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ABSTRACT 

 

STRESS ANALYSIS FOR A THREE PHASE PLATE WITH 

A CONCENTRIC CIRCULAR INCLUSION BY DERIVING 

AN AIRY STRESS FUNCTION 

 

Abhishek Kunchala, MS 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor: Dr. Seiichi Nomura 

 

This thesis derives the Airy stress function for a three phase plate that consists of 

two concentric circular inclusions and a matrix phase. It incorporates the elastic property of 

each phase as well as the geometry of the inclusions. An Airy stress function has been derived 

that satisfies the continuity conditions of the displacement and traction across the phase 

interface precisely. The obtained results are new and could not have been possible without a 

computer algebra system (Mathematica). 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of elasticity 

 

Elasticity is a subject appertained with the determination of stresses and displacements in a 

body as a result of applied mechanical or thermal loads. Elastic behavior is governed by 

Hooke’s law. It is characterized by the conditions that stress is a unique function of strain and 

the material has the property for complete recovery to natural shape upon the removal of 

applied loads. These conditions ascertain the use of linear superposition and a wide range of 

transformation techniques to solve the problems associated with elasticity. Elasticity attempts to 

develop the solution directly and meticulously from the principles of Newton’s laws of motion 

and Hooke’s law. Continuum mechanics and partial differential field equations are used in this 

theory to solve the mathematical problems associated with elasticity. 

 

In general, direct solutions to the equations of equilibrium of an elastic body pose 

difficulties. The theory of Complex variable methods is imparted in solving the boundary value 

problems associated with elasticity. Plane elasticity problems reduce to the solution of Navier’s 

displacement equations of equilibrium when subjected to certain boundary conditions. This 

formulation then allows many powerful mathematical techniques available from the complex 

variable theory to be applied to the elasticity problem. By the implementation of complex 

variable notations, elastic displacement is derived as functions of complex variable potentials. 

These potentials must be made to satisfy the boundary conditions on the surface of the body.
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Analytical closed form solutions for three-dimensional problems are reduced to two-

dimensional axisymmetry problems. This is done to lessen the complexity involved in solving 

the elasticity field equations. There are numerous solutions to plane stress and plane strain 

problems. These solutions can be established by the implementation of a distinct stress function 

techniques. 

The method of Airy stress function reduces the general formulation to a single 

governing equation in terms of a single unknown [3]. Several techniques such as fourier 

methods, integral transforms, finite differences, finite elements etc., can be used to obtain many 

analytical solutions to the problems emerging from the resulting governing equations. The basic 

idea of developing a stress field is to form a single governing equation that satisfies the 

equilibrium and compatibility equations. 

  

          This research stands out from the rest as the single governing Airy stress function has 

been derived from certain combinations of complex variable potentials. Until now, theories have 

been proposed on infinite plates with circular holes, inclusions and discs separately using the 

Airy stress function. However the Airy stress function for a three phase plate could not be 

worked on extensively due to lack of algebraic software to solve the simultaneous equations 

and verify the compatibility and equilibrium equations. This thesis used algebraic software 

(Mathematica) and successfully derived the Airy stress function for a three phase plate with 

concentric circular inclusions and a matrix enclosing it. The previous studies of plates with 

circular holes and inclusions are a special case of this topic. 

 

 

1.2 Use of symbolic software 
 

Software packages such as MATLAB, MAPLE, MATHEMATICA are now available because of 

the immense development in hardware and software of computers. Older packages such as 
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Macsyma which was one of the very first general-purpose symbolic computations systems were 

written in LISP [6]. However, new ones such as Mathematica are written  in  C  language  and  

its  variations  and  is  one  of  the most widely  available symbolic systems.  

 

One can evaluate mathematical expressions analytically without any approximation 

using symbolic algebra systems. The major features of symbolic algebra systems include 

differentiations, integrations, expansions and solving equations.  Most of the  symbolic  algebra  

systems  have  been  used  by  mathematicians  and  theoretical physicists [9].  One of the most 

powerful feature of this system is its ability to deal with both symbolic formulae and numbers. It 

is this feature which makes it possible to do both algebra and calculus. It has been 

demonstrated that in certain circumstances the widely held view that one  can  always  

dramatically  improve  on  the  CPU  time  required  for  lengthy computations  by  using  

compiled  C  or  Fortran  code  instead  of  advanced  quantitative programming environments  

such  as Mathematica, MATLAB  etc…  is wrong.   A well written C program can be expected to 

outperform Mathematica, R, S-Plus or MATLAB [8]  but,  if  the  C  program  is  not  efficiently  

programmed  using  the  best  possible  algorithm  then  in  fact  it may  take  longer  than  using  

a  symbolic  software  byte-code compiler.     

 

The advantage of using Mathematica lies in its built in functions. The code editor 

provides many features to speed and improve applications development. It gives the largest 

collection of algorithms, covering areas such as numerical computation, symbolic computation, 

graphics, statistics, and data analysis. Mathematica can derive closed-form solutions for beams 

with circular, elliptical, equilateral-triangular, and rectangular cross sections [6].  Symbolic  

software  also  addresses  the  finite  element method  and  is  useful  in  finding shape  

functions,  creating  different  types  of meshes  and  can  solve  problems  different materials.   

They are also useful in the kinematic modeling of fully constrained systems [6]. 
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CHAPTER 2 
 

THEORY OF AIRY STRESS FUNCTION 
 

2.1 Airy Stress Function 
 
Various techniques employ the Airy stress function to reduce the governing equations with 

solvable unknowns for the plane stress and plane strain problems. The equilibrium equations 

are obtained by considering a small rectangular block of edges a, b and unity. 

 

 

 

 

 

 

 

 

 

  

                                                 

                                     Figure 2.1 Equilibrium of a rectangular block [1] 

 

The forces on the faces are determined by multiplying the stress components with the 

corresponding areas they act upon. In plane elasticity, boundary value problems can be 

considered by neglecting the body forces. 
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 �����2� �  �����3� � 0                                     (2.1.1)
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Dividing the above equation by the area ab, 

�����  � ������ 
  ������ – ������� � 0                                                (2.1.2) 

 

When the rectangular block is considered to be very small, then ��� 0 and b->0. 

lim   �!"
��x�1  � ��x�3� $ � %��%�  

Similarly,               (2.1.3) 

lim   �!"
��xy�2 – ��xy�3� $ � %�xy%�  

 

Hence the equations of equilibrium in x and y direction take the following form. 

