation time for sequences 45

5.3 PSNR obtained from JM 16.2 and JM using machine learning 46

5.4 Plot of MSE from JM 16.2 and JM using machine learning 47

5.5 Plot of SSIM in JM 16.2 and JM using machine learning 48

xi

LIST OF TABLES

Table Page

1.1 H.264 data rates at various resolutions [6] 3

2.1 Basic information for CIF sequence “football.yuv” [2] 14

2.2 Basic information for QCIF sequence “foreman.yuv” [2] 15

3.1 Results obtained from JM 16.2 for Foreman.yuv QCIF sequence . . . 18

3.2 Results obtained from Intel IPP H.264 18

3.3 Values of SSIM obtained for JM 16.2 and Intel IPP 22

3.4 Values of PSNR in dB obtained for JM 16.2 and Intel IPP 23

3.5 Values of MSE obtained for JM and Intel IPP 24

3.6 Results obtained from JM 16.2 for Football CIF sequence 25

3.7 Results obtained from JM 16.2 for Football CIF sequence 26

3.8 SSIM values obtained for JM 16.2 and Intel IPP 29

3.9 PSNR values in dB obtained for JM 16.2 and Intel IPP 30

3.10 MSE values obtained for JM 16.2 and Intel IPP 31

5.1 WEKA results for various combinations of video sequences 43

5.2 Encoding time and ME time comparison 44

5.3 Speedup in encoding time and ME time using machine learning . . . 45

5.4 Comparison of PSNR and MSE . 46

5.5 SSIM comparison of JM 16.2 and JM using machine learning 47

xii

CHAPTER 1

INTRODUCTION

Digital video has become the main stream and is being used in a wide range

of applications including DVD, digital TV, HDTV, video telephony, and teleconfer-

encing [7]. These digital video applications are feasible because of the advances in

computing and communication technologies as well as efficient video compression al-

gorithms. The rapid deployment and adoption of these technologies was possible

primarily because of standardization and the economies of scale brought about by

competition and standardization. Most of the video compression standards are based

on a set of principles that reduce the redundancy in digital video.

Consider a digital video sequence at a standard definition TV picture resolution

of 720x480 and a frame rate of 30 frames per second (FPS). If a picture is represented

using the YUV color space with 8 bits per component or 3 bytes per pixel, size

of each frame is 720x480x3 bytes. The disk space required to store one second of

video is 720x480x3x30 = 31.1 MB. A one hour video would thus require 112 GB. To

deliver video over wired and/or wireless networks, minimum bandwidth required is

(31.18)/2 = 124.4 MHZ. In addition to these extremely high storage and bandwidth

requirements, using uncompressed video will add significant cost to the hardware and

systems that process digital video. Digital video compression is thus necessary even

with exponentially increasing bandwidth and storage capacities. Fortunately, digital

video has significant redundancies and eliminating or reducing those redundancies

results in compression. Video compression is typically achieved by exploiting

1

2

• Spatial

• Temporal

• and statistical redundancies.

1.1 H.264

H.264 or AVC (Advanced Video Coding) is a digital video codec standard which

is noted for achieving very high data compression [1]. It was developed by the ITU-T

Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture

Experts Group (MPEG) as the product of a collective partnership effort known as

the Joint Video Team (JVT) [1]. H.264 delivers stunning quality at remarkably low

data rates. Ratified as part of the MPEG-4 standard (MPEG-4 Part 10), this ultra-

efficient technology gives excellent results across a broad range of bandwidths, from

3G (3rd Generation) for mobile devices to iChat (instant chatting application) for

video conferencing to HD for broadcast and DVD [6].

Massive Quality, Minimal Files

H.264 uses the latest innovations in video compression technology to provide incredi-

ble video quality from the smallest amount of video data. This means that crisp and

clear videos can be watched in much smaller files, saving bandwidth and storage costs

over previous generations of video codecs. H.264 delivers the same quality as MPEG-

2 at a third to half the data rate and up to four times the frame size of MPEG-4 Part

2 at the same data rate [6].

Scalable [8] from 3G to HD and Beyond

H.264 achieves the best-ever compression efficiency for a broad range of applications,

such as broadcast, DVD, video conferencing, video-on-demand, streaming and multi-

3

media messaging. True to its advanced design, H.264 delivers excellent quality across

a wide operating range, from 3G to HD and everything in between. Whether the need

is high-quality video for a mobile phone, iChat, Internet, broadcast or satellite de-

livery, H.264 provides exceptional performance at impressively low data rates. Table

1.1 shows data rates used at various resolutions.

Table 1.1. H.264 data rates at various resolutions [6]

Use Scenario Resolution and frame rate Example data rates

Mobile Content 176x144, 10-15 fps 50-60Kbps

Internet/Standard Definition 352x288, 640x480, 24 fps 1-2Mbps

High Definition 1280x720, 24fps, 5-6 Mbps

Full High Definition 1920x1080, 24p, 24fps, 7-8 Mbps

1.2 The New Industry Standard

Already ratified as part of the MPEG-4 standard MPEG-4 Part 10 and the

ITU-Ts latest video-conferencing standard, H.264 is now mandatory for the HD-DVD

and Blu-ray specifications (the two formats for high-definition DVDs) and ratified in

the latest versions of the DVB (Digital Video Broadcasters) and 3GPP (3rd Genera-

tion Partnership Project) standards. Numerous broadcast, cable, videoconferencing

and consumer electronics companies consider H.264 the video codec of choice for their

new products and services [6].

In this thesis, performance analysis and comparison of JM and Intel IPP H.264

softwares are implemented. Machine learning has been used to reduce the encoding

time. The video multiplexed with audio can then be streamed thereby achieving low

complexity streaming of media over the Internet.

CHAPTER 2

PROFILES AND WORKING OF H.264 CODEC

2.1 The AVC/H.264 profiles

The H.264/AVC standard includes the following sets of capabilities, which are

referred to as profiles. They target specific classes of applications [9]:

• Constrained Baseline Profile (CBP): It is primarily for low-cost applications.

This profile is used widely in videoconferencing and mobile applications. It

corresponds to the subset of features that are common between the Baseline,

Main, and High Profiles.

• Baseline Profile (BP): It is primarily for low-cost applications [10] that require

additional error robustness. This profile is used rarely in videoconferencing

and mobile applications, and it adds additional error resilience tools to the

Constrained Baseline Profile. The importance of this profile is fading after the

Constrained Baseline Profile has been defined.

• Main Profile (MP): This was originally intended as the mainstream consumer

profile for broadcast and storage applications. The importance of this profile

faded when the High profile was developed for these applications.

• Extended Profile (XP): This was intended as the streaming video profile. This

profile has relatively high compression capability. It has some extra tricks for

robustness to data losses and server stream switching.

• High Profile (HiP): This is the primary profile for broadcast and disc storage

applications, particularly for high-definition television applications. This is the

4

5

profile adopted into HD DVD and Blu-ray Disc.There are four High Profiles

(Fidelity range extensions) [21]. They are:

• High Profile: To support the 8-bit video with 4:2:0 sampling for applications

using high resolution.

• High 10 Profile (Hi10P): Going beyond today’s mainstream consumer product

capabilities, this profile builds on top of the High Profile, adding support for up

to 10 bits per sample of decoded picture precision.

