ROADWAY SHALLOW WATER FLOW MODELING BY

VELOCITY DISTRIBUTION

by

CHIRAKARN SIRIVITMAITRIE

Presented to Faculty the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2007

Copyright © by Chirakarn Sirivitmaitrie 2007

All Rights Reserved

ACKNOWLEDEGMENTS

I would like to express my appreciation to my supervising professor, Dr. Ernest C. Crosby, for providing valuable assistance and suggestions. This research could not taken place without his support and encouragement. His experience and knowledge guided me throughout the entire period of my graduate study. I would also like to express my appreciation to the members of the dissertation committee, Dr. Max Spindler, Dr. Laureano R. Hoyos, Dr. Melanie L. Sattler, and Dr. Chien Pai Han for their comments and suggestions.

A special word of appreciation is due to Texas Department of Transportation roadway Manning's n-value analysis project for providing the graduate research assistantship and all the roadway data used in this research.

I wish to thank my cousin and his wife, Dr. Manus and Suwanna Chaiprasert, for their guidance and support.

Finally, I cannot express in words my deepest appreciation to my parents, Kitti and Chiravadi Sirivitmaitrie, and my sister and brother for everything they did for me during my years of study.

July 16, 2007

ABSTRACT

ROADWAY SHALLOW WATER FLOW MODELING BY VELOCITY DISTRIBUTION

Publication No.

Chirakarn Sirivitmaitrie, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Ernest C. Crosby

Manning's equation is a widely used method for determining flow discharge in a channel with unconfined gravity flow. The roughness value, n-value, is a critical factor for Manning's equation to obtain the accurate amount of flow. A precise estimation of Manning "n" is difficult to obtain and varies by investigator justification and experience. Flow on a roadway is a type of open channel flow normally determined by Manning's equation. To ensure reliability and highway safety, the hydraulic geometry dimensions such as spread, depth and discharge must be accurately estimated.

A Texas Department of Transportation Manning's n-value research project collected data on surface roughness and estimate n-value of four different types of roadway sections; asphalt, asphalt treatment, smooth (worn) concrete and TxDOT's standard concrete surface. This research used full scale roadway sections with the varied flows and longitudinal and transverse slopes. This study focused on estimating n-values for the entire roadway flow width.

A velocity distribution method is used as an alternative method to study the flow characteristic and estimate n-values of each roadway cross-section. The velocity distribution equations use basic geometry data from the TxDOT research. The data for the four types of roadways from TxDOT Manning's n-value research were used as input for the velocity distribution modeling.

The percent accuracy of model simulation is estimated from a comparison of result, discharge and n-value, between the velocity method result and the original TxDOT research data. The modeling utilizes theoretical survey, statistical-analysis, numerical-analysis and flow methods to simulate roadway flow. Statistical analysis such as normality, data cleaning, and outlier detection, were used to improve results.

The results indicate velocity distribution equations are potentially a good method for estimating discharge and n-values for a roadway section. It shows comparable discharge volumes and average n-values to the original TxDOT laboratory result with an acceptable percent of error.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii			
ABSTRACT				
LIST OF ILLUSTRATIONS				
LIST OF TABLES				
Chapter				
1. INTRODUCTION				
1.1 Background	1			
1.2 Flow Simulation with Velocity Distribution Method	2			
1.3 Statement of the Problem	6			
1.4 Objective of the Study	7			
1.5 Approach	8			
2. LITERATURE REVIEW	10			
2.1 Manning's n-value	10			
2.2 Velocity Distribution	14			
2.2.1 Flow Resistance Equation Transformation	15			
2.2.2 Friction Velocity	23			
2.2.3 Prandtl-von Karman Velocity Distribution Equation	23			
2.3 Roughness Dimension	27			

2.4 Method of Estimating Average Manning's n-value	30
2.4.1 Horton and Einstein's Equation	31
2.4.2 Pavlovski, Muhlhofer, Einstein and Banks's Equation	32
2.4.3 Lotter's Equation	32
2.4.4 Krishnamurthy and Christensen's Equation	33
2.4.5 Other Methods of Averaging n-values	33
2.5 Statistical Analysis	35
2.5.1 Histogram Plot	36
2.5.2 Normality Distribution Plot (Q-Q Plot)	36
2.5.3 Scatter Plots	37
2.5.4 Outlier Detection	37
2.5.5 Correlation Coefficient	37
2.5.6 Transformation to Near Normality	39
3. METHODOLOGY	42
3.1 Data Collection and Preparation	42
3.2 Calculation Process and Modeling	43
3.2.1 Obtain Geometry Data	46
3.2.2 Surface Roughness Estimation	47
3.2.3 Calculate Roadway Cross-Section and Sub-Section Areas	54
3.2.3.1 Water Surface	58
3.2.4 Friction Velocity	58
3.2.5 Critical Roughness Height	59

3.2.6 Surface Roughness Condition	60
3.2.7 Vertical Velocity Profile	60
3.2.8 Calculate Sub-Section Average Velocity	62
3.2.8.1 Total Cross-Section Velocity Distribution	63
3.2.9 Sub-Section Manning's n-value Calculation	66
3.2.10 Sub-Section Discharges Calculation	67
3.2.11 Total Cross-Section Discharge and Average Manning's n-value Calculation	68
3.3 Mathematic Statistical Analysis	68
3.3.1 Obtain and Rearrange Data Sets	70
3.3.2 Construct Histogram Plot	70
3.3.3 Construct a Normal Probability Plot (Q-Q Plot)	72
3.3.4 Construct Scatter Plots	74
3.3.5 Calculate Correlation Coefficient	76
3.3.6 Check Hypothesis of Normality	78
3.3.6.1 Detect Outliers	79
3.3.6.2 Data Cleaning	81
3.3.7 Calculate Statistical Result	81
4. MODEL VERIFICATION AND RESULT ANALYSIS	84
4.1 Model Calibration and Verification	84
4.2 Theoretical Manning's n-value	86
4.3 Velocity Distribution Methods Comparison	90
4.4 Manning's n-values Estimated by Various Averaging Methods	99

4.5 Discharges Estimated by Velocity Distribution Methods' n-values	105
4.6 Affect of Roadway Slopes	111
5. CONCLUSIONS AND RECOMMENDATIONS	115
5.1 Conclusion	115
5.2 Recommendation for Future Research	117
Appendix	
A. ESTIMATED DISCHARGE PLOTS	118
B. ROADWAY DATA TABLES	137
C. MANNING'S N-VALUES ESTIMATED BY PRANDTL-VON KARMAN VELOCITY METHOD	161
D. COMPARISON BETWEEN MEASURED AND PRANDTL-VON KARMAN VELOCITY METHOD DISCHARGES	188
E. HISTOGRAM PLOTS OF MANNING'S N-VALUES	201
REFERENCES	210
BIOGRAPHICAL INFORMATION	215

LIST OF ILLUSTRATIONS

Figure		Page
1.1	TxDOT roadway roughness research study	3
1.2	Asphalt roadway surface (longitudinal cross-section)	4
1.3	TxDOT concrete roadway surface (longitudinal cross-section)	4
1.4	Smooth concrete roadway surface (longitudinal cross-section)	5
1.5	Asphalt treatment roadway surface (longitudinal cross-section)	5
2.1	Development of the boundary layer	19
2.2	Velocity profile of flow	20
2.3	Projections of roughness value k, k _c in different conditions	28
2.4	Three basic types of rough surface flow	30
2.5	Histogram plot of smooth concrete n-value (lab result)	40
2.6	Histogram plot of smooth concrete n-value (Prandtl-von Karman velocity method and depth-weight averaging method)	41
3.1	Velocity distribution calculation process	45
3.2	Longitudinal TxDOT concrete roadway surface profiles	50
3.3	Longitudinal asphalt roadway surface profiles	51
3.4	Longitudinal smooth concrete roadway surface profiles	52
3.5	Longitudinal asphalt treatment roadway surface profiles	53
3.6	Methods of cross-section area estimation	54

3.7	Total cross-section, sub section areas, heights, widths,and water elevation of the roadway cross-section			
3.8	Roadway sub-section area dimensions			
3.9	Roadway curb-section dimensions	56		
3.10	Roadway longitudinal slope calculation	57		
3.11	Vertical velocity profiles across the roadway cross-section	61		
3.12	Plan view of average velocity in each station from curb on left hand side to the end of water on right hand side of roadway cross-section.	63		
3.13	Velocity distributions across a roadway cross-section	65		
3.14	Process of statistical analysis	69		
3.15	Histogram plot of smooth concrete n-value by Manning's equation and measure discharge	71		
3.16	Normality plot (Q-Q plot) of n-values (before detecting outliers and cleaning data)	73		
3.17	Normality plot (Q-Q plot) of n-values (after detecting outliers and cleaning data)	73		
3.18	Scatter plots of TxDOT concrete roadway n-values with no-rain, 1-inch/hr, 3-inch/hr, and 6-inch/hr	75		
3.19	Result of TxDOT concrete discharge comparison before cleaning process	82		
3.20	Result of TxDOT concrete discharge comparison after cleaning process	82		
3.21	Comparison of average n-values by various averaging methods (before and after cleaning data)	83		
4.1	Cross-sectiona areas estimated by spread and depth methods	86		
4.2	Estimated Manning's n-value for asphalt surface	88		

4.3	Estimated Manning's n-value for asphalt treatment surface	88		
4.4	Estimated Manning's n-value for TxDOT concrete surface			
4.5	Estimated Manning's n-value for smooth concrete surface	89		
4.6	Comparison of velocity profiles by various flow resistance equations	91		
4.7	Discharge estimated by various flow resistance equations	92		
4.8	Average percent discharge error comparisons by various flow resistance equations	94		
4.9	Vertical velocity profiles calculated by different roughness values (k)	97		
4.10	Vertical velocity profiles calculated by different longitudinal slopes	97		
4.11	Vertical velocity profiles estimated by different transverse slopes	98		
4.12	Vertical velocity profiles calculated by different roughness values (k) and longitudinal slopes	98		
4.13	Relationships between local geometries and methods of averaging n-values	100		
4.14	Average Manning's n-values by various averaging methods	102		
4.15	Example of sub-section n-values across the roadway cross-section by Prandtl-von Karman velocity distribution method	104		
4.16	Example of averaging parameters across the entire roadway cross-section	104		
4.17	Plots of average variable and constant n-values	107		
4.18	Percent discharge error by various methods of averaging n-value	109		
4.19	Comparison of percent error between variable and constant n-value by various averaging methods	110		
4.20	Comparison of roadway cross-section areas by different transverse slopes	112		

4.21	Comparison of roadway cross-section areas with different longitudinal slopes	112
4.22	Percent error of estimated discharge by various velocity method n-values in different transverse slopes (TxDOT concrete surface)	113
4.23	Percent error of estimated discharge by various velocity method n-values in different longitudinal slopes (TxDOT concrete surface)	114

LIST OF TABLES

Table		Page
2.1	Critical points for the Q-Q plot correlation coefficient test for normality	39
3.1	Correlation coefficient calculation table	77
3.2	Critical point for the Q-Q plot correlation coefficient test for normality	78
3.3	Standardized and generalized distance values for TxDOT concrete roadway surface with no-rain, 1-in/hr, 3-in/hr, 6-in/hr	80
4.1	Estimated Manning's n-values	87
4.2	Average percent discharge errors from various velocity methods	93
4.3	Estimated average Manning's n-values for four types of roadway surfaces by Prandtl-von Karman velocity distribution and various averaging methods	101

CHAPTER 1

INTRODUCTION

1.1 Background

Manning's equation has been used for a number of years. It is used in hydraulics to estimate channel discharge. Manning's equation can be used to estimate discharge accurately if the correct roughness, n-value, is used. Innumerable researches have studied channels with the intention to determine exact n-values. Manning's n-values are obtained from roughly estimating channel bottom surfaces and local channel geometry. For natural channels, a bottom surface roughness is estimated through observation of the bed material. Bottom surface roughness is difficult to estimate and often inaccurate due to the vast variable geometric condition of natural channels. Increasing the number of bed material samples can help improve the accuracy of roughness estimation, but increases cost.

A roadway is considered a type of channel flow. It's designed to remove water from the roadway surface. Because of public safety and reliability, a roadway needs to be designed to have adequate discharge capacity. The flow capacity of a roadway depends on both Manning's n-value and the cross-section geometry. An incorrect nvalue leads to either under or over estimation of roadway geometry and flow capacity. Changing longitudinal and transverse slopes significantly change the roadway discharge capacity. In order to achieve sufficient flow capacity, a roadway should be designed with as accurate n-value and factors of safety as possible.

1.2 Flow Simulation with Velocity Distribution Method

The velocity distribution method is found to be very useful to obtain a stream velocity without numerous physical measurements. It is used to calculate average discharges of a channel. This method considers many geometry conditions such as longitudinal slope, surface roughness, hydraulic depth, and cross-section area of a channel. The velocity distribution method is capable of simulating flow distributions in any shape of channel such as triangular, rectangular, and trapezoidal, including symmetric and non-symmetric cross-section channels. It uses average surface roughness height to calculate flow in channels. Since the velocity distribution technique requires many conditional parameters such as friction velocity, average roughness height, and critical roughness, it can provide accurate discharge estimations.

This research expands upon the TxDOT roadway roughness project. The TxDOT project studied flow over roadway roughness surfaces and evaluated a single Manning's n-value for each roadway surface. The TxDOT project was constructed in a hydraulic laboratory at the University of Texas at Arlington. It was composed of two standard full-scale roadway lanes with an overall size of 64 feet by 17 feet, as shown in Figure 1.1. The roadway slopes varied, and were set and checked by survey methods. The slopes were adjustable in the longitudinal and transverse axis. Two 60 horse-power

centrifugal pumps provided constant discharge, ranging from 1-11cfs for the roadway. Flow geometry data, spread and depth, was collected and used to compute Manning's nvalues. The TxDOT project studied four types of roadway surfaces: smooth (worn) concrete, TxDOT concrete, asphalt, and asphalt treatment surfaces as shown in Figure 1.2–1.5. The curb and roadway surfaces were built according to TxDOT roadway standards.

Figure 1.1 TxDOT roadway roughness research study

Figure 1.2 Asphalt roadway surface (longitudinal cross-section)

Figure 1.3 TxDOT concrete roadway surface (longitudinal cross-section)

Figure 1.4 Smooth concrete roadway surface (longitudinal cross-section)

Figure 1.5 Asphalt treatment roadway surface (longitudinal cross-section)

In this research project, roadway and flow geometry data are taken from the TxDOT study. The data consists of roadway cross-section geometries such as depth, spread, longitudinal slope and transverse slopes, along with flows and determined n-values. The TxDOT concrete roadway was also tested with a rainfall simulator to determine the impact of rainfall on Manning's n-value. The rainfall simulator provided rainfall equivalents of one, three and six inches per hour over the roadway.

1.3 Statement of the Problem

Manning's equation is used in roadway design and has been for many years. Manning's n-values have been assigned to past roadway surfaces as a constant value. Present methods of roadway construction including material, equipment, technique, and environment have improved and changed as the result of new technologies and higher standard requirements. These improvements can alter roadway n-values. As roadway surfaces age they change n-values. Roadway designs are based on new surface standards.

The velocity distribution method is an alternative method for calculating discharges. This method uses the same basic geometry data as the Manning's equation. The roughness estimation is determined differently. Instead of using Manning's n-value for surface roughness value, the velocity distribution method utilizes actual roughness height (k) in measurable units. The actual roughness dimension (k) is obtained directly from vertical roughness dimension of a roadway longitudinal cross-section. The

roughness dimension (k) of the velocity distribution method can be transformed to a Manning's n-value.

This research proposes to compare total discharges and average n-values from the velocity distribution method to the original TxDOT roadway data for difference and reliability.

1.4 Objective of the Study

Prandtl-von Karman velocity distribution method is used to simulate vertical velocity profiles of flow in a roadway channel. These velocity profiles can be used to estimate an average velocity and a total cross-section flow of a roadway channel.

A roadway channel is considered to be an irregular channel. It is made up of small non-symmetric sub-sections adjacent to each other throughout the entire crosssection. An entire roadway cross-section profile is established from a theoretical survey calculation. This study focuses on using an estimated roughness dimension (k) for velocity distribution equations. The roughness value (k) is estimated directly from channel bed material. It is converted to Manning's n-value by theoretical equation conversion. The converted n-value can be used to estimate the average cross-section nvalue of a roadway channel.

Unlike Manning's n-value, the roughness value (k) is limited to physical measuring of the actual bottom roughness dimension on roadway surfaces. The roughness value (k) is considered to be uniform and constant for the entire surface and highly affects the flow. It's not a variable due to changing of cross-section geometries

or flow environments. On the contrary, Manning's n-value can be changed by flow environments such as states of flow, geometry dimensions, and slopes. Theoretically, Manning's n-value is a constant average index value of an individual roughness surface.

This research is designed to find affects of flow environments to Manning's nvalue. It's possible that Manning's n-value can be changed due to variation of flow stages from laminar to turbulent flow. For constant discharge and bottom surface roughness, velocity and depth of flow are varied by roadway longitudinal and transverse slopes. The validation of n-value variation is determined by comparison of roughness value (k) to Manning's n-value and discharge comparison.

Another study topic is the Manning's n-value cross-section averaging method. Averaging methods of n-values are significant factors and highly affect the outcome of the average cross-section n-value. Weighting parameters such as, area, depth, wettedperimeter, hydraulic-radius, discharge, and velocity for each sub-section are key factors in determining averaging methods effect. In order to justify the specific methods of average, various discharge and n-value comparisons are considered.

1.5 Approach

The proposed simulation will be performed in the following steps:

1. Collect necessary geometry data such as depth, spread, slopes, and discharge from the TxDOT roadway study and use as input to a velocity distribution method for flow calculations.

2. Develop a roadway geometric model to simulate flow calculation. Perform discharge and n-value calculations using this model.

3. Using both sets of discharge and n-value results, perform statistical analysis and display the result comparison of the two methods.

CHAPTER 2

LITERATURE REVIEW

2.1 Manning's n-value

Manning's n-value represents roughness a value of channel bottom material. This value is used with Manning's equation as shown in equation 2.1. The main purpose of Manning's equation is to estimate channel velocity and thus flow discharge. The Manning's equation consists of n-value, longitudinal slope (S), and hydraulic radius (R) in order to find average velocity (V) of a channel. An n-value can be obtained by carefully determining the bottom roughness material of a channel.

$$V = \frac{1.486}{n} S^{1/2} R^{2/3} \text{ Manning's equation (Sturm, 2001)}$$
eq.2.1

$$V = \text{velocity}$$

$$n = \text{Manning's n-value}$$

$$S = \text{slope}$$

$$R = \text{hydraulic radius}$$

$$A \text{ number of recordence have written about Manning's n-values. It has have$$

A number of researchers have written about Manning's n-values. It has been a research topic for many years. Often the purpose was to estimate the most precise nvalue for a particular channel. Much of the literatures is about natural and man made channels with various bottom materials. Some are about artificial channels, specially constructed for research purposes. The approach of each is very specific depending on its particular geometries and the bottom surface material. Because each location presents unique basic geometry and surface conditions, n-values are estimated based on the unique conditions to achieve acceptable accuracy.

Boyer is one of the early n-value researchers. He purposes an equation for solving n-value in natural channels by using a velocity ratio as shown in equation 2.2. His estimation is based on natural river data. The equation contains no physical roughness parameter of the channel's bottom material. Since Boyer's equation was derived based on a velocity distribution equation, n-values can be similar to the Prandtlvon Karman estimation.

$$n = \frac{(x-1)y^{1/2}}{6.78(x+0.95)}$$
 (Boyer, 1954), Mississippi river eq.2.2

Where $x = u_{0.2}/u_{0.8}$; y = depth of water,

 $u_{0.2}$, $u_{0.8}$ = velocity at 20% and 80% of the depth from the surface of water.

Many researches suggest an n-value estimated from dimensions of channel bottom material, depth or hydraulic radius. These n-value equations are derived from experimental natural channel data. Equations 2.2-2.13 show various equations of nvalue estimation based on empirical natural river data.

$$n = 0.034 d_{50}^{1/6}$$
 (Strickler, 1923): Gravel-bed river in Switzerland eq.2.3

where $d_{50,75 \text{ and } 90}$ = mean grain size of bed material which correspond to

 $n = 0.032 d_{90}^{1/6}$ Meyer-Peter, (Mueller, 1948): Sand mixtures in flumes eq.2.4

 $n = 0.039 d_{75}^{1/6}$ (Lane-Carlson, 1953): Canals lined with cobbles eq.2.5

n = 0.104 R^{1/6}
$$\left(\frac{R^{-0.297}}{d_{50}}\right) \left(\frac{P^{-1.03}}{R}\right)$$
 eq.2.6

(Griffiths, 1981): Gravel and cobble bed rivers in USA, Canada, New Zealand, and England.

where P = wetted-perimeter, and

R = hydraulic radius.

$$n = 0.048 d_{50}^{0.179}$$
 (Bray, 1979): Gravel-bed river in Alberta, Canada eq.2.7

n = 0.126 R^{1/6}
$$\left(\frac{R^{-0.281}}{d_{50}}\right)$$
 (Bray, 1979): Gravel-bed river in Alberta, Canada eq.2.8

n =
$$\frac{0.0927 R^{1/6}}{0.248 + 2.36 \log_{10} \left(\frac{R}{d_{50}}\right)}$$
 (Bray, 1979): Gravel-bed rivers in Alberta, Canada eq.2.9

n =
$$\frac{0.0927 \text{ R}^{1/6}}{0.76 + 1.98 \log_{10}\left(\frac{\text{R}}{\text{d}_{50}}\right)}$$
 (Griffiths, 1981) eq.2.10

Gravel and cobble bed rivers in USA, Canada, New Zealand and England

$$n = \frac{0.0927 \text{ R}^{1/6}}{0.035 + 2.03 \log_{10} \left(\frac{R}{d_{50}}\right)} \text{ (Limerinos, 1970): Gravel-bed river in California eq.2.11}$$

$$n = 0.39 \text{ S}^{0.38} \text{ R}^{-0.16}$$
 (Jarrett, 1983) eq.2.12

Steep streams in CO with cobble sand small boulders

n = 0.245 R^{0.14}
$$\left(\frac{R^{-0.44}}{d_{50}}\right) \left(\frac{T^{-0.3}}{R}\right)$$
 (Froehlich, 1978) eq.2.13

Gravel and cobble bed rivers in USA.

where T = top spread width

In natural channels, channel geometry conditions are difficult to determine. Due to various geometry conditions, non-symmetrical shape of natural channels, bottom materials, average slopes, and obstructions, an average velocity can be difficult to simulate. Water flow distribution within a channel comes from unequal velocity distribution as a result of the local bottom material and geometries. An average velocity is considered the best representation of flow. It is often used to estimate the total cross-section discharge.

A roadway represents a specific type of an artificial channel. It consists of a uniform consistent slope and roughness through out the entire cross-section area. Roadway slopes are designed as a function of the drainage required, reliability desired and safety required. Because of these limiting conditions, roadway Manning's n-values must be estimated more precisely than natural channels. A roadway cross-section is unlike other channel types in that they are a shallow non-symmetry triangular channel. Flow over a roadway is intentionally shallow to improve the traffic handling and reduce drainage safety issue such as hydroplaning.

2.2 Velocity Distribution

Velocity distribution method has been used for a number of years for non roadway channel. A number of researches have worked on this methodology. The velocity distribution is a very useful method for measuring and determining flow velocities in an open channel. This method is an alternative for determining a flow rate in channel without using Manning's n-value. Many roughness equations have been proposed in the literatures for natural rivers as shown in equations 2.15, 2.17, 2.20, 2.24 and 2.26. These equations can be rearranged in to the form of the velocity distribution equation as shown in equation 2.14. The transformations of roughness equations such as Bathurst (1985), Bray (1979), Griffiths (1981), Hey (1979), Limerinos (1970) and Keulegan (1938) into flow resistance equations are shown in equation 2.16, 2.19, 2.21, 2.23, 2.25 and 2.27 by Bettess (2002). These flow resistance equations are based on experimental studies of natural channels. The derivations are based on the logarithm function and friction velocity of channel bed material. After the transformation, every equation is in the similar velocity distribution equation form, eq.2.14. Most flow resistance equations produce similar velocity profiles depends upon the equation parameters. Comparisons of discharge with various velocity distribution equations are provided in chapter 4.

The general flow resistance equation form is

$$V = \sqrt{\alpha g R S} \log \left(\frac{\beta d}{k}\right)$$
 or $V = \sqrt{\alpha g R S} \log \left(\frac{\beta R}{k}\right)$ eq.2.14

where α and β = estimated parameters,

V = flow velocity,

g = gravity,

S = longitudinal slope, and

Hydraulic radius (R) = depth (d) for broad wide channel and

infinitesimal differential area.

2.2.1 Flow Resistance Equation Transformation

The following is an example of roughness equation to be transformed into a velocity distribution equation.

Limerinos (1970) roughness equation is

$$n = \frac{0.113 d^{1/6}}{1.16 + 2.00 \log_{10} \left(\frac{d}{D_{84}}\right)}.$$
 (Limerinos, 1970), Gravel-bed river eq.2.15

Roughness is considered to approximate a function of the diameter of grain size used to define the bed roughness as seen in eq.2.15.

 $k\approx 3D_{50,\,84\,or\,90}$

 $D_{50, 84 \text{ or } 90}$ = estimated bed material diameter, and

K = average roughness height.

From Manning's equation $V = \frac{1}{n} d^{2/3} S^{1/2}$ (SI-units)

$$\frac{d^{2/3} S^{1/2}}{V} = \frac{0.113 d^{1/6}}{1.16 + 2.00 \log_{10} \left(\frac{d}{D_{84}}\right)},$$

$$V = \frac{d^{2/3} S^{1/2}}{0.113 d^{1/6}} \left(1.16 + 2.00 \log_{10} \left(\frac{3 d}{k} \right) \right),$$

$$V = 8.84 d^{1/2} S^{1/2} 2 \left(0.58 + \log_{10} \left(\frac{3 d}{k} \right) \right),$$

$$V = 17.699 d^{1/2} S^{1/2} \left(\log_{10} (3.80) + \log_{10} \left(\frac{3 d}{k} \right) \right),$$

(11.4d)

 $V = \sqrt{31.93 \text{ gdS}} \log_{10} \left(\frac{11.4 \text{ d}}{\text{k}} \right) \text{ Based on Limerinos's (1970) equation.} \qquad \text{eq.2.16}$

Brays's (1979) roughness equation is shown below.

$$\frac{1}{\sqrt{f}} = 1.26 + 2.16 \log_{10} \left(\frac{d}{D_{90}} \right)$$
 eq.2.17

f =roughness value

Literature (Sturm, 2002) shows that the friction value (f) can be expressed as an equation below.

where
$$f = \frac{8 \text{ g R S}}{V^2}$$
, (Sturm, 2002) eq.2.18
 $g = \text{gravity}$,
 $R = \text{hydraulic radius}$,
 $V = \text{velocity}$, and
 $S = \text{slope}$.

After transforming Bray's roughness equation, eq.2.17, the flow resistance equation is shown below as, eq.2.19.

Bray's transformed equation is

$$V = \sqrt{37.32 \,\text{gRS}} \log_{10}\left(\frac{11.49 \,\text{d}}{\text{k}}\right). \qquad \text{eq.2.19}$$

Griffiths's (1981) roughness equation is

$$\frac{1}{\sqrt{f}} = 0.760 + 1.98 \log_{10} \left(\frac{R}{D_{90}}\right).$$
 eq.2.20

Griffith's transformed equation is

$$V = \sqrt{31.36 \,\text{gRS}} \log_{10}(\frac{9.68 \,\text{R}}{\text{k}}) \,. \tag{eq.2.21}$$

Keulegan's (1938) velocity equation is

$$\mathbf{V} = \sqrt{\mathbf{g} \, \mathbf{d} \, \mathbf{S}} \left[6.25 + 5.75 \log_{10} \left(\frac{\mathbf{d}}{\mathbf{k}} \right) \right]. \qquad \text{eq.2.22}$$

Keulegan's transformed equation is

$$V = \sqrt{33.06 \,\text{g}\,\text{d}\,\text{S}} \log_{10}\left(\frac{12.22 \,\text{d}}{\text{k}}\right). \qquad \text{eq.2.23}$$

Hey's (1979) roughness equation is

$$\frac{1}{\sqrt{f}} = 2.03 \log_{10} \left(\frac{a R}{3.5 D_{84}} \right).$$
 eq.2.24

Where 12.95 < a < 15.70 depends on shape of channel.

Hey's transformed equation is

$$V = \sqrt{32.97 \,\text{gRS}} \log_{10}(\frac{\text{a R}}{\text{k}}) \,. \qquad \text{eq. 2.25}$$

Bathurst's (1985) roughness equation is

$$\sqrt{\frac{8}{f}} = 5.62 \log_{10} \left(\frac{d}{D_{84}} \right) + 4.$$
 eq.2.26

Bathrust's transformed equation is

$$V = \sqrt{31.6 \text{ g R S}} \log_{10}(\frac{15.44 \text{ d}}{\text{k}}). \qquad \text{eq.2.27}$$

Colebrook's (1939) velocity equation is

$$V = \sqrt{32 \ g R S} \log_{10}(\frac{14.8 R}{k}). \qquad eq.2.28$$

In this research, Prandtl-von Karman (1989) velocity distribution equations, equation 2.35 and 2.36, were selected based on consistency and accuracy of the discharge calculation. The results, discharges and n-values, comparison are discussed in chapter 4.

In one dimensional flow, a velocity profile represents logarithm vertical flow velocity distribution in one-dimension parallel to the flow direction. Velocity distribution equations or so called flow resisting equations are based on shear forces emanating at the bottom surface of channel. These equations can be used with an open channel or a gravity flow. With no restriction of geometry conditions, velocity profiles can be used for any type of channel with a known bottom roughness value. In a small sub-section of a channel, a velocity profile starts from channel bottom and progress upward to the water surface. Figure 2.1 shows various stages of gravity flow behavior in a channel. At the beginning point, water starts entering a channel assumed to be laminar and uniform velocity. At this point, a small laminar layer starts developing a long the channel bottom. This laminar layer is shown in region from point A to B. This zone is called "laminar boundary layer". The velocity distribution in this layer (below A to B to C) is assumed to be parabolic. The flow distribution above line ABC is constant.

Development of the boundary layer in an open channel with an ideal entrance condition.

Figure 2.1 Development of the boundary layer (Chow, 1959)

From the channel entrance, the effect of bottom surface roughness on flow distribution is shown under the line ABC. Flow under the line ABC is called the "boundary layer" of δ height.

After the stream reaches a certain velocity, a turbulent zone starts developed from point B to C. In this zone, a very thin laminar layer can developed at the channel bottom due to a smooth bottom roughness surface. This bottom layer is called "laminar sub-layer", δ^* or δ_0 . Velocity in this zone (below B to C) is approximate as logarithmic. If flow in a channel becomes uniform, a fully developed turbulent zone is assumed to occurred, after point C. (Chow, 1959)

The velocity profile (Figure 2.2) shows various states of flow from laminar, transition, and turbulent. A laminar layer is a bottom layer of a flow. It represents a very thin layer relative to the whole depth of flow. A velocity at this level is highly resisted by bottom roughness.

Distribution of velocity over a smooth channel surface (not in scale). Figure 2.2 Velocity profile of flow (Chow, 1959)

where	Vo	= water surface velocity
	\mathbf{v}_1	= velocity at boundary layer ($v_1 = 0.99v_0$)
	δ	= boundary layer
	δ*	= displacement thickness
	δο	= laminar sub-layer

The next level of velocity is the transition zone or diverting zone. In every turbulent flow, the transition zone is a turning point of velocity profile. Flow in this transition zone is still under a great influence from bottom roughness. In this zone, the laminar zone and turbulent zone can be separated approximately by both top and bottom boundaries of this layer.

The top layer of a fully developed turbulent flow is a turbulent zone. The turbulent zone is defined by relationship of both roughness and flow conditions. Slopes of a bottom surface also have a great influence on flow in this zone. Turbulent flow develops from under a virtual bottom zone same as other layers. The reason that it dominates a flow is because of a greater flow layer. In fully turbulent flow, the turbulent layer contains more than 90 percent of flow discharge.

"The effect of boundary layer on the flow is equivalent to a fractious upward displacement of the channel bottom to a virtual position by an amount equal to the so called "displacement thickness", δ^* , (Chow, 1959) as shown in Figure 2.2.

Water flows from a higher level to a lower level as a function of gravitation. Surface roughness and slopes of a channel affect a flow as a function of the earth's gravity. In open channel flow, surface roughness and slopes of a channel have significant effects on the flow velocity. Roughness dimension and slopes of channel are normally constant for a channel. Hydraulic depth is a key identifier of the flow conditions. For gravitation flow, velocity is a function of roughness, slope and hydraulic depth. Flow velocity increases as depth increases from the bottom of the channel. This is possible only at the point that bottom roughness doesn't disturb the flow anymore, after that velocity will be a function of slope and gravity.

Three parts of the velocity profile, turbulent, transition, and laminar are developed in the channel as shown in Figure 2.2. These layers of flow define characteristics of fluid flow in three different stages. When water begins entering the channel, it also starts to increase velocity. The velocity develops over a period of time up to a definite speed. The velocity of flow depends on conditions of channel such as, a longitudinal slope and roughness.

Some literature suggests resistance force between air and the top water surface is also present. As water flows in a channel, air is flowing above the water. Friction force can be created between these two flowable materials. This phenomenal could create a convex velocity curve at the surface of water. Especially for a steady gravitation flow layer, where roughness and a slope are constant, air particle resistance could have an effect on water flow. Water flow over a roadway is a very shallow water flow type. Unless the air has significant velocity, the air would have a minimal effect to this type of flow.
2.2.2 Friction Velocity

The friction velocity, V_f , is a result of resistance force created between the liquid and surface friction at the channel bottom. The geometries of roadway, such as longitudinal slope and hydraulic radius, have significant effects on friction velocity. For a roadway surface, a cross-section is divided in to small vertical sub-sections beginning with the curb to the end of water on the roadway surface. In this situation, the hydraulic radius is equal to the water depth at each location.

Friction velocity varies with basic geometries of channel such as longitudinal slope, bottom surface roughness, side surface roughness, and hydraulic depth. Transverse slope has an indirect effect to friction velocity. Changing the transverse slope changes the hydraulic depth by changing flow spread. Different types of surface roughness provide different vertical velocity profiles. Surface roughness is estimated by bed material, such as average grain size for natural channels and roughness height for streets and artificial channels. The derivation of friction velocity is shown in the next topic.

2.2.3 Prandtl-von Karman Velocity Distribution Equation

The vertical velocity distribution is a result of local geometry conditions such as depth, hydraulic radius, slopes and surface roughness. Turbulence in the liquid takes a role in justifying distributions of velocity profile. Prandtl-von Karman (1926) derived flow resistance equation based on shear stress of bottom surface roughness. Prandtl introduced a shear stress for turbulent flow as follow.

Shear stress in flow equation

$$\tau = \rho l^2 \left(\frac{dv}{dy}\right)^2$$
 (Prandtl-von Karman, 1926) eq.2.29

where τ = Shear stress,

- p = Mass density = w/g,
- w = Unit weight of the fluid,
- g = Gravity,
- 1 = Mixing length, and
- $\frac{dv}{dy}$ = Velocity gradient at depth (y) from water surface.

"Assume the mixing length is proportional to depth and that the shear stress is constant, $\tau = \tau_0$ " (Prandtl, 1926). Equation 2.29 can be rewritten as follow.

$$du = \frac{1}{k} \sqrt{\frac{\tau_o}{\rho}} \frac{dy}{y}$$
 eq.2.30

Where k is a constant that varies with mixing length and depth, then

$$V = 2.5 \sqrt{\frac{\tau_0}{\rho}} \ln\left(\frac{y}{y_0}\right), \qquad \text{eq.2.31}$$

By using
$$\sqrt{\frac{\tau_0}{\rho}} = \sqrt{gRS} = V_f$$
, (Chow, 1959) eq.2.32

where Vf = friction velocity,

R = hydraulic radius,

- d = hydraulic depth, and
- S = slope.

it can be shown that:

$$V = 2.5 V_{f} \ln\left(\frac{y}{y_{0}}\right). \qquad eq.2.33$$

For a broad channel, hydraulic radius (R) can be assumed equivalent to depth (d). Then equation 2.32 can be shown as;

$$\sqrt{\frac{\tau_0}{\rho}} = \sqrt{g \, d \, S} = \sqrt{g \, R \, S} = V_f \,. \qquad \text{eq.2.32}$$

The vertical velocity profile equation is divided into two types, roughness surface and smooth surfaces. These two types are result of roughness, viscosity and turbulent in individual channel. Roughness and channel slopes play a critical role in determining the type of vertical velocity profile. Because each individual channel has its own unique slope and roughness, vertical velocity profile must be individually determined.

"When surface is smooth, y_0 is depended on the friction velocity and kinematic viscosity" (Chow, 1959). In equation 2.33, y_0 is a constant defined as follow;

$$y_0 = \frac{mv}{V_f}, \qquad eq.2.34$$

where m = constant value; "equal to 1/9 for smooth surface and

1/30 for rough surface", (Chow, 1959)

v = kinematic viscosity, and

Vf = friction velocity.

After inputting $y_0 = \frac{mv}{V_f}$, the equation can be shown below.

Flow velocity in smooth surface,

$$V = 5.75 V_f \log \left(\frac{9 y V_f}{v}\right). \text{ (Prandtl-von Karman, 1926)}$$
eq.2.35

For a rough surface, y_o mainly depends on texture height,

$$y_0 = mk$$

where k = average surface roughness.

Inputting y₀, gets the flow velocity in rough surface as shown below.

$$V = 5.75 V_f \log\left(\frac{30 y}{k}\right), \text{ (Prandtl-von Karman, 1926)}$$
eq.2.36

Prandtl introduced velocity distribution equations based on the shear stress equation in turbulent flow as shown in equation 2.35 and 2.36. These two equations are used to calculate velocity distribution base on geometry conditions and roughness.

2.3 Roughness Dimension

Roughness dimension is the key to define uniform types of surface. It has a direct affect on flow in a channel. There are three types of surface roughness, rough, wavy and smooth surface conditions. In the velocity distribution method, the surface roughness condition is defined through comparison of an actual roughness (k) to a critical roughness (k_c). The critical roughness is described as a layer of roughness magnitude influence. The actual roughness (k) will have an influence beyond the laminar layer if the critical roughness height (k_c) is less than the roughness height (k) (Chow, 1959). Schlichting (1923) defines the smooth flow condition (eq.2.37) from his experiment in pipe flow for smooth flow condition as below.

$$\frac{V_f k}{v} < 5 \quad \text{or} \quad k < \frac{5v}{V_f}, \text{ (Schlichting, 1923)} \qquad \text{eq.2.37}$$

where V_f = friction velocity

v = kinematic viscosity, and

k = Roughness value.

Schlichting gives estimation of the critical roughness to be $k_c = 100 \text{ v/V}$,

Inputting Chezy's equation to transformed equation 2.37, a critical roughness equation can be shown as.

Critical roughness with Chezy's C. is

$$k_{c} = \frac{5v}{V_{f}} = \frac{5v}{\sqrt{gRS}} = \frac{5vC}{\sqrt{g}V}$$
 (Chow, 1959) eq.2.38

where C = Chezy's C, $(u = C\sqrt{RS})$,

- v = kinematic viscosity,
- V = average velocity,
- g = gravity, and
- k_c = critical roughness.

Nature of surface roughness. (a) Smooth; (b) wavy; (c) rough.

Figure 2.3 Projections of roughness value k, kc in different conditions (Chow, 1959)

Three types of roughness are shown in Figure 2.3. The relationships between a critical roughness (k_c), a roughness height (k) and laminar layer (δ^* or δ_o) explain conditions of surface roughness. When the roughness height (k) is in the boundary of a critical roughness (k_c), a smooth surface is presented. From equation 2.38, a critical roughness (k_c) is a function of Chezy's C, kinematic viscosity, average velocity and

gravity. With a constant critical roughness, surface roughness height is sufficient to identify types of roughness. In smooth surface, flow shows minimal influences due to the bottom surface roughness as shown in Figure 2.3a.

A wavy roughness condition shows almost equivalent height between a roughness height and a critical roughness as shown in Figure 2.3b. The surface roughness influences the flow but is still under the laminar sub-layer. The last type of surface, Figure 2.3c, is a rough surface. It shows a fully disturbed influence of roughness through out the bottom layer of a flow. In this type of surface, the roughness height is higher than a critical roughness.

Longitudinal spacing of roughness, λ , is an important consideration to determine types of flow. Chow, V. T. defines spacing of roughness as three types. These types of roughness are assumed to have equivalent roughness height (k) with three different spacing. The first type, Figure 2.4a, is an iso-lated roughness. In this type, roughness spacing is so far from each others. Influence of roughness height is less than an average spacing. Therefore, a ratio of k/ λ will take place to account the effect as shown. The second type of roughness is a wake-interference flow as shown in Figure 2.4b. Spacing of roughness is close together. The roughness creates great effect to turbulent flow. Quasi-smooth flow is the last type of roughness spacing, Figure 2.4c. The roughness spacing is so close together, that it causes minimal effect to the flow.

Sketches showing concept of three basic types of rough-surface flow: (a) isolated-roughness flow; (b) wake-interference flow; (c) quasi-smooth flow.

Figure 2.4 Three basic types of rough surface flow (Chow, 1959)

2.4 Method of Estimating Average Manning's n-value

A total roadway cross-section average n-value can be estimated by averaging the sub-section n-values. Each sub-section n-value represents a local surface roughness of a sub-section. A sub-section n-value is the result of the unique physical flow condition of

each individual sub-section. In determining an average n-value of the entire crosssection, the method of evaluation has a significantly impact on the overall n-value.

An estimation of the total cross-section roughness can be calculated from a weighting n-value with the geometry parameters for example depth, area, wetted-perimeter, discharge, velocity, or hydraulic radius across the entire roadway cross-section. Weighting parameters are as significant as methods of estimation. It shows significant effects on the outcome of the resulting n-value. The values of weighting parameter are varied from the curb to the end of roadway water. The variation of weighting parameters is caused by changing the basic geometry inputs such as depth and wetted-perimeter along the transverse slope. Hydraulic depth and wetted-perimeter are the basic geometry inputs of a channel calculation. Other parameters, hydraulic radius and area, are calculated from these basic geometry inputs.

Several methods of estimation are observed in literature. Most literature considered basic parameters such as depth and wetted-perimeter of local sections along with their conceptual assumptions. These assumptions are made to improve the compatibility of the geometry conditions. There are also equations used to estimate n-values of composite bottom channels. These equations are based on each individual conclusion.

2.4.1 Horton and Einstein's Equation

Horton and Einstein (1933) suggested an equation to evaluate cross-section nvalue as shown in equation 2.39. This equation is based on an assumption that velocity of each sub-section is equivalent. This method uses only wetted-perimeter as a weighting parameter.

$$n_{\text{Average}} = \left[\frac{\sum_{1}^{N} (P_{i} n_{i}^{1.5})}{P}\right]^{\frac{2}{3}} = \frac{(P_{1} n_{1}^{1.5} + P_{2} n_{2}^{1.5} + \dots + P_{N} n_{N}^{1.5})^{\frac{2}{3}}}{P^{\frac{2}{3}}} \qquad \text{eq.2.39}$$

(Horton and Einstein, 1933)

2.4.2 Pavlovski, Muhlhofer, Einstein and Banks's Equation

Equation 2.40 is based on assumption that the total resisting force is equal to sum of the resisting force each sub-section. It was introduced by Pavlovski, Muhlhofer, Einstein and Banks (1931). The total resisting force of channel is as follows.

$$n_{\text{Average}} = \left[\frac{\sum_{1}^{N} (P_{i} n_{i}^{2})}{P^{\frac{1}{2}}}\right]^{\frac{1}{2}} = \frac{(P_{1} n_{1}^{2} + P_{2} n_{2}^{2} + \dots + P_{N} n_{N}^{2})^{\frac{1}{2}}}{P^{\frac{1}{2}}} \qquad \text{eq.2.40}$$

(Pavlovski, Muhlhofer, Einstein and Banks, 1931)

2.4.3 Lotter's Equation

By considering only discharges of a channel, Lotter (1933) suggested equation 2.41 for equivalent roughness. This equation is based on the assumption that the total discharge is equal to sum of the sub-section discharges. This method considers two parameter, wetted-perimeter and hydraulic-radius.

$$n_{\text{Average}} = \frac{PR^{\frac{5}{3}}}{\sum_{1}^{N} \left(\frac{P_{i}R_{i}^{\frac{5}{3}}}{n_{i}}\right)} = \frac{PR^{\frac{5}{3}}}{\frac{P_{1}R_{1}^{\frac{5}{3}}}{n_{1}} + \frac{P_{2}R_{2}^{\frac{5}{3}}}{n_{2}} + \dots + \frac{P_{N}R_{N}^{\frac{5}{3}}}{n_{N}}} \quad \text{(Lotter, 1933)} \quad \text{eq.2.41}$$

2.4.4 Krishnamurthy and Christensen's Equation

Krishnamurthy and Christensen (1972) introduced another equation for averaging n-value in 1972. An equation is based on the logarithmic velocity distribution as shown in equation 2.42. Two significant parameters, wetted perimeter and depth are used in a weighting process. As far as velocity distribution equation

$$\ln \left(n_{\text{Average}}\right) = \frac{\sum_{i=1}^{N} \left(P_{i} y_{i}^{3/2} \ln \left(n_{i}\right)\right)}{\sum_{i=1}^{N} P_{i} y_{i}^{3/2}}$$
$$= \frac{P_{1} y_{1}^{3/2} \ln (n_{1}) + P_{2} y_{2}^{3/2} \ln (n_{2}) + \dots + P_{N} y_{N}^{3/2} \ln (n_{N})}{P y^{3/2}} \qquad \text{eq.2.42}$$

(Krishnamurthy and Christensen, 1972)

2.4.5 Other Methods of Averaging n-values

Area weighted n-value;
$$n_{Area-weight} = \frac{\sum_{i=1}^{N} n_i A_i}{\sum_{i=1}^{N} A_i}$$
 eq.2.43

Depths weighted n-value;
$$n_{\text{Depth-weight}} = \frac{\sum_{i=1}^{N} n_i d_i}{\sum_{i=1}^{N} d_i}$$
 eq.2.44

Wetted-perimeter weighted n-value; $n_{Wetted-perimeter weighted} = \frac{\sum_{i=1}^{N} n_i P_i}{\sum_{i=1}^{N} P_i}$ eq.2.45

Velocity weighted n-value;
$$n_{\text{Velocity-weight}} = \frac{\sum_{i=1}^{N} n_i u_i}{\sum_{i=1}^{N} u_i}$$
 eq.2.46

Discharge weighted n-value;
$$n_{\text{Discharge-weight}} = \frac{\sum_{i=1}^{N} n_i q_i}{\sum_{i=1}^{N} q_i}$$
 eq.2.47

Hydraulic radius weighted n-value;
$$n_{Hydraulic-radius-weight} = \frac{\sum_{i=1}^{N} n_i R_i}{\sum_{i=1}^{N} R_i}$$
 eq.2.48

Numerical average n-value;
$$n_{\text{Numerical average}} = \frac{\sum_{i=1}^{N} n_i}{N}$$
 eq.2.49

Manning's equation average n-value using the actual discharge;

$$n_{\text{Manning equation with measured discharge}} = \frac{1.486 \,\text{S}^{1/2} \,\text{R}^{2/3}}{\left(\frac{\text{Q}_{\text{measured}}}{\text{A}_{\text{total cross-section}}}\right)} \qquad \text{eq.2.50}$$

Manning's equation average n-value using velocity estimated discharge;

$$n_{\text{Manning equation with velocity estimated discharge}} = \frac{1.486 \text{ S}^{1/2} \text{ R}^{2/3}}{\left(\frac{\text{Q}_{\text{estimated}}}{\text{A}_{\text{total cross-section}}}\right)} eq.2.51$$

Most of these equations provide very similar results. The impacts and comparisons of averaging methods will be discussed in chapter 4.

2.5 Statistical Analysis

Generally, data taken from field or laboratory contains error. The sources of error are from factors such as human and equipments. Mostly human error is caused by insufficient experience. Error such as incorrect reading and measurement are varies by person.

Another type of error is from measuring-equipment. The measuring-equipment error is caused by variation or limitation of equipment accuracy. The equipment accuracy is a result the equipment design. It also caused by the equipment age. Therefore, the measuring-equipment should be maintained and calibrated to minimize possible error.

Some sources of error can be observed shown in a data plot as unrelated points or outliers. Typically, the data error can be analyzed and identified by mathematic statistical analysis. The statistical analysis such as histogram, normality distribution (Q-Q plot) and scatter plots are useful to analyze the normal distribution of a data set.

2.5.1 Histogram Plot

The histogram plot is data groups plotted in intervals. The plot shows data frequency within the interval ranges. The normal distribution of a data set can be seen when the plot appear as a convex and symmetric shape with the maximum at a median point as shown in Figure 2.5. (Montgomery, Runger and Hubele, 2004)

2.5.2 Normality Distribution Plot (Q-Q Plot)

A normality distribution plot (Q-Q plot) is a special plot used to determine the statistic normality. The Q-Q plot is composed of pairs of observed data and standard quantiles. The normal probability plot indicates normality distribution of a data set. Equal probability ($P_{(j)}$) of every data point in Q-Q plot reveals the data relationship, consistency and outliers. A straight line and equal spacing between points are indications of a normal distribution. The outliers are normally seen on the ends of the Q-Q plot. Normal distribution and standard quantiles are related by equation 2.52. (Johnson, 2002)

$$P[Z \le q_{(j)}] = \int_{-\infty}^{q(j)} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} dz = P_{(j)} = \frac{j - \frac{1}{2}}{n}$$
(Johnson, 2002) eq.2.52

where $P_{(j)} =$ probability level

 $q_{(j)}$ = standard quantiles

j = 1, 2, 3,, n

n = Total numbers of sample

2.5.3 Scatter Plots

Scatter plots represent plots of multiple data series. The plots are related pairs from data sets plotted side by side and arranged in a matrix n by n (n = numbers of data set). Outliers of a single data set can be easily identified by examination of the unrelated points. In order to construct scatter plots, data sets should have the same sample number and data range.

2.5.4 Outlier Detection

The data error points or outliers are unusual points created by many different factors. Most laboratory data sets contain a minimal percent of error. A data set with a significantly large percent of error is unusual. Elimination of the outliers is a significant process to achieve the normality distribution and accurate statistical analysis. Outliers can be recognized by the unusually large or small magnitude of the number, and unrelated variance from the majority data in the plots. Several methods can be used to identify outliers in addition to the histogram plot, a normal probability plot and scatter plots. (discussed in section 2.5.3)

2.5.5 Correlation Coefficient

The straightness of a normal probability plot (Q-Q plot) can be determined by the correlation coefficient (r_Q). The correlation coefficient of data set can be calculated by equation 2.53. The critical point of normality distribution is defined as a critical correlation coefficient as shown in table 2.1. The critical correlation coefficient varies by number of samples and significant level (α). Therefore normality can be checked be comparison between the correlation coefficient (r_Q) and the critical correlation coefficient. (Johnson, 2002)

$$r_{Q} = \frac{\sum_{j=1}^{n} (x_{(j)} - \bar{x})(q_{(j)} - \bar{q})}{\sqrt{\sum_{j=1}^{n} (x_{(j)} - \bar{x})^{2}} \sqrt{\sum_{j=1}^{n} (q_{(j)} - \bar{q})^{2}}}$$
(Filliben, 1975) eq.2.53

where r_Q = correlation coefficient,

- x = data point,
- \overline{x} = numerical average of data,
- $q_{(j)}$ = standard quantiles,
- \overline{q} = numerical average of standard quantiles,
- $j = 1, 2, 3, \dots, n$, and
- n = total number of samples.

Sample size	Significance levels α		
	.01	.05	.10
5	.8299	.8788	.9032
10	.8801	.9198	.9351
15	.9126	.9389	.9503
20	.9269	.9508	.9604
25	.9410	.9591	.9665
30	.9479	.9652	.9715
35	.9538	.9682	.9740
40	.9599	.9726	.9771
45	.9632	.9749	.9792
50	.9671	.9768	.9809
55	.9695	.9787	.9822
60	.9720	.9801	.9836
75	.9771	.9838	.9866
100	.9822	.9873	.9895
150	.9879	.9913	.9928
200	.9905	.9931	.9942
300	.9935	.9953	.9960

Table 2.1 Critical points for the Q-Q plot correlation coefficient test for normality (Johnson, 2002)

2.5.6 Transformation to Near Normality

The transformation to near normality is an alternative method of data treatment. It is a way to treat non-normal distribution data. Figures 2.5 and 2.6 demonstrate the histogram plots of normality and non-normality distribution of n-values. Methods of transformation are depended on type of distribution and character of outliers. For non-normality distribution data, changing a unit of the data set may change the data distribution. The data sets can be changed by a power transformation with a parameter λ . For example if $\lambda = -1$, then $x^{\lambda} = x^{-1}$. The power transformation either shrinks the large value or increases the large value of data. The proper weighted parameter (λ) may help transform the data distribution. Methods of transformation are shown below.

....., X^{-1} , $\ln X$, $X^{1/4}$, $X^{1/2}$ Shrink large values of data

 $X^2, X^3,..$ Increase large values of data

After a transformation, data set may show normal distribution and be suitable for statistical analysis. Since methods of transformation affect data units, the statistical analysis of transformed data can not be compared with data in the original units. Therefore the method of transformation is not used in this project.

Outliers can be identified and should be removed only from normal distribution data sets. For non-normal distribution data sets, numerical average (\bar{x}) are calculated with no transformation treated. The numerical average (\bar{x}) from a non-normal distribution data set is the only statistic which should be compared. Other statistics of non-normal distribution are not valid.

Figure 2.5 Histogram plot of smooth concrete n-value (lab result)

Figure 2.6 Histogram plot of smooth concrete n-value (Prandtl-von Karman velocity method and depth-weight averaging method)

CHAPTER 3

METHODOLOGY

3.1 Data Collection and Preparation

This project studies four types of roadway surfaces, TxDOT standard concrete, smooth (worn) concrete, asphalt, and asphalt treatment surface experiments. Each roadway surface represents one data set for analysis and inputs to this study. All data for this research was obtained from a TxDOT roadway roughness simulation project. The raw data included roadway basic geometry, discharge values, and flow cross-sections, which originally obtained by physical measurement.

Actual discharge values were obtained from ultrasonic meter readings. The ultrasonic meters were adjusted and calibrated by volumetric flow rate measurement. The meters provide flow rates measurements with minimum percent of error (<3.0%). Flow rate readings were acquired after establishing uniform and steady flow. Uniform flows on roadway were observed a short time after flow initiation. Time to achieve steady uniform flow varies as a result of slopes of roadway, flow rates, and pump stability. This data is used to study and verify the velocity distribution model approach.

All the data was analyzed for numerical averages and errors. Outlier detection and date cleaning were part of the statistical analysis. Inputs, discharges and n-values, were processed to achieve the maximum accuracy. Statistical analysis can indicate percentage of normality and data consistency. Resulting analysis showed some deviation of data. These irregular points could lead to erroneous future analysis. Therefore outliers were processed and removed. The normality of this data set is controlled by percent acceptability within a significant level (α) of 0.05. After cleaning the data set, results should noticeably improve in terms of accuracy and consistency.

Ultimate outputs of the velocity distribution model from this project, such as nvalues and discharge, will be compared to original TxDOT project results for verification and analysis.

3.2 Calculation Process and Modeling

The simulation of flow on each roadway surface was performed in several steps. The process is shown in Figure 3.1. These steps are performed using Microsoft Excel spread-sheets.

In the flow calculation, there are two methods to estimate roadway cross-section n-values and discharges. The first method calculates average velocity and area by velocity distribution method and laboratory geometries. The n-values and discharges are calculated from each average velocity and area. The entire roadway cross-section n-value is estimated from various averaging methods as shown in chapter 2. The total roadway cross-section discharge is sum of sub-section discharges.