                                                                 '�(') 
 '�(*'+ � 0                                                             (2.1.4) 

                                                   
'�*'+ 
  '�(*') � 0                                                             (2.1.5)                                                             

 

 

 

 

 

 

 

 

Figure 2.2 Sample Domain 
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A smooth contour can be represented by the functions which have continuous derivative 

throughout the domain. The equilibrium equations will be satisfied by choosing the 

representation [3]. 

 

 

�) �  %�,%��  

                                                                                      �+ �  '-.')-                                                             (2.1.6) 

      �)+ � � %�,%�%� 

Where , �  , ��, �� is the Airy stress function. 

This method provides a variety of solutions to the equations of equilibrium but the perfect 

solution would be the one which satisfies the compatibility equation given below [1]. 

                                                                 0 '-
')-  
  '-

'+-1 2�) 
 �+3 �  0                                                   (2.1.7)                                                 

 
                                                                        4�2�) 
  �+3 �  0                                                                         (2.1.8)    
Where ∇is the Laplace operator. 

Substituting the airy stress function relations in the compatibility equation, we get [1]. 

                                     '6.')6 
  �'6.')-'+- 
  '6.'6+ �  47, � 0                                                  (2.1.9) 

The above expression is called a biharmonic equation and every solution to this equation is 

termed as a biharmonic function. The problem of elasticity is now reduced to a plane elasticity 

problem with a single equation in terms of the Airy stress function,,. The solution is determined 

in the region R enclosed by the boundary S as shown in Figure 2.1. Appropriate boundary 

conditions are applied over the boundary S and the resulting solutions satisfy the compatibility 

equation. 



7 

 

2.2 Equations in polar coordinates 

Polar coordinate system is often chosen to represent curved surfaces. Many plane problems in 

elasticity are solved by developing the equations in polar coordinate system. The solution to the 

governing equations in plane stress and plane strain problems involves the determination of the 

displacements and stress in the plane corresponding to the region R subjected to the boundary 

conditions S. 

The transformation of the stress components from Cartesian to polar coordinate system is as 

follows: 

 

�8 �  �)9:;�< 
 �+;=>�< 
 2�)+ ;=>< 9:;< 

                                                     �? �  �);=>�< 
  �+9:;�< 
 2�)+ ;=>< 9:;<                                  (2.2.1)                                                              

          �8? �  ��+ �  �)� ;=>< 9:;< 
 �)+  �9:;�< �  ;=>�<� 

 

The two dimensional problems can be solved by the Airy stress function representation in the 

relations (2.1.6) with the transformation of stress components into polar coordinates as shown 

below: 

�8 �  1@ %,%@ 
 1@� %�,%<�  

                                                                            �? �  '-.'8-                                                                          (2.2.2) 

   �8? �  1@� %,%< �   1@ %�,%@%< 

 

The biharmonic equation in terms of polar coordinates can be written as 

                                                                   ∇�2σ� 
  σ�3 � 0                                                               (2.2.3) 

The above equation takes the following form in polar coordinate system 
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                              ∇7, � 0'-.'8- 
   �8 '.'8 
  �8- '-.'?-1 0'-.'8- 
   �8 '.'8 
  �8- '-.'?-1 � 0            (2.2.4)              

 

 

From various solutions of this biharmonic equation formulated in terms of Airy stress function 

solutions can be obtained for plane elastic problems subjected to discrete boundary conditions 

in polar coordinates. 

 

2.3 Complex Variable Theory 

 

The general notation for a complex variable z with real variables x and y is  

    B �  � 
  = �                                                                      (2.3.1) 
where x is the real part and y is the imaginary part of the complex number. 

The polar form expression for a complex number is 

Figure 

 

                                                         B �  @�C:; < 
  = D=> <� �  @ EF?                                       (2.3.2) 
where@ is the modulus of B given by 

@ �  G�� 
  ��,                                                            (2.3.3) 

 

θ is the argument of B given as  

< �  H�>��  0 �� 1                    
                                                                                                                                              (2.3.4) 

             BI  �  � –  = � �  @ E�F?                       
Where BI is the conjugate of the complex number B. 
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The following relations are developed by an ordinary coordinate transformation 

%%BI �  12 J %%� 
 = %%�K 

'   L 'L �  �� 0 '') � = ''+1                                                     (2.3.5) 

%%� �  %%B 
  %%BI              
    %%� � = J %%B � %%BIK           

 

2.3.1 Complex variables in elasticity 

 The method of Complex variables is applied to resolve many problems associated 

with elasticity. These not only include torsion and plane problems but also cases anisotropic 

and thermo elastic materials. The plane problems are attributed with cases of plane stress and 

plane strain for which the formulation of equations remain the same. The implementation of 

complex variables in plane problems of elasticity reduces to the solution of Navier’s 

displacement equations of equilibrium when subjected to certain boundary conditions. 

The expression for stresses in terms of displacements is given by the following equations 

�) � M J%N%� 
 %O%�K 
  2P %N%�    
                                         �+ � M 0'Q') 
 'R'+1 
  2P 'R'+                                                 (2.3.6) 

�)+ �  P J%N%� 
 %O%�K                     
Where M is the Lame’s constant and P is the shear modulus of elasticity. 

 Implementing the complex variable theory in the Airy stress function transforms 

the plane problem into a complex variable equation in polar coordinates. Taking advantage of 

putting down the complex terms B and BI in terms of variables x and y, we can write the Airy 
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stress function as S �  S�B, BI�. Applying the differential operators defined in the equations 

(2.3.5) results in the following equation [3]. 

∆�� � �  4 %�� �%B%BI 
                                                                                                                                              (2.3.7) 

∆7� � �  16 %7� �%B%BI 
 

Hence the biharmonic equations in elasticity can be expressed as 

                                                         '6�S �'L'LI � 0                                                              (2.3.8) 

Integrating the above equation yields 

 S�B, BI� �  12 2BW�B�XXXXXX 
  BIW�B� 
  Y�B� 
   Y�B�XXXXXXX3 

                (2.3.9) 

� ZE2BIW�B� 
  Y�B�3                     
Where W and Y are arbitrary functions of the indicated variables and , must be real. This shows 

the formulation of Airy stress function in terms of two complex potentials. 