• High 4:2:2 Profile (Hi422P): This profile primarily targets professional applica-

tions that use interlaced video. It builds on top of the High 10 Profile, adding

support for the 4:2:2 chroma subsampling format while using up to 10 bits per

sample of decoded picture precision.

• High 4:4:4 Predictive Profile (Hi444PP): This profile builds on top of the High

4:2:2 Profile, supporting up to 4:4:4 chroma sampling, up to 14 bits per sample,

and additionally supporting efficient lossless region coding and the coding of

each picture as three separate color planes.

Figure 2.1 shows the various profiles of H.264.

2.1.1 Common coding parts for all profiles

The common coding parts for the profiles are listed below [2]:

• I slice (Intra-coded slice): coded by using prediction only from decoded samples

within the same slice.

• P slice (Predictive-coded slice): coded by using inter prediction from previously

decoded reference pictures, using at most one motion vector and reference index

to predict the sample values of each block [11].

• CAVLC (Context-based Adaptive Variable Length Coding) for entropy coding.

6

Figure 2.1. Various profiles of H.264.

2.1.2 Baseline Profile

The coding parts for the baseline profile are listed below:

• Common parts: I slice, P slice, CAVLC.

• FMO Flexible macroblock order: macroblocks may not necessarily be in the

raster scan order. The map assigns macroblocks to a slice group.

• ASO Arbitrary slice order: the macroblock address of the first macroblock of

a slice of a picture may be smaller than the macroblock address of the first

macroblock of some other preceding slice of the same coded picture.

• RS Redundant slice: This slice belongs to the redundant coded data obtained

by same or different coding rate, in comparison with previous coded data of

same slice.

7

2.1.3 Extended Profile

The coding parts for the extended profile are listed below:

• Common parts : I slice, P slice, CAVLC.

• SP slice : specially coded for efficient switching between video streams, similar

to coding of a P slice.

• SI slice: switched, similar to coding of an I slice.

• Data partition: the coded data is placed in separate data partitions, each par-

tition can be placed in different layer unit.

• Flexible macroblock order (FMO), arbitrary slice order (ASO).

• Redundant slices (RS), B slice.

• Weighted prediction.

2.1.4 Main Profile

The coding parts for the main profile are listed below:

• Common parts: I slice, P slice, CAVLC.

• B slice (Bi-directionally predictive-coded slice): the coded slice by using inter

prediction from previously-decoded reference pictures, using at most two motion

vectors and reference indices to predict the sample values of each block.

• Weighted prediction: scaling operation by applying a weighting factor to the

samples of motion-compensated prediction data in P or B slice.

• CABAC (Context-based Adaptive Binary Arithmetic Coding) for entropy cod-

ing.

2.1.5 High Profile

The coding parts for the high profile are listed below:

• Adds to the main profile

8

• 8x8 intra prediction

• Custom quantization

• Lossless video coding

• More YUV formats (4:4:4)

2.2 Encoder

The H.264 encoder includes two dataflow paths, a forward path and a recon-

struction path.

Figure 2.2. Encoder block diagram of H.264 [3].

Encoder (Forward Path)

An input frame is presented for encoding as shown in Figure 2.2. The frame is pro-

cessed in units of a macroblock (corresponding to 16x16 pixels in the original image).

9

Each macroblock is encoded in intra or inter mode. In either case, a predicted mac-

roblock P is formed based on a reconstructed frame. In intra mode, P is formed

from samples in the current frame that have been previously encoded, decoded and

reconstructed form P. The unfiltered samples are used to form P. In inter mode, P is

formed by motion-compensated prediction from one or more reference frame(s). The

prediction for each macroblock may be formed from one or more past or future frames

(in time order) that have already been encoded and reconstructed [3].

The prediction P is subtracted from the current macroblock to produce a resid-

ual or difference macroblock. This is transformed (using a block transform) and

quantized to give a set of quantized transform coefficients. These coefficients are re-

ordered and entropy encoded. The entropy encoded coefficients, together with side

information required to decode the macroblock (such as the macroblock prediction

mode, quantizer step size, motion vector information describing how the macroblock

was motion-compensated, etc) form the compressed bitstream. This is passed to a

network abstraction layer (NAL) for transmission or storage.

Encoder (Reconstruction path)

As illustrated in Figure 2.2, the quantized macroblock coefficients are decoded in or-

der to reconstruct a frame for encoding of further macroblocks. The coefficients are

re-scaled and inverse transformed to produce a difference macroblock. This is not

identical to the original difference macroblock. The quantization process introduces

losses. The predicted macroblock P is added to the difference macroblock to create

a reconstructed macroblock (a distorted version of the original macroblock). A de-

blocking filter is applied to reduce the effects of blocking distortion and reconstructed

10

reference frame is created from a series of macroblocks [12].

2.3 Decoder

Figure 2.3. Decoder block diagram of H.264 [3].

The decoder receives a compressed bitstream from the NAL as shown in Fig-

ure 2.3. The data elements are entropy decoded and reordered to produce a set of

quantized coefficients. These are rescaled and inverse transformed to give a difference

macroblock. Using the header information decoded from the bit stream, the decoder

creates a prediction macroblock P, identical to the original prediction P formed in

the encoder. P is added to the difference macroblock and this result is given to the

deblocking filter to create the decoded macroblock.

The purpose of the reconstruction path in the encoder is to ensure that both

encoder and decoder use identical reference frames to create the prediction P. If this

is not the case, then the predictions P in encoder and decoder will not be identical,

11

leading to an increasing error or drift between the encoder and decoder [3].

2.4 Inter Prediction

Inter prediction includes both motion estimation (ME) and motion compensa-

tion (MC). The ME/ MC process performs prediction [13]. It generates a predicted

version of a rectangular array of pixels, by choosing another similarly sized rectan-

gular array of pixels from a previously decoded reference picture and translating the

reference array to the position of the current rectangular array. The translation from

other positions of the array in the reference picture is specified with quarter pixel

precision.

Figure 2.4. Multi-frame bidirectional motion compensation in H.264 [4].

H.264/AVC supports multi-picture motion-compensated prediction [14]. That

is, more than one prior-coded picture can be used as a reference for motion-compensated

prediction as shown in Figure 2.4. Up to 16 frames can be used as reference frames. In

addition to the motion vector, the picture reference parameters are also transmitted.

12

Both the encoder and decoder have to store the reference pictures used for Inter-

picture prediction in a multi-picture buffer. The decoder replicates the multi-picture

buffer of the encoder, according to the reference picture buffering type and any mem-

ory management control operations that are specified in the bit stream. B frames use

both a past and future frame as a reference. This technique is called bidirectional

prediction. B frames provide most compression and also reduce the effect of noise by

averaging two frames. B frames are not used in the baseline profile (Figure 1.1).

Figure 2.5. Block sizes used for motion compensation [5].

H.264 supports motion compensation block sizes ranging from 16x16 to 16x8,

8x16, 8x8, 8x4, 4x8 and 4x4 sizes as shown in Figure 2.5. This method of partitioning

macroblocks into motion compensated sub-blocks of varying sizes is known as tree

structured motion compensation.

2.5 Intra Prediction

Intra prediction [15] exploits spatial redundancy between adjacent macroblocks

in a frame. It predicts the pixel values as linear interpolation of pixels from adjacent

13

Figure 2.6. Intra 4*4 prediction modes and prediction directions.

edges of neighboring macroblocks that are decoded before the current macroblock.