The second method, a total discharge is a constant input. The entire roadway cross-section geometries, depths and spreads, are estimated by trial and error according to the total discharge. Each average velocity is calculated by velocity distribution

method according to estimated sub-section depths. The sub-section n-values are calculated from the estimated sub-section geometries. The total cross-section n-value is calculated from various averaging methods as shown in chapter 2.

The first method is the only method used this research due to accurate discharges and n-values compared to the original TxDOT project result.

3.2.1. Obtain Geometry Data
3.2.2. Estimate Average Roughness (k) Over Total Surfa
3.2.3. Calculate Total Cross- Section (A _t) and Sub-Section
3.2.4. Calculate Friction Velocit (V _f)
3.2.5. Calculate Critical Roughness Height (k _c)
3.2.6. Assign a Roughness Condition
3.2.7. Calculate Sub-Section Velocity Profiles
3.2.8. Calculate Average Sub- Section Velocities
3.2.9. Calculate Sub-Section' Manning N-values
3.2.10. Calculate sub-section discharges
2.11. Calculate Total Cross-Sect Discharge and Average N-valu

Figure 3.1 Velocity distribution calculation process

3.2.1. Obtain Geometry Data

Basic geometry data in this project is obtained from TxDOT roadway roughness study. All TxDOT geometry data is shown in Appendix B. In TxDOT study, geometric data is a basic input for calculating area of cross-section, height of roughness, and slopes. Original cross-section geometries were surveyed with an accuracy of 0.01 foot.

A measuring procedure was developed and constantly used to take consistent data reading. Since flow is a shallow water flow over a roadway. Water waves were developed by the affect of surface roughness across the roadway cross-section. The flow geometric readings of depth and spread are affected by these waves. A procedure of taking minimum and maximum readings was used to estimate an average flow reading. Flow and geometry data was repeatedly taken several times for each single setting of flow and roadway slopes to achieve the maximum accuracy.

Additionally, rainfall data was physically simulated on the TxDOT concrete surface. A rainfall simulator was used to simulate rainfall over this roadway. The rainfall simulator consists of special sprinklers distributing simulation over the roadway area. The rainfall rate and amounts are estimated from roadway area and time period of rainfall. Rainfall rate investigated were one, three, and six inches per hour.

In TxDOT research, results are analyzed from basic data consisting of depth, spread, and discharge. Flow cross-section area was obtained from basic geometric data. By inputting area, slope, discharge, and hydraulic radius data into Manning's equation (eq.2.1), the average Manning's n-value for the total cross-section can be obtained as follow.

Manning n - value = $\frac{1.486}{O}S^{\frac{1}{2}}R^{\frac{2}{3}}A$ Manning's Equation (Sturm, 2001) eq.3.1

- Q = velocity,
- n = Manning's n-value,
- S =longitudinal slope,
- R = hydraulic radius, and
- A = area.

The second method used to approach Manning's n-value determination is to use the Prandtl-von Karman velocity distribution method. This method is based on shear force between the liquid and the surface roughness of the roadway cross-section. The result from the TxDOT study and this Prandtl method calculation can then be compared in term of the total cross-section discharge.

3.2.2. Surface Roughness Estimation

Surface roughness plays a significant role in open channel flow estimation. It dramatically changes in energy dissipation through turbulence. Roughness estimation is always a tricky part of open channel design. It's an important part of many flow equations. Each channel requires study of roughness for accurate estimation.

Roadway flow design is considered to be open channel flow with uniform geometric conditions. A good estimate of some roadway surface roughness such as asphalt treatment, and smooth concrete surfaces can be difficult. Surface roughness value (k) is a direct physical measure of an actual height of surface roughness. The roughness value is often estimated from an average gain size of sand diameter in the channel or pipe bottom. The roadway surface roughness were estimated according to average uniform distribute of roughness through out the channel bottom. Roughness uniformity greatly affects the roughness value. Since the entire roadway surface was made at the same time the roughness is considered to be uniform roughness. For uniform roadway surfaces, roughness is divided in to two cases, sequence and non-sequence.

A uniform non-sequence roughness surface can be found in asphalt, asphalt treatment and TxDOT concrete surfaces. These surface roughness values can be calculated from an actual average height of roughness found in the direct measure of a surface cross-section image. (Figure 3.2, 3.3 and 3.5)

The other type of roughness is uniform sequence roughness (Figure3.4). It is found in the smooth (worn) concrete surface. This surface may contain one or two types of roughness, smooth or rough. For this type of surface, roughness height (k) can be estimated by visually observing the overall average height of longitudinal roughness from the lowest to the highest point.

A range of roughness values are pre-selected from visual inspection of roughness dimension. The maximum, minimum and average values of dimension are determined from vertical distance of roughness dimension as shown in Figure 3.2-3.5. These figures are actual longitudinal cross-sections of the roadway profile taken from the actual footage photography of roadway cross-sections.

The longitudinal surface profile presents the surface of roadway. For Figure 3.2, 3.3, and 3.4, the TxDOT concrete, asphalt, and smooth concrete surface, the surface profile represents projection of roughness from the bottom to the top. In these types of a roadway surface, roughness heights are projections of difference in vertical distances of a surface profile.

In Figure 3.5, treatment roadway profiles show projections of bottom surface profiles and top roughness profiles. Dash lines between the bottom surface and the top roughness profile show estimated projections of material in between levels.

Figure 3.5 Longitudinal asphalt treatment roadway surface profiles

3.2.3 Calculate Roadway Cross-Section and Sub-Section Areas

For a steady state flow, no increase or decrease in velocity, depth, and discharge, occurs. A single cross-section is used to calculate discharge. The total cross-section area is a product of hydraulic depth and total spread. Discharge is the product of total average cross-section velocity multiple by total cross-section area.

The spread can be determined by two methods, depth or spread method, see Figure 3.6. Using the depth-method, total spread is estimated from the product of depth and measured transverse slope. Using the spread-method the total spread is obtained from an actual laboratory measurement as shown in Figure 3.6. The different methods can produce results that vary some what.

Figure 3.6 Methods of cross-section area estimation

In this research, the total roadway cross-section is divided into small vertical slices having an interval of 1 ft width in the roadway cross-section's transverse direction as shown in Figure 3.7. The sub-section area adjacent to the curb is calculated by the summation of two parts, the triangular and the trapezoidal areas, which are shown in Figure 3.8.

Figure 3.7 Total cross-section, sub section areas, heights, widths, and water elevation of the roadway cross-section

Figure 3.8 Roadway sub-section area dimensions

Figure 3.9 shows dimension of the TxDOT standard roadway curb.

Figure 3.9 Roadway curb-section dimensions

The curb-area calculation is shown below.

$$curb-area (A_c) = A_1 + A_2 \qquad eq.3.2$$

where
$$A_1 = 0.5 D_1 (D_1 \frac{5.08 \text{ cm}}{14.61 \text{ cm}}) = 0.1738 D_1^2$$
, eq.3.3

$$A_2 = \frac{(D_1 + D_2)}{2} B,$$
 eq.3.4

B = length of bottom surface, and

 D_1 , D_2 = hydraulic depth on left and right sides of section.

For other vertical sub-sections, areas are the product of average depth on both sides of section multiple by bottom length of section. For small transverse angles, the horizontal length between depths is similar to the bottom roadway surface length.

non-curb section area
$$A = \frac{(D_1 + D_2)}{2} B$$
 eq.3.5

The geometry data obtained from laboratory use depth (Y) in vertical distances. The conversion of vertical depth to hydraulic depth is shown below.

Hydraulic depth is $D = Y\cos(\theta)$.

where
$$\theta = \left[\tan^{-1} \frac{H}{100} \right]$$
, eq.3.6
 $D = hydraulic depth,$
 $Y = vertical depth of water,$
 $\theta = degree slope angle, and$
 $H = percent longitudinal slope; percent slope = $\frac{H(ft)}{100(ft)}$.$

Figure 3.10 shows relationship between a vertical water depth, hydraulic depth and roadway longitudinal slope.

Figure 3.10 Roadway longitudinal slope calculation 57

3.2.3.1 Water Surface

There are two techniques of calculating surface water level in this project. Both techniques use the cross-section depth measurements obtained in the TxDOT roadway project.

For asphalt, asphalt treatment and smooth concrete roadway surface one water depth measurement was made. It was located adjacent to the curb at the deepest point of the channel. For the TxDOT concrete roadway surface, multiple water depths were taken along the transverse slope.

Additionally, all cross-sectional roadway surfaces were surveyed at several locations along the transverse direction from the curb. This survey data allows the development of a representative transverse slope for the entire cross-section or a subsection.

The spread was measured for all roadway surfaces. The depth at the curb when convoluted with the transverse slope did not always equal to the measured spread. This is a result of the minor wave action, surface variation in the transverse slope and the shallower flow as distance progressed from the curb. Figure 3.13 shows this phenomenon in that the water surface profile does not connect with the roadway.

3.2.4 Friction Velocity

The friction velocity is described in a chapter 2. Equation 2.32 presents friction velocity.

$$\sqrt{\frac{\tau_0}{\rho}} = \sqrt{gRS} = \sqrt{gdS} = V_f$$
 Friction velocity (Chow, 1959) eq.2.32
where hydraulic radius (R) = depth (d) for a broad channel,

- R = hydraulic radius,
- d = hydraulic depth,
- S = slope,
- ρ = mass density = w/g,
- w = unit weight of fluid, and
- g = gravity.

3.2.5 Critical Roughness Height

Critical roughness height is a function of roughness value, kinematic viscosity, gravity, and average velocity. It represents a unique condition of flow in channel. The critical roughness height is described in chapter 2. The critical roughness equation is presented in equation 2.38.

$$k_{c} = \frac{5C\nu}{\sqrt{g}V}$$
(Chow, 1959) eq.2.38

where C = Chezy's C,

- v = kinematic viscosity,
- V = average velocity,
- g = gravity, and
- k_c = critical roughness.

3.2.6 Surface Roughness Condition

Surface roughness can be separated in to two types, a rough and smooth condition. In the velocity distribution method, the surface roughness condition can be defined through comparison of the critical roughness (k_c) and the roughness height (k). The following equation (eq.2.37) indicates the surface condition, a smooth condition and rough condition.

$$\frac{V_f k}{v} < 5$$
 or $k < \frac{5v}{V_f}$ Smooth flow condition, (Schlichting, 1923) eq.2.37

where k = roughness height,

v = kinematic viscosity, and

 $V_{\rm f}$ = friction velocity.

If the value of the term $\frac{V_f k}{v}$ is less than 5, the surface is in smooth condition.

If the value of the term $\frac{V_f k}{v}$ is more than 5 a surface is in rough condition.

Since k is almost constant in a particular channel section and v minimally changes, friction velocity has the greatest effect to define the surface roughness conditions. (Chow, 1959)

3.2.7 Vertical Velocity Profile

Vertical velocity distributions are flow resistance equations, which represent the relationship of velocity and roughness. They are the direct result of channel geometry conditions. Local sub-section flow and geometry such as depth, kinetic viscosity and

surface roughness are used to evaluate the velocity profile. The local geometries of each roadway sub-section vary section by section due to the non-symmetric triangular shape of the roadway. The vertical velocity profile equation is divided into two types, roughness surface and smooth surface. Two types of flow equation used in this project are shown in equation 2.35 (smooth surface condition) and 2.36 (rough surface condition). These two types are result from different roughness, viscosity and turbulence in an individual channel. The velocity profile methodology is explained in chapter 2. Figure 3.11 demonstrates vertical velocity profiles of every sub-section across the roadway.

Figure 3.11 Vertical velocity profiles across the roadway cross-section

The velocity profile starting approximately at elevation 0 ft is nearest to the curb. Elevation represents the height on a profile above the channel lowest point near the curb where a velocity can be found. Each additional profile stat at the next elevation is located further out along the transverse slope.

$$V = 5.75 V_f \log \left(\frac{9 y V_f}{v}\right)$$
for smooth surface (Prandtl-von Karman, 1926) eq.2.35

$$V = 5.75 V_f \log\left(\frac{30 y}{k}\right)$$
for rough surface (Prandtl-von Karman, 1926) eq.2.36

3.2.8 Calculate Sub-Section Average Velocity

A roadway cross-section is a non-symmetric triangular channel. Each vertical velocity profile is individually calculated from the station depth. The USGS recommended average velocity method (Wahl, Thomas and Hirsh, 1995) is used in this research. The average velocity can be obtained by taking the velocity at 0.6 of the depth or an average of the 0.2 and 0.8 of the depth from the surface of water.

Another method for averaging velocity is an integration of vertical velocity profile. Integration will give the total area of vertical velocity curve, which when divided by the total depth estimated the average velocity. An average velocity can be obtained from equation 3.7. This method gives a very close estimation to the USGS method.

Average sub-section velocity =
$$\frac{\int_{0}^{d} V \, dy}{d_i}$$
 eq.3.7

Figure 3.12 shows sub-section average velocities across the roadway crosssection. The average velocity at the curb-section is dropped due to the increasing wetted-perimeter at the curb-section. The section next to the curb shows the highest average velocity. Sub-section average velocities decrease along the transverse slope due to the decreasing of water depth.

Figure 3.12 Plan view of average velocity in each station from curb on left hand side to the end of water on right hand side of roadway cross-section

3.2.8.1 Total Cross-Section Velocity Distribution

A cross-section velocity distribution can be display by plotting local geometries of roadway such as elevation, transverse slope and sub-section vertical velocity profiles as shown in Figure 3.13. The roadway cross-section velocity distribution demonstrates details of isolated-velocity, depth of flow and water surface across the entire cross-section. It also shows location of super-critical, critical (Froude number = 1), and sub-critical state of flow.

Froude number =
$$F = \frac{V}{(g d / \alpha)^{1/2}}$$
 (Sturm, 2001) eq.3.8

where F = Froude number,

- V = velocity,
- g = gravity,
- d = depth, and
- α = specific gravity.

In Figure 3.13, the water surface varies with the depth measurement. The fitted equation best represents the water surface. It also indicates potential shallow flow area that could easily be missed during measurement. Notice that the Froude number in this diagram can be representation of super and sub-critical flow location.

3.2.9. Sub-Section Manning's n-value Calculation

In every sub-section, n-value is separately calculated based on local geometries of sub-section. The local geometries consist of water depth, surface elevation, surface area, longitudinal, and transverse slopes. The sub-section n-value is estimated from the Prandtl-von Karman velocity equations. The transformations of velocity and Manning's equations are shown below. The equation 3.9 shows the calculation of sub-section nvalue based on Prandtl-von Karman velocity distribution equations.

Manning's equation (eq.2.1) can be used to calculate an average sub-section velocity (V_i) by inputting sub-section geometries as shown below.

$$V_i = {1.486 \over n_i} S^{1/2} R_i^{2/3}$$
 (Sturm, 2001) eq.3.9

where V_i = sub-section velocity

 n_i = sub-section Manning's n-value

S = longitudinal slope

 R_i = sub-section hydraulic radius

The average sub-section velocity also can be estimated from Prandtl-von Karman velocity equation (equation 2.35 and 2.36).

By assuming an average velocity is located at 0.4 of depth from the bottom surface (y = 0.4d), equation 2.36 can be rewritten in eq.3.10.

Average velocity by velocity distribution equation (rough condition)

$$V_{i} = 5.75 V_{f_{i}} \log \frac{30(0.4 d_{i})}{k}$$
 eq.3.10

By substitute average velocity (V_i) in Manning's equation (eq.2.1) by Prandtl-von Karman average velocity equation (eq.3.10), the relationship of roughness value (k) and n-value can be shown in equation below.

$$\frac{1.486}{n_i} S^{1/2} R_i^{2/3} = 5.75 V_{f_i} \log \frac{30(0.4 d_i)}{k} eq.3.11$$

Then solving for n-value

Manning's n-value by Prandtl's rough surface equation is

$$n_{i} = \frac{1.486 S^{1/2} R_{i}^{2/3}}{5.75 V_{f_{i}} \log(\frac{30(0.4 d_{i})}{k})} eq.3.12$$

The smooth surface condition (eq.2.35) can be similarly derived giving in equation 3.13, Manning's n-value by Prandtl's smooth surface equation is

$$n_{i} = \frac{1.486 \,\mathrm{S}^{1/2} \,\mathrm{R_{i}}^{2/3}}{5.75 \,\mathrm{V_{f,i}} \log(\frac{9(0.4 \,\mathrm{d_{i}}) \,\mathrm{V_{f,i}}}{v})} \,\mathrm{eq.3.13}$$

3.2.10. Sub-Section Discharges Calculation

The vertical velocity profile of sub-sections is estimated by Prandtl-von Karman velocity method. The average velocity and area of sub-section is shown in *"average velocity calculation"* and *"sub-section area calculation"* sections. Each sub-section discharge is obtained by multiplied average sub-section velocity by the sub-section area for each sub-section across the roadway cross-section. As shown below.

Sub – section discharge
$$(q_i) = V_{i-average} * A_i$$
 eq.3.14

3.2.11 Total Cross-Section Discharge and Average Manning's n-value Calculation

Total cross-section discharge of a roadway can be obtained by sum of all subsection discharge as shown below.

Total discharg
$$e(Q_{total}) = \sum_{1}^{n} Sub - \sec tion \ discharg e$$
 eq.3.15

A sub-section n-value is multiplied by a local geometry such as depth, wettedperimeter, hydraulic-radius, velocity, discharge and area in order to weight effects of local geometry in that section. These factors are parts of the local geometry inputs and calculation results. There are several methods to obtaining average n-value of the entire cross-section. The methods of averaging n-value are associated with local geometries of a roadway. Some literatures suggest using a depth or a wetted-perimeter for a weightparameter in estimating a cross-section average n-value. Each method gives different results of an average n-value. All methods used for averaging cross-section n-value are discussed in the chapter 2.

3.3 Mathematic Statistical Analysis

Before any analysis, all TxDOT roadway and velocity distribution data sets, nvalues and discharges, have to be analyzed statistically. The processes such as normality distribution, detect outliers, scatter plot, cleaning outliers, and normality evaluation were used to analyze data. The statistical analysis is a step to minimize errors in the results. The statistical analysis process steps are shown in Figure 3.14.

Figure 3.14 Process of statistical analysis

3.3.1 Obtain and Rearrange Data Sets

All series of average cross-section n-values and discharges from TxDOT laboratory and velocity distribution method are rearranged in order from low value to high value. Histogram and probability plots are developed from these data sets.

3.3.2 Construct Histogram Plot

In this research, the total cross-section n-values are used in histogram plots. The total range of n-value is based on the overall maximum and minimum n-value. The n-value interval is roughly estimated to be about 0.001. All the histogram plots of total roadway cross-section n-value indicate sign of normal distribution with some outliers. The highest column in the histogram plot shows the largest interval of n-value data frequency. An example histogram plot is shown in Figure 3.15 and Appendix E.

A histogram plot can be constructed as follow.

1. Divide the continuous range of data in to equal intervals. Too many or too few data intervals make it difficult to recognize normality distribution.

2. Group data into the interval ranges. The number of data in each interval range represents the data frequency.

3. Plot a bar graph between numbers of data and the interval ranges in y and x coordinates respectively. Montgomery, (Runger and Hubele, 2004)

3.3.3 Construct a Normal Probability Plot (Q-Q Plot)

In this research, normality plots of n-value and discharge are developed for all sets of roadway data. Example plots of normal probability are shown in Figures 3.16 (before cleaning data) and Figure 3.17 (after cleaning data). The normality plot is constructed by the following steps.

- Order the original observations to get x₍₁₎, x₍₂₎,,x_(n) and their corresponding probability values (1-1/2)/n, (2-1/2)/n,..., (n-1/2)/n;
- 2. Calculate the standard normal quantiles $q_{(1)}, q_{(2)}, \ldots, q_{(n)}$
- Plot the pairs of observations (q₍₁₎, x₍₁₎), (q₍₂₎, x₍₂₎),(q_(n), x_(n)), and examine the "straightness" of the outcome. (Johnson, 2002)

Probability level is related to standard quantiles as shown in equation 2.52.

$$P[Z \le q_{(j)}] = \int_{-\infty}^{q(j)} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = P_{(j)} = \frac{j - \frac{1}{2}}{n}$$
(Johnson, 2002) eq.2.52

where $P_{(j)} =$ probability level,

- $q_{(j)}$ = standard quantiles,
- Z = probability,
- $j = 1, 2, 3, \dots, n$, and
- n = total number of samples.

Figure 3.16 Normality plot (Q-Q plot) of n-values (before detecting outliers and cleaning data)

Figure 3.17 Normality plot (Q-Q plot) of n-values (after detecting outliers and cleaning data)

3.3.4 Construct Scatter Plots

A scatter plot compares one set of data with a second set of data taken under similar conditions. In this study, four similar sets of data existed for the TxDOT concrete roadway. The data sets differed only by the amount of rainfall each experiment. Each data set experiment only one of the following rainfall rates; 0, 1, 3 and 6 inches per hour. These four data sets were plotted one on one in scatter plots as shown in Figure 3.18.

X1 is no-rainfall data plotted against no-rainfall data.

X₂ is 1-in/hr rainfall data plotted against 1-in/hr rainfall data.

X₃ is 3-in/hr rainfall data plotted against 3-in/hr rainfall data.

X₄ is 6-in/hr rainfall data plotted against 6-in/hr rainfall data.

The top row is X_1 , no-rain vs 1-in/hr, no-rain vs 3-in/hr, no-rain vs 6-in/hr.

The left column is X₁, 1-in/hr vs no-rain, 3-in/hr vs no-rain, 6-in/hr vs no-rain.

3.3.5 Calculate Correlation Coefficient

The correlation coefficient is used to estimate normality distribution of data set before and after removing outliers. Correlation coefficient is a method used to calculate after most of outliers were taken out. An equation 2.53 provides a calculation of correlation coefficient of data set. Several of methods, such as histogram, normal probability plot, and scatter plots were used to identify and remove outliers. The process of removing outlier is described in topic 3.3.6.1. Table 3.1 shows correlation coefficient calculation samples.

$$r_{Q} = \frac{\sum_{j=1}^{n} (x_{(j)} - \bar{x})(q_{(j)} - \bar{q})}{\sqrt{\sum_{j=1}^{n} (x_{(j)} - \bar{x})^{2}} \sqrt{\sum_{j=1}^{n} (q_{(j)} - \bar{q})^{2}}}$$
(Filliben, 1975) eq.2.53

where $r_0 =$ correlation coefficient,

- x = data point,
- \overline{x} = numerical average of data,
- $q_{(j)}$ = standard quantiles,
- \bar{q} = numerical average of standard quantiles,
- j = 1, 2, 3... n, and
- n = total number of samples.

no.	n-value	$(x_{(j)} - \bar{x}) q_{(j)}$	$(x_{(j)} - \bar{x})^2$	q _(j)	$q_{(j)}^2$				
1	0.010578	0.003476	0.000004	-1.827880	3.341145				
2	0.010578	0.003178	0.000004	-1.671644	2.794393				
3	0.010654	0.002826	0.000003	-1.548003	2.396313				
4	0.010720	0.002541	0.000003	-1.444321	2.086064				
5	0.010982	0.002028	0.000002	-1.354190	1.833831				
6	0.011028	0.001849	0.000002	-1.273889	1.622794				
7	0.011105	0.001651	0.000002	-1.201055	1.442534				
8	0.011310	0.001327	0.000001	-1.134090	1.286160				
9	0.011478	0.001073	0.000001	-1.071858	1.148880				
10	0.011560	0.000932	0.000001	-1.013522	1.027227				
11	0.011632	0.000812	0.000001	-0.958446	0.918619				
12	0.011750	0.000661	0.000001	-0.906134	0.821079				
	<u> </u>								
73	0.012101	0.000209	0.000000	-0.551806	0.304490				
74	0.012150	0.000169	0.000000	-0.512776	0.262939				
Σ		0.045037	0.000048		43.613574				
co	orrelation cc	Defficient $(r_q)=$	0.968						
	In table 3.1, at 74 samples and $\alpha = 0.05$; critical point = 0.983								

Table 3.1 Correlation coefficient calculation table

3.3.6 Check Hypothesis of Normality

Hypothesis of normality is used to separate types of data series distribution. For a normal distributed data set, correlation coefficient value will be compared to a critical correlation coefficient value at significant level (α) of 0.05 for acceptation level. Table 3.2 shows critical points for correlation coefficient value with various significance levels (α) and sample sizes. For different sample size, the critical correlation coefficient is obtained by interpolation. In order to accept a data set, the correlation value has to be higher or equal to critical values in the table. Data sets with a lower correlation coefficient value than a critical value will need further data cleaning analysis or rejected as a non-normal distribution.

Sample size	Significance levels α						
n	.01	.05	.10				
5	.8299	.8788	.9032				
10	.8801	.9198	.9351				
15	.9126	.9389	.9503				
20	.9269	.9508	.9604				
25	.9410	.9591	.9665				
30	.9479	.9652	.9715				
35	.9538	.9682	.9740				
40	.9599	.9726	.9771				
45	.9632	.9749	.9792				
50	.9671	.9768	.9809				
55	.9695	.9787	.9822				
60	.9720	.9801	.9836				
75	.9771	.9838	.9866				
100	.9822	.9873	.9895				
150	.9879	.9913	.9928				
200	.9905	.9931	.9942				
300	.9935	.9953	.9960				

Table 3.2 Critical points for the Q-Q plot correlation coefficient test for normality (Johnson 2002)

3.3.6.1 Detect Outliers

Outliers are unusual data points that can be identified by histogram plot, probability plot, scatter plot, and chi-square plot. In the probability plot, outliers can be found on both ends of data sets as shown in Figure 3.16. Those unusual points greatly affect the outcome of analysis. The results are unpredictable with interruption sources. The only way to treat these unused points is carefully remove them out from the analysis. The unusual points can be found as uneven spacing or further out from a main line plot.

The following steps are for standardized and generalized distances calculation. They are used for detecting outliers in data sets with very similar data range. Therefore, these steps were used only TxDOT concrete roadway data with no-rain, 1-in/hr, 3-in/hr and 6-in/hr.

- 1. Make a dot plot for each variable.
- 2. Make a scatter plot for each pair of variables.
- Calculate the standardized values z_{jk}= (x_{jk} x_k)/sqrt(s_{kk}) for j = 1,2..n and each column k = 1,2,..p examine these standardized values for large or small values.
- 4. Calculate the generalized squared distances $d_j^2 = (x_{(j)} \overline{x})' S^{-1}(x_{(j)} \overline{x})$.

Examine these distances for unusually large values. (Johnson, 2002)

Table 3.3 shows standardized, generalized distances and n-values of TxDOT roadway surface with no-rain, 1-in/hr, 3-in/hr, 6-in/hr.

no-rain	1-in/hr	3-in/hr	6-in/hr	no.					
X_1	X2	X ₃	X_4		Z_1	Z_2	Z_3	Z_4	dj ²
0.01411	0.01466	0.01527	0.0150	1	1.611	1.816	2.403	2.154	5.0424
0.01375	0.01401	0.01401	0.01401	2	1.288	1.235	1.253	1.223	3.2260
0.01178	0.01331	0.0123	0.01331	3	-0.474	0.617	-0.282	0.589	0.4360
0.01192	0.01214	0.01246	0.0133	4	-0.349	-0.428	-0.162	0.588	0.2362
0.01292	0.01271	0.01305	0.01250	5	0.548	0.078	0.382	-0.142	0.5837
0.01348	0.01411	0.01403	0.01359	6	1.046	1.326	1.271	0.848	2.1278
0.01266	0.01282	0.01334	0.01313	7	0.315	0.175	0.644	0.432	0.1928
0.01204	0.01196	0.01234	0.01246	8	-0.234	-0.588	-0.267	-0.176	0.1067
0.01164	0.01239	0.01285	0.01304	9	-0.592	-0.203	0.200	0.350	0.6820
0.01270	0.01224	0.01269	0.01254	10	0.354	-0.337	0.051	-0.105	0.2439
0.01271	0.01283	0.01325	0.01412	11	0.359	0.184	0.566	1.322	0.2501
0.01090	0.01088	0.01102	0.01000	12	-1.256	-1.555	-1.470	-1.504	3.0656
0.01115	0.01160	0.01255	0.01239	13	-1.035	-0.908	-0.075	-0.239	2.0833
0.01377	0.01349	0.01345	0.01304	14	1.311	0.772	0.749	0.344	3.3387
0.01322	0.0136	0.01322	0.01325	15	0.819	0.894	0.535	0.536	1.3024
0.01310	0.01349	0.0155	0.01588	16	0.713	0.772	2.658	2.922	0.9887
0.01368	0.01423	0.01558	0.01407	17	1.226	1.431	2.689	1.279	2.9205
0.01334	0.01366	0.01359	0.01396	18	0.924	0.922	0.870	1.182	1.6593
0.01216	0.01295	0.01314	0.01364	19	-0.132	0.294	0.460	0.895	0.0336
0.01347	0.01453	0.01399	0.01494	20	1.043	1.703	1.240	2.064	2.1133
0.01402	0.01465	0.01469	0.01508	21	1.528	1.808	1.877	2.191	4.5358
0.01223	0.01230	0.01242	0.01265	22	-0.069	-0.283	-0.198	-0.002	0.0093
•	•	•	•		•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•	•	•
0.01102	0.01101	0.01098	0.01090	69	-1.151	-1.435	-1.512	-1.591	2.5749
0.01130	0.01069	0.01131	0.01088	70	-0.902	-1.723	-1.213	-1.612	1.5798
0.01213	0.01277	0.01327	0.01343	71	-0.158	0.130	0.582	0.704	0.0487
0.01045	0.01060	0.01057	0.01053	72	-1.658	-1.801	-1.881	-1.926	5.3413
0.01762	0.01644	0.01772	0.01711	73	4.741	3.397	4.645	4.032	43.690
0.01299	0.01199	0.01258	0.01140	74	0.607	-0.560	-0.050	-1.134	0.7167
0.01231	0.01262	0.01263	0.01266	<	<= average	n-value			

Table 3.3 Standardized and generalized distance values for TxDOT concrete roadway surface with no-rain, 1-in/hr, 3-in/hr, 6-in/hr

3.3.6.2 Data Cleaning

Normally, laboratory or field raw data contains unusual point as shown in detect outliers step. The methods to identify outliers such as detecting outliers and scatter plots show location of unrelated points. These unrelated points or outliers can be removed out of the data sets to improve the normality. Figure 3.16, 3.17, 3.19, 3.20 and 3.21 show plots of result, discharge and n-value, before and after data cleaning process.

3.3.7 Calculate Statistical Result

The statistical result of analyzed data shows improvement of normality distribution and minimal numbers of outliers. The percentage of error is reduced on account of the reduction of outliers in data series. Then the analyzed data sets are ready for display and numerical average calculation. An average n-value of each data set is calculated from numerical average. After an average n-value for each TxDOT study and velocity method data set are calculated, data comparison can be done. All data sets of n-value after removed outliers are plotted in normal scale graph and shown in Appendix C. The comparisons of discharge between measured and velocity method four types of the roadway surface are shown in Figure 3.19, 3.20 and Appendix D.

Figure 3.19 Result of TxDOT concrete discharge comparison before cleaning process

Figure 3.20 Result of TxDOT concrete discharge comparison after cleaning process

Figure 3.21 Comparison of average n-values by various averaging methods (before and after cleaning data)

CHAPTER 4

MODEL VERIFICATION AND RESULT ANALYSIS

4.1 Model Calibration and Verification

The TxDOT roadway roughness project geometry data for the roadway surfaces, new concrete, smooth concrete, asphalt, and asphalt treatment are used in the velocity distribution model. Geometry data is used for the Manning's roughness analysis. Two methods are used to estimate cross-section n-values and discharges.

The first method calculates average sub-section velocity by velocity distribution method. Calculate sub-section area by sub-section's geometry, depth and spread. The sub-section n-values and discharges are calculated from each average sub-section velocity and sub-section area. The entire roadway cross-section n-value is estimated from various averaging methods as shown in chapter 2. The total roadway cross-section discharge is sum of sub-section discharges.

The second method, a total discharge is a constant input. The entire roadway cross-section geometries, depths and spreads, are estimated by trial and error according to the total discharge. Each average velocity is calculated by velocity distribution method according to estimated sub-section depths. The sub-section n-values are calculated from the estimated sub-section geometries. The total cross-section n-value is calculated from various averaging methods as shown in chapter 2

The first method is the only method used this research. It provides accurate discharges and n-values compared to the original TxDOT project result.

In the TxDOT project, some geometry conditions such as curb surface roughness, actual transverse slope and the actual water surface were not used in the total cross-section n-value estimation. As a result, the TxDOT project's n-value is differ from the velocity distribution's n-value.

The laboratory result consists of two methods of total area calculation, depthanalysis and spread-analysis as shown in Figure 3.6. These methods have different assumptions to estimate the total cross-section geometries. Depth-analysis is based on a curb station depth and transverse slope. Then the total cross-section spread is calculated by dividing the curb-depth by the transverse slope. The total cross-sectional area is a one half product of the curb-depth and the spread width.

The second technique, spread-analysis, a total spread is estimated from average laboratory readings. The total cross-section area is calculated the same way as previous method. Figure 4.1 demonstrates the difference between two area estimation methods, depth-analysis and spread-analysis. These two techniques always show similar but different total cross-sectional areas. An average value from these methods might be a better estimation of the total area.

85

Figure 4.1 Cross-sectiona areas estimated by spread and depth methods

4.2 Theoretical Manning's n-value

Literature suggests several equations to estimate roughness n-value for all types of channels. Due to complexities of natural channel geometries, it is almost impossible to estimate accurately the actual n-value. Most purposed techniques for finding average n-values are based on empirical data as well as theoretical assumptions. The experimental field data helps improve accuracy of n-value estimations.

There are two types of theoretical equations for estimating n-values, variable and constant roughness equations. The constant roughness equation calculates n-value from the average grain size of bed material. Estimations of n-values by the constant roughness equations are shown in table 4.1. The roughness value (k) was obtained by estimating roadway roughness height as shown in chapter 3. The n-values are then calculated from equation 2.3, 2.4, 2.5, and 2.7. These equations are based on Strickler (1923), Meyer-Peter (1948), Lane (1953), and Bray (1979) assumptions respectively. These constant n-values do not vary as a function of channel geometry but vary a function of the average bed material diameter. Since bed material of roadways rarely changes quickly, the estimated n-values from the constant roughness equation remain constant.

	Estimated n-value					
		Smooth	TxDOT			
	Asphalt	concrete	concrete	Treatment		
Roughness value, k	0.5mm	1.6mm	2mm	17mm		
Strickler (1923)	0.01168	0.01417	0.01471	0.02102		
Meyer-Peter, Muller (1948)	0.01099	0.01334	0.01385	0.01978		
Lane-Carlson (1953)	0.01339	0.01626	0.01687	0.02411		
Bray (1979)	0.01523	0.01876	0.01952	0.02863		

Table 4.1 Estimated Manning's n-values

A second type of roughness equation exists, which contains more geometry information such as depth, hydraulic radius, and width of channel. Estimated n-values from these equations are more representative of the channel cross-section geometries. Some of these equations are not compatible with this research, such as the Jarret (1983) equation (assuming steep longitudinal slope) and the Forehlich (1975) equation (containing a special estimated parameter). Some of these variable n-value equations such as equation 2.6, 2.8, 2.9, 2.10 and 2.11 are more practicable to estimate n-values. Figure 4.2-4.5 show n-value estimation for four types of roadway surfaces. The Bray (1979), Limerinos (1970) and Griffiths (1981) equations show different n-value estimation. Limerinos (1970) equation shows higher n-values than Bray (1979) and Griffith (1981) equations. All equations show high estimated n-values at low discharge and vise versa.

Figure 4.2 Estimated Manning's n-value for asphalt surface

Figure 4.3 Estimated Manning's n-value for asphalt treatment surface

Figure 4.4 Estimated Manning's n-value for TxDOT concrete surface

Figure 4.5 Estimated Manning's n-value for smooth concrete surface

4.3 Velocity Distribution Methods Comparison

All the flow resistance equations, equation 2.16, 2.19, 2.21, 2.23, 2.25, 2.27, 2.28, 2.35 and 2.36 from the chapter two were analyzed and compared by percent error of total estimated discharge. In order to estimate accuracy of velocity equations, flow of all four types of roadways, TxDOT concrete, smooth concrete, asphalt, and asphalt treatment were used in the comparison of these velocity equations. All the roadway data provide variety of roughness and geometry inputs to these velocity equations.

The flow resistance equations, eq.2.16, 2.19, 2.21, 2.23, 2.25, 2.27, 2.28, 2.35 and 2.36 are in a logarithmic form with two estimated variables α and β . The equation found from literature defined α and β as shown in eq.2.14. These parameters affect the outcome in different ways. Some flow equations use hydraulic-radius in stead of hydraulic-depth inside the logarithm term of the equation. These variances of α and β are a major cause of the velocity variation shown in Figure 4.6.

These equations simulate different velocity profiles with varied slopes and surface roughness with the same input parameters. Figure 4.6 shows plots of theoretical velocity profiles for all the methods investigated. In this specific figure, Griffiths's velocity equation produces the minimum velocity for a constant depth. Prandtl-von Karman velocity equation shows the maximum velocity profile. The rest of the velocity profiles are located between these curves. The velocity profiles shown in Figure 4.6 are not constant, since they vary with the geometry of the cross-section. The actual velocity distributions change with actual geometry conditions of the channels. Optimization of α and β could produce better flow estimations.

Figure 4.6 Comparison of velocity profiles by various flow resistance equations

Figure 4.7 shows the plots of eight velocity method estimated discharges for the TxDOT concrete surface. The negative and positive percent errors show over and under estimation of discharge respectively. All methods show both over and under estimated discharge. The trend lines of estimated error appear to align parallel to each other. This variance in flow appears to result from the variation of estimated parameters (α and β) in the velocity equations.

Most methods tend to under estimate at the lower flow rate and over estimated at the high flow rate. The calculated discharges by various velocity equations are compared to the actual discharge with average percent of error as shown in table 4.2. Plots of average percent error of all roadway surfaces are plotted in Figure 4.8. Each equation shows comparable results based on it parameters and functions.

	Average Percent Discharge Error								
Roadway type	Colebrook	Limerinos	Keulegan	Griffiths	Bray	Hey	Bathurst	Prandtl	
Asphalt	14.06%	11.11%	11.08%	15.61%	11.11%	11.07%	11.30%	13.73%	
Smooth Concrete	11.08%	10.81%	10.46%	16.15%	10.39%	10.44%	10.64%	13.69%	
TxDOT Concrete	8.40%	8.70%	7.62%	14.51%	6.53%	6.53%	7.64%	10.48%	
Asphalt Treatment	19.42%	24.00%	19.92%	31.99%	19.46%	16.84%	17.53%	10.43%	
Average Percent Error	13.24%	13.66%	12.27%	19.56%	11.87%	11.22%	11.78%	12.08%	

Table 4.2 Average percent discharge errors from various velocity methods

Table 4.2 and Figure 4.8 show average error of all methods ranges from about 6.5 to 32 percent. Some velocity equations are suitable only for low roughness value such as TxDOT concrete, asphalt and smooth concrete surfaces. Consequently, these equations show high error for higher roughness such as the asphalt treatment surface. In order to select the flow resistance method, justifications are determined not only from the overall accuracy but also from the most consistent estimated discharges.

Bray (1979) and Hey (1979) equations show the best result on the TxDOT concrete roadway. Their equations are among the best results shown for asphalt and smooth concrete surfaces. Nevertheless, these two equations are not used due to inconsistent results on the treatment surface. The same inconsistency scenario applied to most others such as Colebrook (1937), Limerinos (1970), Keulegan (1938), Griffiths and Bathurst (1985) equations.

Prandtl-von Karman velocity equation was selected for this research. The selection was made since they displayed the most consistency and accuracy of all the methods as shown in Figure 4.8. Even though this method produces a moderate overall accuracy result, the consistence is better than other methods. This velocity method shows average errors of about 10 to 14 percent for all the surfaces. Most errors for all surface types are related to over estimated discharge.

Figure 4.9, 4.10, 4.11, 4.12 and 4.13 are based on Prandtl-von Karman universal velocity method. The figures show effects of one variable condition to velocity profile with constant environment. Depths of velocity profile were estimated from velocity distribution program calculation in order to archive the same discharge. Average

velocities are estimated at the depth of 0.6 (0.6d) from the surface of water. The average velocity line connects the average velocities of every velocity profile. The average velocity line is shown in a linear straight line across the velocity profiles.

Effect of variable bottom roughness heights to velocity profiles with constant discharge, transverse slope and longitudinal slope is shown in Figure 4.9. The velocity decreases according to increase of the channel bottom roughness. Water depth is increased by increase the channel bottom roughness.

Figure 4.10 and 4.11 shows affect of longitudinal and transverse slopes respectively. The velocity increases according to increase of the longitudinal or transverse slopes. In Figure 4.10, water depth is increased by decrease longitudinal slope. Depth of water is decreased by decrease transverse slope in Figure 4.11.

Figure 4.12 shows the effects of various roughness dimensions and longitudinal slopes at constant transverse slop and discharge. By increasing longitudinal slope, the surface velocity and the water depth remain the same by decreasing bottom roughness height. They were calculated from different roughness and longitudinal slopes. These velocity curves demonstrate the average velocities and velocity profiles could be different at the same depth and water surface velocity. This effect is created from roughness values and longitudinal slopes.

Figure 4.9 Vertical velocity profiles calculated by different roughness values (k)

Figure 4.10 Vertical velocity profiles calculated by different longitudinal slopes

Figure 4.11 Vertical velocity profiles estimated by different transverse slopes

Figure 4.12 Vertical velocity profiles calculated by different roughness values (k) and longitudinal slopes

4.4 Manning's n-values Estimated by Various Averaging Methods

All methods for estimating the average cross-sectional n-value are shown in chapter 2 in equation 2.39 to 2.49. Some methods are suggested by literatures based on their empirical data and geometry assumptions. The averaging methods highly affect the outcome of average n-value. All averaging methods use the local geometry parameters of the sub-sections to calculate the total cross-section n-value. The relationships of local geometries and averaging methods are displayed in Figure 4.13. Wetted-perimeter and hydraulic depth are the basic geometry inputs. Sub-section geometries, such as velocity, discharge, hydraulic radius and area are calculated from the basic geometry. Average cross-section n-values are calculated by sub-section n-values and various sub-section geometries.

Results of average cross-section n-values estimated by Prandtl-von Karman (1926) velocity method and various averaging methods on the four roadway surface types are shown in table 4.3 and Figure 4.14.

Table 4.3 shows average cross-section n-values after cleaning process. The asphalt treatment n-value series shows the maximum variation and percent error from the lab result. Most averaging methods estimate n-value consistently higher than the lab result except the asphalt surface series.

Average cross-section n-values by averaging methods before and after cleaning data are shown in Figure 4.14. The decrease or increase value of Manning "n" is a result of the outlier reduction. Krishnamurthy (1972) averaging method is selected based on the accuracy and consistency of estimated discharges. (discussed in section 4.5)

Figure 4.13 Relationships between local geometries and methods of averaging n-values

100

	Asphalt surface		TxDOT Concrete surface		Smooth Concrete		Asphalt Treatment	
							Surface	
	n-value	Lab result	n-value	lab result	n-value	lab result	n-value	lab result
Lab result	0.01103		0.01222		0.01142		0.01687	
Discharge-weight	0.01086	1.52%	0.01359	11.19%	0.01306	14.30%	0.02169	28.60%
Numerical average	0.01084	1.70%	0.01351	10.59%	0.01338	17.11%	0.02421	43.55%
Depth-weight	0.01083	1.78%	0.01357	11.08%	0.01307	14.39%	0.02206	30.76%
Area-weight	0.01088	1.30%	0.01367	11.90%	0.01314	15.03%	0.02232	32.31%
Velocity-weight	0.01098	0.40%	0.01359	11.20%	0.01331	16.51%	0.02375	40.78%
Wetted-perimeter weighted	0.01075	2.48%	0.01358	11.13%	0.01296	13.45%	0.02229	32.15%
Hydraulic-radius weighted	0.01083	1.78%	0.01362	11.45%	0.01294	13.30%	0.02208	30.88%
Manning's equation and actual discharge	0.00976	11.46%	0.01262	3.26%	0.01245	8.95%	0.01946	15.34%
Manning's equation and estimated discharge	0.00933	15.38%	0.01210	0.97%	0.01126	1.47%	0.01871	10.95%
Horton and Einstein	0.01105	0.24%	0.01306	6.86%	0.01334	16.79%	0.02407	42.69%
Pavlovski, muhlhofer, Einstein and Banks	0.01105	0.23%	0.01334	9.12%	0.01335	16.89%	0.02457	45.65%
Lotter	0.00934	15.31%	0.01026	16.06%	0.01157	1.27%	0.01873	11.04%
Krishnamurthy	0.01082	1.84%	0.01353	10.68%	0.01300	13.82%	0.02161	28.12%
Average percent								
Of discharge error	13.73%		10.48%		13.69%		10.43%	

Table 4.3 Estimated average Manning's n-values for four types of roadway surfaces by Prandtl-von Karman velocity distribution and various averaging methods

101

Figure 4.15 shows the typical patterns of sub-section n-values across the entire roadway cross-section estimated by Prandtl-von Karman (1926) velocity distribution equation. The n-value at the curb section is significantly dropped because of an increasing of local wetted-perimeter in the curb sub-section. In other sections, n-values retain the same average. The n-values at the end of water are significantly increased. This phenomenon is caused by the logarithm depth term, i.e. the increasing shallow depth. As the depth is decreased then flow often changes from super-critical to subcritical stage.

Since a depth of water decreases along the roadway lateral slope, the velocity tends to decrease noticeably as a logarithm function. Therefore the n-value increases according to decrease of velocity. Figure 4.16 shows example values of parameters across the cross-section. These values are used in methods of average n-value estimation. The parameter values across the roadway cross-section demonstrate the affect of geometry parameters to the average cross-section n-value.

Because the flow sections are divided in one-foot intervals, wetted-perimeters of sub-section are almost constant throughout the cross-section. In this case, results from the wetted-perimeter weight method and numerical average method would be close to each other. Other parameters vary from the curb to the end of water, because of hydraulic depth decrease along the transverse slope. Most parameters decrease as a function of depth.

Figure 4.15 Example of sub-section n-values across the roadway cross-section by Prandtl-von Karman velocity distribution method

Figure 4.16 Example of averaging parameters across the entire roadway cross-section

4.5 Discharge Estimated by Velocity Distribution Methods'n-values

In the pervious section, various methods of averaging were used to estimating the average cross-section Manning's n-values. The type of estimation method considerably impacted the outcome of the average n-value. After the analysis, the overall average n-values (design n-values) by each method were determined. These overall average n-values were put back in to the Manning's equation to estimate discharges. A new discharge value is determined using the value of design n-values. The new discharges indicate the overall outcome of the estimated accuracy for that design n-value. The n-value estimated discharges of all roadway types are shown in Figure 4.17. The most accuracy can be obtained by the overall average n-value by actual discharge method. This method calculates n-values by directly inputting the actual discharge, total area, longitudinal slope and total wetted-perimeter in to Manning's equation. The result is the most accurate discharge possible. This estimation is comparable to a traditional design calculation. Where flow rate is calculated by average velocity of cross-section. Other methods are comparable with higher percent error.

According to Figure 4.17, most methods provide exceptional result of discharge. However, this research investigated performance of averaging system. Therefore the finest method for averaging shallow water flow over roadway was picked according to overall accuracy, consistency, and reliability. The averaging method by Krishnamurthy and Christensen was selected to be the finest method. Even though, this method provides moderate average result of all roadway types. It shows the most accuracy and consistency available.

Krishnamurthy-Christensen (1926) method was derived according to logarithm of the velocity distribution method. It shows more compatibility than other methods. Methods are limited by their empirical and basic assumptions, so they might not be suitable in this type of calculation. Some other methods such as discharge, depth, area, velocity and hydraulic-depth weights are consider good alternative for average n-value estimation. These methods provide good accuracy and consistency to the discharge result. The discharge results for four types of surfaces are shown in Appendix D.

There are two types of average n-values, constant and variable n-values. Figure 4.18 shows plots of n-values, the average constant n-value and the average variable n-values estimated by Prandtl-von Karman (1926) velocity method and Manning's equation with the actual discharge.

The constant n-value is estimated by numerical average of all n-values from each roadway surface. The actual numbers for constant n-value are shown in table 4.3. These constant n-values are not adapted to changing of discharge along the trend of nvalue. In fact, it is constant throughout the range of flow. The logarithm trend line shows high-value at the low flow and low-value at the high flow compare to the constant n-value. Consequently, results should be an over estimated at the low flow and under estimated at high flows. This type of n-value is a practical case for most standard design purposes. This unchanged n-value provides simplicity and enough reliability to normal design method. Accuracy from constant n-value is in acceptable range of error.

Another type of n-value is variable value. The n-values in this set are variable by estimated logarithm function on average trend line as shown in Figure 4.18. The variable functions were determined by an average logarithm plot of n-values. An equation of n-values varies with discharge can be obtained from least-square fit of data distribution. This method of n-value adapted to the change of discharge from low flow to high flow rate.

The accuracy of n-values and calculated discharges are noticeable improved over the constant method as shown in Figure 4.19. The results of discharge error by constant and variable n-value methods for the TxDOT concrete surface are shown in Figure 4.19. Most averaging methods with variable n-values show improvement over the constant n-values. The variable n-value method can easily be done by adding an estimated variable n-value equation to the Manning's equation.

Figure 4.18 Plots of average variable and constant n-values

The variable n-value method is not a practical method for traditional design calculation. The improvement of discharge accuracy is so small and may not worth the complexity in the traditional design calculation.

4.6 Affect of Roadway Slopes

Longitudinal slope and surface roughness of a roadway are main parameters for flow equation. Both longitudinal and transverse slopes affect the results of discharge calculations. The roadway slopes are indirect area-affects that results in different depth of water. In this research, an average velocity is estimated by the velocity distribution method. This method tends to generate more errors for low velocity calculation. Transverse slope tends to change the depth of water more rapidly than longitudinal slope. This is due to the fact that a percent adjust of transverse slope likely changed the water depth more than the same percent adjust of longitudinal slope. With increases or decreases of the water depth, velocity profiles change as the slope increases or decreases.

Figure 4.20 and 4.21 show effect of changing transverse and longitudinal slopes to the flow cross-section. The hydraulic depth and flow velocity change as a result of changing cross-section area and longitudinal slope. Flow velocity is increased by increase the longitudinal or transverse slope. Water depth is increased by increase the transverse slope or decrease the longitudinal slope.

Calculated discharge plots for the design n-value for TxDOT roadway surface are shown in Figure 4.22-4.23 and Appendix A. The percent discharge errors are arranged in different transverse or longitudinal slopes. A change in transverse slope tends to have more variation in discharge estimations than a change of longitudinal slope. Low transverse slope tends to have more error fluctuation than high transverse slope.

Figure 4.20 Comparison of roadway cross-section areas by different transverse slopes

Figure 4.21 Comparison of roadway cross-section areas with different longitudinal slopes

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The Prandtl-von Karman velocity distribution method provides acceptable results for estimating flows and n-values of roadway cross-section. Although, the roadway channel is a non-symmetry triangular channel, irregularly shaped channel, compared to typical man-made or natural channels, results still retain high accuracy of discharges compared to measured data. Accuracy and consistency of discharge and n-value calculations for all types of roadway surface are similar. These results imply the method is practicable. Thus, the velocity distribution method is appropriate to calculate flow discharge of these roadway cross-sections.

The discharge calculated from the velocity distribution method is verified with the measured discharge. The result shows consistency with minimal error percentage. The result also shows accuracy and consistency. Consequently a direct conversion of roughness dimension, k, to Manning "n" by theoretical equation transformation can be done with a theoretical transformation using equation 3.12 and 3.13.

This paper also analyzes various average methods of n-values to obtain a single cross-section n-value. The methods of estimating average n-values significantly impact the outcome. The percent error increases significantly by altering the averaging method.

Some methods provide outstanding accuracy on one surface but lack of consistency on the others. As a result, Krishnamurthy and Christensen's method, equation 2.42, was selected based on the most accuracy and consistency of discharge result. Krishnamurthy and Christensen's method n-values show minimum affect due to various flows and transverse and longitudinal slopes as shown in Figure C1.1-1.4 in Appendix C.

Laboratory n-values are shown to vary with increased discharge, and also vary at the same discharge value. Consequently, Krishnamurthy and Christensen's averaging method lacked to indicate discharge and slopes affects. The discharges calculated from constant n-value of all roadway surfaces, Figure 4.22, 4.23 and Appendix A, show the result of increasing percent error along the increasing transverse slope percent and decreasing of discharges.

Since the laboratory n-values show variation due to the discharge and slope. Two methods of n-value, constant and variable, are used in calculating discharge. The results of these two methods are shown in Figure 4.19. The comparison shows improvement of discharge accuracy from variable n-values. The improvement of discharge accuracy from variable n-values is small. It still implies practical uses of variable n-values for the design purposes. The achievement of variable n-value method over the contemporary method, constant n-value, is useful for roadway design. However, benefits of variable n-value might not be sufficient to override the use of constant n-value. Consequently, justification of use varies by the necessity discharge accuracy. It is conclusive that discharge and both slopes have effects on Manning's nvalue method and they appears to be the most significant factors for roadway hydraulic design calculation.

5.2 Recommendation for Future Research

The velocity distribution model could be applied to other types of channel or surfaces for further verification. This will extend the velocity distribution method to other types of channel.

Because of water waves, the total spread of the roadway section is estimated from an average of the maximum and minimum spread. This phenomenal creates the overestimated of the total spread. Elimination of water waves is recommended to improve the accuracy.

In this research, the longitudinal slope is based on theoretical survey estimation. The actual longitudinal slope variation can be used to improve calculation accuracy.

In the velocity equations, the estimated parameters, α and β , have the main affect to the outcome. These parameters can be optimized for the unique characteristic of the roadway surfaces, thus establishing a roughness value (k) for roadways. The optimization of α and β values should improve the accuracy and consistency of estimated discharges and n-values.