 

Considering the Navier equation [3], 

                                                   P∇�[ 
  �λ 
  µ�∇ � ∇ . [� � 0                                            (2.3.10) 

Where ∇� is the Laplacian operator. 

Introducing the complex variable for the displacement _ �  N 
  = Oin the Navier equation given 

above, we get 

                                                          �λ 
  µ� `̀a 0`b`a 
  `b`ac 1 
 2µ 0 `-b`a `aX1 � 0                                     (2.3.11) 

Integrating the above expression yields a complex solution for displacement 

                                                            2µU �  κ γ�z� �  zγh�z�XXXXXX � ψ�z�XXXXXX                                             (2.3.12) 
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Where γ�z� and j�B�  �  Yk�B� are functions of an arbitrary complex variable and the parameter 

κ depends on the Poisson’s ratio l. 

                                           m � nop�qopq � 3 � 4l , Plane strain
yopzq�op�q �  ��{�p{  , Plane stress |                               (2.3.13) 

Using the relations for stresses implementing the Airy stress function in equations (2.1.6), 

(2.1.7) and the integrated result of the biharmonic function in equation (2.3.12) 

σ� 
 σ� � 22γh�z� 
 γh�z�XXXXXX3 

                                                                                                                                            (2.3.14) 

σ� � σ� 
  2iτ�� � 22zXγhh�z� 
  ψh�z�3 

 

Simplifying the above equations using standard transformations, the relation for stresses, 

displacements in polar coordinates and Cartesian coordinates can be written as 

σ~ 
  σ� �  σ� 
 σ� 

                                                         σ� � σ~ 
  2iτ~� � 2σ� �  σ� 
  2iτ��3e���                               (2.3.15) 

        N8 
  = N? � �N 
 = O�E�F? 

 

2.4 Complex Potentials 

 The formulation of Airy stress function involves the determination of the complex 

potentials γ�z� and j�B�. They are analytic functions which can be determined by applying 

certain stress and displacement conditions. The representation of the function depends on the 

domain of the problem under study. The different domains include finite simply connected, finite 

multiply connected and infinite multiply connected domains. 
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2.4.1 Finite Simply Connected Domain 

 

Figure 2.3 Finite Simply Connected Domain 

 

Consider a finite simply connected domain R bounded by a contour C as shown in the figure 

above. For this case, the single valued analytic functions have the power series representation 

as 

W�B� �  � �� B��
��"

 

                                                                                                                                            (2.4.1) 

j�B� �  � �� B��
��"

 

Where �� and �� are the constants which can be determined by applying the boundary 

conditions. 
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y 
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2.4.2 Finite Multiply Connected Domain 

 

 

Figure 2.4 Finite Multiply Connected Domain 

If R is a finite multiply connected domain bounded by the exterior contour Cm+1 and by the m 

interior contours Ck ( k = 1, 2, 3, . . . , m ) as shown in the figure below, if the displacements and 

stresses arte single valued functions throughout R, then W and j have the following structures: 

 

W�B� � � ���2��1 
  m�
�

��"
log�B � B�� 
 W��B� 

                (2.4.2) 

j�B� � � m��XXX2��1 
  m�
�

��"
log  �B � B�� 
  j��B� 

whereFk  is  the resultant vector of external forces applied to thecontourCk,B� is an arbitrary point 

within the contour Ckin the simple connected region R. The functions W��B� and j��B�are 

arbitrary analytic functions in R, and m  is the material constant. 
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2.4.3 Infinite Domain 

 

Figure 2.5 Infinite Domain 

 

For an infinite region R, bounded by several simple closed contours Ck(k = 1, 2, 3, . . . ,m) and if 

the stress components are bounded in the neighborhood of the point at infinity, then for 

sufficiently large |z|, 

W�B� � � ���2��1 
  m�
�

��"
log�B � B�� 
 �)� �  �+�4  B 
  W���B� 

                (2.4.3) 

             j�B� � � m��XXX2��1 
  m�
�

��"
log�B � B�� 
 �+� �  �)� 
 2=�)+�4  B 
  j���B� 

 

Where�)�, �+�, �)+�  are the stresses at infinity,  W���B� and j���B� are arbitrary analytic functions 

outside the region enclosing all contours. They are represented using the power series notation 

as follows: 
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W���B� �  � �� B�
�

��"
 

                (2.4.4) 

j���B� �  � �� B�
�

��"
 

 

The displacements at infinity would indicate unbounded behavior as even abounded strain over 

an infinite length will produce infinite displacements. Therefore the case of the above region is  

obtained by dropping the summation terms.
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CHAPTER 3 

APPLICATIONS OF AIRY STRESS FUNCTION 

3.1 Finite plate with a hole subjected to tensile loading 

 

Applying the concept of finite multiply connected domain as discussed in the previous chapter to 

a plate with finite boundaries subjected to a tensile loading as shown below. 

 

Figure 3.1 Finite Plate With A Hole Subjected To Tensile Loading 

 

Assuming a rectangular plate of length 2� and width 2b with a hole of radius ‘a’ at the 

center of the plate subjected to uniform tension S acting along the X-axis. Applying the complex 

potentials as given in the equations … for a finite multiply connected domain and integrating the 

second complex potential since j�B� �  Yk�B�, we get 

                                                             Y�B� �  � �∑ ���XXXX����p �����" log�B � B�� 
 j��B�� �B ,                  (3.1.1)

  

S 

y 

x 

a 

2l 

2b 
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Where k = 1 since it has only 1 internal boundary and the center of the circle is taken as the 

origin �0,0� which makes B� � 0. The arbitrary analytic functions W��B� and j��B� can be defined 

as 

W��B� �  � �� B� ,�
��"

 

                                                                                                                                              (3.1.2) 

j��B� �  � �� B��
��"

 . 
Substituting the above equations in the complex potential functions and solving for the Airy 

stress function defined in equation (2.3.9) we get 

 

                                                          S�B, BI� � ZE BI ∑ �� B� 
 � ∑ �� B����"���" $                                (3.1.3) 