The interpolations are directional in nature, with multiple modes, each implying a

spatial direction of prediction as shown in Figure 2.6. There are 9 prediction modes

defined for a 4x4 block and 4 prediction modes defined for a 16x16 block. The

union of all mode evaluations, cost comparisons and exhaustive search inside motion

estimation(ME) causes a great amount of time spent by the encoder. Complex and

exhaustive ME evaluation is the key to good performance achieved by H.264, but the

cost is in the encoding time [16].

2.6 Test Sequences

• CIF (Common Intermediate Format) as illustrated in Figure 2.7 is a video

format used in video conferencing systems. CIF is part of the ITU H.261 video-

conferencing standard. It specifies a data rate of 30 frames per second (fps),

with each frame containing 288 lines and 352 pixels per line. Hence it has a

resolution of 352 x 288.

• QCIF (Quarter CIF) as illustrated in Figure 2.8 is related to CIF. Its resolution

per frame is 144 lines, with 176 pixels per line. Multiplying 352 and 288 yields

101,376 total number of pixels in the CIF format, which is exactly four times the

14

Figure 2.7. Supporting picture format-4:2:0 chroma sampling for CIF.

Table 2.1. Basic information for CIF sequence “football.yuv” [2]

Frame rate(fps) 30
Width 352
Height 258

Size(Mega bytes) 13
Number of Frames 90

number of pixels contained in a QCIF frame (25,344 pixels). The ”Quarter”

terminology is meant to indicate that QCIF frames contain quarter as many

pixels as the CIF frame and thus take up less bandwidth.

Figure 2.8. Supporting picture format:4:2:0 chroma sampling for QCIF.

15

Table 2.2. Basic information for QCIF sequence “foreman.yuv” [2]

Frame rate(fps) 30
Width 176
Height 144

Size(Mega bytes) 11.138
Number of Frames 300

2.7 Joint Model (JM) Reference Software

The JM [17] reference software is used to implement the H.264 codec. It has a

configuration file through which the input parameters can be given such as the input

sequence, frame rate, video resolution of the input sequence, bit rate, quantization

parameter, profile to be used etc.

The command used to execute the H.264 encoder is:

• lencod f encoder.cfg

The command used to execute the H.264 decoder is:

• ldecod i testfile.264 o testoutput.yuv

2.8 Intel IPP H.264 compiler

Intel Integrated Performance Primitives (Intel IPP) is an extensive library of

highly optimized software functions for digital media and data-processing ap-

plications. Intel IPP [18] offers thousands of optimized functions covering

frequently-used fundamental algorithms. Intel IPP functions are designed to

deliver performance beyond what optimized compilers alone can deliver. It also

has a parameter file called h264.par wherein the input parameters can be given.

The command used to execute the H.264 encoder is:

16

• umc video enc con.exe h264 h264.par testfile.h264

The command used to execute the H.264 decoder is:

• umc h264 dec con.exe -i testfile.h264 -o testoutput.yuv

2.9 Input Parameters

The parameters that were changed in the configuration file (JM) and the pa-

rameter file (Intel IPP) are

• Input sequence

• Frame width and height

• Frame rate

• YUV format

• Number of frames to be encoded

• Profile

• Bit rate

• Quantization parameter

• Intra period

• Number of reference frames to be used

• CABAC and bi-directional prediction are not included (as baseline profile is

being used).

2.10 Summary

In this chapter, the working of the encoder and decoder are explained. The

test sequences and the common parameters chosen to be used in both JM and Intel

IPP H.264 encoders are also discussed. The next chapter is about the test results

obtained from these two softwares.

CHAPTER 3

RESULTS OBTAINED FROM JM AND INTEL IPP

3.1 Results for ”Foreman.yuv” sequence from JM 16.2 and Intel IPP

The results obtained from JM are tabulated in Table 3.1 The results obtained

Table 3.1. Results obtained from JM 16.2 for Foreman.yuv QCIF sequence

Bit Motion Encoding Decoding H.264 Compression
rates estimation time time file size ratio

used (KB/sec) time (sec) (sec) (sec)

25 1396.664 1658.874 15.824 251 KB 44.37

50 1426.045 1829.835 18.384 501 KB 22.23

75 1442.001 1951.315 19.059 751 KB 14.83

100 1376.785 1941.312 17.805 1.001 MB 11.12

125 1398.593 2045.541 19.375 1.251 MB 8.9

150 1509.317 2280.951 19.307 1.501 MB 7.42

from Intel IPP is tabulated in Table 3.2

Table 3.2. Results obtained from Intel IPP H.264

Bit Motion Encoding Decoding H.264 Compression
rates estimation time time file size ratio

used (KB/sec) time (sec) (sec) (sec)

25 2.51 3.41 0.1257 294 KB 37.92

50 2.58 3.31 0.1519 562 KB 19.82

75 3.07 3.93 0.1061 824 KB 13.52

100 2.88 3.74 0.1232 1.082 MB 10.3

125 2.94 3.77 0.1386 1.334 MB 8.35

150 3.25 4.13 0.1577 1.583 MB 7.04

17

18

3.1.1 Encoding time and ME time taken by JM 16.2

Figure 3.1 illustrates the comparison of encoding time and ME time taken by

JM 16.2.

Figure 3.1. Encoding time and ME time taken by JM 16.2.

3.1.2 Encoding time and ME time taken by Intel IPP

Figure 3.2 illustrates the comparison of encoding time and ME time taken by

Intel IPP for Foreman sequence.

19

Figure 3.2. Encoding time and ME time taken by Intel IPP H.264.

3.1.3 Decoding time taken by JM 16.2 for Foreman sequence

Figure 3.3 illustrates the decoding time taken by JM 16.2.

Figure 3.3. Decoding time taken by JM 16.2 for variable bit rates.

3.1.4 Decoding time taken by Intel IPP for Foreman sequence

Figure 3.4 illustrates the decoding time taken by Intel IPP.

20

Figure 3.4. Decoding time taken by Intel IPP for variable bit rates.

3.1.5 H.264 file size comparison

Figure 3.5 illustrates the H.264 file size obtained from JM 16.2 and Intel IPP.

Figure 3.5. H.264 file size comparison of JM 16.2 and Intel IPP.

3.1.6 Compression ratios for JM and Intel IPP

Compression ratio has been calculated as the ratio between the original sequence

file size to the H.264 file size. Figure 3.6 illustrates the compression ratios achieved

by JM 16.2 and Intel IPP.

21

Figure 3.6. Compression ratio comparison for JM 16.2 and Intel IPP.

3.2 Quality Metrics

The 3 metrics used to compare the quality of the output are the structural

similarity index [19] (SSIM), peak to peak signal to noise ratio (PSNR), and the

Mean Square Error (MSE).

3.2.1 SSIM values obtained for JM 16.2 and Intel IPP

The values of SSIM obtained for JM 16.2 and Intel IPP H.264 at different bit

rates are tabulated in Table 3.3.

Table 3.3. Values of SSIM obtained for JM 16.2 and Intel IPP

Bit JM Intel IPP
rates

used (KB/sec)
25 0.9609 0.96297
50 0.98146 0.98186
75 0.98789 0.98876
100 0.99063 0.99221
125 0.99227 0.99419
150 0.9934 0.99546

22

The Figure 3.7 shows the plot of SSIM achieved by JM 16.2 and Intel IPP for

Foreman sequence.