The rainfall effects should be evaluated with the velocity distribution method. This could provide incite on n-value impact. The amount of affect then should be compared to normal n-value and velocity distribution calculation. APPENDIX A

ESTIMATED DISCHARGE PLOTS

Figure A1.1 Velocity methods discharge estimations (asphalt surface)

Figure A1.2 Velocity methods discharge estimations (asphalt surface)

Figure A1.3 Velocity methods discharge estimations (asphalt surface)

Figure A1.4 Velocity methods discharge estimations (asphalt surface)

Figure A1.5 Velocity methods discharge estimations (asphalt surface)

Figure A2.1 Velocity methods discharge estimations (asphalt treatment surface)

Figure A2.5 Velocity methods discharge estimations (asphalt treatment surface)

Figure A3.1 Velocity methods discharge estimations (smooth concrete surface)

Figure A3.2 Velocity methods discharge estimations (smooth concrete surface)
Discharge Error Transe Discharge Error Transe Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market	3 3	-▲- Numerical Average -+- Velocity weight -B- Horton and Einstein -Δ- Pawowski and Muhlhofer Einstein
	3 3	result – – Qweight – – Wetted-Perimeter rall actual Q – – – Overall estimated Q er – Krishnamurthy
Ì		$ \begin{array}{c} 00 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 111 \\$

Figure A.J. Velocity methods discharge estimations (smooth concrete surface)

Figure A3.6 Velocity methods discharge estimations (smooth concrete surface)

Figure A3.7 Velocity methods discharge estimations (smooth concrete surface)

APPENDIX B

ROADWAY DATA TABLES

Dissbar	Oldconcre	ete Data		High Point	IVEON		Low Poin	Change	Aven	age		141	1.001			Doub (b)	-	+	Case	and Divertify	(a)		040	Val. and			Concert Dis	TO RAY	10	ç	- the second	
UISCRARD	DL (%)	(%) X/2	lein.	CWALL	Final		Initial	CTOOL	121	AMC		W	Pir (II)	1		Internation (III		T1m	spre	T T T T	(u)	Cmin	Cura Lis	Stance (in)	ľ	Thmin	pread LIS	(II) (II)	A 4	U Pread	n valu	Portabe
cfs		1	st run	2nd run	1st run	2nd run	1st run	2nd run 1	st run 2nd r	un CFS	1 ⁴⁰ Fun	Zhann	1ª run	Z nd nun 1	st run 2m	d run 1st	run 2nd	run 1st n	un 2nd r	un 1st ru	in 2nd run	1st nun	2nd run	1st run	2nd run	1st run 2	Ind run	strun 2	un nu pu			1000
90	0.5%	0.5%	0.495	0.494	0.495	0.495	100			0.4947	14.14	2 14.12	14.12	14.12	0.0785	0.079 0.	0.0785 0.0	0785 28.5	3375 28	875 28.9	688 28.906	33 28.937	5 28,9375	28.9375	28.9375	154.063	153.438	154.125	155.188 1	25.281 0	00601 0	005965
- 07	0.5%	0.5%	0	0	0					2	0	0	0 1 200	0.1	0	0.00	0 0	07 07 07 00	0 0	0.02	007 001	0 20.851	0 108:07 0	0 0007 0	0	0107/07	0 0 07	0	7 0 0 107	0		8
0	0.5%	0.5%	00	0 0	0			0	c	c	0 0			0 0	0 0	0 0			0 0		0 0		000	0 0	00	0 0	0 0	0 0	0 0	0 0		
- 60 ç	0.5%	0.5%							000		000			000	000	000	000		000					000	000	000	000	000		000	+	
2 1	0.5%	0.5%	0	0	0			0	0	0	0		0	0	00		0	0	0		0				0	0	0	0	0	0	1	
0.5	0.5%	1.0%	0.485	0.486	0.485	0.486				0485	14.1	2 14.12	14.12	14.12	0.1075	0.1075 0	.1075 0.	1075 28.8	9438 28.6	3125 28.8	438 28.812	28.937	5 28,9375	5 28,9375	28.9375	151.469	151.469	151.781	151.781	22.797 0.	014741 0	01755
- 0	0.5%	1.0%	1.025	1.03	104	1 034			+	1032	6 14.4	14.41	14.42	14.435	0.14	0.1425 0	1385	0.142 28.6	3563 28.5	5938 28.8	563 28.62 275 20 312	28.937	5 28.9375	5 28.9375	28.9375	172.656	174.938	173.313	175.063 1	45.359 0	010703 0.	012742
0 42	7850	1 0%	07070	2002	3,022	20.5	40		-	20702	R t	192.4	002.4	C02.+	C/07/0	U 0	00770	207 U	107 C710	0212 700	10.02 C/2	122.02 C	U 108/07 C	C128:07 0	0.258.07	121.212	231.313	0 212.727	(31.313 Z	0 788'00	n #52010	17104
1	0.5%	1.0%	0	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
6	0.5%	1.0%	0	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
10	0.5%	1.0%	00	00	00				00		0 0			00	0 0	0 0	0 0	00	0 0	0 0	0 0		000	0 0	00	00	0 0	0 0	00	8 0	+	
- 20	202 0	1 6.00	0 601	0.630	0.620	0 623		2		0.4717	5 14 14	14 14 14	14.14	14 14	0 104	0 101	0.104	C 301	0 75 20 0	0126 28 8	438 28.817	10 28 027	K 78 0274	0 00 027E	78 0275	120 244	0 244	110 74	0 020 011	0 1080 1	013220 0	0157.80
1	0.5%	1.5%	1.005	1.003	1.004	1.002				1 003	14.3	7 14.37	14.375	14.375	0.165	0.1675	0.165	0.168 28.5	5938 28.6	563 28.5	938 28.593	38 28.937	5 28.9375	28.9375	28.9375	144.875	146.313	144.906	146.438	17.023 0	014463 0.	017219
m	0.5%	1.5%	3.008	3.009	3.008	3.006				3008	14.95	5 14.96	14.965	14.96	0.231	0.238 0	2315 0.	2385 28.3	3125 2	8.25 28.2	813 28.218	38 28.937	5 28.9375	28.9375	28.8375	200.75	205.5	201.313	205.875 1	75.094 0.	014016 0.	016687
0	0.5%	1.5%	5.029	5.033	5.031	5.03	0	4	•	5031	5 15.2	15.34	3 15.325	15.33	0.274	0.281 0	2755 0.	2825 28.1	1563 28	125 28.	125 28.12	25 28.937	5 28.9375	28.9375	28.9375	234.75	235.188	233.875	235.031 2	06.578 0	012074 0.	014375
- 0	0.5%	1.5%			0									0	0				-							0	-	-	-	-	+	
10	0.5%	1.5%	0	0	0			0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	t	
11	0.5%	1.5%	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0.5	0.5%	2.0%	0.494	0.498	0.497	0.496				0.4967	14.1	2 14.12	14.12	14.12	0.125	0.126	0.125	0.125 28	625 28.	5625 28.	625 28.593	28.937	5 28,9375	28.9375	28.9375	91.625	91.625	30.6875	30.6875 6	2.5547 0.	007848 0.	009343
- 0	%97 D	2.0%	1.025	1000	1.02	1.02				1/2/1	14.5	B 14.35	14,38	14.38	0.1725	0.1/45 0	1735 0.	1/45 28.4	87 BBB	375 28.4	375 28.405	700 00 28.837	2198.83.4	28.93/5	28.83/5	123.844	126.656	124.281	126.688 8	6.9453 0.	012342 0.	014693
21 00	950	2.0%	5 001	3.007	5,002	3002	0 10		+	5007	15.31	4 15.32	15.34	15.33	0.2905	0 286 0	0 90BC	7 CRC7	8.25 26. 27.6	7 87 6181	375 27.87	158.831	108.87 0	C128.82 0	2/28/32/5	207 125	210.75	512.11	111188	81 188 D	0 200110	015773
- 10	0.5%	2.0%	0.712	0.713	0.713	0.714	6.2	9 6.295	6.289 6	294 7.00	15.8	1 15.58	15.62	15.58	0.344	0.3505 0.	3405	0.346 27.5	5313	27.5 27.5	27.5 27.468	38 28.937	5 28,9375	28.9375	28.9375	226.469	230.281	225.563	231.063 2	00.844 0	012282 0	014622
00	0.5%	2.0%	2.715	2.719	2.718	2.721	6.27	6.271	6.273 6	274 8991	5 15.6	6 15.82	15.89	15.81	0.373	0.379	0.372 0.	3805 27.3	3438 27.3	2813 27.3	438 27.343	38 28.937	5 28.9375	28.9375	28.8375	237.313	237.313	237.313	237.313 2	08.984 0.	010959 0.	013047
10	0.5%	2.0%	00							0 0	0 0			0 0	0 0	0 0	0 0					0 0	000	0 0	00	0 0	0 0	0 0	00	0 0	1	
0.5	7950	2 5%	0.619	0.614	0.619	0.614		2		0.618	5 14 1	1 1525	14 14	7 1515	0.164	0.184	0.182	163 28 6	5683 28 T	2813 28 R	582 28.812	78 98 937	5 68 34 36	28 9275	58.5	87.75	43.875	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 R13 3	7 2031 D	U CRUBUU	011120
1	0.5%	2.5%	1.0295	1.03	1.03	1.0306	102			1.0	13 7.86	5 7.294	14.385	7 2935	0.195	0.197	0.195 0.	1965 28.4	1688 28.	7188 28.4	688 28.7	15 28.937	5 71.1875	28.9375	71.3438	111.719	55.25	111.125	5.2188 5	4.7266 0	012869 0.	015309
m	0.5%	2.5%	3.012	3.006	3.012	3.006				3.00	14.96	5 7.6375	5 14.965	7.6365	0.279	0.282	0.278	0.283 28.2	2813 28	625 28.2	813 28.593	38 28.937	5 91.0313	28.9375	91.3125	153.344	76.6875	153.313	77.0313 8	8.6484 0	012151 0.	014466
0 1	0.5%	2.5%	4,9995	2 507	4.996 0.7555	4,8854	5 2564	5 10.0405	R 267 100	1984	15.33	7.8854	15.3375	7.865 0 0065	0.355	0.3615 0	0 35/50	3625 27.1	1813 28.4	17.12 2010 27.41	813 28.406	75 28.937	5 103.844	28.9375	103.281	179.563	97 2420	179.813	30.3438 1	10 60.789 0.	012026 0.	014318
- 60	0.5%	2.5%	2.7265	4.499	2.7245	4,496	5 6.261	9 11.113	6.267 11	079 12293	15.882	5 8.15	15.855	8.1565	0.442	0.4465	0.44	0.446 27.2	2813 28.2	2188 27.2	813 28.2	28.937	5 126.813	28.9375	126.063	217.969	106.375	219.375	1 896.901	34.914 0	013642 0.	016242
10	0.5%	2.5%	0	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
11	0.5%	2.5%	0 678	0.610	0.634	0.610		0	-	0	0	14 14	0 14	0	0 1015	0 10010	0 2121	0 00 3131	0 2200	076 20	076 00 010	10 00 20	10000	0 00 00 D	0 0275	00100	30100	0 12	3 37 00	0 COUNT	0 00000	011022
-	705 0	3.0%	0.008	1006	120.0	1004			+	100	11 14 3	0 14 205	14.70	14 205	0.005	0 200 0	0.0	CUC CUC	8 75 20	28.5 28.5	312 28.406	108.02 02	2108/07 2	20.8010	20.8375	C210.00	102 375	21.20	2 01.20	1.4600 U	0 070000	0.160766
- 07	0.5%	3.0%	3.018	3.01	3.009	3.01	-			3,0117	5 14.8	6 14.96	14,96	14.96	0.293	0.287	0.296 0	0.296 28.4	1375 28.2	3125 28.4	375 28.343	28.937	5 28,9375	28.9375	28.9375	144.563	146.531	145	146.813 1	17.344 0	013178 0.	015689
ŝ	0.5%	3.0%	4.987	4.984	4.983	4.983				4.9842	15.3	4 15.325	15.34	15.325	0.3755	0.3815 0.	3735	0.38 28.4	1375 28	375 28.4	688 28.406	33 28.937	5 28.9375	5 28.9375	28.9375	162.406	164.625	161.688	164.719 1	34.938 0.	012333 0.	014683
~ 0	0.5%	3.0%	0.713	0.714	0.712	0.715	3 6.29	3 6.295	6.292 6	295 7.00	15.1	15.55	15.62	15.59	0.399	0.4055 0	33955	0.404 28.4	1688 28.4	1063 28.4	375 28.437	15 28.937	5 28,9375	28.9375	28.9375	181.563	183.781	180.625	184.656 1	54.219 0	012508 0.	014891
10	0.5%	3.0%	07.1.7	0.7	0	2.42	07:0	707.0	0 IO7:0	U 107	0 10.	0.0	00.01	0.01	0	0004-0	0	17 JOHN	0 2013	017	017.17 07.	00 20.30/	0 108.07	0 20.002	0.0007	010.001	0.002	07.001	0.002	0.000	0.00010	0.104/10
11	0.5%	3.0%	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0.5	0.5%	4.0%	0.523	0.523	0.522	0.523	0			0.5227	75 14.1	4 14.14	14,14	14,14	0.18	0.1815 0	1775 0	0.181 28.4	4688 28 _/ 4	1063 28.41	688 28.466	38 28.937	5 28,9375	5 28,9375	28.9375	79.8125	80.5	79,5938	30.5625 5	1.6641 0	014737 0.	017545
-	0.5%	4.0%	0.986	0.986	0.987	0.98				0386	14.35	5 14.38	14.385	14.385	0.2035	0.208	0.201 0.	2065 2	8.25 28.	1875 28.2	188 28.093	38 28.937	5 28,9375	28,9375	28.9375	8	91.25	5.68	91.1875 6	2.2969 0	013178 0	01569
	9550	4.0%	3.005	3.006	3.004	3.006	0 -		+	3.0052	14.91 14.91	5 14.96	14.965	14,965	0.322	0.3255	0.322	1.326 27.1	7813 27.1	7188 27.7	813 27.718 27.778	28.937	5 28.837	28.9375	28.8375	126.063	128.5	125.281	128.906 9	9.4375 0.	013857 0.	016497
-10	0.5%	4.0%	0.676	0.676	178.0	0.676	6.324	4 6.321	6.334 6.	339 7,0057	15.8	2 15.58	1 15.62	15.58	0.423	0.431	0.425 0	4325 27 3	3125 2	7.25 27.3	125 27.312	28.937	5 28,9375	28,9375	28.9375	156.938	161.063	157.188	162.156 1	32.039 0	012733 0	01516
m	0.5%	4.0%	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
10	0.5%	4.0%	0	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	
=	0.5%	4.0%	0 100	0 000	0 100			0	-	0	00		0	0	0 007 0	0 100	0 000	0 000	0	0	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 00 00	0 00 00 0	0 00	0 000	0	0	0 0100	0 0000	0 00100		
0.0	952 0	90.0 S	0.982	0.493 0.086	0.483	0.494	-		+	0.98	14 38 14 38	5 14.14.14	14.12	14.385	0.766	0.180 0.78	0.758	781 781	375 283	37 C7 19	212 28.34	158.83	2/08/87 4	C108/872	28.8375	80.4375	81 875	R0.6875	0.3125 4	2.0469 U	012251 U	013626
3	0.5%	5.0%	3.009	3.007	3.01	3.006	1 100			3008	14.9	6 14.96	14.96	14.96	0.392	0.4	0.391	0.402 28.1	1875	27.5 28.	125 27	5 27.437	5 28.9375	27.375	28.9375	106.688	109.625	107.5	09.063 8	0.3906 0	011273 0.	013421
5	0.5%	5.0%	5.046	5.044	5.048	5.041				5,0442	15.2	4 15.30	15.34	15.33	0.484	0.498	0.482	0.5 27.0	0825	27 27.	125 2	28.937	5 28,9375	5 28.9375	28.9375	127.438	131.125	128.375	131.688 1	02.609 0.	012309 0.	015369
- 0	0.5%	5.0%							-	-				0	-		•	-				-			0	0	0	0		-	+	
10	0.5%	5.0%	0	0	0				0	00				0	0	0	0	00				5 6		0	00	20		50	0	00	t	Γ
11	0.5%	5 044		G	C			0	, c	c	a c		0	0	0		0			, .		o e		0	0	0	0	0		-	t	Γ

Table B1.1 Smooth concrete surface data

O Dischard SI	Idconcrete	e Data	H	gh Point	CECI		Low Point	Clove 10	AVE	rage	10	_	10.000			Dante	(0)		- U	and Die T	(a)		Curk Dist	ana (a)		Enter	of Dive TO 6	1	VIVC	law a	9
actual Q	2	- In the second	libal	-	Inal		Initial	E	nal	AVIC	1	Initial	felt up to	Final	Min	N N	Max	F	min	T2m	3K	Cmin		Cmax	Th	min	T2max		Spread	Geometrill	ntegrated
cfs		-	st run 2nu	d nun	Ist run 2	2nd run	1st run	2nd run 1:	strun 2nd	Inn CF\$	1ª NI	n 2 rd run	1ª run	Z rd run	1st run	2nd run	1st run 2r	nd run 1s	trun 2nd	drun 1st n	un 2nd run	1st run	2nd run	1st run 2n	id run 1st	trun 2nd n	un 1st run	2nd run	<u> </u>		
9.0	1.0%	0.5%	0.485	0.487	0.485	0.487			-		0.486 14	4.12 14	112 14.	12 14.1	2 0.043	0.043	0.043	0.044	29.25 28	9.1875 29.	1875 29.187	5 28.9376	28.9375	28.9375 2	8.9375 16	96.188 16	1188.1	25 168.56	3 137.141	0.009298	0.01107
- 0	1000	04.0 U	3006	2 00K	300.5	120.1			+	20	11 3C30	0.45 1.4 0	MA 14 04	10 14 04	0.105	0104	0.176	0.121	20 75 90	0 0200 F	C3 00 27 0	28.93/12	2128.97	C 3750.00	01 01260 0	181 C71.89	1.120 13U.1	12 227 21	0 101.409	0.004607	0.000156
0 40	1.0%	0.5%	0	0	0000	0				Ye	0700	0	0	Dit 0	0 0.12	0	0	0	0 0	0 0	0.02	0 00007	0 0	0	0.00010	0 0	0 201.0	0	0 0007	/000400010	104001/
~	1.0%	0.5%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
8	1.0%	0.5%	0	0 0	0		0	0	0 0	0	0 0	0 0	0	00	0	0	0 0	00	0 0	0 0	00	00	0 0	0	00	0	0 0	0 0	00		
2 =	1.0%	0.5%	-	0	-	50			-																						
99	1.0%	1.0%	0.502	0.503	0.502	0.502				0.50	0225 14	4.14 14.1	141 14.1	14 14.14	1 0.083	0.084	0.084	0.084 2	9.0625	29 29.0	1625 29.062	5 28.9375	28.8375	28.9375 2	8.9375 12	23.438 124	438 120.12	25 121.18	83.25	0.010153	0.012088
-	1.0%	1.0%	1.002	1.001	0.998	0.999				H	-	14.4 14.5	399 14.40	01 14.	4 0.108	3 0.112	0.105	0.11	28.875 28	3.8125 28.5	3125 28.812	5 28.9375	28.9375	28.9375 2	8.9375 15	54.188 156.	438 153.60	88 156.063	3 126 266	0.011442 (0.013622
m	1.0%	1.0%	2,991	2.995	2 983	2 994				2.8	9325 14	4.96 14.1	965 14.5	95 14.95	5 0.175	5 0.181	0.173	0.18 2	8.0625	28.625 28	625 28.562	5 28.9375	28.9375	28.9375 2	8.9375 21	15.438 219.	125 215.83	38 220.18	8 189 203	0.01123	0.01337
0 1	1.0%	1.0%	66.9	4.989	4.991	4.989	0	c	c	4	8975 1	5.35 15	38 15.	36 15.3	0.201	0.211	0.199	0.21 2	8.4375	28.375	28.5 28.431	5 28.9375	28.9375	28.9375 2	8.9375 23	37.313 237.	313 237.3	13 237.31	3 208.875	0.008763 (0.010433
- 0	1.0%	1 0%		-		C					-																				
¢	10%	1 0%	-	-	-				-								-	-	-									0 0			
2=	1.0%	1.0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0.6	1.0%	1.5%	0.504	0.503	9.0	0.498				0.9	0125 14.	145 14	14 14	14 14.1	4 0.083	3 0.095	0.092	0.095	29.375 29	3.3125 29.5	3125 29.312	5 28.9375	28,9375	28.9375 2	8.9375 9	33.125 93.8	125 92.68	75 94.6875	5 64.25	0.007366 0	0.006758
-	1.0%	1.5%	0.987	0.986	0.981	0.983				0.9	8425 14	4.37 14	37 14.31	75 14.37	5 0.121	0.124	0.119	0.123 2	8.9375 26	3.8125 28.5	9375 28.7	5 28.9375	28.9375	28.9375 2	8.9375 12	27.438 130.	375 128.3	75 130.063	3 100.203	0.012268	0.01463
0	1.0%	1.5%	2,997	2.996	2.999	0					2 998 14	955 14	96 14.96	65 14.9	6 0.191	0.196	0.191	0.196 2	8.6875	28.625 28	1625 28.562	5 28.9375	28.9375	28.9375 2	8.9375 17	70.063 173.	625 168.1	25 172,681	142.5	0.010303	0.012266
9	1.0%	1.5%	4.98	4.979	4.983	4.998				4	9875 1	5.34 15.	343 15.3	25 15.3	0.221	0.225	0.22	0.225 2	8.4375	28.375 28.4	4375 28.431	5 28.9375	28.9375	28.9375 2	8.9375 16	39.438 193.	063 190.1	25 193,681	8 163.156	0.0068822	0.010575
- 0	1.0%	1.5%	0.737	0.74	0.739	0.735	6.289	6.289	6.296	6.297 7	1305	5.62 15.1	615 15.4	62 15.61	0.245	0.251	0.242	0.25 2	8.1875	28.125 28.	1875 28.187	28.8375	28.8375	28.9375 2	8.8375 23	37.313 237.	313 237.3	13 237.31	209.141	0.01224 (0.014572
20 00	40°C	1.076	-	-	-	00		-	-		-							-		-		50									Ι
2 ==	1.0%	1.5%	0	0	0	0	0	0	0	0	0	, 0		0 0	0	0	0	0	0	0	0 0	0	0	0	0		0	0	0		
0.6	1.0%	2.0%	0.505	0.503	0.504	0.503			2	0.6	0375 14.	105 14	11 14.11	14.1	1 0.107	0.11	0.11	0.113 2	8.9375	28.875 28	875 28.812	5 28.9375	28.9375	28.9375 2	8.9375 82	2.8125 82.8	125 81.062	25 81.062	5 53.0625	0.007061	360300
-	1.0%	2.0%	1.012	1.01	1.01	1.009				1.0	1025 14	4.38 14	38 14.36	95 14.3	8 0.135	5 0.139	0.133	0.139 2	8.8125	28.75 2	18.75 28.687	5 28.9375	28.9375	28.9375 2	8.9375 10	06.688 108.	125 107.18	88 108.93	8 78.9844	0.010193 0	0.012135
0	1.0%	2.0%	2.991	2.992	2.991	2,993			+	2.8	9175 14	4.94 14	95 14.5	95 14.9	5 0.203	3 0.21	0.201	0.207 2	8.4375	28.375 28.4	4375 28.31	5 28.9375	28.9375	28.9375 2	8.9375 15	50.438 154	4.75 148.8	13 153.06	3 123.359	0.011316	0.013472
0	1.0%	2.0%	4.894	4.995	9	4.997	0.000	0.000	000	4	9965 15.	345 15	35 15.2	34 15.3	4 0.261	0.268	0.261	0.269 2	8.0625	28 28.0	0625 28.062	5 28.9375	28.9375	28.9375 2	8.9375	169.5 173	688 170.0	63 173.87	5 143.734	0.010161	0.012098
- 0	1.0%	2.076	0.07EA	0.01/	0.6/8	11910	075:0	C75.0	72:0	2 700	CI 100	21 290	10.01 10.0	0,01 01	0000	197.0	0.273	2 9770	47.00.2	970 2700 7	106.12 BL	0/08/92 0	2/28/33/2	2 2/08/07	01 01/08/09	50.063 199.	180.01	00 187/308	0 101.405	0.00000	1911010
20 0	1 0%	2.075	2 800	2 607	2 802	2 807	CTC 3	200.0	8 781	8 76 0	0000 10 10 10 10 10 10 10 10 10 10 10 10	21 Dec 24	0.01 10.01	15.0	1 0 207	0.311	0.20C	1000	7 0108.1	77 376 77	10.12 27.01	C 20.8310	70 0275	C 3750 00	0.33573 20	201 000 702	212 218 40.00	100 200 200 200	103 162 166	0.0117330	0.011244
2 ==	1.0%	2.0%	4.723	4.72	4.718	4 721	8.279	6.278	8.263	6 26 10	9905 16	802 160	125 16.0	19 16.00	3 0.313	0.322	0.312	0.321	27.875	27.75 27.8	3125 27.7	5 28 8375	28.9375	28.9375 2	8 9375 22	37.313 237	313 237.3	13 237.31	3 209.516	0.01266	1015072
0.5	1.0%	2.5%	0.523	0.524	0.526	0.526				9.0	2475 14	125 14.1	125 14.12	25 14.12	6 0.135	0.15	0.138	0.145	28.75 28	3.6875 2	8.75 28.812	5 28.9376	28.9375	28.9375 2	8.9375 80	0.6875 81.5	625 80.43	75 81.812	5 52.375	0.009412	0.011206
-	1.0%	2.5%	0.999	0.999	0.999	0.999				-	0.999 14	4.36 14	36 14.5	36 14.3	6 0.15	5 0.16	0.152	0.165 2	8.5625	28.5 28.5	5625 28.62	5 28.9375	28,9375	28.9375 2	8.9375	31.375 92	875 91.43	75 92.8125	5 63,5625	0.006308	1009691
00	1.0%	2.5%	2,994	2.992	2.993	2.991				2	9925 14	4.96 14	14.1	96 14.9	6 0.2	0.22	0.202	0.215	28.5 28	8.4375 28.4	4375 28.431	5 28.9375	28.9375	28,9375 2	8.9375 14	41,063	145 14	45 145.06	3 115.578	0.013966 0	0.016627
01	SU.1	2.5%	4,968	4,88	4.883	4.887	0000	200.0	0000	4 100 0	1 2000	0.30	10.10	20 19 2	20 020	1282	197.0	0.282 2	8.3125	7 97.97	2.82 202	28.8375	28,8375	2 9/98/97	8.8375 16	101 202 101	500 170 0	72 151.81	3 133.422	0.012068 0	0.014368
- 0	1.0%	2 596	2 701	707.0	2 709	080'N	887.9	6.282	8 281 6	5,287,8.9	1 2789	5 86 155	15 15 8	15 84	5 0.37	0.375	1287.0	0.338 2	21.82	77 875 27	1.12 0200	5 28.8375	2/28/07	C 9288/87	8 9375 19	21 688 193	375 190.56	18 19 281	164.25	0.011009	0.013107
10	1.0%	2.5%	3.77	3.77	3.772	3.769	6.286	6.286	6.276	6.281 101	0625 11	5.96 15	96 15.5	31 15.9	6 0.35	0.365	0.349	0.362	27.75	27.625 27.6	3875 27.562	5 28.9375	28,9375	28,9375 2	8 9375 19	37.375 199	563 198.3	13 200 2	5 171.219	0.010864 0	0.012934
÷	1.0%	2.5%	4.759	4.761	4.76	4.757	6.252	6.261	6.256	6.261 11	0168 11	6.08 16	16.0	1.	6 0.37	7 0.385	0.367	0,383	27.5	27.375 27.4	4375 27.37	5 28.9375	28.9375	28.9375 2	8.9375 19	39.438 204.	625 200.06	63 205,81	3 175.063	0.011602 0	0.013813
0.5	1.0%	3.0%	0.49	0.489	0.49	0.489			+	Ó	4895 14	125 14.	125 14.12	25 14.12	6 0.118	0.12	0.12	0.12	28.625 28	9.5825 28.	5825 28.562	5 28.9376	28.9375	28.9375 2	8.9375 76	5.5625 76.5	825 75.68	75 75.687	5 47,5469	0.010587	0012605
	1.0%	3.0%	0.989	0.991	0.992	0.993			+	50	B125 14	375 14	375 14.3	75 14.37	5 0.165	0.168	0.164	0.168 2	8.3125	28.25 28	375 28.2	5 28.9375	28.9375	28.9375 2	8.9375 84	4.4375 86.5	625 84.1	25 86.687	57.1563	0.0006511 0	0.010133
94	1.078	3.079	200k	4 000	1 000	3.005			+	504	1 2010	4 24 AC 4	011 10	241 00	267.0 0	7070 0	067-0	0.001	07 01 02	10 27 20	TON 87 C700	10 28.8370 K 20 0276	20.025000	C 3400 00	0.00076 1/	721 000 L1	120 121 221	00 151.00	07.701 0	0.0122213	1012001
2	1.0%	3.0%	D.704	0.703	0.706	0.707	8.287	6.273	8.275	8 275 8	1 5175	5.82 15	62 15.5	15.51	9 0.333	0.339	0.331	0.338 2	7.8875	27.825 27.6	1875 27.562	5 28 9375	28.9375	28.9375 2	8 9375 15	57.375 159	0.63 158.47	38 101.33	0 131 078	0.011092	013206
8	1.0%	3.0%	2.743	2.735	2.742	2.737	6.271	6.278	6.276	6.279 9.0	1525 15	5.87 15	82 15.6	87 15.8	2 0.352	2 0.355	0.35	0.355	27.825 21	7.5825 27.5	5625 27.	5 28.9375	28.9375	28.9375 2	8.9375 17	71.188	174 170.60	88 173.75	5 144.844	0.011221 0	0.013369
9	1.0%	3.0%	3.746	3.742	3.743	3.74	6.256	6.257	6.256	6.255 9.9	9875 11	6.01 15	94 161	01 15.9	6 0.362	0.368	0.36	0.367 2	7.4375 27	7.4375	27.5 27.431	5 28.9375	28.9375	28.9375 2	8.9375 17	76.313 180.	188 177.18	88 180.43	151.078	0.011325	0.013483
30	1.0%	3.0%	4.753	4.102	9.76	0.620	907.9	9.258	97.9	9.204	1 010	al 80.0	101 101	191 90	0.383	0 115	0.382	885.0	21.375 2	13125 ZI	10.00 2020	21/28/33/0	28.8375	2 2128.8315 2	11 0/18/80	74 710	2053 1/8.4	74 74 0004	8 152.938	0.010609 0	0.012631
0.1	1.0%	4.0%	1 006	0.906 D	0.908	0.994			-	2	90455 14	375 145	375 14.37	75 14 37	5 0.17	0.130	0.17	0.172 2	0,00,00	33125 20.2	10.07 C200	5 78 9376	78 9375	20,83010 2	0.0010	BU 75 BU	8.75 RD 87	75 80 937	50.95 05 5	0.010945	1/12/2010
. 09	1.0%	4.0%	3,004	3.004	3.008	3.01			-	e	0065 14	4.96 14	95 14.8	14.8	5 0.265	0.27	0.26	0.273 2	8.1875	28 28	125 28.062	5 28.9375	28.9375	28,9375 2	8 9375 10	00.063 102	813 101.3	75 105.62	74.375	0.009084	0.010815
40	1.0%	4.0%	4,983	4.983	4 989	4.989				-	1.986	5.34 15	31 15.2	34 15.3	1 0.3	0.305	0.295	0.31 2	7.8125	27.625 27	875 27.7	5 28 9375	28.9375	28,9375 2	8 9375 12	20.938 126	813 121.06	63 12	7 96.1875	0.010935	013019
2	1.0%	4.0%	0,696	0.695	0.696	0.695	6.297	6.298	6.296	6.298 6.9	9275 1	5.63 15	61 15.6	53 15.6	1 0.37	7 0.375	0.385	0.38	27.5	27.375 27.4	4375 27.312	5 28.9375	28,9375	28,9375 2	8.9375	136.25 140.	313 135.56	63 14	1 110.875	0.011349 0	0.013511
00 0	1.0%	4.0%	2.724	2.738	2.723	2.74	6.268	6.282	6.276	6.281	9.008	5.86 15	84 15.1	86 15.8	0.395	5 0.405	0.397	0.41	27.375	27.25	27.5 27.431	5 28.9376	28.9375	28.9375 2	8.9375	146 152	938 147.06	63 152.62	5 122 266	0.011449	0.013631
2:	1.0%	4.0%	3.806	3.806	3.805	3.808	192.9	807.9	907.9	2 246/ 1U	1 000 1	5.09 15 2.00 16	10.91 10.91	2 13 B	140 0.46	1425	0.42	0.40	21.25	21.120 21.12	181.12 0216	28.8375	28.8375	C 9108/87	8.8375 10	50U.363 135.	10.161 888 0.731 3c3	50 156.12	126.141	0.011122	0.013241
90	1 0%	5.0%	0.495	0.400	0.408	0.490	07:0	067-0	27.0	100	97.25 14	1 125 14 1	105 14 15	101 101 24	0.154	0.154	0.155	0.166 2	8 3125 28	12126 285	1125 28.312	5 28 9376	20.0010	20,0010 2	0.0010	2 6875 83 8	875 82.43	75 82 427	34.75	0.0103610.0	1012235
-	1.0%	5.0%	1.028	1.029	1.029	1.03				5	029 14	395 14.2	395 14.36	35 14.39	0.19	0.191	0.19	0.192	28.25 28	3.1875 28.1	1875 28.187	5 28.9375	28.9375	28.9375 2	8.9375	74.5 74	4.75 74.3	75 74.687	46.375	0.011269	0.013441
m	1.0%	5.0%	3	2.997	2,994	2 997					2 997 14	4.97 14	97 14.5	97 14.9	7 0.291	0.298	0.289	0.297	28 23	7.9375	28 2	8 28.9376	28.9375	28.9375 2	8.9375	95.5 97.	125 94.68	75 98.062	6 68.3594	0.007559 (0.011618
0	1.0%	5.0%	4,984	4,99	4.982	4.986	2000	0000	0000	4 000	9855 14	345 14	14.3	45 14.3	0.333	0.338	0.33	0.34 2	7.6875	27.625 27.1	5875 27.562	5 28.9375	28.9375	28.9375 2	8.9375 11	15.438 118.	125 114.6	118.81	89.125	0.012263	0.014599
- 0	1.0%	2.076	207.0	201.0	2.720	0.700	0.001	0.285 B 246	787.0	2.0 0.02.0	1 20.30	21 20.0	10.10	0/CI 20	0.00 b	1820 0	0.421	2 80'D	2020 L	17 218-17	1217 201	2/28/87/0	2128.07	C 3155/87	1 2/22/0	001 21 301	212 126.4	20 131.181 20 130 061	1102.003	0.012227	0.015051
0	1.0%	5.0%	3.746	3.739	3.744	3.743	6.248	6.245	6.247	5.247 9.9	8975 15	5.96 15	15.6	31 15.90	9 0.451	0.46	0.45	0,459	27 26	5 8375	27 26.87	5 28.9375	28,9375	28,9375 2	8 9375 14	13.813 145	375 142.6	88 145,56	117,406	0.013333 0	0.015874
11	1.0%	5.0%	4.737	4 732	4.734	4.73	6.263	6.27	6 269 6	8 268 111	11 8000	8 D5 16	01 16.0	18.0	3 0.475	5 0.481	0.473	0.48 2	6 9375 26	5 9375 26 5	1375 26.937	5 28 9375	28 9375	28,9375 2	8 9375 15	50.438 15	53.5 149.6	88 153,681	8 124 891	0.014269 (0.017012

Table B1.2 Smooth concrete surface data

	arte	niIntegrater	0.010865		0.007896	0.010181			0.011651	0.011964	/9090010 1	0.012894	00571010	10//10#	11001301	0.014124	0.011905	7112100	0.014627	0.011218	0.013171	0.014552	0.010672	0.011497	0.012824	0.014609	0.01438	0.01225	0.011806	0.012227	0.010361	0.014437	0.014406	0.01383	1 0.013855	0.010583	0.012328	0.014201	A DULESCE
	-	Geometr	0.006442		0.006632 0.010165	0.006552			0.009786	0.01004	10.007868	0.01083	0.012187	10//0# 0	0.011684	0.011863	0.00913	30.01011828	0.012266	0.009422	0.011063	0.00378	7 0.008964	0.006657	0.010772	8 0.012271	0.012076	0.01029	0.009316	0.01027	0.008700	0.012126	1012192	0.011617	8 0.011630 8 0.009713	0.006865	0.010365	0.011926	0.017000
	201V	Spread	In 121.328 195.813 208.578 0 0 0	000	68.8594 106.359	150.938 208.859	00	00	83.5156	82.875	137.094	175.406	209.422	0 0000	72.3281	110.234	142.094	157,469	182.172	45.375 58.4844	93.7031	117.891	131.047	144.922	42.3281	8896,98	104.922	123.047	126.406	35.0469	42.5469 87 0688	87,8594	109.953	112.281	30.2813	37.7344	59.8438	86.6719	000000
			2nd run 150.438 225.5 237.313 0 0 0		97.125 135.938	181.125 237.313	00	00	93.125	112.938	167.75	205.938	237.313	0 50.00	101.438	141	172.75	187.125 203.938	211,438	73.5	123.188	152.188	161.188 169.063	176.438	71.25	116,938	134.938	152.75	155.188 159.813	63.4375	70.6875	118.375	129.168	142,688	146.063 58.6875	66.8125	117.188	117.188	000 000
	(m) (L P	L2max	149.5 149.5 225.938 237.313 0 0	000	97.125	177.75 237.313	0 0	00	93.125	111.125	161.063	200.438	237.313	0 2022 10	2700110	137.125	151.55	183.125 198.188	207.688	73.5	120.438	144.938	157.083	169.125	71.25	114.438	130.5	149.188	151.438 155.438	63.4375	202	114.125	125.438	138.188	58.6875	65.1875	101.5	111.125	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cheese C	phreau Cir	151.125 224.5 237.313 0 0	000	98.8125 136.938	181.5 237.313	00	00	91.5825	112 313	169.5	206.563	237.313	0 72	102 938	140.125	171.938	7035	212313	74.75	123.125	152.313	167.212	175.25	70.8125	116.375	134.813	152.938	156.438 159.938	63.9375	71.5	118.125	129.063	141.5	59.375	67.0625	105.688	116.5	
	ď	Imin	st run 2 150.438 223.125 237.313 0 0	000	98.1875 133.125	178.188	00	0 0	91.5825	110.188	163.125	201.125	237.313	0,75	100.438	136.188	167.188	184.188	208.438	74.75	121.063	144.438 150.438	156.688	169.313	70.8125	113.125	131.75	148.438	153.125 156.688	63.9375	71.1875	113.125	126.188	136.438	59.375	65.6875	85.4375 102.438	112.188	
$ \begin{array}{ $			28.9375 28.9375 28.9375 28.9375 28.9375 0 0	000	28.9375	28.9375	00	00	28.9375	28.9375	28.9375	28.9375	28 9375	0 0076	28.9375	28.9375	28 8375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	
$ \begin{array}{ $	100 (01)	max	atrun 2 89375 2 89375 2 89375 2 0 0	000	8.9375	3756,99	00	00	9375	9375	619312	9375	93375	0 0.076	0/08/02	8,9375	C/52/00	8.9375 98.9375	5106.93	9375	9375	28.9375 28.9375	28.9375	93375	2759.9375	5/08/02	9375	8,9375	3759.99	9375	28.9375 P	93375	0193375	9375	5/06/82	9375	3758.89	9375	
$ \begin{array}{ $	out Dista		10 11 11 12 10 11 12 10 11 12 10 11 12 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	000	8.9375	8.9375	00	0 0	8.9375	8.9375	8.8375	8.9375	8.9375	0 0.07.6	8 9375	8.9375	8,8375	8.9375	8,9375	8 9375	8.9375	8.9375	8.9375	8,9375	8.8375	8.9375	8.8375	8.9375	8 9375 2	8.9375	8.9375	8.9375	8 8375	8.9375	8.8375	8.8375	8.9375 2	8 8375	
Market (Market	_	uin (t run 2n 8 8375 2 8 8375 2 8 8375 2 0 0	000	8.9375 2 8.9375 2	8.9375 2	00	00	8.9375 2	8.9375 2	8.9375 2	8.9375 2 8.9375 2	8.9375 2	0 0000	8 8375 2	8.9375 2	8.8375 2	8.9375 2 8.9375 2	8.9375 2	8.9375 2	8.9375 2	8.9375 2 8.9375 2	8.9375 2 8.9375 7	8.9375 2	8.9375 2	8.9375 2	8.9375 2	8.9375 2	8.9375 2 8.9375 2	8.9375 2	8.9375 2 8.9375 7	8.9375 2	8.9375 2	8.9375 2	8.9375 2 8.9375 2	8 8375 2	8.9375 2 8.9375 2	8 9375 2	
$ \begin{array}{ $	╞┼	5	1 run 15 3 9 0 25 21 3 9 3 75 21 2 8 75 21 0 0		3.9375 2 3.8125 2	28.625 20	00	00	3.8125 2	3.6875 2	3.1875 21	3.0625 21	27.875 2	0 076 0	8.8875 21	3.3125 2	28.125 2	28 21	27.75 2	28.75 21	9.1875 2	7.9375 21	7.8125 21	27.625 2	28.625 2	3.1875 2	28.125 2	27.75 2	27.625 2	28.625 2	28.375 2	28 2	7.5625 21	27.375 2	27.25 2	28.375 2	27.875 2	27.5 2	
	(4 (m)	nax	28.75 21 28.75 28.	000	18125 26	28.75	00	0 0	18125 26	28.75 20	1.3125 26	28.125 28	7.875	0 22 00	1875 26	18.375 26	28.25	9375 73	31875	8.8125	28.25 26	19375 21	27.875 2	7.625	28.75	28.25 26	0276 27	8125	7.625	8.625	28.5	19.125	7 625 21	4375	27.25	28.5	28.125	77.625	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	and Dire	12	100 151 151 29 29 29 29 29 29 29 29 29 29 29 29 29	000	18125 20	1875	0 0	00	8125 26	0 375	28.25 26	0825	7.875	92.06	20.75 26	8.375	10625	7 875 2	27.75	28.5 28	28.25	8.125 2	7.875	5625	6875	28.25	28 2	27.75 2	7.625	8.625	8.375 36	0625	27.5	7.375 2	27.75	4375	7.125	5625	
$ \begin{array}{ $	Sau	uiu chi	run 2nd 0625 9375 28 0 0 0	000	.9375 28 8.875 28	28.75 28	00		8.875 28	8125 28	3125	.1875 28 nens 28	9375 2	0176	81.25 28	4375 2	.1875 28	28 27	8125	28.75 28	3125	7.875 2	9375 2	7.625 27	28.75 28	3125	0625	8125	8875 27 27.5 27	6875 2	28.25 28 28.25 28	8.125 28	7.825	27.5 2	3125 28	28.5 28	0625 27	7.625 27	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	╁	-F	nun 1st 0.056 29 0.033 28 0.131 0 0 0		0.11 28	0.155		00	0.093 2	0.115 28	0.21 28	0.241 28	0.282 27	0 110	0.129 28	0.21 28	0.266 28	0.301	0.319 27	0.112	0.211 28	0.266 28	0.309 27	0.333 2	0.133	0.213 28	0.28 28	0.318 27	0.345 27	0.123 28	0.167 28	0.307 2	0.37 2/	0.386	0.146 28	0.175	0.273 28	0.371 2	
Non-concertants Mary Team	-		un 2nd 0055 (0092 (0092 (103	147	00	00	083	112	201	0.23	0.27	0 **	1125	201	0.26	308	313	1111	206	248	302	323	113	205	1273	308	1348	1123	194	03	382	379	0.4	121	1317 0	383	
Observer Hotel	Danth /B/	Max	un 1str 0.057 0 0.13 0 0.13 0 0.13 0	000	0.11 0	191 0	00	00	083	115 0	0.21 0	239 266 n	281	0;	1128 0	209	269	311 0	321 0	148	212 0	256 0	321 0	332 0	112 0	0.21 0	282	318 0	346 352 0	121 0	745 0	305	372 0	389	407	174 0	327 0	374 0	
$ \begin{array}{ $			n 2ndr 055 0 082 0 0 0 0 0	000	105 0	149 0	00	0 0	082 0	112 0	203	232 0	272 0	0;	125 0	203	261 0	288	315 0	145 0	208 0	278 0 278 0	301	325 0	112	203	275 0	0.31 0	345 0	121 0	728 0	298	365 0	381 0	398 0	172 0	271 0 321 0	368 0	
Observational base Descriptional base Descrip	+	Min	151 151 151 151 151 151 151 151 151 151		385 0.	966 0		0 0	125	0 0000	536 0	0 193	940	0 20	0 000	8	0 909	88	082	136 I	88	0 336	0.85	025 0.	113 0	97 0	0.36 Providence D	88	945 0.02	145 0	384 0 975 0	345 0	0 0 0	83	175 0.	387 0	875 0. 336 0.	18	
Networke Ample		Final	2 ²⁰ tun 12 14 14.4 1 0 0 0 0		.12 14 395 14.	35 14.			25 14.	39 14	00 14.	62 15 89 15	88	0 20	-1 1 -1 1 -1 1	14	61 15.	05 15	035 16.1	38 14	98	M5 15 5.6 15.1	25 15 15	02 16.	13 14	073 14	855 15 E1 15	255 15	01 16.1	35 14.	38 14.	34 15.	101 101 101 101 101 101 101 101 101 101	93 15	16 16.	85 14	38 14. 35 15.	45 15	
Mark Risk Mark Risk <thmar risk<="" th=""> <thmar risk<="" th=""> <thmar< td=""><td>Marin Mar</td><td></td><td>11 11 11 11 11 11 11 11 11 11 11 11 11</td><td></td><td>12 14 95 14.3</td><td>65 14.9 33 15</td><td>0.0</td><td></td><td>25 14.1</td><td>39 14 85 14 0</td><td>36 15.3</td><td>81 15</td><td>94 15</td><td>0 26</td><td>20 14</td><td>93 14</td><td>12 12</td><td>15.0</td><td>09 16.0</td><td>255 14</td><td>75 14</td><td>35 15.2</td><td>75 15</td><td>03 16</td><td>25 14</td><td>65 14.9</td><td>35 15.3</td><td>84 15.8</td><td>94 15.5 16 16</td><td>14 14</td><td>39 14</td><td>45 15</td><td>84 15</td><td>35 15</td><td>19 16.0</td><td>39 14</td><td>85 14 34 15.3</td><td>35 15.6</td><td></td></thmar<></thmar></thmar>	Marin Mar		11 11 11 11 11 11 11 11 11 11 11 11 11		12 14 95 14.3	65 14.9 33 15	0.0		25 14.1	39 14 85 14 0	36 15.3	81 15	94 15	0 26	20 14	93 14	12 12	15.0	09 16.0	255 14	75 14	35 15.2	75 15	03 16	25 14	65 14.9	35 15.3	84 15.8	94 15.5 16 16	14 14	39 14	45 15	84 15	35 15	19 16.0	39 14	85 14 34 15.3	35 15.6	
Martial constraints Antipation Antipation Antipation Antipation Martial constraints S(N)	_	Initial	2 ^m run 12 14.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		12 14.3 35 14.3	35 14.9	0.0	0 0	25 14.1	39 14. 36 14.0	25 15	52 15 58 15	38 2	0	14.1	14	01 15.6	31 15.9	16.2	14.1	75 14.9	55 15.6 05 15.6	37 15.8 sc 15.	25 16	35 14.1	97 14.9	38 5 5 7	33 15	35 14	14	35 14	35 15.3	12	94 15.9	35 16	14	86 14.9 45 15	33 15.6	
Martial Allower Allower <t< td=""><td>4</td><td>,</td><td>1^m run 15 14.9 0 14.9 0 0 14.9</td><td>000</td><td>14.3 14.3</td><td>11 14.9</td><td>0.0</td><td>00</td><td>5 14.1</td><td>5 14</td><td>5 15.3</td><td>5 15</td><td>100</td><td>0 9</td><td>14.1</td><td>4</td><td>0 40 1 1 1</td><td>15 15 2</td><td>3 18</td><td>14 14</td><td>5 14.9</td><td>5 15.8</td><td>5 15 2</td><td>8 16.0</td><td>5 14.1</td><td>5 14.0</td><td>15. 15.</td><td>151</td><td>3 16.0</td><td>6 14.1</td><td>5 14.3</td><td>15.15</td><td>5 15.8</td><td>5 15</td><td>5 14.1</td><td>5 14.3</td><td>11 14.</td><td>3 15</td><td></td></t<>	4	,	1 ^m run 15 14.9 0 14.9 0 0 14.9	000	14.3 14.3	11 14.9	0.0	00	5 14.1	5 14	5 15.3	5 15	100	0 9	14.1	4	0 40 1 1 1	15 15 2	3 18	14 14	5 14.9	5 15.8	5 15 2	8 16.0	5 14.1	5 14.0	15. 15.	151	3 16.0	6 14.1	5 14.3	15.15	5 15.8	5 15	5 14.1	5 14.3	11 14.	3 15	
Marry Silversion Antipation Antipation Antipation Antipation Antipation Marry Silversion Silv	Cantol	AVG	CF5 307 307		0.483.	3.04	0.0	0 0	0.516	01	5.0042	4 7020	4 10006	0 0.407	102'n	2,982	1024	7 8.9913	8 1100	0.607	2,994	5.00 8 7.0123	3 9.0321 6 0.6681	8 10979	048	2894	5.00	889.	5 1098	020	3 118	4.574	8 8,898.	3998	051	1.019	3.00	101 1	
May District Line May District Line <thmay distrin<="" th=""> May District Line <thm< td=""><td>Average</td><td></td><td>2nd run</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6 8 2 8 2</td><td>6 8.25</td><td></td><td>_</td><td></td><td>5 6.30</td><td>8.26</td><td>8.25</td><td></td><td></td><td>2 6.29</td><td>8 8</td><td>6 6.25</td><td></td><td></td><td>Ğ</td><td>1 6.30</td><td>5 6.24 7 6.26</td><td></td><td></td><td>200</td><td>8.26</td><td>4 6.26</td><td>6.2</td><td></td><td></td><td>8 6.2</td><td></td></thm<></thmay>	Average		2nd run									6 8 2 8 2	6 8.25		_		5 6.30	8.26	8.25			2 6.29	8 8	6 6.25			Ğ	1 6.30	5 6.24 7 6.26			200	8.26	4 6.26	6.2			8 6.2	
	(CEC)	Final	1st run									6 6.27	8.25				3 6.30	6.26	9 625			6.29	1 6.29 7 6.26	9 6.2			8 8	6.3	2 6.25			000	1 6.28	6.28	6 6.24			5 8 2	
	Class	-	2nd run									5 6.27	4 6.25				8	5 6.26	2 6.25			6.29	3 6.29 2 6.26	1 6.26			6.0	7 6.30	9 626				9 6.28	9 6.27	1 6.2			9 6.28	
May District, May Sic (N), May Licks App Nucl. App Nucl. <t< td=""><td>Low Point</td><td>Initial</td><td>Istrun</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.27: 8.24</td><td>6.25</td><td></td><td></td><td></td><td>6.300</td><td>6.26</td><td>6.26</td><td></td><td></td><td>6.29</td><td>6.28 6.754</td><td>6.26</td><td></td><td></td><td>0.20</td><td>6.301</td><td>6.26</td><td></td><td></td><td>000</td><td>6.32</td><td>6.26</td><td>6.25</td><td></td><td></td><td>6.28</td><td></td></t<>	Low Point	Initial	Istrun									6.27: 8.24	6.25				6.300	6.26	6.26			6.29	6.28 6.754	6.26			0.20	6.301	6.26			000	6.32	6.26	6.25			6.28	
			2nd run 0.505 3.025 0 0 0	000	0.484	3.044	00	00	0.517	1.027	5.002	0.744	3.753	0 000	0.982	2,986	0.719	3 752	4.748	0.508	2.999	5.003	2.74	4.719	0.499	2 996	4.997	2.684	3.748	0.507	2 0.23	4.976	2.71	3.705	0.518	1.021	3.006	0.73	
May Birls Oscincrete List Apple List App	1000	Inal	1st run 0.504 3.026 0 0	000	0.484	3.041	0 0	00	0.517	1.023	5.006	0.744	3.75	0 200	0.98	2.994	0.721	3.754	4.747	0.507	2,989	5.001	2.739	4.717	0.497	2.995	9 202 0	2.683	3.747	0.506	3 07	4.977	2.715	3.709	0.517	1 023	3.001	0.731	
Amy Explore Advances	gh Point	- H	0.505 1.022 3.026 0 0	000	0.483	3.04	00	00	0.516	1.029	5.002	0.744	3.751	0 End	0.987	2.981	0.719	3 754	4.748	0.506	2.994	5.009	2.741	4.717	0.497	2.983	5.009	2.684	3.75	0.504	3.018	4.972	2.718	3.71	0.518	1.017	2.988	0.731	
May Distribution Observation Ind Observation Index of the second se	Ŧ	lei	1.028 0.505 3.023 3.023 0 0	000	1.006	3.039	0 0	0 0	0.517	1.021	5.007	0.746	3.75	0.510	21c.0	2.97	0.729	3.763	4.744	0.508	2.997	5.007	2.739 3.706	4.718	0.497	2,994	5.01	2.685	3.753	0.505	3.015	4.974	2.72	3.708	0.517	1.018	2,999	0.728	
Oldsconstreted al O Oldsconstreted 5 Oldsconstreted 5 Oldsconstreted 5 Oldsconstreted 5 Oldsconstreted 5 S 1 2.0% 1 1 2.0% 1 2.0% 1 1 2.0% 1 1 2.0% 1 1 2.0% 1 1 2.0% 1 1 2.0% 1 1 1 1	Oata Varia	Init	15% 0.5% 0.5% 0.5% 0.5%	0.5%	1.0%	1.0%	1.0%	1.0%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	2.0%	2.0%	2.0%	2.0%	2.0%	2.5%	2.5%	2.5%	2.5%	2.5%	3.0%	3.0%	3.0%	3.0%	3.0%	4.0%	4.0%	4.0%	4.0%	4.0%	5.0%	5.0%	5.0%	5.0%	
0 0	concrete.	UC fac	2.0% 2.0% 2.0% 2.0% 2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	
	Old.	BIO	9-09-0	1 10 0	1	en 40	P= 00	91	0.5	- 0	2 40	1-0	00	11 40	0.1	0	-10	8 Ç	2 ==	0.5	- 07	91-	0 Ç	2 =	9.0	- 0	40 1-	- 00	91	0.6	- 0	0.01	- 6	10	19	-	с 4	1	

