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ABSTRACT

MATHEMATICAL OPTIMIZATION TECHNIQUES FOR MANAGING

SELECTIVE CATALYTIC REDUCTION FOR

COAL-FIRED POWER PLANTS

PASSAKORN PHANANIRAMAI, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Jay Rosenberger

Coal is one of the most important energy sources in the U.S. However, it is

also one of the biggest air polluters where the major emissions generated from coal

combustion are oxides of nitrogen (NOx). NOx leads to ozone formation and make

people more susceptible to respiratory illness. The US Environmental Protection

Agency (EPA) has steadily tightened the regulation for NOx emissions that can be

discharged into the atmosphere. Many techniques and technologies can all assist

with NOx removal. However, to meet upcoming EPA mandates, more aggressive

technique such as Selective Catalytic Reduction (SCR) is highly recommended. SCR

is an emissions control technique that primarily reduces harmful emissions of NOx.

To maintain SCR performance, catalyst layers may be added or replaced to improve

NOx reduction efficiency. To make these changes, power plants must be temporar-

ily shut down, and SCR maintenance during scheduled power plant outages can be

very expensive. Consequently, developing fleet-wide SCR management plans that are

both efficient at reducing NOx and limiting operating costs would be extremely de-
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sirable. In this dissertation, we propose an SCR management framework that finds

an optimal SCR management plan for the fleet number of plants that minimizes

NOx emissions or total operating costs using mathematical optimization techniques.

In the first part of this dissertation, we propose an SCR schedule generation and

optimization algorithm (SGO) to solve the fleet SCR management problem. SCR

schedule generation enumerates the set of possible outage schedules by recursion. An

optimal set of these generated schedules are then selected by a 0-1 large scale inte-

ger program. The main approaches for SGO are recursion, branch-and-bound, and

Pareto efficient frontiers. Although SGO is very effective and can yield a good result

within a reasonable amount of time, the problem size can get larger and the com-

putational time can increase exponentially. In the second part of this dissertation,

we address this limitation by replacing SGO with a multi-commodity network flow

problem (MCFP). We first formulated the MCFP as a relaxed problem to solve the

fleet SCR management problem without a constraint on average daily NOx. Edges

are generated instead of schedules to represent the flow of all SCR catalyst layers

for the fleet. The MCFP relaxed problem is solved by a 0-1 integer program. We

then address the average daily NOx constraint limitation by introducing MCFP with

schedule elimination constraints (MCFPwSEC). The MCFPwSEC algorithm uses a

single cut per iteration to incorporate an average daily NOx constraint into the model.

We then reduce the computational time further with the introduction of a multi-cut

MCFPwSEC. Multi-cut MCFPwSEC similarly eliminate infeasible solutions per it-

eration based on a heuristic algorithm. Then, we further explore additional ways to

reduce the computational time further with discussions on a reactor potential (RP)

constraint. Finally, we discuss future extensions of this research.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Coal is considered as one of the most important energy sources in the U.S.

It is accountable for roughly half of the electricity we use and one fourth of our

total energy [3]. However, it is also one of the biggest industrial air polluters in the

U.S [4]. One of the major emissions generated from coal combustion is oxides of

nitrogen (NOx). In a year a typical coal plant generate around 10,200 tons of NOx

[4]. NOx leads to the formation of ozone that could potentially inflames the lungs,

burning through lung tissue and making people more susceptible to respiratory illness

[5]. NOx also leads to fine particle formation and acid precipitation. In addition,

NOx causes health impacts in and of itself, and thus is one of the six regulated

criteria pollutants. The US Environmental Protection Agency (EPA) has steadily

tightened regulations for allowable amounts of pollutants that can be discharged into

the atmosphere [5]. For fossil fueled power plants, regulations are now in place for the

amounts of sulfur dioxide (SO2), carbon monoxide (CO), volatile organic compounds

(VOCs), particulate matter (PM), and NOx that can be released into the atmosphere.

Equipment and operating modifications can reduce NOx emissions. Technologies such

as low NOx burners, staged combustion, gas recirculation and low excess air firing

can all assist with NOx removal. However, to meet upcoming EPA mandates, more

aggressive reduction techniques, such as Selective Catalytic Reduction (SCR), need

to be used [5].
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SCR is an emissions control technique with the primary purpose of converting

NOx in exhaust gases into harmless nitrogen gas and water. The SCR process consists

of injecting ammonia (NH3) into boiler flue gas and passing the flue gas through a

catalyst bed where the NOx and NH3 react to form nitrogen and water vapor [4]. As

the SCR reduces NOx, its performance deteriorates. To maintain the performance,

SCR catalyst layers may be added, removed, or replaced to improve NOx reduction

efficiency. However, to make these changes, the power plant must be temporarily shut

down, so SCR maintenance occurs during scheduled power plant outages, which are

expensive. Consequently, developing fleet-wide SCR management plans that are both

efficient at reducing NOx and limiting operating costs would be extremely desirable.

1.2 Electricity Generation Process

The basic process of a coal-fired power plant is to convert the chemical energy in

coal into thermal energy or heat, thermal energy into mechanical energy of a turbine,

and mechanical energy into electrical energy. Figure 1.1 displays an overview of a coal-

fired power plant. Coal from the mine is pulverized and delivered by a conveyor belt

to the boiler where a mixture of coal and air ignites. Intense heat from the burning

coal converts a large amount of water in the boiler into steam that spins the turbine

to generate electricity. In addition, there are numerous sub-processes associated with

the boiler (not shown in Figure 1.1). Burning coal produces harmful emissions (e.g.,

NOx, PM, and SO2) that are vented from the process (not directly from the boiler).

NOx emissions are formed when molecular nitrogen and oxygen naturally occurring

in the air combine at the high temperatures present in the boiler (thermal NOx),

and when nitrogen in the coal is oxidized during the combustion process (fuel NOx).

Many of these harmful emissions can be decreased using a variety of emissions control

technologies. For example, NOx emissions at the stack can be significantly reduced
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Figure 1.1. Overview of a coal-fired power plant [1].

through SCR technology. In Figure 1.1, the SCR would be implemented between the

boiler and the stack. In the SCR, NOx emissions travel through a series of catalyst

layers to react with ammonia (NH3). This reaction can convert NOx and NH3 into

harmless byproducts, mainly nitrogen and water. We refer to the NOx that comes

from the boiler as inlet NOx, and the NH3 injected into the SCR as NH3 injection.