Applying the boundary conditions for the plate 

�)2
� , � 3 � D, 
                                                                                 �+2 � , 
�3 � 0,                                                      (3.1.4) 

�)+2
� , � 3 � �)+2 � , 
�  3 � 0 

�82
� , 
� 3 � �8?2
�, 
�3 � 0 

 

Solving the Airy stress function we get 

 

                     S��, �� �  �2)-� +-32�z�-p )-p+-3p12��)2�-�+-3p����)��-� +-�����-� +-�             (3.1.5) 
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3.2 Infinite plate with a hole subjected to tensile loading 

Consider an infinite plate with a central hole subjected to uniform tensile loading �)� � D in the x 

direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Infinite Plate With A Hole Subjected To Tensile Loading 

 

 The Airy stress function for an infinite plate with a circular hole can be derived by 

applying the complex potential equations given in (2.4.3). The logarithmic part of the equation is 

neglected as it corresponds to discontinuities in the displacement which does not exist in this 

case as it is an elastic material. Substituting B � @EF?, applying the boundary conditions  

�)� � D , �+� � �)+� � 0and solving for the unknown constants in the complex potential functions 

assumed for an infinite domain, we get 

 

                 S�@, <� �  ���-��-��8-�� ��� �?���-�8- ��� 8-pz86 � �F�-?��8-                (3.2.1) 

  

y

x
a 

S 
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3.3 Two Dimensional Circular Inclusion 

In the previous sections, we have seen the derivation for an Airy stress function for 

finite and infinite plates with a circular hole. This section deals with an infinite plate having a 

circular inclusion. Research has been done on this topic and the Airy stress function has been 

derived for this geometry by my peer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Two Dimensional Circular Inclusion 

 

We can consider the above figure to be an infinite plate with a circular disc embedded 

in it instead of a hole. The infinite plate with a hole can be grouped with the finite simply 

connected domain by maintaining the equilibrium and continuity of stresses and displacements 

at the boundary of the two phases. 
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a 
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3.3.1 Stress Field Inside The Two Dimensional Circular Inclusion 

 

Considering the circular inclusion embedded within the infinite plate to be similar to a finite 

simply connected domain. Hence the complex potentials are assumed to be 

 

 

W�B� �  � 9� B��
��"

, 
                (3.3.1) 

j�B� �  � �� B� .�
��"

 

Similar boundary conditions are applied to the disc and the infinite plate matrix surrounding it. 

Considering the first three terms of the power series, we have 

 

W�B� �  9" 
 9�B 
 9�B�, 
                                                                        j�B� �  �" 
 ��B 
 ��B�,                                              (3.3.2) 

                                                         Y�B� �  �"B 
  �� L-
� 
 �� L�

�  .  
 

Expressing the Airy stress function in the polar coordinate system using B �  @ EF?, we get 

      ,�@, <� �  9"r cos θ 
  c�r�cos�θ 
  c�r�sin�θ 
  c�r� cos θ cos 2θ 
 

                            c�r� sin θ sin 2θ 
  d"r cos θ cos 2θ 
  d"r sin θ sin 2θ 
               (3.3.3) 
12 ��@� cos < cos 3< 
 12 ��@� sin < sin 3<        
12 ��@� cos < cos 4< 
 12 ��@� sin < sin 4<        
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Applying the Cartesian to polar coordinate transformation as in equation (2.2.1) 

                   �88F� � 29� 
  29� @ cos < � �� cos 2< �  2�� @ cos 3< , 
                                                      �??F� � 29� 
  69� @ cos < �  �� cos 2< �  2�� @ cos 3< ,                 (3.3.4) 

                  �??F� �  29� @ sin < � �� sin 2< �  2�� @ sin 3< .              
 

Determining the displacements using the equation (2.3.12) 

N8F� �  12P  � m 9" cos < �  9� @ 
  m 9� @ � 29�@� cos < 
  m 9�@� cos < �  
            �" cos < �  �� @ cos 2< � ��@� cos 2<�                                                                           (3.3.5) 

N?F� �  12P  �� m 9" sin < 
  29�@� sin < 
  m9�@� sin < 
  
            �" sin < � �� @ sin 2< � ��@� sin 3<  . 
 

The stresses and displacements are now evaluated for the boundary of the circular inclusion 

with the material constants P and m by substituting  @ �  � in the equations (3.3.4) and (3.3.5). 

 

3.3.2 Stress Field For Infinite Plate Surrounding The Disc 

The stresses and displacements for the infinite matrix surrounding the circular inclusion with 

material constant m� and shear modulus P� at radius @ �  � can be derived from the equations 

(3.3.4) and (3.3.5). 

�88¡Q¢ �  12�7  � �7D 
   �7D cos 2< 
  2���� 
  4��� cos < 

               
 6�� cos 2< �  8���� cos 2< �  20��� cos 3<� , 
�??¡Q¢ �  ���6  � �7D �  �7D cos 2<  �  2���� �  4��� cos <                                                          (3.3.6) 

              � 6�� cos 2< 
  4��� cos 3<� ,                             
�??¡Q¢ �  12�7  �� �7D sin 2< 
  4��� sin < 
  6�� sin 2< 
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              � 4���� sin 2< �  12��� sin 3<� ,                  
N8¡Q¢ �  18��P�  �� �7D 
  �7D m� �  2�7D cos 2< �  4���� 

              � 4��� cos <  –  4�� cos 2<  
  4���� cos 2< 

              
 4��m��� cos 2< 
  8��� cos 3< 
  4�m��� cos 3<� ,                                                    (3.3.7) 

N?¡Q¢ �  14��P�  �� �7D sin 2< �  2��� sin < �   2�� sin 2< 
  2���� sin 2< 

              � 2��m��� sin 2< 
  4�� sin 3< � 2�m��� sin 3<�.  
 

If the traction force and displacements are satisfied at the boundary of the circular disc and 

infinite plate interface, then the continuity equation can be satisfied. 

Equating (3.3.4) to (3.3.6) and (3.3.5) to (3.3.7) and solving for the constants  �", ��, ��, �", ��, �� 

by equating the coefficients of cos < , cos 2< , cos 3< , sin < , sin 2< , sin 3< and making the 

constants zero. 