Table B1.3 Smooth concrete surface data

	UE	อายาริอาเ	0.022036	0.009472				0.017016	0.014496	0.01524	0.010043		0.01232	0.013628	0.012299	0.013404	0.016129	0.016747	0.013/09	0.012276	0.013134	102110.0	0.014114	0.015031	0.012927	0.011873	0.013513	0.011073	0.013687	0.014496	0.012006	0.013746	0.015748	0.011957	0.011369	0.012504	0.012829	0.010983	0.014949	0.014963	0.014328	0.01124	0.012606	0.017031	0.014834	0.015674	0110100
	Documental Concernent	Centrent	0.018508	0.007956			1111000	0.014292	0.012176	0.012801	0.008436		0.010348	0.011447	0.01033	0.011269	0.013547	0.0136.47	0.011515	0.010311	0.011031	0.005409	0.011865	0.012625	0.010668	0.009973	0.01135	000000	0.011496	0.012176	0.010084	0.011546	0.013227	0.010043	99960010	0.010503	0.010775	0.009225	0.012667	0.012569	0.012034	0.009441	0.010758	0.014305	0.012459	0.013166	0.012050
	WUG Decend	ohieau	146.25	208.516 208.516 208.656	0	0	0.0000	111.234	158,563	195,844	209.188	00	59.625	80.7031	116.375	165.063	193.766	709.480	50.8906	64.3125	99.7813	113.088	154.484	164.766	44.2344	55.7858	87.8906 1 n.n nen	112.172	133.156	141.406 149.703	38.0469	52.0625 79.9531	100.703	113.203	115.641	32 8406	43.3281	60.8125	82.5781 94.6719	102.906	105.358	27.6875	37.1875	62.3594 71.7188	81.5313	91.2969	93.7309 07 0710
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trymon 6	1 1st run 2nd run Ir	25 173.125 177.563 36 771 800 778 683	13 237 313 237 313 13 237 313 237 313	0		0 0 0	3 137,688 141,688	33 184.688 189.063	38 221.438 227.188 13 737.313 737.313	13 237 313 237 313	0 0	5 88.0625 88.5625	88 108.188 111.063	33 143.063 147.5 33 159.438 165.688	15 190.625 194.688	33 219.188 223.125	3 224 438 228 088 3 237 313 237 313	5 81.0625 81.0625	75 92.6875 95.0625	33 125.438 131.938	C2 147.438 145.188 C2 157.688 158.063	5 181.438 184.063	75 190.188 195.375 26 704.428 708 313	75 72.6875 72.6875	75 83.25 86.0625	13 114.688 119.063	38 138 688 142 188	88 158.438 163.063	33 165.438 171.688 38 173.063 181.063	5 66.0625 68	25 79.6875 81.4375 In 105.682 110.75	125.063 131.938	8 130 U03 139 438 8 138 438 143 063	25 141.5 148.083	55 81 1875 81 4375 56 81 1875 81 4375	25 70.375 73.8125	75 86.1875 90.9375	33 107.563 113.25 38 120.25 124.5	33 128 063 132 5	38 131.188 135.063	5 55,8875 58,4375	25 64.0625 66.75	75 87,6875 92,1875 94 98,375 101,438	8 108.063 110.563	88 116.313 120.5	2 113/01/2 12/2000 7 17/2 12/2 10/2 12/2 10/01
	T twin	1 1st run 2nd run	75 174,438 177.12 76 777 062 776 17	75 237.313 237.31 75 237.313 237.31	0	00	0 0	75 138.75 141.56	75 185.188 189.56	75 221.313 226.42	75 237,313 237,31	00	75 88.1875 88.7	75 107,688 110,43	75 142.063 146.56 75 161 188 164 06	75 191.688 195.7	75 220.688 224.06	15 752 815 752 87	75 80.5 80	75 83.125 95.187	75 127,688 132.06	75 153 438 157 56	75 182,688 183.2	75 191,438 194,87 75 202 699 207 15	15 73.375 73.31	15 82 6875 85.1	75 113.188 117.81	75 136,938 142.43	75 159.688 162.66	75 168.688 170.06	75 65.6875 67	75 80.0825 81.2 75 106 899 11	75 126.688 131.3	75 140.063 142.66	75 140.438 145.62	75 BU 6755 BU 6755 BU 5154 50	75 70.0625 72.62	75 87.6875 91.187	75 108.688 112.56	75 127,688 133.56	75 130.438 134.40	75 58.25 58.31	75 63.6875 67.812	75 89.0625 91.18/	75 107.5 111.4	75 117.375 121.42	0.01 009 101 001 001 001 001 001 001 001 0
1-1-1-1-1-1	Curb Listance (in)	2nd run 1st run 2nd rur	28.9375 28.9375 28.93 70.0276 70.0276 70.02	28.9375 28.9375 28.93 28.9375 28.9375 28.93	0	0 0	0 0	28.3375 28.3375 28.33	28.9375 28.9375 28.93	28.9375 28.9375 28.93 28.9375 28.9375 28.93	28.9375 28.9375 28.93	00	28.9375 28.9375 28.93	28.9375 28.9375 28.93	28 9375 28 9375 28 93 28 9375 28 9375 28 93	28.9375 28.9375 28.93	28.9375 28.9375 28.93	25 8C 9225 8C 9225 8C	28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93	26 8C 9226 8C 9286 8C	28.9375 28.9375 28.93	28.9375 28.9375 28.93 28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93 28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93	28 9375 28 9375 28 93 28 9375 28 9375 28 93	28.9375 28.9375 28.93	28.9375 28.9375 28.93 28.4376 28.9375 28.93	28 9375 28 9375 28 93	28.9375 28.9375 28.93	28.9375 28.9375 28.93	26.87 G126.87 G126.87 G126.87	28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93 28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93	28.3375 28.3375 28.338	28.9375 28.9375 28.93	28.9375 28.9375 28.93 28.475 28.9375 28.93	28.9375 28.9375 28.93	28.9375 28.9375 28.93 00.007E 70.037E 70.03	00.00 07 0106.07 0106.07 02.07 07 020 00 01 0100 00
	Cruin	1st run	28.9375	28.9375			0 00	28.9375	28.9375	28.9375	28.9375	0 0	28.9375	28.9375	28.9375	28.9375	28.9375	2158.82	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	28.9375	0100000
A STATE OF A	Transer	1st run 2nd run	15 29.375 29.312	5 28.875 28.77 5 28.875 28.77	0		0 0 0	5 28.75 28.687	5 28 5625 28 5	15 28 5625 27.5 16 28 375 28 317	5 28.1875 28.12	0 0	5 28 8125 28 6875	5 28.625 28.562	5 28.5 28.37 5 78.3175 28.187	5 28.1875 28.12	15 28.0625 21	1280 12 27 77 27 27 27 27 27 27 27	15 29.9375 29.812	5 29.75 29.62	5 29.5 29.437	72.82 02.82 07.82	5 28.375 28.312	15 28.25 28.187	5 28.875 28.75	5 28.75 28.62	15 28.3125 28.21 16 20 175 20 0076	15 27 9375 27 812	15 27.875 27.8126	5 27.625 27.562 5 27.6875 27.562	15 28 8125 28 6875	5 28 5625 28 5629 6 28 1875 28 562	9 28 125 20	15 27.875 27.8124	5 27.75 27.687	22/02/12 02/80/12 02/32/22 02/22 02/	15 28 4375 28 312	28.25 28.187	15 27 8125 27.937	5 27 5625 27 5625	15 27.375 27.378 16 27.375 27.378	15 28 5825 28 437	5 28.4375 28.312	15 28.25 27.12 16 28 28 27 87	5 27 9375 27.8125	15 27.625 27.62	1017 21217 C
	T1 min Spread	1st run 2nd run	29.3125 29.	28.8125 28. 28.8125 28. 28.6875 28.6	0	0 0	0.00	28.6875 28.6	28.625 28.56	28.5 28.43	28.125 28.06	0 0	28.8125 28.	28.75 28.60	28.4375 28.3	28.125 28.06	28 27.93	26 17 27 18 17	29.9375 29.8	29.75 29.68	29.5625 29	782 8C 9C8 8C	28.4375 28.3	28.25 28.1	28.8125 28.	28.6875 28.60	28.375 28.	27.9375 27.8	27.8125 27.	27.5825 27.56%	28.8125 28.	28.5625 28	28.0625	27.875 27.8	27.8125 27.81	21.0875 21.00	28.4375 28.3	28.1875 28.12	27.9375 27.8 27.8125 27.68	27.5625 27	27.5 27.43	28.5 28.43	28.4375 28.3	28.1875 27.1.	27.875 27.81	27,625 27,56	21,4313 21.3
_	E	strun 2ndrun	0.05 0.05	0.105 0.105	0	0	0 0	0.098 0.103	0.145 0.152	0.185 0.193	0.205 0.21	00	0.085 0.088	0.117 0.121	0.146 0.154 0.188 0.195	0.217 0.225	0.245 0.256	0.285 0.274	0.1 0.102	0.125 0.13	0.172 0.178	0.251 0.212 0.351 0.357	0.28 0.287	0.295 0.303 0.305 0.305	0.105	0.13 0.137	0.205 0.211	0.28 0.283	0.306 0.31	0.305 0.308 0.317 0.321	0.11 0.113	0.141 0.145	0.255 0.263	0.318 0.327	0.338 0.345	0.348 0.34	0.16 0.163	0.21 0.237	0.273 0.283 0.298 0.307	0.329 0.343	0.342 0.351	0.135 0.135	0.175 0.177	0.235 0.24 n.983 0.288	0.328 0.335	0.352 0.359	10.0 0.00 0.000
	I I I I I I I I I I I I I I I I I I I	un 2nd run 1s	052 0.052	0.1 0.105	0		0 0	0.0 0.1	.148 0.154	.182 0.19 182 0.704	203 0.21	0 0	0.087	.115 0.199	.145 0.152 185 0.197	215 0.221	247 0.258	707 D 880	0.10	.123 0.128	0.17 0.177	1.2U3 U.21	279 0.285	291 0.3 207 0.305	.102 0.105	.128 0.135	202 0.21	283 0.282	305 0.312	315 0.323	0.11 0.112	0.14 0.145	253 0.262	0.32 0.33	.335 0.342	.345 0.3583	158 0.16	227 0.233	275 0.282	323 0.346	345 0.348	135 0.138	.172 0.178	238 0.242 305 0.3	0.33 0.335	355 0.36	365 U.Sr
$\left \right $	1Es	m 1st n	4.11 0	5.96			-	385	4.96	5 50 0	825 0		1125 0	385 0	5.35 0	5.82 0	805	0 350	4.11 0	4.38 0	4.97	5 81	5.84 0	945 0	4.11 0	4.39 0	4.98	5.62	5.86	5.98	4.11	4.38	335	945	925 0	4 16 0	4.41 0	4.98	5.65 0	6.83	15.9 0	4.12 0	382 0	978 0	5.63	5.83 0	0 000
_	110	nun 2 ⁴⁶ n	14,115 14,006 14	15.975 1	-		0	14.385 14	14.96	15.365 15	15,86 15	00	14.13 14	14.385 14	15 345	15.615	15.81 15	08.CI 31 00.81	14.105	14.385	14,96	18.615	15.835	15.945 15 18.02 15	14.11	14.39	14.98	15.61	15.81	15.915	14.11	14.38	15.345 15	15.84 15	15.92 15	14 16	14.41	14.975	15.345 15	16.83	15.9	14.118	14.383	14.98 14	15.62	15.846	078.01
	Weir	Z nd run 1 ²	5 14.123	7 15.965	0	0	0	14.115	14.96	15.365	5 15.825	00	14.12	14.39	14.96	15.595	15.83	300 81 2	14.11	5 14.38	14.97	12.04	15.84	15.93	14.11	14.39	14.98	15.62	15.86	15.98	14.11	14.38	15.35	15.85	15.91	C10.01 8	14.41	14.97	15.34	16.85	10 10	14.115	14.38	14.975	5 15.625	15.84	10.80
	-	1 st run	502 14.12	0125 15.9 1875 15.3	000	0	0	989 14.11	9855 14.9	975 15.36 975 15.6	15.8	0 0	14.12	225 14.39	0215 14.95 1975 15.30	3255 15.6	965 15.82	191 0250	1785 14.11	3775 14.37	1925 14.96	12/15 15.33	989 15.82	029 15.9	9425 14.1	14.3	0135 14.9 sene 16.20	027 15.6	002 15.8	994 15.91 9653 15.9	3975 14.1	017 14 00	675 15.34	0025 15.8	925 15.91	508 14 1	925 14.4	996 14.97	8325 15.3 1675 15.6	725 16.9	974 15.9	1275 14.1	9525 14.38	994 14.9 1775 15.34	992 15.63	9625 15.84 001 15.84	HC CI 188
erage	CIDIS	drun CFS	0.0	300	0	-	-		29	4 8	6.303 9.01	00	0.50	1.02	30	6.299 7.03	6.29 8	8.290 100 8.20	04	0.99	3.01	8 3.75 7.0	6.29 8	6.29 10 6.787 10	0.404 10.50	1.01	30	6.329 7	6.29 9	6 278 9 6 268 109	0.46	0 "	5.02	6.307 90	6.28 9.99	0.208 105	1.03	2	6.311 7.01	6.303 8.97	6.285 9	190	0.00	2 200	6.303 6	6.281 8.96	6 784 10
A	(FS)	st run 2n			0	0	•			6.9	6.307	00			T	6.305	6.285	200	3			R 377	6.282	6.292 8.272	717.0		1	6.327	6.292	6.267				6.307	6.274	6.274			6.313	6.302	6.289	00710	Ħ	+	6.298	6.283 e.10	230 B
t Council	CTIDOT (2nd run 1			0		0			69	4 6.303	00	2			3 6.301	7 6.295	287.0 2	204.0			7 6.315	1 6.285	5 6.297 6.260	0.700			3 6.325	3 6.291	9 8.277 7 8.266				6.308	5 6 274	8.273			6.312	6 8 304	3 6.29	107.0 2			9 6.307	9 6.282	1770 8
Low Poin	Initial	1st run								66	6.30					60	6.29	67.0	*			6.31	6.28	6.29 6.26	0710			6.32	6.29	6.27				6.30	6.27	977			6.31	6.30	6.27	0770			6.29	6.27	72.0
		2nd run	0.5	3007			0	0.991	2.987	7 4.986 8 0.674	2.711		0.517	1.02	5 3019	0.73	2.674	3.000	0.472	0.997	3.01	2 4.996	2.71	3.731	0.504	1.018	5 3012	0690	2.705	3.715 9 4.696	0.486	2 0.986	5.024	2.696	3.723	0.506	2 1.051	-	5.001	2.674	3.689	0.512	0.096	5001	0.691	2.683	5.104
1	L (CFS)	1 st run	0.490	4 3006			0	0.99	4 2.98	4,98	8 2.70		7 0.50	2 1.024	503	0.73	2.874	4 635	4 0.47	966/0 6	3 3.006	0.200	8 2.70	3.74	1 0.50	100	3.015	2 0.70	1 2.7	7 3.716	0.486	2010	5.02	8 U.081	3.72	8 0.50	4 1.052	2.996	2 4,980	4 2.674	3,69	0.5	2 0.996	2,990	0.690	2,679	4 736
High Poin	CUNA	2nd run	4 0.500	8 2 89			0	1 0.990	4 2.98	6 4.98	1 2.706	00	1 0.48	1.02	7 5.01	3 0.73	7 2.87	474	6 0.48	7 0.996	3.00	2000 B	7 2.706	6 3.730	1020	2 1.019	4 3013	7 0.70	2 2.71	8 3.71	2 0.49	4 2.014	G 502	2 0.080	4 3.726	A.1	1.00	3 2.896	2 0 705	3 2.674	3.60	8 0.51	6 0.99	7 2.990 F 5.000	0.680	2.60	0 0.11
	Initial	1st run	5% 0.50	5% 2.96	%	e. %	%	770 U.42	1% 2.96	1%6 4.96	9% 2.	946	5% D.f	5% 1.00	3% 3.00	% 0.7	26	3.01	1% 0.46	0.96	3.00	10.0 0.00 1946 0.71	1% 2	3.75	0.50	5% 1.0	5% 3.01	5% 4.82	5% 2.71	5% 3.71 5% 4.65	0.45	0.0 0.0 0.0	N6 5.0	7% U.06	3.72	146 0.50	1.0	1% 2.96	9% 4.9%	1% 2.6	3.66	1.00	1% 0.95	1%6 2.95 1%6 5.00	0.66	2.68	170 3.1
Increte Data	0X1X2 (0	-	0.0 0.0	00% 05	950	00%0	3.0 860	0.1 0.00	0% 1.6	015 11	01 950	01% 11	0% 1.5	0% 1.5	0% 15	0% 1.5	0%	1 2 20	0% 2.0	0% 2.6	0% 2.1	12 900	0% 2.0	0% 21	0% 2.5	0% 2.5	0% 21	0% 2.5	0% 2.5	0% 25	0% 3.6	0.95 3.1	0% 31	0.66 3.0	0% 3.0	0.66 3.0	0% 4.0	0% 41	0% 40	0% 4.6	056 41	0% 5.0	0% 5.6	0% 5.0	0% 5.0	0% 5.0	12 210
Oldco	SCRarg SL (%	ingi c	0.5	- 00 40	0 - 0	10 3	11 3	1 3.	0	0 0	0	10 3	0.5 3.	1	m 40	4 3	00 00	11 3	0.5 3.	1 3	00 0	0 0	0 0	10 3	0.5 3.	-	00	1 0	60	11 3	0.5 3.		0.00	00	10 3	05 3	1 3	0	4 0	.0	10	0.5 3.	-	0 0	10	60 00	0 01
ł	Sin	cfs																																													

Table B1.4 Smooth concrete surface data

	lue	เมตะกิจาน	10057244	0.026836	0.010962	0.00005			0.040605	0.030644	0.01727	0.014794	0.011584	0.006539	0.012364	0.010585	0.013833	0.014663	0.017381	0.016628	0.012998	0.011231	7022100	0.015433	0.01683	10.018718	0.012798	0.012045	0.011484	0.012563	0.014371	0.014692	0.014425	0.011207	0.013965	0.012545	0.013328	0.013522	0.011601	0.014209	0.013756	0.01255	0.012773	0.013542	0.01455	0.017473	0.014745	0.014783	79031010	0.015511
	n v3	Seutrent	CBUBLIC	0.02422	000000	/100001/			0.034106	757300	0.014505	0.012426	C/6000	0.008012	0.010376	0.00892	1011619	0.012316	0.014599	0.013966	0.010918	0.009434		0012963	0.014137	0.01459	010749	0.010117	0.009646	0.010544	0.012071	0.01234	0.012117	0.009414	0.011646	0.010537	0.011196	0.011367	0009744	1011934	0.011555	0.010541	67201010	0.011374	0.012221	0.014676	0.012305	0.012417	1013681	0.013028
	AVG	upage u	196 953	198.781	208.594	0 0	00	0	115.813 (131.719	194.516	209.031	209.094	208.125	55.8125	69,9063	139.063	161.609	189.047	200.656	47.4375	58.375	111 794	137.75	156.063	173 469	41.6563	52.1094	77.9219 06.1876	111.391	128.375	138.969	39.3438	45.7344 (90.9844	99.3281	116.219	121.094	31.2969	63,8594	75.2656	97.59763	94,9844	99.7813	28.6875	57.375	67.7813	77.3438	91.375	93.0313
		nd run	279 888	230	237,313	0	00	0	144,688	160.625	225,625	237.313	237.313	237.313	84,4375	87.8375 140.676	170.438	194.438	220.063	229.688	76.375	87.1875	012:071	167.438	186.813	196./5	70.5625	81.0625	107.938 174 062	141,813	159.063	175.5	68.125	74.9375	120.188	128.688	145.188	150	70.676	92.125	105.063	119.688	128.25	129.5	57.3125	85.375	86.4375	105.438	119 063	121.938
	T2 (m)	st run 2	1438	25.438	37.313	0.010	00	0	44.688	60.625 102.76	220.5	37.313	37.313	37.313	4,4375	7.9375	84.125	85.188	14.438	27.083	78.375	8.1875	125.76	63.188	181.75	C79.18	0.5625	0.4375	05.063	38.063	54.188	72 188	68.125	4.0625	18.063	26.188	41.938	47.438	DB AC UT	92.125	01.375	15.563	16.875	25.438	7.3125	R5.375	94.375	04.375	18.375	18.125
	read Dist	I nun	08.875	230 2	37.313 2	0 0 7	0 0	0	14.313 1	50.063	27.188	37.313 2	37.313 2	37.313 2	94.625	98.75 9	170.25	94.125 1	19.125 2	29.438 2	5.825	88.25	272 275	168	35.375	62.0.05	70.5 7	0625 8	07.75 1	0.625 1	58.313 1	17.625	88	14.125 7	0.063 1	128.5 1	15.938 1	150 1	59.875 1 48.75	2,0625	105 1	7 625 1	28.125	29.063 1	7,3125 5	7,9375 t	5.5625	5.563 1	8 813	22 25 1
	dg .	run 2n	3 375 2	6.063	7.313 2	0.0	00	0	4,313 1-	0.063 1	15.25 2	7.313 2	7.313 2	7.313 2	4.625	(8125 4 EP3 1	3.938	4.563 1	4.188 2	7.375 2	5.825	88	9 813 1	164.5	1.938 1	7 020 7	70.5	0.125 8	4.063	7 063 1	3.438 1	1.688 1	88	3375	7.188 1	5.438	2.688 1-	7.188	9,875	0625 9	01.25	7 688 1	6.938 1	25.75 1	3125 5	5.375 5	4,625 9	4.063 1	18.75 1	8.375
	i	run 1st	0375 27	9375 22	9375 23	0 0		0	9375 14	9375 16 9276 10	9375 2	9375 23	9375 23 9776 70	9375 23	9375 8	9375 98	9375 16	9375 18	9375 21	9375 22	9375 7	9375	33/0 12	9375	9375 18	93/5 18	9375	9375 8	9375 10	9375 13	9375 15	9375 17	9375	9375 73	9375 11	9375 12	9375 14	9375 14	9375 5	9375 92	9375 1	9375 17	9375 11	9375 1	9375 57	9375 6/	9375 9	9375 10	9375	9375 11
	(u)	un 2nd	RC 275	9375 28	9375 28	07 0/09	00	0	9375 28	9375 28 0375 28	9375 28	9375 28	9375 28 0375 28	8375 28	9375 28	9375 28	9375 28	9375 28	9375 28	9375 28	9375 28	9375 28	83/10 20 0275 20	9375 28	9375 28	82 5155 28 82 5155	9375 28	9375 28	9375 28 9375 28	9375 28	9375 28	9375 28 9375 28	9375 28	9375 28	9375 28	9375 28	9375 28	9375 28	9375 28 0375 28	9375 28	9375 28	9375 28 9375 28	9375 28	9375 28	9375 28	8375 28 82 2759	9375 28	9375 28	0715 28	9375 28
	Distance	un 1st n	375 28 9	375 28.	375 28.	07 010		0	375 28,	375 28.9	375 28.	375 28.9	375 28.	375 28.	375 28.	375 28.	375 28.	375 28.	375 28.	375 28.9	375 28.	375 28.	375 281	375 28	375 28.	375 28.	375 28.	375 28.	375 28.9	375 28	375 28.	375 285	375 28.	375 28.	375 28.	375 28.	375 28.5	375 28.5	375 28.	375 28.	375 28.9	375 28.9	375 28.5	375 28.9	375 28.	375 28,	375 28.	375 28.9	375 78 9	375 28.9
	Curb	n 2nd n	275 28.9	375 28.9	375 28.9	2'07 210	0 0	0	375 28.9	375 28.9 276 70 0	375 28.9	375 28.9	375 28.9	875 28.9	875 28.9	375 28.9	875 28.9	875 28.9	375 28.9	875 28.9	375 28.9	375 28.9	276 78 0	375 28.9	375 28.9	0 8C 3C0	375 28.9	375 28.9	875 28.9 275 78 0	375 28.9	375 28.9	375 28.9 375 28.9	375 28.9	375 28.9	375 28.9	375 28.9	375 28.9	375 28.9	375 28.9	375 28.9	375 28.9	875 28.9 875 78.9	375 28.9	375 28.9	375 28.9	875 28.9 875 28.9	375 28.9	875 28.9	375 78.9	875 28.8
_	ł	1st ru	25 28 03	25 28.90	75 28.80	18:07 07	00	0	75 28.83	25 28.90	75 28.93	25 28.93	25 28.80	75 28.80	75 28.93	75 28.93	25 28.93	75 28.93	25 28.80	25 28.93	25 28.80	5 28.90	70 20 20 20	75 28.93	75 28.93	75 28.95	25 28.93	15 28.93	25 28.93	28 28.90	75 28.90	75 28.90	75 28.90	25 28.90	25 28.90	75 28.93	75 28.93	5 28.90	75 28.93	25 28.90	75 28.90	25 28.90	5 28.80	75 28.90	25 28.80	75 28.90	75 28.83	75 28.83	25 28 92	25 28.93
	6	2nd run	50 00 DF	5 29.06	28.68	00:07 0			5 28.68	5 28.6	15 27.3	28	200	5 28.18	5 28	15 28.43	5 28.1	5 27.93	15 27.81	5 27.6	55 28.56	200	20.0	5 27.93	15 27.8	72/181	15 28.81	22	15 28	2 50	15 27.8	5 27.93	28.	5 28.56	16 27.81	5 27.8	12 27.68	23	22 22 22	15 28.1	5 27.8	15 27.6 15 27.66	5 27	5 27.43	5 28.6	55 Z8.18	5 27.68	5 27.43	17 5	5 27.1
	Dist T1 (1st run	5 20 18	5 29.1	5 28.81	0.01			5 28.	5 28.68	5 27.43	5 28.31	5 28.	5 28.	5 28	5 28.43	5 28.18	5 28.06	5 27.93	5 27.	5 28.56	5 28.56	5 28 18	8 28.06	5 27.93	21.8	28.8	5 28.56	5 28.3	5 28.06	5 27.93	5 27.6	5 28.81	28	5 27.93	5 27.93	5 27.	5 27.56	28.62	5 28.18	8 27.81	5 27.81	5 27.6	5 27.8	28.6	5 28.06	5 27.81	27.58	5 27 31	5 27.18
	Spread	2nd run	00 12	29.12	28.62				28.62	28.562	28.312	28.2	28.187	28.12	28.687	28.437	28.062	5 27.937	27.87	27.7	28.562	28	289.78.7	2	27.87	27.812	28.87	5 28 562	28.187 28.087	3 27 937	27.812	27.937	28.62	28.562	27.87	27.812	27.687	27.562	28.687	28.2	2	27.687	27	5 27.437	28.62	27.937	27.62	27.040	77 187	27.062
	1	1st run	29 1874	29,0625	28.75)			28,6875	28.625	27.375	28.3125	28.1875	28.1875	28.6875	28.5	28.125	27,9375	2020	27.8125	28.5825	28.562	1012102	28.12	27.9375	278.72	28.9375	28.625	28.3125	28	27.875	27.625	28.6875	28.5	27.9375	27.875	27.75	27.625	7.82	28.375	27,9375	27,8125	27.625	27.875	28.62	28.0625	27.75	27.5625	10.12	27.1875
		2nd run	0.000	0.09	0.123	0.10			270,0	0.103	0.185	0.2	0.203	0.207	0.09	0.12	0.2	0.23	0.24	0.25	0.065	0.122	0.070	0.26	0.27	072 U	0.083	0.11	0.185	0.26	0.29	0.31	0.095	0.13	0.235	0.3	0.325	0.33	0.105	0.205	0.265	0.295	0.35	0.37	0.12	0.21	0.28	0.307	0.37	0.38
	(E)	Ist run	0.07	0.08	0.115	0.140	0 0	0	0.075	0.095	0.171	0.185	0.188	0.195	0.09	0.115	0.195	0.22	0.23	0.245	0.082	0.115	0.18 0.718	0.253	0.26	0.264	60.0	0.1	0.18	0.255	0.275	0.295	0.095	0.12	0.225	0.285	0.305	0.315	1.0 AC1 0	0.2	0.255	0.28	100	0.36	0.12	0.145	0.265	0.295	850	0.375
	Depth	un nu	0.025	0.09	0.12	0.10	00	0	0.075	0.150	0.182	0.195	0.00	0.21	80.0	0.12	0.205	0.225	0.24	0.25	0.087	0.124	19110	0.254	0.268	C/2/0	0.086	0.112	0.185	0.26	0.285	0.305	0.095	0.125	0.24	0.27	0.32	0.33	0.105	0.205	0.265	0.29	0.35	0.37	0.12	0.21	0.278	0.303	0.37	0.385
		st run 2	1000	0.085	0.115	0	00	0	0.075	0.085	0.17	0.18	0.19	0.185	600	0.115	0.195	0.215	0.235	0.245	0.083	0.118	0.271	0.25	0.26	C07.0	0.083	0.102	0.175	0.25	0.27	0.285	0.095	0.12	0.255	0.255	0.305	0.31	0.124	0.20	0.255	0.28	0.34	0.355	0.12	0.145	0.265	0.285	0.355	0.375
_		un 1	14 104	14.384	14,96	0.000	00	-	14.15	14.385	15.345	15.59	15.82	10.0	14.105	14,39	15.345	15.61	15.82	16.12	14.105	14.385	16.35	15.6	15.84	20 g	14.109	14.369	14.967	15.615	15.865	16.025	14.135	14,38	15.35	15,58	15.925	16.02	14.14	14,99	15.36	15.84	15.94	16.04	14.13	14.46	15.35	15.82	15 94	16.01
	1	nu 2 ⁴	14 103	14.39	14,965	0		-	14.15	14.385	15.345	15.6	15.87	16.11	14.105	14.39	15.345	15.61	15.88	16.065	14.105	14.385	15.35	15.8	15.86	11.01	14.11	14.368	14.968	15.605	15.85	16.09	14.135	14.38	15,365	15.59	15,934	16.05	14.14	14.99	15.35	15.64	15.99	16.08	14.13	14.96	15.35	15.64	15.98	16.06
_	Weir (1	un 1ª	CU1 P	14.38	14.96	0		0	14.15	4.385	5.345	15.59	15.82	16.04	4.105	14.39	5345	15.61	15.82	16.12	14.13	4.385	15.35	15.6	15.84	10.94	4.105	4.371	4.963	15.61	15.86	16.01	14.13	4.385	15.35	5.585	15.92	6.025	14.14	14.99	15.36	15.64	15.94	16.04	14.13	14.4	15.35	15.62	15.94	16.01
_	101	In 2 ^M	14.1	1.375	1.955	0.000		0	14.15	4.385	5.345	15.6	15.87	11.9	4.105	14.39	5.345	15.61	15.88	8.065	14.13	4.385	15.35	15.6	15.86	11 11	108	14.37	1.965	5.601	5.855	8.025	4.125	14.39	15.36	15.59	15.94	16.05	14.14	14.99	15.35	15.64	15.99	16.08	14.13	14.4	15.35	19.9	202	16.06
_	100	1. 1.	1495	003	995	0		0	1534	9625 1	1 996 1	5775	1825	9623	8725 1	3575	8075 1	024	002	0285 1	84.25	8715 1	C//0	9935	8025	1007	0225 1	9705	9695 1 006	0435 1	9965 1	0213 1	1675 1	9905 1075	0185	9955 17 Tr	0198	0235	11/5	9915	883	0075	0153	9895	0675	2375	8645	4825	8675	87.78
age	Coot	un CFS			-	22 F	00	0		000	2	342 7.0	322 9.0	275 10	4.0	-	4	337	63	291 11	4.0	8	27	331 8	6.29 8.9	1238	9.0	0	~ ~	352 7	342 8	313 11	9.0	000	2.5	342 6	6.33 10	308 11	20	- 0	~	327 7.0	324 10	297 10	0.5	2.6	4	361 7.0	375, 9.9	294 10
Aver	-	n 2ndr	┞		+	0	00	0		+	+	335 6	315 8	282 6	$\left \right $	+	╞	6.33	291	288 6	$\left \right $	+	+	326 6	293	292	170	$\left \right $	+	347 6	333 6	315 6		+	+	346 6	307	6.31 6	+	+		329 6 375	324 8	296 6	-	+	\parallel	354 8	324	296 6
_	oor (CFS)	In 1st ru	┞		+	0				+	╞	2	318 8	274 6	\parallel	+	╞	31	200	288 8	\square	+	+	326 6	29 6	211 0			+	8	8 0	314 6		+	+	947	333 6	8	+	+		8 8	33.0	295 6	_	+	\mid	901 B	319 6	288 6
int	8	2nd n	┞		+	0	0 0	0		+	+	39	012 6	2 28		+	+	31 6.	32	88		+	+	31 6	38	80.0	2		+	419 6.	32	9 60		+	+	58 6	9 60	28	+	-		30 6	24	97 6.	_	+	\square	19 00	770	96 6
Low Po	3	1st run	c.	0 00	60 0	10			4	000	4 02	9	000	10 07		10 3	7 00	8.3	19	8		C1 0	20 16	60 60	2		- 00		000	8	6.9	8 20	2		2 00	6.5	0 8	6.5		0 04	-	6 4 6 6	8	6.9	~	C4 14	2 64	90 0	2 00	2 6.2
		2nd run	0.40	1.00	2.99	nnie			0.53	0.99	4.99	0.71	2.70	4.6	0.48	1.03	497	0.69	269	4.73	0.47	0.97	08.7	0.66	2.6	3.0	020	0.97	4 90	0.68	2.6	3.0	0.6	0.98	5.01	0.64	3.69	4.70	100	2.99	4.99	78.0	3.68	4.69	0.50	2.97	4.96	0.68	386	4.70
	(CFS)	1st run	0.40	1.00	2.99	00.6			0.53	0.99	202	0.718	2.02.0	4.68	0.48	1.03	4.9	0.69	2.69	4.7	0.47	0.97	198.7	0.661	2.67	3.60	0.48	0.97	2 95	0.69	2.65	3.70	0.5	0.0	5.01	0.64	3.690	4.7	1001	2.99	4.98	79.0	3.69	4.68	0.50	2.97	4.96	0.68	3 64	4
High Point	OWALL	un pu	0.40F	1.001	2.995	4.880			0.534	0.996	4.982	0.719	2.7	4.687	0.487	1.036	4.982	0.682	2.686	4.741	0.491	16.0	9	0.684	2.67	4 882	0.501	0.969	2.979	20	2.662	4.715	0.519	0.995	5.019	0.65	3.7	4.7	1004	2.992	4.983	0.673	3,69	4.694	0.506	2.978	4.965	0.689	3 647	4.632
-	13	st run	D 497	1	2,997	2027 IF	00	0	0.534	966.0 ann c	4,999	0.718	2.705	4,669	0.488	1.036	4 982	0.692	2.697	4.742	0.49	0.973	5 01	0.666	2.667	3.06	0.5	0.97	2.98	0.691	2.663	3.012	0.518	0.989	5.02	0.651	3.705	4.703	1 005	2,991	4,995	0.672	3,689	4,691	0.507	2.97	4,966	0.692	3 847	4.703
e Data	(%)):		0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	2.0%	2.0%	2.076	2.0%	2.0%	2.0%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
Ndconcret	r (%) S	t	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4 0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
0	Discharge S	tfs .	90	3-	0 4	0 ~	8 0	=	0.5	- 0	9 49	P	on ç	= =	9.0	- 0	0 40	1	on ç	==	0.5		54	- 1	on 9	==	0.5	-	en u	-10	8	2 =	0.5	- 0	0 40	~ 0	0.0	=	50	- 00	5	~ a	0	=	0.5	- 00	40	~ 0	n ⊑	=

Table B1.5 Smooth concrete surface data

	UIDCONCIEL	STR LIGER	TIUM	HOH	101	LUM	LOIN	10.00	AVE:	age		_	-			1	-	t	-	1.	t	<		-	ľ	-	1.0	4		
Lischar	0 (%) 70	(%) XC	5	VIALL (C)	10	(all all all all all all all all all all	-	uttoor (CH)	10	C1013		1.00m	Veir (T)	1	10	neptin	E	1	Spin	There is a construction of the second	C	nin Cu	In Listance	(u)	T and	spread List	(u) 7	AVG	INSV II	e and
cfs cfs		1	st run 2nd ru	un 1st	run 2nc	drun 1st n	run 2nd	Irun 1st	run 2nd	run CFS	1 ⁴⁰ nun	2 rd run	1ª run	Z rd run	1st run	2nd run 1	strun 2n	drun 1st	run 2nd	run 1st run	2nd run 1s	trun 2nd	1 run 1st ru	n 2nd run	1st run 2	Ind run 1st	run 2nd ru	opicau	Countered	vergi aver
0.6	5.0%	0.5%	0.47	0.47	0.47	0.47					0.47 14.1	105 14.1	05 14.17	5 14,108	0.047	90.05	0.046	0.051 29	4375	29.5 29.4375	29.5625	29.75 2	9.875 26	1.75 29.75	175.188	175,188 1	75.75 175.	75 145,984	0.018946 0	022667
	5.0%	0.5%	1.01	1.02	1.02	1.02				10	1 22	4.4 13.	39 13.3	9 13.36	0.054	0.061	0.061	0.068 2	9.375 29.	4375 29.3125	29.375 2	9.8125 29	1,6875 25	9.75 29.875	180.438	180.438 17	9.313 179.3	13 150.5	0.01216 0	014477
-1	5.0%	0.5%	2.99	2.99	2.99	2.99					2.99 14 5	965 14.9	65 14.96	5 14,968	0.113	0.119	0.108	0.119 29	1875	9.25 29.1875	29.25	29.75	29.75 29.6	875 29.8125	237,688	237.688 23	17.688 237.6	88 208,469	0.010273 0	012231
	5.0%	0.5%	500	50.02	5.02	5.02	000	000	000	4	5.01 15	1 10	5.4 15.33	5 15.33	0.125	0.14	0.126	0.141	29 29	0625 29.0625	29.125	29.75	29.75 29.8	125 29.8125	237,688	237.688 23	17.688 237.6	88 208.625	0.006142 0	007312
	5.0%	0.200	190	190	29.0	790	6.38	6.38	829	6 26 0	880 15 P	10.11	61 15.6	19.61	0.12	0.14	0.440	0.135 28	10 JC	\$790 87 90 90 9	28.125	37 97 92 90	2 9125 20 0	21.8.87 QJ.6	237.660	237.666 23	7 000 727 0	8/ 9/ 9/ 9/ 88	0.004375 0	002200
10	950.5	0.5%	3.66	3.66	3.66	3.67	6.35	6.35	6.36	6.36 100	1175 15.5	945 15.9	45 15.94	5 15,94	0.15	0.173	0.155	0.18 28	8375	28, 28, 875	29	28.75 28	18125 29.8	125 29.75	237,688	237,688 23	17.688 237.6	68 208.734	0.0003068	000364
-	5.0%	0.5%	4.66	4.66	4.65	4,66	6.36	6.35	6.36	6.36 11	1.02 16	.05 16.	05 16.0	16.04	0.162	0.175	0.163	0.179 2	8.875 28	8375 28.9375	28.9375	29.75 25	3.1875 21	9.75 29.8125	237,688	237.688 23	17.688 237.6	88 208.766	0.002773 0	003301
6	5.0%	1.0%	0.483	0.46	0.46	0.458	+	+	+	0.46	6255 14	112 14.0	14.08	14,08	0.05	0.055	0.053	0.06 29	4375	28.5 29.4375	29,4375	29.75 26	9,8125 24	8.75 29.8124	85.5	88.375	8.88 88.8	75 57.7344	0.005627 0	669900
0	0.0%	1.0%	C C C C C C C C C C C C C C C C C C C	2010	1.02	2 000	+	+	+	110	776 14 6	14.0	80 14.39	14.385	0.10	0.136	0.110	0 135	87 Q7.87	31.25 20.00 acan	28.3125	N7 01.87	2 2121	2718-87 00 0102	070 071	1.20.020 12 71 7.8 5 17	0.188 126.1	62 145 702	0.011144 0	79732510
	2020	1 0%	5.01	5.02	5.02	5.01	+	-	+	19	015 15 15	335 15.3	35 15.33	5 15.338	0.135	0.15	0.13	0.148 29	0825 25	125 28.0023	28 0825 2	9.8125	28.75 26	175 29 8125	178.5	186	179 186.0	63 153.328	0.011459 0	013643
ſ	2009	1.0%	0.64	0.64	0.64	0.64	6.37	6.37	6.37	6.36 7.00	075 15	15.1	61 15.6	15.8	0.13	0.15	0.14	0.155 28	8125 28	9375 28.75	28.875 2	9.8125	29.75 26	175 29.8125	221.063	230.313 22	1.625 230.9	38 197.141	0.010936 0	013019
00	5.0%	1.0%	2.64	2.64	2.66	2.65	6.36	6.36	6.37	6.37 90	1125 15.8	345 15.8	45 15.	6 15.86	0.168	0.175	0.165	0.18	8.875 28	8375 28.8125	28.875 2	9.8125	29.75 2%	0.75 29.8125	237,313	237.313 23	17.313 237.3	13 208.438	0.00945	0.01125
11	5.0%	1.0%	3.723 3	3.713	3.709	3.712	6.362	6.351	6.351 6	5.355 10.	069 15	.93 15.	95 15.94	6 15.942	0.165	0.18	0.17	0.182 28	3375	29 28.875	28.9375	29.75 29	3,8125 28	9.75 29.8125	237.375	237.375 2	37.25 237.	25 208.375	0.007828 0	010451
1	5.0%	1.0%	4.776 4	4.783	4.761	4.76	6.356	6.341	6.355 6	3.355 11.1.	218 16.0	058 16.0	62 16.06	8 16.060	0.185	0.2	0.185	0.195	28.75 28	8.875 28.625	28.8125	29.75 26	1.8125 21	3.75 29.8125	237.375	237.375 2	37.25 237.	25 208.547	0.010784 0	0.01132
6	2002	1.5%	0.518	0.519	0.517	0.516	+	+	+	05	5175 14	125 14.1	25 14.12	5 14.128	0.055	900	0.05	0.06 29	3125	19.25 29.375	29.3125	29.75 26	3,8125 21	3.75 29.8125	83.4375	86.4375 8	13.625 86.	75 55.75	0.010983 0	013076
	20.0%	0/ 07 1	2 004	1.038	1.038	PULL	+	+	+	51.1	(PT 0282	9.05 14.4 04	05 14.40 85 14 08	20 14.4U	0.13	0.15	C80.0	87 RU.U	00 00	27.R7 00 00 9000	C/R1.87	N7 01.87	7 90120	2118/87 GJ/6	36.5	103.5	103.103	27 001 20	0.010/39 0	012440
	20.02	1 5.06	5 014 5	2015	5.015	2.000	+	+	+	501	51 50E	20 15	27 15.2	0 14.300	0.145	0.155	0.146	0.150 0.18 20	6875 2/	23/2 23.0023	20.8375	70 74 70	10125 20	775 20 8175	154 813	150.420 15	5 582 150 D	R2 178.477	0 0071100	044010
	2009	15%	0.627 0	1624	0.622	0.621	6.369	6.371	6.375	6.37 6.99	475 15	151 151	63 15.6	15.83	0.155	0.17	0.16	0.175 2	8.625 28	5625 28.6875	28.625	29.75 29	18125 26	175 29.8125	176.063	180.125 17	6.188 180.0	63 149.484	0.011249 0	013392
00	5.0%	1.5%	2.697 2	2 693	2.694	2 694	6.339	6.338	6.335	3.337 9.03	1175 15	85 15	82 15.8	5 15.80	0.175	0.185	0.175	0.185 2	8.625 28	5625 28.5625	28.5	29.75 29	18125 28	0.75 29.8125	188.438	194.25	88.25 1	94 162.672	0.010918 0	012998
11	5.0%	1.5%	3.653 3	3.649	3.657	3.652	6.368	6.37	6.368	5.365 100	1205 15	.96 15.	94 15.9	5 15.94	0.18	0.195	0.18	0.2 28	5625 28	4375 28.6875	28.5625	29.75 25	3,8125 25	3.75 29.8125	195	201.938 19	H 875 201	25 169.703	0.011017 0	013116
-	5.0%	1.5%	4.635	4.63	4.61	4.608	6.357	6.334	6.342 1	9.346 109	9655 16	.04 18.	05 18.04	5 18.058	0.185	0.205	0.19	0.205	28.5 28	3.375 28.5625	28.4375	29.75 26	9.8125 21	9.75 29.8125	201.125	207.375 20	11.825 207.5	63 175.953	0.011084 0	013197
9	2008	2.0%	0.487 (0.486	0.485	0.485	+	+	+	0.48	575 14.	105 14.1	05 14.10	5 14.10	0.055	0.08	0.058	0.08	9.125 29	0625 29.125 0076 no nene	53	29.75 25	3.8125 21	3.75 29.8125	68.125	72.1875	68.25 72.06	25 41.0781	0.008363 0	009956
	2002	2.076	0/2/0	5/80	0/8/0	218.0	+	+	+	12.0	41 C76	14 14 14 14 14 14 14 14 14 14 14 14 14 1	05 14 00	2 14.33	0.460	010	2010	0.100	97 R7 00	C700.87 C/S8	200.00	N7 01.87	7 07190	718.67 01.92	0712:9/	P1 C/R1778	C CC+ 000 L	2009-10 C/	0.001/207 0	010000
140	5.0%	2 0%	4 997 4	1 996	4 996	4 998	+	+	+	49	985 15	36 15	34 15.3	6 15.34	0.135	0.195	0.185	0.78	5625	28.5 28.5875	20.023	27 07.87	18125 26	175 29.8125	133	140.25 13	R255 141	15 108 328	0 00000	012763
	5.0%	2.0%	0.655 0	1.654	0.649	0.654	6.362	6.361	6.363 6	3.361 7.014	475 15	84 15	63 15.6	4 15.6	0.215	0.222	0.215	0.22	28.5 28	4375 28.5625	28.4375	29.75 29	18125 26	175 29.8125	150.188	157.688	150.5 157.9	38 125,594	0.011325 0	013483
0	5.0%	2.0%	2.649 2	2.638	2.648	2.641	6.364	6.369	6.372 t	3.365 90	1115 15	.85 15.	82 15.8	5 15.80	0.228	0.236	0.23	0.235 28	4375 28	3125 28.5	28.375	29.75 29	1.8125 25	3.75 29.8125	169.688	177.083 16	9.438 177.6	25 145.047	0.012968 0	015427
11	5.0%	2.0%	3.701 3	3.699	3.703	3.698	6.328	6.323	6.325 (5.326 100	1258 15	.97 15.	94 15.9	15.94	0.24	0.25	0.24	0.253 28	3125	8.25 28.3125	28.25	29.75 25	1.8125 25	3.75 29.8125	174,063	182.563 17	4.938	82 150.109	0.012756 0	015187
-	5.0%	2.0%	4.593	4.6	4.593	4.6	6.365	6.365	6.365 (8.385 109	9015 16	18	02 16.0	6 16.00	0.255	0.26	0.255	0.265 2	8.375 28	1875 28.375	28.25	29.75 25	9.8125 2	3.75 29.8125	178.938	187.188 17	8.313 186.9	38 154.547	0.012607 0	015009
5	2.0%	NC 7	1 8700	970.0	000	0000	+	+	+	0.00	A1 0200	20 14	1.91 00	1.1.	0.15	0.120	0 12	0.100	04 JC JC 10	15/2 29.5120	201.00	00 94 00	01 201 201 201 201 201 201 201 201 201 2	2110.67 01.6	70.00 at	C/80.80	10.375 01.00	10 38./308	0 0000000	/11/11/1
	5.0%	2.5%	3.038 3	3 037	3.04	3.036	+	+	+	3.03	1 912	97 14	97 14.9	7 14.9	0.165	0.18	0.165	0.175 28	8125	98.75 28.75	28.6875	29.75 29	18125 25	175 29.8125	110.438	116.063 1	09.75 116.3	13 84 3906	0.013108	015606
	5.0%	2.5%	4.999	10	5.004	5.008				5.00	275 15	36 15.	35 15.3	6 15.36	0.195	0.205	0.195	0.205 28	6875 28	5625 28.6875	28.5	29.75 29	18125 25	175 29.8125	126.063	131.875 12	5.813 131	75 100.266	0.012697 0	014997
	5.0%	2.5%	0.621	0.62	0.622	0.624	6.364	6.364	6.361 (5.373 6.98	3725 15	15.	59 15.6	15.56	0.205	0.21	0.205	0.215 2	8.625	28.5 28.625	28.5	29.75 25	3,8125 25	3.75 29.8125	138.625	141.438 13	17.875 141.6	25 111.328	0.011921 0	014192
	5.0%	2.5%	2.666	2.668	2.666	2.669	6.341	6.341	6.342	9.349 90	1105 15	89 15.	81 15.8	9 15.8	0.215	0.23	0.22	0.23 28	5625 28	4375 28.5625	28.4375	29.75 26	3.8125 21	9.75 29.8125	153.25	157.313 15	3.375 156.4	38 126.594	0.013037 0	015522
1	5.0%	2.5%	3.634 3	3.632	3.634	3.639	6.337 6.331	6.343 6.33	6.34	1 341 9.	975 16	16 15. No 16	18 18 0	6 15.9	0.23	0.24	0.225	0.24 28	4375 20 9.375 28	3175 28.4375	28.375	29.75 29	18125 2	175 29.8125	157.5	151.25 15	6.875 161.3 6.125 1711	75 130.844	0.012069 0	015309
90	5.0%	3.0%	0.489	0.49	0.49	0.49	200	20.0		0.48	975 14.1	125 14.1	25 14.12	5 14.128	60.0	0.085	0.085	0.085 29	1875 2	0.125 29.125	29.125	29.5	29.5	9.5 29.5	64.3125	65.875 6	5.875 65.8	75 36.3438	0.010845 0	012911
	5.0%	3.0%	1.015 1	1.016	1.016	1.016	$\left \right $			1.01	575 1	4.4 14.3	95 14.39	5 14.395	0.11	0.12	0.12	0.12 29	0625	29 29	29	29.5	29.5	29.5 29.5	75.625	77.8125 77	8125 77.81	25 48.25	0.012171 0	014491
	5.0%	3.0%	2.979	2.974	2.974	2.974	+	+	+	2.87	14.1	965 14.9	65 14.96	5 14,96%	0.175	0.19	0.19	0.19 2	8.875 28.	6875 28.6875	28.6875	29.5	285	29.5 29.5	96,4375	100.063 10	0.063 100.0	63 70.4219	0.006786	0.01046
1	5.0%	3.0%	0.066	9.899 0.67	4,888	4.899 0.67	0.000	000 0	000 0	1 080 700	12 12 12 12 12 12 12 12 12 12 12 12 12 1	S05 15.3	50 15.35 50 15.35	0 15.30	0.02	0.205	0.205	0.205 28	82 2290	4375 28.4375	28.4375	28.5	2'RZ	282 287	113.188	11/.313 11	1313 111.3	13 8/.8125	0.01369 0	01618
30	5.0%	3.0%	2.694 2	5 693	2,693	2.693	6.31	6.31	6.31	6.31 9.00	325 15.8	965 15.	89 15.8	15.86	0.245	0.265	0.265	0.265 28	1875 28	0625 28.0625	28.0625	29.5	29.5	9.5 29.5	143	148.375 14	148.375 148.3	75 118,938	0.014827 0	017652
11	950.5	3.0%	3.697 3	3.702	3.702	3.702	6.33	6.331	6.331 6	5.331 100	315 15	.98 15.	95 15.9	6 15.96	0.275	0.285	0.285	0.285 28	1875 20	0.125 28.125	28.125	29.5	29.5	19.5 29.5	152.5	156.375 15	6.375 156.3	75 127.266	0.015/15 0	0.01871
-	5.0%	3.0%	4.655 4	4 657	4,657	4.657	6.32	6.326	6.326 1	5.326 10.	981 16	.11 16.	01 16.0	11 16.0	0.28	0.295	0.295	0.295 2	8.125 28	0625 28.0625	28.0625	29.5	29.5	29.5 29.5	156.438	161.313 16	1.313 161.3	13 132,016	0.015739 0	018738
6	5.0%	4.0%	1 0.521	0.522	0.52	0.519	+	+	+	10.5	205 14	13 14.	13 14.1	3 14.12	0.115	0.140	0.115	0.12	29 28	8375 29	28.9375	28.5	28.2	282 287	71 375	71.072 59	71 72 24 33	75 31.0313	0.011369 0	013523
	5.0%	4 0%	3 028	2002	3 077	3 028	+		+	30	1075 14	14	20 14 9	14 00	0.188	0.00	0.120	100	28.5 28	4375 28.5 28.5	28.4375	2 80	2 92	10.5 20.5	88.5	89.375 89	15825 89.31	25 60 4688	0.01542	101766
10	2009	4.0%	4,999 4	1 881	4,993	4.99	-	-	-	4,88	325 15	34 15	36 15.3	M 15.36	0.237	0.25	0.24	0.25 28	1875 20	125 28.25	28.1875	29.5	29.5	9.5 29.5	100.063	101.938 9	8.875 101.9	38 72.7656	0.011562 0	013754
	5.0%	4.0%	0.672 0	0.671	0.67	0.671	6.356	6.353	6.349 6	5.348 7.0	1225 15	.65 15.	62 15.6	5 15.62	0.275	0.29	0.275	0.292 28	0625	28 28.0625	28	29.5 29	1,3125	19.5 29.4375	112,813	114.563 1	12.25 114.3	13 85.4531	0.012614 0	015018
-	5.0%	4.0%	2.646 2	2.647	2,646	2,65	6.325	6.332	6.326	6.33 89	9755 15	.86 15.	84 15.8	6 15.84	0.297	0.31	0.3	0.31 27	9375 2	875 27.8125	27.75	29.5	29.75	39.5 29.5	120.313	124 12	0.188 123.8	13 94.2344	0.01283 0	015275
=	5.0%	4.0%	3.723	3.72	3.723	3.72	6.301	6.314	6.301	6.314 10.	029 15	.92 15.	96 15,9	2 15.96	0.315	0.328	0.32	0.332 27	8125	7.75 27.75	27.6875	28.625 2	29.625 29.	625 29.624	118,563	122.563 11	8.313 122.1	25 92.6406	0.012053 0	014349
- 20	5.0%	4.U%	4.068	1/02	4.068	4.6/1	9.789	6.301	0:280	0.301 105	010	15 15.		10.1	0.100	0.110	0.100	0.115 20	21.15 21.	6180.12 C180	0 202 20	4 070 00 0	67 02 12 00 0	179'RZ 979	123.063 E0.427E	124./5 12 E4 2126	2 2 5 5 5 124.4 6 7 5 5 4 10	38 96.U156 76 24 7100	0.010927 0	013069
	5.0%	5.0%	1.03	1.029	1.021	1.026		+	+	101	265 14.2	385 14.3	85 14.38	5 14.38	0.143	0.154	0.141	0.15	28.5 28	4375 28.4375	28.4375 2	8.9375 28	19375 28.9	375 28 9375	63.4375	64.625	63.5 63.81	25 35.3906	0.011817 0	014069
1-2	5.0%	5.0%	2.995 2	2 894	2.996	2.995	\parallel		$\left \right $	2	995 14	.97 14.	98 14.9	7 14.98	0.214	0.223	0.221	0.228 2	8.125	28 28.125	28.0625 2	8.9375 26	1,9375 28.9	375 28.9375	79.1875	81.9375 79	0625 81.93	75 52.4531	0.011571 0	013776
	20%	5.0%	5.021 5	5.026	5.024	5.028				5.03	115 15	36 15.	37 15.3	6 15.3	0.251	0.268	0.253	0.267 2	7.875	77.75 27.9375	27.875 2	9375 26	9,9375 28,9	G75 28.9374	89.375	93.125 89	5625 92.81	25 63.3594	0.011431 0	013609
	20.02	04.0.C	7 661 2	1.637	0.038	0.635	6.242	6 247	6.348 A	0.351 5.88	076 15	12. 13.	10.0	0.01	0.224	0.305	0.326	0.240 27	20 3033	91.00.12 02.0	C 2/289.72	212 012810 20	8 97 G/SRP	275 20.8375	106.430	38.U525 84	58.78 C189.9	10 00.5313 00 00 5701	0.010106 0	014781
10	2036	5.0%	3.642 3	3 642	3.637	3.638	6.31	6.309	6.316	3 306 9	9.95 15	35 15.	98 15,9	5 15.98	0.345	0.355	0.34	0.36 27	5825 27	4375 27.625	27.375 2	8.9375 28	19375 28.9	375 28.9375	116.313	118.125 11	6.375 118	25 89.7656	0.014628 0	017415
		10.00																									10 F		-	