Figure 3.7. SSIM achieved by JM 16.2 and Intel IPP.

3.2.2 PSNR obtained for JM 16.2 and Intel IPP

The values of PSNR [20] in dB obtained for JM 16.2 and Intel IPP H.264 at

different bit rates are tabulated in Table 3.4.

Table 3.4. Values of PSNR in dB obtained for JM 16.2 and Intel IPP

Bit JM Intel IPP
rates

used (KB/sec)
25 37.18359 37.46751
50 41.13141 41.28917
75 43.17939 43.7612
100 44.37394 45.63609
125 45.26677 47.11219
150 45.95815 48.34548

23

The Figure 3.8 shows the plot of PSNR in dB achieved by JM and Intel IPP.

Figure 3.8. PSNR in dB achieved by JM 16.2 and Intel IPP.

3.2.3 MSE obtained for JM H.264 and Intel IPP

The values of MSE [21] obtained for JM 16.2 and Intel IPP H.264 at different

bit rates are listed in Table 3.5.

Table 3.5. Values of MSE obtained for JM and Intel IPP

Bit JM Intel IPP
rates

used (KB/sec)
25 12.43717 11.6501
50 5.01117 4.83241
75 3.1271 2.73502
100 2.37513 1.77612
125 1.93376 1.26433
150 1.64917 0.95177

The Figure 3.9 shows the plot of MSE achieved by JM 16.2 and Intel IPP

obtained for Foreman sequence.

24

Figure 3.9. Comparison of MSE achieved by JM 16.2 and Intel IPP.

3.3 Results obtained for “Football.yuv” [2] sequence

The results obtained from JM 16.2 are listed in Table 3.6. The results

Table 3.6. Results obtained from JM 16.2 for Football CIF sequence

Bit Motion Encoding Decoding H.264 Compression
rates estimation time time file size ratio

used (KB/sec) time (sec) (sec) (sec) (KB)

25 1867.852 1977.511 7.46 115 116.21

50 1895.832 2011.676 8.643 151 88.5

75 1870.535 1994.897 8.793 225 59.4

100 1787.468 1914.402 10.001 300 44.55

125 1762.494 1894.901 9.81 375 35.64

150 1752.587 1889.357 10.397 450 29.7

obtained from Intel IPP is tabulated in Table 3.7.

25

Table 3.7. Results obtained from JM 16.2 for Football CIF sequence

Bit Motion Encoding Decoding H.264 Compression
rates estimation time time file size ratio

used (KB/sec) time (sec) (sec) (sec) (KB)

25 1.47 1.77 0.0483 88 151.87

50 1.96 2.27 0.0567 186 71.85

75 2.25 2.58 0.0642 280 47.73

100 2.38 2.71 0.0629 372 35.92

125 2.47 2.93 0.0628 465 28.74

150 2.53 2.86 0.0898 554 24.12

3.3.1 Encoding time and ME time taken by JM 16.2

Figure 3.10 shows the comparison of encoding time and ME time taken by JM

16.2 for Football sequence.

Figure 3.10. Encoding time and ME time taken by JM 16.2.

3.3.2 Encoding time and ME time taken by Intel IPP

Figure 3.11 shows the comparison of encoding time and ME time taken by Intel

IPP for Football sequence.

26

Figure 3.11. Encoding time and ME time taken by Intel IPP.

3.3.3 Decoding time taken by JM 16.2 for Football sequence

Figure 3.12 illustrates the decoding time taken by JM 16.2.

Figure 3.12. Decoding time taken by JM 16.2 for Football sequence.

3.3.4 Decoding time taken by Intel IPP

Figure 3.13 illustrates the decoding time taken by Intel IPP.

27

Figure 3.13. Decoding time taken by Intel IPP for Football sequence.

3.3.5 H.264 file size comparison

Figure 3.14 illustrates the H.264 file size obtained from JM 16.2 and Intel IPP

Figure 3.14. H.264 file size obtained from JM 16.2 and Intel IPP.

3.3.6 Compression ratios for JM 16.2 and Intel IPP

Compression ratio has been calculated as the ratio between the original sequence

file size and the H.264 file size. Figure 3.15 illustrates the compression ratio achieved

by JM 16.2 and Intel IPP.

28

Figure 3.15. Compression ratio achieved by JM 16.2 and Intel IPP.

3.4 Quality Metrics

3.4.1 SSIM obtained for JM 16.2 and Intel IPP H.264

The values of SSIM obtained for JM 16.2 and Intel IPP H.264 at different bit

rates are listed in Table 3.8.

Table 3.8. SSIM values obtained for JM 16.2 and Intel IPP

Bit JM Intel IPP
rates

used (KB/sec)
25 0.78131 0.76785
50 0.82761 0.8471
75 0.8734 0.8876
100 0.90238 0.91482
125 0.92068 0.93117
150 0.93351 0.94339

The graph shows the plot of SSIM achieved by JM 16.2 and Intel IPP for

different bit rates in Figure 3.16.

29

Figure 3.16. SSIM achieved by JM 16.2 and Intel IPP for Football sequence.

3.4.2 PSNR obtained for JM 16.2 and Intel IPP H.264

The values of PSNR in dB obtained for JM 16.2 and Intel IPP H.264 at different

bit rates are listed in Table 3.9.

Table 3.9. PSNR values in dB obtained for JM 16.2 and Intel IPP

Bit JM Intel IPP
rates

used (KB/sec)
25 29.33657 29.15126
50 30.98771 32.14291
75 33.01121 34.08814
100 34.73708 35.63852
125 36.00283 36.81034
150 37.02637 37.82698

The graph shows the plot of PSNR in dB achieved by JM and Intel IPP for

different bit rates in Figure 3.17.

30

Figure 3.17. PSNR in dB achieved by JM and Intel IPP.

3.4.3 MSE obtained for JM H.264 and Intel IPP H.264

The values of MSE obtained for JM 16.2 and Intel IPP H.264 at different bit

rates are listed in Table 3.10.

Table 3.10. MSE values obtained for JM 16.2 and Intel IPP

Bit JM Intel IPP
rates

used (KB/sec)
25 75.7571 79.05947
50 51.79758 39.69989
75 32.50572 25.36683
100 21.84603 17.75123
125 16.32292 13.55333
150 12.89565 10.72463

The graph shows the plot of MSE achieved by JM 16.2 and Intel IPP for different

bit rates in Figure 3.18 .

3.5 Discussion

The Intel IPP H.264 is multi-threaded and uses CPU-optimized IPP routines.

It uses Intel IPP libraries to exploit benefits from SIMD (Single Instruction Multiple

31

Figure 3.18. MSE achieved by JM 16.2 and Intel IPP.

Data) instructions available on modern processors.In addition to this, it is also able

to utilize multiple cores doing work in parallel. Hence, it is much faster than JM.

The quality of the video is also better than the JM output in terms of SSIM, PSNR

and MSE. The only place where the JM 16.2 scores over Intel IPP H.264 is the

compression size of H.264 file. The maximum size difference found was 104 KB (CIF

sequence with bit rate of 150 KB/sec).