�� �  � ��� DP � DP��2�m�P 
  P�� , �� � 0       �� � 0                                                          
�� �  �����qp ���¤qp ��q¤����q¤����q� q¤p �q¤� , �� � 0,        �� �  � �6� �q��q¤����¤qp q¤�  ,                            (3.3.8) 

9" �  �"m  , 9� �  P �D 
 Dm��4�2P � P� 
  mP�� , 9� � 0                                               
�" � m9", �� �  P � D 
 Dm��2�m�P 
 P�� , �� � 0                                                         
 

Substituting the solutions into the equations (3.3.4), (3.3.5) and (3.3.6), (3.3.7) to obtain the final 

stress and displacement equations for the circular inclusion and the infinite plate surrounding it 

respectively. The validity of these equations can be verified by substituting them in the 

equations of equilibrium given by equation (2.2.2). 
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Hence the Airy stress function chosen for this geometry is valid and it can be utilized to 

determine the stresses and displacements for a two dimensional plate with a circular inclusion. 

 

3.4 Three Phase Plate With A Concentric Circular Inclusion 

 

Considering a three phase plate with a concentric circular inclusion embedded in an infinite 

plate. This can be assumed as an extension to the previously discussed circular inclusion 

problem by embedding another circular disc within the previous circular inclusion. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Three Phase Plate With A Concentric Circular Inclusion 

 

The Inner circular inclusion can be considered as a finite simple connected domain, the outer 

circular disc as a finite multiply connected domain and the infinite matrix surrounding them to be 

an infinite domain. 

3.4.1 Formulation Of Equations For Stresses And Displacements 

The stresses for an Airy stress function , can be derived using the equations below. 

   a
b

�:
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�8 
 �? �  22γh�z� 
  γh�z�XXXXXX3 

                (3.4.1) 

                  �8 � �? 
 2=�8? � 22zXγhh�z� 
  ψh�z�3 

The displacement equations can be given as follows 

            2µU �  κ γ�z� �  zγh�z�XXXXXX � ψ�z�XXXXXX 

                   (3.4.2) 

   N8 
  = N? � �N 
 = O�E�F? 

Where _ �  N 
  = O. 

 

3.4.2 Stress Field Inside The Inner Circular Inclusion 

 

The complex potentials for the inner most circular inclusion can be given as 

                WF� � ��� 
 =���B 
 ��� 
 =���B�, 
                              (3.4.3) 

                jF� � ��� 
 =���B .                             
 

Substituting the complex potentials in the equations (3.4.1), (3.4.2) and solving for stresses and 

displacements, we get 

 

�88F� � 2�� � �� cos 2< 
 �� sin 2<,                                                            
�??F� � 2�� 
 12@��� cos 2< 
 �� cos 2< � 12@��� sin 2< � �� sin 2<,                                     (3.4.4) 

�8?F� � 6@��� sin 2< 
 �� sin 2< 
 6@��� cos 2< 
 �� cos 2<.             
 

_8F� �  12PF� @� � �1 
 mF���� 
  @���� �3 
 mF�� cos 2< � �� cos 2< 
 

              3@��� sin 2< � @���mF� sin 2< 
 @�� sin 2<�                        
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_?F� �  ��q¥¦ @� @���� 3 
 mF�� sin 2< 
 ��@ sin 2< 
 @���1 
 mF�� 
               (3.4.5) 

              3@��� cos 2< 
 @���mF� cos 2< 
 @�� cos 2<�                    
 

3.4.3 Stress Field For Concentric Circular Inclusion 

Consider the outer circular inclusion in the infinite plate for which the complex potentials can be 

defined as 

W � ��7 
 =�7� 1B 
 ��y 
 =�y�B 
 ��z 
 =�z�B� 

                (3.4.6) 

  j � ��§ 
 =�§� 1B� 
  ��¨ 
 =�¨� 1B  
  ��© 
 =�©�B 

Substituting the complex potentials in the equations (3.4.1) we have 

 

�88 � � 4�7 cos 2<@� 
  2�y 
 3�§ cos 2<@7 
  �¨@� �  �© cos 2< �  
              7�6 ��ª �?8- 
 ��« ��ª �?86 
 �© sin 2<                                                                                    

 

�?? �  2�y 
  12@��z cos 2< � 3�§ cos 2<@7 �  �¨@� 
 �© cos 2< � 

           12@��z sin 2< � ��« ��ª �?86 � �© sin 2<                                                                           (3.4.7) 

 

  �8? � � 2�7 sin 2<@� � 6@��z sin 2< 
 3�§ sin 2<@7 
 �© sin 2< 
 2�7 cos 2<@� 
                                                 
             6@��z cos 2< � ��« ��� �?86 �  �¬8- 
  �© cos 2<                                                                    
 

The displacements at the boundary of the outer circular inclusion are obtained by the equations 

(3.4.2). 
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_8 �  12@�P � �7@� cos 2< �1 
 m� �  @7�y�1 � m� � @z�z cos 2< �3 � m� � �§ cos 2< � @��¨ 

�@7�© cos 2< 
 @��7 sin 2< �1 
 m� 
 @z�z sin 2< �3 � m� � �§ sin 2< 
 @7�© sin 2<             
                                                                                                                                      (3.4.8) 

_< �  12@3P � �4@2 sin 2< �1 � m� 
 @6�6 sin 2< �3 
 m� �  �7 sin 2< 
 @4�9 sin 2< 

          ��7@� cos 2< �1 � m� 
 @7�y�1 
 m� 
 @z�z cos 2< �3 
 m� 
 �§ cos 2< 
                   
           @��¨ 
 @7�© cos 2< 

 

 

3.4.4 Stress Field For The Infinite Matrix Surrounding Circular Inclusion 

 

The complex potential functions for the infinite matrix have been chosen as given below 

 

                                                    W¡Q¢ � 0�¡7 1 B 
 ���" 
 =��"� �L  

              (3.4.9) 

j¡Q¢ � 0�:2 1 B 
 ���� 
 =���� 1B 
 ���� 
 =���� 1B� 

 