Not all of the inlet NOx and NH3 injection reacts in the SCR, and the remaining NOx

and NH3 are referred to as outlet NOx and NH3 slip, respectively.

The amount of outlet NOx and NH3 slip depend upon the reactor potential

(RP) of the catalyst in the SCR that degrades over time. As the SCR degrades, NH3

injection is ramped up to maintain reasonable levels of outlet NOx, but this increases

NH3 slip as well. Since high levels of NH3 exposure is hazardous to humans, it is

necessary to maintain low levels of NH3 slip. In addition, increased NH3 injection
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in turn affects the long-term performance of the SCR. NH3 slip can form particles

that could potentially corrode downstream equipment and can cause plugging in the

SCR that can be expensive to maintain. Overuse of NH3 injection is also expensive.

Therefore, optimal SCR management involves adding and/or removing catalyst layers

during scheduled outages, so as to maintain high levels of SCR potential reactivity

and thereby control NOx emissions, NH3 slip, and operating costs across multiple

plants. Specifically, the problem is to find an optimal SCR plan that minimizes

NOx emissions or costs given a scheduled outage plan for each plant where during

these outages catalyst layers maybe added or removed and replaced to improve NOx

reduction efficiency.

1.3 Research Overview and Contributions

In this dissertation, we propose an SCR management framework that primarily

focuses on SCR catalyst management using mathematical optimization techniques.

Since SCR catalyst layers degrade over time, in order to maintain their performances,

SCR catalyst must be maintained. In order to do this, catalyst layers may be added

or replaced to improve NOx reduction efficiency. To make these changes, power plants

must be temporary shut down for the maintenance, which is expensive. Therefore, an

effective SCR management plan that is both efficient in reducing NOx emissions and

limit operating costs would be extremely beneficial to SCR catalysts users. Conse-

quently, the main objective of the SCR management framework is to find an optimal

SCR management plan for a fleet of plants that would maximize NOx reduction or

minimize the total operating cost given a schedule of outages for the fleet. Although

SCR has been implemented for over 50 years, only recently has there been a focus

on the optimization of SCR management. The main focus of most literature on SCR

management has been on optimizing the process design. There is also commercial
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software provided by SCR catalyst vendors to address SCR catalyst management on

an individual plant basis. Even though the focus on SCR catalyst management on

a single plant does yield a good result, there are fleet-wide considerations that when

applied would yield a better solution. Therefore, in this dissertation, we propose an

SCR management framework that maximizes NOx reduction or minimizes the total

operating costs over a fleet of plants given a scheduled outage plan using mathematical

optimization techniques.

In Chapter 3, we describe an SCR schedule generation and optimization (SGO)

algorithm. The SGO algorithm consists of two main modules, SCR schedule gener-

ation module and SCR optimization module. The SCR schedule generation module

enumerates a set of possible outage schedules for all plants in the fleet using recursion.

From these generated schedules from the SCR schedule generation module, the SCR

optimization module that uses COIN-OR CBC as the solver, finds an optimal set of

outage schedules for the fleet. The underlying optimization model is a 0-1 large scale

integer programming model. We demonstrate the effectiveness of the algorithm by

providing computational experiments based upon two different types of NOx reduc-

tion policies, the fixed NH3 slip policy and the fixed NOx policy. For the fixed NH3

slip policy, there are computational experiments that consider different objectives

and also Pareto optimal efficient frontiers. Then, for the fixed NOx policy, we discuss

computational experiments based upon a modified version of a real-world problem

instance with six plants over a five-year time horizon. This input is used consistently

throughout the dissertation for comparison and analysis.

From the proposed model in Chapter 3, we have found that although the enu-

meration of all possible outage schedules would yield a good set of schedules within a

reasonable computation time, the number of outages, the time horizon, and the num-

ber of plants increases the computation time exponentially. Therefore, in Chapter
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4, we propose a multi-commodity flow model (MCFP) to replace the SGO algorithm

described in Chapter 3. Instead of generating schedules, we generate edges that rep-

resent all SCR catalyst layers flowing from the start of the time horizon and through

outages until the end of the time horizon. Given a scheduled outage plan, the MCFP

are solved by a 0-1 large scale integer programming model using the CPLEX 12.1

callable library. We first formulate a relaxed MCFP while ignoring the average daily

NOx constraint that was incorporated in Chapter 3. From costs and schedule com-

parison, we observe that the average daily NOx constraint is extremely crucial to the

model. Therefore, we would like to incorporate the average daily NOx constraint in

the MCFP. In order to incorporate the average daily NOx constraint to the model,

we introduce the MCFP with schedule elimination constraints (MCFPwSEC). The

MCFPwSEC algorithm uses a single cut per iteration to remove infeasible solutions

that do not meet the minimum average daily NOx reduction requirement from the

model. From the explorations of the cuts, we observe that each cut only marginally

improves the solution. Therefore, in order to speed up to algorithm performance, we

introduce multi-cut MCFPwSEC. Instead of cutting off infeasible solutions one by

one, we cut off multiple infeasible solutions by a heuristic method. We then explore

for ways to reduce the computation time further. From the solutions, we found that

the weighted reactor potential (RP) over the time horizon derived from MCFP is an

upper bound to the RP from the solution schedule. From this relationship, we can

introduce an RP constraint to the optimization model that represents this relation-

ship. However, since RP values are fractional, we also introduce fractional coefficients

to the problem. In future research, we can potentially improve the algorithm perfor-

mance by introducing independent set constraints based upon the RP constraint. In

summary, we have found MCFP to be significantly faster than SGO. While MCFP

has been studied extensively in the literature, their application in SCR catalysts man-
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agement has not yet been studied. Finally, Chapter 5 discuss conclusions and future

directions.