3.6 Summary

The Intel IPP compiler is highly optimized and it is more than 500 times faster

than the JM software for encoding time and decoding time. The quality of the output

video is tested in terms of MSE, PSNR, and SSIM for different video streams namely

CIF and QCIF. Intel IPP H.264 clearly emerges as the winner against JM 16.2 in all

aspects except the compression size of a H.264 file. The next chapter explains the

applications of machine learning to the JM software to reduce the encoding time.

CHAPTER 4

MACHINE LEARNING

4.1 Machine Learning

Machine learning [22], is a branch of artificial intelligence that is concerned with

the design and development of algorithms that allow computers to evolve behaviors

based on empirical data, such as from sensor data or databases. A learner can take

advantage of examples (data) to capture characteristics of interest of their unknown

underlying probability distributions. Data can be seen as examples that illustrate

relations between observed variables. A major focus of machine learning research is

to automatically learn to recognize complex patterns and make intelligent decisions

based on data. The difficulty is that the set of all possible behaviors given all possible

inputs is too large to be covered by the set of observed examples (training data).

Hence the learner must generalize from the given examples, so as to be able to produce

a useful output in new cases.

4.1.1 Decision Tree Learning

Decision tree learning [23], used in statistics, data mining and machine learn-

ing, uses a decision tree as a predictive model which maps observations about an

item to conclusions about the item’s target value. More descriptive names for such

tree models are classification trees or regression trees. In these tree structures, leaves

represent classifications and branches represent conjunctions of features that lead to

those classifications.

In the decision analysis, a decision tree can be used to visually and explicitly repre-

32

33

sent decisions and decision making. In data mining [23], a decision tree describes data

but not decisions; rather the resulting classification tree can be an input for decision

making.

Advantages of a decision tree:

• Simple to understand and interpret.

• Able to handle both numerical and categorical data.Other techniques are usu-

ally specialized in analysing datasets that have only one type of variable. Eg.

relation rules can be used only with nominal variables while neural networks

can be used only with numerical variables.

Limitations:

• Decision-tree learners can create over-complex trees that do not generalize the

data well. This is called overfitting. Mechanisms such as pruning are necessary

to avoid this problem. Pruning is a technique in machine learning that reduces

the size of decision trees by removing sections of the tree that provide little

power to classify instances. The dual goal of pruning is reduced complexity

of the final classifier as well as better predictive accuracy by the reduction of

overfitting and removal of sections of a classifier that may be based on noisy or

erroneous data.

4.2 WEKA

Weka (Waikato Environment for Knowledge Analysis) [24] is a popular suite of

machine learning software written in Java, developed at the University of Waikato,

New Zealand. The original version was primarily designed as a tool for analyzing data

from agricultural domains but the more recent fully Java-based version (Weka 3), for

34

which development started in 1997, is now used in many different application areas,

in particular for educational purposes and research. Advantages of Weka include:

• Free availability under the General Public License

• Portability: because it is fully implemented in the Java programming language

and thus runs on almost any modern computing platform

• A comprehensive collection of data preprocessing and modeling techniques

• Ease-of-use due to the graphical user interfaces it contains

The philosophy behind WEKA is to move away from supporting a computer

science or machine learning researcher, and towards supporting the end user of ma-

chine learning. The end user is someone typically, an agricultural scientist [25] with

an understanding of the data and sufficient knowledge of the capabilities of machine

learning to select and investigate the application of different techniques. In order to

maintain this philosophy, WEKA concentrates on ensuring that the implementation

details of the machine learning algorithms and the input formats they require are

hidden from the user. Hence, the WEKA software is easy to use.

4.3 C4.5 Algorithm

C4.5 is an algorithm [26] used to generate a decision tree. The decision trees

generated by C4.5 can be used for classification, and for this reason, C4.5 is often

referred to as a statistical classifier. C4.5 uses the divide and conquer method [22] to

construct a tree from a set, S, of training instances. If all instances in S belong to the

same class, the decision tree is a leaf labeled with that class. Otherwise the algorithm

uses a test to divide S into several non-trivial partitions. Each of the partitions

becomes a child node of the current node and the tests separating S are assigned to

the branches.

35

Conditional entropy is used to provide a measure of the correlation between

features and class and between features. If H(X) is the entropy of a feature X and

H(X/Y) the entropy of a feature X given the occurrence of feature Y the correla-

tion between two features X and Y can then be calculated using the symmetrical

uncertainty:

C(X/Y) =
H(X)−H(X/Y)

H(Y)
(4.1)

The class of an instance is considered to be a feature. The goodness of a subset

is then determined as:

Gsubset =
kr̄1√

k + (k − 1)r̄2
(4.2)

where k is the number of features in a subset, r̄1 is the mean feature correlation

with the class and r̄2 is the mean feature correlation. When r̄1 is larger and the r̄2 is

smaller, the classification results of subset is better. It yields a better classification

tree.

The C4.5 algorithm constructs the decision tree with a divide and conquer

strategy. In C4.5, each node in a tree is associated with a set of cases. Also, cases are

assigned weights to take into account unknown attribute values. At the beginning,

only the root is present and associated with the whole training set ΓS and with all

case weights equal to 1.0. At each node, the following divide and conquer algorithm

is executed trying to exploit the locally best choice, with no backtracking allowed [5].

4.3.1 Pseudo code of the C4.5 Tree-Construction Algorithm

1. Compute ClassFrequency(T);

36

2. if ‘OneCase or ‘FewCases’

Return a leaf;

Create a decision node N;

3. For Each Attribute A,

ComputeGain(A);

4. N.test=AttributeWithBestGain;

5. if N.test is continuous;

Find threshold;

6. For Each T’ in the splitting of T

7. if T’ is Empty; Child of N is a leaf

Else

8. Child of N =FormTree(T’);

9. ComputeErrors of N; Return N

Let T be the set of cases associated at the node. The weighted frequency freq (Ci,T)

is computed (Step (1)) of cases in T whose class is Ci for i ε [1, Nclass].

In all cases, (Step (2)) in T belongs to the same class as Cj (or the number

of cases in T is less than a certain value), then the node is a leaf, with associated

class Cj. The classification error of the leaf is the weighted sum of cases in T whose

class is not Cj. If T contains cases belonging to two or more classes (Step (3)),

then the information gain of each attribute is calculated. For discrete attributes,

the information gain is relative to the splitting of cases in T into sets with distinct

attribute values. For continuous attributes, the information gain is relative to the

splitting of T into two subsets, namely, cases with an attribute value not greater

than a local threshold and cases with an attribute value greater than a certain local

threshold, which is determined during information gain calculation. The attribute

37

with the highest information gain (Step (4)) is selected for the test at the node.

Moreover, in case a continuous attribute is selected, the threshold is computed (Step

(5)) as the greatest value of the whole training set that is below the local threshold [5].

A decision node has s children if Ti (where i[1,s]) are the sets of the splitting

produced by the test on the selected attribute (Step(6)). Obviously, s=2 when the

selected attribute is continuous, and s=h for discrete attributes with h known values.

For i=[1,s], if Ti is empty, (Step(7)) the child node is directly set to be a leaf, with the

associated class. This is the most frequent class at the parent node and classification

error 0.