Substituting the above complex potentials in the equations and (3.4.1) we have the stress 

components as 

�88¡Q¢ � � �@7�: 
 @7�: cos 2< 
 8@� cos 2< ��" � 2@���� � 6 cos 2< ���2@7  

                 
 8@� sin 2< ��" � 6 sin 2< ���2@7      
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�??¡Q¢ �  �¡� 
 �� �: cos 2< � �¤¤8- � � ��� �?�¤-86 � � ��ª �?�¤-86                                            (3.4.10) 

 

�8?¡Q¢ � � �@7�: sin 2< 
 4@� sin 2< ��" � 6 sin 2< ���2@7 � 

               4@� cos 2< ��" � 2@���� � 6 cos 2< ���2@7  

 

The displacement functions are: 

 

_8¡Q¢ �  �¨8�q¯°± �� @7�:�1 � m¡Q¢� � 2@7�: cos 2< 
  4��"@� cos 2< �1 
 m¡Q¢� � 4@���� �
                4��� cos 2< 
 4@���" sin 2< �1 
 m¡Q¢� � 4��� sin 2<�  

                    (3.4.11) 

_<:N² �  1
4@3P:N² � @4�: sin 2< 
 2��"@2 sin 2< �1 � m:N²� �  2��� sin 2< � 2�10@2 cos 2< �1 �

                  m:N²
2@2�11
2cos2<�12    
 

3.4.5 Continuity Equations 

In the previous section, we have defined the stress and displacement field functions for the 

complete geometry. For the Airy stress function to hold valid throughout the plate, it has to 

satisfy the continuity equations at the interface of the circular inclusions boundary and the 

infinite matrix surrounding it. 

 At @ � �, we have the continuity equations for the concentric circular inclusions by 

equating (3.4.4) to (3.4.7) and (3.4.5) to (3.4.8). 

�88F� � �88 � 0 

2�� � �� cos 2< 
 �� sin 2< 
 7�6 ��� �?�- �  2�y �  ��« ��� �?�6 � �¬�- 
 �© cos 2< 
                       (3.4.12) 

7�6 ��ª �?�- �  ��« ��ª �?�6 �  �© sin 2< � 0                                                                                   
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�8?F� � �8? � 0 

6���� sin 2< 
 �� sin 2< 
 6���� cos 2< 
 ��6 ��ª �?�- � 6���z sin 2< � ��« ��ª �?�6                        (3.4.13) 

��© sin 2< � 2�7 cos 2<�� � 6���z cos 2< 
 3�§ cos 2<�7 
  �¨�� �  �© cos 2< � 0                      
 

_8F� � _8 � 0 

12PF� �� � �1 
 mF���� 
  ����� �3 
 mF�� cos 2< � �� cos 2< 
 3���� sin 2< �                
����mF� sin 2< 
 �� sin 2<� �  ��8�q � �7�� cos 2< �1 
 m� � �7�y�1 � m�                                (3.4.14) 

��z�z cos 2< �3 � m� � �§ cos 2< � ���¨ � �7�© cos 2< 
 ���7 sin 2< �1 
 m� 
               
�z�z sin 2< �3 � m� � �§ sin 2< 
 �7�© sin 2<� � 0                                                                             
 

_?F� � _? �  0 

12PF� �� ����� 3 
 mF�� sin 2< 
 �� sin 2< 
 ���1 
 mF�� 
 3���� cos 2< 
 ����mF� cos 2< 


�� cos 2<� � ��8�q � �7�� sin 2< �1 � m� 
 �z�z sin 2< �3 
 m� � �§ sin 2< 
 �7�© sin 2<    (3.4.15) 

��7�� cos 2< �1 � m� 
 �7�y�1 
 m� 
 �z�z cos 2< �3 
 m� 
 �§ cos 2< 
  ���¨ 
 �7�© cos 2< � 0 

 

 

Similarly, we have the continuity equations for the outer inclusion and the infinite matrix 

interface. Equating (3.4.7) and (3.4.10) 

 

�88 � �88¡Q¢ � 0 

� 7�6 ��� �?8- 
  2�y 
 ��« ��� �?86 
  �¬8- � �© cos 2< � 7�6 ��ª �?8- 
  ��« ��ª �?86 
  �© sin 2< 
              (3.4.16) 

�@7�: 
 @7�: cos 2< 
 8@� cos 2< ��" � 2@���� � 6 cos 2< ���2@7 � 8@� sin 2< ��" � 6 sin 2< ���2@7  
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�8? � �8?¡Q¢ � 0 

� 2�7 sin 2<@� � 6@��z sin 2< 
 3�§ sin 2<@7 
 �© sin 2< 
 2�7 cos 2<@� 
 6@��z cos 2< � 

��« ��� �?86 �  �¬8- 
 �© cos 2< 
 �86�¡ ��ª �?p78- ��ª �?�¤��z ��ª �?�¤-�86 
                                 (3.4.17)             

4@� cos 2< ��" � 2@���� � 6 cos 2< ���2@7  

 

 

_8 � _8¡Q¢ � 0 

12��P � �7�� cos 2< �1 
 m� �  �7�y�1 � m� � �z�z cos 2< �3 � m� �  �§ cos 2< � ���¨ 

 ��7�© cos 2< 
 ���7 sin 2< �1 
 m� 
  �z�z sin 2< �3 � m� � �§ sin 2< 
 �7�© sin 2<� �        (3.4.18) 

�¨8�q¯°± �� @7�:�1 � m¡Q¢� � 2@7�: cos 2< 
  4��"@� cos 2< �1 
 m¡Q¢� � 4@���� � 4��� cos 2< 

4@���" sin 2< �1 
 m¡Q¢� � 4��� sin 2<�  

                                                                           
 

_? � _?¡Q¢ �  0 

12@3P � �4@2 sin 2< �1 � m� 
 @6�6 sin 2< �3 
 m� �  �7 sin 2< 
 @4�9 sin 2< 

�4@2 cos 2< �1 � m� 
 @4�5�1 
 m� 
 @6�6 cos 2< �3 
 m� 
 �7 cos 2< 
 @2�8                     (3.4.19) 


@7�© cos 2< � 
1

4@3P:N² � @4�: sin 2< 
 2��"@2 sin 2< �1 � m:N²� �  2��� sin 2< � 

2��"@� cos 2< �1 � m¡Q¢� 
 2@���� 
 2 cos 2< ����  

 