CHAPTER 2

LITERATURE REVIEW

In this chapter, we discuss a general overview of selected literature related to

SCR management and multi-commodity flow problems. The selected literature does

not contemplate the comprehensiveness of the scope but merely a discussion of an

overview of such related papers in the literature. In Section 2.1, we discuss an overview

of literature related to SCR management and existing applications that can be found

in industry. Furthermore, in Section 2.2, we discuss an overview of algorithms and

applications based upon multi-commodity flow problems.

2.1 Overview of SCR Management

Staudt and Engelmeyer [2] stated that in order to optimize the catalyst con-

sumption, the catalyst cost and operation of the facility are optimized simultaneously

to achieve the lowest cost to produce power. The stated objective has led to many

trade-offs such as catalyst consumption, the frequency and duration of outages, NH3

slip, NOx reduction, and baseline NOx. Furthermore, catalyst activity is defined as

the ability to facilitate the NOx reduction reactions, which is cased by the impurities

in the gas stream that over time will deposit on the catalyst and block exhaust gas

from reaching active sites within catalyst.

Based on Muzio, Quartucy, and Cichanowicz [6] and Pritchard et al. [7], there

are three major factors that affect the catalyst deactivation. The first factor is sin-

tering of the catalyst due to high temperatures. The second factor is due to alkaline

8
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metals, earth metal masking, and/or arsenic oxide. The last factor is catalyst plug-

ging.

From Staudt and Engelmeyer [2], “Most SCR reactors are designed with up to

four available levels of catalyst. When the system is new, with fresh catalyst, at least

one level is typically empty as shown in Figure [2.1].” When the SCR performance

drops to an unacceptable level that occurs around two years, a new catalyst level

is added to the spare layer. Later, when SCR reactor potential drops again, an old

catalyst level that generated the lowest activity is replaced with new catalyst. Thus,

this will increase total catalyst activity.

According to Cichanowicz and Muzio [8], there are three options to maintain

SCR performance. The first option is to install a new catalyst into a spare layer or

replace the old layer with new catalyst. The second option is to install regenerated

catalyst. This option has lower cost than the first option, but SCR performance will

be lower when using regenerated catalyst than when using new catalyst. The last

option is in-situ cleaning or regeneration. Cleaning is when a catalyst is taken out

and cleaned thoroughly with chemical while regeneration is when catalyst is restored

to a like new condition. This option can be done in a shorter period of time such

as two to three days compared with other options that require two to three weeks.

Although, it can be done in a shorter period of time, the reactor potential will not

be restored as with the other two options.

Cichanowicz, Smith, and Muzio [9] estimated that the capital cost of SCR is

$125 per kW depending on the level of NOx reduction, type of catalyst, and complex-

ity of the retrofit. Due to capital cost of catalyst replacement, the maintenance outage

schedule, and the SCR performance, Cichanowicz, Smith, Muzio, and Marchetti [10]

provided five options as follows. The first option is to replace catalyst as planned.

The second option is to delay catalyst exchange and increase NH3 injection. The
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Figure 2.1. Example of add and replace sequence of SCR catalyst layers [2].

next option is to delay catalyst exchange and maintain NH3 injection. The fourth

option is to accelerate an outage for early replacement. The last option is to perform

on-line cleaning. All of the above have pros and cons that cause the catalyst to be

challenging to manage.
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Rubin, Salmento, and Frey [11] discussed an effective emissions control for coal-

fired power plants using integrated environmental control (IEC) concepts involving

combined SO2/NOx removal processes in combination with pre-combustion and com-

bustion control methods.

Pritchard and DiFrancesco [12] described SCR catalyst management with goals

of NOx reduction, Hg oxidation, SO3 emissions, and operation flexibility by physical

inspection of the plants, collection of data, and tests to predict the future performance.

Mi [13] optimized NOx emissions by using Computational Fluid Dynamics (CFD) for

SCR coal-fired steam power plants to improve the chemical process of the system.

Another way to improve the effectiveness of the chemical process is by using the NH3

injection grid (AIG) that is essentially an optimization of the chemical process of NH3

injection by adjusting the AIG [14].

Chen and Frey [15] optimized NOx and operating costs of the SCR by process

design using stochastic optimization and programming. They described methods for

optimization of process technologies by considering the distinction between variability

and uncertainty. These methods are developed and applied to case studies of NOx

control for integrated gasification combined cycle systems. Another related method

described by Rubin, Diwekar and Frey [16] also optimized the process design using

deterministic and stochastic optimization.

Grabitech [17] provided a NOx optimization software, multisimplex, that is

based on three different theories: evolutionary operation, simplex algorithms, and

fuzzy set theory. The basic idea in evolutionary operation is to replace the static

operation of a process by a continuous systematic scheme of slight perturbations in

the control variables. The effect of these perturbations is evaluated, and the process

is shifted in the direction of improvement similar to the Simplex algorithm. The fuzzy

set theory allows several goals to be handled at the same time. Multisimplex calculates
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new settings for the next trial on the journey towards the optimum. Another widely

used SCR management tool is called CatReact [18] that was developed as part of an

EPRI-sponsored collaboration between FERCo and JEC Inc.

From current literature, there have not been studies done on applying mathe-

matical optimization techniques on SCR management. While the improvement of the

process design is also important, once the process design has improved the process

to its maximum capabilities, the need to optimize the SCR management schedule is

greatly desired. Since SCR catalyst layers are expensive in themselves, the costs to

maintain them are also very expensive. The total cost that plants spend on SCR

management can be greatly reduced while limiting NOx emissions to a satisfactory

level by applying mathematical optimization techniques to SCR management. In

Chapter 3, we propose an SGO algorithm that finds an SCR management plan that

results in lowest costs or highest NOx reduction. The proposed algorithm is a model

that can address a fleet of plants, which also addresses the single plant limitation that

is currently commercially available.

2.2 Overview of Multi-Commodity Flow Problem

A network flow problem is a mathematical programming problem that deter-

mines an optimal path flow through the nodes from a source to a sink. A path consists

of a set of edges (arcs) that must satisfy some restrictions in order to flow from one

node to another. Network flow is a directed graph, G(N,E) where N is a set of nodes

and E is a set directed edges in the network [19] [20] [21].

A type of network flow problem that is widely used is the minimum cost flow

problem. The problem is used to determine the lowest cost of shipment of a commod-

ity through a network while satisfying demands at each node. A multi-commodity

flow problem (MCFP) occurs when several commodities use the same underlying net-
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work [22] [21] [23]. There are numerous real-world applications such as transportation

problems, shortest path problems, assignment problems, and routing problems [24].

