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ABSTRACT

THE COMPLEX GAUSSIAN SCALE MIXTURES

OF COMPLEX WAVELET COEFFICIENTS

AND APPLICATIONS

YOTHIN RAKVONGTHAI, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Soontorn Oraintara

In this thesis, the complex Gaussian scale mixture (CGSM), which is an ex-

tension of the Gaussian scale mixture (GSM) for real-valued random variables to the

complex case, is presented to model the complex wavelet coefficients. Along with some

related propositions and miscellaneous results, the probability density functions (pdf)

of the magnitude and phase of the complex random variable are presented. Specif-

ically, the closed forms of the magnitude pdf for the case of complex generalized

Gaussian distribution (CGGD) and the phase pdf for the general case are presented.

Subsequently, the pdf of the relative phase is derived.

Moreover, parameter estimation methods in the presence of noise for several

magnitude pdf’s which are special cases of the magnitude pdf related to the CGSM,

and for the relative phase pdf (RP pdf) are proposed. In addition, the parameter

estimation of the RP pdf is investigated, and a non-iterative estimator for the relative

phase pdf’s parameters is also proposed.
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To show the usefulness of the proposed model, the CGSM is then applied to

image denoising using Bayes least square estimator. The experimental results show

that using the CGSM of complex wavelet coefficients visually improves the quality

of denoised images from the real case. Moreover, the derived magnitude pdf of the

CGGD is then utilized in texture image retrieval that uses complex coefficient mag-

nitude to improve the accuracy rate from using the real or imaginary parts. Finally,

the problem of noisy texture retrieval, where the query image is contaminated by

noise, is studied. This texture retrieval scheme is based on the proposed parameter

estimation methods in the presence of noise. The retrieval results show that using

both magnitude and phase information of complex coefficients improves the accuracy

rate from solely using the magnitude or phase information, and also from using the

real or the imaginary parts. These simulation results are also consistent in several

complex transform domains.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

It is well known that statistical modeling in the wavelet domain is favorable for

many image processing applications, such as denoising and compression, because of

wavelet’s capability of analyzing and representing images [62]. This ability can be

further improved by using complex-valued wavelets rather than real-valued wavelets.

Fig. 1.1 shows an example of complex-valued decomposition of the Lena image into

subbands of complex coefficients. This enhancement is mainly due to the fact that

the complex wavelets are based on complex-valued sinusoids constituting an analytic

signal [58]. In addition, the advantages of complex wavelets over real wavelets are

directly related to the complex magnitude and phase. For example, the magnitude of

a complex coefficient possesses the shift-invariance property while a real wavelet coef-

ficient is shift-varying. Furthermore, it is well known that the magnitude of a complex

wavelet coefficient better represents a singularity than either the real/imaginary part

of the complex coefficient or the value of a real wavelet coefficient. Besides magnitude

information, phase information plays a key role in image processing as well. A famous

example that shows the importance of phase is in [44], where the Fourier phase is

shown to contain more information about image features than the magnitude. More-

over, there is also a connection between the phase of a complex wavelet coefficient

and image features, such as edges. Specifically, the phase of a complex coefficient in

each scale near a singularity varies linearly with its distance to the singularity [4]. In

addition to the intrascale phase relationship, the coefficient phases across scales at

1
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Figure 1.1. Example of complex multiscale decomposition: 2 scales (levels) with 6 and
12 subbands: (a) input image, (b) frequency partition, and (c) subbands of coefficient
magnitude.

a singularity are aligned [29, 74]. These intrascale and interscale relationships have

been used in some image processing applications, such as feature angle determina-

tion [4], feature detection [29], and texture retrieval [69, 70]. All of these point out the

significance of the magnitude and phase information of complex coefficients, which

leads to a need for statistical modeling in the complex wavelet domain.

1.2 Problem Statement

In the probabilistic framework, an appropriate statistical model for complex

random variables is required to fully utilize complex wavelet coefficients as well as

their magnitude and phase information. This thesis investigates on:
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1. a statistical model that can accurately capture the statistics of complex wavelet

coefficients extracted from natural images,

2. the use of the model in image processing in the complex wavelet domain, and

3. the related magnitude and phase pdf’s which are stemmed from the model and

their applications.

1.3 Statistical Image Modeling in the Wavelet Domain

This section provides a literature review on statistical modeling in the wavelet

domain.

The wavelet transform has been shown to be efficient for image modeling [35].

In the wavelet domain, the marginal distribution of wavelet coefficients representing

an image follows a peaky and heavy-tailed non-Gaussian distribution. These charac-

teristics can be well modeled by the generalized Gaussian distribution (GGD) [35].

Nevertheless, the GGD model only captures the marginal statistics but does not

account for their joint statistics which also exist in the wavelet domain.

To model both marginal and joint statistics in the wavelet domain, the Gaussian

scale mixture (GSM) model has been developed [47, 71, 72]. The GSM [5] model

characterizes the set of real-valued random vectors that can be expressed as the

product of a zero-mean Gaussian random vector and an independent positive random

variable, i.e., a GSM random vector is a mixture of a possibly infinite number of

zero-mean Gaussian random vectors.

Specifically, a random vector X with dimension N can be characterized by a

Gaussian scale mixture (GSM) if it can be expressed as

X =
√
SX̃ (1.1)
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where X̃ is a zero-mean Gaussian random vector with covariance matrix CX̃, and

S is an independent positive scalar random variable called the multiplier or hidden

multiplier. For X to have the unique GSM representation as in (1.1), the mean of S

must be specified. Without loss of generality, assume that S has unit mean [47], i.e.,

E[S] = 1. This implies that the covariance matrixCX = E[S]CX̃ = CX̃. Accordingly,

the pdf of X is given by [47]

fX(x) =

∫ ∞

0

fX|S(x|s)fS(s) ds

=

∫ ∞

0

exp
(
−xT (sC

X̃
)−1x

2

)
(2π)

N
2

√
|sCX̃|

fS(s) ds, (1.2)

for x ∈ RN , where xT is the transpose of x, and |CX̃| is the determinant of CX̃. Note

that fX(x) is a Gaussian pdf when fS(s) is an impulse function. See [47] also for the

choices of the pdf of the multiplier.

The GSM distribution encompasses many known distributions as special cases,

such as the Student’s t-distribution, the logistic distribution [5], the α-stable distri-

bution, the GGD, and the symmetrized Gamma distribution [72]. The GSM model

can accurately capture both marginal and joint statistics of wavelet coefficients which

have peaky and heavy-tailed characteristics. Besides the GSM, other wavelet-based

image models are also used to capture the characteristics including the hidden Markov

tree (HMT) model [13], the bivariate model [60], the Bessel K form density [18], the

multivariate Laplacian distribution [57], the Gauss-Hermite expansion [48], multivari-

ate prior models [63], as examples. In addition, the GSM modeling in the wavelet

domain has been used for image denoising in [47], which provides a high-quality image

denoising algorithm.

Since the emersion of complex wavelets, there are a number of research stud-

ies on the statistical modeling based on complex wavelets. For instance, in [10], the



5

complex hidden Markov tree (CHMT) model is proposed for complex coefficients ob-

tained from the dual-tree complex wavelet transform (DT-CWT) [27]. The bivariate

model for complex coefficients and image denoising with the bivariate shrinkage are

studied in [60]. In [3], the bivariate α-stable distribution is used for image denoising

in the complex wavelet domain. In [49], the Cartesian and polar forms of marginal

densities of DT-CWT coefficients due to Gaussian signals are studied. Thanks to the

usefulness of the GSM model and the complex wavelets as well as their magnitude

and phase information, the modification of the GSM for complex coefficients should

be beneficial.

Indeed, the probability density function (pdf) of a complex random vector (as a

general form of a complex random variable) is the joint pdf of two real-valued random

vectors representing the real and the imaginary parts. In order to express the pdf of a

complex random vector as an analytic function of the complex vector itself, we need

an additional assumption. For a class of distributions whose pdf’s depend only on

the covariance matrix such as the Gaussian distribution, the assumption is that the

covariance matrices of the real and imaginary parts are equal, and that the sum of the

two cross-covariance matrices is zero. With such an assumption, the pdf of a complex

random vector whose real and imaginary parts are Gaussian can be expressed as a

function of the complex covariance matrix, and has been studied in [19, 38, 75] as the

complex Gaussian pdf.

Recently, there are also wavelet-based statistical models extended from the

GSM, e.g., the space variant GSM [22], the oriented-adaptive GSM [24], and the GSM

for derotated complex coefficients [39]. Nonetheless, those kinds of distributions are

outside the scope of this work and are not discussed herein.
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1.4 Thesis Outline

Chapter 2 introduces the complex Gaussian scale mixtures (CGSM) for the

complex wavelet coefficients. Chapter 3 discusses the magnitude pdf’s and the relative

phase pdf (RP pdf), which are derived from the CGSM, and their related parameter

estimation both in the absence and in the presence of noise. To show the use of

the proposed CGSM in practice, Chapter 4 discusses several applications based on

complex wavelets of the CGSM and its related magnitude and relative phase pdf’s

in image denoising, texture retrieval and noisy texture retrieval. Finally, concluding

remarks and future directions are presented in Chapter 5.



CHAPTER 2

COMPLEX GAUSSIAN SCALE MIXTURES OF COMPLEX WAVELET

COEFFICIENTS

2.1 Introduction

In this chapter, the complex Gaussian scale mixture (CGSM) is introduced as

an extension of the GSM, which is for real-valued random vectors, to the complex

case and is then used to model complex wavelet coefficients. This chapter begins

with a discussion of modeling the real and imaginary parts of complex coefficients by

the GSM. It is then shown that the corresponding joint covariance matrix satisfies

the circular condition. Assuming that the real part is a GSM, it is proved that the

imaginary part is also a GSM with the same multiplier. Accordingly, the CGSM

of complex wavelet coefficients is proposed. In addition, some related propositions

of the CGSM are presented. Because of the importance of magnitude and phase

information of complex wavelets, examples of using the CGSM to derive two pdf’s

related to the magnitude and phase are also discussed. To show the effectiveness of

the CGSM, image denoising is performed using Bayes least squares (BLS) estimator

with the proposed model. The results show that using the CGSM of complex wavelet

coefficients visually improves the quality of denoised images from using the GSM of

real wavelet coefficients.

It is worth noting that the framework herein is not only limited to the DT-CWT

[27], which is probably the most widely used complex wavelet transform in image

processing, but also includes other complex-valued multiresolution transforms, such

as the fast discrete curvelet transform (FDCT) [7], the pyramidal dual-tree directional

7
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filter bank (PDTDFB) [43], and the uniform discrete curvelet transform (UDCT) [41,

54]. The derived pdf can be applied and easily extended to other complex transforms

because they all behave like complex analytic bandpass filters and thus yield complex

subband coefficients whose real and imaginary parts corresponds to wavelets that form

a Hilbert transform pair. Therefore, the complex-valued multiresolution transforms

are referred to as complex wavelets while the corresponding coefficients are referred

to as complex wavelet coefficients or complex coefficients henceforth.

2.2 Statistics of Complex Coefficients

The goal of this section is to study the statistics of the real and imaginary parts

of complex coefficients as well as their statistical relationship related to a Hilbert

transform pair. In particular, it is shown that the GSM can be used to model the

real/imaginary part, and that both parts are related in terms of covariance matrices

in Subsections 2.2.1 and 2.2.2, respectively.

2.2.1 Gaussian Scale Mixtures

To begin with, this section shows that the real and imaginary parts are consis-

tent with the GSM model.

To validate the GSM modeling of the real and imaginary parts of complex coef-

ficients, the marginal statistics of complex coefficients produced using the UDCT

of the Lena image is studied. The log of normalized marginal histogram of the

real/imaginary part of complex coefficients along with its best fitted Student’s t-

distribution, which is a class of GSM whose hidden multiplier has the inverse Gamma

pdf [31], is shown in Fig.’s 2.1(a) and 2.1(b) for the real and imaginary parts, respec-

tively. Fitting is done by minimizing the relative entropy ∆H (the Kullback-Leibler

divergence (KLD)) between the histogram and the pdf. It can be seen that the his-
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Figure 2.1. Marginal and joint statistics of the real/imaginary part of complex co-
efficients in one finest subband of the Lena image: (a) Log of normalized marginal
histogram and the fitted GSM for the real part; (b) for the imaginary part; and (c)
the conditional histogram of the imaginary part of two spatially adjacent coefficients,
Z and its adjacent neighbor NZ. Each column has been independently rescaled to
fulfill the full range of intensities.

togram is highly non-Gaussian with high peak at zero, and that the fitting result

for each histogram is quite good with the ratio between the KLD and the histogram

entropy ∆H/H = 0.00077 and 0.00107 for the real and imaginary parts, respectively.

Note also that the marginal distributions of both parts are close to each other. In ad-

dition to the marginal statistics, the conditional histogram of two spatially adjacent

coefficients is shown in Fig. 2.1(c). Only the imaginary part is considered because

the result of the real part is also similar. The shape of this conditional histogram is

so-called bow-tie shape, which implies that two random variables are roughly uncor-

related but highly dependent. These statistical characteristics of the imaginary part

of complex coefficients can be modeled by a GSM [47, 71, 72].

2.2.2 Hilbert Transform Pairs and Correlation Relationships

Since the real and imaginary parts of complex coefficients are obtained from

sampling two processes which form a Hilbert transform pair, their relationship is

crucial to the development of the CGSM, whose pdf is a function of complex variables.
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This subsection derives the relationship of a 2-D Hilbert transform pair in terms of

autocorrelation and cross-correlation, and relates it to the relationship of the real and

imaginary parts of complex coefficients. The details are as follows.

Let X1(t) be a real 2-D random process, where t = [t1, t2]
T . The Hilbert

transform of X1(t), which is denoted by H{X1(t)}, is defined as

H{X1(t)} , (h ∗X1)(t),

where h(t) is defined by its Fourier transform H(ω) as [21]

H(ω) = −j sgn(ωTe) =


−j, if ωTe > 0;

0, if ωTe = 0;

j, if ωTe < 0,

(2.1)

where ω = [ω1, ω2]
T , and e = [e1, e2]

T , is a real unit-norm vector. Let X2(t) be the

Hilbert transform of X1(t), i.e., X2(t) = H{X1(t)}. Assume that X1(t) is wide-sense

stationary (WSS). Since H is linear time-invariant (LTI), X1(t) and X2(t) are jointly

WSS [45], i.e.,

E[Xi(t+ τ )Xj(t)] = RXiXj
(τ ),

where τ = [τ1, τ2]
T , for 1 ≤ i, j ≤ 2. Let RXi

(τ ) , RXiXi
(τ ). The cross power spec-

trum of two processes Xi(t) and Xj(t) is defined as the Fourier transform SXiXj
(ω)

of RXiXj
(τ )

SXiXj
(ω) =

∫
R2

RXiXj
(τ )e−jωT τdτ .

When i = j, the cross power spectrum becomes the power spectrum (or spectral

density) of Xi(t), denoted as SXi
(ω). Note that SX1X2(ω) = S∗

X2X1
(ω) since Xi(t)’s

are real. The relationships of the cross power spectrums are then given by

SX2(ω) = SX1(ω)|H(ω)|2,

SX1X2(ω) = SX1(ω)H∗(ω), and

SX2(ω) = SX1X2(ω)H(ω). (2.2)
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From (2.1) and (2.2), it follows that

SX1(ω) = SX2(ω), and SX1X2(ω) = −SX2X1(ω), and thus

RX1(τ ) = RX2(τ ), and RX1X2(τ ) = −RX2X1(τ ). (2.3)

Consider an N -size neighborhood of each of the real and imaginary parts of

complex coefficients. The corresponding neighborhood vectors are given by

X = [X1, X2, . . . , XN ]
T , and Y = [Y1, Y2, . . . , YN ]

T ,

for the real and imaginary parts, respectively. Since the discrete complex wavelet

transform can be considered as a bank of bandpass filters, the two random vectors X

and Y are zero-mean. As X and Y are obtained from sampling two processes which

form a Hilbert transform pair, it follows from (2.3) that

CX = CY and CXY = −CYX, (2.4)

where CX , E[XXT ], and CXY , E[XYT ].

Note that this condition on the covariance matrices (2.4) is the so-called cir-

cular [46] or proper [40] condition, and a complex random vector that satisfies these

conditions on covariance matrices is called circular [46] or proper [40]. The circular

condition allows us to express the jointly Gaussian pdf of the real part X and the

imaginary part Y as the complex Gaussian pdf of the associated complex number

Z = X+ jY. This will be discussed briefly in Subsection 2.3.2.

To verify that the complex wavelet coefficients satisfy the circular condition, an

image is decomposed into three scales using the UDCT, DT-CWT, PDTDFB, and

FDCT. Then, in each subband, the 9×1 complex random vector is formed from the

3×3-block neighborhood. To quantitatively measure the circularity of the complex

random vector, the degree of impropriety [55] which measures how much a complex



12

Table 2.1. Degrees of impropriety for various complex transforms

Image Scale UDCT DT-CWT PDTDFB FDCT

1 0.0741 0.9375 0.1406 0.1892
Lena 2 0.0435 0.0855 0.1482 0.0795

3 0.0924 0.2340 0.1495 0.0639

1 0.0822 0.8882 0.0905 0.1444
Barbara 2 0.0372 0.0854 0.0972 0.1112

3 0.0614 0.1683 0.0712 0.0814

random vector is non-circular is computed. For a zero-mean complex random vector

Z = X+jY with complex covariance matrix CZ , E[ZZH ], where ZH = (Z∗)T is the

conjugate transpose of Z, and pseudo-covariance matrix PZ , E[ZZT ], the degree of

impropriety is defined by [55]

d = 1− |R|
|CZ|2

, (2.5)

where R =

CZ PZ

P∗
Z C∗

Z

 . The value of the degree of impropriety, d, is between zero

and one, where d = 0 when the complex random vector is circular and least circular

when d = 1.

Table 2.1 shows the degrees of impropriety for the Lena, and Barbara images.

For each image, the degree of impropriety of each subband is computed using (2.5).

Each entry is the average value of the degrees of impropriety of all subbands in one

scale. From Table 2.1, for the UDCT, PDTDFB, and FDCT, it can be seen that the

average degrees of impropriety in all three scales of each transform are small, i.e.,

the UDCT, PDTDFB, and FDCT coefficients can be assumed to satisfy the circular

condition. This is also true for the DT-CWT in scales 2 and 3, whereas in the first

scale, the degrees of impropriety are quite large (d > 0.88 for both images), which

implies that the DT-CWT coefficients in the finest scale do not satisfy the circular

condition. This is because, in the implementation of the DT-CWT, the analyticity
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of the scale 1 filters is sacrificed to achieve the approximate analyticity at other

scales [58].