If Ti is not empty, the divide and conquer approach consists of recursively applying

the same operations (Step (8)) on the set consisting of Ti plus those cases in T with

an unknown value of the selected attribute. Note that cases with an unknown value

of the selected attribute are replicated in each child with their weights proportional

to the proportion of cases in Ti over cases in T with a known value of the selected

attribute. Finally, the classification error (Step (9)) of the node is calculated as the

sum of the error of classifying all cases in T as belonging to the most frequent class

in T, then the node is set to be a leaf and all sub trees are removed. The information

gain of an attribute a for a set of cases T is calculated as follows: if a is discrete, and

Ti (where i [1,s]) are the subsets for T consisting of cases with distinct known value

for attribute a, then:

gain = info(T)−
s∑

i=1

|Ti|
|T|
× info(Ti) (4.3)

where

38

info(T) = −
Nclass∑
j=1

freq(Cj,T)

|T|
× log2

(
freq(Cj,T)

|T|

)
(4.4)

is the entropy function. The function freq(Cj,T), is the function calculating the

frequency of classifying case T as Cj. While having an option to select information

gain, by default, however, C4.5 considers the information gain ratio of splitting Ti

(where i ε [1,s]), which is the ratio of information gain to its split information:

Split(T) = −
s∑

i=1

|Ti|
|T|
× log2

(
p
|Ti|
|T|

)
(4.5)

where p represents the probability function.

4.4 Approach

The implementation of using decision trees as if-else statements is done on JM

16.2. Machine learning is used to exploit the spatial and temporal redundancies in

video in order to make optimal mode decisions by replacing the sum of absolute differ-

ences (SAD) and other cost evaluations by if else statements in the motion estimation

block. The flow chart shown in Figure 4.1 sums up the approach incorporated in this

project.

The motion estimation process takes upto 70 percent of the encoding time in

H.264 [27]. Hence, C4.5 algorithm is used to reduce the complexity of determining

the mode decisions. The statistics for each 16x16 macroblock of the first four frames

of the video sequence is calculated. The statistics being the mean, variance, variance

of means for all the sub macroblock sizes in the macroblock, mean of the adjacent

macroblocks, variance of the adjacent macroblocks and variance of means for all

39

Figure 4.1. Flow chart used to achieve the low complexity encoder.

the submacroblock sizes in the adjacent blocks. The modes for the same first four

frames from the video sequences are determined from the H.264 encoder in the JM

16.2 software. These modes and the determined statistics are collectively given as

attributes for training in the WEKA tool. This is an offline process. The WEKA

tool uses the C4.5 (J48) classifier algorithm to determine the mode decision tree. An

attempt has been made to determine a universal tree that can give relatively accurate

mode decisions to any video sequence. To demonstrate this,different combinations

of video sequences for training the mode decision trees and later testing the mode

decision trees. Table 5.1 summarizes the results. The attributes most commonly

considered for mode decision in all the entries in the table are considered to determine

the mode decision for the universal mode decision tree. This tree is implemented in

40

the form of if else statements in the motion estimation block of JM16.2. Hence, the

motion estimation process is reduced to if else statements.

Following are the parameters that are used during encoding:

• High profile - The primary profile for broadcast and disc storage applications,

particularly for high-definition television applications.

• Bi directional Prediction - H.264/AVC supports multi-picture motion-compensated

prediction. That is, more than one prior-coded picture can be used as a refer-

ence for motion-compensated prediction. B frames use both a past and future

frame as a reference.

• Context adaptive binary arithmetic coding (CABAC) - is a form of entropy

coding used in H.264/MPEG-4 AVC video encoding. It is a lossless compression

technique. It is notable for providing much better compression than most other

encoding algorithms.

This thesis considers only sub macroblock modes (8x8, 8x4, 4x8 and 4x4) for

machine learning. The motion estimation code which contains this block is replaced

by if else statements. This idea of using machine learning to reduce the motion

estimation time has been taken from [5]. In this thesis, SD (Standard Definition)

sequences are used for training purposes to build a stronger tree along with the

results obtained from [5]. Parameters such as bi-directional prediction, high profile

of H.264 and CABAC are used to improve the video quality of the sequence. The

speedups of the encoding time and the ME time are smaller than that in [5] because

of the use of these parameters.

4.5 Summary

This chapter has discussed decision tree learning and the Weka tool. The C4.5

algorithm and the approach incorporated in this thesis are covered. The next chapter

41

discusses the experimental results obtained after the application of machine learning

to the test sequences.

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Machine Learning

Table 5.1 shows the WEKA tool results for various combinations of videos

sequences as training and test sequences. The if-else statements derived from the

mode decision trees were used to replace the mode decision block in the JM encoder.

The assessment metrics like PSNR, MSE, SSIM and file compression ratios for the

H.264 video encoder as in JM 16.2 and the encoder based on machine learning are

tabulated in Tables 5.2 through 5.5.

Table 5.1. WEKA results for various combinations of video sequences

Training % Accuracy* Training % Accuracy* Test %
Sequence for Sequence 2 for Sequence Accuracy*

1 training training
Seq 1 Seq 2

Container cif 98.131 ———– ———— Waterfall cif 95.0042

Stefan cif 88.3838 Tempete cif 85.0444 Container cif 90.1812

Bus cif 70.6861 Foreman cif 80.7645 Mobile cif 77.188

Waterfall cif 90.5636 ————– ———— Bus cif 83.0469

Susie sd 89.391 ———— ———— Foreman cif 86.2947

Rosebowl sd 88.172 Susie SD 89.391 Container cif 82.610

% Accuracy * refers to the accuracy in determining the mode decision using

machine learning in comparison to the mode decision in JM 16.2 encoder.

Classification tree for the Susie [2] sequence is shown in Figure 5.1.

42

43

Figure 5.1. Classification tree for Susie sequence from Weka tool.

The simulation results obtained using JM 16.2 and JM using machine learning

(4 frames) is shown in Table 5.2.

Table 5.2. Encoding time and ME time comparison

Seq Sequence Encoding Encoding ME time ME time
No time(sec) time (sec) (sec)

for JM16.2 (sec) for JM 16.2 using
without machine without machine
machine learning machine learning
learning Sequence 2 learning

1 Bus cif 1924.628 1520.071 1374.73 914.470
2 Interview cif 2107.122 1593.827 1249.716 861.554
3 Mother Daughter 534.741 406.563 441.163 287.108

qcif
4 Foreman qcif 419.325 330.050 305.298 204.238

44

The motion estimation time for the sequences is illustrated in the figure 5.2:

Figure 5.2. Motion Estimation time for sequences.

The speed up in the encoding time and the motion estimation time by using

machine learning are tabulated in Table 5.3.

Table 5.3. Speedup in encoding time and ME time using machine learning

Seq Sequence Speedup in Speedup in
No Encoding time (%) ME time (%)
1 Bus cif 21.02 33.48
2 Interview cif 24.36 31.06
3 Mother Daughter 23.97 34.92

qcif
4 Foreman qcif 21.29 33.102

45

5.2 Quality Metrics

The three metrics used to compare the quality of the output are the structural

similarity index (SSIM), the peak to peak signal to noise ratio (PSNR), and the Mean

Square Error (MSE).

5.2.1 PSNR and MSE results obtained

The simulation results obtained with respect to PSNR in dB and MSE are

tabulated in Table 5.4.

Table 5.4. Comparison of PSNR and MSE

Sequence Sequence PSNR(dB) PSNR (dB) MSE using MSE using
Number using using JM 16.2 machine

JM 16.2 JM 16.2 encoder learning
encoder encoder

1 Bus cif 39.124 39.109 12.278 12.411

2 Interview cif 37.912 37.898 13.182 13.345

3 Mother Daughter 35.763 35.759 16.854 16.861
qcif

4 Foreman qcif 33.257 33.210 17.002 17.993

The PSNR in dB obtained for JM 16.2 and JM using machine learning is shown

in figure 5.3.