Table B1.6 Smooth concrete surface data

Dischar	g SL (%)	SX (%)		QWALL	(CFS)			Offo.	or (CFS)		Ototal		Depth	(Ħ)	H	Spr.	ead Dist T1	(in)	-	Curb	listance (ir	-		Spread Dist	T2 (in)	AVG	L I	value
actual G	~		Initial 1st n.n 2	and hur	Final 1st nun	and hun	Initial 1ct nun	2nd nur	Final 1st run	Ord run	AVG	Min 1st nun - 7	M un le	aX trun 2n	d nun 1st	nin 2nd	T2m run 1st n	a Xnd n	Cmin 1st nr	on Ond nu	Cmax 1st nun	2nd nin	T1min 1ct nun	77 2nd nin 1s	max trun 2nd	Sprea	d Geome	rri Integrate
U	5 0.5%	0.5%	0.495	0 4945	0.495	0 495		0	0	0 0	01 J 49488	0.0785	0.079	0.0785	0.0785 25	19688 25	3 875 28 9	1686 28.9	063 28.95	875 28 93	75 28 937	5 28 9375	154 094	153 563 1	54 125 155	188 125.5	13 0.0050	R D DDBD
	1 0.5%	0.5%	1.0055	1.0055	1.006	1.006		0	0	0	1.00575	0.0945	0.0975	0.095	0.0975 21	3.7188 20	3.625 28.1	7188 28.	625 28.90	875 28.93	75 28.937	5 28.9375	237.313	237.313 2	37.313 237	313 208.6	41 0.009	2 0.0115
	3 0.5%	0.5%																										
	%C'N C	%C'N																	-								0	
	%90 6	0.5%														+					-			T				
1	0.5%	0.5%																										
-	1 0.5%	0.5%	1	T								1	╡	╡	┥	+	+	+	_						_			
ö	1 0.5%	1.0%	0.485	0.486	0.485	0.486					1 0275	0.1075	0.1075	0.1075	0.1075 21	3.8438 28	8125 28.8	3438 28.6	125 28.90 ene no or	875 28.93	75 28.937	5 28.9375 5 70 0775	151.469	151.469 1	51.781 151	781 122.7	97 0.015 ²	8 0.01840
	3 0.5%	1.0%	3.026	3.023	3.022	3.022	10	0	0	0	3.02325	0.2075	0.2125	0.2125	0.2125 26	3.3125 28.	2813 28	375 28.3	125 28.90	875 28.93	75 28.937	5 28.9375	237,313	237.313 2	37.313 237	313 208.5	92 0.010	4 0.0121
	5 0.5%	1.0%																										
	7 0.5%	1.0%																		_	_				-	_		
- t	9 0.5%	1.0%																	-	_						_		
	0.0%	1.0%														-												
	5 0.5%	1.5%	0.49	0.49	0.489	0.489		0	0	0	0.4895	0.145	0.15	0.145	0.15 25	3.4063 21	3.375 29.4	1063 29.	375 29.7E	813 29.71	38 29.781	3 29.7186	143.438	143.438 1	43.438 143	438 114.0	47 0.0246	4 0.02934
	1 0.5%	1.5%	0.976	0.976	0.971	0.971		0	0	0	0.9735	0.16	0.1675	0.16	0.1675 26	3.6563 28.	6563 28.E	3563 28.6	563 29.56	338 29.43	75 29.593	8 29.4375	157.219	157.813 1	56.938 157	906 128.8	13 0.017	4 0.02050
	3 0.5%	1.5%	2.987	2.987	2.989	2.985		0	0	0	2.988	0.225	0.235	0.235	0.235 28	3.5938 28	7813 28.	5938 28.7	813 29£	875 30.15	33 29.87	5 30.1563	198	208.188	198.25	08.5 174.5	47 0.0126	4 0.0150
	5 0.5%	1.5%	5.03	5.03	5.03	5.05		0	0	0	5.03	0.29	0.31	0.29	0.31	28.75 28	5625 2	8.75 28.5	625 29.81	125 30.06	25 29.812	5 30.0625	237.313	237.313 2	37.313 237	313 208.6	56 0.0120	1 0.0140
	7 0.5%	1.5%																										
	9 0.5%	1.5%											+	+	+				_									
=	0 0.5%	1.5%																-		-	_				-			
-	1 U.5%	1.5%						_					2002	2000	2	1000	1000	100	100									
ő	5 0.5%	2.0%	0.513	0.51	0.5	0.496			-		0.5055	0.135	0.145	0.145	0.15	40.25 40	3125 40	1125 40.0	938 41.1	125 41.06	25 41.12	5 40.9686	125.594	125.594 1	25.469 125	469 85.30	59 0.0178	1 0.0212
	1 0.5%	%N7.	1.006	1.008	RNN1	1.01		5			1.00825	0.18	0.19	0.005	0.205 3.	9.8438	40	4U 4U.L	313 405	525 4U./1	55 40.843	8 4U./813	135.031	141./19 1	35.156 136	1/18 RU/	1/5 0.0128	2 0.0150
1	7 U.5%	2.U%	3:001	188.7	2.9/4	2.8/1			=		7987Z	00 0	0.04	0.00	U.285 3.	1./813	38.75 38.	/188 39.C	8/5 40.15	003 4U.68	75 4U.843	7 00 04 02	184	18/.088	86.813 19(704 14/.4	61 U.U128	9 0.0123
t de la la	%C'N C	2.0%	4.938	4.837	4.811	19.4	000		0 0	1 00 00	7 55400	87.0	1.01	67.0	0.495	30 405 00	28.75 30.1	102 291	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	0.05 01 07 0	180.US C2	2719.05	C1.412	0 2 000	217 0117	1 00 100 100 1	08 U.U.14.	2 0.011/0
	20 C.D 7	0/L1/2	C70'N	070'0	C70'N	307470	7-0	7.0 07	7.0 0.7	27.0 07	20100.7	0.2/0	0.40	U.30	C7470	28.122 30	.0430 38.1	1.85 6200	20.04 C/D	RC-04 C/0	30 40.800	1 41.0310	000.077	7 0.052	27 000 17	2.801 67.1	»710:0 CH	0 0.01400
F	%90 L	2.0%	T													+			+	+				T				
Ť	1 0.5%	2.0%																										
1.0	5 0.5%	2.5%	0.544	0.544	0.525	0.525	10	0	0	0	0.5345	0.115	0.125	0.11	0.12 38	3.0313 37.	8438 38.0	J313 38.	125 38.56	825 38.46	38.812	5 38.875	102.531	108.031 1	02.438 107	.938 67.22	66 0.0129	5 0.0154
	1 0.5%	2.5%	1.126	1.126	1.115	1.115	10	0	0	0 0	1.1205	0.16	0.1675	0.165	0.175	37.875	38 38.0	J938 38.1	875 38.5	875 38.46	38.906	3 38.9375	115.125	133.5 1	15.625 130	813 86.47	66 0.0124	1 0.01478
	3 0.5%	2.5%	3.11	3.11	3.101	3.101		0	0	0	3.1055	0.27	0.3	0.3	0.3 3.	7.7813	38 37	.625 37.	875 38.56	825 38.	75 38.843	8 38.9063	158.5	169.594 1	57.281 170	438 126.1	33 0.0118	4 0.014
	5 0.5%	2.5%	5.006	5.006	5.004	5.004	T	0	0	0	5.005	0.295	0.335	0.295	0.335 3.	7.8438 37	9063 37.1	3875 37.	875 39.56	838	40 39.187	5 39.5625	179.5	193.531 1	80.719 193	656 149.0	23 0.011	1 0.013
	/ U.5%	%G.7	0.819	0.819	0.812	0.812	7 9 7	29 P	77.9 97.	18 6.246	7.U645	U.34	0.375	0.34	0.405	(43/5 3/	1/2 2000	3/12 G200	125 382	3/5 3/	12 38.87	5 39.0625	196.219	203.313 1	95.813 2UC	8/5 162.1	40 0.010	4 0.01208
14	%CN 8	0%C7	CR9.7	CR9.7	R0.7	707	77.0	74 0.7	-74 0.1	17:0 17	8.1080	0/2/0	147	0.38	0.420	11 212 21	7/2 0718	10 2220	8/0 03	97-RC C7-	000.85 51	1 33.0202	HRC:CN7	7 560.077	PON:CO	111 077	48 U.U.U	1 0.0118
	1 0.5%	%9 C																										
10	5 0.5%	3.0%	0 487	0 487	0 489	0 489	-	c	c	0	0.488	0 1775	n 1775	0 1775	0 1775 3F	3 3438 38	4063 38 2	7188 35	8.25 38.9C	163 38.8	75 38.87	5 38.875	100 188	100 188 1	00 825 10C	625 62 1C	16 0.0154	6 0.0184 ⁻
	1 0.5%	3.0%	1 045	1 045	1 036	1.036					1.0405	0.175	0.19	0.195	0.21 38	3.1875	38.25 38.1	1875 31	8.25 38.F	875	39 38 937	5 38 5625	123.563	125.344 1	23 563 125	438 86.25	78 0.0173	1 0.0206
	3 0.5%	3.0%	2.967	2.967	2.956	2.956	0	0	0	0	2.9615	0.295	0.32	0.315	0.315 3.	7,5938	37.75	37.5 37.7	813 38.65	563 38.71	38.856	3 38.75	147.938	151.563	148.25 152	594 112	43 0.0123	6 0.01458
	5 0.5%	3.0%	5.05	5.051	5.03	5.03		0	0	0	5.04025	0.32	0.38	0.33	0.38	37.625 38.	1563 37	.625 35.2	188 38.81	125 38.	75 38.562	5 38.7813	170.469	179.688 1	72.125 18'	719 138.6	44 0.0127	3 0.0151
	7 0.5%	3.0%	0.814	0.814	0.834	0.834	4 6.1	8 6.	18 6.1	16 6.16	6.994	0.38	0.425	0.38	0.425 3.	7.0438	37.5 37.1	1563 37.	625 38.66	875 38.96	38.38.562	5 38.8436	195.719	205.094 1	90.125 204	.844 161.6	14 0.013	6 0.01638
-	9 0.5%	3.0%	2.933	2.933	2.929	2.925	3 6.12	29 6.1.	29 6.15	33 6.133	9.062	0.39	0.44	0.39	0.44 3.	7.6875 37	7188 37.6	3563 37.6	563 38.71	188 38.	75 38.687	5 38.9686	202.813	217 2	02.625 216	938 172.1	64 0.0126	2 0.01500
Ŧ	0 0.5%	3.0%	3.93	3.93	3.914	3.914	6.11	19 6.1	19 6.14	46 6.146	10.0545	0.38	0.475	0.38	0.475	37.5 37	5938 37.4	4688 37.6	563 38.56	625 38.68	75 38.12	5 38.625	202.75	221.906 2	08.219 220	.656 175.6	28 0.0120	2 0.0143
-	1 0.5%	3.0%	4.855	4.855	4.854	4.854	6.1	12 8.	12 6.1;	16 6.116	10.9725	0.39	0.475	0.39	0.475 3.	7.5313 37	4063 37.4	4688 37.5	375 38.E	825 38.71	38.687	5 38.5	207.75	219.125	209.5 27	8.75 176.1	95 0.0110	8 0.01319
0,	5 0.5%	4.0%	0.517	0.51	0.513	0.508		0	0	0	0.512	0.16	0.17	0.16	0.17	38.125 37	9688 38	125 38.0	938 38.65	563 38.81	25 38.593	8 38.75	87.4063	87.4063 8	7.3125 87.	3125 49.26	13 0.013	6 0.01
1	1 0.5%	4.0%	1.0245	1.0265	1.021	1.0226	5	0	-		1.02363	0.21	0.22	0.21	0.22 3.	7,9375	38 37.1	3375 37.6	375 3	8.5 38.71	38.437	5 38.7186	100.125	103.125 1	00.063 103	094 63.64	84 0.0128	2 0.0149
	3 0.5%	4.0%	2.985	2.986	2.9785	2.976		0	0	0	2.98213	0.33	0.34	0.335	0.335	37.875 37	3125 37.4	1375	37.5 38.66	563 38.84	38 38.656	3 38.75	126.375	137.281 1	28.375 13	281 94.26	69 0.0123	8 0.01472
	2 0.5%	4.0%	5.028	5.028	5.0195	5.016	0	0	000	0 0	7 02288	0.405	0.415	0.405	0.415	38.125 37	9688 35 4ren 23	1.125 38.0	313 38.65	563 38.84	38 38.718 37 00 040	8 38.8436	145.156	155.531 1.	45.094 177	55.5 112.2	58 0.0119	8 0.01378
	%C'N /	4.0%	178'0	778'0	179'0	\$70.0 \$70.0	0	0.0	2 2 2	217.0 7.12	GN7N'/	0.40	0.40	0.45	0.40 3	15 8812.1	15 50CL.	12 00 0012	120 010	10.00 38.08	12 38.043	27070 20 07	101.409	1 /202.0/1	01.438 1/3	0151 1980	1710'0 00	2 0.0150.
Ť	9/ C.D P	4.0%	0.2 DAA	677 P	CV2 6	1817		C 8 11	11 0.21 11 8.71	10 0.2UZ	0 05/1	0.47	0.48	0.43	0.48	30.75 JD	01 20 30. 26 75 30	A 75 36 7	108 37 AC	10.15 021	001-15 07	3 31.3120 E 37.5315	100.808 174.675	100.100 1 195.006 1	101 00.830 101 74 676 104	2001 102 MAG	00 0.011	8 U.U.1280
	1 0.5%	4.0%	1 795	0.110 A 700	21.14 A 700	1710 207 h	10 8 91	4.0 2.	1E 0.4	12 U.212	11 0012	0.40	0.70	0.40	0.50	20.1/J	20.72 36 F	2078 36.6	F 2 001	012 07 70	10 01 01 010	0 07 0605	174 039	100.300 1	77 375 100	128 146 5	70 0.010	TUIUIU 0

Table B2.1 Asphalt surface data

_
date
surface
Asphalt
B2.2
Table

_									-																														_	_		
an	ntegrated		0.01964	0.01365	0.01024	0.01058	0.01074				0.01416	0.01224	0.01026	0.01222	0.01	0.01057	0.01131	0.0119	0.01248	0.01281	0.00886	0.01134	0.01087	0.01047	0.01015	0.01091	0.01254	0.01122	0.01057	0.01019	0.01081	0.01136	0.01168	0.01104	0.0152	0.0136	0.01837	0.01203	0.01469	0.01261	0.01386	0.01353
n va	eometri I		0.01649	0.01147	9800.0	0.00889	0.00902				0.01189	0.01028	0.00862	0.01027	0.0084	0.00888	0.0095	0.00999	0.01048	0.01076	0.00744	0.00953	0.00913	9.00879	0.00852	0.00916	0.01053	0.00943	3.00888	0.00856	80600.0	0.00954	0.00981	0.00928	0.01277	0.01142	0.01543	0.0101	0.01234	0.0106	0.01164	0.01136
NG	pread G		86.4531 (98.2031 (132.633	162.906 (186.664 (63.8516 (78.8672 (111.07 (144.234 (157.602	170.477 (181.438	191.93 (53.3203 (69.9766 (91.7891 (121.969 (136.266 (147.555 (151.398 (161.344 (48.203 (59.5234 (88.1797 (105.195 (122.258 (136.977 (141.68 (145.836 (57.2969 (61.1484 (89.2109 (93.5625	112.453 (118.414	127.484 (131.211 0
~	07	Ind run	127.844	141.656	178.25	210.438	235.094				103.969	118.188	152.813	187.656	198.813	206.906	223.656	228.813	93.5625	112.031	132.25	162.813	179.906	189.969	197.5	207.344	86.4063	98	126.719	144.125	162.813	176.375	181.5	185.875	95.7188	101.125	131.875	134.844	159.531	159.844	171.563	174.188
t T2 (in)	2max	st run 2	121.438	131.375	163.094	191.031	213.813				101.156	115.156	144.063	175.313	190.938	208.531	213.188	229.063	38.5938	103.938	126.156	156.406	166.875	178.813	177.781	188.75	35.4375	37.1563	124.219	140.344	155.656	171.156	175.313	179.063	35.6875	37.9375	122.938	128.531	141.125	152.719	158.875	163.531
pread Dis	F	nd nun 1	27.875	141.656	178.25	210.344	235				102.719	18.625	153	87.844	98.656	206.75	23.563	228.75	33.5625	111.844	32.313	162.594	80.063	89.875	187.531	207.281	36.4063	38	126.75	44.313	62.813	76.406	181.563	85.875	95.75	01.219	31.906	34.875	159.5	59.875	171.5	74.125
S	1min	st run 2r	121.438	131.375 1	163.031	191.031	213.813				100.688	115.156	144.219	175.625	190.938	208.375	212.969	228.906	88.625	103.594	126.094	156.219	166.906	178.906	177.813	188.75	85.4375 8	97.1875	124.219	140.344	155.656	171.188	175.313	179.063	95.75	97.9063	122.906	128.5	141.125	152.688	158.844	163.531
		nd run 1	39.25	39	38.625	38.7813	38.5313				38.9375	38.4375	38.4688	38.0938	38.0313	37.875	38.0313	37.75	38.2813	38.5938	38.5938	38.6563	38.7188	38.5313	38.5	38.125	38.5313	38.8438	38.6563	38.5	38.4065	38.4375	38.4688	38.5	38.9688	39	38.5313	39.0625	38.875	38.8438	39	38.625
nce (in)	max	st run 2	88.7813	88.7813	38.0625	88.4375	38.5				38.875	88.0938	88.4688	37.9375	87.9063	87,9063	37.625	37.6875	38.25	88.4063	38.3125	38.5625	88.0313	87.8438	87.8125	37.8125	38.4375	38.7188	38.375	38.4688	38.25	88.1875	37.3125	87.4688	8896.88	39.3125	38.4688	38.625	38.8125	38.8125	88.8438	38.1563
urb Dista	0	nd run 1:	38.7813	38.9375	38.6563	38.4688	38.5625				39.125	38.5313	38.5313	38.2188	37.9688	37,9063	88.0938	37.8438	38.2813	86,5938	38.5313	38.625	38.5938	38.4375	38.4688	38.0938	38.4375	38.875	38.625	38.5313	38.4375	38.4688	38.5	38.5	38.9375	8600.66	38.5625	39.0938	38.9375	88.9063	38.9375	38.7188
	min	st run 2	38.7188	38.7188	38.0938	38.4375	38.4688				38.9688	38.4688	38.4375	88	37.875	37.8438	37.8438	37.75	38.2188	38.375	38.2813	38.625	38.0313	37.9063	37.7813	37.7813	38.4063	38.6563	38.4375	38.4375	38.0938	38.2188	37.375	37.4375	38.9375	39.2188	38.4375	38.625	38.75	38.7813	38.8125	38.1875
	0	nd nun 1	38.2188	38.375	38.1875	87.9063	37.7188				88.2813	8896.78	87.4688	37.5313	37.25	87.2188	36.9375	37.0313	87.7813	37.875	87.5625	87.6563	37.25	36.9063	36.7188	36.3438	37.719	38.0938	37.2815	37.125	37	87.0313	36.75	36.6565	88.4063	88.3438	38.1875	37.9375	8	87.9063	87.8125	37.625
T1 (in)	2max	st run 2r	8.1875 3	8.2813	7.8438 3	37.75	8:0938				8.1875 3	37.875 3	17.4063 3	17.1875 3	17.1563	17.0938	36.875 3	6.9063	37.75	17.8125	17.4063 3	17.4375 3	17.1563	36.75	6.5313 3	36.625	17.6878	38 3	17.2813 3	17.0313	6.9375	6.6565 3	6.7188	36.594 3	8.4063 3	8.4063	8.1875	8.2813 3	17.6875	37.875	17.5938 3	37.625
rread Dist	Ľ.	d run 1s	38.25 3	8.3438 3	38.25 3	7.8125	7.6875 3				38.375 3	7.9688	37.5 3	7.5625 3	7.3125 3	7.2188 3	6.9375	6.9688 3	7.7813	7.9375 3	7.2188 3	7.5938 3	7.2188 3	37	6.6875 3	6.6563	37.75 3	8.0938	7.2813 3	37.125 3	37 3	36.875 3	36.75 3	6.6563	8.4688 3	38.375 3	8.1875 3	7.9688 3	8.0625 3	7.8438	7.7813 3	7.6563
ŝ	min	strun 2n	38.125	38.25 3	17.8125	37.75 3	7.5625 3				8.2813	7.8438 3	17.4375	7.2188 3	7.2188 3	37.125 3	36.875 3	6.9063 3	37.75 3	37.875 3	7.4688 3	7.4688 3	7.0625 3	6.6875	5.0938 3	37.125 3	17.7188	8.0625 3	17.3438 3	7.0625	6.9688	6.6563	36.75	36.625 3	8.4375 3	8.4688	8.2188 3	8.3125 3	17.7188 3	7.8438 3	7.6563 3	37.625 3
	Ē	nd run 1s	0.099	0.1	0.165 3	0.205	0.275 3				0.1265 3	0.143 3	0.2 3	0.29 3	0.29 3	0.345	0.365	0.3925 3	0.135	0.145	0.22 3	0.275 3	0.31 3	0.35 3	0.395 3	0.415	0.14 3	0.15 3	0.225 3	0.2985 3	0.301 3	0.35 3	0.342	0.38	0.135 3	0.16 3	0.24 3	0.315 3	0.345 3	0.355 3	0.4 3	0.4
(t)	X	trun 2r	260.0	0.1	0.165	0.2	0.245				0.1215	0.1405	0.2	0.2775	0.28	0.3	0.305	0.33	0.135	0.14	0.22	0.26	0.285	0.31	0.35	0.345	0.14	0.15	0.225	0.2985	0.301	0.35	0.342	0.38	0.135	0.15	0.24	0.305	0.335	0.345	0.39	0.39
Depth (Ma	nd run 1s	0.0975	0.1	0.165	0.205	0.275				0.1265	0.1435	0.2	0.29	0.29	0.345	0.365	0.3925	0.135	0.145	0.22	0.275	0.305	0.35	0.395	0.415	0.14	0.15	0.225	0.2985	0.301	0.35	0.342	0.38	0.135	0.16	0.24	0.315	0.345	0.355	0.4	0.4
	(in	st run 2	0.099	0.1	0.155	0.195	0.245				0.12	0.14	0.19	0.2775	0.28	0.3	0.305	0.33	0.135	0.14	0.21	0.26	0.285	0.31	0.35	0.345	0.14	0.15	0.225	0.2985	0.301	0.35	0.342	0.38	0.135	0.15	0.23	0.305	0.335	0.345	0.39	0.39
Ototal	AVG N	CFS 1	0.505	1.008	2.99475	5.013	7.11125				0.49075	-	2.97575	5.012	6.9765	9.02875	9.958	11.0098	0.50025	1.01475	2.986	4.97575	7.0085	8.9785	9.9595	10.9613	0.51125	1.00075	3.032	5.018	7.1025	9.1325	9.733	11.0975	0.49325	1.0395	2.99825	5.01575	6.85475	8.989	9.9765	11.0295
		2nd run	0	0	0	0	6.274				0	0	0	0	6.168	6.146	6.133	6.13	0	0	0	0	6.161	6.157	6.153	6.106	0	0	0	0	6.195	6.15	6.16	6.14	0	0	0	0	6.184	6.17	6.163	6.166
CFS)	Final	1st run	0	0	0	0	6.275				0	0	0	0	6.153	6.148	6.132	6.129	0	0	0	0	6.158	6.15	6.15	6.108	0	0	0	0	6.195	6.15	6.16	6.14	0	0	0	0	6.185	6.173	6.16	6.165
Officer (2nd run	0	0	0	0	6.283				0	0	0	0	6.14	6.126	6.145	6.105	0	0	0	0	6.165	6.155	6.128	6.132	0	0	0	0	6.18	6.18	6.176	6.135	0	0	0	0	6.183	6.175	6.162	6.164
	itial	strun	0	0	0	0	6.281				0	0	0	0	6.144	6.127	6.146	6.105	0	0	0	0	6.16	6.154	6.128	6.129	0	0	0	0	6.18	6.18	6.176	6.135	0	0	0	0	6.174	6.172	6.167	6.168
	ll	nd run 1:	0.503	1.006	2.992	5.01	0.833				0.489	0.999	2.979	5.018	0.821	2.89	3.807	4.901	0.498	1.013	2.983	4.97	0.843	2.823	3.819	4.837	0.511	1	3.022	5.021	0.915	2.96	3.55	4.955	0.492	1.043	3.006	5.028	0.23	2.813	3.803	4.867
CFS)	inal	st run 2	0.502	1.005	2.992	5.011	0.834				0.489	0.999	2.97	5.018	0.82	2.889	3.806	4.9	0.498	1.013	2.982	4.97	0.845	2.82	3.818	4.836	0.511	1	3.021	5.02	0.915	2.96	3.55	4.955	0.492	1.044	3.004	5.031	0.822	2.814	3.801	4.863
OWALL ((E	nd nun 15	0.507	1.011	2.998	5.015	0.832				0.493	1.001	2.975	5.007	0.831	2.894	3.833	4.882	0.502	1.017	2.99	4.983	0.851	2.827	3.821	4.849	0.511	1.002	3.043	5.016	0.915	2.975	3.58	4.965	0.489	1.038	2.992	5.003	0.821	2.819	3.826	4.863
	itial	st run 2r	0.508	1.01	2.997	5.016	0.833				0.492	1.001	2.979	5.005	0.829	2.895	3.83	4.887	0.503	1.016	2.989	4.98	0.851	2.828	3.821	4.848	0.512	1.001	3.042	5.015	0.915	2.975	3.58	4.965	9.0	1.033	2.991	5.001	0.82	2.82	3.824	4.862
X (%)	<u>_</u>	1;	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
L (%) S.			1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
ischarg St	ctual Q	S.	0.5	-	m	5	~	6	10	=	0.5	+-	~	5	~	σ	0	11	0.5	-	e	2	2	8	10	11	9.0	÷	~	5	~	6	10	11	0.5	-	m	9	~	00	10	11
Õ	а	G,										11							1																							

data
surface
Asphalt
B2.3
Table

_		_	12.2		100	67			_			1.00	10-					6		100			100	0.0	~	02		Luce."		1.00			<i></i>		6		-	0.2			07	~
	egrateo		0.0146	.01367	01212	0.0143	01665				00976	01039	0.0096	01167	.01151	0.0165	0.0171	.01532	01171	.01056	01249	.01124	.01206	.01128	.01122	.01383	01453	01035	.01001	.01035	.00901	.01128	.01142	0.0123	.01202	.01148	.01014	.01193	.01217	.01278	.01233	01333
n valu	netri Int	-	226	148 0	018 0	202	398				082 0	873 0	806	0880	967 0	386	436	287 0	984 0	887 0	049 0	944 0	013 0	947 0	942 0	161 0	122 0	087 0	841 0	869 0	757 0	948 0	036	033	101 0	965 0	851 0	002 0	022 0	074 0	036 0	112 0
_	Geon		7 0.01	8 0.01	7 0.01	2 0.01	3 0.01				0.0	0.0	00.0	0.0	00.0	2 0.01	3 0.01	1 0.01	4 0.00	1 0.00	8 0.01	1 0.00	8 0.01	6 0.00	2 0.00	2 0.01	3 0.0	0.0	3 0.00	6 0.00	2 0.00	1 0.00	0.0	2 0.01	0.0	4 0.00	6 0.00	8 0.01	3 0.01	2 0.01	3 0.01	200
AVG	Spread	c	67.054	86.882	123.97	160.74	191.95				48.476	64.544	95.382	123.9	145.18	176.49	185.45	184.53	45.023	57.414	91.257	106.96	124.43	133.40	138.5	154.74	43.945	50.343	75.406	92.7	103.24	119.21	124.48	132.8	34.929	44.273	63.476	82.218	93.656	104.67	107.52	114.54
Ì		nd run	06.594	27.781	172	205.188	39.219				86.625	03.625	38.563	69.656	87.594	22.344	29.688	29.969	4.5313	86.8438	32.906	49.219	169.5	77.563	81.156	98.625	32.9375	39.4063	18.625	35.938	45.813	62.156	169	75.188	3.1563	32.7813	04.031	23.844	134.5	45.906	149.5	56.813
: T2 (in)	2max	strun 2r	04.344 1	21.656 1	51.094	191.25 2	219.469 2				36.6565	01.084 1	29.188 1	54.188 1	177.75 1	206.938 2	215.75 2	213.813 2	32.4688 B	34.4688 9	25.438 1	40.188 1	54.594	64.281 1	70.531 1	85.438 1	32.9375 E	89 8	09.219 1	26.063 1	36.906 1	52.031 1	56.125	65.938 1	72.125 7	31.3125 E	37,4375 1	114.75 1	26.594	37.281 1	39.281	45.594 1
pread Dist	E	nd run 1s	104.625 1	27.813 1	172.031	205.188	239.156				36.4375 8	103.625 1	38.563	69.656	896.781	22.375 2	29.906	29.938	34.4375 8	96.875	133 1	149.219 1	69.406	177.5 1	181.031	1 889.86	32.9688	39.3438	18.719 1	35.875 1	45.938 1	162.25 1	68.938	175.156	3.2188	32.7813 8	104.031	23.844	134.5	145.906	149.438	56.875 1
S	1min	st run 2r	104.469	121.625	51.094	191.563	219.469				36.6563 8	01.094	29.188	53.906	77.688	207.063	215.813	214.875 2	82.375 8	34.4688	25.563	140.188	54.594	164.25	170.531	185.5	32.9688 8	37.5313 8	09.219	26.188	37.031	52.219	56.156	866.638	72.1563	31.3125 8	37,4375	14.813	26.531	37.344	39.313	45.531
	-	nd run 1:	38.3125	38.8125	38.8125	38.875	38.9063				38.6563	38.6563	39.3125	39.094	38.9688	38.7813	39.0938	39.2188	39.0313	38.9688	38.8438	38.7188	38.8438	38.4688	38.3438	38.3125	39.25	39.2188	39.2813	38.6563	39.0938	38.5938	39.2813	38.0625	38.4688	38.5313	38.4063	38.5313	38.375	38.4688	38.5625	38.5
nce (in)	max	st run 2	38.5	38.375	38.1563	38.5313	38.5938				38.5625	38.25	38.9065	38.6563	38.625	38.7188	38.9063	38.7813	38.7188	38.9688	38.6875	38.5625	38.4688	38.25	38.3438	37.4063	38.9063	39.0625	39.1875	38.875	39.125	38.5313	38.875	38.4375	38.25	38.4375	38.1563	38.125	38.0313	38.0625	38.2813	38.1563
Curb Dista	0	nd run 1	38.8125	38.5625	38.8438	38.875	38.875				38.75	38.625	39.3125	39.125	39	39.2813	38.5313	39.25	39.0313	38.9375	38.875	38.6563	38.8125	38.4063	38.4375	38.3125	39.3125	39.3438	39.25	38.5625	39.25	38.8125	39.25	39.0938	38.4688	38.5938	38.4375	38.5313	38.375	38.4688	38.5	38.4375
0	min	st run 2	38.5313	38.0313	38.125	38.5313	38.5625				38.5625	38.2106	38.9375	38.6875	38.75	38.75	38.875	38.75	38.7188	39	38.7188	38.5	38.4688	38.3125	38.25	38.1563	38.9063	39.0938	39.1563	38.8438	38.75	38.8125	38.9063	38.6563	38.2813	38.4375	38.2188	38.1875	38.0938	38.125	38.2188	38.1875
8	0	nd nun 1	38.0938	37.8438	37.6563	37.8438	37.5313				38.4375	37.9063	38.9065	37.9688	37.5938	38.0625	37.4688	37.7813	38.7188	38.3438	88	37.875	37.6875	37.5	37.375	37.1875	38.75	38.4375	38.5625	38.3438	38.1875	38.1875	38.125	37.9375	37.9063	37.8438	37.3438	37.2188	37.0625	37.1563	37.125	36.8438
t T1 (in)	2max	st run 2	37.8125	87.8438	87.4688	87.4063	37.25				87.7813	87.7188	38.3125	37.875	87.4375	88.3438	36.8438	87.4063	88.0938	88.1875	87.9063	87.6563	87.5313	37.4688	87.0313	37.625	89.1875	88.4375	88.5313	88.0938	38.125	87.6563	87.9063	87,4063	37.5625	37.625	37.2188	36.9063	36.625	86.7188	36.5938	86.4375
pread Dis	L	nd run 1	38.0938	37.8438	37.6875	37.8438	37.5313				38.4375	37.9063	38.4063	37.9688	37.6563	38.0625	37.5313	37.7813	38.7188	38.25	38	37.7813	37.625	37.5313	37.4375	37.25	38.8438	38.5	38.625	38.4063	38.2813	38.2188	38.25	38.0313	37.8438	37.8438	37.3125	37.2813	37.125	37.1563	37.0625	36.9063
S	1min	st run 2	37.8125	37.8125	37.5	37.125	37.1875				37.8125	37.7188	38.3438	37.875	37.5625	38.2813	37.5	37.5	38.1875	38.2188	37.9688	37.6563	37.5	37.4688	37.125	37.2188	39.25	38.5313	38.4375	38.2188	38.125	37.75	8	37.5625	37.625	37.7813	37.1563	36.9688	36.6875	36.7188	36.6563	36.4375
	<u> </u>	nd nun 1:	0.085	0.105	0.15	0.19	0.215				0.1	0.109	0.181	0.203	0.245	0.29	0.32	0.315	0.095	0.135	0.194	0.26	0.31	0.325	0.345	0.35	0.0985	0.1595	0.217	0.275	0.3205	0.325	0.3555	0.3705	0.125	0.135	0.2325	0.305	0.33	0.365	0.39	0.405
(ft)	ax	st run 2r	0.08	0.095	0.15	0.1825	0.205				0.1	0.109	0.181	0.203	0.245	0.26	0.285	0.28	0.095	0.135	0.194	0.2425	0.295	0.315	0.325	0.32	0.0985	0.1295	0.217	0.26	0.293	0.3065	0.325	0.445	0.125	0.135	0.2325	0.295	0.32	0.355	0.375	0.3875
Depth	W	nd run 1	0.085	0.105	0.15	0.19	0.215				0.1	0.109	0.181	0.203	0.245	0.29	0.32	0.305	0.095	0.135	0.195	0.26	0.315	0.325	0.345	0.35	0.0985	0.1595	0.217	0.274	0.323	0.3265	0.3545	0.3685	0.125	0.135	0.2325	0.305	0.33	0.365	0.39	0.405
	Ain	st run 2	80:0	0.095	0.14	0.1825	0.205				0.1	0.109	0.181	0.203	0.245	0.26	0.285	0.285	0.095	0.135	0.19	0.2425	0.29	0.315	0.325	0.32	0.0985	0.1295	0.21	0.2615	0.295	0.3085	0.326	0.354	0.125	0.135	0.225	0.295	0.32	0.355	0.375	0.3875
Ototal	AVG	CFS	0.489	1.02475	3.01725	5.05725	6.989				0.48513	0.99	3.00125	ŝ	6.9915	9.02875	9.95	10.969	0.4785	1.01725	2.9615	5.0085	7.02225	9.00525	9.987	10.954	0.493	0.9815	3.00325	5.0255	7.035	8.99875	10.02	10.9605	0.50975	1.0105	2.98975	5.0595	7.0145	8.98325	10.0118	10.966
		2nd run	0	0	0	0	6.251				0	0	0	0	6.257	6.225	6.218	6.225	0	0	0	0	6.257	6.222	6.236	6.221	0	0	0	0	6.237	6.244	6.235	6.214	0	0	0	0	6.257	6.26	6.254	6.24
(CFS)	Final	1st run	0	0	0	0	6.252				0	0	0	0	6.261	6.227	6.22	6.224	0	0	0	0	6.262	6.232	6.236	6.216	0	0	0	0	6.238	6.242	6.234	6.21	0	0	0	0	6.258	6.261	6.26	6.245
Ofloor		2nd run	0	0	0	0	6.277				0	0	0	0	6.248	6.229	6.22	6.212	0	0	0	0	6.25	6.26	6.218	6.196	0	0	0	0	6.241	6.245	6.197	6.212	0	0	0	0	6.272	6.27	6.262	6.253
	hitial	st run	0	0	0	0	6.268				0	0	0	0	6.246	6.231	6.224	6.21	0	0	0	0	6.247	6.268	6.216	6.197	0	0	0	0	6.246	6.238	6.2	6.21	0	0	0	0	6.271	6.273	6.267	6.252
1	Ir	nd run 1	0.488	1.022	3.014	5.051	0.722				0.4835	0.989	3.005	5.001	0.735	2.799	3.697	4.756	0.477	1.013	2.98	5.003	0.772	2.752	3.77	4.756	0.492	0.98	3.001	5.023	0.793	2.75	3.803	4.743	0.514	1.005	2.99	5.055	0.748	2.676	3.761	4.715
(CFS)	inal	st run 2	0.487	1.023	3.014	5.055	0.723				0.483	0.99	3.007	2	0.731	2.8	3.701	4.754	0.478	1.015	2.978	5.004	0.773	2.756	3.769	4.758	0.493	0.981	3.003	5.024	0.792	2.75	3.8	4.741	0.514	1.008	2.988	5.06	0.747	2.676	3.76	4.714
OWALL (<u></u>	1 nun br	0.491	1.027	3.02	5.061	0.731				0.488	0.991	co	4.999	0.745	2.801	3.759	4.75	0.479	1.021	2.99	5.015	0.765	2.765	3.752	4.737	0.494	0.982	3.004	5.028	0.796	2.762	3.806	4.754	0.505	1.015	2.991	5.061	0.753	2.683	3.743	4.722
	itial	st run 2r	0.49	1.027	3.021	5.062	0.732				0.486	0.99	2.993	5	0.743	2.803	3.761	4.745	0.48	1.02	2.898	5.012	0.763	2.766	3.751	4.735	0.493	0.983	3.005	5.027	0.797	2.764	3.805	4.758	0.506	1.014	2.99	5.062	0.752	2.834	3.74	4.723
(%) X:	<u>_</u>	1:	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
S (%) S			2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
Discharg S	ictual Q	fs	0.5	-	m	5	~	6	10	11	0.5	+	m	5	~	0	10	11	0.5	÷	e	5	2	8	10	11	0.5	-	m	5	2	6	10	11	0.5	-	e	5	~	0	10	11
	ตั	U										Ľ.																														

urface data
Asphalt su
Table B2.4

an	ntegrated		0.01512	0.01437	0.01707	0.01436	0.01785	0.01602	0.01576		0.01024	0.01131	0.0094	0.01124	0.01372	0.01713	0.01789	0.01745	0.01033	0.01151	0.01205	0.01167	0.01134	0.01301	0.01344	0.01309	0.01314	0.01097	0.01285	0.01282	0.01081	0.01265	0.01221	0.01416	0.01463	0.01175	0.01524	0.01444	0.01304	0.01298	0.01218	0.01084
n val	eometri l		0.0127	7.01207	J.01434	3.01206	0.015	7.01346	J.01324		0.0086	0.0095	0.00789	7.00944	7.01152	0.01439	7.01503	3.01466	3.00868	7.00967	3.01012	0.0098	J.00952	7.01093	J.01129	7.01099	7.01104	7.00921	0.01079	7.01077	3.00908	J.01063	0.01025	3.01189	7.01229	7.00987	0.0128	0.01213	7.01095	0.0109	0.01023	1.01082
NG	pread G		64.5234	82.6406 C	131.047 C	148.836 C	182.617	193.438 C	199.383 C		46.0469	63.3203	87.9219 C	112.352 C	144.398 [165.188 C	174.813 C	179.813 C	40.4219 0	54.6953 C	83.7266 C	100.523	112.938 C	129.805 C	137.414 0	140.859 C	39.7891 C	47.7266 C	76.3125 C	92.9063 C	102.156 C	115.633 C	118.328 C	129.867 C	34.6121 0	41.0469 C	68.7188	81.9453 C	89	97.7422	99.3906 C	1 04 766 F
A	S	nd nun ln	103	123 8	173.656	190.813	221.813	232.719	240.031		85.6563 4	103.563 6	134.031 8	156.938	183.125	209.531	221.125	224.813	80.625 4	95.9063	126.281	141.625	158.031	173.625	181.781	182.875	78.6875	87.875 4	117.344	134.688	144.063	157.531	161.688	172.813	73.875	80.375 4	108.594	122.188 8	130.969	138.438	139.813	145 175
T2 (in)	2max	st run 2	02.875	19.406	64.844	82.469	19.781	29.281	33.563		4.2813	01.281	20.906	49.625	81.344	96.594	204.75	09.719	7.5625	0.7188	17.969	35.625	143.5	62.156	68.625	74.281	8.3438	4.4065	12.125	26.719	36.375	49.906	50.625	62.281	72.375	8.6563	05.125	118	24.313	32.563	34.375	138.5
oread Dist	T	nd run 1s	02.906 1	122.75 1	73.531 1	90.875 1	21.563 2	32.531 2	40.158 2		5.5625 8	03.406 1	30.188 1	54.281 1	84.438 1	209.75 1	21.031	24.719 2	0.6875 7	5.7813 5	26.156 1	41.625 1	55.781	73.688 1	81.719 1	82.938 1	2189.8	87.75	17.313 1	34.531 1	144 1	57.469 1	61.656 1	72.844 1	3.8125	0.4063 7	08.656 1	21.875	28.531	38.344 1	39.813 1	45 188
S	1 min	st run 2r	102.906	118.406	164.625	182.406	219.469 2	229.344	233.688		34.3125 8	101.406	121.344 1	142.219	181.438	196.406	204.75	212 2	77.5	90.6875 8	117.844 1	135.594	146.031	162.281	168.594	174.375	78.3125	34.5625	112.094	126.844	136.406	149.844	150.563	182.25	72.375	78.625 8	105.188	118	124.313	132.5	134.375	138 438
-	T	nd run 1:	39.2188	39.3125	39.375	39.4375	38.9063	39	38.7813		39.875 (39.9375	39.2813	39.0625	39.3125	39.2188	39.25	39.5	39.2813	39.375	39.375	39.125	39.125	39.0625	38.7188	9375	39.1563	39.25	9.6563	39.3125	39.5	39.5313	9.4688	39.4375	39.3125	39.2813	39.1875	39	39.0938	39.0625	38.8438	88 7813
Ice (in)	max	st run 21	8.8438	8.9688	19.2188	19.3125 3	9.0313	8.9063	18.6563		19.6875	39.75	17.5625 3	38.375	9.0625 3	9.0625 3	39.25	18.5938	9.2188	19.1563	9.0313	8.9688	18.9688	18.8438	8.7813 3	18.7813	39.125 3	19.0315	19.4063	8.5625	19.2188	39.125 3	8,9688	39.125 3	9.1875 3	9.2188	39 3	6.9063	38.875	38.875	8.5938	20 675 C
urb Distar	0	id run 1s	39.25 3	9.1875 3	9.2188 3	9.2188 3	8.6563 3	9.1563 3	39 3		39.75 3	39.75	9.2813 3	9.0313	9.3438 3	39.25 3	9.2813	9.3125 3	9.3125 3	9.3438 3	9.2813 3	39 3	9.0625 3	8.9375 3	8.7503 3	8.9063 3	9.1563	39.25 3	8.5938 3	9.1563 3	9.4375 3	9.4688	9.4063 3	39.5	9.2813 3	9.3438 3	9.1875	9.0625 3	39.125	9.0625	8.8438 3	g 7812
0	nin	ttrun 2r	9:0938	9.1563 3	8.0313 3	9.1563 3	8.8125 3	9.0313 3	38.75		9.6875	39.75	39.25	38.375	9.0938 3	9.1875	39.125 3	39.125 3	9.2813 3	9.2188 3	39.125 3	38.875	8.9063 3	8.7813 3	8.7813 3	8.6875 3	39.125 3	9.0313	9.4063 3	8.5938 3	9.1875 3	39.125 3	8.9375 3	9.0625	9.1563 3	9.2188 3	9.0313 3	8.9063	8.9688	38.875	8.6563 3	8 5675 9
-	ō	id run 1s	8.5938 3	8.3125 3	8.2188 3	8.0313 3	8.0625 3	7.4688 3	7,4063		9.1875 3	39	39	38.625	8.0938 3	8.0938 3	7.9063	7.9063	8.7188 3	8.5938 3	8.4063	8.1563	17.9375 3	8.1563 3	37.75 3	7.7813 3	38.75	8.4375 3	8.5625 3	7.8125 3	8.1563 3	8.2188	7.9063 3	17.9688 3	8.5625 3	8.5938 3	38.25 3	8.0938 3	8.0938 3	7.7813	7.8125 3	27 875 2
T1 (in)	2max	strun 2r	8.2188 3	8.2188 3	38	17.8438 3	8.1875 3	7.4063 3	7.4063 3		38.625 3	9.1563	8.4375	38.375	8.3438 3	7.8125 3	8.2188 3	7.9688 3	8.6563 3	8.4688 3	8.2813 3	8.0625 3	7.8438 3	8.0625 3	37.75	7.7188 3	8.6875	38.375 3	8.2813 3	17.6875 3	7.9688 3	37.875 3	7.7188 3	17.4375 3	8.4375 3	8.3125 3	8.0625	8.0313 3	7.9688 3	7.6563 3	7.5938 3	7 4063
pread Dist	1	d run 1s	8.4375 3	8.1875 3	8.2188	7.7813 3	37.875 3	7.6563 3	7.5938 3		9.0938	9.0625 3	8.8125 3	38.25	7.96888	7.8438 3	7.9063 3	8.1563 3	8.6875 3	8.6875 3	38.375 3	8.0938 3	7.9375 3	8.2188 3	37.75	37.875 3	8.7188 3	38.469	8.5625 3	7.9688 3	38.125 3	38.25	7.9063 3	7.9688 3	8.5938 3	8.5625 3	38.25 3	8.1563 3	8.0938 3	7.7813 3	7.8125 3	37 875 9
Ś	min	strun 2r	8.3438	8.2813 3	8.0313 3	17.5825 3	8.0313	7.5938 3	37.5 3		8.7188 3	9.1563 3	8.5313 3	8.4063	8.3438 3	77.7813 3	38.375 3	17.9688	38.625 3	8.5625 3	8.2813	8.0625 3	37.875 3	8.0938	17.8125	17.6563	8.7188 3	8.4063	8.2188 3	17.6875 3	17.9688	37.875	17.6875 3	17.3438 3	8.3954 3	8.4063 3	38.125	38	17.9688	17.6563 3	17.5938 3	7 5212
	Ť	nc nun 1s	0.0575 5	0.09	0.1425 3	0.19 3	0.208	0.225 5	0.13		0.086	0.125 3	0.1765 5	0.257 3	0.2455 3	0.265 3	0.2765	0.273 5	0.0925	0.115 3	0.1825 3	0.225 3	0.26	0.295 3	0.29 3	0.3065 3	0.1005 3	0.129 8	0.188 3	0.2425 3	0.2775 5	0.3065	0.3285 5	0.344 3	0.105	0.135 3	0.21	0.2775	0.31	0.355	0.365 3	0 365
(H)	Xe	st run 2r	0.0575	0.09	0.1425	0.183	0.2	0.219	0.2165		0.081	0.12	0.1765	0.2135	0.238	0.2575	0.2675	0.258	0.0925	0.115	0.1825	0.215	0.2525	0.2725	0.269	0.287	0.0985	0.125	0.188	0.235	0.2675	0.2895	0.3125	0.323	0.105	0.13	0.21	0.27	0.2975	0.345	0.3525	0.355
Depth	W	nd run 1s	0.0575	0.09	0.1425	0.1875	0.2125	0.225	0.2325		0.084	0.11	0.1775	0.255	0.2425	0.265	0.2725	0.27	0.0925	0.115	0.1825	0.225	0.2625	0.295	0.29	0.3065	0.101	0.129	0.189	0.2425	0.2775	0.3065	0.329	0.344	0.105	0.135	0.21	0.2775	0.31	0.355	0.365	0 365
	.ш	st run 21	0.0575	0.09	0.1375	0.18	0.1975	0.215	0.215		0.08	0.11	0.17	0.215	0.235	0.2575	0.265	0.255	0.0925	0.115	0.175	0.215	0.2525	0.2725	0.269	0.287	0.099	0.125	0.183	0.235	0.2675	0.29	0.3125	0.323	0.105	0.13	0.205	0.27	0.2975	0.345	0.3525	0.255
Itotal	VG M	FS 1:	0.512	1.0405	3.01525	4.995	6.9625	3.00175	9.9395		0.492	1.041	3.02775	4.98125	7.133	3.91075	9.9615	10.9853	0.49875	1.00975	2.9895	5.005	7.0525	8.9125	10.055	10.9803	0.5065	0.987	2.952	4.991	6.882	9.048	10.0035	11.0325	0.5035	0.9915	3.017	5.06575	7.0045	9.013	10.0195	10 0075
0	A	nd run C	0	0	0	0	6.231	6.201	6.228		0	0	0	0	6.246	6.221	6.239	6.194	0	0	0	0	6.273	6.224	6.248	6.218	0	0	0	0	6.251	6.261	6.231	6.24	0	0	0	0	6.271	6.26	6.35	6 24
(S3)	inal	st run 2	0	0	0	0	6.232	6.198	6.222		0	0	0	0	6.239	6.224	6.227	6.194	0	0	0	0	6.272	6.225	6.243	6.22	0	0	0	0	6.252	6.262	6.232	6.239	0	0	0	0	6.28	6.257	6.245	6 735
Ofloor (C	LL.	nd run 1	0	0	0	0	6.241	6.217	6.21		0	0	0	0	6.243	6.238	6.235	6.198	0	0	0	0	6.248	6.23	6.235	6.224	0	0	0	0	6.261	6.262	6.236	6.243	0	0	0	0	6.275	6.25	6.239	6 233
	tial	trun 2	0	0	0	0	6.245	6.211	6.21		0	0	0	0	6.835	6.243	6.236	6.201	0	0	0	0	6.247	6.228	6.24	6.222	0	0	0	0	6.26	6.26	6.235	6.24	0	0	0	0	6.269	6.244	6.24	6 331
	Ini	d run 1s	0.509	1.041	3.014	4.99	0.726	2.787	3.731		0.493	1.039	3.027	4.984	0.745	2.681	3.706	4.787	0.498	1.013	2.987	5.002	0.789	2.68	3.81	4.762	0.509	0.99	2.95	4.995	0.629	2.78	3.715	4.776	0.5	0.985	3.007	5.075	0.732	2.754	3.748	4 7R
(S3)	lai	trun 2r	0.509	1.042	3.012	4.989	0.727	2.788	3.73		0.493	1.039	3.025	4.987	0.744	2.683	3.705	4.787	0.497	1.013	2.989	5.003	0.789	2.682	3.812	4.759	0.508	1987	2.951	4.994	0.629	2.778	3.717	4.775	0.499	0.984	3.01	5.074	0.733	2.756	3.75	4 767
DVALL (C	Œ	nun 1s	0.515	1.04	3.017	4	0.724	2.8	3.7		0.491	1.042	3.03	4.978	0.739	2.678	3.751	4.789	0.499	1.008	2.99	5.01	0.796	2.691	3.815	4.76	0.504	0.986	2.952	4.99	0.624	2.793	3.825	4.807	0.507	t	3.024	5.055	0.73	2.766	3.757	4 757
	al	nun 2nc	0.515	1.039	3.018	5.001	0.724	2.805	3.727		0.491	1.044	3.029	4.976	0.741	2.675	3.747	4.791	0.501	1.005	2.992	5.005	0.796	2.69	3.817	4.756	0.505	0.985	2.955	4.985	0.622	2.796	3.823	4.81	0.508	799.0	3.027	5.059	0.728	2.765	3.749	4 757
(%)	Initi	1st	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	A 00%
(%) SX			3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	70 U C
charg SL (O ler		0.5	-	m	ŝ	~	6	10	=	0.5	-	~	5	2	00	2	11	0.5	-		5	~	6	10	=	0.5	-	~	5	2	0	9	11	0.5	-	m	5	~	0	10	11
Dis(actu	cfs																																								