Hu [25] suggested many practical applications, for example, communication networks,

traffic problems, and transportation systems. Consequently, large numbers of real-

world applications are modeled as MCFP.

2.2.1 MCFP Algorithms

Research on network flow problems has been around before linear programming.

Earlier work on network flow problems was conducted by Kantorovich [26], Hitchcock

[27], Koopmans [28][29], and Dantzig [30]. Ford and Fulkerson [31], who proved the

maximum flow and minimum cut theorem, presented a minimum cut and minimum

path problem approach for the maximum flow problem for the multi-commodity flow

problem. The method created two new special nodes that are now called source and

sink.

Ford and Fulkerson [22] proposed a new algorithm approach for a general case

of maximum flow problems by means of a large linear program. They introduced

the simplex computation for an arc-chain formulation of the maximum flow multi-

commodity flow problem. In order to deal with the large number of variables, the

algorithm treated non-basic variables implicitly by also introducing the shortest chain

algorithm to join points in a network.

Gomory and Hu [32] considered connected networks consisting of nodes Ni and

arcs bij connecting the ith and jth nodes. Assuming that bij = bji, the multi-terminal

network flow problem finds maximum flow between all pairs of nodes. For the linear

programming approach see Gomory and Hu [33].

Hu [25] considered a generalization analogue of the maximum flow and minimum

cut theorem for the multi-commodity flow problem. The work is an extension to the
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traditional maximum flow and minimum cut theorem. It considers many kinds of

flows simultaneously in a network and decides whether a set of flow requirements is

feasible or not in a given network.

Tang [34] presented a special class of multi-commodity flow problems. The

special class of bi-path networks was defined. The result can be extended to solve

cases with time-varying requirements using linear programming.

Tomlim [35] formulated the minimum cost multi-commodity flow problem in

both node-arc and arc-chain forms. For problems with directed edges, both formula-

tions are similar. However, the advantage on the arc-chain formulation is its ability

to deal with both directed and undirected edges.

Kennington [36] presented a survey of known results and algorithms for lin-

ear multi-commodity flow problems. The work contains extensive lists of detailed

discussions and references of existing results, algorithms, and applications of linear

multi-commodity flow problems.

Bixby and Cunningham [37] presented an algorithm that converts linear pro-

gramming to a network problem. If A is in a standard form, the computational effort

is bounded by O(number of rows * number of nonzeros) of A.

Fontes, Hadjiconstantinou, and Christofides [38] presented a branch-and-bound

approach to solve a single source uncapacitated minimum cost network flow problem

where the cost function is a concave function. They concluded that the branch-and-

bound algorithm has shown a better performance than available alternative methods

for same type of problems.

2.2.2 MCFP Applications

MCFP problems have been used to solve many real-world applications. Bell-

more and Ratliff [39] discussed a multi-commodity flow problem in the area of military
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logistics. The problem is to find an optimal allocation of resources that is similar to

the maximum flow problem. The algorithm finds an optimal strategy for reinforcing

arcs and nodes in a multi-commodity network.

Baker [40] presented a network flow problem for project selection. The al-

gorithm requires no prior knowledge of a network simplex algorithm. The author

provided a simple example and approach by a simple activity-on-node diagram.

Farvolden et.al. [41] considered a transportation problem involving the routing

of customers. Each customer is considered as one commodity. The problem is to

route the customers over a given network of transportation services to minimize total

costs, subject to the capacity constraints. They presented a new solution approach

based on primal partitioning and decomposition techniques.

Hane et.al. [42] presented a fleet assignment model for airline fleet assignment.

They modeled the problem as a multi-commodity flow problem with side constraints.

They also increased the computational efficiency by introducing methods such as

an interior-point algorithm, dual steepest edge simplex, cost perturbation, model

aggregation, branching on set-partitioning constraints, and prioritizing the order of

branching.

Barnhart et.al. [43] presented a string based fleet assignment and routing mod-

els for airline fleet assignment. Connectivity constraints that are a type of flow con-

straint were introduced where it requires the aircraft to fly in a sequence. The problem

was solved with branch and bound, and it includes column and cut generation.

McBride [44] discussed advances over the years in solving the multi-commodity

flow problem. The work provided and discussed improvements in both hardware

and algorithmic performance to solve ever increasing problem sizes. Extremely large

network flow problems are solved by using a primal basis-partitioning algorithm.
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Rosenberger et.al. [45] presented a robust fleet assignment model. Their model

considered the possibility of disruptions and accounted for them during the planning

phase to reduce unplanned costs.

Pilla et.al. [46] provided a fleet assignment model that employs a two-stage

stochastic program and a design and analysis of computer experiments approach.

While the multi-commodity network flow model has been studied extensively in

the current literature and has been applied to numerous real-world applications, the

work on applying the multi-commodity network flow model as well as mathematical

optimization techniques in general for SCR management has not yet been studied in

any literature. In Chapter 4, we propose the MCFP to solve the fleet SCR manage-

ment problem. The model is introduced to replace the SGO algorithm in Chapter 3

to improve computational efficiency.



CHAPTER 3

SCR SCHEDULE GENERATION AND OPTIMIZATION ALGORITHM

3.1 Introduction

In this chapter, we describe the SGO algorithm that finds an optimal SCR man-

agement plan for a fleet of plants that minimizes NOx emissions or total operating

cost given a scheduled outage plan. The SGO algorithm consists of two main mod-

ules: SCR schedule generation and SCR optimization. The SCR schedule generation

module enumerates a set of possible outage schedules for all plants in the fleet using

recursion with two main algorithms: generate timelines and find timelines. The SCR

optimization module uses COIN-OR CBC to find an optimal set of outage schedules

in the fleet from these generated schedules. The underlying optimization model is

a 0-1 large scale integer programming model. In addition, we employ two NOx re-

duction policies that consist of the fixed NH3 slip policy and the fixed NOx policy.