2.3 Complex Gaussian Scale Mixtures

To exploit the advantages of complex wavelets and the usefulness of the complex

magnitude and phase in the statistical framework, an appropriate model that can

handle complex random variables is needed. The aim of this section is to introduce

the pdf of a vector of complex coefficients whose real and imaginary parts are GSM’s

because of the effectiveness of the GSM model in statistical wavelet modeling as

mentioned earlier.

2.3.1 Equivalence of the Hidden Multipliers of the Real and Imaginary Parts

Lemma 2.3.1. Let X(n) and Y (n) be two random variables of the real and imaginary

parts of the complex subband coefficient at position n, respectively. If X(n) is a GSM

with constant scalar multiplier in the neighborhood of n, then Y (n) can be modeled

by a GSM with the same scalar multiplier.

Proof. Assume that X(n) is a GSM. From (1.1), X(n) can be written as

X(n) =
√
S1(n)X̃(n),

where X̃(n) is zero-mean Gaussian, S1(n) is unit-mean and independent to X̃(n).

Since Y (n) is a Hilbert transform pair of X(n), we have

Y (n) =
∑
m∈Z2

X(n−m)h(m),

where h(m) is the impulse response of a 2D Hilbert transform. Hence Y (n) can be

approximated by

Y (n) =
∑
m∈Z2

X(n−m)h(m) ≈
∑
m∈A

X(n−m)h(m),
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where A is the set of points in the neighborhood of n. Since m ∈ A, S1(n −m) =

S1(n). Hence,

Y (n) ≈
∑
m∈A

√
S1(n−m)X̃(n−m)h(m)

=
√
S1(n)

∑
m∈A

X̃(n−m)h(m) =
√
S1(n)Ỹ (n),

where Ỹ (n) =
∑

m∈A X̃(n − m)h(m) is zero-mean Gaussian and independent to

S1(n).

Proposition 2.3.1. Let X and Y be two random vectors of neighborhoods of the real

and imaginary parts of complex subband coefficients, respectively. If X is a GSM,

then so is Y and both X and Y have the same scalar multiplier.

Proof. Assume that X is a GSM. From (1.1), X can be written as X =
√
S1X̃, where

X̃ is zero-mean Gaussian, S1 are unit-mean and independent to X̃. It follows directly

from Lemma 2.3.1 that

Y =
√
S1Ỹ,

where Ỹ is zero-mean Gaussian independent to S1, i.e., Y is also a GSM with the

same hidden multiplier.

This result is demonstrated in Fig. 2.2, which considers the conditional his-

togram of S2 given S1, fS2|S1(s2|s1), where S1 and S2 are defined according to X =
√
S1X̃ and Y =

√
S2Ỹ. Due to their hidden structure, the hidden multipliers S1 and

S2 cannot be observed. However, each of them can be estimated by the maximum

likelihood estimator in each neighborhood [71]:

Ŝ1(x) =
xTC−1

X̃
x

N
and Ŝ2(y) =

yTC−1

Ỹ
y

N
,

where x and y are the real and imaginary parts of coefficients in that neighborhood

of size N . In Fig. 2.2, the conditional histograms corresponding to the real and imag-

inary parts of complex coefficients from one finest subband of the Lena (Fig. 2.2(a)),
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Figure 2.2. Conditional histograms of the estimates Ŝ1 and Ŝ2 of the hidden multipli-
ers of the real and imaginary parts of complex coefficients from one finest subband of
the (a) Lena, and (b) Barbara images. Each column has been independently rescaled
to fulfill the full range of intensities. The diagonal line in each histogram represents
Ŝ1 = Ŝ2.

and Barbara (Fig. 2.2(b)) images are shown, where the images are decomposed using

the UDCT. It can be seen that the conditional histograms are densely concentrated

around the diagonal line Ŝ1 = Ŝ2 especially when Ŝ1 is small.

2.3.2 Complex Gaussian Distribution

Before the CGSM is introduced, this subsection discusses the complex Gaussian

distribution, which is an important class of the CGSM. Particularly, this subsection

presents how the pdf of jointly Gaussian random vectors with the circular condition

can be written as the pdf of a complex Gaussian vector. For simplicity, the zero-mean

case is assumed.

To start with, letX andY be twoN×1 zero-mean Gaussian random vectors. As-

sume that they are jointly Gaussian with the circular condition. Let U = [XT , YT ]T ,

which is Gaussian with covariance matrix CU =

 CX CXY

−CXY CX

 , with the pdf given

by
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fU(u)=
1

(2π)
2N
2

√
|CU|

exp

(
− uTC−1

U u

2

)
, for u ∈ R2N . (2.6)

Moreover, its characteristic function has the form

ΦU(υ) , E[ej(α
TX+βTY)] = exp

(
− υTCUυ

2

)
, (2.7)

where α,β ∈ RN , and υ = [αT , βT ]T . Let Z = X + jY with complex covariance

matrix CZ = E[ZZH ]. Therefore, CZ = 2(CX − jCXY), and satisfies the following

conditions: [26, 45]

1) uTC−1
U u = 2zHC−1

Z z, where u = [xT ,yT ]T and z = x+ jy for all x,y ∈ RN .

2) υTCUυ = 1
2
ωHCZω, where υ = [αT ,βT ]T and ω = α+ jβ for all α,β ∈ RN .

3) 22N |CU| = |CZ|2.

Using statements 1) and 3), the Gaussian pdf of U = [XT , YT ]T in (2.6) can be

expressed as the complex Gaussian pdf of Z = X+ jY having the form

fZ(z) =
exp

(
−zHC−1

Z z
)

πN |CZ|
, for z ∈ CN . (2.8)

Using statement 2), the characteristic function of U in (2.7) can be written as the

characteristic function of Z which is obtained by

ΦZ(ω) , E[ej(α
TX+βTY)] = exp

(
−ωHCZω

4

)
, (2.9)

where α, β ∈ RN , and ω = α + jβ ∈ CN . We refer to [26, 45] for the proofs and

more comprehensive details.

2.3.3 Complex Gaussian Scale Mixtures

Proposition 2.3.1 and the circular condition (2.4) allow us to express the joint

pdf of two real-valued random vectors representing the real and imaginary parts as

the pdf of the complex-valued random vector. The details are as follows.

To begin with, let Z = X + jY =
√
SZ̃, where Z̃ = X̃ + jỸ is a zero-mean

complex Gaussian random vector and the unit-mean S is independent to Z̃. Therefore,
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the complex covariance is obtained by CZ = E[ZZH ] = E[S]CZ̃ = CZ̃. It follows

from the results in Subsection 2.3.2 that CZ̃ = E[Z̃Z̃
H
] = 2(CX̃ − jCX̃Ỹ). From

(2.8),

fZ̃(z̃) =
exp

(
− z̃HC−1

Z̃
z̃
)

πN |CZ̃|
,

where N is the neighborhood size. Conditioned on S, Z|{S = s} =
√
sZ̃ is complex

Gaussian with complex covariance matrix CZ|S = sCZ̃. Hence, the pdf of Z is given

by

fZ(z) =

∫ ∞

0

fZ|S(z|s)fS(s) ds

=

∫ ∞

0

exp
(
−zH(sCZ̃)

−1z
)

πN |sCZ̃|
fS(s) ds, (2.10)

for z ∈ CN . Note that fZ(z) is a complex Gaussian pdf when fS(s) is an impulse

function. Therefore, the complex random vector Z is called a complex Gaussian scale

mixture (CGSM) because of its behavior as a complex Gaussian when conditioned on

S.

2.4 Some Miscellaneous Results

This section discusses miscellaneous results which stem from the CGSM. Par-

ticularly, properties of the CGSM are addressed together with some distributions that

are derived using the CGSM.

2.4.1 Related Properties

This subsection presents some properties related to the CGSM proposed in

Section 2.3. To start with, the characteristic function of the CGSM is discussed.

Proposition 2.4.1. If Z = X + jY is an N -dimensional CGSM, then the charac-

teristic function of Z is given by

ΦZ(ω) = E[ej(α
TX+βTY)]=

∫ ∞

0

exp
(
− ωH(sCZ)ω

4

)
fS(s) ds,
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where α, β ∈ RN ,ω = α+ jβ, and CZ = E[ZZH ].

Proof. Given S = s, Z|S is complex Gaussian with complex covariance matrix

CZ|S = sCZ̃ = sCZ. The proof follows from the fact that the conditional charac-

teristic function of Z is given by

ΦZ|S(ω) = exp

(
−ωH(sCZ)ω

4

)
,

which follows from (2.9).

Proposition 2.4.2. If Z is an N -dimensional CGSM, then Z∗ is also an N -dimensional

CGSM and AZ is an M-dimensional CGSM, where A is an M×N complex constant

matrix.

Proof. The proof is trivial.

Before presenting a property of the CGSM, this subsection discusses an analo-

gous property of the GSM that is also mentioned in [23].

Proposition 2.4.3. If X1 and X2 are independent univariate GSM’s, then X3 =

X1 +X2, X4 = X1X2, and X5 =
X1

X2
are also GSM’s.

Proof. Let Xi =
√
SiX̃i for i = 1, 2, where the unit-mean positive random variable

Si and the zero-mean Gaussian random variable X̃i are independent. Assume further

that X1 and X2 are independent.

Given S1 = s1 and S2 = s2, X3|{S1 = s1, S2 = s2} is zero-mean Gaussian with

variance s1Var[X̃1] + s2Var[X̃2]. Therefore, X3 can be written as X3=
√
S3X̃3, where

S3=
S1Var[X̃1]+S2Var[X̃2]

Var[X̃1]+Var[X̃2]
is unit-mean and X̃3∼N (0,Var[X̃1] + Var[X̃2]) independent to

S3.

To show that X4 is a GSM, consider X4 = X1X2 =
√
S1S2X̃1X̃2. Hence,

X4 can be written as X4 =
√
S4X̃4, where S4 =

S1S2

Var[X̃2]
X̃2

2 is unit-mean and X̃4 =√
Var[X̃2]sgn(X̃2)X̃1 is zero-mean Gaussian independent to S4.
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Finally, write X5 = X1

X2
=

√
S1X̃1√
S2X̃2

. Similarly, it can be seen that X5 =
√
S5X̃5,

where S5 = S1

S2E[ 1
S2

]

1

X̃2
2

Var[ 1

X̃2
]
is unit-mean, and X̃5 =

√
Var[ 1

X̃2
]E[ 1

S2
]sgn( 1

X̃2
)X̃1 is zero-

mean Gaussian independent to S5. Hence, X3, X4, and X5 are also GSM’s.

Like the GSM, a similar property for the CGSM is found in the following propo-

sition.

Proposition 2.4.4. If Z1 and Z2 are independent univariate CGSM’s, then Z3 =

Z1 + Z2, Z4 = Z1Z2, and Z5 = Z1/Z2 are also CGSM’s.

Proof. Let Zi =
√
SiZ̃i for i = 1, 2 where the unit-mean positive random variable

Si and the zero-mean complex Gaussian random variable Z̃i are independent. For

i = 1, 2, write Zi = Xi + jYi, where Xi and Yi are GSM’s with Xi =
√
SiX̃i and

Yi =
√
SiỸi. Assume further that Z1 and Z2 are independent. Therefore, [X1, Y1] and

[X2, Y2] are independent. Write

Z3=Z1+Z2 = (X1+X2)+j(Y1+Y2) , X3+jY3,

Z4=Z1Z2=(X1X2−Y1Y2)+j(X1Y2 +X2Y1),X4+jY4,

Z5=Z1/Z2 =
X1X2+Y1Y2
X2

2+Y
2
2

+j
X2Y1−X1Y2
X2

2+Y
2
2

, X5+jY5.

From Proposition 2.4.3 and the fact that [X1, Y1] and [X2, Y2] are independent, it

is easy to show that Xi and Yi are orthogonal GSM’s with the same variance and

the same hidden multiplier, for i = 3, 4, 5. As a result, Z3, Z4, and Z5 are also

CGSM’s.

In the next two subsections, the usefulness of the proposed CGSM for deriving

two pdf’s related to the magnitude and phase of complex coefficients is exemplified.
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2.4.2 Complex Generalized Gaussian Distribution and Its Magnitude PDF

Based on the CGSM model, there is in general no closed form for the magnitude

pdf owing to the presence of the hidden multiplier. This leads to difficulties in some

applications such as texture retrieval where the closed form for the KLD between two

distributions is desirable [50]. Therefore, this subsection focuses on a special case

of the CGSM, the complex generalized Gaussian distribution (CGGD), whose real

version, the GGD, is widely used to model real-valued wavelet coefficients [?, 34]. In

this subsection, the magnitude pdf of a complex wavelet coefficient characterized by

the CGGD is derived. The CGGD has been utilized to model complex SAR images

in [14].

Let a complex coefficient Z = X + jY be characterized by the CGSM when

N = 1, i.e., [X, Y ]T is a GSM. If fS(s) is such that fX,Y (x, y) is the pdf of the bivariate

GGD [9, 50], then the distribution of Z is a CGGD with the pdf [14]

fZ(z) = fX,Y (x, y) =

∫ ∞

0

exp
(
−x2+y2

2sσ2

)
2πsσ2

fS(s) ds

=
γΓ
(

2
γ

)
2πΓ2

(
1
γ

)
σ2
e
−
(

Γ( 2
γ )

2Γ( 1
γ )

x2+y2

σ2

)γ

=
γΓ
(

2
γ

)
2πΓ2

(
1
γ

)
σ2
e
−
(

Γ( 2
γ )

2Γ( 1
γ )

|z|2

σ2

)γ

,

where γ > 0 and σ2 > 0 are the parameters, and Γ(z) ,
∫∞
0
e−ttz−1dt, z > 0, is the

Gamma function. Note that, since the GGD is also known as the exponential power

distribution [28], this distribution of Z can be called as the complex exponential power

distribution. Let X = R cos θ and Y = R sin θ, where R ≥ 0 and −π ≤ θ < π.

Then, the pdf of R is given by [50]
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fR(r) =

∫ π

−π

fR,Θ(r, θ) dθ=

∫ π

−π

rfZ(r cos θ + jr sin θ) dθ

=
β

α2Γ
(

2
β

)re−( r
α)

β

, (2.11)

where α = σ
√

2Γ(1/γ)
Γ(2/γ)

, and β = 2γ are the two parameters.

2.4.3 Derivation of the Relative Phase PDF

Although the complex wavelet phase holds crucial information, the coefficient

phase in a subband is uniformly distributed, which leads to difficulty in exploiting

phase information in the statistical approach. This suggests us to utilize the informa-

tion of a multivariate phase model, such as a bivariate model, rather than a univariate

one.

This subsection uses the CGSM to derive the pdf of the relative phase. The

relative phase [69] Φ at a spatial location (k, l) is defined as the phase difference of

two neighboring complex wavelet coefficients within a particular subband:

Φ = Θ1 −Θ2,

where Θ1 is the phase of Z(k, l), the coefficient at position (k, l), and Θ2 is the phase of

Z(k, l+1) (or Z(k+1, l)). The relative phase can be derived by assuming that the two

adjacent complex coefficients, say Z1 and Z2, are characterized by the CGSM [70].

Using N = 2 for the CGSM pdf in (2.10), the pdf of the complex random vector

Z = [Z1, Z2]
T is given by

fZ(z) =

∫ ∞

0

exp
(
−zH(CZ|S)

−1z
)

π2|CZ|S|
fS(s) ds.

Consequently, the conditional polar form pdf is described by

fR,Θ|S(r1, r2, θ1, θ2|s) = r1r2
exp

(
−zH(CZ|S)

−1z
)

π2|CZ|S|
,
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where Zi = Rie
jΘi , for i = 1, 2, and CZ|S = E[ZZH |s] = sCZ̃ = s

a11 a12

a∗12 a22

. Let

B=

b11 b12

b∗12 b22

be the inverse of CZ|S. Then, the conditional joint pdf of the phases is

given by [38]

fΘ|S(θ1, θ2|s) =
1

π2
|B|
∫ ∞

0

∫ ∞

0

r1r2e
−r21b11−r22b22

× e−2r1r2|b12| cos(θ1−θ2−∠b12) dr1dr2

=
1− λ2

4π2(1− γ2)

(
1− γ arccos(γ)√

1− γ2

)
,

where λ =
|b12|√
b11b22

=
|sa12|√
s2a11a22

=
|a12|√
a11a22

,

µ = ∠(−b12) = ∠sa12 = ∠a12,

and γ = λ cos(θ1−θ2−µ+π). Therefore, the joint pdf is obtained by

fΘ(θ1, θ2) =

∫ ∞

0

fΘ|S(θ1, θ2|s)fS(s) ds

=
1− λ2

4π2(1− γ2)

(
1− γ arccos(γ)√

1− γ2

)
.

Hence, the pdf of the relative phase Φ = Θ1 −Θ2 is given by

fΦ(ϕ) =
1− λ2

2π(1− γ2)

(
1− γ arccos(γ)√

1− γ2

)
, (2.12)

where µ and λ are the two parameters of the pdf, and γ = λ cos(ϕ − µ + π). It

should be noted that this pdf (2.12) is independent from the prior fS(s), and is

therefore in the same form as the relative phase pdf for the complex Gaussian. The

relative phase pdf (2.12) is used to parameterize the relative phase which extracts

phase information of complex wavelet coefficients. It is then applied to texture image

retrieval and improves the accuracy rate in [70].
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2.5 Summary

In this chapter, the complex Gaussian scale mixture (CGSM) model has been

proposed for modeling complex wavelet coefficients. The proposed CGSM can treat

complex random variables appropriately. It has been shown that the real and imagi-

nary parts of complex wavelet coefficients are related in such a way that their joint pdf

can be expressed as a function of complex coefficients. Some related propositions and

results of the CGSM are also discussed. Moreover, the pdf’s related to the magnitude

and phase based on the CGSM assumption are derived.



CHAPTER 3

THE MAGNITUDE AND RELATIVE PHASE DISTRIBUTION FOR COMPLEX

WAVELET MODELING

3.1 Introduction

Complex-valued wavelets have become more widely used in image processing

in the last decade because of several properties that do not exist in the real wavelet

domain [58]. As discussed in Chapter 1, the properties of complex wavelets which

are the advantages over the real ones directly relate to the magnitude and phase

information of the complex coefficients.