Figure 5.3. PSNR obtained from JM 16.2 and JM using machine learning.

46

The MSE obtained for JM 16.2 and JM using machine learning is plotted in

figure 5.4.

Figure 5.4. Plot of MSE from JM 16.2 and JM using machine learning.

5.2.2 SSIM results

The simulation results obtained with respect to SSIM are tabulated in Table

5.5.

Table 5.5. SSIM comparison of JM 16.2 and JM using machine learning

Sequence Sequence SSIM SSIM % decrease
Number using using

JM 16.2 machine
encoder learning

1 Bus cif 0.9568 0.9565 0.0003
2 Interview cif 0.9607 0.9601 0.0006
3 Mother Daughter 0.9412 0.9397 0.00158

qcif
4 Foreman qcif 0.9383 0.936 0.0024

% decrease** refers to the percentage decrease in SSIM using machine learning

in comparison to the SSIM as obtained in JM 16.2 encoder.

47

SSIM in JM 16.2 and JM using machine learning for sequences is shown in

figure 5.5.

Figure 5.5. Plot of SSIM in JM 16.2 and JM using machine learning.

100 frames of the video Interview.yuv was encoded using JM 16.2 and JM using

machine learning. The following values were captured:

• Speedup in encoding time: 13.8 %

• Speedup in ME time: 24.17 %

• % decrease in SSIM: 0.0006

5.3 Discussion

Tables 5.2 through 5.5 tabulate the results of encoding 4 frames of video se-

quences. The average speedup in the encoding time for 4 frames is 22.66 %. The

average speedup in the ME time for 4 frames is 34.027 %. It is observed that when-

ever the number of frames to encode is increased, the average speedups in encoding

time and ME time come down. For example, the speedup in the encoding time for

100 frames of Interview sequence is 13.8 %. The speedup in ME time for the same

sequence is 24.17%. This variation is because training has been done only for four

48

frames. Training using 100 frames was not done since overfitting problems were en-

countered. Overfitting does not help to build a general classification tree.

5.4 Summary

In this chapter, the results obtained using machine learning are discussed. The

video quality of the sequences is also tabulated and illustrated using SSIM, PSNR

and MSE as the metrics. The next chapter deals with streaming of media over the

internet.

CHAPTER 6

SMOOTH STREAMING

6.1 Smooth Streaming

Smooth streaming [28] is the Microsoft implementation of adaptive streaming

technology, which is a form of Web-based media content delivery that uses stan-

dard HTTP (Hypertext Transfer Protocol). Instead of delivering media as full-file

downloads, or as persistent (and thus stateful) streams, the content is delivered to

clients as a series of MPEG-4 (MP4) fragments that can be cached at edge servers.

Smooth streaming-compatible clients use special heuristics to dynamically monitor

current network and local PC conditions and seamlessly switch the video quality

of the smooth streaming presentation that they receive. As clients play the frag-

ments, network conditions may change (for example, bandwidth may decrease) or

video processing may be impacted by other applications that are running. Clients

can immediately request that the next fragment come from a stream that is encoded

at a different bit rate to accommodate the changing conditions. This enables clients

to play the media without stuttering, buffering, or freezing. As a result, users expe-

rience the highest-quality playback available, with no interruptions in the stream.

Smooth streaming, an IIS (Internet Information Services) Media Services exten-

sion, enables adaptive streaming of media to Silverlight and other clients over HTTP.

Smooth streaming provides a high-quality viewing experience that scales massively

on content distribution networks. It offers code-free deployment and simplified con-

tent management for content creators and content delivery networks. For end users,

49

50

the improved video viewing experience will bring the reliability and quality to their

favorite video Web sites [28].

6.2 MP4

MPEG-4 Part 14 or MP4 file format [29], is a multimedia container format

standard specified as a part of MPEG-4. It is most commonly used to store digital

video and digital audio streams, especially those defined by MPEG, but can also be

used to store other data such as subtitles and still images. MPEG-4 Part 14 allows

streaming over the Internet. The widely supported data streams are

• Video: MPEG-4 Part 10 (h.264), MPEG-4 Part 2

• Audio: Advanced Audio Coding (AAC - MPEG-4 Part 3 Subpart 4)

There are several reasons to use MP4 format [28]:

• MP4 is a lightweight container format with less overhead.

• It is based on a widely used standard, making 3rd party adoption and support

more straightforward.

• It is designed with H.264 video codec support in mind. H.264 is an industry

leading video compression standard that has been adopted across a broad range

of Microsoft products [28],including Silverlight 3, Windows 7, Xbox 360, Zune

and MediaRoom.

• MP4 is designed to natively support payload fragmentation within the file.

The .264 file is multiplexed with its corresponding .aac file using an open source

software called MP4Box [30] to get a file in MP4 format. MP4 media file can

be transcoded into four files namely

51

• *.ismv: It contains video and audio, or only video. There is usually one ISMV

file per encoded video bit rate.

• *.isma: It contains only audio.

• *.ism : It describes the relationships between the media tracks, bit rates and

files on disk . It is only used by the IIS Smooth Streaming server and not by

clients.

• *.ismc : It describes the available streams to the client: the codecs used, bit rates

encoded, video resolutions, markers, captions, etc. It is the first file delivered

to the client.

These four files are also called smooth streaming manifest files. Because they

are based on XML, they are highly extensible. Among the features already

included in the current smooth streaming format specification is the support

for the following [28]:

• VC-1, WMA, H.264 and AAC codecs

• Multi-language audio tracks

• Alternate video and audio tracks (for example, multiple camera angles, direc-

tor’s commentary, etc.)

• Multiple hardware profiles (for example, a bit rate targeted at different playback

devices)

• Live encoding and streaming

Smooth Streaming Playback Microsoft’s adaptive streaming prototype (used

for NBC Summer Olympics 2008 in Beijing) relied on physically chopping up long

video files into small file chunks. To retrieve the chunks for the Web server, the player

client simply needed to download the files in a logical sequence: 00001.vid, 00002.vid,

00003.vid, and so on. Smooth Streaming uses a more sophisticated file format and

server design. The videos are no longer split up into thousands of file chunks, but

52

are instead ”virtually” split into fragments (typically one fragment per video GOP

(Group of pictures)) and stored within a single contiguous MP4 file.

The first thing a player client requests from the Smooth Streaming server is

the *.ismc client manifest. The manifest tells it which codecs were used to compress

the content (so that the client runtime can initialize the correct decoder and build

the playback pipeline), what bit rates and resolutions are available, and a list of the

available chunks (with either their start times or durations). The fragment start offset

is an agreed-upon time unit (usually 100 nanoseconds (ns)). This value is known from

the client manifest. After receiving the client request, IIS Smooth Streaming looks

up the quality level (bit rate) in the corresponding *.ism server manifest and maps

it to a physical *.ismv or *.isma file on the hard disk drive. It then loads the MP4

fragment corresponding to the requested start time offset. This is how the chunks of

video/audio are requested from the server [28].