Equating the coefficients of cos < , cos 2< , sin < , sin 2< and the constants in the above equations 

to zero, we get 
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2�� � 2�y � �¬�- � 0                                                                                                         (3.4.20) 

 

�� 
 7�6�- � ��«�6 � �© � 0                                                                                                  (3.4.21) 

 

��� 
 7�6�- � ��«�6 
 �© � 0                                                            (3.4.22) 

 

� �¡� 
 2�y 
 �¬��¤¤�- � 0                                                                                        (3.4.23) 

 

� 7�6�- 
 ��«�6 
 �© 
 7�¤��- � ��¤-�6 � 0                                                                         (3.4.24) 

 

�¡� � 7�6�- 
 ��«�6 � �© 
 7�¤��- � ��¤-�6 � 0                                                                   (3.4.25) 

 

�¬�- � 0                                                                                                                                (3.4.26) 

 

6���� 
 �� 
 ��6�- � 6���z � ��«�6 � �© � 0                                                           (3.4.27) 

 

6���� 
 �� � ��6�- � 6���z 
 ��«�6 � �© � 0                                                            (3.4.28) 

 

��¬p�¤¤�- � 0                                                                                                                       (3.4.29) 

 

� �¡� � ��6�- 
 6���z 
 ��«�6 
 �© 
 ��¤��- � ��¤-�6 � 0                                                 (3.4.30) 
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��6�- 
 6���z 
 ��«�6 
 �© � ��¤��- 
 ��¤-�6 � 0                                                              (3.4.31) 

 

�-���p�¥¦�q�¤pq¥¦2��-���p���´p�¬3��qq¥¦ � 0                                                             (3.4.32) 

 

����-�q¥¦ � ���¥¦�-�q¥¦ 
 ����q¥¦ � �6��q � ��6��q � ����µ�q 
 ����µ�q 
 �«���q � ��¶�q � 0                (3.4.33) 

 

� ����-�q¥¦ 
 ���¥¦�-�q¥¦ � ����q¥¦ � �6��q � ��6��q 
 ����µ�q � ����µ�q 
 �«���q � ��¶�q � 0              (3.4.34) 

 

7�-���p��q¯°±�´�7q¯°±�¬pq2��-���p�¯°±��¡p�¤¤3¨�qq¯°± � 0                                     (3.4.35) 

 

��¡7q¯°± 
 �6��q 
 ��6��q � ����µ�q 
 ����µ�q � �«���q � ��¶�q � �¤���q¯°± � �¯°±�¤���q¯°± 
 �¤-���q¯°± � 0 (3.4.36) 

 

�6��q 
 ��6��q � ����µ�q � ����µ�q � �«���q 
 ��¶�q � �¤���q¯°± � �¯°±�¤���q¯°± 
 �¤-���q¯°± � 0             (3.4.37) 

 

�-��p�¥¦�q�¤�q¥¦2��-��p���´p�¬3��qq¥¦ � 0                                                         (3.4.38) 

 

����-�q¥¦ 
 ���¥¦�-�q¥¦ 
 ����q¥¦ 
 �6��q � ��6��q � ����µ�q � ����µ�q � �«���q � ��¶�q � 0                  (3.4.39) 

 

����-�q¥¦ 
 ���¥¦�-�q¥¦ 
 ����q¥¦ � �6��q 
 ��6��q � ����µ�q � ����µ�q 
 �«���q � ��¶�q � 0                 (3.4.40) 



32 

 

�-��p��q¯°±�´pq:N²�¬�q�¤¤��qq¯°± � 0                                                                          (3.4.41) 

 

� �6��q 
 ��6��q 
 ����µ�q 
 ����µ�q 
 �«���q 
 ��¶�q 
 �¤���q¯°± � �¯°±�¤���q¯°± � �¤-���q¯°± � 0          (3.4.42) 

 

� ��¡7q¯°± 
 �6��q � ��6��q 
 ����µ�q 
 ����µ�q � �«���q 
 ��¶�q � �¤���q¯°± 
 �¯°±�¤���q¯°± 
 �¤-���q¯°± �0        (3.4.43) 

 

Solving the above equations for the unknowns using mathematica and simplifying the solution 

by applying material properties, we have 

 

�� ! 5���:�� 
 28�� 

�� ! 24����� � ������:�¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨ 

�� ! 5���14�z � 9�7�� 
 75�z��:��¨ 
 120�z�� � 150�7�7 
 60���z 
 675�¨ 

�7 ! 4������z 
 15�z��:�¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨ 

�y ! 14���:3�� 
 84�� 

�z ! 20����� � ������:�¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨ 

�§ ! 4�7�7��7 
 15�7��:�¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨ 

�¨ ! 2�����:3�� 
 84�� 

�© ! � 12�8�z�� � 5�7�7 
 45�¨��:�¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨ 
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��" ! � 9����¨ 
 8�z�� � 10�7�7 
 20���z 
 45�¨��:2��¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨� 

��� ! ����� � 28����:6��� 
 28���  

��� ! � �7�9�¨ 
 72�z�� � 10�7�7 
 100���z � 405�¨��:2��¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�  

�� ! 0, �� ! 0, �� ! 0, �7 ! 0, �y ! 0, �z ! 0 

�§ ! 0, �¨ ! 0, �© ! 0, ��" ! 0, ��� ! 0, ��� ! 0                                                                   (3.4.44) 

 

Substituting the above solutions into equations (3.4.4) and (3.4.5), we get the final stress 

equations for the inner circular inclusion as 

 

�88F� � �2���:�5��¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨���� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨� 
 

               4�14�¨ 
 383�z�� � 252�7�7 
 75���z 
 2100�¨� cos 2<����� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�                                                             
�??F� � ��2���:��5��¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨���� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨� 
 

              4��� 
 28����14�z 
 75�z�z 
 36����@� � 9�7��� 
 4@����cos 2<����� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�                                            
�8?F� � � ¨�-0�7�µp§y�µ�µp�¨�-�-8-�©�62�-p�8-31�¡ ��ª �?�¬���"�µ�-p�y"�6�6�z"�-�µ�z§y�¬                                                                   (3.4.45) 