This chapter studies the statistical models for modeling the magnitude and

phase of complex wavelet coefficients in order to fully utilize the nice properties of

complex wavelets. To begin with, the generalized Gaussian distribution (GGD), which

is widely-used to capture the peaky and heavy-tail characteristics, is discussed for

modeling the real and imaginary parts of the complex coefficient. Furthermore, the

magnitude pdf that results from the CGSM which includes several special cases is

derived for magnitude modeling.

Despite the importance of the phase information, in the probabilistic framework,

most of statistical models based on complex wavelets utilize only the magnitude

information of the complex coefficients. It is mainly because the phase of complex

subband coefficients is uniformly distributed, which leads to difficulties to use the

phase information in statistical image processing. This suggests that a multivariate

phase model (e.g. a bivariate model) should be employed.

24
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Recently in [68], the relative phase, which is defined as the difference between

two complex wavelet phases, is introduced to extract the phase information from

subband complex coefficients, and is then used for texture retrieval and segmentation.

To model the relative phase, this chapter derives the relative phase pdf (RP pdf) based

on the CGSM assumption.

In the statistical framework, the estimation of the pdf’s parameters is central to

many applications where it is required to extract the information from a set of random

samples [26]. One of the most often used estimators is the maximum likelihood (ML)

estimator, which is the estimator that maximizes the likelihood function, i.e., the

ML estimator most likely caused the samples to occur once the sample set is given.

For the RP pdf, an iterative method to find the ML estimator is needed because the

corresponding log-likelihood equations are highly nonlinear. This is undesirable in

some situations when the computational time is a primary concern. Even though the

mean direction of the samples can be used as a non-iterative estimator for the pdf’s

location parameter, an iterative technique to estimate the concentration parameter is

still necessary. Therefore, this chapter also proposes a parameter estimation method

for the concentration parameter of the RP pdf which yields an estimator without

using an iterative algorithm.

In addition, the problem of signal in noise is central to statistical signal process-

ing theory [26]. Therefore, a method to estimate the parameters of several magnitude

pdf’s and the RP pdf’s parameters when the underlying input image is contaminated

by additive white Gaussian noise are also proposed.

3.2 Statistical Models of Complex Wavelet Subbands

The goal of this section is to discuss the statistical models that are used to

model the subband coefficient in the complex wavelet domain. Specifically, this sec-
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tion discusses the distributions which are suitable with the real/imaginary parts, the

magnitude, and relative phase of complex coefficients. Moreover, for each distribu-

tion, its parameter estimation and Kullback-Leibler Divergence (KLD) which are used

later in Section 4.4 to obtain features from images in the database and to obtain the

distance between two images, respectively, are also presented.

3.2.1 The Generalized Gaussian Distribution for the Real/Imaginary Parts

Due to its peaky and heavy-tailed characteristics, the generalized Gaussian

distribution (GGD) [34] has been commonly used to fit the marginal density of the

subband coefficient in the real wavelet domain. The pdf of the GGD is defined as

f(x) =
β

2αΓ
(

1
β

)e−( |x|
α )

β

,

where −∞ < x < ∞, Γ(·) is the Gamma function [2], and α, β > 0 are the pdf’s

parameters. Since the real and imaginary parts of a complex wavelet coefficient are

real-valued and also behave like a real wavelet coefficient, it is reasonable to model

the marginal density of the real or imaginary part of the complex coefficient using

the GGD.

To estimate the model’s parameters we use as features in our framework, we

use the maximum likelihood (ML) estimation as discussed in details in [17]. We then

provide a brief overview of the main results. Let x1, x2, ..., xN be a sample drawn

from the GGD. The ML estimators for α and β are given by

α̂ =

(
β̂

N

N∑
i=1

|xi|β̂
)1/β̂

,

where β̂ is the solution of the equation

1 +
Ψ(1/β̂)

β̂
−
∑N

i=1 |xi|β̂ ln |xi|∑N
i=1 |xi|β̂

+
ln
(

β̂
N

∑N
i=1 |xi|β̂

)
β̂

= 0,



27

which can be solved by using a numerical algorithm such as the Newton-Raphson

method. For the ML estimation of the GGD and other distributions in this work, we

use the accuracy of 10−6 as the stopping criterion in the iterative method.

The similarity measurement between two GGD subbands can be obtained by

computing the KLD which is given by [17]

DGG(f1||f2) = ln

(
β1α2Γ(1/β2)

β2α1Γ(1/β1)

)
+(

α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
− 1

β1
.

3.2.2 The Magnitude Models

Modeling the magnitude of complex coefficients is crucial in order to fully uti-

lize its nice properties as discussed in Section 3.1. In this subsection, based on the

CGSM assumption on the complex coefficient, the pdf for the coefficient magnitude

is derived. In addition, several distributions which are special cases of the derived

pdf are discussed.

To begin with, assume that the complex subband coefficient X is a CGSM

random variable, i.e.

X =
√
SX̃,

where S is a unit-mean positive random variable, and X̃ is zero-mean complex Gaus-

sian with complex variance σ2
X , and independent to S. Let R be the coefficient

magnitude, i.e. R = |X|. Given S = s, R|{S = s} =
√
s|X̃| =

√
sR̃, where R̃ follows

the Rayleigh distribution whose pdf is defined by

fR̃(r̃) =
r̃

σ2
R

e
− r̃2

2σ2
R ,
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where σR is the Rayleigh parameter. Therefore, R|{S = s} follows the Rayleigh

distribution with parameter
√
sσR. Consequently, the pdf of R is given by

fR(r) =

∫ ∞

0

fR|S(r|s)fS(s)ds

=

∫ ∞

0

r

sσ2
R

e
− r2

2sσ2
R fS(s)ds.

Note that fR(r) is the pdf of a Rayleigh random variable when fS(s) is an impulse

function. Therefore, R is called a Rayleigh scale mixture (RSM) because of its be-

havior as a scaled version of a Rayleigh random variable when conditioned on S, and

call this fR(r) the Rayleigh scale mixture pdf (RSM pdf). It should be noted that

this pdf is also called the envelope pdf of the spherically-invariant random process

(SIRP) in the context of wireless communication fading [77].

Unfortunately, there is generally no closed form for the KLD between two RSM

models due to its hidden structure. This RSM pdf encompasses a variety of magnitude

models, including Rayleigh, Weibull, and Gamma distributions [77], whose closed

forms for the KLD are available. In the following, along with with the parameter

estimation and the KLD expression, these three distributions which are used model

the complex coefficient magnitude in this work are discussed. It should be noted

that modeling the magnitude of the complex subband coefficient by these kinds of

distributions is also discussed in [30]. Henceforth, {r1, r2, ..., rN} are defined as a

sample drawn from the corresponding distribution in the parameter estimation for

each of the models.

3.2.2.1 Rayleigh Distribution

To model the magnitude which is a non-negative quantity, a distribution with

non-negative support is needed. One of the simplest and most commonly-used distri-
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butions which belong to that category is the Rayleigh distribution, which is defined

by

fR(r) =
r

σ2
e−

r2

2σ2 ,

where 0 ≤ r <∞, and σ > 0 is the parameter.

The ML estimator for σ has the closed-form expression which is given by

σ̂ =

√√√√ 1

2N

N∑
i=1

r2i .

The KLD between two Rayleigh subbands is given by

DRl(f1||f2) =
(
σ1
σ2

)2

+ 2 ln

(
σ2
σ1

)
− 1,

which is a closed-form expression as well. Even though modeling the coefficient

magnitude by the Rayleigh distribution is convenient, it may not fit well with the

magnitude histogram since there is only one pdf’s parameter.

3.2.2.2 Weibull Distribution

To improve the model fitting from using the one-parameter distribution, we use

the two-parameter models which have more degrees of freedom, i.e. more flexibility in

modeling. One of widely-used two-parameter distributions is the Weibull distribution,

whose pdf is given by

fR(r) =
βrβ−1

αβ
e−(

r
α)

β

,

where 0 ≤ r <∞, and α, β > 0 are the two parameters.

To obtain the ML estimator, an alternative method is required to estimate

Weibull’s parameters α and β as suggested in [30]. Since lnR follows a Gumbel dis-

tribution if R follows a Weibull distribution, the parameter estimation of the Gumbel

distribution and the transformation method are used to obtain the parameter esti-

mates of the Weibull Distribution. The details are as follows.
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To start with, let T = lnR. It follows from the transformation method that the

pdf of T is given by

fT (t) =
1

σ
e

t−µ
σ e−e

t−µ
σ ,

where µ > 0 and σ > 0 are the two parameters. The ML estimators for µ and σ are

given by

µ̂ = σ̂ ln

(
1

N

N∑
i=1

e
ti
σ̂

)
,

where σ̂ is the solution of the equation

1

N

N∑
i=1

si − σ̂ −
∑N

i=1 tie
si
σ̂∑N

i=1 e
ti
σ̂

= 0,

which can be solved numerically. Consequently, the estimators of α and β are given

by

α̂ = eµ̂ and β̂ =
1

σ̂
.

The KLD between two Weibull subbands is given by

DWbl(f1||f2) = Γ

(
β2
β1

+ 1

)(
α1

α2

)β2

+ ln

(
β1α

β2

2

β2α
β1

1

)
+(β1 − β2) ln(α1) +

γconstα2

α1

− γconst − 1,

where γconst = 0.57721... is the Euler-Mascheroni constant.

3.2.2.3 Gamma Distribution

Another widely-used two-parameter model for the magnitude is the Gamma

distribution. The Gamma pdf is defined as

fR(r) =
rβ−1

αβΓ(β)
e−(

r
α),

where 0 ≤ r < ∞, and α, β > 0 are the two parameters. The ML estimators for α

and β of the Gamma distribution are given by

α̂ =
1
N

∑N
i=1 ri

β̂
,
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where β̂ is the solution of the equation

ln(β̂)−Ψ(β̂)− ln

(
1

N

N∑
i=1

ri

)
− 1

N
ln

(
N∑
i=1

ri

)
= 0,

which can be solved numerically using the Newton-Raphson method. To compute

the distance between two Gamma subbands, the KLD is given by

DGam(f1||f2) = (β1 − β2)Ψ(β1)− β1 + ln

(
Γ(β2)

Γ(β1)

)
+β2 ln

(
α2

α1

)
+
β1α1

α2

,

where Ψ(·) = Γ′(·)
Γ(·) is the digamma function [2].

In addition to three aforementioned distributions, the magnitude pdf of the

CGGD we derived in Chapter 2 also belongs to a class of the RSM pdf. For the sake

of completeness, this section also discusses this magnitude distribution of the CGGD

and its parameter estimation and KLD expression.

3.2.2.4 Magnitude PDF of the CGGD

From Chapter 2, the magnitude pdf of the CGGD is defined by

f(r) =
βr

α2Γ
(

2
β

)e−( r
α)

β

where α = σ

√
2Γ( 1

γ )
Γ( 2

γ )
, and β = 2γ are the two parameters. The ML estimators for α

and β are given by

α̂ =

(
β̂

2N

N∑
i=1

rβ̂i

)1/β̂

,

where β̂ is the solution of the equation

1 +
2Ψ(2/β̂)

β̂
− 2

∑N
i=1 r

β̂
i ln ri∑N

i=1 r
β̂
i

+
2 ln

(
β̂
2N

∑N
i=1 r

β̂
i

)
β̂

= 0.
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The KLD between two pdf’s of this kind is given by

DGR(f1||f2) = ln

(
β1α

2
2Γ(2/β2)

β2α2
1Γ(2/β1)

)
+(

α1

α2

)β2 Γ((β2 + 2)/β1)

Γ(2/β1)
− 2

β1
.

3.2.3 The Relative Phase Distribution

To fully utilize the advantages of the complex coefficient, one should not only

consider the magnitude information but the phase information as well. To employ

the phase information, the relative phase pdf (RP pdf) is introduced in [51, 67] as a

statistical model for the relative phase which is the difference between two complex

wavelet phases. The details of the RP pdf are as follows.

Let ΘX1 be the phase of X(k, l), the complex coefficient at position (k, l), and

ΘX2 be the phase of X(k, l + 1) (or X(k + 1, l)). The relative phase [68] Θ at a

spatial location (k, l) is defined as the phase difference of neighboring complex wavelet

coefficients within a particular subband:

Θ = ΘX1 −ΘX2 . (3.1)

The RP pdf can be derived by assuming that the two adjacent complex coefficients,

say X1 and X2, are characterized by the CGSM [52]. After some manipulation, the

pdf of the relative phase Θ = ΘX1 −ΘX2 is obtained by

fΘ(θ;µ, λ) =
1− λ2

2π(1− α2)

(
1− α arccos(α)√

1− α2

)
, (3.2)

where−π ≤ µ < π and 0 ≤ λ ≤ 1 are the two pdf’s parameters and α = −λ cos(θ−µ).

Let θ1, θ2, ...., θN be a random sample drawn from the RP distribution. The

estimators for µ is given by

µ̂ = arctan

(∑N
i=1 sin θi∑N
i=1 cos θi

)
,
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Figure 3.1. Examples of fitting the models with the histograms of the magnitude and
relative phase from one finest-scale subband of the UDCT coefficients taken from the
Fabric.0004 image: (a) magnitude, and (b) relative phase.

where arctan(·) is the four-quadrant inverse tangent. On the other hand, the estimator

of λ̂ is the solution of the equation

0 =
N∑
i=1

h(λ̂,−1) + h(λ̂, 1)− 1.5(h(λ̂,−ti) + h(λ̂, ti))

+
b′(λ̂, ti)

b(λ̂, ti)
,

where ti = − cos(θi − µ̂), h(λ̂, ti) =
ti

1+λ̂ti
, b(λ̂, ti) =

√
1− λ̂t2i − λ̂ti arccos(λ̂ti), and

b′(λ̂, ti) = −ti arccos(λ̂ti). See [67] for more details. Unfortunately, the closed-form

expression of the KLD between two RP pdf’s have not been found yet. Therefore,

they are computed using a numerical method in this thesis.

To show how well the models discussed above fit with the empirical histograms,

examples of the relevant fitted pdf’s and the histograms of the magnitude and the

relative are displayed in Fig. 3.1 for the Fabric.0004 image of the Vistex database [1].

The complex coefficients are obtained from a finest-scale subband of the UDCT [42]

decomposition.
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3.3 A Non-Iterative Estimator for the Concentration Parameter of the Relative

Phase Distribution

This section proposes a parameter estimation method for the concentration

parameter of the RP pdf which yields an estimator without using an iterative algo-

rithm. First, a circular pdf that can well approximate the RP pdf is presented. To

find the estimator, the log-likelihood equation is approximated by another equation

with simpler form. Moreover, one parameter in the equation is further approximated

so that it can be solved for the estimator immediately. This results in a non-iterative

estimator for the concentration parameter. Furthermore, the parameter estimation of

the simulated random samples is performed to compare the proposed estimator and

the ML estimator in the aspect of accuracy and the computational time. Finally, the

proposed method is used to fit the RP pdf to the histogram of relative phase samples

extracted from some standard test images to see how well it can be used in practice.

3.3.1 An Approximation by Jones-Pewsey’s PDF

The goal of this section is to propose an approximation of the RP pdf which

can be used later in the parameter estimation. The pdf which is used to approximate

the RP pdf is given by

g(θ;µ, λ) =
(1− λ2)

3
4

2πP 0
− 3

2

(
1√

1−λ2

) 1

(1− λ cos(θ − µ))
3
2

, (3.3)

where −π ≤ µ < π, 0 ≤ λ ≤ 1, and P 0
− 3

2

(z) is the associated Legendre function of

the first kind of degree −3
2
and order 0 [20]. This approximation is a special case of

the symmetric circular pdf proposed by Jones and Pewsey [25].1 As can be seen, the

1The pdf in [25] is defined by

fψ(θ;µ, κ, ψ) =
(cosh(κψ) + sinh(κψ) cos(θ − µ))

1
ψ

2πP 0
1/ψ(cosh(κψ))

, (3.4)
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Figure 3.2. Comparison of the RP pdf f(θ;λ) and g(θ;λ): (a) KLD between f and
g versus λ; (b) f(θ;λ) and g(θ;λ) when λ = 0.2; (c) when λ = 0.5; and (d) when
λ = 0.8.

pdf in (3.3) is Jone-Pewsey’s pdf with ψ = −2/3 and κ = 3
2
arctanh(λ). According

to [25], the n−th trigonometric moment of the pdf in (3.3) is therefore obtained by

E[cosn(Θ− µ)] =
Γ
(
3
2
− n

)
P n
− 3

2

(
1√

1−λ2

)
Γ
(
3
2

)
P 0
− 3

2

(
1√

1−λ2

) . (3.5)

It should be also noted that Jones-Pewsey’s pdf including the pdf in (3.3) needs a

numerical algorithm in the ML parameter estimation [25].

The comparison between f(θ;µ, λ) and g(θ;µ, λ) when µ = 0 is shown in Fig.

3.2. The Kullback-Leibler distance (KLD) between f(θ;λ) and g(θ;λ) is rather small

for all range of values of λ (D(f ||g) < 0.0006) as plotted in Fig. 3.2(a), which implies

that g(θ;λ) is close to f(θ;λ). In addition, when λ = 0 or λ approaches one, the

where P ν1/ψ(z) , 1
π

∫ π
0
cos(νθ)(z+

√
z2 − 1 cos θ)

1
ψ dθ, is the associated Legendre function of the first

kind of degree 1/ψ and order ν [20].
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two pdf’s are the same because when they become the uniform pdf when λ = 0, and

behave like an impulse function when λ approaches one. Moreover, it can be seen

from the plots of f(θ;λ) and g(θ;λ) for λ = 0.2, 0.5, and 0.8 in Fig.’s 3.2(b) - 3.2(d)

that the pdf g(θ;λ) can well approximate the RP pdf f(θ;λ).

3.3.2 Approximation of the Maximum Likelihood Estimator for the Concentration

Parameter

The aim of this subsection is to use the approximation of the RP pdf discussed

in Section 3.3.1 to obtain an approximation of the ML estimator. This subsection

begins with a discussion of the ML estimation of the RP pdf.

The corresponding log-likelihood function of the samples Θ = {θ1, θ2, . . . , θN}

is given by L(Θ;µ, λ) = ln
∏N

i=1 f(θi;µ;λ).Then, the ML estimators µ̂ML, and λ̂ML

can be found as follows:

[µ̂ML, λ̂ML] = argmax
[µ,λ]

L(Θ;µ;λ) = argmax
[µ,λ]

N∑
i=1

ln f(θi;µ, λ). (3.6)

Consequently, the log-likelihood equations are given by

∂L(Θ;µ, λ)

∂µ
= 0, and

∂L(Θ;µ, λ)

∂λ
= 0.