data
surface
Asphalt
B2.5
Table

Discharg 5	3() XS (%) T	(9)	QW	(ALL (CFS)			Office.	r (CFS)		Qtotal		Depth (ft)		_	Spre	ad Dist T1 (in,	-		Curb Distar	nce (in)	-	Sprea	ad Dist T2 (i	(ui	AVG	n vali	
actual Q		Initial		Final		Initial		Final		AVG	Min	Max		T1m	u	T2max		Cmin	0	max	Thr	u	T2max		Spread	Geometri Ir	tegrated
cfs		1st n	un 2nd rui	n 1st run	2nd run	1st run	2nd run	1st run	2nd run	CFS	1st run 2n	d run 1st r	un 2nd	run 1st r	un 2nd i	run 1st run	2nd run	1st run 2	Ind run 18	st run 2nc	d run 1st i	un 2nd n	un 1st run	1 2nd run	ч		
9.0	4.0% 1.	. 5%	0.49 0.4	492 0.46	39 0.491	-	0	0	0	0.4905	0.081	0.081 6	1.081 (3.056 38.3	5313 3	8.75 38.7186	38.75	39.0938	39.5938	39.2188 35	3.5938 89.	0313 91.3	1125 89.3	25 91.5	51.5859	0.00838	0.00998
-	4.0% 1.	.5% 0	.994 0.:	996 1.00	100.1	2	0	0	0	0.99825	0.0875	0.0875 0.1	0875 D.	0875 39.1	6875 39.5	3438 39.625	5 39.9063	40.5	40.625	40.4688 40	0.5625 12f	3.135 126.	125 126.1	25 126.125	6.362	0.01634	0.01946
m	4.0% 1.	.5% 3.	.007 3.	011 3.00	31 3.004	4	0	0	0	3.00575	0.12	0.1275 0.	1275 0.	1275 39.1	6563 3	9.75 39.5936	3 39.6875	40.6875	40.875 4	10.6875 4	10.875 162	2.875 168.	375 162.9	38 168.436	125,984	0.01521	0.01811
5	4.0% 1.	.5% 5.	.017 5.	018 5.01	14 5.01E	9	0	0	0	0 5.01625	0.1625	0.17 0.	1675	0.17 39.5	5313 39.6	3125 39.5	5 39.75	40.5825	40.75	40.625	40.75 195	8.031 194.	844 193.0	31 194.844	154.289	0.01532	0.01824
~	4.0% 1.	.5% 0.	733 0.	728 0.72	26 0.72	7 6.23	15 6.23	5 6.23	2 6.234	6.9625	0.2	0.2075	0.2 0.	2075 39.0	0313 39.2	2188 39.0310	3 39.2188	40.5625	40.8438 4	10.5313 4C	1.9063 196	8.031 201.	594 198.0	94 201.715	160.733	0.01224	0.01457
00	4.0%	.5% 2.	.812 2.4	812 2.75	38 2.79t	6 6.21	7 6.21	8	2 6.205	9.0145	0.215	0.23 0	1.215	0.23 39.	2188 39	.375 39.1562	3 39.375	40.1563	40.3125 4	10.5938 4C	1.8125 22	23.25 227	7.75 223.11	88 228.313	186.344	0.01404	0.01872
10	4.0% 1.	.5% 3.	.742 3.	747 3.74	46 3.745	3 6.22	36 6.21	7 6.21	1 6.212	9.961	0.2075	0.225 0.1	2075 (0.225 40	1.125 39.4	4375 40.343E	3 39.4063	40.6563	39.9375	40.875 4	10.125 230	0.031 236.	188 230.	25 236.344	193.375	0.01404	0.01671
11	4.0% 1.	5% 4	.751 4	1.75 4.74	46 4.74	7 6.18	31 6.18	3 6.1	7 6.171	10.9248	0.2	0.235	0.2	7.235 39.4	4063 39.5	5938 39.3436	3 39.5938	40.6563	40.8438 4	10.6563 4C	1.9063 236	8.875 242.	281 236.9	06 242.281	200.102	0.01402	0.01669
0.5	4.0% 2.) 0%	0.51 0	1.51 0.51	12 0.512	2	0	0	0	0.511	0.0775	0.0775 0.0	0775 C.	0775 38.	5938 38.1	7813 38.5315	3 38.7813	39.4688	30.5	39.5313 5	19.625 86.	2813 86.2	813 86.31	25 86.3125	47.625	0.01047	0.01246
+	4.0% 2.	9%0.0	0.98 0.	983 0.97	78 0.981	-	0	0	0	0.9805	0.1075	0.1075 0.	1075 0.	1075	38.5 3	8.75 38.5	5 38.5938	39.4063	39.7188	39.4063 36	1.6875 96	3.875 102.	625 98.81	25 102.625	62.1484	0.0111	0.01322
3	4.0% 2.	2.0% 3.	.022 3.	023 3.01	16 3.017	2	0	0	0	3.0195	0.1525	0.1575 0.	1575 0.	1575 37.4	9688 38.0	3938 37.9686	3 38.1875	39.375	39.4688	39.2813 35	1.4688 135	3.125 135.	125 133.1	25 134.094	95.8125	0.01143	0.01361
5	4.0% 2.	0% 4	.989 4.	992 4.5	39 4.98	~	0	0	0	1 4.9895	0.1925	0.2 0	1.195	0.2 3	77.75 37.5	3375 37.7186	3 37.9688	38.7188	39.4063	38.6875	39.5 155	3.469 153.	469 153.41	69 153.406	115.609	0.0114	0.01358
2	4.0% 2.	0.0%	.685 0.1	686 0.65	39 0.66	9 6.23	14 6.23	2 6.23	3 6.231	6.92	0.215	0.225 0	1.215 [7.225 37	7.875 37.1	7188 37.8125	5 37.7188	39.1875	39.4063 3	39.1875 35	1.3438 160	0.688 169.	938 160.6	88 170	127.547	77900.0	0.01163
o	4.0% 2.	2.0% 2.	2 627.	2.78 3.2	28 3.2765	9	2 6.20	8 6.199	5 6.197	9.23	0.255	0.2625 0	1.255 0.	2625 3	37.25 37.6	3958 37.25	5 37.375	38.75	39.3438	38.75 35	3.4063 16	81.75 185	5.25 181.6	88 185.25	146.042	0.01151	0.0137
10	4.0% 2.	0% 3.	.785 3.	782 3.75	55 3.77	7 6	2 6.19	7 6.19	2 6.19	9.9695	0.2575 (0.2675 0.	2575 0.	2675 37	7.375 37.5	5938 37.375	5 37,5938	39.125	39.375 3	39.1563 2	19.375 181	7.063 192.	906 11	87 192.906	152.484	0.01194	0.01422
11	4.0% 2.	0% 4	.772 4.	774 4.7	71 4.774	4 6.19	18 6.19.	5 6.20	3 6.3	10.9968	0.24	0.2875	0.24 0.	2875 37	7.375 37	.625 37.375	5 37.5625	39.1875	39.3438	39.0938 35	1.4063 195	5.344 156.	125 195.4	06 203.125	150.016	0.01123	0.01337
0.5	4.0% 2.	5% 0.	.482 0.	483 0.46	33 0.485	0	0	0	0	0.48275	0.0965	0.0965 0.1	0965 D.	0975 39.1	6563 39.6	3125 39.8436	3 39,9063	39.9688	40.125	40.125 4C	1.3125 BL	0.375 80.	375 80	0.5 80.5625	40.6484	0.01055	0.01256
-	4.0% 2	5%	1.02	1.02 1.01	16 1.01	2	0		0	1.01825	0.119	0.1215 0	0.119 D.	1225	40 4	0.25 40.125	5 40.3438	40.5938	40.8125 4	40.7188 40	1.9688 89.	9688 92.0	938 90.06	25 92.25	50.9141	0.00905	0.01077
e	4.0% 2.	5%	2.99 2.	992 2.96	34 2.986	00	0	0	0	2.991	0.1725	0.18 0	1.181	7.181 39	1.625 44.5	3063 39.7815	3 44.9688	40.3125	40.6563 4	10.4375 4C	1.8125 106	3.875 112.	406 11	09 112.375	68.3438	0.00675	0.00803
5	4.0% 2.	5% 4.	.997 4.3	987 4.96	34 4.984	4	0	0	0	4.988	0.214	0.222 0	1.214 0.	2215 36	3.375 40.1	1875 4L	3 40.3125	40.5313	40.9688 4	10.5938 41	1.0938 115	5.375 130	0.75 115.51	63 130.75	83.3906	0.0071	0.00845
~	4.0% 2.	1.5%	0.74 0.	739 0.74	45 0.734	4 6.21	1 6.2	1 6.22	9 6.234	6.9605	0.23	0.2405 0	1.232 (0.241 39.0	0938 39.1	7188 39.25	5 39.9375	40.0938	40.3125 4	40.2813 4C	1.5313 135	3.813 148.	625 139.8	113 148.625	5 104.719	0.00908	0.01082
8	4.0% 2	5%	2.75 2	2.75 2.74	48 2.75	5 6.2	21 6.21	1 6.20	7 6.206	8.958	0.253	0.2635 0	1.254 (0.264 39.0	0313 39	.625 39.1562	3 39.7813	39.6875	40.7188 3	39.7188	40.75 146	9.938 158.	063 150.0	63 158.219	114.672	0.00904	0.01076
10	4.0% 2.	5% 3.	.736 3.	739 3.1	74 3.74	1 6.16	15 6.19.	2 6.18	5 6.189	9.92675	0.2575	0.2765 6	1.258 0.	2775	38 38	.875 38.125	5 39	39.5625	40.1563 3	39.5625 40	1.2813 160	0.188 169.	125 160.4	38 169.25	126.25	0.01049	0.01249
11	4.0% 2.	5% 4	.805 4.	804 4.80	34 4.80	7 6.16	¥ 6.16	6 6.17	2 6.172	10.9735	0.2775	0.3 0.	2775	0.3 38.1	0625 38.7	7188 36	38.875	39.5938	40.375	39.4688 4C	1.3438 126	6.656 186.	656 126.8	175 186.844	118.344	0.01019	0.01213
0.5	4.0% 3.	1.0% 0.1	504 0.	503 0.50	36 0.507	2	0	0	0	0.505	0.0925	0.0925 0.1	1925 D.	0925 36	3.625 3	8.75 38.6875	5 38.8125	39.6875	39.8438	39.6875 35	1.9063 75.	5313 75.5	313 75.56	25 75.5936	36.8359	0.0104	0.01238
-	4.0% 3.	1.0% 0.1	.986 0.	987 0.96	31 0.991	-	0	0	0	0.98875	0.105	0.105 0	1.105 (0.105 38.	5313 38.E	3563 38.5315	3 38.7188	39.7188	39.9063	39.75 36	3.6563 82.	9063 87.1	875 82.8	75 87.1563	8 46.4219	0.00991	0.01179
co	4.0% 3.	1.0% 3	.033 3.	029 3.05	31 3.035	6	0	0	0	3.033	0.1725	0.175	0.17	0.17 38.	1563 38.2	2813 38.1565	3 38.2813	39.625	39.8125	39.5625	39.75 99.	0625 107.	469 99.1	25 107.421	65.0505	0.00796	0.00948
5	4.0% 3.	1.0%	5.02 5.	121 5.01	18 5.015	0	0	0	0	5.0445	0.22	0.23	0.22	0.23 37	7.875 38.0	3625 37.875	5 38.125	39.7813	52.625	39.9063 35	3.8125 115	8.688 123.	188 113.6	88 123.25	80.4688	0.00839	0.00999
2	4.0% 3.	3.0% 0	.842 C	0.85	36 0.83	5 6.21	3 6.21	4 6.2	2 6.216	7.054	0.245	0.255 6	1.245 (9.255 5	37.75 38	.125 37.7186	38.0938	39.0938	39.6875	39.1563 35	3.6875 15	33.25 137.	823 133.2	135.281	96.9714	0.00904	0.01076
o	4.0% 3.	1.0% 2	781 2.	782 2.7.	78 2.775	9 6.15	37 6.18	8 6.21	4 6.21	8.98225	0.265	0.28 6	1.265	0.28	37.5 37.1	5938 37.5625	5 37.6563	39.5313	39.7813 3	39.5313 35	9.7813	146 150.	563 145.9	38 150.436	110.656	0.01099	0.01309
10	4.0% 3.	1.0% 3.	.761 3.	762 3.7.	73 3.76	9 6.16	38 6.1	9 6.17	7 6.173	9.94825	0.2675	0.2825 0.1	2675 0.	2825 37.	2188 38.1	1875 37.5	5 38.3125	39.625	39.875	39.5625 35	3.9375 146	9.125 156.	344 149.0	94 156.719	115.016	0.01102	0.01312
11	4.0% 3.	1.0% 4	.725 4.	727 4.1	72 4.722	2 6.1	9 6.19	2 6.18	6 6.182	10.911	0.2775	0.2925 0.1	2775 0.	2925 37.	3125 37	.825 37.3125	5 37.6875	39.4688	39.2188 3	39.4375 35	3.6563 155	5.063 161.	875 155.0	31 161.936	8 120.992	0.01151	0.0137
0.5	4.0% 4.	9%0"1	0.49 0.4	489 0.46	37 0.486	9	0	0	0	0.488	0.099	0.102 6	1.099 L	0.102 38.	1875 38	.375 38.1875	5 38.375	39.5938	39.75	39.5625 35	3.6875 68.	9375 70.	625 68.93	75 70.6563	31.5078	0.01143	0.0136
1	4.0% 4.	1.0% 0	.983 0.	982 0.96	33 0.982	2	0	0	0	0.9825	0.138	0.144 6	1.138 [0.144 38.	1563 38.4	1688 38.2186	38.5	39.625	39.9688	39.5938	40 76:	4375 76.4	688 76.43	175 76.3436	38.0859	0.00933	0.01111
m	4.0% 4.	1.0% 3	.009 3.	008 3.00	35 3.005	2	0	0	0 0	3.00675	0.191	0.1975 0.	1975 D.	1975 37	7.875 38.1	1875 37.875	5 38.1875	39.6563	40 0	39.5938 4C	0.0625 99.	1875 102.	156 99.15	63 102.186	8 62.6406	0.01155	0.01375
5	4.0% 4.	1.0% 5	.009 5.	008 5.01	15 5.014	4	0	0	0 0	5.0115	0.24	0.25	0.24	0.25 37.4	6563	38 37.5936	9 38.0625	39.6875	40.0313 3	39.5938 4C	0.0938 108	5.469 108.	063 105.4	38 108.063	8 68.9297	0.00889	0.01059
2	4.0% 4.	1.0% 0	.812 0.	811 0.8	14 0.81	5 6.20	94 6.20	3 6.	2 6.199	7.0145	0.2875	0.297 0.1	2875 (9.297	37.5 37.6	3875 37.5	5 37.6875	39.8438	40.0313 3	39.9063 4C	0.0938 114	1.813 121.	313 114.B	44 121.375	80.4922	0.00963	0.01146
0	4.0% 4.	1.0% 2	.868 2.	866 2.8t	52 2.86	1 6.16	33 6.18	1 6.18	6 6.185	9.048	0.302	0.309 6	1.302 (0.309 37.5	5625 37.6	3438 37.5625	5 37.9063	39.8125	40.0313	39.8125 4C	0.0313 126	8.656	135 126.7	135 135	93.125	0.01108	0.0132
10	4.0% 4.	1.0% 3	791 5	3.79 3.76	33 3.784	4 6.16	35 6.18	4 6.17	7 6.178	9368	0.31	0.3195	0.31 0.	3195 37.4	4375 37	825 37.4375	5 37.625	39.5313	39.8125 3	39.5313	39.75 135	8.156 139.	313 133.11	88 139.313	8 98.7109	0.01173	0.01396
11	4.0% 4.	1.0% 4.	.823 4.	822 4.85	35 4.824	4 6.17	⁹ 6.17	8 6.15	5 6.156	10.993	0.336	0.342 6	1,336 (7.342 37.4	4375 37.5	5625 37.4375	5 37.9375	39.6875	40.125	39.625 4C	1.1875 136	8.031 141.	781 138.0	63 141.781	102.32	0.0117	0.01393

		mediate	0.01680	0.01637.	0.01402	0.01538	0.01745	0.01668	0.01585	0.01640	0.01010	0.01668	0.01467	0.01483	0.01554	0.01790	0.01000	0.0100M	0.01488	0.01605	0.01507	0.01434	0.01368	0.01512	0001010	0.014240	0.01476	0.01458	0.01670	0.01586	0.01530	0.01511	0.01618	0.01564	0.01553	0.01493	0.01513	0.01327	0.01640	0.01574	0.01295	0.01382	0.01608	0.016794	0.013120	0.014948	0.01602	0.01574	0.01681	0.01475	0.01552
	n value	Dentiettin	0.014114	0.013753	0.01178	0.012924	0.014665	0.014013	0.013319	10121010	0.045771	0.014011	0.01233	0.012461	0.013067	0.01504	0.014012	0.013012	0.012504	0.013482	0.012663	0.012048	0.011647	/0/710/0	C11910.0	0.011967	0.012399	0.012249	0.014031	0.013344 n.n17a46	0.012858	0.012694	0.013697	0.013138	0.013048	0.012545	0.0127/2	0.011151	0.013778	0.013221	0.010881	0.011608	0.013494	0.01365	n 011028	0.012556	0.013459	0.013224	0.014121	0.012397	0.013041
	AVG	u n	91,516	113.6255	133.1875 1.46.710	152.5005	92.125	114.188	137.219	140.015 and not	20 00	114.094	134,6878	110.9533	152.969	92.75	BI//211	150 0005	161.313	39,625	124.219	150.9065	164.2815	1/2.43/5	STA 275	150.5783	166.8695	170.8598	100.469	125.7815	168.469	172.3125	99.8125	125.094	168.9375	171.844	113.0625	176.969	207.7505	211.0315 112.6506	140.8128	179.094	206.785	212,6050	141 1555	182.7815	206.5	210.969	115.7813	182.1719	204.6251
		2nd run	92.813	113.938	135.25	153.438	93.875	114.938	138.938	148.438 4ED 7E	07.001	114.938	136.313	148.625	154,188	93.75	114.5	151 313	151.938	99,625	124.75	151.5	164.625	1/3	176.76	153,688	167.875	172.75	101.875	125.938	169,125	173.125	100.5	125.013	170.25	172.75	142	178.563	208.063	212.125	143,188	181.313	208.125	213.375	141 688	183.75	208.25	212.125	711 225 CF1	187,6875	206.1875
		St rum	90.813	113.938	135.25	153.438	92.375	114.938	138.936	148.438	305 10	114.938	136.563	149,0002	15	93.75	114.5	151 313	151.938	99,625	124.75	151.5	164.625	1/3	101.100	151.125	168	171.188	101.875	37.8721 342 CA1	170.188	175	100.5	153 188	170.25	172.75	114.75	178.563	208.063	212.125	141	180	208.125	215 212	141 688	183.75	208.25	212.125	717 (117	182	206.188
	T2 (m)	nd nun	91.938	113.313	131.125	151.563	92.25	113.438	135.375	144 0.05	0.04	113.25	132.875	45.750.5	150.5	92.125	112,508	149 699	150.688	99.626	123.688	150.313	163.938	6/8/1/1	2010.00	149.75	164.75	169.813	99.063	122.875	166.063	169.5	99.125	124.375	167 625	170.938	111.375	175.375	207.438	209.968	140 375	177.813	205.265	210.625	509 071	181.813	204.75	209.813	14.6875	78.3125	503
	pread Dist	st run 2	90.5	113.313	131.125	151.563	8	113.438	135.625	140 6	201 CO	113.25	133	146.188 1	152.188	91.375	112,508	001.001	150.688	99.625	123.688	150.313	163.938	6/8/1	50.013	147.75	166.813	169.688	69 063	126.438 ten eta	168.5	171.625	99.125	124.375	167 625	170.938	11.3/5	175.375	207.438	209.908	889 861	177.25	205.625	212 438	202051	181.813	204.75	209.813	14.4375 1 14.4375	80.6875	203.125
	00 6	od run 1-	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	10 100	48125	48.125	48.125	48.125	48.125	48.125	48.175	48.125	48.125	48.125	48.125	48.125	48.125	40.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48 125	48.125	48.125	48.125	48.125	48.125	48 125	48.125	48.125	48125	10.100	48.125	48.125	48.125	48.125 1 to 125	48 125 1	48.125
-		t run 2	8.125	0.125	8125	8.125	8.125	8 125	8.125	61.20 0 175	0 100	8122	8.125	8.125	8.125	8.125	61.20	0 122 10 125	8.125	8.125	8.125	8.125	8.125	6159 6416	00.120 10 105	8125	8.125	8.125	8.125	8.125 a 125	8.125	8.125	8.125	8 125	8 125	8.125	8125	8.125	8.125	8125	8 125	8.125	8.125	8 12 m	20.155	8.125	8.125	8.125	8 15 1 5	8 125	8 125
-		drun 1s	8.125	8.125	8125	8.125	8.125	8.125	8.125	0120	0 122	8125	8.125	8.125	8.125	8.125	0120	8 175	8.125	8.125	8.125	8.125	8.125	8.125	0.120	8125	8.125	8.125	8.125	8125	8.125	8.125	8.125	8.125	8 125	8.125	8125	8.125	8.125	8.125	8125	8.125	8.125	8.125	12 ST 22	8.125	8.125	8.125	8 125 v	8125	8.125
	rb Distance	nun 2n	8.125 4	8.125	8125	8.125	8.125 4	8125	8125	8129	0.10	8126	8.125	8.125 4	8.125	8.125	8129	8175	8.125 4	8.125 4	8.125 4	8.125	8.125	815	0.100 0.125	8125	8.125 4	8.125 4	8.125	8125	8125	8.125	8.125	8125 4	8125 4	8.125	8125	8.125	8.125	8125	8125	8.125 4	8.125	8125	2126	8.125	8.125	8.125	8125 4	8125	8.125
-	30	d run 1st	6.813 4	46.75 4	6.438	6.188 4	6.938 4	46.75	6 438	100 P	40 40 4	6 698 9	46.5 4	6.188 4	6.188 4	6 938	10 1000 4	1 X 37	46.25 4	7.063 4	6.813 4	6.563 4	6.375 4	6.313 4	10110 V	46.5 4	6.375 4	6.375 4	4	6.813 4	6.313 4	6.188 4	4 13	46.75 4 16.663 4	6.375 4	46.25	17.100 A	6.813 4	6.563 4	7 100	6.938	46.75 4	6.563 4	6 6 6 0 4	2 12	10 10 10	6 625 4	1 529.9	7.1875 4	6.8125	6.6875 4
		nun 2n	6.875 4	16.75	6438	6.125 4	6.875 4	46.75	6438	90 100 ve	40 C 07C	6.699	46.5	6.188 4	6.188	4 14	0 0000	20.00	16.25	7.063 4	6.813 4	6.563 4	6.375 4	6.313 4	10 TE	6.63	6.438	6.438	7.188	6.813 4	6.313	6.188	27	6 663 4	6313 4	6.25	6.938	6.813 4	6.563	7 100	3 17	6.813	9999	7 189 1	11	6.600 4	6.625 4	6.625	7.3125 4	6.875 4	6.6875 4
-	ء 2	Inun 1st	5.875 4	8889	5.375 A	6.25	47 4	5.813	46.5 4	0.0	* 020 C	6.75	5.563	6.25 4	6.25 4	47	4 G/10	5 313	6.25	7.063 4	5.875 4	9 625	8 100	0.313 4	2 813		5.438 4	5.438 4	7.063 4	5.875 A	5.375 4	6.25 4	2.063	5.813 4	5.375 4	6.313	47 47	5.875 4	5.625 4	1 26	47	5.813 4	5.625 4	2 35 A	E Line	6.75 4	6000	5 668	7.125 41	5.875 4	6.75 46
-	ead Dist T	run 2nd	8,938 4	5,608 44	5.375 4	5.188	908	5.813 4	6.5	0.0	1 020 C	875	12 12 12 12 12 12 12 12 12 12 12 12 12 1	8.25	6.25	1063	Q/10	1 5113 A	6.25	4 630.7	5,875 4	5.625 4	5,438 4	0.313 4	A 001.	1 2010	6.5 4	16.5 4	188	5.875 4	3751 4	6.25	1.063 4	5.813 4	5.375 4	5.313 4	47	5.875 4	5.625 44	7.16	. 083	5.875 4	6.75 4	4 929 C	A 1003	6.75	6,688 44	5.688 4	1.375 A	9375 4	6.75 4
-	Spr	run 1st	0.14 48	0.21 46	205 45	0.34 46	0.14 46	121 46	292	1.32 A	100	8 120	295 46	335 4	36	115 40	305	245 10	1.35	0.13 45	185 46	32.0 #	295 45	315	110 10	21.12	0.3	0.31	135 45	0.19 46	0.3 46	131 4	0.13 45	195 46 195	1.29 48	306 46	115 4	0.21 46	275 46	123	19	1235 46	1275 4	201 P	1985	0.23	265 46	0.27 46	0.11 47 145K 47	0.23 46	0.27 4
-		nn 2nd	114	121	38 10	34	114 0	121	18	366	100	200	10	345 0	36.0	145	200	200	36	0.13	185	52	100	35	110	82	282	0.31 (135	381	18	305	0,13	36 28	620	306	115	121	275 0	129	165	225 0	820	88	281	23	265	127	105	256	82
-	3	nun 1st	138	202	3 28	335	136	100	8	315		02	192	325 0	18	145	20 20	n Pel	345	(13 0	(18 0	245	82	13	201	8 8	29 0	0.3	(13	8 2	8	0.3	121	119	16	80 3	19	206	27 0	200	16	255 0	100	2/	135	225	28	18	105	256	38
-	pth (ft)	t run 2nd	0.135 0	0205 0	0.28	0.335	0.135 0	0 205	0.28	0 010	0 153 0	0.2	0.28	0.34 0	0.345 0	0.14 0	70	120	0.345 0	0.13	0.18	0.245 0	0.29	0.3	0 195	0.255	0.29 0.	0.305	0.13	0.18	0.29	0.3	0.125 0	0.19	0 265 0	0.3	0.1155	0 205 0	0.27 0	0.285	0.16	0.22 0	0 275 0	0.26	95 U	0 225 0	0.26	0.265 0	0.1 0	0.22 0	0.275
-	83	drun 1st	-	-	+		8.69	9.47	7.89	8.2/ 0 EDE	0.000	97.36	27.34	20.02	26.58	82 53	154	52.75	51.64			-		0.01	7.08	1.8	7.56	7.11	27.66	28.6	8.8	27.38	177	52.96	19	9995				3 60	81	8.44	88	93990 17 17	12.70	28.77	898	26.4	22.05	200	21.87
-		run 2n		+	t	t	8 23	326	18	0.32	2000	8 8 9	0.31	90.90	26.4	61 1	01.43	72.02	51.63	_			+	0.04	6 73	118	7.6	7.046	19.12	09 60 37 E	8.9	07.38	22.69	2271	121	59.55	t	H		2 00	690	8 23	884	9969	1 20 20	86.58	90.7	8.42	201	200	63
-		d run 1st		+	t	t	636	7.19	889	1.1	7007	10.00	27.32	26.03	552	12 24	191	11 12	51.64	_			+	000	16	7.82	7.66	7.163	27.63	18 18	82.98	27.36	22.94	23.88	51 23	19.61	t			7.05	3 8	7.96	884	1/88	52.20	99.99	6.81	22.37	2000	1 88	51.92
-	(mfg) llein	nun 2m		+	$^+$	H	6.44	121	681	8.18	000	8.87	7.32	26.1	5.36	167	1.38	0.73	51.63	_		+	+	100	9.23	20.8	7.52	6201	897.2	20.67	6,49	27.34	2.62	528	513	9.67	+			8	845	1.95	879	LAB CP IS	27 35	6.46	10.75	92.38	2006	51.83	51.95
-	otal Ra	s ls	0.997	10065	01925	199175	97425	99075	96475	1 OLDE	00000	2.95	93125	91675	1,93225	880	2(00)	12126	87625	30065	3.004	00175	10021	1.012	3030	37425	9636	199325	0.945	19475 E QAK	929626	0.9695	89125	30126	9208	190375	01375	2.003	0.012	00475	37125	3886	0.0385	10.95	170 0	93875	9.976	193625	0.8845	8765	9.902
-	5:	d run CF			6 337 7	6.295 10	0	2	6.317 6	0.20	07:0		6.312 6	6.268 9	6.239 10		0 00 0	0 769 0	6.246 10			6.298 7	6 289	9 152.9		6.3 6	6.241 9	6.246 10	1	e are	6 259 9	6.24 1	0	8 268	192.9	6.222 10		6.328	862.9	6.25	~	6.305	9 200	100	T	6.306 6	629	6.244 10		6.32	9 200
-	-	nun 2n			6.34 2 mu	6.29			5253	1970	1070	t	5.315	6.27	5 235	+	1000	1000	6.23	_		9233	5.262	9	t	692 5	5 238	5245	1	e 4	6.27	5241	1	3000	2267	523	t	9328	9529	87	t	5.317	5.276	1201	t	3305	202	5245	t	3.315	2362
	i.	drun 1st			1337	5.291			3313	197-0	107-0	t	5319	6.27	6.24	+	6.31	1 776	5 239	_		15287	292.0	P229	t	100	5 239	5.248	+	247	197	5 238	+	204	5365	528	t	9 9729	9529	8	t	0205	6.27	256	T	2002	902.0	5243	t	5316	0.266
	oor (CFS)	nun 2n			343 343	5.289			632	100710	107.0	t	5.318	5.268	5.245	+	000	210.0	5.223	_		5,293	5.253	9	t	687.0	5.241 6	5.244 6	+	cue :	273	5.243	+	980	1264	5.232	t	5.327	162.0	982	t	6.312 8	5.276	797	t	305	5.279	5.245	t	5.313 6	627
-	83	Inn 1st	1997	80	212	669	1975	166	889	21/1	2007	676	1615	1648 6	9695	88	1048	e la la	1643 B	700	1002	2021	1921	1/1	000	1681	1714 E	1746 6	1945	1947	16831	718 8	680	1612	1268	199	1014	1675	115 6	67/1	8	688	197.1	6/9°	650	083	88	693	1885	980	1623
-		nn 2nd	996	306	202	703	975 0	391	999	119	2007	948 2	615 0	649 3	4 69	88	200	Cast Cast	LEA A	1 200	004	206	16	1 000		2 229	711 3	746 4	945	948 2 641 0	663 3	12 4	882	613 0	567 3	1881	003	675 0	716 3	752 4	977 2	689 0	766 3	679 6 031	040	635	683	69	885		623
-	l	nun 1st	998	007 3	712	698 4	974 0	991 2	210	113	000	8. 5	615 0	648 3	969	8	7 163	2016 0	642 4	1 006	004	0 202	192	199	100	30r 682 0	715 3	744 4	945 0	8 8	962 3	717 4	68	613 0	967 3	672 4	013	674 0	715 3	752 4	2000	0 689	768 3	a 100	C NO	8	691 3	683	884 01 01	561	679 3
ete	ALL (CFS)	un 2nd	997 0.	33	986 200 200 200 200 200 200 200 200 200 20	702 4	973 0	8	999	718	100	100	616 0.	646 3	689	8	700	5 CD2	642 4	1.	3006	200	100	4 217	C VE2	578 0	715 3	754 4	945 0	346	61 3	721 4	983	669 N	308	682 4	015 3	677 0	713 3	752 4	973 2	693 0	786 3	8 S	013	509	88	692 4	884 0	561 0	62 3
oath Concru	(%	1st r	04	94	88	5 10	04 0	2	8	10	* 0	50	04	04 3.	94	8	10 2	5 2	04 41	03 1.1	33	8	8 8	4 0	300	10	03 3.	1	80	03 2	310	03 4	8	03 2	33	1	1 20	00 20	02 3.	4 0	20 20	00 00	02 3.	8 0	20 20	00 00	02 3	14	0 0 0	0.0	02 3
Data - Smo	5) SX(3	+	10	10		00	14 01	10	100	5 0			1	14 01	10	2			10 10	14 0.1	10	10	200	T o o		00	14 00	10 11	10	2 2	10	10	10	00	10	100	2 2	14 01	10		00	14 00	10		10	10	2	0	2 2	0	0
Rain L	SL (%		80	0.0	000	80	0.0	00	0.0	300	00	10	00	0.0	0.0	0.0	300		0.0	0.0	0.0	0.0	0.0	10	00	00	0.0	0.0	0.0	000	00	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0	0.0	0.0	0.0	0.0	100	00	0.0	0.0	0.0	0.0	0.0	0.0

Table B3.1 TxDOT Concrete surface data

	[ab	le E	33.2	2 Tx	Ũ Ŭ	DT c	ouc	rete	e su	rfa	ce d	ata							
	Rainfall (g	(uud,			Depth (f)				Spread Dis	at T1 (m)			Curb Dista	nce (m)			Spread Dis	t T2 (m)	
	Initial		Final		Min		Max		Timin		T2max		Crim		Cmax		Timin		T2max
	Istrun	2nd run	1st run	2nd nun	1st run	2nd run	1st run	2nd run	1st run	2nd run	1st run	2nd run	1st run	2nd run	1st run	2nd run	1st run	2nd run	1st rur
30					0.095	0.09	0.1	0.095	47.5	47.5	47.4375	47.4375	48.125	48.125	48.125	48.125	148.063	148.0625	151

	ntegrated		0.015607	0.01629	0.015888		0.016064	0.016946	0.016266		0.018513	0.018554	0.016181		0.018915	0.016756	0.016628			0.014481				0.015426				0.015647				0.01625				0.016046				0.01731				101000	0.016664				0.017788		
	n value Geometric Ir		0.013109	0.013683	0.013345		0.013493	0.014233	0.013662		0.01555	0.015584	0.013591		0.015888	0.014074	0.013967			0.012163				0.012957				0.013142				0.013649				0.013478				0.014539				2002100	101359/				0.014941		
	AV/G Spread	_	149.9064	204.1563	2365	0	150.7969	206.5469	1975.757	0	156.25	212.125	237.0313	0.0	156.5	206.2656	238.7666	0		1385	0	0	0	203.625				203.75	0			207.5	0	0	0	215.5	0	0	0 0	220.5	0	0			9.027	0	0	0	2225	0	
		Dud nun	151.75	206.875	241		153.75	208.375	241.1875		159.75	217.25	238.5625		3	209.6875	243.5			210				214.25				218				221				216				221					177		Π		223		
	Dmax	st run	151.75	205.875	241		151.6875	308	8		159.75	217.25	238.5625		3	38	237.6875			210				21425				218				21				216				221					177	Γ			82		
	13	un puo	148.0625	201.875	230		149.75	204 5625	234.875		152.75	202	235.5		150	206.6875	239.25		ľ	8				193				189.5				194				215				220		T		-	197	Γ			8		
	Spread Dist 11min	st run	148.063	202	230		148	206.25	28.22		152.75	202	236.6		150	203.6875	234.625			8				193				189.5				194				215				220					770				22		
		2nd nun	48.125	48.125	48.125		48.125	48.125	48.125		48.125	48.125	48.125	T	48.125	48.125	48.125		I	48125				48.125			T	48.125			T	48.125				48.125		T	T	48.125		T		40 eVe	42129	Γ	Π		48.125		T
	Cmax	1st run	48.125	48.125	48.125		48.125	48.125	812		48.125	48.125	48.125		48.125	48.125	48.125			812				48.125				48.125				48.125				48.125				48.125				2010	42.12				48.125		
	nce (m)	2nd run	48.125	48.125	48.125		48.125	48.125	48.125		48.125	48.125	48.125		48.125	48.125	48.125			48.125				48.125				48.125				48.125				48.125				48.125					42129				48.125		
	Curb Dista Crim	1st run	48.125	48.125	48.125		48.125	48.125	48.125		48.125	48.125	48.125		8125	48.125	48.125			8.15				48.125				48.125				8125				8.125				48.125				2010	121.22				48.125		
		2nd run	47.4375	47.1875	47.0625		47.375	47.125	47.125		47.3125	47.125	47.125		47.3125	47.25	47.125			47.4375				47.5				47.625				47.5				47.5				47.563				100 87	47.585				47.563		
	T2max	1st nun	47.4375	47.1875	47.0625		47.4375	47.125	47.125		47.3125	47.125	47.125		47.3125	47.3125	47.125			47.4375				475				47.625				25				47.688				47.563					518				47.625		
	st T1 (m)	2nd run	47.5	47.25	0.125		47.4375	47.1875	47.1875		47.375	47.1875	47.1875		47.375	47.3125	47.1875		ł	47.5				47.5525				47.5625				47.5625				0.563				47.625				2000	47.625				47.625		
	Spread Di T1 min	1st run	47.5	47.22	47.125		47.5	47.1875	47.1875		47.375	47.1875	47.1875		47.375	47.375	47.1875		1	47.5				47.5525				47.5625				47,5525				47,625				47.625				1000	4/ 10/2				47,688		
		2nd run	0.095	0.13	0.145		0.09	0.135	0.155		88010	0.14	0.16		600	0.13	0.155			0.075				0.064				0.069				0.068				200				0.075				40	2/D				0.083		
	Max	1st run	0.1	0.125	0.145		0.1	0.135	0.15		0.088	0.14	0.16		800	0.13	0.155			0.075				0.064				0.069				0.068				80				0.08				00	80				0.08		
		2nd run	000	0.12	0.14		0.085	0.13	0.15		9900	0.135	0.155		0.087	0.125	0.15			200				0.061				0.065				0.069				8900				0.00				10	70				800		
	Depth (f) Min	1st run	0.095	0.12	0.14		0.095	0.13	0.145		0.085	0.135	0.155		0.087	0.125	0.15			0.07				0.061				0.065				690.0				4010		4		0.075				50	'n				0.075		
		2nd nun					8.722	9:056	9.991		26.18	193	26.7		51.36	59.75	52.67							7.041				25.37				51.91								853				144	9/2				66.33		
	Final	1st run					8.683	9.071	9866		26.73	26.04	26.71		51.79	59.02	52.64							7.198				263				51.81				L				8.45					5/12				63.98		
_	(mdi	2nd run					8.71	5.025	2388		26.13	25.49	25.49		51.83	46.99	52.71							6.983				25.18				51.88				L				673				11 47	70'1Z				583		
	Rainfall ((fstrun	10				888	6083	6361		25.03	5.43	25.47		61.84	589	5.63							2,008				521				6162				L				6.92				4.00	9/2		Ц		839		
	Ototal AVG	CFS	0.99925	239	4.99975	0	0.97325	2.976	4.9775		0.9965	2.94525	1941	0 0	0.86975	2.88875	4.87125		-	0.986/5	0	0	0	0.97675				0.93275	0	•		0.89775	0	0	0	0.895	0	0	0 0	0.97825	0	0	•	0.000	0.1351/0	0	0	•	0.87975	0	
		2nd run																	ļ	_		_							_	_	_					Ŀ		4	-				_					4			
	Final	1st run																											_	_	_							4													
_	or (CFS)	un 2nd nm																_	ł	-			-							-					_			+	-				+			-		+	+		-
	Office	run İstr	-	8	50		974	66	88	+	100	3	100	+	1.08		872	+		8	+		+	116	+	+	+	8	+	+	+	168			+	8		+	+	808	+	+	+	-	25	┝	H	╉	8/19	+	+
-		un 2nd	88	39	50		973 0.	88	819		937 0.	943 2	949 4.	+	688	2	872 4)	+		8		-	-	976 O.	-	+		933 0.	+	+	+	88			+	8		+	+	88		+	+	-	332 n.	┝		╡	8		+
	2 E	run İstr	1	38	50		374 0.	973 2	376 4		337 0	344 2	342 4	+	87 0	891 2	871 4	+		8		_	-	377 0	+	+		933 0	+	+	+	0 868			+	98		+	+	0 6/6		+	+	-	335 n	\vdash		╡	8		+
ete	ALL (CFS)	run 2nd.	88	38	88	$\left \right $	972 0.	972 2	375 4	+	935 0.1	946 2	336	+	969	887 21	87 4	+		385	+			977 0	+			932 0.	-	+		968			+	100		+	+	976 0.		+	+	5	2	\vdash	$\left \right $	+	8		+
ooth Concr	%) OW/	151 #	01 0.	01 2	01 4	$\left \right $	01 0	01 2	01 4		01	01 2	01 4.	+	01 0	01 2	01 4				+			005	+			005	+	+		00			+	305	305	58	8 8	005 0.	99	305	83	8	9 5	198	38	58	999	992	88
Data - Sm	%) SK(04	0	8	$\left \right $	04 0	8	04		9	04 0	9	+	04 0	0	04 0			3	$\left \right $			04 0				0	+			0 10			+	8	00	0	88	00 00	00	00	8 8	10 10 10	0 0 0 0	8	0	8	0 0	00	8 8
Rain	SL		0	o	0		0	0	0		1ª	ö	0		0	ō	õ							0				1°				0				1°	ō	0	0	ō	0	0	00	a c	0	0	0	0	00	0	D C

(u) *	Crmax nd run 1st run 2nd ru	8.125 8.125 89.1	8.12 8.12 8.13		48.125 48.125 48.1 Jacob Jacob Jacob Jacob	8110 9110 911			48.126 48.126 48.1 0.000 0.000 0.000	61.9 G1.9			48.125 48.125 48.1	48.125 48.125 48.1				48.125 48.125 48.1	46.129 46.129 48.1	48.126 48.126 48.1	40.120 40.120 40.1	40.123 40.123 40.1	815 815 81	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1 10.125 10.125 10.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1 to core to core to c	40.120 40.120 40.1 10.126 10.126 10.1	8.15 8.15 8.15	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48,125 48,125 48,1	48.126 48.126 48.1 10 eve 10 eve 10 e	40.120 40.120 40.1 10.120 10.120 10.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1	40.120 40.120 40.1 10 10 10 10 10 10 10 10 10 10 10 10 10 1	BLDC 18125 181	48.125 48.125 48.1	48.125 48.125 48.1	48.125 48.125 48.1
Curb Distan	2nd run 1st run 2	5 47.375 48.125	61.54 G.14		5 7.313 48.125 c 27.125 49.126	47.120 40.120			5 47.313 48.125	6.10			5 47.563 48.125	5 47.188 48.125				5 47.0625 48.125	071.08 0/09.08 0	45,625 45,125	C1.04 2.04	40.120 40.120 A7 A8 196	46.875 48.125	5 46.625 48.125	45,4375 48,125	5 45.4375 48.125	5 47.1875 48.125	46.75 48.125	5 45.375 48.125	5 48.4375 48.125	5 47.0625 48.125	5 45.875 48.125	5 45.625 48.125 to atre at at at	A0.43/0 40.120 A0.12 40.120 A0.120	47 48 125	5 45.6875 49.125	46.5 48.125	46.125 48.125	46.0625 48.125	6 45.93/5 48.125 c ac crc ao crc	C 40.040 40.120	5 46.375 48.125	5 46.25 48.125	47 48.125	5 46.625 48.125	5 45.4375 48.125	0 40.10/0 40.120 AC 175 40.170	K 15, 9375 18, 125	46.5 48.125	5 45.625 48.125	5 45 48.125
pread Dist T1 (m)	thein 2nd nun 1st run	47.375 47.375 47.37	4.15 4.15		47.438 47.375 47.37 07.100 47.375 47.37	4/.100 4/.100 4/.12			4/5 4/3/5 4/3/	21.74 01.74 01.74			47.688 47.625 47.62	47.188 47.25 47.12				47.125 47.125 47.06	40./0 40.00	5.66/5 45.66/5 45.62	2 04 2/07/04 2/02/04	71007 17 1007 1007	6 9375 46 9375 46 877	6.5625 46.6875 46.62	6,4375 45,375 45.5	46.375 46.375 46.430	17.125 47.125 47.055	0.0625 46.8125 47 6.6276 46.6375 46.67	46 375 46 4375 46 31	6.4375 46.5 46.37	47 47.125 47.052	6.9375 46.9375 46.87	45.75 45.6875 45.680 ic.zcne 4c.E. 4c.E	12 37 30.12 37 30.2 37	10 0525 47 0525 47	45.75 45.75 45.697	6.6625 46.5625 46.5	45.25 45.1875 45.25	46.125 46.125 46.12	47 47 45.53	100 G# C/00 G# C70 G#	63125 46.3125 46.37	46.125 46.1875 46.187	47.125 47.0625 47	46.75 46.6875 46.680	46.5 46.5 46.430	40.25 40.42 40.40 40.101	47 47 47 45 930	6.4375 46.4375 46.5	6.56.26 46.56.26 46.62	6.0625 46.0625 46.12
	Max 1st run 2nd run 1s	96010 6010	91.0 91.0		0.1 0.09	0.14		1	0.0 0.095	G110 G110			0.095 0.095	0.14 0.14				0.117 0.12	0.19 0.19	0.230 0.230	207 0 20C U	0.10 0.10	0.175 0.173	0.24 0.235	0.28 0.28	029 029	0.12 0.125	0.175 0.173	0.28 0.28	0.29 0.295	0.12 0.125	0.175 0.175 4	0.24 0.24	200 0 200 U	0.125 0.14	0.2 0.2	0.275 0.28	0.315 0.315	0.34 0.33	0.135 0.14	0.210 210 0	0.305 0.305	034 034	0.14 0.14	0.2 0.205	0.27 0.28	0.35 0.36	0.14 0.15	0.205 0.205	0.28 0.28	0.33 0.33 4
Depth (ft)	Min 2nd run	0.095 0.095	0.14 0.14		0.095 0.08	815			600 9600	0.14 0.14			0.09 0.063	0.135 0.135				0.115 0.115	0.1/0 0.1/0	0.25 0.25	170 170	010 010	0.12 0.12	0.236 0.23	0.275 0.27	0.265 0.265	0.115 0.12	0.17 0.17	0.275 0.275	0.266 0.28	0.115 0.12	0.17 0.17	0.236 0.236	170 6/70	0.12 0.138	0.195 0.195	0.27 0.275	0.31 0.31	0.335 0.325	0.13 0.135	2.0 021.0 ac.u 7c.u	0.32 0.32	0.335 0.335	0.135 0.135	0.195 0.2	0.265 0.27	0.300 0.300	0.136 0.14	02 02	0.275 0.275	0.325 0.325
	Final 2nd run				67 663 764 76	0/ 10/			27.19 28.59	88			3 52 5185	6 53.13 53.17								0 8705 881	6 7.919 7.903	2 8 7.955	8 8,902 8,963	6 8.081 8.026	3 27.48 27.56	2834 283 2870 2801	8 27.46 24.18	9 26.2 26.15	4 52 5183	6 50.91 50.96	6 5206 5207 5407 5507	21.01 20.30 21.01 20.30 20.01 20.30					- 2,000 A 2000	5 3./bb 3.635	4 1.0/1 0.051	6 8.263 8.269	4 7.732 6.882	9 26.7 26.74	6 26.08 26.03	26.49 26.56	0 26.68 26.78	6 5166 5228	6 52.22 53.19	7 5227 5229	4 53.84 53.44
al Rainfall (gpm)	Istrun 2nd ru	529	c/m		745 67 6.60 80% 7.6 7.7	77 07 000			202 202 202 202 202 202 202 202 202 202	0 44 04			3775 61.92 51.8	88 6312 531	_	_		875	6/12	27	40.0	000 BB 881	100 010 010 010 010 010 010 010 010 010	3375 8.017 7.96	0075 8805 8.93	908 8003 806	69 27.46 27.5	1175 25.29 26.3 Krie regi 26.0	415 77.5 24.6	963 26.24 26.1	81 52.12 51.9	675 51.02 51.0	3175 62.05 52.0 276 24.06 52.0	10 0110 0/0 202 37 27 200	2000 TT 2000	125	675	1265	2002	V225 8.892 7.34	0.10 0.000 0.10 7.70 7.70	1925 8 222 8 27	605 7.759 6.89	405 36.7 26.6	505 36.1 26.0	27 25.49 26.5	20 2010 001	210K 61 59 52 3	365 £2.18 53.1	99 £2.16 52.2	3025 62.46 52.3
Otet	al AVG run 2nd run CFS	0.0	30		00	77			50	4			0.6	2				0.0	22	1312 6.316 7.0	101 /C2 007	00 070	2.9	289 6.291 6.9	249 6.252 10.0	1236 6.233 10	0	2.0 2.0 2.0	262 6263 99	275 6.273 10	0	2.8	(291 6.307 6.8	072 B.2/2 B.	0.0	3.0	5.34 6.326 7.0	327 6.297 10	2389 6.293 11.0	50 0	2 202 2 202	267 6.266 10.0	233 6.226 10	03	28	307 631 6	C 107 0.00 100	~ ~ ~ ~ ~ ~ ~ ~ 0/7	2	337 604 6	282 6.282 9.8
floor (CFS)	tial Fin strun 2nd run 1st								+											6322 6315 6	C 01 01 01 01 01 01 01 01 01 01 01 01 01	070		6.292 6.291 6	6.26 6.262 8	6.237 6.231 6		302.3 02.3	6.263 6.266 8	6.28 6.27 6			6293 6.304 6	6 3C 8 2C 8			6.339 6.324	6.323 6.298 6	6.282 6.29 6	+	307.3 007.3	6.265 6.264 8	6 235 6 228 6			6316 6.31 6	6 203 0 200 0 6 272 6 28 0	0.010 U.S.0		6.317 6.309 6	6.285 6.28 6
0	st run 2nd run 1s	966.0 /66.0	3.023 3.018		0.974 0.975	6067 167		100.0	0.956 0.959	7 320 7 323			0.884 0.889	2.888 2.887				0.999	3 2355	1990 1990	1/20 ¥ 000 ¥ 000	1 001 1 000	2 978 2 978	0.692 0.694	3.745 3.745	4.763 4.766	0.958 0.959	2.94 2.942 0.60 0.601	3 688 3 668	4.677 4.681	0.661 0.661	2.894 2.899	0.581 0.584	2/00 3/00	0.996 0.994	3.01 3.011	0.685 0.684	3.716 3.714	4.72 4.722	0.941 0.94	1 DEE 1 DEE	3752 3754	4.73 4.732	0.941 0.941	2.95 2.951	0.617 0.615	3.5/0 3.000 A DAR A DAR	0.89 0.882	2.894 2.898	0.543 0.551	3.57 3.568
encrete OWALL (CFS)	Ist run 2nd run 1	0.996 0.996	3112 31122		0.974 0.975	9067 0067			0.937 0.939	7.303 01300			0.886 0.892	2.89 2.887				0.997 0.999	3.UU 2.969	0.000 0.000	3/40 3/20	1.001 1.001	2.979 2.978	0.683 0.683	3.745 3.744	4.761 4.765	0.969 0.969	2943 2942 nex next	369 3666	4.678 4.678	0.66 0.662	2.893 2.901	0.563 0.564	2/UF 3/UB	0.995 0.995	3.012 3.012	0.684 0.685	3,715 3,712	4.716 4.721	0.948 0.94	0.655 0.656	3753 3.756	4.725 4.733	0.94 0.94	2961 2.95	0.617 0.616	3/8/1 3/80/ 4 847 4 841	0.879 0.884	2893 2.895	0.56 0.539	3.566 3.568
ain Data - Smooth C L (%) SX (%)		003 001	003 001	0.03 0.01	003 001	003 001	003 001	003 001	0.02	000 000	000 000	0.03 0.01	0.03 0.01	0.03 0.01	003 001	003 001	003 000	003	200 500	200 000	200 000	000 000	003 000	003 002	003 002	003 002	0.03 0.02	003 002	003 000	0.03 0.02	003 002	0.03 0.02	003 002	000 000	003 003	003 003	0.03 0.03	003 003	003	0.03 0.03	000 000	000 000	003 003	003 003	003 003	000 000	000 000	una nua	000 000	003 003	003 003

Table B3.3 TxDOT concrete surface data

ы
lat
0
ച്ച
fa
Ins
ø
et
្ត
or
S
E
DOT
xDOT
TXDOT
4 TXDOT
3.4 TxDOT
B3.4 TxDOT
le B3.4 TxDOT
able B3.4 TxDOT

	Integrated	0.014619	0.015977	0.015779	0.014829	0.015376	0.016017	0.016128	0.014275	0.015313	0.01538	0.015276	0.014321	0.015662	0.017017	0.015015	0.013978	0.015344	0.015699	0.015997	0.015063	0.014377	0.015269	0.040447	0.0155	0.014726	0.015269	0.016094	0.016117	0.0155	0.014725	0.015542	0.016067	0.015137	0.01309	0.013762	0.015119	0.013832	0.014636	0.014966	CI3882010	0.014588	0.014842	0.015015	0.015255	0.013763	0.014587	0.015167	0.015389	0.014698
	n value Geometric	0.012279	0.01342	0.013254	0.012455	0.012915	0.013453	0.013545	0.01199	0.012862	0.012918	0.012831	0.012029	0.013147	0.014293	0.012612	0.011241	0.012888	0.013186	0.013437	0.012652	0.012076	0.012826	0.0113018	1011307	0.012368	0.012826	0.013518	0.013637	0.01302	0.012368	0.013065	0.013487	0.012714	0.010995	0.011559	0.0127	0.011618	0.012293	0.012562	0.0125	0.012253	0.012466	0.012612	0.012814	0.01156	0.012252	0.01274	0.012926	0.012346
	Spread	91.6875	116.6564	142.0625	153.0625 155.6875	92.25	116.7189	142 6034	155.0628	92.8125	115.5	140.7189	151.5 154 275	92 9375	118.2189	140.1563	151./188	696.96	122.1098	150.719	162,6563	164.594	96.375	122.6/19	167 8436	166 4063	97 29688	123	150.928	163.0313	06 0675	121.8126	150.8438	162 5938	102 6875	132.4375	168 2501	185.75	104.9688	135.5156	184 3906	188.1406	105.1875	136.1563	168.0781	184.3261 188.0938	105 125	135.5	169.2168	163 8/5
	Ded min	92	117	142.875	153.5	93	117.25	142.75	156.5	93.125	116.25	142	ឆ្ម ផ្	93.1875	119.438	140.6875	153.125	86.125	122.188	150.688	163.375	165.563	96, 1875	1.22 56.25	163.375	166 0625	98.1875	123	151.087	163.5625	166.9375 oc. 1%	121.8125	151.3125	163.0625	103.25	132.75	168.438 +en ente	185.75	105.1875	136	185.5	188.75	105.3125	136.5625	168.625	188 81 35	105.125	135.875	169.375	184.Ub.20 188.5
	2 max	65	117	142.875	153.5	33	117.25	142.75	155.6	93.125	115.25	142	153	93.1875	119.4375	140.6875	92 S	96.813	122.125	151.125	162.5	165.663	36.5	123.3/5	10.00	165,8125	98.1875	123	151.875	163.5625	66.9375 ac 13c	121.8125	151.3125	163.0625	103.25	132.75	168.4375	186.75	105.1875	135.8125	0.001 84.4375	188.75	106.3125	32,6875	168.625	185.0625	105.125	135.875	169.375	184.05275
	72 (m)	91.375	16.3125	141.25	152.625	91.5	116.1875	142.75	154.625	92.6	115.25	39.4375	150	92.6875	211	139.625	152 125	96.125	122.063	150.375	162.625	163.625	96.125 an ann	22.43/b	2/00/UC	165	96.75	123	150.375	162.5	66.8125 oc	121.8125	150.375	162.125	102 125	132.125	68.0625	186.25	104.75	35.0625	105.25	87.5625	05.0625	134.75	67.5625	187.376	105.125	135.125	69.0625	83.6675
	pread Dist Imin et nun 2	91.375	16.313	141.25	152.625 55.3125	915	116.188	42.18/15	154.625	925	115.25	139.438	150	92.6875	117	139.625	149.75	98.813	122.063	150.688	162 125	163.625	96.6875	CO CONT	50 317K	164.75	96.0625	123	150.375	162.5	e6 8125	21.8125	150.375	162.125	102 125	132 125	68.0625	185.25	104.75	35.1875	83 4375	187.5	05 0625	134.625	167.5	302 208	105.125	136.135	69.0625	187.875
ľ	and into the	48.125	48.125	48.125	48.125 48.125	48.125	48.125	48.129 10.121	8,155	48.125	48.125	48.125	48.125 Jac 126	48.125	48.125	48.125	81.15 81.15	48.125	48.125	48.125	48,125	48.125	49 1 29 1 1 29	81.8	18 135 18	18.125	48.125	48.125	48.125	48.125	48.125 AB 126	18.125 1	48.125	48.125	8 .125	48.125	48.125	89 129 18 125	48.125	48.125 10.125	81 12 12 12 12 12	48.125	48.125	48.125	48.125	80.125 155 155	48,125	48.125	48.125	8.15 8.155
	max at no	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48,125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	40.125	40.100 48.105	48.125	48.125	48.125	48.125	48.125	48.125 48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48,125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125
	e (n)	48.125	48.125	48.125	48.125	48.125	48.125	48.125	40.129 48.135	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	46.125	40.150 48.1%	48.125	48.125	48.125	48.125	48.125	48.125 #8.136	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48,125	48.125	48.125	48.125
	min Distanc	48.125	48.125	48.125	8 125 8 125	48.125	48.125	49.125	8125	48.125	48.125	48.125	48.125	8.125	48.125	48.125	48125 48125	48.125	48.125	48.125	48.125	48.125	48.125	471.78	8 1%	8 125	48.125	48.125	48.125	48.125	48.125 AB 126	8125	48.125	48.125	8 125	48.125	48.125	8125	48.125	48.125	8125	48.125	48.125	48.125	48.125	48.125	48 125	48.125	48.125	8155
ľ	001	16.8125	46.625	16.4375	46.125	16.8125	6.6875	6.312b	6/01/0	16.8125	46.625	46.25	6.0625	6.9375	46 625	16.3125	46	47.188	47.125	46.638	46.563	46.438	17.5625	C.00.74	40.020	16 4375	17	17	46.625	6.3125	46.25 17.437E	27.0625	6.8125	16.6875	7.4375	47.25	16.9375	46.75	87.78	47.75	6,5675	46 375	47.5	17.4375	6.6875	46.5	17.8125	47.625	2.75	46.375
1	trun 2	46.875	6.625	6.4375	46.25	6.8125	46.75	6.129	5/01/0	6.9375	6.6625	6.3125	6.0625 A	6.9375	46.625	6.3125	6/81/9	12	47.188	46.688	46.563	46.563	47.5	1.000 h	10.00.0	6.6875	47.126	47	6.6875	6.3125	6.1875 arr ann	1 9290.7	6.8125	46.5	7.4375	7.4375	47.125	6.8125	47.25	47.75	40.09	6.3125	7.3125	7.4375	16.625	46.5	27.6875	7.3125	7.3125	6.4375
	1 (j)	6.8125	46.625	6.4375	46.125	46.875	46.75	49.79 10.10	91.02 94	45.875	16.6875	6.3125	46.125	6.9376	46.625	6.3125	40.125	47,063	47	45.688	46.438	46.438	47.5	4/	45.62K	6.3125	0.6626	7.0625	16.8125	6.1875	6.1875 A	11	6.8125	46.625	47.5	13125	47	6/89.9	7.1875	17.6875	855 465	6.3126	5295.0	1.4375	46.625	6.4375 45.375	47.875	1 6675	1.3126	46.25
	min Dist	46.875	46.625	6.4375	46.125	46.875	6.6875	40.20	c/01.02	46.875	46.625	46.25	6.0625	6 9375	46.625	6.3125	4 9 9	47.063	47.125	46.625	46.438	46.5	27.4375	14	40.0 6 56.05	16 625	7.1875	47.125	46.75	6.4375	46.125	1	46.75	6.4375	7,3125	47.375	07.0625	46.75	12.1875	17.6875 J	6 1375	46.25	47.25	47.375	8.5625	16 4375 A	7.0625	47.125	47.26	17. Ubuzh -
Í	d 1 0	0.158	0.225	0.32	0.345	0.16	022	0.32	- CHE 10	0.155	0.225	0.31	0.36	0.16	0.24	031	0.365	0.18	0.245	0.32	80	0.405	0.185	0.25	1 20	0.405	0.18	0.245	88	0.395	0.415	0.24	0.345	030	0.162	0.225	0.3	0.365	0.165 4	0.225 4	0.365	0.365	0.165	0.225	0.305	0.36	0.165	0.225	0.305	0.365 4
	at a	0.158	0.225	0.32	0.345	0.16	0.226	0.32	0.38	0.165	0.22	0.31	0.345	0.16	0.24	0.31	0.39	0.19	0.24	0.315	0.38	0.405	0.185	0.245	0.36F	0.405	0.18	0.245	0.33	0.395	0.415	0.24	0.32	0.39	0.17	0.23	0.3	0.37	0.165	0.225	0.33	0.36	0.17	0.23	0.305	0.355	0.165	0.225	0.305	0.35
1	Mult	0.155	0.22	0.315	0.38	0.155	0.215	0.318	0.365	0.15	0.22	0.305	0.345	0.155	0.235	0305	0.38	0.175	0.23	0.315	0.37	1	0.18	777	0.365	0.395	0.175	0.24	0 325	0382	0.405	0.235	0.34	1385	0.16	0.22	0.295	0.365	0.16	0.22	0.395	0.355	0.16	0.22	0.29	9.92	0.16	0.22	0.3	0.355
	epth (f) fin et en 2r	0.155	022	0.315	038	0.15	022	0.318	0.366	0.15	0.215	0.305	034	0.133	0.235	0.305	0.365	0.185	0.23	0.316	0.375	0.4	0.18	077D	0.39	0.395	0.175	0.24	0.325	0.385	0.405	0.236	0.315	0.385	0.165	0.225	0.295	0.365	0.16	023	0.325	0.366	0.165	0.225	0.295	0.345	0.16	022	0.3	0.365
Ī				1	t	7.514	7.538	111/2	8,155	24.42	26.42	26.11	27.32	52.06	51.53	51.85	51.51						8.568	8,912	0.000	7.154	25.61	24.89	25.66	287	26.88	51.25	51.16	51.79	04.40				8.036	7.987	7.584	6.683	29:68	25.44	25.39	80 92 X	51.54	52.76	53.26	53.09
1	inal ct nn		Π	1	t	7.512	7.549	7.1042	7.982	24.39	26.11	26.17	27.32	51.97	51.6	51.8	52.05 61.52						8.863	0.040	7, 866	7.132	26.66	24.89	29.98	25.6	27.09	51.24	51.16	51.94	D4/47				8.083	7.897	7 561	6.673	29:00	26.34	25.44	19.92	52.48	52.64	63.36	63.87 51.28
	() upper		Π	1	t	7.446	7.697	1.954	1.15/	24.42	26.09	26.11	27.3	52.02	51.55	51.73	9779 61 59					-	6.392	0.000	7 866	7,155	25.64	24.9	22.68	22.68	8992	51.26	51.15	51.84	76'8C		T	Π	7.929	7 229	7.545	96999	39.69	26.30	25.39	192 F	52.28	52.6	5333	53.09 51.3
	Rainfall (gpn hitial Ist nun 2		Π	1	t	7,613	7,558	1000	1908	24,38	25.13	26.21	27.37	52.03	51.6	51.77	51.64						6.236	0.004	7 910	7.15	25.55	24.91	25.67	25.79	27.06	51.19	50.94	51.96	D0.61		T	Π	7.982	7.282	7.585	6.608	39,92	26.34	25.46	×1	52.28	57.62	53.46	53.06
	NG NG	666 0	3.01126	6 50625	9.99675	0.96425	2.98275	6.9595	10.9405	0.96475	2.93475	6.9285	9.93176 10 0105	0.895	2.881	6.87025	9.004	1,0005	3:00475	7.068	10.04525	11.031	0.961	2.3/30	0.3000	10.9005	0.99326	2 96925	7.0025	886	10.91375 n oneze	2.89675	6.91776	9.84125	0.9065	2.98875	7.004	11.00625	0.97776	2.97425	0100236	11,00875	0.9255	2.91826	6.92075	9.9225 In erints	0.87426	2.8585	6.86975	9.65/25 10.864
	uu pu			6.305	6 282		- 100	162.9	6 273			6 287	6.263	3		9529	997.9			6.344	6.318	63	T	1 14 F	6.218	6.226			829	6.297	6 23/		6 239	622	017:0		6.298	6.225		c .ec	6 243	6.242	Π		6 200	6.26	-		6.309	6.209
	final st nin			6.302	6.274		1000	6.301	6.275			6.282	6.257	3		6.312	6.281			6.353	6.31	6.299	T	U UNU	6.79A	6,225			6.334	6.28	6.233	T	6,243	6.223	0.417		6.3	6.229		2	6.243	6.224	Π		6.287	6,259	0,466		6.306	6.203
	an Pa		Π	6.302	6.2%			957.9	6.276			6.284	6.266	3		6.294	6.281			6.35	6.314	6.297	I	0.00	6.220	6 224			6.395	6.287	6.236	T	6.242	6.226	0.44		6.3	6 228		0.000	6.242	6.24	Π		1629	6.264	7.44.4		6.305	6.235
	htion (CFS) strine		Π	6.302	6.278			6.292	6 273			6.281	6.266	9		6.313	6.273			6.354	6309	9529	T	0.00	6 278	6 222			6.334	6.279	6244	T	6.241	6226	77'0		6.301	6 224		0 1110	6/20	6 223			6.269	6.252	100		6.308	6.213
Ť	an bu	-	3.011	999	3.726	0.965	2.984	1991	4,673	0.966	2.942	0.652	3.675	0.888	288	0.567	3.619	-	3.006	0.718	3,735	4.735	0.962	2.964	3.518	4.676	0.994	2.967	0.667	3.697	4.673	2.897	0.678	3.618	0.99	2.986	0.702	4.776	0.977	2.975	3775	4.772	0.926	2.918	0.632	3,663	0.877	2.66	0.564	3.622
	inal c nin 2	0.998	3.012	0.682	3.722	0.963	2.982	0.663	4,663	0.964	2.932	0.649	368	0.881	2.88	1990	3.615	-	3.004	0.717	3.733	4.733	0.96	9/67	3.613	4679	0.994	2.97	0.667	3.698	4.677	2.896	9/9/0	3.618	4.004	2.99	0.706	4.778	0.977	2.972	3774	4.779	0.925	2.917	0.632	3.665	0.874	2.855	0.662	3.62
	S) of nu	6660	3011	0.684	3.72	0.964	2,962	0.662	3/13	0.965	2 938	0.631	3671	6880	2881	0.566	3.614	-	3.004	0.718	3.731	4.731	0.961	2,363	3616	4674	0.99	2,968	1990	3695	4.678	2.897	0.678	3.615	6.0	2 969	0.704	4.78	0.98	2.973	3773	4.775	9260	2.916	0.632	3.664	0.873	2 868	0.663	3623
ficrete	MVALL (CF	0.999	3.011	0.682	3.72	0.965	2.983	0.064	3./14 4.663	0.964	2.927	0.648	3.679	0.882	2.883	0.566	3.614	1 002	3.005	0.718	3.731	4.731	0.961	G/67	3.514	4.676	0.995	2.972	0.668	3.699	4.677 0.000	2.897	0.674	3.617	0.991	2.99	0.705	4.785	0.977	2.977	3775	4.78	0.925	2.922	0.632	3.668	0.873	286	0.562	3.625
Smooth Co	(%)	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
an Usta -	r (%) S	0.03	80	0.03	000	0.03	000	0.03	0.00	0.03	0.03	0.03	800	0.03	0.03	0.03	500	0.02	0.02	0.02	0.02	0.02	0.02	700	2010	0.02	0.02	0.02	0.02	000	00	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	2010	0.02	0.02	0.02	200	000	0.02	0.02	0.02	0.02
± i	0	1		1	-								1					-	1		1	1			1		-								1			1								1	-			