We demonstrate the effectiveness of the algorithm by providing computational exper-

iments based upon these two types of NOx reduction policies. For the fixed NH3 slip

policy, there were computational experiments on optimization problems with different

objectives, and we consider Pareto optimal efficient frontiers. Then, for the fixed NOx

policy, we discuss computational experiment based upon an example with six plants

over a five-year time horizon. This six-plant five-year example is a modified version

of a real-world problem instance. From this computational experiment, the input is

then kept consistent throughout the dissertation for comparison and analysis.

In this section, we describe the input information and an overview of the ar-

chitecture of the SGO algorithm. The input information includes three text files—a

17
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plant file that includes information on the power plants, an outage file that includes

information on the currently scheduled outages, and a parameter file that includes

the fleet-wide information. These outages span over a predetermined time horizon

that is usually about five years. The output is an optimal outage plan in the same

format as the inputted outage file with outages that span the same time horizon. An

overview of the architecture of the SGO algorithm is shown in Figure 3.1.

The input information can be categorized into four main categories that consist

of plant information, layer information, outage information, and global information.

The summary of the input data information is shown in Table 3.1.

Table 3.1. Summary of input data information

Plant Layer Outage Global
Information Information Information Information

Plant number Degradation rate Start date Fleet-wide constraints
Number of installed SCR layers Blockage rate End date Fleet-wide parameters
Power generation plan Volume Plant number High budget
NH3 slip Surface area Action Low budget
Minimum NOx reduction Catalyst activity Layer number Number of Pareto points
Maximum operating costs Flue gas flow rate
Inlet NOx Dates of last activity

Plant information includes characteristics of each plant. The number of installed

SCR layers is the number of layers installed at the beginning of the time horizon. This

number is used to determine the RP as well as the change and add sequences as shown

in Figure 2.1. The position of these layers that are filled from the bottom up, also

affect the degradation rates and blockage rates as shown in Figure 1.1, where the

closer the catalyst layers to the boiler, the higher the degradation and blockage rates.

A power generation plan is used as a constraint where the plants would need to

meet the minimum fleet-wide power generation plan that is pre-specified. NH3 slip
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Figure 3.1. Overview of SGO algorithm.

values are inputted in two levels; the level in which is the assigned plant is currently

using and the maximum level allowed by the plant. These levels are then used to

generate schedules for the fixed NH3 slip policy that will be described in Section 3.4.

Minimum average daily NOx reduction is a constraint where each plant has to meet

this required minimum. Maximum operating costs is the budget allowed per plant
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that consists mainly of catalyst, labor, reagent, fan power, and electricity costs. These

costs values are determined by the plant, the layer, the outage, and the pre-specified

information. Inlet NOx, generally measured in pounds per hour, is the amount of

NOx entering the SCR that is used to find the amount of outlet NOx leaving the

SCR by taking into consideration the layer information. Layer information includes

specific characteristics of each layer that can be different for each layer as well as in

different plants. There are typically four available layer slots per plant where two

slots are typically filled at the beginning of the time horizon. A degradation rate is

typically given in guarantee usage hours by the catalyst manufacturer. The number

of actual hours can vary for each layer depending upon its operating conditions.

Blockage rate is also a factor that affects the degradation rate of a catalyst layer.

Over time, blockage is caused by excess NH3 slip or ashes from coal combustion

that form particles inside the catalyst layer. Consequently, it gradually degrades the

SCR catalyst performance that reduces the SCR catalyst reactor potential. Volume,

surface area, and catalyst activity are general catalyst layer characteristics where

the higher their values, the higher the reactor potential of the layer. Flue gas flow

rate is inversely proportional to the reactor potential so the higher the flow rate, the

more layers need to be changed. Dates of last activity of each layer will determine

how long the layer has been in the system. As a general rule, where all of the layer

slots are filled, the layer that has been in the system the longest will be changed

first. If there is a tie, generally the layer closest to the boiler is the one that will

be changed. Furthermore, the layer characteristics depend upon the position slots

and the distance away from the boiler that will directly impact the SCR reactor

potential, where the higher the reactor potential, the higher NOx reduction it will

achieve. Outage information includes what is planned to be done for all outages in

the time horizon. This information includes the start and end date for each scheduled
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outage, the plant it is associated with, the layer action, and the layer position in the

SCR. Layer actions include catalyst additions or changes where the layers being added

or changed can be new, regenerated, or cleaned. A new layer is a brand new layer that

has not been used before, a regenerated layer is a used layer that has been restored

very close to new layer conditions, and finally a cleaned layer is also a used layer

that has been taken out and cleaned thoroughly with catalyst. These three types

of layer actions usually have different operating costs and NOx reduction efficiency

implications with the efficiency of a new layer being greater than that of a regenerated

layer, and that of a regenerated layer being greater than that of a cleaned layer. This

outage information is used to generate timelines that will be described in Section 3.3.

After the timelines are generated the SCR optimization model that will be described

in Section 3.5, will then select an optimal schedule for each plant during time horizon.

Global information includes all fleet-wide constraints and parameters that are

associated with the whole fleet. These include minimum power generation, minimum

NOx reduction, maximum operating costs, and the time horizon. High budget, low

budget, and the number of Pareto points are used to determine the Pareto optimal

efficient frontiers that will be discussed in Section 3.6.3.

3.2 SCR Reactor Potential and NOx Reduction

In this section, we describe equations for NOx reduction and RP that are used

throughout the dissertation. The policy used for NOx reduction depends upon what

is specified prior to the start of the algorithm. The policy consists of either the fixed

NOx policy or the fixed NH3 slip policy that will be described in Section 3.4. The RP,

a measure of the overall potential of the reactor to reduce NOx for a given catalyst

layer at time t, can be calculated as follows.
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RP layer(t) =
K0e

−t
T

Av

, (3.1)

where K0 is the initial catalyst activity value (in m
hr
), T is the degradation rate of the

catalyst (hr), and Av is the area velocity (m
hr
).

In addition, the RP for a given plant at time t can be calculated as follows.

RP plant(t) =
∑

layer∈plant

RP layer(t). (3.2)

The percentage of NOxreduction is an increasing function of NH3 slip and RP(t) and

is given by

DNOX%(t) = f(RPplant(t),NH3slip(t)), (3.3)

where NH3slip(t) is the NH3 slip at time t. As mentioned previously, we assumed that

NH3slip(t) is set at either of two constant values, usually two ppm or four ppm for

all values of t. The formula for f is based upon the manufacturer of the catalyst, and

the one used is this research is considered proprietary by the sponsor of the research.