These equations can be solved numerically to find the two estimators. Furthermore,

the estimator µ̂ML can be well approximated by the mean direction [70], which is

given by

µ̂ML ≈ µ̃ = arctan

(∑N
i=1 sin θi∑N
i=1 cos θi

)
, (3.7)

where arctan is the four quadrant inverse tangent. Therefore, the problem reduces to

finding the ML estimator for the concentration parameter λ, i.e., to find a solution

of

g(λ) =
N∑
i=1

[
−1

1− λ
+

1

1 + λ
− 3

2

(
−xi

1− λxi
+

xi
1 + λxi

)
− xi arccos(λxi)√

1− λ2x2i − λxi arccos(λxi)

]
= 0,
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where xi = − cos(θi − µ̃). However, there is no closed form for λ̂ML, which requires

an iterative method.

To obtain an estimator for λ without numerical algorithm, one way to do is to

approximate the likelihood equation. Without loss of generality, assume from now on

that µ = 0. The details are as follows.

To begin with, consider the RP pdf

f(θ;λ) =
1− λ2

2π(1− α2)

(
1− α arccos(α)√

1− α2

)
=

1− λ2

2π

∂2

∂α2
(arccos(α))2

=
1− λ2

2π

∫ ∞

0

xK0(x)e
−αxdx, (3.8)

where α = −λ cos θ, K0(z) ,
∫∞
0
e−z cosh tdt is the modified Bessel function of the sec-

ond kind with order zero [2], and the last step follows from [32]. Using this expression

of the RP pdf in (3.8), the log-likelihood function is given by

L(Θ;µ, λ) = ln
N∏
i=1

1− λ2

2π

∫ ∞

0

xK0(x)e
λ cos θixdx.

The corresponding log-likelihood equation is given by

0 =
∂

∂λ

N∑
i=1

ln

(
1− λ2

2π

∫ ∞

0

xK0(x)e
λ cos θixdx

)

=
−2λN

1− λ2
+

N∑
i=1

cos θi
∫∞
0
x2K0(x)e

λ cos θixdx∫∞
0
xK0(x)eλ cos θixdx

. (3.9)

From [2], an approximation related to K0(x) is given by

xK0(x) ≈
√
π

2

√
xe−x. (3.10)

Although this approximation (3.10) is for large x, (x ≥ 2), it is acceptable for small

x too. Using (3.10) in (3.9), in order to obtain the estimator for λ, one has to solve

the equation
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0 =
−2λN

1− λ2
+

N∑
i=1

cos θi
∫∞
0

√
π
2
x

3
2 e−xeλ cos θixdx∫∞

0

√
π
2

√
xe−xeλ cos θixdx

=
−2λN

1− λ2
+

N∑
i=1

cos θiΓ(
5
2
)(1− λ cos θi)

− 5
2

Γ(3
2
)(1− λ cos θi)

− 3
2

.

Equivalently, one needs to solve

λ

1− λ2
=

3

4N

N∑
i=1

cos θi
1− λ cos θi

. (3.11)

Unfortunately, this equation still yields a non closed-form solution. To overcome this

problem, the value of λ on the right-hand side of (3.11) should be approximated. One

simple guess would be the value of λ from the method of moments (MM). However,

the closed form expression of λ in terms of the moments is not available because of

the complicated expression of the trigonometric moment for the RP pdf, which is

given by

E[cosn(Θ− µ)] = (−1)nλn(1− λ2)
Γ2(1 + 1

2
n)

Γ(1 + n)
F (1 + 1

2
n, 1 + 1

2
n; 1 + n;λ2),

where F (a, b; c; z) , Γ(c)
Γ(c−b)Γ(b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt is the hypergeometric

function, and Γ(z) ,
∫∞
0
e−ttz−1dt is the gamma function [2]. From Section 3.3.1, the

RP pdf can be approximated by the pdf in (3.3) with the same value of λ. Therefore,

instead of the trigonometric moment of the RP pdf, the moment of the pdf in (3.3) will

be matched to approximate the value of λ on the right-hand side of (3.11). From [20],

P 2
− 3

2
(z) + 2

z√
z2 − 1

P 1
− 3

2
(z) =

3

4
P 0
− 3

2
(z). (3.12)

Using (3.5) and substituting z in (3.12) by 1√
1−λ2 ,

−E[cos 2Θ]

4
+

E[cosΘ]

λ
=

3

4
.

Therefore, the approximation the estimator of λ from the method of moments (MM)

is given by

λ̂AMM =
4
∑N

i=1 cos θi

3N +
∑N

i=1 cos 2θi
. (3.13)
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Substituting λ̂AMM for the right-hand side λ in (3.11), it reduces to a quadratic

equation of λ and the estimator for λ is given by

λ̂AML =
−1 +

√
1 + 4C2

2C
, (3.14)

where C = 3
4N

∑N
i=1

cos θi
1−λ̂AMM cos θi

.

3.3.3 Experiments in Parameter Estimation

To show the effectiveness of the proposed estimator, its comparison with the

ML estimator for estimating the parameters of the RP pdf is shown by running two

experiments; the first experiment to show the estimation accuracy and the computa-

tional time, and the second experiment to see how well the estimator can fit with a

histogram of samples taken from standard test images. The experiments are run on

Matlab implementation on 1.73GHz Pentium Dual-Core.

In the first experiment, relative phase samples generated with µ = 0 and ten

values of λ (0, 0.1, ..., 0.9) are fitted using the ML estimator [µ̂ML, λ̂ML], the approx-

imation of the ML (AML) estimator [µ̃, λ̂AML], and the approximation of the MM

(AMM) estimator [µ̃, λ̂AMM], as in (3.6), (3.7), (3.14), and (3.13), respectively. For

each given value of λ, 1000 independent trials are run to compensate the random

nature of the simulated data. For the iterative step in the ML estimation method,

the Newton-Raphson algorithm is used with [µ̃, λ̂AMM] as the initial guess. For each

given value of λ in each trial, the absolute error is the absolute value of the estimate

subtracted by the exact value of λ, i.e.,

Absolute Error = |λejµ − λ̂ejµ̂|,

where [µ̂, λ̂] = [µ̂ML, λ̂ML], [µ̃, λ̂AML], and [µ̃, λ̂AMM] for the case of the ML, AML, and

AMM estimators, respectively. For each given number of samples (N), the errors are

averaged all over the ten values of λ and 1000 trials.
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Table 3.1. Comparison of the average absolute error and the average computational
time of the ML, the approximation of the ML, and the approximation of the MM
methods where N is the number of samples

Avg. Abs. Error/Avg. Time in sec.
N

ML: [µ̂ML, λ̂ML] AML: [µ̃, λ̂AML] AMM: [µ̃, λ̂AMM]
100 0.0887/5.5×10−3 0.0922/5.0×10−4 0.0978/4.5×10−4

500 0.0395/1.7×10−2 0.0414/1.1×10−3 0.0451/8.6×10−4

1000 0.0277/3.2×10−2 0.0292/1.8×10−3 0.0329/1.4×10−3

5000 0.0125/1.5×10−1 0.0137/7.9×10−3 0.0187/5.6×10−3

The results of the first experiment are shown in Table 3.2. It can be seen that

the average absolute errors due the proposed AML method are higher than those of

the ML method but lower than the average absolute errors due to the AMM method

for all cases of N . Also as expected, the error decreases while the computational time

increases when we increase the number of samples N . It should be also noted that,

when N increases, the error from the AML method approaches the error from the ML

method. The difference between the average absolute errors from the two methods

is only 0.0012 when N = 5000. In terms of the computational complexity, the time

used in the AML method is less than the time used in the ML method (approximately

around 10-20 times), and is approximately the same as the time used in the AMM

method. This is because the proposed estimation method does not require an iterative

method. These imply that the proposed AML estimator is acceptable in terms of

accuracy, and efficient in terms of computation in the parameter estimation compared

with the ML estimator.

In the second experiment, the proposed estimator is tested with the phase

samples from the complex coefficients extracted from eight standard test gray-scale

images of size 512× 512 using the uniform discrete curvelet transform (UDCT) [41].

Eighteen subbands in the first three finest scales of the decomposition are used. The
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values of the normalized relative entropy (∆H/H), which is defined as the ratio

of the relative entropy (or KLD) between the fitted pdf and the histogram and the

histogram entropy, are averaged for all eighteen subbands and displayed in Fig. 3.3(a).

Moreover, the histogram fitting results of some images, which are the Lena, and the

Barbara images, are shown in Fig’s. 3.3(b)-3.3(c). From Fig. 3.3(a), it can be seen

that the normalized relative entropy when using the ML estimator is the smallest for

all images. It is because the ML estimator maximizes the likelihood function, and

thus minimizes the KLD between the fitted pdf and the histogram. However, the

difference between using the ML estimator and using the AML estimator is not much

as it can be seen in the examples of fitting results in Fig.’s 3.3(b)-3.3(c). Therefore,

the proposed AML estimator is also comparable with the ML estimator to fit the

pdf with the histogram of phase samples of complex coefficients extracted from the

standard images.

3.4 Estimating Parameters From Noisy Coefficients for the Real/Imaginary Parts
and the Magnitude

In Section 3.2, the distributions used to model the complex coefficient are dis-

cussed. This section presents methods to estimate the parameters of those distribu-

tions when the underlying image is contaminated by additive white Gaussian noise

(AWGN). The aim of this section is to have parameter estimation methods that are

used in the feature extraction step of the noisy texture retrieval scheme in Section 4.4

The problem of an image in the presence of AWGN can be formulated as

yimage = ximage +wimage, (3.15)

where yimage, ximage and wimage are the noisy, the clean, and AWGN images, respec-

tively. The additive noise wimage is assumed to be independent from the clean image
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Figure 3.3. The histogram fitting results using the ML, the proposed AML, and
the AMM estimators for several test images: (a) average normalized relative entropy
for the eight test images; (b) example of fitting for the Lena image, and (c) for the
Barbara image. The phase samples are from a particular finest subband.

ximage, and has a known variance σ2
n. In the complex wavelet domain, the problem is

given by

Y = X +W, (3.16)

where Y , X and W are the noisy coefficient, clean coefficient, and complex Gaussian

noise, respectively.

For the real-valued and magnitude models, the moment matching method is

used to estimate the parameters of the clean coefficient from the noisy coefficient.
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For the RP pdf, the same method however cannot be applied, which results in that a

more complicated method to estimate the clean parameters is needed.

3.4.1 The GGD model

To begin with, the moment matching method for the GGD parameters is pre-

sented For the case of the real part of the coefficient, it is given by

YR = XR +WR,

where YR, XR and WR are the real parts of Y , X and W in (3.18), respectively. One

can obtain the second and fourth moments of clean coefficients from noisy coefficients

by

m2 , E[X2
R] = E[Y 2

R ]− σ2
WR
,

m4 , E[X4
R] = E[Y 4

R ]− 6E[Y 2
R ]σ

2
WR

+ 3σ4
WR
,

where σ2
WR

is the variance of WR, which can be computed offline.

For the GGD, the following relations between the two moments and the GG

parameters can be obtained:

m2 =
α2Γ( 3

β
)

Γ( 1
β
)
, m4 =

α4Γ( 5
β
)

Γ( 1
β
)
.

Therefore, the estimate of β can be obtained from

m2
2

m4

=
Γ2( 3

β
)

Γ( 1
β
)Γ( 5

β
)

by using the look-up table and linear interpolation. Consequently, the estimate of α

is given by

α̂ =

√
m4

m2

Γ(3/β̂)

Γ(5/β̂)
.
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3.4.2 The Magnitude Models

In the case of complex-valued coefficients, one can obtain the second and fourth

moments of the magnitude of clean coefficients from noisy coefficients by

m2 , E[|X|2] = E[|Y |2]− σ2
W ,

m4 , E[|X|4] = E[|Y |4]− 4E[|Y |2]σ2
W + 2σ4

W ,

where σ2
W is the complex variance of the complex Gaussian noise W , which can be

compute offline. For the Rayleigh distribution, once the second moment estimate m2

is obtained, the estimate of the clean parameter is given by

σ̂ =

√
m2

2
.

Next, the two-parameter magnitude models are considered. For the Weibull

distribution, the two parameters and the two moments have the following relationship:

m2 = α2Γ

(
1 +

2

β

)
, m4 = α4Γ

(
1 +

4

β

)
.

Therefore, the estimate of β can be obtained from

m2
2

m4

=
Γ2(1 + 2

β
)

Γ(1 + 4
β
)

by using the look-up table and linear interpolation. Consequently, the estimate of α

is given by

α̂ =

√
m4

m2

Γ(1 + 2/β̂)

Γ(1 + 4/β̂)
.

For the Gamma distribution, the Gamma parameters and the two moments

have the following relationship:

m2 = α2Γ(β + 2)

Γ(β)
, m4 = α4Γ(β + 4)

Γ(β)
.
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Therefore, the estimate of β can be obtained from

m2
2

m4

=
Γ2(β + 2)

Γ(β)Γ(4 + β)

by using the look-up table and linear interpolation. Consequently, the estimate of α

is given by

α̂ =

√
m4

m2

Γ(β̂ + 2)

Γ(β̂ + 4)
.

3.5 Estimating the Relative Phase Parameters of Complex Wavelet Coefficients in
Noise

This section proposes a method to estimate the RP pdf’s parameters when the

underlying input image is contaminated by additive white Gaussian noise. First, the

pdf of the relative phase of the noisy coefficients is dervied. Then, the connection

between the RP pdf’s parameters and the complex covariance matrix of the corre-

sponding coefficient vector are utilized to relate the considered RP pdf’s parameters

to the derived pdf. Subsequently, the RP pdf’s parameters of the clean coefficients

are estimated by using the maximum likelihood method. The simulation results are

also displayed to illustrate the effectiveness in estimation of the proposed method.

3.5.1 The relative phase mixture pdf (RPM pdf)

The problem of an image in the presence of additive white Gaussian noise can

be formulated as

yimage = ximage +wimage, (3.17)

where yimage, ximage and wimage are the noisy, the clean, and additive white Gaussian

noise images, respectively. The additive noise wimage is assumed to be independent

from the clean image ximage, and has a known variance σ2
n.
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Transforming (3.17) into the complex wavelet domain, one can obtain the fol-

lowing equation in each neighborhood of complex wavelet coefficients as

Y = X+W, (3.18)

where Y, X and W are the noisy coefficient, clean coefficient, and additive complex

Gaussian noise vectors (but not necessarily white), respectively. 2

In case of the neighborhood of two coefficients, (3.18) reduces to Y1

Y2

 =

 X1

X2

+

 W1

W2

 .
Assume that X is a CGSM, i.e. X =

√
SX̃ where X̃ is complex Gaussian, S is

a unit-mean positive random variable independent from X̃. Let CX̃ =

a11 a12

a∗12 a22


and CW=

b11 b12

b∗12 b22

 be the complex covariance matrices of X̃ and W, respectively.

Therefore,

CY −CW = CX = E[S]CX̃ = CX̃. (3.19)

Let Θ = ∠X1−∠X2 be the relative phase of the clean coefficient vector X as defined

in (3.1). From (3.2), the pdf of Θ is given by

fΘ(θ;µx, λx) =
1− λ2x

2π(1− α2
x)

(
1− αx arccos(αx)√

1− α2
x

)
,

where αx = −λx cos(θ − µx), and µx and λx are the two parameters.

In order to find the parameters µx and λx, one needs to determine their rela-

tionship with the pdf of the noisy relative phase. To begin with, the noisy relative

2The cross-covariance matrix of two vectors obtained from sampling two wide-sense stationary

processes which form a Hilbert transform pair needs not be zero [52]. As a result, the complex

covariance matrix of a white noise vector in the complex wavelet domain may not be a multiple of

the identity matrix.
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phase Φ is defined as the relative phase which belongs to the noisy coefficient vector

Y:

Φ = ∠Y1 − ∠Y2.

If the noisy coefficient vector Y is also a CGSM (i.e., the noisy relative phase Φ

has the RP pdf), then it is straightforward to determine the relationship between

the RP parameters of Φ and µx, λx using (2.12) and (3.19). Unfortunately, Y is not

necessarily a CGSM even though X and W are independent CGSM’s. The conditions

which ensure that Y is also a CGSM are discussed in the following proposition.

Proposition 3.5.1. The sum of two CGSM’s X1 =
√
S1X̃1 and X2 =

√
S2X̃2 with

[S1, X̃1] independent from [S2, X̃2] and complex covariance matrices CX1 and CX2,

respectively, is a CGSM if and only if one of the following two statements is true:

1) CX2 = aCX1 for some positive constant a,

2) X1 and X2 are both complex Gaussian. �

Proof: See Appendix B. �

It should be noted that a statement similar to Proposition 3.5.1 is mentioned

for the case of elliptically distributed random vectors in [78]. From Proposition 3.5.1,

the noisy coefficient vector Y does not have to be a CGSM, and the noisy relative

phase Φ may not have the RP pdf.

To find the pdf of Φ, consider the conditional pdf of Y given S. Since X and

W are independent, given S = s, Y|{S = s} is complex Gaussian whose pdf is given

by

fY|S(y|s) =
1

π2|CY|S|
e−yHC−1

Y|Sy,
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whereCY|S = sCX̃+CW =

 sa11 + b11 sa12 + b12

sa∗12 + b∗12 sa22 + b22

, and |CY|S| is the determinant

of CY|S. Since the complex Gaussian distribution is a special case of the CGSM

distribution, from (3.2) and (2.12), the conditional pdf of Φ can be obtained by

fΦ|S(ϕ;µ(s), λ(s)|s)=
1−λ2(s)

2π(1−α2(s))

(
1−α(s)arccos(α(s))√

1− α2(s)

)
, (3.20)

where α(s) = −λ(s) cos(ϕ−µ(s)), µ(s) = ∠(sa12+b12) and λ(s) = |sa12+b12|√
(sa11+b11)(sa22+b22)

are the pdf’s parameters dependent on s. Hence, the pdf of Φ is then given by

fΦ(ϕ)=

∫ ∞

0

fΦ|S(ϕ|s)fS(s)ds

=

∫ ∞

0

1−λ2(s)
2π(1−α2(s))

(
1−α(s)arccos(α(s))√

1− α2(s)

)
fS(s)ds. (3.21)

This pdf (3.21) is called the relative phase mixture pdf (RPM pdf). Note that the

RPM pdf becomes the RP pdf when fS(s) = δ(s − 1) or when aij = cbij for all

1 ≤ i, j ≤ 2, where c is a positive constant.