Substituting the above solutions into equations (3.4.7) and (3.4.8), we get the final stress 

equations for the outer circular inclusion as 

 

�88 � ��2���:����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@���� 
 14@��3��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨� 
 

            6��� 
 28�����60���z@� � 24�z@7 � 135�z@7 
 �¨�3�� � 4@�� 
 15�7���3�7 
 @7�� cos 2<��3��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�   
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�?? � �2���:����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@���� � 14@��3��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7 
 

   18��� 
 28�����¨�� � 8�z@7 � 45�z@7 � 20����@z 
 5�7�3�z 
 ��@7 
 4@z���cos 2<��3��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7  

�8? � � 4���24�z@7 
 13545�z@7 
 �¨�3�� � 2@�� � 30����@���7 � @7���¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7 
 

            �y�6���µ��-86��8µ��¡ ��ª �? ��¬���"�µ�-p�y"�6�6�z"�-�µ�z§y�¬�86                                                                                   (3.4.46) 

 

 

Substituting the above solutions into equations (3.3.10) and (3.3.11), we get the final stress 

equations for the infinite matrix surrounding the concentric circular inclusions as 

�88¡Q¢ � ���:���¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@���28����� � 3@�� 
 ����� 
 3@���6��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7  

                � 3��� 
 28����135�¨�9�7 � 12��@� � 5@7� 
 60���z�5�7 � 12��@� � @7�6��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7 
 

                   �¨�27�7 � 36��@� 
 @7� 
 24�z�9�z � 12�7@� � 5��@7� � 30�7��¨ � 12�z@� � 5�7@7�� cos 2<��6��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7  

 

�??¡Q¢ � ��:����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@������� � 3@�� � 28��7 
 3��@���6��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7  


 3��� 
 28����135�¨�9�7 � 5@7� 
 60���z�5�7 � @7�6��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7 
                             
�¨�27�7 
 @7� 
 24�z�9�z � 5��@7� � 30�7��¨ � 5�7@7�� cos 2<�� 6��� 
 28�����¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7                             

 

�8?¡Q¢ � ���60���z�5�7 � 6��@� 
 @7� 
 �¨��27�7 
 18��@� 
 @7� � 135�¨�9�7 � 6��@� 
 5@7�2��¨ � 120�z�� 
 150�7�7 � 60���z � 675�¨�@7  

                � �7�µ2©�µ�z�68-py�-863p�"�6��¬�z�µ8-py�686���¡ ��ª �?���¬���"�µ�-p�y"�6�6�z"�-�µ�z§y�¬�86                                                    (3.4.47) 

The above equations can be verified by substituting them into the equilibrium equations. 
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Example Problem: 

Finding stresses for a thin infinite plate made of material M1 with two concentric circular 

inclusions with the inner circular inclusion M2 of radius � � 2·· and the outer circular inclusion 

M3 of radius � � 4·· subjected to a far field tensile loading of 100 N/mm2. 

 

Material properties M1, M2, M3 are given below. 

For material M1, Shear modulus P � 1 and m � 1. 

For material M2, Shear modulus P � 4 and m � 5. 

For material M3, Shear modulus P � 10 and m � 10. 

 

Substituting the above values in the stress and displacement components derived above, we 
get 
 

�88F� � 35.398 � 87.509 cos 2< 

�??F� � 35.398 
 �87.509 
 0.495@�� cos 2< 

�8?F� � �87.509 
 0.247@�� sin 2< 

�88 � 9.439@� 
 33.038 
 J423.738@7 � 140.806@� � 78.79K cos 2< 

�?? � 9.439@� 
 33.038 
 J423.738@7 
 78.79 
 0.412@�K cos 2< 

�8? � J423.738@7 � 70.033@� 
 78.79 
 0.206@�K sin 2< 

�88¡Q¢ � 50 � 261.94@� 
 J24223.655@7 � 2088.968@� � 50K cos 2< 

�??¡Q¢ � 50 
 261.94@� 
 J50 � 24223.655@7 K cos 2< 

�8?¡Q¢ � J24223.655@7 � 1044.484@� 
 50K sin 2< 

Converting the above equations into Cartesian coordinate system and plotting the graphs for 

various stress components. 



 

 

 

Figure 3.5 Variation of shear stress along the plate, 1

Figure 3.6 
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Variation of shear stress along the plate, 1st quadrant view.

 

Figure 3.6 Variation of shear stress along the plate 

 

quadrant view. 



 

Figure 3.7 Variation of stress

Figure 3.8
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Variation of stress along the plate, 1st quadrant view. 

 

Figure 3.8 Variation of stress along the plate  
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

This research demonstrated the application of Airy stress function in solving elasticity problems. 

It demonstrated the methodology in determining the stress fields and displacements at any point 

on a two dimensional plate considering various domains subjected to different boundary 

conditions. Earlier, research has been carried out on derivation of airy stress function for a two 

dimensional plate with a circular inclusion subjected to far field tensile loading. 

 

The thesis presented now derives an Airy stress function for a three phase plate with a 

concentric circular inclusion subjected to a tensile loading at far field and is successful in finding 

the stress fields and displacements at any point on the matrix. This work has been proposed 

earlier [Christen & Lo] but could not be computed due to lack of symbolic software. Using 

mathematica, the simultaneous system of equations with unknown variables has been solved 

successfully. Likewise the equations of equilibrium and continuity equations have been satisfied 

for the assumed airy stress function. This search stands out from the previous work done by 

other students till date. The earlier research work would be a special case of this thesis topic by 

equating the radii of the concentric circular inclusions. 

From the graphical representation of the result, it can be seen that shear stress is zero 

along the x and y axes. It can also be observed that the shear stresses within the inclusions are 

constant respectively. The maximum tensile stress occurs at the interface of the concentric 

inclusion and the infinite matrix intersecting the y-axis and decreases along the y-axis further 

into the infinite matrix. The maximum compressive stress occurs at the boundary intersecting 

with the x-axis and decreases as it nears the y-axis along the interfacing boundary.
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Recommended future work on this thesis topic would be 

• Generalizing boundary conditions to include all the stress components at far field. 

• Considering multi-layer circular inclusions with centers offset. 

• Considering the shape of the inclusion to be elliptic. 

• Concentric elliptical inclusions. 
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