To find an anticipated daily NOx reduction and average RP for a schedule s that will

be discussed in Section 3.3, we integrate over the time horizon as follows:

DNOXs =

t∫
t

InletNOx × DNOX%(t)

t− t
dt, (3.4)

RP s =

t∫
t

RPs(t)

t− t
dt, (3.5)

where t is the start of the time horizon, t is the end of time horizon, and InletNOx is

the amount of inlet NOx into the SCR. Observe that between two outages, average

RP is given by

RP plant =
∑

layer∈plant

Tlayer
(
RP(t)− RP(t)

)
t− t

. (3.6)
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Consequently, average RP for a schedule can be derived by taking a weighted average

of (3.6) between the outages. However, calculating average NOx reduction requires

numerical integration.

3.3 SCR Schedule Generation Module

The primary purpose of the SCR schedule generation module is to enumerate a

set of possible outage schedules where each generated schedule includes the following

characteristics:

1. One power plant to which the schedule pertains.

2. A set of outages from the inputted outage file that maintain the following qual-

ities:

• The first outage in the schedule is the same as the first outage of the

currently scheduled outage of the power plant.

• The last outage in the schedule is the last outage of one of the plants in

the currently scheduled outages.

• One SCR catalyst layer from the power plant will be either added or

changed in each outage.

• All consecutive outages in the schedule will be within a predetermined

window of days apart, usually around 270 to 450 days.

3. The maximum level of NH3 slip.

4. An anticipated average daily RP of the schedule.

5. An anticipated average daily NOx reduction of the schedule. (The NOx equa-

tion is a function of allowable NH3 slip and RP that is an increasing function

where the higher the value of either or both of NH3 slip and RP, the higher

the NOx reduction. The actual function will be different based upon different
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manufacturers where the NOx equation used in this dissertation is considered

proprietary and cannot be describe here)

6. An anticipated operating cost of the schedule.

7. An anticipated power generation of the schedule.

The first step in the SCR schedule generation module is to read in a set of

original schedules. Each original schedule includes an original timeline and a set of

parameters, like the amount of NH3 slip. Each original timeline represents a sequence

of outages assigned to the same plant. Each outage includes a starting time, an

ending time, an originally assigned plant, and a catalyst layer decision. The potential

catalyst layer decisions are: add a new layer (ADDnew), add a regenerated layer

(ADDregen), add a cleaned layer (ADDclean), change the oldest layer with a new layer

(CHANGEnew), change the oldest layer with a regenerated layer (CHANGEregen),

or clean the oldest layer (CHANGEclean). The second step in the SCR schedule

generation module is to enumerate a set of new timelines, using the two algorithms,

generate timelines and find timelines described as Algorithms 1 and 2, respectively.

Like the original timelines, each new timeline is a sequence of outages assigned to

the same plant. However, the outages may have a newly assigned plant and a new

catalyst layer decision. Using these new timelines, the SCR schedule generation

module creates two schedules for each timeline. For each timeline, the method used

to generate schedules depends on two policies, which are the fixed NOx policy and the

fixed NH3 slip policy. The preference of the policy will depend upon the emphasis on

whether we would like to control either NOx or NH3 . These policies will be discussed

in Section 3.4. Finally, the SCR schedule generation module calculates average NOx

and operating costs and returns these schedules. Table 3.2 shows the list of symbols

used in Algorithms 1 and 2 and Figure 3.2 shows an overview of the find timelines

and the generate timelines algorithms.
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Table 3.2. List of sets and indices symbols in Algorithms 1 and 2

Sets and indices symbols Descriptions

P Set of all plants information fleet-wide as shown in Table 3.1
O Set of all outages information fleet-wide as shown in Table 3.1
T Set of generated timelines.
O+ Set of next outage event in the timelines.
o each outage in the set O.
o1 first outage event in the timelines.
o+ next outage event in the timelines.
on outage event n in the timelines.
p each plant in the Set P
o1(p) first outage in the schedule assigned to plant p
τ each timeline in the Set T

Figure 3.2. Overview of generate timelines and find timelines algorithms.
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Algorithm 1 Generate timelines algorithm

Let P and O be the sets of plants and the outages.

Let timeline set T = ∅ be the set of generated timelines.

for each outage o ∈ O do

if outage o is the last outage of one of the original timelines then

Let outage set O+(o) = ∅

else

Let outage set O+(o) be such that each outage o+ ∈ O+(o) is such that the

ending time of outage o and the starting time of outage o+ are within a pre-

determined window of days apart, usually around 270 to 450 days.

end if

end for

for each plant p ∈ P do

Let outage o1(p) be the first outage in the schedule originally assigned to plant

p.

Let timeline τ = ⟨o1(p)⟩

Let timeline set T = T
∪

find timelines(τ).

end for

Return timeline set T .

To better illustrate the SCR schedule generation module, consider a single plant

with three scheduled outages. Assume that currently there is only one installed

catalyst layer. The following Table 3.3 display the timelines and number of generated

schedules.

From the Table 3.3, observe that seven timelines were generated for this par-

ticular example that considered the set of all possibilities from three outages. For each
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Algorithm 2 Find timelines(τ) algorithm

Let outage on(τ) and plant p(τ) be the last outage and the assigned plant of timeline

τ .

Let timeline set T (τ) = ∅ be the set of generated timelines that extend from timeline

τ .

if outage set O+(on(τ)) = ∅ then

Return the set of timelines {τ}.

else

for each outage o+ ∈ O+(on(τ)) do

Let outage ō+ be a copy of outage o+ in which the assigned plant of outage

ō+ is plant p(τ), and the catalyst layer decision is to change or regenerate the

oldest catalyst layer at plant p(τ) based upon timeline τ .

Let timeline τ̄ = ⟨τ, ō+⟩.