An example of the relative phase of the noisy coefficients Y and the fitted

RP and the fitted RPM pdf’s is displayed in Fig. 3.4 for the Brick.0001 image of

the Vistex database [1]. The complex coefficients are obtained by using the uniform

discrete curvelet transform (UDCT) [42]. The hidden multiplier S is assumed to

follow the log-normal distribution. How to estimate the parameters of the log-normal

pdf from the complex coefficients is discussed in Subsection 4.4.2. As can be seen, the

relative phase of the noisy coefficients fits well with the RPM pdf, and differs from

the relative phase of the clean coefficients.

3.5.2 Experiments in Parameter Estimation in Gaussian Noise

This section presents a method to estimate the RP parameters of clean coef-

ficients from noisy coefficients. To estimate the RP parameters associated with X,
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Figure 3.4. Example of fitting the histogram of clean relative phase with the fitted
RP pdf, and noisy relative phase samples with the fitted RP pdf and the fitted RPM
pdf of one finest-scale subband of the Brick.0001 image. The noise standard deviation
is σn = 30.

µx and λx are represented as a complex parameter η = η1 + jη2 = λxe
jµx . It follows

from (2.12) that
√
a11a22η = a12. Therefore, the conditional pdf of Φ in (3.20) can be

expressed as

fΦ|S(ϕ; η|s)=
1−λ2(η, s)

2π(1−α2(η, s))

(
1− α(η, s)arccos(α(η, s))√

1− α2(η, s)

)
,

where α(η, s) = −λ(η, s) cos(ϕ− µ(η, s)),

µ(η, s) = ∠(s√a11a12η + b12),

and λ(η, s) =
|s√a11a22η + b12|√

(sa11 + b11)(sa22 + b22)
.

As a result, the pdf of Φ is rewritten by

fΦ(ϕ; η) =

∫ ∞

0

fΦ|S(ϕ; η|s)fS(s)ds.

Hence, the pdf of Φ can be viewed as a function of the complex parameter η, i.e. a

function of the vector η = [η1, η2]
T . To find the estimator of η from the observation

set of Φ, {ϕ1, ϕ2, . . . , ϕN}, the maximum likelihood method is used. The log-likelihood

function for fΦ(ϕ) is given by
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L(Φ;η) = ln

(
N∏
i=1

fΦ(ϕi;η)

)
.

Consequently, the maximum likelihood (ML) estimator for η̂ can be found as follows:

η̂ML = argmax
η

L(Φ;η) = argmax
η

N∑
i=1

ln fΦ(ϕi;η)

= argmax
η

N∑
i=1

ln

(∫ ∞

0

fΦ|S(ϕi;η|s)fS(s)ds
)
.

An example of the log-likelihood function L(Φ;η) corresponding to the examples in

Fig. 3.4 is shown in Fig. 3.5. As can be seen, the log-likelihood function is concave,

i.e. this is a convex optimization problem.

In practice, one needs to find

η̂ML = argmax
η

N∑
i=1

ln

(
Ns∑
n=1

fΦ|S(ϕi;η|sn)pn

)
,

where pn = CfS(sn), C is a constant such that
∑
pn = 1, which can be done by using

an iterative method to solve for η̂ML. See Appendix C for more details. Once we

have η̂ML, the estimators for λx and µx are given by

λ̂x = ||η̂ML||, and µ̂x = ∠(η̂ML,1 + jη̂ML,2). (3.22)

It is worth noting that if we model the relative phase by other widely used circular

pdf’s such as the von Mises or the wrapped Cauchy pdf’s [37], it is difficult to relate

the pdf’s parameters of the noisy coefficients to those of the clean coefficients because,

unlike the RP pdf, these circular pdf’s are not derived based on modeling the complex

coefficients by a complex-valued model. This is one of the advantages of modeling

the relative phase of complex coefficients by the RP pdf (3.2).

To validate the proposed estimation method, two experiments in estimating the

RP parameters µx and λx of X from the relative phase samples of Y are performed;
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Figure 3.5. Example of the log-likelihood function L(Φ;η),η = [η1,η2]
T , ||η|| < 1,

where phase samples are from a finest-scale subband extracted from the Brick.0001
image when σn = 30.

the first experiment with simulated samples, and the second experiment with the

actual samples taken from standard test images. We run experiments using Matlab

implementation on a 2.13GHz Core 2 Duo with 2GB RAM.

In each experiment, the proposed method which we call the RPM method is

compared with the other two methods described as follows.

1. Noisy method: This method blindly assumes that the noisy observation from

Y is clean and estimate the RP pdf of the noisy coefficients, i.e.,

λ̂x = λ̂y and µ̂x = µ̂y. (3.23)

µ̂y and λ̂y can be estimated from the samples of the relative phase associated

with Y by using the ML method [70].

2. RP method: This method assumes that the pdf for the relative phase of Y is

the RP pdf, and then predict µx and λx using the RP pdf parameters of Y

and W. The RP pdf parameters µy, λy, µw, λw can be estimated using the ML

estimation. Note that, given the complex transform, the estimators µ̂w and λ̂w
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of the RP pdf’s parameters ofW can be computed offline. LetCY =

c11 c12

c∗12 c22

.
Therefore, c12 − b12 = a12 because CY −CW = CX. Using the relationship in

(2.12), µx and λx can be estimated by

λ̂x =


|λ̂ye

jµ̂y−λ̂wejµ̂w |√
(c11−b11)(c22−b22)

, if λ̂x ≤ 0.999;

0.999, if λ̂x > 0.999,

and µ̂x = ∠(λ̂yejµ̂y − λ̂we
jµ̂w), (3.24)

where the condition on λ̂x is presented to prevent computational instability

since the value of λx satisfies 0 ≤ λx ≤ 1.

In the first experiment, the clean and noise vectors are simulated, and their

summation is the noisy vector. The RP parameters µx and λx are then estimated

using the Noisy, the RP, and the proposed RPM methods as in (3.23), (3.24), and

(3.22), respectively. Specifically, the data is generated as follows.

1. Generate X̃ and W as 2 × 1 complex Gaussian random vectors with CX̃ = σ2
x σ2

xλxe
jµx

σ2
xλxe

−jµx σ2
x

 and CW =

 1 λwe
jµw

λwe
−jµw 1

, respectively. Hence,

the signal-to-noise ratio (SNR) is equal to σ2
x. The values of µx and µw are set

as µx = 0.25π and µw = 0.75π.

2. Set X =
√
SX̃, where S is log normal with unit mean.

3. Obtain Y = X+W.

The parameters µ̂x and λ̂x are obtained using the three estimation methods mentioned

above. For the RPM method, the number of points S of the interval [smin, smax] is

set as Ns = 20. The interval [smin, smax] are chosen such that FS(smin) = 0.005,

and Fs(smax) = 0.995, where FS(s) is the cumulative density function (cdf) which
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is defined by FS(s) =
∫ s

−∞ fS(t)dt. This is to assure that the range of integration

sufficiently covers the support of fS(s).

For each given value of SNR, λx and λw, the estimation experiment is run for

100 independent trials. The values λx and λw are taken from {0.25, 0.5, 0.75}, which

result in nine pairs of (λx, λw). To show the performance of the estimation methods,

the root mean squared error (RMSE) between the true parameter and the estimate

is computed, i.e.,

RMSE =

√√√√ 1

100

100∑
i=1

|λxejµx − λ̂xejµ̂x |2.

For each value of the number of samples (N) and each value of SNR, the absolute

errors are averaged all over the nine pairs of (λx, λw) and 100 trials.

The hidden multiplier S in Step 2 is set to be log normal with unit mean, i.e.,

fS(s;µL, σL) =
1

sσL
√
2π

exp

(
−(ln s− µL)

2

2σ2
L

)
,

where µL = −σ2
L/2. To estimate the parameters of fS(s) from the noisy coefficients,

the moment matching method is used, and is given by

µ̂L = −1

2
ln(E[S2]), σ̂2

L = ln(E[S2]),

E[S2] =
E[|Y |4]− 4σ2

Y σ
2
W + 2σ4

W

2(σ2
Y − σ2

W )2
. (3.25)

The expression of E[S2] in (4.5) can be computed from Y = X +W =
√
SX̃ +W ,

where Y , X, X̃ and W are the univariate version of Y, X, X̃ and W, respectively,

as defined in (3.18), and σ2
Y and σ2

W are the variances of Y and W , respectively.

Once µ̂L and σ̂L are obtained, the limits of the interval [smin, smax] can be obtained

by smin = exp(µ̂L − 2.80703σ̂L) and smax = exp(µ̂L + 2.80703σ̂L).

The results are shown in Table 3.2, where S has the log normal pdf with µL =

−1
2
and σL = 1. Apparently, the proposed RPM method performs better than the RP
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Table 3.2. Comparison of the average RMSE between the true parameter and the
estimates of the three estimation methods where N is the number of samples, and
SNR is the signal-to-noise ratio. The unit of the average computational time is sec

RMSE
N SNR

Noisy RP RPM

0.5 0.5489 0.3222 0.3226
1 0.4566 0.2515 0.2395

100 5 0.2261 0.1482 0.1322
10 0.1538 0.1141 0.1104

Time Avg. 3.3×10−3 3.4×10−3 4.8×10−2

0.5 0.5434 0.2005 0.1645
1 0.4472 0.1790 0.1232

500 5 0.2100 0.1119 0.0751
10 0.1339 0.0797 0.0672

Time Avg. 1.1×10−2 1.1×10−2 2.0×10−1

0.5 0.5420 0.1775 0.1257
1 0.4459 0.1657 0.0929

1000 5 0.2080 0.1059 0.0621
10 0.1320 0.0748 0.0544

Time Avg. 1.9×10−2 1.9×10−2 3.8×10−1

0.5 0.5401 0.1539 0.0811
1 0.4454 0.1568 0.0684

5000 5 0.2068 0.1017 0.0345
10 0.1301 0.0703 0.0282

Time Avg. 7.1×10−2 7.1×10−2 1.5×100

method, and much better than the Noisy method. The average absolute error from

the proposed method is less than those from the other two methods. This is because

the Noisy method does not consider the fact that the observation data of Y is noisy,

while the RP method, though concerns about the presence of noise, ignores the fact

that the relative phase of Y, Φ, has the RPM pdf, not the RP pdf. In terms of the

number of samples (N), one can see that the performance of the proposed estimation

method is improved when the number of samples increases from 100 to 5000 for a fixed

value of SNR. If the number of samples N is fixed, the average absolute error of the
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proposed method reduces when the value of SNR increases from 0.5 to 10. However,

in the aspect of computational complexity, the RPM method is quite computationally

complex as can be seen from the time average in Table 3.2. It is due to the non closed

form of the pdf of Φ.

3.6 Summary

In this chapter, the statistical models for modeling the magnitude and relative

phase of complex wavelet coefficients have been studied. Based on the CGSM as-

sumption on the complex coefficient, the general cases of the magnitude and relative

phase pdf’s are derived. Several well-known special cases of the derive magnitude

pdf and the relative phase pdf (RP pdf) are shown to fit well with the histograms

obtained from the complex coefficients. Moreover, a parameter estimation method for

the concentration parameter of the RP pdf which yields an estimator without using

an iterative algorithm is proposed. Furthermore, the phase pdf related to the CGSM

called the relative phase pdf (RP pdf) is discussed and its non-iterative estimator is

proposed as an alternative for the exact maximum likelihood (ML) estimator which

requires numerical algorithm. Besides, an estimation method is presented to estimate

the magnitude pdf’s parameters and the RP pdf’s parameters when the underlying

input image is contaminated by additive white Gaussian noise. The simulation results

show that the non-iterative estimator gives acceptably accurate estimates with less

complexity, and that the proposed estimation method in noise is satisfactory for the

case of simulated data.



CHAPTER 4

APPLICATIONS

4.1 Introduction

This chapter provides some applications of statistical modeling using the CGSM

in the complex wavelet domain. Firstly, the CGSM model is applied to image de-

noising. Secondly, the magnitude pdf of the CGGD is used to model the coefficient

magnitude and is applied to the application of texture retrieval. Finally, the param-

eter estimation methods in the presence of noise that are proposed in Section 3 are

utilized in the application of noisy texture retrieval. To commence with, this chapter

discusses the application of the CGSM in image denoising.

4.2 Image Denoising

To show the effectiveness, the proposed CGSM is used to model the complex

subband coefficients of an image for image denoising application. The details are as

follows.

4.2.1 Bayes Least Squares Estimator for CGSM

One of the best methods for image denoising is the Bayes least squares (BLS)

estimator based on the GSM model presented in [47]. For each neighborhood, the

reference coefficient at center of the neighborhood is estimated from the set of observed

coefficients. The subband coefficients are real, and the pdf is a function of the real

variable. The BLS method based on the GSM model is used to estimate the real

subband coefficients. However, if one uses a complex transform which decomposes

56



57

an image into subbands of complex coefficients, then an algorithm that can handle

complex numbers is needed. Therefore, by the analogy with the BLS algorithm for the

GSM, the BLS estimator based on the CGSM for estimating the complex coefficients

is developed.

Let V be the random vector corresponding to a neighborhood of N observed

complex coefficients

V = Z+W,

where Z is an original complex coefficient vector and W is a complex noise vector

in the transform domain. Suppose that W is a zero-mean complex Gaussian and Z

is a CGSM random vector as shown in (2.10). It is well known that the Bayes least

squares estimation is the conditional expectation when Z and V are real random

vectors as follows

Ẑ = E[Z|V], (4.1)

and E[Z|V] =

∫ ∞

0

fS|V(s|v)E[Z|V = v, S = s] ds, (4.2)

where fS(s) is the pdf of the positive scalar random variable S. In this implemen-

tation, the integration in (4.2) is computed numerically, where K is the number of

points for s, by

E[Z|V] =
K∑
k=1

fS|V(sk|v)E[Z|V = v, S = sk],

When conditioned on S and V, the conditional expectation is obtained by

E[Z|V = v, S = s] = sCZ̃(sCZ̃ +CW)−1v, (4.3)

where the complex covariance matrices are given by CZ̃ = E[Z̃Z̃H ] and CW =

E[WWH ].

The neighborhood noise covariance matrix CW is obtained by decomposing

a random noise image which has Gaussian distribution with mean zero, standard
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deviation σ and has the same dimension as the original image into subbands. Given

CW, the covariance matrix CZ̃ can be computed from the observation covariance

matrix CV, i.e., CV = E[SZ̃Z̃H ] + E[WWH ] = E[S]CZ̃ + CW. Since E[S] = 1,

CZ̃ = CV −CW. To force the complex covariance matrix to be positive semidefinite,

an eigenvalue decomposition of CZ̃ is performed and any possible negative eigenvalues

are set to be zero.

The pdf of the observed neighborhood vector conditioned on S is zero-mean

complex Gaussian with covariance CV|S = sCZ̃ +CW,

fV|S(v|s) =
exp
(
−vH(sCZ̃ +CW)−1v

)
πN |sCZ̃ +CW|

.

To estimate Z, fS|V(s|v) as in (4.2) is computed as follows

fS|V(s|v) =
fV|S(v|s)fS(s)∫∞

0
fV|S(v|α)fS(α)dα

,

where the prior fS(s) is chosen to be Jeffrey’s noninformative prior [6] for the exper-

iments in this paper. According to Jeffrey’s rule, fS(s) satisfies

fS(s) ∝
√
I(s),

where I(s) is Fisher’s information measure which is defined by [6]

I(s) = E

[
−
∂2 ln fZ|S(z|s)

∂s2

]
.

For the CGSM model in (2.10),

−
∂2 ln fZ|S(z|s)

∂s2
=

∂2

∂s2

[
N ln(s) + ln |CZ̃|+

zHC−1

Z̃
z

s

]

=
−N
s2

+
2zHC−1

Z̃
z

s3
.

Since E[zHC−1

Z̃
z] = s, by taking the square root of the expectation, Jeffrey’s prior is

obtained by

fS(s) ∝
1

s
.
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Note that, in particular, Jeffrey’s prior of the CSGM obtained herein is the same as

that of the GSM obtained in [47]. Even though this fS(s) is an improper pdf, in this

implementation, fS(s) is set to be zero in the interval [0, smin) with a small positive

value of smin to cope with this fact. The points for s are sampled with logarithmi-

cally uniform spacing, where 13 points of ln(s) over an interval [ln(smin), ln(smax)] =

[−20.5, 3.5] with steps of size two are used. These parameters for the prior are selected

according to [47].

4.2.2 Experiment 1

In this subsection, the BLS method described in Section 4.2.1 is implemented for

image denoising in the UDCT domain. First, an image is decomposed into subbands

using the uniform discrete curvelet transform (UDCT) [41]. The decomposition con-

sists of oriented bandpass bands at five scales: twelve directions in the finest scale,

and six directions for the other coarser scales. Each subband except the lowpass

subband is denoised by using the BLS-CGSM estimator as described above. Then,

the denoised image is reconstructed from the processed subbands. The image is cor-

rupted by additive white Gaussian noise with known variance. The three standard

test images of size 512 × 512, Lena, Barbara, and Boats, are used in this denoising

experiment.

The results are displayed in Table 4.1 for the peak signal-to-noise ratio (PSNR)

values, and in Table 4.2 for the structure similarity (SSIM) indices [73], where the

standard deviation of the input noise is varied between σ = 10 and σ = 100. In this

paper, the PSNR value is defined as PSNR = 20 log10(255/σϵ), where σϵ is the error

standard deviation.