	ntegrate	0.015494	0.014646	0.011445	0.012345	0.017317	0.014712	0.011307	0.013604	0.01397	0.015514	0.0114/2	0.011000	1011201	U DISEN	0.014707	0.012000	0.01251	0.013203	0.013372	0.011445			0.013027	CTACTO O				0.013846	0.012286			0.01366	0.012406			0.01233				0.013404					0.01440/			0.012071	0.0104-1		
n value	Geometric	0.013014	0.012302	0.009616	0.010369	0.014545	0.012357	0.009497	0.011427	0.011737	0.013031	00271010	0.00000	0.000000	0.013874	0.012353	0.010087	0.010508	0.01109	0.011232	0.009617			0.011200	D D1048	20100			0.011632	0.010319			0.011397	0.010423			0.010364				0.011259					0.012101			CA11110			
AVG	Spread	122 3906	159.0625	187.125	211.5626 222.375	125.9844	158.9688	186.5625	217.5625	225 4688	123.4375	159,2015	1007 701	277 1876	101 0002	158 625	189.5	212.4063	222 2813	157.4375	204.5156	0		100 0376	A 197 ANC	0	0	0	159.4375	208.2969			157.3281	206.6261			212.0625	0			217.125	0	0		-	0	0	0	0	0	0	
	and mine	122.625	159.0625	187.125	211.5625	126.5625	159.5625	187.0625	218.0625	226.9375	123.5	159/5/5	0100 701	272 8375	130	19	191.625	212 3125	223.375	159.375	211.3125			101 1070	210 4375	2.000			161.25	213.5			161.25	214.75			212.0625				218.5			T	3	12	Π		212	211		T
	Zmax st nm	122.625	530.625	187.125	711.5625	26.5625	58.5625	87,0625	18.0625	26.9375	23.8125	C70/601	120001	375 4275	100	160	189.375	12.4375	224.25	159.375	200.6	1	t	C1 407E	0101 100 010				160.6	06.5625		T	157,625	207.5			12.0625		T	T	218.6	T	T	T	į	521	Π	T	247	\$1L	T	T
(m) 12	1 un pu	122.25	69.0625	187.125	221.25	26.3125 1	158.875	86.0625 1	17.0625	224	22.625	201202	C 100'10	3/220 00	301010	157.25	188.5	12.4375	220.75	155.5	207.5	t	t	20 007E	00,000 0	A41.100		T	68.6875	210.625	1	t	156.375	10.0625		T	12.0625		Ť	t	215.75	T	T	T	ł	221	Π	Ť	217	7.12		T
pread Dist	of nun 2	22.0626	50.055	187.125	772 626 2	125.5 1	158.875	96.0625 1	17.0625 2	224	23.8125	01 COTC 1	37.000	C 3/250 UC	1 2010 10	157.25	188.5	12.4375 2	220.75	155.5	198.75	t	t	C0 C076 +	000000 LDC			T	67.3125 1	202.5	1	t	92 06 26	203 2		T	12.0625 2	Ħ	t	t	215.75	T		T	ļ	331	Π	1	210	117	T	T
	T un la	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	19 12 19 19 19 19 19 19 19 19 19 19 19 19 19	11.12	10 1.00	40.120 18 135	201.00	B 125	48.125	48.125	48.125	48.125	48.125	T	T	NO 1-JC	40.12C				48.125	48.125	T	t	48.125	48.125		T	48.125		T	T	48.125	T	Ī	T		48.125	Π	T	301 or	-01-02	T	T
	max et n.n 2	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	42129	40 470	40.120 4R 125	AR 13C	48.125	48.125	48.125	48.125	48.125	48.125	t	t	30.00	4R 175	101 100			48.125	48.125	1	t	48.125	48.125		T	48.125		T	t	48.125	T		T		48.125	Π		3C1 or	40, 160	T	T
(u) e:	unbu	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	48.125	40.129	10 170	40.120	40.135	48.125	48.125	48.125	48.125	48.125	48.125	t	t	20104	48.176	0.41.0M		T	48.125	48.125	1	t	48.125	48.125		T	48.125		Ť	t	48.125	T		T		48.125	Π	Ť	10.136	40.140	T	T
urb Distan	et n m	48.125	48.125	48.125	48 125	48.125	48.125	48.125	48.125	48.125	48125	41.15	10 100	40 100 18 105	10.105	48.125	48.125	48.125	48.125	48.125	48.125	t	t	10.17E	AB 175			T	48.125	48.125	1	t	48.125	48.125		T	48.125		Ť	t	48.125	T		T		48.125	Π	T	to 100	40.163	T	T
	on ha	47.3125	46.9375	46.6875	46.625	27.75	13	46.8125	46.6875	46 625	47.1875	4/.00.7	10.010	20700-04	2. 75	46 9375	46.75	46.5625	46.4375	47.5	47.0625	1	T	47 437E	NT 76	20.00		F	47.375	47.1875		T	2.75	47.125		T	47.625			t	47.625	T	T	T	ļ	87.75	Π	T	17.5275	61,0040	T	T
	Zmax st nm	47.3125	47.125	46.8125	46.6625	47.25	47	46.75	46.6875	46.625	47.1875	ar ore	20.00	40.0020	A7 76	47	46.8125	46.6875	46.625	47.5	47.3125	T	T	37 1375	47 1975			T	47.375	47.1875	T	T	47.25	47.0625		T	22972		T	T	47.6625	T		T	ļ	47.75	Π	T	3032 11	4/ (006)-	T	T
T1 (n)	and and	47.25	4	46.75	46.5625	47.25	46.9375	46.75	46.625	46.5625	47.1875	4/ 10/2	40.0120	40.00.04	A7 2126	47	46.6875	46.625	45.5	47.4375	47.125			10.0	3012	0410-14			47.4375	47.25			47 3125	47.1875			47.5625			T	47.5626					47.625			2022	-07001 /#		
Spread Dist	1min st min	47.25	0	46.75	46.5	47.25	46.9375	46.6875	46.625	46 56.55	47.1875	4/ Ub/2	10.00	16 5625	A7 2105	2 0625	46.875	46.5625	46.5625	47.4375	47.25	Ť	T	202.01	A7 75				47.4375	47.25		t	47.3125	47.125		T	27.5625		T	t	47.625			T		47.6875	Π	T	3033 11	- CTOC: /4		T
	Ordina	0.14	0.2	0.255	0.305	0.135	0.195	0.26	0.305	0.32	0.145	0.755	0.20	0.315	0.135	0.19	0.255	0.305	0.335	0.11	0.16		T	0.112	0.155	200			0.115	0.165		T	0.115	0.165			0.1				0.095			T		0.095	Π		01			T
	Max	0.135	0.2	0.26	0.325	0.135	0.195	0.26	0.305	0.32	0.145	0.150	0.306	0.315	0.12	0.19	0.24	0.3	0.33	0.11	0.16	T		041	0.6K	22.5			0.11	0.16			0.12	0.16			0.1				0.09			T	1	01	Π		10	10		
	un kut	0.135	0.195	0.25	0.31	0.13	0.19	0.255	0.3	0.31	0.14	61.0	207.0	0.34	0.12	0.187	0.25	0.3	0.33	0.105	0.15			0.44	0.15	2			0.11	0.16			0.11	0.16			96010				0.09					600	Π		1000	2000		
Depth (f)	Min 1 et nur	0.13	0.195	0.25	0.32	0.13	0.19	0.255	0.3	0.31	0.14	61.0	6.0	131	0.1%	0.185	0.235	0.295	0.325	0.105	0.15			0.00	0.16				0.105	0.155		Τ	0.115	0.155			0.095			Ι	0.065			T		0.095	Π		1000	0,000		
	Ord num					8.993	7.334	8.749	7,619	8,172	8.8	10.07	77.02	26.30	21.02	516	51.05	3	51.52					1001	R 106	2010			26.29	25.47			52.42	52.05							8.409				-	25.23	Π		30.00	06:00		
	Final 1st nm					8.972	7.503	8.793	7.575	8.369	26.31	20.75	01.02	26.32	503	51.57	50.98	53.5	61.48					2 007	8 mm	~~~~			26.21	25.47			52.41	62.03							8.503					26.21			£1 30	04:02		
Ē	2nd min					8 992	7.498	8.642	7.64	8.423	26.31	2/10	107	26.37	£3.10	51.62	51.01	63.61	51.51					0.000	7 64	1 mg			26.24	25.33			52.39	52.06							7.13				1	22.22			80.03	00.00		
Rainfall (gp	Indial fist num					8.971	7,587	8.634	7.583	8.535	8.8	PQ'97	20.02	00.17	000	51.52	50.95	53.47	51.5					0000	6.07B	2.50			26.23	25.36			52.38	52.02							7					22.23			ED 41	14/20		
Ototal	AVG	0.9775	3.0065	7.00975	10.0005	0.97075	2,97175	6.998	3366	10.948	1960	2,3445	071400	9.92 10 07R	0 BCC	2 85225	6.8795	9.68026	10.94675	0.99575	3.0275	0	0 0	0.0010	30220 0	0	0	0	0.95176	2.94475	0		0.6665	2.88675	0		0.998	0		0 0	0.9775	0	0			0.92/	0	0	0 peanse	0	0	0
	2nd nin			6.314	6.263			6.304	6.266	6.249		C /00	0.000	6 24			6.32	6.282	6.255																																	
	Final 1st nm			6.315	6.272			6.303	6.266	6.258		0.304	0.00	6.738	240		6.323	6.274	6.255																																	
6	Ded no			6.314	6.278			6.307	6.265	6.25		0.0	0.0	E 2M			6.327	6.278	6.258																																	
Officer (CF	Intial 1st run			6.317	6 263			6.305	6.26	6.257		0.200	0000	10000			6.318	6 277	6.257																																	
	and	0.976	3005	0.695	372	26.0	2.971	0.694	3.692	4,697	0.959	2.944	2.034	#74	0,966	2.856	0.557	3.6	4,693	0.996	3.028			0000	730 C	100-14			960	2.947			0.866	2.888			0.998				0.977					0.927			0.880	0000		
	Final	0.98	3.007	0.695	3.721	0.971	2.971	0.693	3.691	4.693	0.968	2.545	2 0.00	4 7 28	0,940	2.849	0.667	3.605	4.688	0.996	3.025			0.004	1 000 C	A-144			0.952	2.945			0.066	2.888			0.997				0.978					0.927			080	00010		
(FS)	and nu	0.975	3004	9690	3721	0.972	2.973	0.692	3.692	4 697	9990	7344	2000	6.730	0.956	2.855	0.558	3.601	4.69	9660	3.028			0000	2000				0.953	2.944			198.0	2.667			0.998				10.977					0.829			0.800	1000		
Concrete CWALL (C	Initial 1st nu	0.979	3.006	0.694	3.724	0.97	2.972	0.694	3,692	4,691	0.965	1967	2.575	A7A	0 PCC	2.849	0.558	3.604	4.69	0.995	3.029			000	330 0	2001			0.952	2.943			0.867	2.884			0.999				0.978					0.926			0 800	2007		
- Smooth C SX((%)		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	20.0	20.0	0.00	0.00	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005	0.005	0.005	0000	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
tain Data		000	002	000	000	0.02	0.02	0.02	0.02	0.02	000	200	200	200	000	000	0.02	0.02	0.02	0.02	000	0.02	000	0.00	0.00	0.02	0.02	0.02	0.02	000	000	000	0.02	0.02	0.02	2010	0.02	0.02	0.02	2010	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

Table B3.5 TxDOT concrete surface data

	Hearated		0.014681	0.014579	0.015064	0.014921	0.015012	0.014683	0.015414	0.015264	014242	0.015017	0.014811	0.014759	0.015094	0.015189	0.015508	0.015345	0.01402	0.014849	0.014327	0.014421	0.01.61.69/3	014966	0.014056	0.014153	0.014356	0.014137	0.014951 0.014465	0.014596	0.014152	0.013682	0.015262	0.014423	0.014445	0.015831	0.01412	0.013122	0.013454	0011000	0.014334	0.013116	0.012731	0.016244	0.014900	0.013075	0.013465	0.015836	0.015080	0.012982	
	value eometric Ir		012331 0	012246 0	012653	012533 (0	012609 (012333 0	1012947	012812	011962	012614 0	0.01244 0	012397 0	012678 (012758	013026	012889 0	011776	012473	012034 0	012113 0	0.0110	012573	011806	011888 0	012059 0	011875	012658 0	012263	011887	011492	012391 0	012115 0	012133 0	AND AMOUNT A	0.01186	011021	011301	0.01252 0	0.01204 0	011017 0	010693	013644	01/2040 L	010982	0.01131 0	013301 (012004	010904	
	VG n		B.71875 0	24.0938 0	54.2188	73.0938 0	9.40625 0	124.5 0	199.25 U	74 1875 0	8 60938 0	25.2344 0	153.6	168.25 0	73.5155 0	25.5938 0	155 0	0 69.664 0	07.625 0	140 0	72.5939 0	190.5 0	TR Marke	40.0315 0	72.3129 0	89,8125 0	95.6875 0	07.9375 0	40.3125 0	92.0625 0	94.9065 0	106.75 0	40.9689 0 74.0469 0	90.875 0	96.0939 0	166.6	208	25.6875 0	33.4375 0	128.5 9688 (08.6875	225.25 0	230 0	29.5938 U	U 6//9/99	25.0625 0	34.0938	29.1875 0	07.5830 U	24.6663 0	
	20	d run ln	8875 9	04.1875 1	5.1875 1	73.9375 1	9.6875 99	124.5 rr or	150.25 to 0275 14	A 1875 1	98.75 98	3.6875 1	163.5	8.8125	3.9375 1	25.875 1	5.5625	72 176 1	1 9/2 /0	40.25	73.313 1	91.625	10.43	10.25 1	72.313 1	99,8125 16	196 1	8.1875 10	40.625 1	93.375 1	195.5 19	106.5	73.875 1	191.5 1	96.126 1	128.75 1	08.375	256.75 22	234.75 Z	7 0625 1	09.375 2	326	231	29.25	10/ 10/	27.25 2	34.875 2	30.125 1	x 2012/2	24.625 2	
	max	rum 2n	8.875 9	4.1875 12	4.4375 15	3.3125 17	9.125 9	124.5	00.20 0.027E 15	4 1875 17	3 6875	4.5625 12	153.5	38.875 16	3.9375 17	25.25	5.6625 15	0.4375 1	1 875 1	40.25	3.3125 1	31.625 1	8.427E	40.25	72.313 1	9,8125 18	196	8.1875 10	73.75	33.375	196.5	7.5625	4.6875 1	191.5	36.125 1	29.375 1	07.625 2	24 625 2	2.155	7 0625 16	09.375 2	226	231	8	191	24.75 2	34.875 2	0.0625 1	21 0210/2	8.875 2	
	(ii)	Inn 1st	6 5233 1	124 12	3.6875 15	2.9625 17	6875 9	24.5	20.20 1 2 027E 10	4 1875 17	1 2375 9	3625 12	53.5	7.875 16	3.0625 17	5.8125 1	4.4375 15	71 5 17	11 505.0	39.75 1	1.875 17	9.375 1	01 24 20	9.813 1	2313 1	3.8125 18	6.375	7.6875 10	3 698	30.75 1	4.313	5.4375 10	0.9375 17	30.25	6.063 15	28.75 1. 36.875 1	8.375 2	26.75 2	34.75 2	123	208 2	24.5	672	92.62	Q/ 90	24.75 2	3.3125 2	28.26 13	00 3010 0	3.6625 2	
-	ead Dist T	run 2nd	5625 96	124	5625 15	11 9295	9125 96	24.5 1	01.20	1876 17.	56.75 00	0625 12	53.5	14375 16	3.125 17.	5,4375 12	1.4375 15	9.375 1	7 375 10	39.75	1.875 17	9.375 16	4 92.20	9.813 13	23125 17	9.8125 18	6375 19	6875 10	3,688 17	0.76 h	4313 19	06.5 10	1.9375 14	0.25	0.0626 19	8.176 1	7.625 X	4 625 2	2125 2	4 875 16	208	24.5 2	622	9.875	0.6	23.5 2	3125 23	33126 1	7.875 10	1.5625 22	
	es E	run 1st	49 BB	67	8	172	8	1 1	50 10 100	174	67	49 123	1 67	49 167	17	8 12 8	49 154	49 16 17	49 10	67 67	49 17	69 50 50		13	49 172	49 189	49 19	49 107	69 63	91	49 19	10	49 140 49 174	10	49 196	4375 12	4375 20	4375 22	43/5 23	1438 16	1438	1438 2	897	12 12	199 B	438 2	438 233	128 126	01 0071	1438 224	
		run 2nd	49	67	69	8 8	67	69	5 9	0	67	67	67	67	67	69	67	67	67	67	69	69	5	67	67	49	49	69	67 67	69	67	69	69 69	67	49	4375 49	4375 49	4375 49	4375 49	4 94 95	438 49	438 46	438 4	4 4 88 1	4 00 4 00 4	438 46	438 45	438 45	420 40	4 804 1004	
-	(F)	run 1st i	6	6		2 0	6			0 0		. 6	6	6			9	6 0		0	6	0,0	2 9		6	6	6	6	0 0		6	0			6	4375 49.	4375 49	4375 49.	4375 49.	420 45 1375 49	438 49	438	67 1 67	8	04 001	428 49 438 49	438	67 67 700	13/5 40	287 787 787	
-	Distance	un 2nd	0	0	0	2 02	9	00	2 9		0 0		0	0	2	0 0	2	0 0	0 0	0	0	00	2 9	0 00	0	0	2	2	0 0	2 22	0	2	2 2	2	0	1375 49.	1375 49.	1375 49.	1375 49.	1375 49	1375 49	1375 49	375 49	B15 44	1375 AU	1375 49	375 49	1375 49	13/15 45.	1375 49	
-	Curb Crei	run 1st r	8125	375	8125	6/20	9375 4	4375	979	5126	889	438	2	75	2875	9 29	9375 4	75 2	8125	4375	4375 4	875	2 12	15	125 4	7 10	875 4	9375	625	9025	2	8		125	125 4	108 49. R75 AG	625 49	5 49	3/5 49.	18/5 49. 9875 49	5875 49.	4375 49.	375 49.	1875 49.	104 BUTO	15 49.	5625 49.	25 49.	8 47.	625 49.	
-		in 2nd	875 47.	25 47	7 46.	75 46	75 48.	375 47.	75 47	125 46	17 523	14 85	625	75 46	1125 46.	375 47	125 46.	75 46	75 47	375 47.	7 47.	125 46	25 20	1 4	625 47	375 4	375 46	8 47.5	875 47	875 47.	229	8 47	25 47	25 47	125 47.	875 48	625 47	375 40	125 47	125 12	5 47.	375 47.	875 47	22	CT 120	25 4	625 47.	375 48	8 ars	375 47	
-	in) T2ms	un 1st n	875 47.6	125 47.	G75 4	875 46	G75 47.	125 47.4	75 AL	75 46.8	875 471	17 80	G75 47.0	875 46	225 46.6	22 4/10	G75 46.6	75 46	50	5 47	52	G75 46.6	105 20	625 47	875 47.0	255 46.9	G75 46.9	~	25 47.5	1.74 82	625 47.0	G75 &	875 47	625 47	625 47.	25 48.1 275 47.5	75 47.5	525 47.4	5 47.3	8 8 8	75 40	5 47	375 47.1	88	5/18 Scs	375 47	5 47.5	22 48	5 2CE	12 22	
-	d Dist T1 (n 2nd n	875 47.6	25 47.3	375 46.9	875 45.6	875 48.9	125 47.3	87E 46	25 46 46	25 47.6	375 47.	46.9	875 46.6	875 46 (010 41.0 015 47.	125 46.9	75 46.	125 47	5 47	625 47.	175 46.9	10% C/D	525 47.5	25 47.1	1 47.	45.9	525	25 47.6	875 47.	25 47.0	47.9	875 47.1	875 47.0	625 47.0	25 48	28 47	525 47.	375 A/	0/0 40 0/5 40	5 47	375 47	125 47.4	875 46	975 AT 8	25 47.4	625 47	175 48.	375 a7.8	122 47.0	
_	Sprea	n 1st ru	6 47.6	55 47.	6 46.9	15 45.6	5 47.6	7 47.3	K 45.02	20.00 AG	2 2 8	5 47.4	6 47	46.6	15 45.6	5 47.3	5 45.8	45.0	8 47.8	4 47	2 47.0	52 46.8	7 47.8	47.62	2 47.1	55 40	7 47	7 48.0	K 47.6	5 47.1	7 47.1	5	5 47.8	6 47.15	8 47.0	1 27.9	7 47.6	15 47.6	2 47.4	5 45.13	17 98	1 47.4	2 47.3	4 48.1	4/3	5 47.	3 47.5	3 48.3	1 47.3	5 47.3	
_	+	1 2nd ru	6 0.15	8 0.26	10.3	5 0.4	5 0.15	7 0.2	K 0.3	5 0.40	203	0.2%	4 0.3	9.0	6 0.4	0.26	80.03	6 0.4	10.16	4 0.2	2 0.3	0.0	0.0	3 0.2	2 0.3	7 0.36	8 0.3	9 0.1	a 0.2	0.36	8 0.3	6 0.1	2 0.32	6.0.3	8 0.3	10 10	7 0.2	1 0.3	5 0.3	1 0.20	7 0.26	1 0.3	6 0.3	1.0	7.0	6 0.3	3 0.3	0.1	5 U.Z	6 0.3	
_	Mar	n 1st rur	9 0.19	5 0.2	8 03	6 0.41	5 0.16	5 0.2	6 0.3	0.40	8 0.20	5 0.2	6.0.3	0.40	0.41	6 0.2	80.03	6 0.40	2010	4 0.2	5 0.3	0.0	0 0 00	5 0.2	6 0.3	5 0.3	6 0.3	8 0.17	8 03	0.3	6 0.3	0.17	2 0.2	6.0.3	7 0.3	41.0 ×	6 0.2	0.3	0.31	3 0.7	5 0.2	6 0.3	6 0.31	0.0	7.0	5 0.31	5 0.3	5 0.1	20 2	0.31	ľ
_	£	2nd run	0.15	5 0.26	0.34	0.40	5 0.17	0.26	920	0.4	010	5 0.25	5 0.35	0.4	0.00	0.25	5 0.35	0.40	010	0.23	5 0.31	0.36	0.6	5 0.23	5 0.31	5 0.36	0.36	0.16	023	0.36	0.36	0.12	5 0.33	0.35	5 0.32	10 0	0.26	5 0.31	0.31	0.00	5 0.26	5 0.30	0.31	200	20	5 0.31	5 0.31	0.12	0.00 A	5 0.31	ľ
_	Depth	1st run	0.19	0.29	8	070	0.17	0.28	90.0	0300	0.2	0.25	0.33	039	070	0.26	039	0.41	0.16	0.23	0.31	0.39	0.0	0.22	0.31	0.38	0.37	0.17	023	038	0.37	0.17	0.24	0.36	0.37	0.13	0.26	030	0.31	020	0.26	030	0.31	010	10.0 M	030	0.31	0.12	0.05	030	
_		2nd run		_	+	+	7.32	7.813	1.391	8 152	8 10	28.2	26.01	28.28	26.51	52.62	51.78	51.46				-	684	7.461	7.094	6.446	6.53	22.00	28.8	28.2	26.97	52.77	51.76	51.46	52.26	_		_	2010	7.287	7.965	7.416	7.75	27.36	20.02	26.76	28.0	51.74	10.20	52.71	
_	Final	1st run		_	4	1	7.344	7,903	1.128	8 090	26.18	26.23	8	26.3	292	52.6	51.8	51.5	2			-	6 874	7.861	7.143	6.417	6.453	22,08	26.06	26.22	26.96	52.73	52.6	51.5	52.41	_		_	1010	3.124	8.054	7.436	7.726	2/3	10.02	26.75	26.07	51.8	2011C	52.7	
_	(Judo	2nd run			4	1	7.318	7.754	1.452 F.967	8 104	28.17	28.28	26.04	28.3	26.5	52.6	51.79	51.49	15.190			_	6.830	7,481	7.144	6.438	6.499	22.08	26.09	26.22	26.92	52.76	51.79	51.49	52.37	_			101 5	7.285	8.306	6.758	7.693	2.3	10.02	26.76	26.09	51.8	27 83	52.78	
	Rainfall	1st run			10		5 7.362	5 7.942	5 1///2 E CED	8004	26.19	26.24	8	26.34	5 26.52	52.62	5 51.71	5 51.46					C GRIS	138	7.454	5 6.423	5 6.428	8	25.26	5 26.25	5 26.98	52.72	5 52.52	51.46	5 52.4	10		10	100	7363	5 8.246	6.782	2 769	27.36	70.07	26.76	5 26.05	51.85	\$010 \$0.8	52.67	
	Ototal AVG	CFS	0.988	2.979	7.0442	10.99	0.9547	2.9672	1001/	10.980	1996.0	2.9445	6.9697	9.9502	10.9130	2.895	6.8582	9.8492 10 0247	2066.0	3.0036	7.007	9.996	2700.0	2.9587	7,0855	10.0022	11.0042	0.9317	2.9672	10.0507	10.9372	0.8506	2.06/2	9,8965	10.8817	7800.1	7.0807	10.009	10.961	2.9416	6.9902	9.9456	11.011	0.9400	2.934	9,9145	10.9707	0.8965	1007	9,8456	
		2nd run			1989	6.3			6.376	6 274	-		6.308	6.281	829		6.312	6.297	1.400		6.255	6.215	0.213		6.352	6.319	6.239	_	6344	6.319	6.313		6344	6.317	6.314		6.237	6.192	6.192		6 223	6.218	6.209	1	000 0	6.212	6.209		6 107	6.2	
	Final	1st run			88	6.3			6.303	6.291	1.000		6.316	6.278	979		6314	6.9		L	6.245	6.21	77'0		6.36	6.31	63		6348	6.325	6.312		6342	6.32	6.314		6244	6.209	6.158		6 222	6.22	6217	1	100.0	6222	6.209		6 108	6.198	
_	6	2nd run			9982	6.301			6.36	6.276	0.80		6.31	6.281	6.262		6.312	6.296	2000		6249	6208	/170		6.365	6.318	6.297		CIRE 9	6.313	6.312		6345	6.326	6.315		6.233	6.19	6138		6 224	6.225	6.207		6 770	6215	6.21		6 193	6.199	
	Critoor (CF	1 st run			6.353	6.301			6.322	6.283	0.000		6.314	6.273	6.266		6.323	6.299	240		6.247	6.215	977.0		6.358	6.314	6.302		CRE 9	6.325	6.304		634	6.326	6.319		6.24	6.215	6.197		6.223	6.209	622		310.3	6.219	6.21		6.106	6.199	
		2nd run	0.989	2.978	6890	4,694	0.954	2.966	3647	4 701	0.954	2.944	0.648	3.668	4.651	2.897	0.545	355	0.993	3.002	0.758	3.786	0.00	2.96	0.727	3.69	4.703	0.933	2.939	3729	4,627	0.849	2,865	3.576	4.569	1008	0.791	3.806	4.764	2.943	0.767	3.724	4.794	0.94	2,955	3,696	4.763	0.897	2,005	3.643	
	Final	1st run	0.988	2.979	6890	4.696	0.954	2.968	3,661	4 704	0.955	2.942	0.648	3.675	4.652 A more	2,893	0.542	3.552	0.989	3.004	0.758	3.78	0.094	2.968	0.732	3.685	4.704	0.933	2.939	3.734	4.627	0.851	2,868	3.574	4.566	101	0.792	3.812	4.767	0.96Z	0.768	3.73	4,803	10.94	2,955	3,696	4.76	0.896	2,055	3.649	
	ES)	2nd run	0.988	2.979	690	4,695	0.966	2.969	3 6.45	47	1960	2.945	0.648	3.67	4.645	2,896	0.643	3.55	0.992	3.005	0.758	3.766	4.800	2.959	0.724	3.689	4.709	0.931	2.936 D.Fe6	3.732	4.625	0.85	2,869	3.575	4.564	7000 C	0.793	3.804	4.766	2.942	0.767	3.728	4.8	160	0.700	3,698	4.76	0.896	2,037	3.644	
oncrete	OWALL (C	1st run	0.987	2.98	6690	4.697	0.955	2.966	3.65	4 703	0.957	2.947	0.647	3.675	4.65	2.894	0.542	3.553	0.989	3.003	0.758	3.784	4.0U/2	2.958	0.734	3.684	4.703	0.93	2.995 D.R95	3.726	4.629	0.852	2.867	3.572	4.566	101	0.793	3.81	4.767	2.941	0.767	3.728	4.796	0.943	0.200	3.7	4.762	7687	2.057	3.65	
Smooth C	SX (%)		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.02	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	003	0.03	0.03	000	500	800	0.03	0.03	0.03	0.03	800	000	0.03	0.03	000	0.03	0.03	000	0.02	0.02	0.02	200	0.02	0.02	0.02	0.02	700	0.02	0.02	000	2010	0.02	
ain Data -	r (%)		0.015	0.015	0.015	0.015	0.015	0.015	0.015	1015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	5100	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	900	0.015	0.015	0.015	2000	0.015	

Table B3.6 TxDOT concrete surface data

		Integrated	0.014445	0.012446				0.015207	0.012625				0.015806	0.012593				0.016	0.012541				0.020977	0.015466				0.019573	0.014285				0.021105	0.014981				0.020376	0.013582			
- alter	U V3IUG	Geometric	0.012133	0.010454				0.012773	0.010606				0.013276	0.010578				0.013439	0.010534				0.01762	0.01299				0.01644	0.011999				0.017727	0.012584				0.017115	0.011408			
ALLIN.	DAM	Spread	166.9375	218.5469	0	0	0	171.2813	220.375	0	0	0	174.5313	220.6563	0	0	0	177,6406	222.1875	0	0	0	187.7813	224.75	0	0	0	196.7969	227	0	0	0	212.3438	241.9375	0	0	0	222.0629	241.5629			
		2nd run	163.875	218.25				171.6875	220.875				175.125	221.5				178.9375	222.3125				188.5	225				196.625	227				213	241.9375				222 063	241.563			
		T2max 1st run	172.25	218.25				172.375	220.875				174.4375	221.5				178.75	222 0625				187.0625	2245				196.625	227				212.125	241.9375				222.063	241.663			
172 64	(u) 71 1	2nd run	163.875	219.1875				169.6875	219.875				174.125	218.125				174.4375	222 31 25				188.5	228				196.625	222				212.125	241.9375				222.063	241.563			
101110	opread UIS	Timin 1st run	167.75	218.5				171.375	219.875				174.4375	221.5				178.4375	222 0625				187.0625	224.5				197.3125	227				212.125	241.9375				222 0625	241.5625			
		2nd run	49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438			
		Cmax 1st run	49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438			
100	ice (in)	2nd run	49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438				49.4375	49.4375				49.438	49.438			
10,00	CUTO DISTAIT	Cmin 1st run	49.4375	49.4375				49.4375	49.4375				49.4375	49.4375				49.4375	49.4375				49.4375	49.4375				49.4375	49.4375				49.4375	49.4375				49.4375	49.4375			
		2nd run	48.375	48.4375				48.375	48.25				48.4375	48.3125				48.4375	48.25				48.5625	48.625				48.625	48.625				48.625	48.625				48.6875	48.6875			
		T2max 1st run	48.375	48.25				48.4375	48.1875				48 5625	48.375				48.5	48.25				48.625	48.625				46.668	48.625				48.625	48.4375				48.625	48.625			
1 W4 16.1	(u) 1	2nd run	48.4375	48.40625				48.4375	48.3125				48.5	48.4375				48.5	48.3125				48.625	48.6875				48.688	48.625				48.6875	48.625				48.6875	48.6875			
No. of Concession, Name	opread UIS	Timin 1st run	48.4375	48.3125				485	48.25				48.5	48.4375				48.5525	48.3125				48.6875	48.6875				48.6875	48.625				48.75	48.5				48.6875	48.625			
		2nd nun	0.115	0.165				0.115	0.165				0.118	0.17				0.12	0.17				0.075	0.092				0.062	0.098				0.095	0.097				0.089	0.099			
		Max 1st run	0.119	0.165				0.117	0.17				0.12	0.17				0.121	0.17				0.075	0.092				0.062	0.098				0.087	0.095				0.069	0.099			
		2nd run	0.11	0.16				0.11	0.16				0.114	0.165				0.115	0.168				0.075	0.092				0.062	0.098				0.09	0.097				0.068	0.099			
Accel and	Unepen (r.)	Mm 1st run	0.117	0.163				0.115	0.17				0.119	0.165				0.121	0.165				0.075	0.091				0.062	0.098				0.085	0.095				0.089	0.099			
		2nd run						7.832	7.153				26.66	26.68				62.26	51.91									7.839	7.08				26.44	26.52				52	52.5			
		Final 1st run						8.157	7.163				26.67	26.76				62.79	51.73									7.748	7.075				26.45	26.6				51.44	62.34			
1	Ē	2nd run						7.798	7.698				26.68	26.71				62.25	51.89									7.701	7.09				26.45	26.51				52.01	62.63			
Colored and	() IIEUIEH	1 st run						8.267	7.667				26.64	26.78				52.81	51.74									7.635	7.08				26.44	26.62				51.43	52.23			
Cutor C	CTOTAL	AVG	0.97825	2.968	0	0	0	0.99875	2.99665	0	0	0	0.99025	2.9705	0	0	0	0.98975	3.004	0	0	0	0.49575	0.9935	0	0	0	0.488	0.976	0	0	0	0.50375	0.9845	0	0	0	0.5055	0.77425	0	0	0
		2nd run																																								
		Final 1st run																																								
	0	2nd run																																								
A	unoor (ur	Initial 1st run																																								
		2nd run	0.976	2.966				0.996	2.999				0.99	2.974				0.99	3.004				0.496	0.993				0.488	0.975				0.504	0.985				0.505	0.1			
		Final 1st run	0.977	2.97				1.001	2.996				0.99	2.97				0.989	3.005				0.495	0.993				0.489	0.977				0.504	0.984				0.506	0.998			
101	[a]	2nd run	0.976	2.967				0.997	2.998				0.992	2.969				0.99	3.004				0.496	0.994				0.487	0.976				0.503	0.984				0.505	-			
oncrete	MUNTE IN	I st run	0.976	2.969				0.999	2.993				0.989	2.969				0.99	3.003				0.496	0.994				0.488	0.976				0.504	0.965				0.506	0.999			
- Smooth C	(e) ve		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0000	0.005	0.005	0.005	0.005	0.005
Rain Data	OL (76)		0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015

Table B3.7 TxDOT concrete surface data

lischard	SL (%) :	SX (%)		OWALL (C	CFS)			Officer (C	FS)	Ø	total		Depth (ft)			Spread [Dist T1 (in)			Curb Distar	nce (in)	-	Sp	read Dist T	2 (in)	AVG	2N U	lue
ctual Q			Initial	Ē	len'	Ē	nitial	Ē	nal	A	W 0	c	Max		T1min		T2max		Cmin	C	max	F	min	T2m	Xe	Spread	Geometri	ntegrate
Ę,			1st run 2nd	d run 15	st run 2i	i un pi	1st run 2	nd run 1s	trun 2m	d run C	FS 18	trun 2nd	un 1st rur	i 2nd rur	1st run	2nd run	1st run	2nd run	Ist run 2	nd run 1s	strun 2r	nd run 1s	trun 2m	dinun 1stir	un 2nd ru	n In		
0.5	4.0%	1.5%	0:50	0:0	0.50	0.50	0.00	0.00	0.00	000	0.50	0.100	.100 0.1	00 0.10	0 38.125	38.063	38.125	38.063	38.938	38.906	38.875	38.844 1	17.469 1	17.469 117	.844 117.8	44 79.563	0.0261	0.0311
	4.0%	1.5%	1.00	1.00	1.00	1.00	0.00	0.00	00.0	000	1.00	0.115 0	.120 0.1	15 0.12	0 38.063	38.000	38.094	38.000	39.031	39.063	39.063	39.063 1	41.250 14	11.250 141	.250 141.2	50 103.211	0.0263	0.0318
0	4.0%	1.5%	3.01	3.01	3.00	3.00	00.0	0.00	00.0	00.0	3.00	0.173 0	.178 0.1	78 0.17	8 37.686	37,594	97.719	37,594	38.781	38.781	38.813	38.813 1	81.063 18	181 063 181	.063 181.0	63 143.414	0.0210	0.0250
9	4.0%	1.5%	5.04	5.05	5.04	5.04	0.00	0.00	0.00	0.00	5.04	0.220 0	.230 0.2	20 0.23	0 37.625	37,438	37.625	37,469	38.844	38.938	38.938	38.938 2	18.875 2	18.875 218	1875 218.8	75 181.336	0.0233	0.0278
-	4.0%	1.5%	0.82	0.82	0.82	0.81	6.21	6.21	6.20	6.21	7.02	0.240 0	.265 0.2	40 0.26	5 37.250	37.031	37.188	37.000	38.625	38.563	38.531	38.469 2	28.906 20	86.063 229	0.000 236.0	63 195.391	0.0204	0.0248
5	4.0%	1.5%																										
10	1 4.0%	1.5%																										
11	4.0%	1.5%							-													_	-	-				
0.5	4.0%	2.0%	0970	0:20	0.50	0.50	0.00	00.0	00.0	00:0	0:50	0.100 0	.105 0.1	00 0.10	5 37.906	37.781	37.969	37.781	38.813	38.719	38.875	38.719	96.125 (36.125 96	1125 96.1	25 58.266	0.0182	0.0216
22	4.0%	2.0%	0.99	0.99	0.99	0.99	0.00	0.00	0.00	0.00	0.99	0.125 0	.135 0.1	25 0.13	5 37.750	37.625	37.781	37,656	38.875	38.719	38.938	38.781 1	16.000 1	6.000 116	0.000 116.0	00 78.297	0.0203	0.0242
03	4.0%	2.0%	2.96	2.97	2.96	2.96	0.00	000	0.00	0.00	2.96	0.208 0	.215 0.2	15 0.2	5 37.594	37.500	37.656	37,500	38.813	38.719	38.875	38.750 1	49.375 14	149.375 149	1375 149.3	75 111.813	0.0175	0.0206
5	4.0%	2.0%	5.02	5.03	5.03	5.03	0.00	0.00	0.00	0.00	5.03	0.268 0	275 0.2	68 0.27	5 37.438	37.500	37.500	37.250	37.938	38.094	38.000	38.125 1	77.031 1	771 150.77	.094 177.0	94 139.641	0.0187	0.0222
1~~	4.0%	2.0%	0.82	0.82	0.82	0.82	6.24	6.25	6.24	6.25	7.07	0.310 0	318 0.3	10 0.3	8 36.938	36.781	36.875	36.719	38.156	38.219	38.500	38.156 1	93.188 19	37.344 193	1156 197.3	75 158.436	0.0186	0.0222
5	4.0%	2.0%	2.83	2.83	2.83	2.83	6.20	6.21	6.21	6.22	9.04	0.290 0	.295 0.2	90 0.29	5 37.281	37.156	37.281	37.219	38.844	38.875	38.719	38.938 2	16.844 2	19.094 216	1813 219.1	25 180.734	0.0207	0.0247
9	1 4.0%	2.0%	3.83	3.83	3.83	3.83	6.20	6.20	6.20	6.20	10.03	0.315 0	.325 0.3	15 0.32	5 36.844	36.688	36.813	36.750	38.563	38.500	38.625	38.531 2	25.094 27	27.563 225	125 227.6	25 189.576	0.0212	0.0255
F	4.0%	2.0%	4.82	4.82	4.82	4.82	6.20	6.20	6.20	6.21	11.02	0.305 0	315 0.5	06 0.3	5 36.875	36.750	36.844	36.813	38.188	37.844	38.188	38.125 2	27.188 20	33.000 227	.188 235.6	25 193.930	0.0205	0.0245
0.5	4.0%	2.5%	0.51	0.51	0.51	0.51	0:00	00.0	0.00	80	0.51	0.108	.108 0.1	08 0.10	8 37.936	37.719	38.000	37,656	38.750	38.625	38.750	38.688	89.063	39.063 89	1063 89.0	63 51.234	0.0185	0.0221
	4.0%	2.5%	0.99	0.99	0.99	0.99	0:00	0.00	0.00	0.00	0.99	0.143 0	.145 0.1	43 0.14	5 37.844	37,688	37.938	37.781	38.813	38.656	38.719	38.719 1	02.906 10	102.906 102	906 102.9	06 65.094	0.0180	0.0214
09	4.0%	2.5%	2.98	2.98	2.98	2.98	0:00	0.00	0.00	0.00	2.98	0.215 0	.223 0.2	23 0.22	3 37.563	37.375	37.563	37.438	38.594	38.438	38.719	38,531 1	38.375 10	38.375 138	344 138.3	75 100.883	0.0192	0.0228
5	4.0%	2.5%	5.00	5.00	5.00	5.00	0:00	0.00	00.0	0.00	5.00	0.260 0	.268 0.2	60 0.26	8 37.375	37.281	37.438	37.219	38.531	38.375	38.563	38.406 1	50.438 18	53.438 150	153.4	38 114.609	0.0160	0.0191
-	4.0%	2.5%	0.80	0.80	0.80	0.80	6.24	6.24	6.24	6.24	7.04	0.285 0	.295 0.2	85 0.29	5 37.250	37.063	37.281	37.094	38.406	38.250	38.344	38.250 1	68.406 1	73.969 168	173.9	69 134.016	0.0173	0.0206
5	4.0%	2.5%	2.78	2.78	2.78	2.78	6.23	6.23	6.23	6.23	9.01	0.320 0	328 0.3	20 0.32	8 37.375	37.219	37.406	37.281	38.594	38.469	38.656	38.531 1	84.875 18	39.188 184	.875 189.1	88 149.711	0.0182	0.0216
9	1 4.0%	2.5%	3.78	3.78	3.78	3.78	6.19	6.19	6.20	6.19	9.97	0.320 0	335 0.3	20 0.33	5 37.281	37.188	37.375	37.188	38.594	38.406	38.625	38.500 1	90.563 19	94.563 190	1563 194.5	63 155.305	0.0181	0.0216
1	4.0%	2.5%	4.79	4.79	4.79	4.79	6.20	6.20	6.20	6.20	10.99	0.350 0	360 0.3	50 0.36	0 37.063	36.875	37.125	36.938	38.563	38.406	38.563	38.563 2	02.625 20	06.219 202	.656 206.2	81 167.445	0.0201	0.0236
G (0	4.0%	3.0%	0.51	0.51	0.51	0.51	0:00	00.0	0.00	00.0	0.51	0.108 0	.113 0.1	08 0.11	3 37.781	37,688	37.875	37,688	38.469	38.406	38.531	38.438	81.719 8	31.719 81	719 81.7	19 43.961	0.0166	0.0197
-	4.0%	3.0%	1.01	1.01	1.01	1.01	00.0	00.0	00:00	0.00	1.01	0.135 0	.145 0.1	35 0.14	5 37.656	37,469	37.719	37.531	38.281	38.219	38.281	38.250	93.063	93.063 93	1.188 93.1	88 55.531	0.0155	0.0185
5	4.0%	3.0%	3.02	3.02	3.02	3.02	0.00	0.00	0.00	0.00	3.02	0.235 0	.245 0.2	45 0.24	5 37.438	37.313	37.500	37.375	38.125	37.969	38.156	38.031 1	26.594 13	26.594 126	656 126.6	57 89.215	0.0184	0.0215
ŝ	4.0%	3.0%	5.00	4.99	4.99	4.99	0.00	0.00	0.00	0.00	4.99	0.290 0	.290 0.2	91 0.29	1 37.313	37.125	37.250	37.156	37.969	38.031	37.969	38.063 1	40.344 14	140.344 140	344 140.3	44 103.135	0.0163	0.0194
~	4.0%	3.0%	0.77	0.78	0.77	0.77	6.29	6.29	6.29	6.30	7.07	0.320 0	330 0.3	20 0.33	0 36.875	36.781	36.969	36.875	37.781	37.781	37.813	37.875 1	49.250 18	52.781 149	152.7	81 114.141	0.0151	0.0180
S	4.0%	3.0%	2.80	2.80	2.80	2.80	6.26	6.26	6.26	6.26	9.06	0.360 0	370 0.3	60 0.37	0 37.094	36.844	37.156	36.969	37.375	37.750	37.406	37.813 1	63.563 16	88.625 163	625 168.6	88 129.105	0.0164	0.0195
10	4.0%	3.0%	3.78	3.78	3.78	3.77	6.24	6.24	6.24	6.24	10.02	0.365 0	375 0.5	65 0.37	5 36.813	36.750	36.906	36.813	38.000	37.875	38.094	37.938 1	70.750 1	6.594 170	(750 176.5	94 136.852	0.0173	0.0206
1	4.0%	3.0%	4.72	4.72	4.71	4.71	6.24	6.24	6.24	6.23	10.95	0.400 0	.410 0.4	00 0.47	0 36.750	36.500	36.750	36.531	38.031	37.813	38.125	37.844 1	75.969 16	31.313 175	.969 181.3	13 142.006	0.0175	0.0208
0.5	4.0%	4.0%	090	0.50	0.50	0.50	0.00	00.0	00.00	0.00	0.50	0.115 0	.125 0.1	15 0.12	5 37.78	37.656	37.813	37.688	37.938	38.375	37.969	38.406	75.625	15.625 75	688 75.6	88 37.922	0.0184	0.0219
-	4.0%	4.0%	1.01	1.01	1.01	1.01	0.00	0.00	0.00	0.00	1.01	0.165 0	173 0.1	66 0.17	3 37.531	37.375	37.563	37.406	38.281	38.063	38.313	38.000	87.188 8	37.188 87	.250 87.2	50 49.75C	0.0186	0.0221
0	4.0%	4.0%	3.02	3.02	3.02	3.02	0.00	00.00	0.00	0.00	3.02	0.250 0	.255 0.2	55 0.25	5 37.219	37.125	37.281	37.188	37.969	37.875	38.031	38.000 1	11.313 1	11.313 111	.375 111.3	75 74.141	0.0180	0.0214
47	4.0%	4.0%	5.01	5.01	5.01	5.01	0.00	0.00	0.00	0.00	5.01	0.295 0	.325 0.2	95 0.32	5 37.625	37,500	37.688	37.563	37.188	37.563	37.219	37.656 1	23.125 12	28.281 123	250 128.3	75 88.164	0.0172	0.0205
~	4.0%	4.0%	0.77	0.77	0.77	0.77	6.27	6.27	6.27	6.27	7.04	0.350 0	.360 0.5	50 0.36	0 36.686	36.563	36.781	36.625	37.844	37.719	37.844	37.781 1	30.563 10	35.563 130	1825 135.6	88 96.445	0.0155	0.0184
S	4.0%	4.0%	2.79	2.79	2.79	2.79	6.26	6.26	6.27	6.27	9.05	0.400 0	400 0.4	00 0.40	0 36.563	36.531	36.688	36.094	37.438	37.250	37.563	37.375 1	38.813 14	138 138	146.0	00 105.955	0.0155	0.0185
10	4.0%	4.0%	3.80	3.80	3.80	3.80	6.22	6.22	6.22	6.22	10.02	0.410 0	420 0.4	10 0.42	0 36.469	36.406	36.188	35.844	38.031	38.156	38.000	38.125 1	45.313 12	145 145	344 148.7	81 110.820	0.0158	0.0188
1	4.0%	4.0%	4.77	4.77	4.75	4.75	6.20	6.20	6.21	6.21	10.97	0.440 0	.450 0.4	40 0.45	0 37.375	36.406	37,406	36.781	37.875	37.719	37.844	37.750 1	47.000 18	51.281 146	000 151.3	13 111.906	0.0147	0.0175