Let timeline set T (τ) = T (τ)
∪

find timelines(τ̄).

if there is an empty catalyst layer slot at plant p(τ) based upon the timeline

τ then

Let outage ô+ be a copy of outage o+ in which the assigned plant of outage

ô+ is plant p(τ) and the catalyst layer decision is to add a new layer to the

lowest empty catalyst layer slot at plant p(τ) based upon the timeline τ .

Let timeline τ̂ = ⟨τ, ô+⟩.

Let timeline set T (τ) = T (τ)
∪

find timelines(τ̂).

end if

end for

Return timeline set T (τ).

end if



28

Figure 3.3. Example of generate timelines and find timelines algorithms.

outage, potential actions could be either ADDnew, ADDregen, ADDclean, CHANGEnew,

CHANGEregen, or CHANGEclean. Therefore the number of schedules for each out-

age would be six. Then either the policy is the fixed NOx policy or the fixed NH3

slip policy, which will also double the number of schedules. Consequently, the total

number of schedules generated is 144. Schedules are then removed if they do not meet

NOx reduction or NH3 slip constraints. The rest are potential candidate schedules

for the SCR optimization module.

3.4 SCR Management Policy

After timelines are generated that was described previously in Section 3.3, two

schedules are then created per each timeline. The method used to generate the

schedules can be either the fixed NH3 slip policy or the fixed NOx policy. The decision

to choose which policy to employ would depend upon which parameter we would like

to control.
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3.4.1 Fixed NH3 Slip Policy

For the fixed NH3 slip policy, each timeline will generate two schedules based

on two pre-specified levels of target NH3 slip values. The target levels of NH3 slip

would usually be the minimum allowable NH3 slip and maximum allowable NH3 slip

usually at two parts per million (ppm) and four ppm. The higher the NH3 slip value,

the higher NOx reduction. However, increasing NH3 slip will also increase the reagent

costs and potentially become be harmful to people. These two levels are then fixed

throughout the schedule. At each level, we then calculate the corresponding NOx

reduction, cost, and RP values. For each generated schedule, if the corresponding

NOx reduction is less than a pre-specified value, usually at 75%, the schedule will

be removed as a potential candidate for the optimization. Consequently, in terms

of the optimization that will be discussed in Section 3.5, if the objective function is

to minimize costs, then the schedules with two ppm will most likely be selected first

provided that they have met the minimum NOx reduction requirement due to lower

costs. In contrast, if the objective function is to maximize the NOx reduction, the

optimizer will likely select the four ppm schedules first. Consequently, there exists a

tradeoff here, that depends upon the policy and requirements of the user.

3.4.2 Fixed NOx Policy

For the fixed NOx policy, each timeline will again generate two schedules based

on two pre-specified levels of target NOx reduction percentage. The two levels are

usually set at the minimum and maximum NOx reduction target that we would like to

achieve. The two levels are generally at 75% for minimum NOx reduction and 85% for

maximum NOx reduction. In this case, the higher the NOx reduction, the higher NH3

slip value, which will also have implications on cost. At each level, NOx reduction

is fixed at the pre-specified value throughout the schedule while allowing the NH3
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slip to increase to compensate until the NH3 slip reaches a pre-defined maximum. If

the maximum allowable NH3 slip is reached, the NH3 slip will be fixed at that value

while NOx reduction will decrease to compensate for this. If the NOx reduction goes

below the pre-specified minimum, then this schedule is eliminated from the potential

candidate for the optimizer. The following Figure 3.4, illustrates an example plot of

NH3 slip over time that employed the fixed NOx policy.

Figure 3.4. Example plot of NH3 slip over time.

From the Figure 3.4, the NH3 slip started out at two ppm and over time it

increases to compensate for the constant NOx reduction of 75%. Once the NH3 slip

reaches the maximum allowable value, which is four ppm in this case, the NH3 slip

is kept constant while NOx reduction will go down to compensate. The time in

which the NH3 slip reaches the maximum value can be easily found by binary search.

Regarding the optimization, this would be similar to the fixed NH3 slip case since
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NOx reduction and NH3 slip are closely related. The tradeoff and the policy chosen

will depend on whether costs or NOx reduction is more important and whether we

would like to closely monitor NH3 slip or NOx reduction.

3.5 SCR Optimization Module

The primary purpose of the SCR optimization module is to find an optimal set

of schedules based upon the schedules generated from the SCR schedule generation

module described in Section 3.3. The mathematical optimization technique applied

by the SCR optimization module is integer linear program, while the solver uses

Computational Infrastructure for Operations Research branch and cut (COIN-OR

CBC [47]) that is described in this section.

Integer linear programming is a linear optimization technique that some or all

the variables are restricted to integer values. An integer programming problem in

which all variables are required to be integer is called a pure integer programming

problem. If some variables are restricted to be integer and some are not, then the

problem is a mixed integer programming problem. Problems that the integer variables

are restricted to be zero or one are called pure (mixed) 0-1 programming problems

or pure (mixed) binary integer programming problems. In this case, the problem is

a pure 0-1 programming or pure binary integer programming problem because all

variables are required to be zero or one [48].

The SCR optimization module finds a set of schedules that maximizes NOx

emissions reduction subject to a total operating cost and power generation plan.

The SCR optimization module uses an integer linear programming problem with the

following:

1. Decision Variables: For each generated schedule, a 0-1 decision variable deter-

mines whether the schedule is used in the optimal plan.
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2. Objective: The objective function is to maximize the anticipated average daily

NOx reduction over all power plants. (The objective can be seamlessly changed

to maximize the anticipated average daily reactor potential. This will increase

computationally efficiency of the algorithm, because average daily reactor po-

tential has a closed-form equation, while average daily NOx reduction usually

requires numerical integration. The NOx reduction equation is a concave func-

tion and has no closed-form equation.)

3. Constraints: The constraints of the model ensure that the optimal SCR main-

tenance plan maintains the following conditions:

• The total anticipated operating cost of the plan is less than or equal to a

predetermined budget.

• The total anticipated power production is greater than or equal to a pre-

determined minimum production.

• Each plant will be assigned to exactly one schedule in the plan.

• Each outage is included in at most one schedule in the plan.