First, the proposed CGSM method is compared with the other three methods

in the UDCT domain. The three methods are the hard thresholding (HT) method,
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Table 4.1. PSNR values (in dB) of denoised images using various denoising methods
in the UDCT domain

σ
Noisy UDCT UDCT UDCT UDCT
PSNR HT GSMsp GSMag CGSM

Lena
10 28.13 33.58 34.10 34.13 35.49
15 24.61 31.93 31.87 31.83 33.82
20 22.11 30.85 30.38 30.11 32.59
25 20.17 29.99 29.11 28.81 31.62
50 14.15 27.23 24.74 24.28 28.56
75 10.63 25.68 21.94 21.94 26.87
100 8.13 25.07 19.85 21.42 25.73

Barbara
10 28.13 31.79 33.19 33.06 33.85
15 24.61 29.62 30.81 30.58 31.83
20 22.11 28.23 29.20 28.84 30.43
25 20.17 27.15 27.91 27.41 29.36
50 14.15 23.83 23.15 22.78 26.21
75 10.63 22.36 20.83 20.47 24.44
100 8.13 21.64 19.00 19.15 23.19

Boats
10 28.13 31.35 32.61 32.75 33.37
15 24.61 29.66 30.27 30.36 31.54
20 22.11 28.48 28.68 28.75 30.27
25 20.17 27.55 27.58 27.50 29.30
50 14.15 24.86 23.71 23.29 26.36
75 10.63 23.51 21.11 20.96 24.76
100 8.13 22.57 19.53 19.53 23.74

the GSM method of the real and the imaginary parts of complex coefficients sepa-

rately (GSMsp), and the method using GSM of the augmented vector of the real and

imaginary parts of complex coefficients (GSMag). For the HT method, any complex

coefficient whose magnitude is below the threshold is set to zero, where the threshold

in each subband is 3 times of the noise standard deviation of that subband. The

neighborhood used in the CGSM and GSM methods is hand-optimized to be the
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Table 4.2. SSIM indices of denoised images using various denoising methods in the
UDCT domain

σ
Noisy UDCT UDCT UDCT UDCT
SSIM HT GSMsp GSMag CGSM

Lena
10 0.614 0.885 0.877 0.876 0.910
15 0.451 0.860 0.819 0.813 0.887
20 0.344 0.841 0.761 0.747 0.868
25 0.272 0.825 0.702 0.684 0.851
50 0.113 0.764 0.463 0.435 0.777
75 0.061 0.724 0.315 0.315 0.728
100 0.037 0.695 0.226 0.301 0.698

Barbara
10 0.716 0.900 0.906 0.900 0.926
15 0.579 0.858 0.855 0.842 0.899
20 0.478 0.820 0.803 0.782 0.874
25 0.401 0.785 0.751 0.722 0.851
50 0.196 0.657 0.504 0.477 0.744
75 0.111 0.581 0.361 0.341 0.661
100 0.070 0.545 0.265 0.273 0.593

Boats
10 0.692 0.894 0.856 0.860 0.878
15 0.537 0.831 0.793 0.795 0.842
20 0.426 0.788 0.733 0.734 0.812
25 0.346 0.752 0.678 0.675 0.785
50 0.155 0.618 0.453 0.434 0.679
75 0.086 0.565 0.309 0.306 0.609
100 0.054 0.532 0.226 0.242 0.564

3× 3 block without the parent. From Tables 4.1 and 4.2, one can see that the CGSM

significantly outperforms the HT, and the GSMsp methods for all three test images in

terms of both PSNR values and SSIM indices. It is because, in the GSMsp method,

the real and the imaginary parts are denoised separately, where the fact that they

are the real and the imaginary parts of complex coefficients into account.
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Original Noisy HT

GSMsp GSMag CGSM

Figure 4.1. Denoising performance comparison of the Boats image (cropped to
150×150) with the UDCT. Top-left: original image, Top-middle: noisy image
PSNR 22.11dB (σ = 20), Top-right: UDCT-HT PSNR 28.48dB, Bottom-left:
UDCT-GSMsp PSNR 28.68dB, Bottom-middle: UDCT-GSMag PSNR 28.75dB,
and Bottom-right: UDCT-CGSM PSNR 30.27dB.

Compared with the GSMag method, the CGSM method performs considerably

better than the GSMag method. According to the shift-invariance property of com-

plex wavelet transforms, it is suggested that the magnitude (or the complex form)

of a complex coefficient should be used, i.e., treating complex coefficients as in the

CGSM method is suggested for the better results. As a matter of fact, there are two

equivalent ways to treat circular complex random vectors: treating them as having

complex covariance matrices (as in CGSM), or as having real covariance matrices (as

in GSMag). It appears that the results of the GSMag method should be as good as

those of the CGSM method. However, this is not true as will be explained in what

follows.
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In covariance matrix calculation, once the signal covariance matrix is obtained,

it is forced to be positive semidefinite. For the case where complex coefficients are

treated as having complex covariance matrices, an eigenvalue decomposition of the

complex covariance matrix CZ̃ is performed and any possible negative eigenvalues are

set to be zero. On the other hand, if the N×1 complex random vector Z̃ is treated as

the 2N×1 augmented vector of the real and imaginary part vectors [X̃T , ỸT ]T having

the real covariance matrix, one needs to set any possible negative eigenvalues of the

real covariance matrix C =

 CX̃ CX̃Ỹ

CỸX̃ CỸ

 to be zero. To see this, let λ1, λ2, ..., λ2N

be the eigenvalues of C in non-increasing order λ1 ≥ λ2 ≥ ... ≥ λ2N , and ρ1, ρ2, ..., ρN

be the eigenvalues of CZ̃ with ρ1 ≥ ρ2 ≥ ... ≥ ρN . If the circular condition is satisfied,

i.e, if CX̃ = CỸ and CX̃Ỹ = −CỸX̃, then λ2i−1 = λ2i for 1 ≤ i ≤ N , which means

that its eigenvalues have even multiplicity [56]. Therefore, the number of possibly

negative eigenvalues of C is even. It also follows from the circularity that there is

a relationship: ρi = 2λ2i−1 = 2λ2i, for 1 ≤ i ≤ N [56]. Therefore, the number

of negative eigenvalues of C is an even number, and twice the number of negative

eigenvalues of CZ̃.

However, in practice where the circular condition is not ideally satisfied, this

condition on the number of negative eigenvalues might not be true. One example

of this possibility is given, where the Barbara image is corrupted by additive white

Gaussian noise with standard deviation σ = 20. The neighborhood coefficients are

taken from 3×3 blocks in one finest subband of the UDCT decomposition, which

results in the 9×9 complex covariance matrix CZ̃, and the 18×18 real covariance

matrix C. All nine eigenvalues (ρi) of CZ̃ and eighteen eigenvalues (λi) of C are

tabulated in Table 4.3. As can be seen, there are five negative eigenvalues of C,

i.e., λi, 14 ≤ i ≤ 18, are set to zero while only one eigenvalue ρ9 of CZ̃ is set to
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Table 4.3. Example of eigenvalues of C and CZ̃. See text for details.

Matrix Eigenvalues

105.18 92.80 54.09 43.41 42.97 26.32
C 20.90 19.88 15.75 12.75 6.38 5.89

3.47 -0.86 -1.09 -3.18 -7.34 -18.23

CZ̃

189.92 77.73 53.92 41.18 30.73 12.19
8.80 6.58 -1.95

zero. As a consequence, the results from using the GSMag method are not as good

as (actually much worse than) those results using the CGSM method. Therefore, it

is less appropriate to treat the real and imaginary parts of complex coefficients as

the augmented vectors having real covariance matrices at least in image denoising

framework as in this thesis.

An example of visual denoising performance using these four methods for the

Boats image when σ = 20 is illustrated in Fig. 4.1. Obviously, the CGSM method

yields a visually better denoised image as it preserves the image details with less

artifacts. It should be also noted that the GSMsp and GSMag methods, which treat

complex coefficients inappropriately, yield even worse results for most of noise levels

than the simple HT method for the Lena image.

4.2.3 Experiment 2

In this experiment, image denoising is performed using CGSM with other com-

plex transforms: DT-CWT, PDTDFB, and FDCT. For all complex-valued transforms

using the CGSM method, the neighborhood is the 3× 3 block without the parent as

in the first experiment.

For PDTDFB and FDCT, images are decomposed into four scales to produce

the best results. For DT-CWT, five scales of decomposition in denoising are used.
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Table 4.4. PSNR values (in dB) of denoised images of the FS-GSM, and DT-CWT
BiShrink methods, and the CGSM methods with various complex transforms

σ
Noisy FS DT-CWT UDCT DT-CWT PDTDFB FDCT
PSNR GSM BiShrink CGSM CGSM CGSM CGSM

Lena
10 28.13 35.60 35.30 35.49 35.50 35.33 35.46
15 24.61 33.90 33.58 33.82 33.72 33.57 33.72
20 22.11 32.67 32.33 32.59 32.40 32.34 32.43
25 20.17 31.69 31.36 31.62 31.35 31.40 31.42
50 14.15 28.61 28.27 28.56 28.06 28.29 28.19
75 10.63 26.88 26.45 26.87 26.32 26.48 26.35
100 8.13 25.70 25.20 25.73 25.15 25.20 25.07

Barbara
10 28.13 34.02 33.30 33.85 34.01 33.89 34.24
15 24.61 31.83 31.17 31.83 31.79 31.87 32.16
20 22.11 30.27 29.66 30.43 30.25 30.47 30.70
25 20.17 29.07 28.53 29.36 29.07 29.41 29.58
50 14.15 25.42 25.21 26.21 25.50 26.15 26.28
75 10.63 23.61 23.53 24.44 23.60 24.32 24.46
100 8.13 22.58 22.48 23.19 22.46 23.03 23.16

Boats
10 28.13 33.58 32.99 33.37 33.49 33.28 33.38
15 24.61 31.69 31.24 31.54 31.51 31.36 31.48
20 22.11 30.36 29.95 30.27 30.13 30.01 30.14
25 20.17 29.33 28.94 29.30 29.09 28.99 29.13
50 14.15 26.32 25.97 26.36 25.95 26.12 26.08
75 10.63 24.73 24.42 24.76 24.33 24.55 24.44
100 8.13 23.72 23.39 23.74 23.31 23.50 23.36

The corresponding PSNR values and SSIM indices are tabulated in Tables 4.4 and

4.5, respectively.

Comparing all complex transforms with the CGSM method, the UDCT outper-

form than the other three transforms for the Lena and Boats images in terms of both

PSNR value and SSIM index. For the Barbara image, the UDCT performs better

than the DT-CWT, and approximately the same as the PDTDFB-CGSM in terms
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of PSNR value, but in terms of SSIM index the UDCT rather dominates the two

transforms. Considering the Barbara image denoising results of the FDCT, one can

see that it outperforms the UDCT in both aspects but it has higher redundancy as

shown in Table 4.6.

The CGSM method is also compared with the GSM method using full steerable

pyramid (FS-GSM) with eight directions [47], and the bivariate shrinkage method

using DT-CWT (DT-CWT-BiShrink) [61]. For the denoising using FS, an image is

decomposed into five scales. The FS-GSM method outperforms other methods includ-

ing the UDCT-CGSM in terms of both PSNR value and SSIM index especially for

the Lena and Boats images. However, for the Barbara image, all complex transforms

except the DT-CWT, which provides approximately the same results, yield better

denoising results in both PSNR and SSIM aspects, where the FDCT gives the best

results. This is because in the Barbara image contains oriented line-type structures

which can be better represented the curvelet-based transforms. When comparing the

DT-CWT BiShrink method with the proposed CGSM method, the DT-CWT is used

for a fair comparison. Based on the DT-CWT, the BiShrink method performs approx-

imately the same as the CGSM method for the Lena image, but is outperformed for

the other two images. Nevertheless, it should be mentioned that in order to use the

CGSM method in the DT-CWT domain the DT-CWT coefficients in the finest scale

is assumed to satisfy the circular condition although this is not true as it is shown in

Section . According to the results, this approximation is acceptable. Furthermore,

modeling the DT-CWT coefficients in the first scale can improve the results but it

is outside the scope of this work. However, the UDCT-CGSM method still outper-

forms the DT-CWT BiShrink method for all three images. Fig. 4.2 shows the visual

performance comparison of the Barbara image with different methods. Apparently,

the CGSM produces the better denoised image in terms of visual quality compared
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Table 4.5. SSIM indices of denoised images of the FS-GSM, and DT-CWT BiShrink
methods, and the CGSM methods with various complex transforms

σ
Noisy FS DT-CWT UDCT DT-CWT PDTDFB FDCT
SSIM GSM BiShrink CGSM CGSM CGSM CGSM

Lena
10 0.614 0.911 0.906 0.910 0.910 0.907 0.910
15 0.451 0.887 0.882 0.887 0.885 0.880 0.886
20 0.344 0.868 0.861 0.868 0.862 0.858 0.864
25 0.272 0.850 0.843 0.851 0.842 0.843 0.844
50 0.113 0.781 0.768 0.777 0.761 0.772 0.768
75 0.061 0.731 0.710 0.728 0.709 0.716 0.713
100 0.037 0.691 0.665 0.698 0.669 0.668 0.669

Barbara
10 0.716 0.930 0.919 0.926 0.930 0.925 0.930
15 0.579 0.899 0.888 0.899 0.900 0.897 0.903
20 0.478 0.869 0.858 0.874 0.870 0.871 0.878
25 0.401 0.839 0.830 0.851 0.841 0.846 0.854
50 0.196 0.710 0.713 0.744 0.710 0.737 0.749
75 0.111 0.622 0.629 0.661 0.617 0.666 0.668
100 0.070 0.563 0.570 0.593 0.551 0.597 0.601

Boats
10 0.692 0.883 0.865 0.878 0.881 0.878 0.879
15 0.537 0.845 0.829 0.842 0.840 0.838 0.840
20 0.426 0.813 0.797 0.812 0.805 0.803 0.807
25 0.346 0.784 0.769 0.785 0.774 0.772 0.777
50 0.155 0.678 0.664 0.679 0.660 0.668 0.668
75 0.086 0.611 0.596 0.609 0.586 0.602 0.596
100 0.054 0.564 0.548 0.564 0.535 0.552 0.545

to the GSM and Bishrink methods. In summary, the proposed CGSM method can

achieve high quality image denoising, especially for line-typed or oriented details as

in the Barbara image. For the Lena and Boats images, the UDCT-CGSM method

yields comparable results (≈ −0.05dB and ≈ −0.002 for SSIM index in average) to

those of the FS-GSM method but with lower redundancy as shown in Table 4.6.
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Original Noisy

FS−GSM DT−CWT−BiShrink

UDCT−CGSM DT−CWT−CGSM

PDTDFB−CGSM FDCT−CGSM

Figure 4.2. Denoising performance comparison of the Barbara image (cropped
to 150×150). Top-left: original image, Top-right: noisy image PSNR 22.11dB
(σ = 20), Second-left: FS-GSM PSNR 30.27dB, Second-right: DT-CWT-
Bishrink PSNR 29.66dB, Third-left: UDCT-CGSM PSNR 30.43dB, Third-right:
DT-CWT-CGSM 30.25dB, Bottom-left: PDTDFB-CGSM PSNR 30.47dB, and
Bottom-right: FDCT-CGSM PSNR 30.70dB.

4.3 An Application in Texture Retrieval

To show the usefulness of the magnitude pdf of the CGGD as discuss in Chapter

2, the magnitude of the complex coefficients of texture images is modeled by the

magnitude pdf for the purpose of texture retrieval.
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Table 4.6. Redundancy ratio comparison of the transforms used in the denoising
experiment

Transform FS UDCT DT-CWT PDTDFB FDCT
Redund. Ratio ≈18.67 4 4 ≈2.67 ≈14.53

4.3.1 Texture Image Database and Feature Extraction

In the experiments, forty images of size 512×512 from the VisTex database are

used as in [70]. Each of the forty images is partitioned into sixteen subimages of

size 128×128. Consequently, there are 640 subimages in the database of forty classes

where the subimages in the same class belong to the same image of the forty original

texture images. Henceforth, each of the 640 subimages is referred to as an image

while each of the original forty images is referred to as a class. After normalization

to have zero mean and unit variance for all images in the database, each of them is

decomposed by the uniform discrete curvelet transform (UDCT) [41]. Here, an image

is decomposed into three scales where there are six subbands in each scale. Hence

there are eighteen subbands for each image. To extract the feature vector for an image,

the coefficients in each subband are fitted with the derived pdf using the parameter

estimation method discussed in Section 3.3.2. Consequently, the parameters obtained

from all subbands will form the feature vector used in the query process.

4.3.2 Distance Measurement

Once the feature vector of each image is obtained, the distance or similarity

between the query image and each image in the database is measured using their

feature vectors in order that one can retrieve or select the N nearest images. In

this work, the distance between two images is the sum over subbands of the distance

between the distributions of the coefficient magnitude in each subband of the two
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images. Here, the Kullback-Leibler distance (KLD) is used to measure the distance

between two distributions. The KLD between two pdf’s f(x) and g(x) is defined

by [12]

D(f(x)||g(x)) ,
∫
f(x) ln

(
f(x)

g(x)

)
dx.

The KLD D(f(x)||g(x)) is nonnegative and is equal to zero when f(x) ≡ g(x). If two

pdf’s f1(r) and f2(r) are described by (2.11), we obtain the closed form expression of

the KLD between the two pdf’s as

D(f1(·;α1, β1)||f2(·;α2, β2)) = ln

β1α2
2Γ
(

2
β2

)
β2α2

1Γ
(

2
β1

)


+

(
α1

α2

)β2 Γ
(

β2+2
β1

)
Γ
(

2
β1

) − 2

β1
. (4.4)

Therefore, the overall distance between two feature vectors F1 and F2 extracted from

M subbands is given by

d(F1, F2) =
M∑
i=1

D
(
fR(·;α(i)

1 , β
(i)
1 )||fR(·;α(i)

2 , β
(i)
2 )
)
.

The retrieval rate of a query image is defined as the number of images among the N

nearest images, excluding itself, which belong to the same class divided by fifteen.

The average retrieval rate is the retrieval rate of each image averaged over all 640

images in forty classes.

4.3.3 Experimental Results

The retrieval performance is compared when the derived pdf is used in magni-

tude modeling with the performance of the other three methods. For the first method,

two statistics which are the mean and the standard deviation (STD) of the coefficient

magnitude in each subband are used as the features. For the second method, the mag-

nitude of the coefficients is modeled by the Rayleigh distribution, where the Rayleigh
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pdf parameter is used as the feature for each subband. The third method models

each of the real and the imaginary parts of the coefficients by the GGD model [17],

where the two parameters of the GGD are the features for each subband. For the

first method, the conventional Euclidean distance is used the measure the distance

between two feature vectors, while the KLD is used for the latter two.

Table 4.10 shows the average retrieval rates when N = 15 with features ex-

tracted from six subbands in the finest scale, and from eighteen subbands in all three

scales. As can be seen, using the derived pdf to model the magnitude outperforms

the other three methods when using one scale and three scales. Using the derived

magnitude pdf yields higher retrieval rate than the best of using the GGD for the

real part or for the imaginary part by 0.5% and 1.1% when using one scale and three

scales, respectively.