Table B4.1 Asphalt treatment surface data

Dischard	SL (%) S>	(%) X:		OWALL (CFS)			Ofloor	(CFS)		Qtotal		Depth (t	Q.	-	Spri	ead Dist T	1 (in)	_	Curb	Distance ((u	_	Spread [Dist T2 (in)		AVG	n val	a
ictual Q			Initial	14	Inal		Initial		Final		AVG N	ų	Ma	×	Th	nin	T2m	ax	Cmin	_	Cmax	_	T1min		T2max		Spread (beometri Ir	tegrate
fs			1st run 2r	nd run 1	st run 🧯	2nd run	1st run	2nd run	1st run	2nd run	CFS 1	st run 2n	d run 1si	trun 2m	d run 1st	run 2nd	nun 1str	un 2nd r	un 1st ru	n 2nd n	un 1st run	1 2nd rur	1 1st run	2nd run	1st run	2nd run	h		
0.5	3.0%	1.5%	0:20	0:0	0.50	0.50	00:0	000	0.00	00.0	0.50	0.100	0.105	0.100	0.105 3	8.125 31	8.000 38	(.188 37	938 38.	38 38 ·	338 39.0	63 38.9	38 114.43	8 114.438	114.438	8 114.438	76.375	0.0203	0.024
	3.0%	1.5%	0.99	0.99	0.99	0.99	0.00	000	0.00	00.0	0.99	0.115	0.125	0.115	0.125 3	8.156 31	8.031 38	1,188 38	094 39.	156 39.	39.1	88 39.0	00 135.15	6 135.156	135.156	8 135.156	97.039	0.0194	0.023
03	3.0%	1.5%	3.00	3.01	3.01	3.00	0.00	000	0.00	00.0	3.00	0.200	0.210	0.210	0.210 3	7.813 3.	7.688 37	75 375	781 38.	338 38.	313 38.6	69 38.8	75 179.25	0 179.250	179.313	8 179.313	141.492	0.0175	0.0208
-0	3.0%	1.5%	5.01	5.01	5.01	5.01	00.0	0.00	0.00	00.0	5.01	0.215	0.225	0.215	0.225 3	7.656 3.	7.531 37	719 37	563 38.	344 38.	553 38.9	06 38.7	50 223.56	3 223.563	223.594	1 223.594	185.961	0.0217	0.0259
	3.0%	1.5%	0.80	0.80	0.80	0.80	6.22	6.22	6.22	6.22	7.02	0.255	0.265	0.255	0.265 3	7.750 3.	7.594 37	.813 37	656 38.	369 38.	313 38.6	69 38.8	75 243.56	3 243.531	243.656	3 243.563	205.875	0.0207	0.024
5	3.0%	1.5%																											
9	3.0%	1.5%																											
11	3.0%	1.5%																											
0.5	3.0%	2.0%	0.50	0.49	0.50	0.50	00:0	00.0	0.00	00.0	0.50	0.110	0.120	0.111	0.120 3	7.875 3.	7.656 37	26 906.	656 38.	38. 38.	313 39.0	00 38.7	81 95.46	95.469	95.594	1 95.531	57.742	0.0157	0.0187
	3.0%	2.0%	0.99	0.99	0.99	0.99	00:0	00:0	00.00	00.0	0.99	0.135	0.145	0.136	0.146 3	7.844 3	7.531 37	75 375	594 38.	525 38.	38.6 38.6	88 38.7	81 123.68	8 123.688	123.750	0 123.750	86.008	0.0226	0.0269
09	3.0%	2.0%	2.96	2.97	2.96	2.96	0.00	000	0.00	0.00	2.96	0.205	0.215	0.215	0.215 3	7.500 3.	7.375 37	594 37	469 38.	563 38.	500 38.5	94 38.6	25 143.09	4 151.531	143.188	8 151.594	109.867	0.0145	0.0175
\$	3.0%	2.0%	4.98	4.97	4.97	4.97	0.00	00.0	0.00	00.0	4.97	0.250	0.258	0.251	0.258 3	7,469 3.	7.219 37	531 37	313 38.	525 38.	500 38.6	25 38.4	69 169.06	3 177.844	168.563	8 177.875	135.953	0.0153	0.0182
-	3.0%	2.0%	0.79	0.78	0.78	0.78	6.23	6.22	6.22	6.22	7.01	0.285	0.295	0.285	0.295 3	7.188 3.	7.031 37	.250 37	063 38.	313 38.	500 38.3	75 38.5	31 192.62	5 201.156	192.656	8 201.188	159.773	0.0167	0.0198
5	3.0%	2.0%	2.79	2.79	2.79	2.79	6.21	6.21	6.20	6.21	9.00	0.315	0.325	0.315	0.325 3	7.375 3.	7.250 37	.406 37	344 38.	594 38	386 38.5	94 38.7	81 218.50	0 227.844	218.531	1 227.875	185.844	0.0194	0.0231
9	3.0%	2.0%	3.80	3.80	3.80	3.80	6.20	6.21	6.20	6.20	10.00	0.335	0.345	0.335	0.345 3	7.156 30	3.750 37	.094 36	750 38.	38	313 38.1	56 38.41	06 223.81	3 232.750	223.875	5 232.781	191.367	0.0189	0.0225
Ŧ	3.0%	2.0%	4.77	4.76	4.77	4.76	6.19	6.19	6.18	6.18	10.95	0.345	0.355	0.345	0.355 3	7.156 31	5.938 37	.250 37	000 38.	219 38.	375 38.3	13 38.41	69 230.87	5 239.375	230.938	3 239.438	198.070	0.0189	0.0226
0.5	3.0%	2.5%	0.56	0.56	0.56	0.56	00:0	00:0	00.0	00:0	0.56	0.115	0.115	0.114	0.115 3	8.344 31	3.219 38	375 38	219 39.	375 39.	331 39.4	06 39.3	44 89.90	6 89.906	89.906	89.906	51.617	0.0147	0.0178
	3.0%	2.5%	1.04	1.04	1.04	1.04	0.00	0.00	0.00	0.00	1.04	0.133	0.133	0.133	0.133 3	8.438 31	8.281 38	1438 38	281 39.	138 39.	313 39.4	38 39.3	13 103.18	8 103.188	103.188	8 103.188	64.828	0.0146	0.0174
0	3.0%	2.5%	3.09	3.09	3.09	3.09	00.0	000	0.00	00.0	3.09	0.210	0.210	0.210	0.210 3	8.031 3.	7.906 37	719 37	906 39.	000 38.	39.0	00 38.9	89 142.37	5 142.375	142.375	5 142.375	104.484	0.0176	0.0210
5	3.0%	2.5%	5.00	5.00	5.00	5.00	00:0	00:0	00.0	00.0	5.00	0.253	0.258	0.253	0.258 3	7.875 3.	7.750 37	75 375	813 38.	306 38.	375 38.9	06 38.8	44 147.21	9 156.063	147.219	156.063	113.813	0.0137	0.0163
	3.0%	2.5%	0.74	0.74	0.74	0.74	6.22	6.21	6.21	6.21	6.95	0.278	0.283	0.280	0.285 3	7.844 3	7.688 37	.844 37	719 38.	344 38	313 38.6	75 38.8	44 165.53	1 176.906	165.531	176.906	133.445	0.0151	0.0180
3	3.0%	2.5%	2.77	2.76	2.76	2.76	6.19	6.19	6.19	6.18	8.95	0.318	0.323	0.323	0.328 5	7.625 3	7.469 37	.625 37	469 38.	388 38.	594 38.6	25 36.0	94 181.59	4 193.906	181.594	193.906	150.203	0.0160	0.019
9	3.0%	2.5%	3.75	3.76	3.76	3.76	6.16	6.15	6.15	6.15	9.91	0.333	0.343	0.333	0.343 3	7.406 3.	7.250 37	.406 37	250 38.	531 38.	594 38.5	31 38.5	94 191.09	4 206.250	191.094	1 206.250	161.344	0.0176	0.0200
1	3.0%	2.5%	4.84	4.84	4.84	4.84	6.15	6.14	6.14	6.14	10.98	0.360	0.370	0.360	0.370 3	7.469 3.	7.344 37	25 002.	344 38.	325 38.	325 38.E	25 38.6	56 199.03	1 217.531	199.031	1 217.531	170.867	0.0185	0.022(
0.5	3.0%	3.0%	0.57	15.0	0.57	0.57	00'0	00:0	00.0	00.0	0.57	0.114	0.115	0.113	0.116 3	7.844 3.	7.750 37	26 696	844 38.	313 38.	375 38.6	13 38.9	69 86.28	1 86.281	86.281	1 86.281	48.430	0.0167	0.0199
	3.0%	3.0%	1.06	1.06	1.06	1.06	00:00	00.00	00.00	00:0	1.06	0.160	0.165	0.162	0.164 3	7.688 3	7.594 37	781 37	688 38.	563 38.	594 38.5	94 38.5	94 98.90	6 98.906	98.906	98.906	61.219	0.0166	0.0198
0	3.0%	3.0%	3.04	3.04	3.04	3.03	0:00	0.00	0.00	0.00	3.04	0.235	0.240	0.241	0.241 3	7.406 3	7.313 37	375 37	250 38.	563 38.	469 38.6	94 38.4	38 124.59	4 137.688	124.594	137.375	93.727	0.0183	0.0218
47	3.0%	3.0%	4.97	4.97	4.98	4.98	0:00	0.00	0.00	0.00	4.97	0.275	0.283	0.276	0.281 3	7.313 3	7.156 37	.344 37	219 38.	500 38.	500 38.6	63 38.5	63 138.75	0 147.469	138.813	8 147.563	105.891	0.0153	0.0182
~	3.0%	3.0%	0.73	0.73	0.73	0.73	6.24	6.24	6.25	6.25	6.98	0.313	0.320	0.315	0.323 3	7.031 31	3.938 36	369 36	875 38.	38 , 38,	156 38.1	56 38.2	19 149.25	0 161.500	149.313	8 161.563	118.453	0.0147	0.0175
5	3.0%	3.0%	2.81	2.82	2.82	2.82	6.22	6.22	6.22	6.22	9.04	0.338	0.343	0.343	0.348 3	7.000 34	3.875 37	.063 36	875 38.	38.	125 38.1	56 38.1	25 163.53	1 175.000	163.500	0 175.000	132.305	0.0153	0.0182
10	3.0%	3.0%	3.79	3.79	3.79	3.79	6.23	6.21	6.21	6.21	10.00	0.348	0.353	0.353	0.358 3	6.844 31	5.719 36	(875 36	750 38.	J63 38.	38.0	94 38.0	31 170.46	9 180.094	170.531	1 180.156	138.516	0.0156	0.0186
11	3.0%	3.0%	4.75	4.75	4.75	4.75	6.22	6.21	6.20	6.21	10.96	0.380	0.390	0.380	0.390 5	6.719 3	6.563 36	1813 36	656 38.	188 38.	188 38.2	19 38.3	13 176.59	4 189.438	176.594	1 189.438	146.328	0.0165	0.0196
0.5	3.0%	4.0%	0.53	0.53	0.53	0.53	00.0	0.00	0.00	0.00	0.53	0.128	0.128	0.128	0.128 3	8.531 31	3.375 38	1.594 38	438 39.	156 39.	200 39.2	19 39.0	63 78.68	889.87 8	8 78.750	0 78.750	40.234	0.0192	0.0192
-	3.0%	4.0%	1.05	1.05	1.05	1.05	0.00	0.00	0.00	0.00	1.05	0.176	0.175	0.177	0.177 3	8.094 3	7.969 38	(.156 37	969 39.	188 38.	313 39.2	50 38.8	44 89.18	8 89.188	89.281	1 89.281	51.188	0.0181	0.0183
	3.0%	4.0%	2.97	2.97	2.97	2.97	0:00	0.00	0.00	0.00	2.97	0.258	0.260	0.260	0.260 3	7.844 3	7.719 37	.938 37	750 38.	781 38.	356 38.6	44 38.7	19 112.87	5 112.875	112.969	9 112.969	75.109	0.0179	0.018
40	3.0%	4.0%	5.01	5.01	5.01	5.01	0:00	00.0	00.0	0.00	5.01	0.308	0.313	0.308	0.314 5	8.031 3	7.875 38	1094 37	906 38.	750 38.	325 38.7	81 38.7	19 123.75	0 129.438	133.844	129.500	91.156	0.0181	0.0173
-	3.0%	4.0%	0.77	0.77	0.77	0.77	6.26	6.27	6.26	6.26	7.03	0.348	0.358	0.348	0.358 3	8.000 3	7.531 37	.938 37	625 39.	J63 38.	39.1	56 39.0	63 134.84	4 139.625	134.531	139.938	99.461	0.0160	0.016
S	3.0%	4.0%	2.73	2.73	2.73	2.73	6.24	6.24	6.24	6.24	8.97	0.373	0.380	0.373	0.380 3	7.625 30	8.094 37	.625 38	.156 38.	531 39.	331 38.5	63 39.1	56 140.31	3 147.938	140.406	8 148.000	106.289	0.0150	0.0156
10	3.0%	4.0%	3.78	3.78	3.77	3.77	6.25	6.24	6.25	6.26	10.02	0.398	0.413	0.398	0.413 3	7.344 3.	8.219 37	344 38	281 37.	906 38	281 38.5	00 38.4	38 144.59	4 154.375	144.656	8 154.406	111 711	0.0153	0.0162
11	3.0%	4.0%	4.75	4.75	4.75	4.75	6.25	6.24	6.26	6.25	11.00	0.418	0.428	0.418	0.428 3	7.500 3.	7.219 37	.531 37	281 38.	594 38	438 38.6	88 38.5	31 151.40	6 161.188	151.469	8 161.281	118.953	0.0165	0.017

Table B4.2 Asphalt treatment surface data

Discharg	SL (%)	SX (%)		OWAL	L (CFS)			Offoc	or (CFS)		Ototal		Dept	h (ft)		S	pread Dist 7	T1 (in)		Cur	o Distance	(in)		Spread	Dist T2 (in)		ave a	n valu	
actual Q			Initial		Final		Initial		Final		AVG	Min		Max	L	1min	T2r	max	Cmi	u	Cma	C	T1min		T2max		Spread G	eometri Int	egrate
cfs			1st run 2r	un pu	1st run	2nd run	1st run	2nd run	1 1st run	2nd run	CFS	1st run	2nd run	1st run 2	nc nun 1	strun 2r	id run 1st	: run 2nc	Irun 1st I	un 2nd	run 1st ru	in 2nd ru	1 1st run	2nd run	1st run	2nd run	u		
0.5	2.0%	1.5%	0.50	0.51	0.50	0.50	0.0	0.0	0.0	0.00	0.50	0.103	0.103	0.103	0.103	39.375	39.219 3	89.344 3	9.281 40	0.219 40	1.313 40.	250 40.3	44 117.50	0 117.50	0 117.563	117.563	78.227	0.0177	0.0211
2	2.0%	1.5%	1.00	101	0 1.00	1.00	0.0	0	00	0.00	1.0(0.140	0.140	0.141	0.141	38.250	38.313 5	87,969 5	8.313 30	9.063 38	.906 39.	031 38.8	13 143.12	5 143.12	5 143.250	143.250	104.977	0.0194	0.0231
e	2.0%	1.5%	3.02	3.02	2 3.02	3.02	0.0	0.0	0.0	0.00	0 3.0	2 0.196	0.196	0.196	0.196	38.375	38.125 3	88.406 3	8.219 30	9.063 38	.969 39.	156 39.0	00 182.62	5 193.96	9 182.686	193.969	150.031	0.0166	0.0198
5	2.0%	1.5%	4.99	4.9	9 4.99	4.99	0.0	0 0.0)10 D.C	000 000	0 4.9	9 0.255	0.260	0.256	0.261	38.000	37.875 3	88.094 3	7.844 36	8.969 36	.906 38.	969 38.8	75 218.71	9 229.56	3 218.656	229.813	186.234	0.0179	0.0213
~	2.0%	1.5%																			10	1							
o	2.0%	1.5%																											
10	2.0%	1.5%																	_										
11	2.0%	1.5%																	_										
0.5	2.0%	2.0%	0.50	0.5L	0:00	0.50	0.0	0 0.0)(0 0.C	10 0.00	0.50	0.118	0.118	0.119	0.119	38.281	38.188	38.313 3	8.250 38	3.875 38	938 38	906 38.9	69 101.68	8 101.68	3 101.686	101.688	63.430	0.0162	0.0192
-	2.0%	2.0%	1.01	1.0.1	1 1.00	1.01	0.0	0 0.0	0.0	0010	0 1.0	1 0.148	0.148	0.149	0.149	38.063	38.094 3	88.063 3	8.094 36	3.531 30	063 38.	531 39.0	63 125.12	5 125.12	5 125.094	125.125	87.039	0.0188	0.0224
m	2.0%	2.0%	3.01	3.0.	1 3.01	3.01	0.0	0 0.0	0.0	000	3.0	1 0.223	0.230	0.230	0.230	37.813	37.688 3	87,906 3	7.719 30	9,000 36	1875 39.	063 38.9	69 151.15	6 158.87	5 151.219	158.938	117.266	0.0139	0.0165
ŝ	2.0%	2.0%	5.00	5.01	1 5.01	5.00	0.0	0 D.C)0 DC	0.00	0.5.0	0.265	0.275	0.265	0.275	37.719	37.594 3	87.813 3	7.531 38	8.781 38	875 38.	781 38.9	06 180.37	5 189.53	1 180.375	189.563	147.297	0.0154	0.0183
~	2.0%	2.0%	0.76	0.7t	9 0.76	0.76	6.2%	6.9	26 6.2	76 6.25	5 7.0	1 0.295	0.305	0.295	0.305	37,438	37.500 8	87.500 5	7.563 38	8.625 38	.656 38.	313 38.7	19 207.28	1 222.25	0 207.281	222.344	177.289	0.0180	0.0215
8	2.0%	2.0%	2.76	2.7t	5 2.76	2.75	6.25	5 6.2	25 6.2	15 B.2t	5 9.0	1 0.325	0.335	0.325	0.335	37.500	37.281 3	87.469 3	7.344 38	8.531 38	1.594 38.	531 38.6	88 227.25	0 238.84	1 226.313	238.844	195.414	0.0181	0.0216
1	2.0%	2.0%	3.80	3.80	3.80	3.80	6.2.	3 6.2	23 6.2	13 6.20	3 10.0	4 0.348	0.358	0.348	0.358	37.500	37.281 3	87.625 3	7.313 36	8.781 38	1,688 38.	688 38.7	50 236.50	0 242.09	4 236.406	242.000	201.820	0.0177	0.0211
11	2.0%	2.0%																											
0.5	2.0%	2.5%	0.49	0.4	3 0.49	0.49	0.0	0 0.0	0.0	0.00	0 0.4	9 0.153	0.153	0.153	0.153	37.969	37.844 8	87.906 8	7.813 38	8.250 38	1509 38.	375 38.4	78 90.00	0 90.00	90.00	85.500	50.992	0.0133	0.0158
2	2.0%	2.5%	1.05	100	5 1.05	1.05	0.01	0.0	10 0.0	10 0.00	1.0	5 0.178	0.178	0.178	0.178	38.219	38.094 8	88.281 3	8.188 38	8.875 38	1,906 38.	813 38.8	75 113.28	1 113.28	1 113.250	113.281	75.078	0.0175	0.0208
e	2.0%	2.5%	2.98	2.96	3 2.62	2.97	0.0	0 0.0	00	0000	1 2.8	9 0.288	0.288	0.288	0.288	38.000	37.813 3	88.031 3	7.750 38	8.844 38	906 38.	844 38.9	38 146.81	3 148.31	3 148.344	148.344	110.055	0.0176	0.0210
5	2.0%	2.5%	4.95	4.9	5 4.96	4.96	0.0	0 0.0	0.0	000 000	1 4.9	5 0.324	0.328	0.324	0.328	36.969	36.875 3	87.000 5	6.875 39	9.000 38	.000 39.	000 39.0	31 163.15	6 167.46	163.031	167.500	128.359	0.0154	0.0184
~	2.0%	2.5%	0.80	0.8(0.81	080	6.2	4 6.2	25 6.2	14 6.24	4 7.0:	5 0.350	0.340	0.350	0.340	36.875	36.719 3	36.875 3	6.781 36	8.781 38	.844 38.	813 38.8	75 177.46	9 187.40	3 177.500	187.438	145.641	0.0153	0.0182
0	2.0%	2.5%	2.83	2.85	3 2.83	2.83	6.1	8 6.1	18 6.1	18 6.16	9.0	1 0.393	0.400	0.393	0.400	36.781	36.656 3	86.844 3	6.750 38	8.750 38	(813 38)	750 38.8	13 200.43	8 206.93	3 200.469	206.938	166.938	0.0172	0.0204
9	2.0%	2.5%	3.73	3.7.	3 3.72	3.72	6.1	9 6.1	19 6.2	21 6.2	1 9.9	3 0.420	0.428	0.420	0.428	36.781	36.625	36.656	6.469 38	8.813 38	1813 38.	844 38.8	44 207.50	0 214.00	0 207.625	214.188	174.195	0.0174	0.0208
11	2.0%	2.5%	4.80	4.8(9 4.81	4.82	6.1	8 6.1	18 6.1	17 6.16	9 10.9.	9 0.443	0.450	0.443	0.450	36.625	36.531 3	36.656	6.563 3(8.875 38	.813 38.	875 38.7	50 213.34	4 220.71	3 213.344	220.813	180.461	0.0173	0.0206
9.0	2.0%	3.0%	0.53	0.5	3 0.53	0.53	0.0	0 0.0	0.0 D.0	000 000	0 0.5.	3 0.143	0.143	0.143	0.143	37.938	37.813 2	88.000 8	7.844 38	9:938 38	1875 39.	031 38.8	75 87.90	6 87.90	87.906	87.906	50.008	0.0158	0.0188
-	2.0%	3.0%	1.04	1.04	4 1.05	1.04	0:0	0 0.0)(0 0(00 000	0 1.0	4 0.173	0.173	0.173	0.173	37.813	37.688 3	87.844 3	7.750 38	9.063 39	000 39.	094 39.0	00 103.75	0 103.75	0 103.750	103.781	65.984	0.0168	0.0200
m	2.0%	3.0%	3.02	3.00	3 3.02	3.02	0:0	0.0);0 ()	0.0	3.0.	2 0.245	0.250	0.250	0.250	37.281	37.188 3	87.344 3	7.125 38	3.625 38	625 38.	688 38.6	88 138.28	1 144.46	138.281	144.500	104.148	0.0197	0.0234
ŝ	2.0%	3.0%	4.96	4.9	6 4.95	4.95	10:0	0.0	00	00 0.00	9.4.9.	5 0.290	0.300	0.290	0.300	37.000	36.906	87.063	6.906 38	8.656 38	1563 38.	719 38.5	63 150.75	0 155.15	3 150.781	155.156	115.992	0.0160	0.0190
~	2.0%	3.0%	0.76	0.71	6 0.76	0.76	6.2	0 6.2	20 6.2	20 6.21	6.9	6 0.330	0.338	0.330	0.338	36.938	36.781 3	906.906	6.781 38	8.594 30	1531 38.	625 38.5	63 162.46	9 170.06	3 162.656	170.094	129.469	0.0153	0.0182
8	2.0%	3.0%	2.82	2.82	2 2.82	2.82	6.1	9 6.1	19 6.2	20 6.20	9.0	2 0.385	0.393	0.385	0.393	36.625	36.469 3	36.719 3	6.500 38	3.656 38	1531 37.	688 38.5	63 175.43	8 180.06	3 175.465	180.156	141.203	0.0148	0.0176
1	2.0%	3.0%	3.84	3.84	4 3.83	3.84	6.1	6 6.1	16 6.1	16 6.16	5 10.0	0.403	0.413	0.403	0.413	36.500	36.344 3	36.563 3	6.375 38	3.500 38	406 38.	563 38.4	69 180.28	1 189.90	8 180.281	189.906	148.648	0.0153	0.0182
11	2.0%	3.0%	5.08	5.0(5.08	5.08	6.1;	5	13 6.1	14 6.10	3 11.2	2 0.413	0.423	0.413	0.423	36.500	36.313 3	36.563	6.375 38	8.125 38	031 38.	188 38.0	31 188.09	4 196.62	5 188.125	196.656	155.938	0.0155	0.0185
0.5	2.0%	4.0%	0.53	0.5.	3 0.53	0.53	0:0	0.0	00	0.00	0.5.	3 0.148	0.148	0.148	0.148	37.750	37.594 3	87.750 8	7.625 38	8.813 38	1,750 38.	844 38.7	81 79.90	6 79.90	30.906	79.906	42.227	0.0161	0.0192
-	2.0%	4.0%	0.99	0.95	9 0.99	0.99	0.0	0.0	00	0.00	0.9	9 0.200	0.200	0.200	0.200	37.219	37.000	87.156 3	6.969 3(3688 36	.750 38.	656 39.0	00 89.21	9 89.21	89.215	89.219	52.133	0.0151	0.0179
m	2.0%	4.0%	3.04	3.0	4 3.04	3.04	0.0	0.0	00	00 0.00	0 3.0	4 0.273	0.275	0.275	0.275	37.063	36.813 3	87.031 8	6.875 38	3.563 38	.438 38.	563 38.0	00 122.75	0 122.75	122.750	122.750	85.805	0.0186	0.0222
Ω.	2.0%	4.0%	5.01	5.0	1 5.01	5.02	0.0	0.0)(0 D(0.0	9 5.0	1 0.333	0.333	0.333	0.333	36.750	36.656 3	86.781 3	6.969 38	8.594 38	.500 38.	656 38.5	00 134.31	3 139.09	4 134.375	139.094	99.930	0.0170	0.0202
~	2.0%	4.0%	0.85	0.8	5 0.85	0.85	6.1	6 6.1	15 6.	14 6.14	4 7.0.	0.405	0.410	0.405	0.410	45.875	46.813 4	15.813 4	5.750 4	7.875 47	.938 47.	938 47.8	75 152.06	3 159.00	0 152.063	159.063	109.484	0.0155	0.0184
o	2.0%	4.0%	2.82	2.8%	3 2.83	2.83	6.1	4 6.1	14 6.1	14 6.14	4 8.9	7 0.433	0.443	0.433	0.443	36.438	36.250 3	36.438	6.281 38	8.438 38	1406 38.	469 38.4	06 150.31	3 160.62	5 150.281	160.563	119.094	0.0151	0.0180
10	2.0%	4.0%	3.95	3.9(3.95	3.95	6.1	1 6.1	12 6.	12 6.12	2 10.0	7 0.460	0.475	0.460	0.475	36.344	36.344 8	36.313 3	6.406 38	8.344 38	250 38.	313 38.2	81 154.18	8 163.50	154.250	163.438	122.492	0.0145	0.0173
	2 N%	4 0%																	-										

Table B4.3 Asphalt treatment surface data

Discharg	SL (%)	SX (%)		QWALL	(CFS)			Officer ((CFS)		Ototal		Depth ((#)		Sp.	read Dist T	l (in)	_	Curb	Distance (i	(u		Spread [Dist T2 (in)	_	AVG	n value	
actual Q			Initial		Final		Initial		Final		AVG 1	Min	W	ax ax	F	min	T2m	ax	Cmin		Cmax		T1min	-	T2max		Spread G	eometri Inte	egrated
cfs			1st run 2nc	d run	1st run	2nd run	1st run	2nd nun	1st run	2nd nun	CFS	1st run 2	nd run 15	st run 2n	nc run 1s	trun 2m	d run 1st r	un 2nd n	In 1st ru	n 2nd ru	in 1st run	2nd run	1 1st run	2nd run	1st run	2nd run			,
0.5	1.0%	1.5%	0.49	0.49	0.49	0.49	00:0	0:00	00.0	0000	0.49	0.145	0.145	0.145	0.145	38.500	38.250 38	406 38.	281 38.	781 39.0	194 38.7	81 39.03	81 118.750	0 118.750	118.719	118.750	80.383	0.0141 0	0.0167
-	1.0%	1.5%	0.99	0.99	0.99	0.99	00.00	00.0	0.00	000	0.99	0.180	0.180	0.180	0.180	38.500	38.250 38	1531 38.2	250 39.4	138 39.1	81 39.4	38 39.34	148.031	1 148.000	148.063	148.063	109.656	0.0155 0	0.0184
3	1.0%	1.5%	2.99	2.99	2.99	2.99	00.00	00.0	0.00	00.0	2.99	0.240	0.250	0.250	0.250	38.031	37.938 36	1125 38.0	331 39.	188 39.1	250 39.2	19 39.31	13 215.094	4 215.094	t 215.094	215.094	177.063	0.0184 0	0.0219
5	1.0%	1.5%																											
1	1.0%	1.5%		0																									
6	1.0%	1.5%																	-										
101	1.0%	1.5%																											
11	1.0%	1.5%																		-			_						0 0
0.5	1.0%	2.0%	0:20	0:50	0.50	0:50	00'0	0.00	00.0	00.0	0:0	0.120	0.130	0.120	0.130	38.313	38.031 37	.844 38.0	39.2	250 38.9	39.2	81 39.06	53 109.966	3 109.969	110.000	110.000	71.938	0.0161 0	0.0192
4	1.0%	2.0%	1.00	1.00	1.00	1.00	00.00	0.00	0.00	0000	1.00	0.155	0.160	0.155	0.160	38.625	38.500 38	1688 38.1	531 39.	813 39.	8.95 000	44 39.56	53 132.500	0 132.500	132.563	132.563	93.945	0.0164 0	0.0195
Ċ.	1.0%	2.0%	3.01	3.01	3.01	3.01	00.00	0.00	0.00	0.00	3.01	0.263	0.270	0.271	0.271	38.156	38.063 38	.250 38.	125 39.	531 39.4	9.95	25 39.46	89 173.594	4 173.594	t 173.656	173.656	135.477	0.0144 0	0.0171
5	1.0%	2.0%	5.02	5.02	5.01	5.01	00.00	0.00	0.00	0.00	5.02	0.315	0.325	0.315	0.325	37.844	37.719 37	.844 37.	719 39.	188 39.	156 39.1	88 39.15	56 218.686	3 221.125	5 218.688	221.156	182.133	0.0191 0	0.0227
2	1.0%	2.0%	0.75	0.75	0.76	0.75	6.19	6.19	6.19	6.19	6.94	0.345	0.355	0.345	0.355	38.000	37.781 38	.094 37.8	344 39.1	39.	500 39.7	50 39.62	25 235.500	242.125	5 235.531	242.156	200.898	0.0179 0	0.0213
6	1.0%	2.0%	10 million 10 million										1	1															
101	1.0%	2.0%																											
ŧ	1.0%	2.0%																			-	2							
0.5	1.0%	2.5%	0.50	0.50	0.50	0:50	00:0	0.00	00.0	0000	0.50	0.123	0.123	0.123	0.123	38.156	38.094 38	219 38.	125 39.1	094 39.	25 39.1	25 39.12	25 99.125	5 99.126	99.406	99.406	61.117	0.0150 (0.0178
1	1.0%	2.5%	0.99	0.99	0.98	0.98	00.00	00.0	0.00	00.0	0.98	0.193	0.197	0.194	0.197	37.844	37.688 37	.76 37.6	38. 38.	813 39.0	31 38.8	13 39.05	81 121.125	5 121.128	5 121.125	121.125	83.344	0.0174 0	0.0207
3	1.0%	2.5%	3.01	3.01	3.00	3.00	00.00	0.00	0.00	00.0	3.01	0.271	0.276	0.276	0.276	37.469	37.375 37	500 37.6	313 38.	369 38.	181 38.9	69 38.87	75 161.063	3 162.688	8 161.688	163.156	124.609	0.0167 0	0.0198
5	1.0%	2.5%	4.98	4.98	4.98	4.97	00:0	0.00	00.0	00.0	4.98	0.309	0.313	0.310	0.312	37.281	37.188 37	.281 37.6	356 38.	313 38.8	344 38.7	81 38.87	75 185.000	0 192.094	t 185.063	192.156	151.227	0.0169 0	0.0201
2	1.0%	2.5%	0.75	0.75	0.75	0.75	6.22	6.22	6.23	6.22	6.97	0.353	0.358	0.353	0.358	37.094	36.969 37	.156 37.0	000 38.4	500 38.6	38.5	31 38.71	19 202.750	214.188	8 202.844	214.188	171.438	0.0169 0	0.0201
6	1.0%	2.5%	2.79	2.79	2.79	2.79	6.18	6.18	6.18	6.18	8.97	0.394	0.399	0.393	0.398	36.938	86.813 37	.96 000.	781 38.	719 38.6	38.7	50 38.76	81 223.063	3 229.876	5 223.094	230.000	189.625	0.0172 0	0.0204
101	1.0%	2.5%	3.83	3.83	3.82	3.81	6.18	6.18	6.19	6.19	10.01	0.405	0.410	0.406	0.410	36.875	36.688 36	37.	781 38.	325 38.	750 38.6	56 38.78	81 230.625	5 237.656	30.656	237.656	197.086	0.0170 0	0.0203
11	1.0%	2.5%	5 Contraction of the second se	6									1	1				-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
0.5	1.0%	3.0%	0.49	0.49	0.49	0.49	00:0	00.0	00.0	00.00	0.49	0.158	0.158	0.153	0.158	37.750	38.031 37	386 38.0	331 38.0	375 38.6	34.4 38.8	75 38.84	14 90.281	1 90.28	90.281	90.281	52.344	0.0135 0	0.0161
1	1.0%	3.0%	1.00	1.00	1.00	1.00	00.00	0:00	0.00	00.00	1.00	0.193	0.194	0.193	0.194	37.750	37.594 37	37.5	531 38.	344 38.3	313 38.8	44 38.84	113.031	1 113.03	113.031	113.031	75.391	0.0177 0	0.0211
c.	1.0%	3.0%	2.98	2.97	2.96	2.97	0000	0.00	0.00	0.00	2.97	0.275	0.276	0.277	0.277	37.531	37.469 37	563 37.4	469 38.	750 38.6	313 38.7	50 38.90	06 147.188	3 147.188	3 147.188	147.219	109.688	0.0162 (0.0193
ι. Ω	1.0%	3.0%	4.99	4.98	4.99	4.98	0.00	0.00	0.00	0.00	4.98	0.313	0.315	0.312	0.315	37.219	37.188 37	.219 37.	188 38.	781 38.6	888 38.8	44 38.66	88 165.281	171.000	0 165.281	171.000	130.938	0.0155 0	0.0185
7	1.0%	3.0%	0.82	0.82	0.82	0.82	6.22	6.23	6.25	6.25	7.05	0.400	0.401	0.399	0.401	37.094	36.969 37	.063 36.9	369 38.	781 38.6	325 38.7	81 38.55	94 177.563	3 190.625	5 177.594	190.656	147.086	0.0150 0	0.0178
6	1.0%	3.0%	2.84	2.84	2.84	2.84	6.22	6.22	6.22	6.23	9.06	0.427	0.430	0.428	0.430	36.750	36.688 36	(813 36.7	781 38.4	138 38.	500 38.4	69 38.56	83 200.875	5 209.406	3 200.844	209.469	168.391	0.0167 (0.0199
10	1.0%	3.0%	3.81	3.80	3.80	3.81	6.19	6.19	6.21	6.21	10.00	0.450	0.455	0.451	0.455	36.625	36.531 36	625 36.	563 38.	188 38.	188 38.2	19 38.21	19 203.563	3 214.750	0 203.594	214.750	172.578	0.0161 0	0.0192
11	1.0%	3.0%	4.82	4.83	4.81	4.82	6.19	6.19	6.19	6.19	11.01	0.480	0.488	0.482	0.487	36.656	36.531 36	(719 36.5	594 38.4	469 38.3	313 38.5	00 38.31	13 211.531	1 221.908	3 211.469	221.875	180.070	0.0164 0	0.0195
0.5	1.0%	4.0%	0.50	0.50	0.50	0:50	00.00	0.00	0.00	000	0.50	0.155	0.155	0.156	0.156	38.188	38.094 38	(250 38.0	39.	156 39.	25 39.1	88 38.68	88 83.406	83.406	83.438	83.500	45.289	0.0145 0	0.0173
1	1.0%	4.0%	1.01	1.01	1.01	1.01	0.00	0.00	0.00	0.00	1.01	0.238	0.238	0.239	0.239	38.219	38.000 38	219 38.0	39.	344 39.2	250 39.3	13 39.31	13 98.281	1 98.28	98.375	98.375	60.195	0.0153 0	0.0182
6	1.0%	4.0%	2.99	2.99	2.98	2.98	00.00	0.00	0.00	0.00	2.99	0.329	0.332	0.332	0.332	37.531	37.500 37	.688 37.4	169 38.	325 38.6	313 38.5	94 38.93	88 126.469	3 129.406	126.594	129.469	90.438	0.0154 0	0.0183
5	1.0%	4.0%	4.98	4.98	4.98	4.99	00.00	0:00	0.00	00.0	4.98	0.403	0.408	0.404	0.408	37.188	37.188 36	875 37.	188 38.0	375 39.0	163 38.8	75 39.16	88 147.094	4 148.78	147.219	148.844	110.875	0.0159 0	0.0189
2	1.0%	4.0%	0.82	0.82	0.81	0.81	6.23	6.23	6.24	6.25	7.05	0.440	0.445	0.441	0.445	36.875	36.750 36	875 36.	719 38.	719 38.4	138 37.7	50 38.50	00 157.563	3 162.500	157.688	162.625	123.289	0.0149 0	0.0177
0	1.0%	4.0%	2.84	2.84	2.84	2.84	6.22	6.23	6.20	6.20	9.05	0.489	0.493	0.489	0.493	36.844	36.750 36	.938 36.6	313 38.	750 38.7	119 37.7	50 37.84	14 167.750	174.408	8 167.750	174.594	134.289	0.0146 0	0.0174
10	1.0%	4.0%																											
11,	1.0%	4.0%													_				_										

Table B4.4 Asphalt treatment surface data

Discharg :	3L (%) S	(%) XS		QWALI	. (CFS)			Officer ((CFS)	Ĩ	Ototal		Depth (1	(j)	_	Spre	ad Dist T1	(u)		Curb Di	stance (in)		S	pread Dist	T2 (in)	AVG		n value	
actual Q		-	nitial		Final		Initial		Final	~	AVG M	,u	Ma	x	TIn	nin	T2ma:	~	Cmin		Cmax		T1min	T2	max	Spre	ead Geor	netri Integra	ated
cfs		-	1st run 2r	unu pu	1st run	2nd run	1st run	2nd run	1st run	2nd run (CFS 1:	st run 21	nd nun 1s.	trun 2nc	run 1st	run 2nd	un 1st rui	i 2nd run	1st run	2nd run	1st run	2nd run	1st run 2h	nd run 1st	trun 2nd	run In			
9.0	0.5%	1.5%	0.48	0.46	0.49	0.48	00.0	00.0	00.00	00:0	0.48	0.133	0.133	0.136	0.136 3	8.219 35	281 38.3	144 39.31	3 38.15	6 39.34	4 38.156	39.469	123.625	128.438 12	28.563 12	8.563 88	1.508 0.0	1127 0.01	151
-	0.5%	1.5%	1.01	101	1.01	1.01	0.00	0.00	0.00	0.00	1.01	0.180	0.180	0.182	0.182 3	8.656 35	375 38.2	19 39.06	38.06	3 38.40	6 38.031	39.406	159.938	159.938 16	30.031 16	0.156 121	.188 0.0	1140 0.01	167
e	0.5%	1.5%																_	_					2 - 3		-	_		
5	0.5%	1.5%	_												_														
~	0.5%	1.5%																											
6	0.5%	1.5%																											
10	0.5%	1.5%																											
11	0.5%	1.5%																											0
0.5	0.5%	2.0%	0.49	0.46	0.49	0.49	00:0	0.00	00:0	00.0	0.49	0.153	0.153	0.153	0.153 3	7.719 37	.844 37.7	19 37.96	19 38.37	5 38.15	6 38.438	38.656	121.375	121.375 12	21.313 12	1.344 83	1.539 0.0	1172 0.02	204
+	0.5%	2.0%	1.05	1.05	1.05	1.05	00.0	00.0	00.0	00.0	1.05	0.198	0.203	0.198	0.203 3	7.656 35	.094 37.9	06 38.12	5 38.43	8 38.62	5 38.375	38.625	143.969	146.281 14	44.094 14	6.375 107	.234 0.0	1157 0.01	187
e	0.5%	2.0%	2.95	2.95	1 2.95	2.96	0.00	0.00	00.0	0.00	2.95	0.308	0.313	0.310	0.310 3	7.281 37	.625 37.3	144 37.81	3 38.09	4 38.68	8 38.094	38.688	192.188	198.094 19	32.250 19	8.188 157	.664 0.0	1156 0.01	185
22	0.5%	2.0%																											
2	0.5%	2.0%																											
8	0.5%	2.0%													-					1 0									
10	0.5%	2.0%																											
11	0.5%	2.0%																											
0.5	0.5%	2.5%	090	0.50	0.50	0.50	0.00	00.0	00.0	0.00	0:50	0.173	0.173	0.172	0.172 3	7.688 37	781 37.6	88 37.81	3 38.71	9 39.21	9 38.719	39.188	104.531	104.531 10	04.094 10	4.094 66	570 0.0	1133 0.01	159
-	0.5%	2.5%	1.03	1.05	1.03	1.03	000	00.0	00.0	00.0	1.03	0.220	0.225	0.220	0.225 3	7.469 37	.938 37.6	38. 38.00	0 38.90	6 39.18	8 38.969	39.156	135.500	135.531 13	35.500 13	5.438 97	719 0.0	181 0.02	215
m	0.5%	2.5%	2.99	2.96	1 2.98	2.98	00.0	0.00	00.00	00.00	2.99	0.368	0.373	0.373	0.373 3	7.031 37	375 37.0	31 37.06	38.09	4 39.06	3 38.063	39.000	172.719	177.094 17	72.719 17	6.906 137	734 0.0	1154 0.01	184
5	0.5%	2.5%	5.01	5.01	5.01	5.01	00.0	00.0	00.00	00:0	5.01	0.398	0.405	0.398	0.405 3	7.031 37	438 37.0	63 37.45	18 38.71	9 39.12	5 38.906	39.156	213.688	216.969 24	43.750 21	6.500 185	.484 0.0	1210 0.02	250
2	0.5%	2.5%	0.88	0.85	1 0.87	0.87	6.15	6.15	6.17	6.17	7.03	0.455	0.460	0.455	0.460 3	6.250 37	.125 36.1	56 37.15	6 38.31	3 39.00	0 38.375	39.031	229.688	237.313 22	29.625 23	7.344 196	820 0.0	1170 0.02	203
0	0.5%	2.5%																											
10	0.5%	2.5%											-		_												_		
11	0.5%	2.5%												2	_									2 - 21 2					
0.5	0.5%	3.0%	0.49	0.46	0:20	0.49	00.0	0.00	00.0	00.0	0.49	0.180	0.180	0.180	0.180 3	7.938 36	781 37.9	36.76	11 38.50	0 38.65	6 38.531	38.656	98.781	98.781 9	38.750 9	8.781 61	422 0.0	1147 0.01	175
2	0.5%	3.0%	1.00	101	1.00	1.00	00.0	00.0	00.0	00.0	1.00	0.240	0.243	0.241	0.244 3	7.500 36	.063 37.5	63 38.15	6 38.34	4 38.68	8 38.438	38.688	125.750	125.750 12	25.875 12	5.875 87	.992 0.0	1188 0.02	224
co	0.5%	3.0%	3.02	3.01	3.03	3.03	0.00	0.00	0.00	00.00	3.02	0.338	0.343	0.343	0.343 3	6.969 37	344 37.0	113 38.31	3 38.50	0 38.81	3 38.406	38.844	162.375	162.375 16	32.406 16	2.406 124	981 0.0	1159 0.01	190
5	0.5%	3.0%	4.99	4.96	4.99	4.99	0.00	0.00	0.00	0.00	4.99	0.408	0.415	0.408	0.415 3	6.375 37	.094 36.4	06 36.96	38.03	1 38.68	8 37.969	38.625	187.688	194.000 16	37.719 19	4.094 154	164 0.0	169 0.02	201
~	0.5%	3.0%	0.82	0.82	0.82	0.82	6.15	6.15	6.18	6.19	6.99	0.473	0.480	0.474	0.481 3	6.375 36	313 36.6	(25 36.40	6 38.90	6 39.00	0 38.719	39.063	208.563	210.375 20	08.625 21	0.469 173	1.103 0.0	1164 0.01	196
8	0.5%	3.0%														_											_	_	
10	0.5%	3.0%												_	-	_	_	_							-		_		
11	0.5%	3.0%												_		_	_							_	_		_		
0.5	0.5%	4.0%	0.50	0.5(0.49	0.49	0.00	0.00	0.00	00.0	0.49	0.203	0.203	0.203	0.203 3	7.688 35	.031 37.6	88 38.05	11 38.46	9 38.68	8 38.469	38.656	89.375	89.375 8	39.406 8	9.375 51	523 0.0	146 0.01	174
-	0.5%	4.0%	1.00	1.00	1.00	1.00	0.00	0.00	0.00	00.00	1.00	0.245	0.248	0.245	0.248 3	7.406 36	.000 37.4	69 37.95	8 38.53	1 38.87	5 38.594	38.375	107.719	107.719 10	J7.719 10	7.719 70	0.016 0.0	164 0.01	195
e	0.5%	4.0%	3.03	3.00	3.03	3.03	0.00	0.00	0.00	00.00	3.03	0.370	0.375	0.375	0.375 3	6.781 37	.688 36.6	25 37.71	9 38.37	5 38.84	4 38.438	38.844	147.625	150.188 14	47.625 15	0.125 111	.688 0.0	1189 0.02	225
5	0.5%	4.0%	4.99	4.96	1 5.00	5.00	00.0	00.0	00.00	00.00	4.99	0.455	0.460	0.455	0.460 3	6.281 37	375 36.2	181 37.65	6 38.31	3 38.93	8 38.313	38.938	165.813	170.125 16	35.813 17	0.125 131	.070 0.0	1175 0.02	209
~	0.5%	4.0%																											
0	0.5%	4.0%											2				-							1				2 Y	
10	0.5%	4.0%														- 0									-				
11	0.5%	4.0%													-	-									-	-	-		

Table B4.5 Asphalt treatment surface data

APPENDIX C

MANNING'S N-VALUES ESTIMATED BY PRANDTL-VON KARMAN VELOCITY METHOD

Figure C1.1 Manning's n-value and discharge of smooth concrete surface estimated by Krishnamurthy and Christensen's equation

Figure C1.2 Manning's n-value and discharge of asphalt surface estimated by Krishnamurthy and Christensen's equation

Figure C1.3 Manning's n-value and discharge of asphalt treatment surface estimated by Krishnamurthy and Christensen's equation

Figure C1.4 Manning's n-value and discharge of TxDOT concrete surface estimated by Krishnamurthy and Christensen's equation

Figure C2.1 Manning's n-value and discharge of smooth concrete surface estimated by Horton and Einstein's equation

Figure C2.2 Manning's n-value and discharge of asphalt surface estimated by Horton and Einstein's equation

Figure C2.3 Manning's n-value and discharge of asphalt treatment surface estimated by Horton and Einstein's equation

Figure C2.4 Manning's n-value and discharge of TxDOT concrete surface estimated by Horton and Einstein's equation

Figure C3.1 Manning's n-value and discharge of smooth concrete roadway estimated by Pavlovski, Muhlhofer, Einstein and Banks's equation

Figure C3.2 Manning's n-values and discharges of asphalt Roadway estimated by Pavlovski, Muhlhofer, Einstein and Banks's equation

Figure C3.3 Manning's n-values and discharges of asphalt treatment roadway estimated by Pavlovski, Muhlhofer, Einstein and Banks's equation

Figure C3.4 Manning's n-values and discharges of TxDOT concrete roadway estimated by Pavlovski, Muhlhofer, Einstein and Banks's equation

Figure C4.1 Manning's n-values and discharges of smooth concrete roadway estimated by Lotter's equation

Figure C4.2 Manning's n-values and discharges of asphalt roadway estimated by Lotter's equation

Figure C4.3 Manning's n-values and discharges of asphalt treatment roadway estimated by Lotter's equation

Figure C4.4 Manning's n-values and discharges of TxDOT concrete roadway estimated by Lotter's equation

Figure C5.1 Manning's n-values and discharges of smooth concrete surface estimated by Area-Weight averaging method

Figure C5.2 Manning's n-values and discharges of asphalt surface estimated by areaweight averaging method

Figure C5.3 Manning's n-values and discharges of asphalt treatment surface estimated by area-weight averaging method

Figure C5.4 Manning's n-values and discharges of TxDOT concrete surface estimated by area-weight averaging method

Figure C6.1 Manning's n-values and discharges of smooth concrete surface estimated by depth-weight averaging method

Figure C6.2 Manning's n-values and discharges of asphalt surface estimated by depthweight averaging method

Figure C6.3 Manning's n-values and discharges of asphalt treatment surface estimated by depth-weight averaging method

Figure C6.4 Manning's n-values and discharges of TxDOT concrete surface estimated by depth-weight averaging method

Figure C7.1 Manning's n-values and discharges of smooth concrete surface estimated by wetted-perimeter weighted averaging method

Figure C7.2 Manning's n-values and discharges of asphalt surface estimated by wettedperimeter weighted averaging method

Figure C7.3 Manning's n-values and discharges of asphalt treatment surface estimated by wetted-perimeter weighted averaging method

Figure C7.4 Manning's n-values and discharges of TxDOT concrete surface estimated by wetted-perimeter weighted averaging method

Figure C8.1 Manning's n-values and discharges of smooth concrete surface estimated by velocity-weight averaging method

Figure C8.2 Manning's n-values and discharges of asphalt surface estimated by velocity-weight averaging method

Figure C8.3 Manning's n-values and discharges of asphalt treatment surface estimated by velocity-weight averaging method

Figure C8.4 Manning's n-values and discharges of TxDOT concrete surface estimated by velocity-weight averaging method

Figure C9.1 Manning's n-values and discharges of smooth concrete surface estimated by discharge-weight averaging method

Figure C9.2 Manning's n-values and discharges of asphalt surface estimated by discharge-weight averaging method

Figure C9.3 Manning's n-values and discharges of asphalt treatment surface estimated by discharge-weight averaging method

Figure C9.4 Manning's n-values and discharges of TxDOT concrete surface estimated by discharge-weight averaging method

Figure C10.1 Manning's n-values and discharges of smooth concrete surface estimated by hydraulic-radius weighted averaging method

Figure C10.2 Manning's n-values and discharges of asphalt surface estimated by hydraulic-radius weighted averaging method

Figure C10.3 Manning's n-values and discharges of asphalt treatment surface estimated by hydraulic-radius weighted averaging method

Figure C10.4 Manning's n-values and discharges of TxDOT concrete surface estimated by hydraulic-radius weighted averaging method

Figure C11.1 Manning's n-values and discharges of smooth concrete surface estimated by numerical average

Figure C11.2 Manning's n-values and discharges of asphalt surface estimated by numerical average

Figure C11.3 Manning's n-values and discharges of asphalt treatment surface estimated by numerical average

Figure C11.4 Manning's n-values and discharges of TxDOT concrete surface estimated by numerical average

Figure C12.1 Manning's n-values and discharges of smooth concrete surface estimated by Manning's equation and using measured discharge

Figure C12.2 Manning's n-values and discharges of asphalt surface estimated by Manning's equation and using measured discharge

Figure C12.3 Manning's n-values and discharges of asphalt treatment surface estimated by Manning's equation and using measured discharge

Figure C12.4 Manning's n-values and discharges of TxDOT concrete surface estimated by Manning's equation and using measured discharge

Figure C13.2 Manning's n-values and discharges of asphalt surface estimated by Manning's equation and using Prandtl-von Karman estimated discharge

Figure C13. 4 Manning's n-values and discharges of TxDOT concrete surface estimated by Manning's equation and using Prandtl-von Karman estimated discharge

APPENDIX D

COMPARISON BETWEEN MEASURD AND PRANDTL-VON KARMAN VELOCITY METHOD DISCAHRGES

APPENDIX E

HISTOGRAM PLOTS OF MANNING'S N-VALUES

REFERENCES

- 1. Bathurst, J.C., 2002. *At-a-site variation and minimum flow resistance for mountain rivers*, Journal of Hydrology 269, September.
- Bathurst, J.C., Li, R.M., Simons, D.B., 1981. Resistance equation for largescale roughness. Proc. ASCE, Journal of Hydraulic Division. 107(HY12), 1593-1613.
- Bathurst, J.C., 1985. *Flow resistance estimation in mountain rivers*, Proc ASCE, Journal of Hydraulic Engineering, 111(4), pp 625-643.
- 4. Bettess, Roger, 2002. *Flow resistance equation for gravel bed-rivers,* International Association of Hydraulic Engineering and Research.
- Boyer, M.C., 1954. Estimating the Manning coefficient from an average bed roughness in open channels, Transactions, American Geophysical Union. Vol. 35, Number 6.
- Bray, D.I., 1979. *Estimating average velocity in gravel-bed rivers*, Proc ASCE, J of Hydraulic Division, 105(9) pp1103-1122.
- 7. Charlton, F.G., Brown, P.M. and Benson, R.W., 1978. *The hydraulic geometry of some gravel rivers in Britain*, HR Wallingford Report IT 180.
- 8. Chow, V.T., 1959. Open-channel hydraulics Mcgraw-Hill Book, Page192-211

- 9. Colebrook, C.F., 1939. *Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws*, J. Intuition of Civil Engineering, 11, pp 113.
- 10. Colebrook, C.F. and White, C.M., 1937. *Experiments with fluid friction in roughened pipes*, Proc Roy Soc (A), 161.
- 11. Coon, W.F., 1995. Estimates of roughness coefficients for selected natural stream channels with vegetated banks in New York. US Geology Survey, Lake Wood, CO, pp 127.
- 12. Daniel, M.K., F.J. Watts, and E. R. Burroughs., 1995. *Effect of surface roughness and rainfall impact on overland flow*, Journal of Hydraulic Engineering, pp 546-553.
- Filliben, J.J., 1975. The probability plot correlation coefficient test for normality, Technometrics, 17, no.1 (1975), 111-117.
- 14. Griffth, G.A., 1981. *Flow resistance in coarse gravel bed rivers*, Proc ASCE, J of Hydraulic Division, 107(7), pp899-918.
- 15. Golubtsov, V.V., 1969. *Hydraulic resistance formula for computing the average flow velocity of mountain rivers*. Soc. Hydrology, Am. Geophysics 5, 500-511.
- Hey, R.D., 1979. Flow resistance in gravel bed rivers, Proc ASCE, J of Hydraulics Division, 105(4), pp365-379.
- 17. Horton, R.E., 1933. Separate roughness coefficients for channel bottom and sides, Engineering News-Record, vol. 111, no 22, pp 652-653.

- Jarret, R.D., 1983. Hydraulic of high gradient stream. ASCE Journal of Hydraulic Enggineering 110(11): 1519-1539.
- 19. Johnson, R.A. and Wichern, D.W., 2002. *Applied multivariate statistical analysis*, 5th edition. Prentice Hall.
- 20. Joseph B.F, Finnemore, E. J., 1997. *Fluid mechanics with engineering applications*, Ninth Edition. McGraw Hill.
- 21. Krishnamurthy, M. and B.A. Christensen. 1972. *Equivalent roughness for shallow channels*, J. Hyd. Div., ASCE 98, no. HY12. pp. 2257-63.
- 22. Lane, E.W. and Carlson, E.J. 1953. Some factors affecting the stability of canals constructed in coarse granular materials, Proceedings, Minnesota International Hydraulics Convention, Minneapolis, MN, 1-4 September.
- 23. Langbein, W.B., 1940. *Determination of Manning's n from vertical-velocity curves*, Transactions, American Geophysical Union. pp.618-620.
- 24. Limerinos, J.T., 1970. Determination of the Manning coefficient from measured bed roughness in natural channels, Water Supply Paper 1898-B, US Geological Survey, Washington.
- 25. Lotter, G.K., 1933. Considerations on hydraulic design of channels with different roughness of walls, Transactions, All-union Scientific Research Institute of Hydraulic Engineering, Leningrad, vol. 9, pp. 238-241.
- 26. Prandtl, Ludwig., 1926. Uberdie ausgebildete Turbulenz (On fully developed turbulence), Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, pp62-74.

- 27. Montgomery, D.C., Runger, G.C., Hubele, N.F., 2004. *Engineering statistics*, Third Ed. John Wiley.
- Meyer-Peter, E. and Müller, R. (1948). Formulas for bed-load transport. Proc.,
 2nd Meeting, M IAHR, Stockholm, Sweden, 39-64.
- 29. O'Brien, M.P., 1937. The vertical distribution of velocity in wide rivers, Hydrology pp467-470.
- 30. Pavlovski, N.N., 1931. On a design formula for uniform movement in channels with nonhomogeneous walls. Transactions, All-union Scientific Research Institute of Hydraulic Engineering, Leningrad, vol. 3, pp. 157-164.
- 31. Rickenmann, D., 1996. *An alternative equation for the mean velocity in gravelbed river and mountain rivers*, ASCE Hydraulic Engineering, pp. 672-676.
- 32. Singh, V.P., 1996. Kinematic wave modeling in water resources (Surface water hydrology), Wiley Interscience. 254-357.
- 33. Scobey, F.C., 1915. *The flow of water in irrigation channels*. U.S. Department of Aggregation. Paper Bulletin, 194.
- 34. Streeter, V.L., 1958. Fluid mechanics, Fifth Ed. McGraw-hill Book.
- 35. Strickler, A., 1923. Beitr age zur Frage der Geschwindigkeits-formel und der Rauhigkeitszahlen f ur Str ome, Kan ale, und geschl Beossene Leitungen, Mitteilung Nr. 16 des Amtes f ur Wasserwirtschaft, Eid, ossisches Department des, Innern, Bem; 77.
- 36. Sturm, T.W., 2001. Open channel hydraulics, McGraw Hill Book.

- 37. Von Karman, T., 1930. Mechanische Aehnlich und Turbulenz (Mechanical similarity and turbulence), Proceedings of the 3ed. International Congress of Applied Mechanics, Stockholm, Vol. 1, pp. 85-92.
- 38. Wahl, K.L., Thomas, W.O., Jr., and Hirsch, R.M., 1995. Stream-gagging program of the U.S. Geological Survey.
- 39. Wiberg, P.L., Smith, J.D., 1991. Velocity distribution and bed roughness in high-gradient stream. Water Resources. Res. 27, (5), 825-838,
- 40. Yen, B.C., 1992. Hydraulic resistance in open channels (channel flow resistance: centennial of Manning's formula), ed. B.C. Yen. Littleton, CO: Water Resources Publications, pp241-257.

BIOGRAPHICAL INFORMATION

Chirakarn received an undergraduate degree in Irrigation Engineering from Kasetsart University, (Thailand) in July 2001. He continued study in water resources area at Civil and Environment department, The University of Texas at Arlington. He worked as a graduate research assistant in Texas Department of Transportation (TxDOT) roadway roughness project from 2002-2005. He received his Master Degree in Civil Engineering in December 2003.

After his Master Degree, he began his research in velocity distribution modeling and worked as a graduate teaching assistant in Civil and Environment Department. He received his Philosophy Degree in Civil Engineering from The University of Texas at Arlington in August 2007. His area of expertise is Water Resources Engineering.