The bit rate switching is what makes adaptive streaming more effective. The

server plays no part in the bit-rate switching process. The client-side code looks at

chunk download times (video is downloaded in chunks or fragments), buffer fullness,

rendered frame rates, and other factors, and decides when to request higher or lower

bit rates from the server.The IIS was set up and smooth streaming of media over

the Internet was successfully done. But creating the transcoded files (ism files) using

the MP4 file could not be achieved since there is no open source software or exe file

available to execute it [28].

6.3 Summary

The .264 file is multiplexed with its corresponding .aac video to form an MP4

video. Smooth streaming using IIS is setup and the consistent playback without

53

stutter, buffering or “last mile” congestion is observed in the video that comes with

the Smooth Streaming setup.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The compression ratio of H.264 file is found to be better in JM software at

various bit rates than the Intel IPP H.264. Hence, it is chosen ahead of the Intel IPP

for reduction in the motion estimation time using machine learning. The ’Submac-

roblock modes’ in JM 16.2 software are replaced by the if-else statements (which

were obtained from WEKA tool). It is observed that using bi-directional prediction,

CABAC and encoding using the high profile of H.264 decreases the motion estimation

time by a smaller factor compared to not using these parameters. From table 5.3, the

average speedup in the encoding time for 4 frames is 22.66 %. The average speedup

in the ME time for 4 frames is 34.027 %.

It is observed that whenever the number of frames to encode is increased, the average

speedups in encoding time and ME time come down. This is verified by encoding 100

frames of the Interview sequence. The average decrease in SSIM is 0.00122. The .264

video and .aac audio formats are placed on a MP4 container format. The MP4 file can

be streamed (after converting them to manifest files) using IIS (Internet Information

Services) to achieve smooth low complexity streaming of media over the Internet.

54

55

7.2 Future Work

Only sub macroblock modes for ME (Fig 2.5) have been used for classification.

A classification which involves all the modes can be devoloped to reduce the encoding

time and with little compromise on the video quality. An attempt to use decision tree

softwares like Orange [31] and Sipina [32] can also be made, rather than the Weka

tool used in this thesis.

APPENDIX A

VIDEO SEQUENCES USED IN THIS THESIS

56

57

The video sequences considered in this thesis are as follows.

58

REFERENCES

[1] S. Kwon, A. Tamhankar, and K. Rao, “Overview of H. 264/MPEG-4 part 10,”

Journal of Visual Communication and Image Representation, vol. 17, no. 2, pp.

186–216, April 2006.

[2] “http://trace.eas.asu.edu/yuv/index.html,” video test sequences (YUV 4:2:0).

[3] “http://www.vcodex.com/files/,” working of H.264 codec.

[4] “http://en.wikipedia.org/wiki/bi directional prediction,” bi directional predic-

tion.

[5] T. Purushotham, “Low complexity H.264 encoder using machine learning,” M.S.

Thesis, E.E Dept, UTA 2010.

[6] “http://www.apple.com/quicktime/technologies/h264/,” for H.264 codec refer-

ence.

[7] “http://encyclopedia.jrank.org/articles/pages/6922/video-coding-techniques-

and-standards.html,” about Video compression.

[8] M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of SVC,” IEEE

Transactions on Circuits and Systems for Video Technology,, vol. 17, no. 9, pp.

1194–1203, 2007.

[9] A. Ravi, “Performance analysis and comparison of the Dirac video codec with

H. 264/MPEG-4 Part 10 AVC,” M.S. Thesis, E.E Dept, UTA, 2009.

[10] D. Marpe, T. Wiegand, and G. Sullivan, “The H. 264/MPEG-4 AVC standard

and its applications,” IEEE communications magazine, vol. 44, pp. 134–143,

2006.

59

60

[11] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.

264/AVC video coding standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[12] I. Richardson, H. 264 and MPEG-4 video compression. Wiley Online Library,

2003.

[13] A. Puri, X. Chen, and A. Luthra, “Video coding using the H. 264/MPEG-4 AVC

compression standard,” Signal Processing-Image Communication, vol. 19, no. 9,

pp. 793–850, October 2004.

[14] T. Schierl, C. Hellge, S. Mirta, K. Gruneberg, and T. Wiegand, “Using H.

264/AVC-based scalable video coding (SVC) for real time streaming in wire-

less IP networks,” in IEEE International Symposium on Circuits and Systems,

May 2007, pp. 3455–3458.

[15] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Efficient prediction structures

for multiview video coding,” IEEE Transactions on Circuits and Systems for

Video Technology,, vol. 17, no. 11, pp. 1461–1473, November 2007.

[16] P. Carrillo, H. Kalva, and T. Pin, “Low complexity H. 264 video encoding,

Applications of Digital Image Processing,” in Proc. of SPIE, vol. 7443.

[17] “http://iphome.hhi.de/suehring/tml/jmreferencedocumentation manual.

[18] “http://software.intel.com/en-us/,” for Intel IPP software.

[19] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment:

From error visibility to structural similarity,” IEEE Transactions on Image Pro-

cessing,, vol. 13, no. 4, pp. 600–612, April 2004.

[20] Z. Wang, L. Lu, and A. Bovik, “Video quality assessment based on structural

distortion measurement,” Signal processing: Image communication, vol. 19, no. 2,

pp. 121–132, February 2004.

61

[21] Z. Wang, H. Sheikh, and A. Bovik, “Objective video quality assessment,” The

Handbook of Video Databases: Design and Applications, pp. 1041–1078, 2003.

[22] J. Quinlan, C4. 5: programs for machine learning, 1993.

[23] “http://en.wikipedia.org/wiki/machine learning,” for Machine learning.

[24] “http://www.cs.waikato.ac.nz/ml/weka/,” for WEKA datamining tool.

[25] G. Holmes, A. Donkin, and I. Witten, “Weka: A machine learning workbench,”

in Proceedings of the 1994 Second Australian and New Zealand Conference on

Intelligent Information Systems, December 1994, pp. 357–361.

[26] Y. Ma, Z. Qian, G. Shou, and Y. Hu, “Study of information network traffic

identification based on C4. 5 algorithm,” in 4th International Conference on

Wireless Communications, Networking and Mobile Computing. IEEE, October

2008, pp. 1–5.

[27] T. Purushotham and K. Rao, “Low complexity H.264 using machine learning,”

SPA Poland, September 2010.

[28] “http://learn.iis.net/page.aspx/626/smooth-streaming-technical-overview/,” for

Smooth Streaming.

[29] “http://www.iso.org/iso/,” for MP4 format.

[30] “http://www.videohelp.com/tools/mp4box,” for MP4Box software.

[31] “http://orange.biolab.si/doc/modules/orngtree.htm,” for Orange machine learn-

ing tool.

[32] “http://eric.univ-lyon2.fr/r̃icco/sipina.html,” for Sepina decision tree software.

BIOGRAPHICAL STATEMENT

Suchethan Swaroop K.V was born in Bangalore, India in 1986. He received

his B.S. degree from Visvesvaraya Technological University, India in Electronics and

Communication Engineering in 2007. He worked in Infosys technologies Limited as

a Software Engineer for two years (July 07 - July 09). He worked as a Graduate

Research Assistant under Dr.K.R.Rao in Multimedia Processing Lab at UT Arlington

from Fall 09 to Spring 10. He is now pursuing his internship at Ericsson Inc since

Summer 2010. His interests are in the field of multimedia applications and data

communication.

62