Fig. 4.3 displays the average retrieval rate with features extracted from six

subbands in the finest scales in Fig. 4.3(a), and from eighteen subbands in all three

scales in Fig. 4.3(b). When the number of selected images N is from fifteen to

sixty, the proposed method consistently outperforms the other three methods in both

cases. Even though the information obtained from the real part or the imaginary

part of the coefficients is the same as the information obtained from the magnitude of

the coefficients since the real and the imaginary parts are assumed to be identically

distributed and uncorrelated, the performance of using the magnitude pdf is better

than that of using the pdf of the real part or the imaginary part of coefficients. This

is due to the (approximately) shift-invariance property of the complex wavelets, while

this is not true for the real wavelets
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Figure 4.3. Percentage of the average retrieval rate versus the number of selected
images N : (a) use only the finest scale, (b) use all three scales.

Table 4.7. Percentage of the average retrieval rate using UDCT and several feature
extraction using the finest scale and using all three scales when the number of selected
images N = 15

1 Scale Mean&STD Rayl GG-Re GG-Im Mag PDF
Feat. length 12 6 12 12 12
Avg. rate (%) 62.20 57.74 64.60 64.70 65.28

3 Scales Mean&STD Rayl GG-Re GG-Im Mag PDF
Feat. length 36 18 36 36 36
Avg. rate (%) 72.40 71.91 76.20 75.39 77.31

4.4 Texture Retrieval in Noisy Environment

The content-based image retrieval (CBIR) has been in need in the past years

since the rapid growth of digital image data in multimedia database. It is a technique

to browse and retrieve images relevant to the user’s query image from the database by

analyzing the image contents such as shapes and textures. A simple image retrieval

system consists of two steps: feature extraction, where a set of features is obtained

to represent each image in the database, and similarity measurement, where the

distance between the query image and each image in the database is computed in

order to retrieve the K most similar images. This section focuses on the texture
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image retrieval since the features used in CBIR systems are low-level image features

such as texture [17].

One of the most popular techniques for texture retrieval is to use the filter-

based or wavelet-based approaches for feature extraction [8, 36, 53, 65]. There have

been several research studies using feature extraction in the transform domain. For

example, in [36], the mean and standard deviation of the magnitude of Gabor co-

efficients are used and the features, and the Euclidean distance is employed in the

similarity measurement step. Instead of using the mean and standard deviation of

coefficient magnitude and the Euclidean distance, in [17], by modeling the coeffi-

cient of the discrete wavelet transform (DWT) as a generalized Gaussian distribution

(GGD), the GGD parameters are computed as features while the Kullback-Liebler

distance (KLD) between two distributions is used a similarity measure to improve

the retrieval accuracy. The texture retrieval scheme we focus on in this work is based

on the framework in [17]. Note that the idea of using this similar statistical approach

for image retrieval was also introduced in [66]. Because of the effectiveness of using

the KLD in similarity measurement and the emersion of the complex wavelets, there

has been a number of research work focusing on modeling complex wavelet coeffi-

cients and using it in feature extraction for texture retrieval. In [30], together with

the computational analysis, the Weibull and Gamma distributions are used to model

the magnitude of complex coefficients from the dual-tree complex wavelet transform

(DT-CWT) for texture retrieval, which improves the accuracy rate from using the

mean and standard deviation features [15]. Moreover, the generalized Gamma distri-

bution is used to model the coefficient for texture retrieval in the case of the DWT

(two-sided version of the distribution) in [11], and the coefficient magnitude in the

case of the DT-CWT in [33]. The extension of texture retrieval systems to be robust

to image rotation has also been studied (see [16, 64] for examples).
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The quality of the query images is crucial in the retrieval performance. However,

in practice, users may obtain a noisy query image because of the lack of acquisition

expertise or an unavoidable noisy environment. Typically, there are two ways to deal

with this problem: (1) perform a denoising method first to obtain a denoised query

image which features can be extracted or (2) estimate the features of the clean query

image from the noisy one. Indeed, there are many promising wavelet-based image

denoising methods (see [47] for example). However, performing image denoising before

extracting the features from query image might not be computationally efficient since

two more steps required in forward and inverse transforms have to be done in order to

obtain a denoised query image. Therefore, such a method to deal with noisy texture

retrieval will not be discussed here. In this paper, instead of be extracted from a clean

query image, feature vectors are extracted from a noisy one by a method of parameter

estimation in noise. There are research studies that consider the presence of noise in

texture retrieval in the transform domain based on the singular value decomposition

(SVD)-based modeling [59], and based on local binary patterns (LBP) [76]. However,

these are outside the scope of this work, and will not be discussed herein. There

has been no work focusing on using the statistical wavelet approach based on the

subband coefficient modeling and the KLD as in [17] for texture retrieval when the

query image is contaminated by noise.

In this section, statistical texture retrieval in a noisy environment in the com-

plex wavelet domain is performed by using the parameter estimation methods from

noisy coefficients as proposed in Section 3.4. The query image in this scenario is

contaminated by additive white Gaussian noise. The proposed methods are used to

estimate the pdf’s parameters of the original (clean) image from the noisy one, which

are then used in computing the retrieval rate.
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4.4.1 Texture Image Database and Feature Extraction

In this application, the images from the same database as in Subsection 4.3.1 are

used. After normalization to have zero mean and unit variance for all images in the

database, white Gaussian noise with a known variance is added. Subsequently, each

of them is decomposed by the UDCT into three scales where there are six subbands in

each scale. The features of each image in the database (which is clean) are obtained

by using the parameter estimation methods described in Section 3.2.

4.4.2 Feature Extraction from the Noisy Query Image

To extract the feature vector for an image from subbands of noisy coefficients,

the parameter estimation methods discussed in Section 3.4 are used. In the cases of

estimating the parameter β of the GGD, Weibul and Gamma distributions, a look-

up table consists of 100 uniformly-spaced points starting the minimum value to the

maximum values of the estimates of that parameters obtained from the clean database

is utilized. In the case of RP model, the log-normal prior with unit mean is chosen to

model the hidden multiplier S in (3.21) which is empirically found to produce good

results, i.e.,

fS(s;µL, σL) =
1

sσL
√
2π

exp

(
−(ln s− µL)

2

2σ2
L

)
,

where µL = −σ2
L/2. To estimate the parameters of fS(s) from the noisy coefficients,

the moment matching method is used, and is given by

µ̂L = −1

2
ln(E[S2]), σ̂2

L = ln(E[S2]),

E[S2] =
E[|Y |4]− 4σ2

Y σ
2
W + 2σ4

W

2(σ2
Y − σ2

W )2
. (4.5)

The expression of E[S2] in (4.5) can be computed from Y = X +W =
√
SX̃ +W ,

where Y , X, X̃ and W are the univariate version of Y, X, X̃ and W, respectively,

and σ2
Y and σ2

W are the variances of Y and W , respectively. The number of points
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Table 4.8. The average retrieval rates (%) of several methods using the UDCT when
the number of selected images K = 16

Assume noisy query image is clean
σn Scales

Mean&SD GG-Re GG-Im Rl Wbl Gam
1 57.94 54.54 55.15 53.02 55.94 53.76

0.1 1, 2 70.97 68.36 68.39 66.20 69.77 67.70
1, 2, 3 74.08 72.69 71.70 71.13 74.74 72.96
1 40.55 33.16 34.20 33.35 34.41 32.09

0.2 1, 2 63.36 48.67 49.43 48.86 50.34 47.21
1, 2, 3 70.04 56.75 56.50 56.95 58.22 55.47
1 23.32 18.07 19.79 18.70 19.25 17.50

0.3 1, 2 47.50 34.26 35.27 33.85 35.63 32.93
1, 2, 3 61.27 43.26 44.08 42.05 45.28 42.41

Number of

features (3 scales) 36 18 36

S of the interval [smin, smax] is set as Ns = 15. The interval [smin, smax] are chosen

such that FS(smin) = 0.005, and Fs(smax) = 0.995, where FS(s) is the cumulative

density function (cdf) which is defined by FS(s) =
∫ s

−∞ fS(t)dt. This is to assure

that the range of integration sufficiently covers the support of fS(s). Once µ̂L and

σ̂L are obtained, the limits of the interval [smin, smax] can be obtained by smin =

exp(µ̂L − 2.80703σ̂L) and smax = exp(µ̂L + 2.80703σ̂L).

4.4.3 Distance Measurement

Once the feature vector of each image is obtained, the distance or similarity

between the query image and each image in the database is measured using their

feature vectors so that one can retrieve or select the K nearest images. The distance

between two images in this thesis is the sum over subbands of the distance between

the distributions corresponding the the type of features in each subband of the two

images. Here, the symmetric version of the Kullback-Leibler distance (KLD), Dsym,
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Table 4.9. The average retrieval rates (%) of several methods using the UDCT when
the number of selected images K = 16

Estimate clean parameters from noisy query image
σn Scales

L2&L4 GG-Re GG-Im Rl Wbl Gam
1 59.10 62.44 63.77 60.60 54.01 55.45

0.1 1, 2 68.78 74.51 74.49 71.26 69.34 71.21
1, 2, 3 71.60 77.09 75.86 74.59 76.39 77.08
1 58.74 60.64 61.79 60.23 53.47 54.59

0.2 1, 2 68.59 73.00 73.43 71.03 68.42 70.95
1, 2, 3 71.48 75.54 74.85 74.70 75.52 76.71
1 58.41 59.90 59.57 59.17 52.09 53.42

0.3 1, 2 68.44 72.57 72.50 70.02 67.53 70.01
1, 2, 3 71.38 75.46 74.34 73.83 74.69 76.01

Number of

features (3 scales) 36 18 36

is used to measure the distance between two distributions. The symmetric KLD is

defined by

Dsym(f, g) ,
1

2
(D(f ||g) +D(g||f)) ,

where D(f ||g) is the KLD of two pdf’s f and g which is defined by [12]

D(f ||g) ,
∫
f ln

(
f

g

)
(4.6)

Therefore, the overall distance between two feature vectors F1 and F2 extracted from

Nb subbands is given by

d(F1, F2) =

Nb∑
i=1

Dsym

(
f
(i)
1 , f

(i)
2

)
.

Since a closed form of the KLD between two RP pdf’s is under investigation, a

numerical method with 128 bins is used to estimate (4.6) in this paper. The retrieval

rate of a query image is defined as the number of images among the K nearest images,

which belong to the same class divided by sixteen. The average retrieval rate is the

retrieval rate of each image averaged over all 640 images in forty classes.
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Figure 4.4. Comparison of the average retrieval rate in several aspects: (a) awareness
of noisy query (σn = 0.2), (b) Mean&SD (noisy) vs. L2&L4, and (c) Nonmodel-based
vs. model-based (σn = 0.2).

4.4.4 Experimental Results

4.4.4.1 Using Magnitude Only

In this thesis, the noisy texture retrieval experiments are tested with three

values of the noise level σn = 0.1, 0.2, 0.3. Tables 4.8 and 4.9 show the average

retrieval rates when K = 16 with features extracted from subbands in three scales

of the UDCT decomposition using five methods according to the features extracted,

which are the GG parameters of the real (GG-Re) and the imaginary parts (GG-Im)

of the complex coefficient, and the Rayleigh parameter (Rl), the Weibull parameters

(Wbl) the Gamma parameters (Gam) of the magnitude. The results for these methods

are obtained in two situations: (1) the noisy query image is assumed to be clean (in
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Figure 4.5. The average retrieval rate for several model-based methods: (a) σn = 0.1,
(b) σn = 0.2, and (c) σn = 0.3.

Table 4.8), and (2) the presence of noise is taken into consideration and the clean

parameters from the noisy coefficient (in Table 4.9) are estimated as described in

Sections 3.4. As can be seen from Table 4.8, ignoring the presence of noise degrades

the retrieval performance drastically in all of the six methods when K = 16. This

is also consistent for all values of K from 16 to 100 as illustrated in Fig. 4.4(a) for

the Gam and GG-Re methods with three scales as examples. In all plots in Fig.’s 4.4

and 4.5, features from all three scales are used.

Moreover, using the mean and standard deviation of the magnitude of subband

coefficient (Mean&SD) as features is also compared. This is probably the simplest

and widely-used nonmodel-based method for texture retrieval in the case where it is

assumed that the noisy query is clean. Note that the performance of this Mean&SD
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method is even better than the performance of the other five model-based methods

when noise levels are 0.2 and 0.3 in the situation where the noisy query image is

assumed to be clean, which implies that using the mean and standard deviation

is more resilient to noise compared to the model-based approaches given that any

estimation method of clean parameters is not performed.

When the presence of noise is considered, the estimates of the L2-norm and

the L4-norm (L2&L4) are used as an example of a nonmodel-based method since

one cannot estimate the mean of the magnitude of clean coefficient from the noisy

coefficient The L2-norm and L4-norm are estimated by

L2 =
√
m2, and L4 = m

1/4
4 ,

where m2 and m4 are the estimates of the second and the third moment of the

coefficient magnitude as described in Section 3.4. For these two nonmodel-based

methods, the similarity measure between two images is the Euclidean distance as

defined in [36]. The retrieval rates of the Mean&SD and L2&L4 methods are shown

in Fig. 4.4(b) as a comparison of the nonmodel-based methods in both situations. For

all three levels of noise except when σn = 0.1, the L2&L4 method when one is aware of

noise performs consistently better than we blindly use the Mean&SD method. From

now on, all the methods are in the situation that the presence of noise is taken into

consideration.

Next, the nonmodel-based and the model-based methods are compared. Fig.

4.4(c) displays the accuracy rates of the L2&L4, GG-Re and Gam methods. Appar-

ently, the model-based methods outperform the nonmodel-based methods (with the

same number of features which is 36) as one expects. Fig. 4.5 compares the retrieval

rates of the five model-based methods. It can be seen that both Wbl and Gam meth-

ods which use the coefficient magnitude performs better (or approximately the same
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Table 4.10. The average retrieval rates (%) using several complex transforms when
the number of selected images K = 16

UDCT DT-CWT PDTDFB
σn Scales

Noisy RP RPM Noisy RP RPM Noisy RP RPM
1 36.04 51.49 57.25 35.11 55.77 60.30 44.44 54.69 58.33

0.1 1, 2 44.80 57.86 61.07 52.37 69.52 71.36 51.67 60.16 62.56
1, 2, 3 48.29 56.45 57.25 61.29 69.56 71.32 48.28 53.41 55.11
1 17.52 41.51 56.15 16.71 44.13 54.09 26.69 45.21 52.06

0.2 1, 2 27.20 47.81 58.15 33.02 57.56 67.73 36.48 52.49 59.04
1, 2, 3 35.51 50.51 56.05 44.03 62.61 69.24 38.61 49.30 52.88
1 9.00 35.90 46.74 8.54 37.66 49.75 16.33 39.14 48.75

0.3 1, 2 20.01 43.39 54.73 21.87 49.85 64.95 28.53 45.81 56.04
1, 2, 3 28.93 45.98 54.78 33.28 55.86 68.18 33.25 44.00 51.34

when σn = 0.1) than the GG-Re and GG-Im methods which use the real and the

imaginary parts of the coefficient respectively. This is because of the shift-invariance

property of the magnitude of complex coefficient. The Rl method which models the

magnitude by the Rayleigh distribution, which is a one-parameter distribution, is out-

performed when σn = 0.1 by other methods even by the GG-Re and GG-Im methods,

which use the real/imaginary parts since the Rl method uses 18 features while the

others use 36 features. However, when the noise level increases, the Rl method seems

to be less sensitive since it involves with only estimation of the second moment while

the other four methods also involve with the estimation of the fourth moment.

4.4.4.2 Using Phase Only

Table 4.10 shows the average retrieval rates when K = 16 with features ex-

tracted from the relative phase in coefficient subbands in three scales of the UDCT

decomposition. As can be seen, using the RPM method in estimating the RP pa-

rameters outperforms the Noisy and RP methods for all scales and all three values of

noise level. Using the first two scales when σn = 0.1, the RPM method improves the
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Figure 4.6. The average retrieval rate versus the number of selected images K using
the UDCT: (a) σn = 0.1, (b) σn = 0.2, and (c) σn = 0.3.

accuracy rate from the Noisy method, where the noisy coefficients are blindly used as

clean coefficients, by 16.27% while the RP method improves the rate from the Noisy

method by 13.06%. Fig.’s 4.6(a)-4.6(c) display the average retrieval rate with features

extracted from twelve subbands in the first two scales versus the number of selected

images K when the noise level σn is from 0.1 to 0.3. When the number of selected

images K is from 16 to 100, the proposed RPM method consistently outperforms the

other two methods in all three noise levels.

In addition to the UDCT, texture retrieval in a noisy environment is also per-

formed with other two complex transforms: the dual-tree complex wavelet transform

(DT-CWT), and the pyramidal dual-tree directional filter bank (PDTDFB). For both

transforms, an image is decomposed into three scales, with six directions in each scale
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Figure 4.7. The average retrieval rate versus the number of selected images K using
the DT-CWT: (a) σn = 0.1, (b) σn = 0.2, and (c) σn = 0.3.

in the case of the DT-CWT, and with eight directions in each scale in the case of

the PDTDFB. The results for the two complex transforms when K = 16 are also dis-

played in Table 4.10. The RPM method still outperforms the other two in estimating

the RP parameters as in the case of the UDCT for all scales, and all three noise

levels. Fig.’s 4.7 and 4.8 illustrate the average retrieval rate versus the number of

selected images with three noise levels for the DT-CWT and PDTDFB, respectively.

For the DT-CWT, three scales are used while only the first two scales are used for

the PDTDFB, which produce the highest retrieval rate for each transform. Like in

the case of the UDCT, the parameters obtained by the proposed RPM methods yield

higher retrieval rates than those from the other two methods.
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Figure 4.8. The average retrieval rate versus the number of selected images K using
the PDTDFB: (a) σn = 0.1, (b) σn = 0.2, and (c) σn = 0.3.

4.4.4.3 Using Both Magnitude and Phase

Furthermore, the phase information in the form of the relative phase is also

incorporated to the magnitude information to improve the accuracy rate. Features

from the coefficient magnitude in three scales are used while the phase information

from two scales is used, which yields the best result. To incorporate the phase in-

formation to the magnitude information, one needs to define the combined distance

measurement where in this paper we use

d(F1, F2) = adMG(F1, F2) + (1− a)dRP(F1, F2),

where dMG(F1, F2) and dRP(F1, F2) are the distance between F1 and F2 according

the magnitude and the relative phase respectively, 0 ≤ a ≤ 1 is the weight which



85

Table 4.11. The average retrieval rates (%) using magnitude and phase information
when the number of selected images K = 16

Magnitude (Scales 1,2,3) Phase (Scales 1,2) Magnitude&Phase
σn Wbl Gam RP Wbl&RP Gam&RP
0.1 76.39 77.08 61.07 80.78 80.23
0.2 75.52 76.71 58.15 79.37 78.93
0.3 74.69 76.01 54.73 77.55 77.64

Table 4.12. The average retrieval rates (%) using several transforms when the number
of selected images K = 16

UDCT DTCWT PDTDFB DWT
σn Wbl&RP Gam&RP Wbl&RP Gam&RP Wbl&RP Gam&RP GG
0.1 80.78 80.23 81.56 81.26 82.06 82.07 73.48
0.2 79.37 78.93 76.66 75.76 80.64 80.97 70.27
0.3 77.55 77.64 71.83 71.18 80.08 79.76 65.46

Number

of features
60 60 60 60 80 80 18

is adjusted such that the combined distance yields the best results when there is no

noise.

As can be seen from Table 4.11, incorporating the phase information improves

the retrieval rate when K = 16 by 2.86% to 4.39% for the Wbl & RP method, and

by 1.63% to 3.15% for the Gam & RP method. Fig. 4.9 shows that using both

magnitude and phase information consistently improves the retrieval rate from using

either the magnitude of the phase information independently, and also better than

the best of the real or imaginary parts.

In addition to the UDCT, texture retrieval in a noisy environment is performed

with other two complex transforms: the dual-tree complex wavelet transform (DT-

CWT), and the pyramidal dual-tree directional filter bank (PDTDFB), and also the

conventional DWT, in which we use the GG parameters as the features. For all
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Figure 4.9. Comparison of the average retrieval rate using magnitude-phase informa-
tion: (a) σn = 0.1, (b) σn = 0.2, and (c) σn = 0.3.

transforms, an image is decomposed into three scales, with six directions in each

scale in the case of the DT-CWT, and with eight directions in each scale in the case

of the PDTDFB, and three directions each scales for the case of the DWT.

The results for the three transforms when K = 16 are also displayed in Table

4.12. Fig.’s 4.10 illustrates the retrieval rate with three noise levels for all trans-

forms. Apparently, using complex-valued transforms yields better results for noisy

texture retrieval than using the real-valued DWT, which confirm the advantage of

the complex-valued wavelets to the conventional real-valued wavelets. Comparing all

three complex transforms, it can be seen that the PDTDFB performs better than

the other two transforms because of high directional selectivity. In terms of compu-

tational complexity, the average values of computational time for all transforms are



87

20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

Number of selected images, K

A
ve

ra
ge

 r
et

rie
va

l r
at

e 
(%

)

 

 

DWT−GG
UDCT−Wbl&RP
UDCT−Gam&RP
DTCWT−Wbl&RP
DTCWT−Gam&RP
PDTDFB−Wbl&RP
PDTDFB−Gam&RP

(a)

20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

Number of selected images, K

A
ve

ra
ge

 r
et

rie
va

l r
at

e 
(%

)

 

 

DWT−GG
UDCT−Wbl&RP
UDCT−Gam&RP
DTCWT−Wbl&RP
DTCWT−Gam&RP
PDTDFB−Wbl&RP
PDTDFB−Gam&RP

(b)

20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

Number of selected images, K

A
ve

ra
ge

 r
et

rie
va

l r
at

e 
(%

)

 

 

DWT−GG
UDCT−Wbl&RP
UDCT−Gam&RP
DTCWT−Wbl&RP
DTCWT−Gam&RP
PDTDFB−Wbl&RP
PDTDFB−Gam&RP

(c)

Figure 4.10. The average retrieval rate using several transforms: (a) σn = 0.1, (b)
σn = 0.2, and (c) σn = 0.3.

tabulated in Table 4.13, where we show the time of the Wbl&RP method for the com-

plex transforms, and the GG method for the DWT. As can be expected, it requires

much more computational time in incorporating the phase information to improve

the retrieval rate in both feature extraction and similarity measurement since the

RP method requires an iterative method in both steps. Moreover, the PDTDFB is

more computationally expensive than the UDCT and the DT-CWT while the DWT

requires least computational time.

4.5 Summary

To illustrate the usefulness of the CGSM, the proposed model is applied to

three applications: image denoising, texture retrieval and texture retrieval in a noisy
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Table 4.13. Computational time (Matlab on intel Core i7 with 2.8 GHz and 8GB
RAM) and number of features for various transforms

Details UDCT DTCWT PDTDFB DWT
Methods Wbl Wbl&RP Wbl&RP Wbl&RP GG

Num. of feat. 36 60 60 80 18
FE time (s) 0.017 0.855 0.922 1.117 0.008
SM time (ms) 0.3 5.0 5.1 6.7 0.4

environment. In image denoising, the proposed CGSM has been applied to obtained

a denoised image from a noisy one using Bayes least squares (BLS) estimator. The

denoising results indicate that the CGSM is possibly a more appropriate model for

the complex wavelet coefficients than the joint GSM model of their real and imaginary

parts. Moreover, the CGSM allows us to improve the denoising results from those

results using the GSM with the real transforms or obtain comparable results by using

a complex transform with less redundancy ratio. In addition to image denoising, the

application of complex wavelet-based texture retrieval using the derived magnitude

pdf of the CGGD is performed. From the experimental results, using the derived

magnitude pdf for feature extraction improves from the other three methods which

use the mean and the standard deviation, the Rayleigh model, and the GGD model

of the real part and the imaginary part.

Furthermore, the problem of texture retrieval in noisy environment where the

query image is noisy using complex wavelets in a statistical framework has also been

studied. Specifically, the features are extracted from the noisy query image by as-

suming a statistical model on the complex subband coefficients of the clean image.

This feature extraction based on the parameter estimation in noise of the model of

the complex coefficients. The retrieval rate is then computed based on the similarity

measurement which is performed by computing the Kullback-Leibler distance (KLD)
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between the estimated model from the noisy query image and images in the database.

The awareness of the presence of noise is validated by the results that the retrieval

rate with parameter estimation in noise is higher that the rate when the noisy query

image is assumed to be clean. In addition to magnitude information, phase informa-

tion is also incorporated to improve the retrieval rate. The experimental results show

that using magnitude and phase improves the accuracy rate from using either magni-

tude or phase alone, and that using complex-valued wavelets yield better results than

using real-valued wavelets.

The simulation results in both applications are consistent among several com-

plex multiresolution transforms including the dual-tree complex wavelet transform

(DT-CWT).



CHAPTER 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS

5.1 Concluding Remarks

In this thesis, the complex Gaussian scale mixture (CGSM) model for complex

wavelet coefficients has been proposed. The CGSM, which is the complex version

of the Gaussian scale mixture (GSM), can be used to model and treat the complex

coefficients appropriately. It has also been shown that the real and imaginary parts

of complex wavelet coefficients are related in such a way that their joint pdf can be

expressed as a function of complex coefficients. Moreover, some related propositions

and results of the CGSM are discussed. As consequences from modeling the complex

coefficient by the CGSM, the general forms of magnitude and the phase pdf’s have

been derived. Since the general form of the magnitude pdf has no closed form, several

widely-used magnitude models which are its special cases are discussed. Unlike the

case of magnitude, the phase pdf in general case has the closed form, which is called

the relative phase pdf (RP pdf). The parameter estimation methods in the presence

of noise of the related magnitude and RP pdf’s have also been presented. For the case

of the RP pdf, a parameter estimation method with requires no iterative algorithm

is also presented. The simulation results show that the non-iterative estimator gives

acceptably accurate estimates with less complexity, and that the proposed estimation

method in noise is satisfactory for the case of simulated data.

To show the effectiveness of the CGSM, the proposed model is used in three

applications: image denoising, texture retrieval, and noisy texture retrieval. The

proposed CGSM is applied to an application in image denoising using Bayes least

90
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squares (BLS) estimator. The denoising results indicate that the CGSM is an appro-

priate model for the complex wavelet coefficients. Moreover, the CGSM allows the

improvement of the denoising results from those results using the GSM with the real

transforms or comparable results by using a complex transform with less redundancy

ratio.

Furthermore, the application complex wavelet-based texture retrieval using the

derived magnitude pdf of the CGGD, a special case of the CGSM, is performed. From

the experimental results, using the derived magnitude pdf for feature extraction im-

proves from the other three methods which use the mean and the standard deviation,

the Rayleigh model, and the GGD model of the real part and the imaginary part.

In addition, the application of noisy texture retrieval in a statistical framework

has been studied. In this framework, the features are extracted from the image based

on statistical modeling in the complex wavelet domain, where the magnitude and rela-

tive phase models which are derived from the CGSM are employed. The retrieval rate

is then computed based on the similarity measurement which is performed by com-

puting the Kullback-Leibler distance (KLD) between the estimated model from the

noisy query image and images in the database. According to the results, the method

using the magnitude pdf of coefficient magnitude outperforms the method using the

pdf of either the real or imaginary parts of a coefficient. In addition to magnitude

information, phase information has been incorporated to improve the retrieval rate.

The experimental results show that using magnitude and phase improves the accu-

racy rate from using either magnitude or phase alone, and that using complex-valued

wavelets yield better results than using real-valued wavelets.
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5.2 Future Research Directions

One future research direction is the use of the proposed CGSM model in other

image processing tasks including image deconvolution in the complex wavelet domain.

According to promising image denoising results, applying the CGSM as a sparsity

constraint in image deconvolution problem will allow a lower complexity method

with better or comparable quality of the reconstructed images.

A second research direction is the computational complexity reduction in noisy

texture retrieval using the proposed framework, where an iterative method to estimate

parameters of the RP pdf is required. Using a non-iterative parameter estimation

method will improve the speed of the algorithm, which results in a more practical

texture retrieval system.

Another direction is to utilize the magnitude and phase information of complex

wavelets in other applications. Because most of research studies in image processing

based on complex wavelets use only the magnitude information, incorporating the

phase information could improve the performance, and also provides another view-

point to solve related image processing tasks.
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2-D Two-Dimensional.

AML Approximate Maximum Likelihood.

AMM Approximate Moment Method.

AWGN Additive White Gaussian Noise.

BiShrink Bivariate Shrinkage.

BLS Bayes Least Squares.

BLS-GSM Bayes Least Squares estimator - Gaussian Scale Mixture Model.

CGGD Complex Generalized Gaussian Distribution.

CGSM Complex Gaussian Scale Mixture.

DT-CWT Dual-Tree Complex Wavelet Transform.

DWT Discrete Wavelet Transform.

FDCT Fast Discrete Curvelet Transform.

FS Full Steerable Pyramid.

GGD Generalized Gaussian Distribution.

GSM Gaussian Scale Mixture.

GSMag Gaussian Scale Mixture of the Augmented Vector.

GSMsp Gaussian Scale Mixture of the Vectors of the Real

and Imaginary Parts Separately.

HMT Hidden Markov Tree.

HT Hard Thresholding.

KLD Kullback-Leibler Distance.

ML Maximum Likelihood.

MLE Maximum Likelihood Estimator.

PDF Probability Density Function.

PDTDFB Pyramidal Dual-Tree Directional Filter Bank.
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PSNR Peak Signal-to-Noise Ratio.

RMSE Root Mean Squared Error.

RP Relative Phase.

RPM Relative Phase Mixture.

RPM PDF Relative Phase Mixture Probability Density Function.

RP PDF Relative Phase Probability Density Function.

RSM Rayleigh Scale Mixture.

SD Standard Deviation.

SIRP Spherically-Invariant Random Process.

SNR Signal-to-Noise Ratio.

SSIM Structural SIMilarity index.

SVD Singular Value Decomposition.

UDCT Uniform Discrete Curvelet Transform.



APPENDIX B

PROOF OF PROPOSITION 3.5.1

96



97

Let Xi =
√
SiX̃i be a CGSM with E[Si] = 1, for i = 1, 2, and X3 = X1 +X2,

where [S1, X̃1] and [S2, X̃2] are independent. Therefore, X1 and X2 are independent.

(⇐) If CX2 = aCX1 for some constant a > 0, then the characteristic function

of X3 is given by

ΦX3(ω) = ΦX1(ω)ΦX2(ω)

=

∫ ∞

0

∫ ∞

0

e−
ωH ((s1+as2)CX1

)ω

4 fS1(s1)fS2(s2)ds1ds2,

where the characteristic function of Xi, i = 1, 2, are given by [52]

ΦXi
(ω) =

∫ ∞

0

exp

(
−siω

HCXi
ω

4

)
fSi

(si)dsi.

Let S3 = S1+aS2

1+a
. Since S1 and S2 are independent, it can be shown that ΦX3(ω) =∫∞

0
e−(ωH(s3CX3

)ω)/4fS3(s3)ds3, where E[S3] = 1 andCX3 = (1+a)CX1 . Hence, we can

represent X3 =
√
S3X̃3, where X̃3 is complex Gaussian with the complex covariance

matrix CX3 , and is independent from S3, i.e. X3 is a CGSM. If X1 and X2 are both

complex Gaussian, then X3 = X1 +X2 is also complex Gaussian, and thus a CGSM.

(⇒) Suppose X3 = X1 +X2 is a CGSM. We can express X3 =
√
S3X̃3, where

X̃3 is complex Gaussian and S3 is a unit-mean positive random variable independent

from X̃3. Since X1 and X2 are independent, CX3 = CX1+CX2 . Since Xi are CGSM’s,

write ΦXi
(ω) = gXi

(ωHCXi
ω). Therefore,

gX3(ω
HCX3ω)=gX1(ω

HCX1ω)gX2(ω
HCX2ω). (B.1)

Dividing the complex gradient ∇ω of (B.1) by (B.1), we have

g′X3
(ωHCX3ω)

gX3(ω
HCX3ω)

ωHCX3=
g′X1

(ωHCX1ω)

gX1(ω
HCX1ω)

ωHCX1

+
g′X2

(ωHCX2ω)

gX2(ω
HCX2ω)

ωHCX2 . (B.2)

It follows from (B.2) that, for any complex vector v which is CX3−orthogonal to ω,

i.e. vHCX3ω = 0, we have

vH

(
g′X1

(ωHCX1ω)

gX1(ω
HCX1ω)

CX1+
g′X2

(ωHCX2ω)

gX2(ω
HCX2ω)

CX2

)
ω = 0.
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Since this is true for all ω and for all v which is CX3−orthogonal to ω, we obtain, for

all ω,

g′X1
(ωHCX1ω)

gX1(ω
HCX1ω)

CX1+
g′X2

(ωHCX2ω)

gX2(ω
HCX2ω)

CX2 ∝ CX3 . (B.3)

We consider two cases:

1) CX1 ∝ CX2 : If CX1 ∝ CX2 , i.e. CX2 = aCX1 for some constant a > 0, then it is

trivial to show (B.3) is true for all ω.

2)CX1 is not proportional to CX2 : Consider all complex vectors ω such that ωHCX2ω =

K is a constant. Therefore,
g′X2

(ωHCX2
ω)

gX2
(ωHCX2

ω)
CX2 is a constant matrix. It follows from

(B.3) that
g′X1

(ωHCX1
ω)

gX1
(ωHCX1

ω)
CX1 must be a constant matrix, i.e.

g′X1
(ωHCX1

ω)

gX1
(ωHCX1

ω)
is a constant

for such ω. It can be further deduced that
g′X1

gX1
and

g′X2

gX2
are both constant for all

ω when CX1 is not proportional to CX2 , which implies that X1 and X2 are both

complex Gaussian. Q.E.D.
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We need to solve for the ML estimator for η, i.e.,

η̂ML = argmax
η

M∑
i=1

log

(
Ns∑
n=1

fΦ|S(ϕi;η|sn)pn

)
.

The Newton-Raphson iteration for this problem is given by

η[k] = η[k−1] −
[
∇2

ηJ(η
[k−1])

]−1 [∇ηJ(η
[k−1])

]T
,

where ∇ηJ(η) =
M∑
i=1

[
F

(i)
1

F (i)
,
F

(i)
2

F (i)

]
,

∇2
ηJ(η) =

M∑
i=1

F (i)F
(i)
11 −(F

(i)
1 )2

(F (i))2
F (i)F

(i)
12 −F

(i)
1 F

(i)
2

(F (i))2

F (i)F
(i)
12 −F

(i)
1 F

(i)
2

(F (i))2
F (i)F

(i)
22 −(F

(i)
2 )2

(F (i))2

 ,

F (i) =
Ns∑
n=1

fΦ|S(ϕi;η|s)pn,

F
(i)
j =

Ns∑
n=1

∂fΦ|S(ϕi;η|s)
∂ηj

pn; j = 1, 2,

F
(i)
jj =

Ns∑
n=1

∂2fΦ|S(ϕi;η|s)
∂η2j

pn; j = 1, 2,

F
(i)
12 =

Ns∑
n=1

∂2fΦ|S(ϕi;η|s)
∂η1∂η2

pn,

∂fΦ|S(ϕi;η|s)
∂ηj

=
1

2π

[
(1− λ2(s))h(ci(η, s))Ai(xj)

+g(ci(η, s))P (ηj, yj)
]
; j = 1, 2,

∂2fΦ|S(ϕi;η|s)
∂η2j

=
1

2π

[
2h(ci(s))Ai(xj)Pi(ηj, yj)

+(Ai(xj))
2(1− λ2(s))h′(ci(s))

+g(ci(s))P (1, 0)
]
; j = 1, 2,

∂2fΦ|S(ϕi;η|s)
∂η1∂η2

=
1

2π

[(
P (η1, y1)Ai(x1)

+P (η2, y2)Ai(x2)
)
h(ci(s))

+Ai(x1)Ai(x2)(1− λ2(s))h′(ci(s))
]
,
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Ai(x) =
s
√
a11a22x√

(sa11 + b11)(sa22 + b22)
,

P (x, y) = −
2s2a11a22x+ 2s

√
a11a22y

(sa11 + b11)(sa22 + b22)
,

x1 = − cos(ϕi),x2= − sin(ϕi), y1 = Re{b12}, y2 = Im{b12},

h(x) =
p(x)

(1− x2)
5
2

,

h′(x) =
(1− x2)5/2q(x) + 5x(1− x2)3/2p(x)

(1− x2)5
,

q(x) =
4− 4x2 − 4x

√
1− x2 arccos(x)√

1− x2
,

p(x) = 3x
√
1− x2 − (1 + 2x2) arccos(x).

We use η[0] = a12√
a11a22

as an initial guess. The stopping criterion used in the paper is

||η[k] − η[k−1]|| < 10−6.
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