Let S be the set of all schedules from the SCR schedule generation module, let P

be the set of plants, and let O be the set of outages. For each schedule s ∈ S, let

DNOXs be the NOx reduction of s, let cs be the operating costs, let gs be the power

generation, and let

xs =

 1 if schedule s is selected for the outage,

0 otherwise.
(3.7)

For each outage o ∈ O, let S(o) be the schedules that include outage o, and for each

plant p ∈ P , let S(p) be the set of schedules that can be assigned to plant p. Let
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C be the maximum operating costs of the fleet, and let G be the minimum power

generation. The integer linear programming problem is given by the following:

max
∑
s∈S

DNOXsxs (3.8)

s.t.
∑

s∈S(p)

xs = 1 ∀p ∈ P (3.9)

∑
s∈S(o)

xs ≤ 1 ∀o ∈ O (3.10)

∑
s∈S

csxs ≤ C (3.11)

∑
s∈S

gsxs ≥ G (3.12)

x ∈ {0, 1}|S| (3.13)

The solver within the SCR optimization module uses COIN-OR branch and cut

(COIN-OR CBC). Branch and cut first achieved success in solving large instances of

the traveling salesman problem [49]. It is the core of the fastest commercial general

purpose integer programming packages. It is like branch and bound, except that in

addition, the algorithm may generate cutting planes [48]. These cutting planes are

constraints that, when added to the problem at a search node, result in a tighter

LP polytope (while not cutting off the optimal integer solution) and thus generate a

higher lower bound. The higher lower bound in turn can cause earlier termination

of the search path, and thus yields smaller search trees. COIN-OR CBC is an open-

source mixed integer programming solver also written in C++. The following are

some basic parameter settings within CBC that could potentially increase the speed

of the solver.

1. Cutoff: cutoff all nodes with objective greater than or less than a specified

value.
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2. IntegerTolerance: treat variables as integer if close enough.

3. Seconds: treat as maximum nodes after this time.

4. CutDepth: only generate cuts at multiples of this.

5. MaxNodes: stop after this many nodes.

6. PassCuts: number of cut passes at root.

7. StrongBranching: number of candidates for strong branching.

COIN-OR CBC uses strong branching where the algorithm performs a one-step look

ahead for each variable that is non-integral in the LP at the node. The one-step look

ahead computations solve the LP relaxation for each of the children.

The SCR management framework employs the SCR optimization module mul-

tiple times to determine an efficient Pareto optimal frontier. This Pareto optimal

model provides a tradeoff between NOx reduction and operating costs. The model

calculates multiple outage plans, or Pareto points, that are not dominated by any

other outage plan in operating costs and NOx reduction. The inputs needed are a

minimum and a maximum budget interval, and the number of Pareto points to be

determined.

3.6 Computational Experiments

In this section, we provide computer experiments on the SGO algorithm de-

scribed earlier. The computational experiments are divided into two parts, which are

the fixed NH3 slip policy and the fixed NOx policy. Three different problem instances

were applied on these three different computational experiments. The first problem

instance was simulated and were applied in Section 3.6.2. The goal of this experiment

is to test the effectiveness of the SGO algorithm to find out whether it would work

accordingly. After we have made sure that the algorithm works as planned, we tested

them with a new problem instance to test the effectiveness of the SCR optimization
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module with the Pareto efficient frontiers described in Section 3.6.3. We then ob-

tained a modified version of a real-world problem instance and discovered that the

fixed NOx policy is more applicable, and the objective that users’ most strive for is

to minimize cost. Therefore, we apply the problem instance to Section 3.6.4. This

problem instance will then be used for the rest of the dissertation.

3.6.1 Fixed NH3 Slip Policy

In this section, we discuss two example problem instances that employed the

fixed NH3 slip policy. The instance in Section 3.6.2 has seven power plants, and

the instance in Section 3.6.3 includes six power plants. Both cases use a five-year

planning horizon with approximately one layer either being added or changed each

year, which is a typical maintenance interval. The values are based upon default

settings in CatReact [18]. In these two instances, we have decided to maximize

the NOx reduction. Although from global information in Table 3.1, the fleet-wide

constraints include both minimum NOx reduction and minimum costs. Therefore, the

objective function can also be easily changed to cost or used as a second objective.

3.6.2 Optimization Results

Using the SCR management framework, we obtained three additional outage

plans with different objectives and constraints as shown in Table 3.3. The original

plan is the current plan originally inputted in the outage file. The max DNOx plan is

an outage plan that maximizes NOx reduction without a constraint on the operating

costs. The min cost plan is one that minimizes operating costs while ignoring NOx

reduction. Finally, the optimal plan was found by maximizing NOx reduction subject

to an operating budget no greater than that of the original plan. In all four plans,

we maintained the same power generation plan. From Table 3.3, the optimal plan



36

Table 3.3. NOx reduction and operating costs of four outage plans

Outage Plan Plant Number NOx Reduction (%) Operating Costs ($million)

Plant 1 78.06 50.61
Plant 2 92.53 56.46
Plant 3 77.79 50.62

Original Plan Plant 4 84.50 53.70
Plant 5 79.29 51.16
Plant 6 78.40 50.61
Plant 7 74.29 53.33
Total 80.69 366.49
Plant 1 96.32 53.79
Plant 2 97.10 56.46
Plant 3 96.29 53.81

Max DNOx Plan Plant 4 96.37 53.81
Plant 5 98.05 54.32
Plant 6 96.50 53.80
Plant 7 90.73 56.50
Total 95.91 382.49
Plant 1 77.26 50.58
Plant 2 81.35 53.37
Plant 3 75.93 50.58

Min Cost Plan Plant 4 74.94 50.58
Plant 5 73.83 38.26
Plant 6 72.15 51.15
Plant 7 67.23 40.48
Total 74.69 335.01
Plant 1 96.11 50.58
Plant 2 97.11 56.64
Plant 3 96.06 53.81

Optimal Plan Plant 4 96.17 53.81
Plant 5 97.77 54.26
Plant 6 96.35 53.80
Plant 7 89.34 43.04
Total 95.56 365.94

has a substantially higher NOx reduction rate and slightly smaller operating costs

than the original plan. Observe that the NOx reduction of the optimal plan is almost
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identical to the unconstrained max DNOx plan. The primary reason for this dramatic

improvement in NOx reduction is likely due to elevated levels of NH3 slip from two

ppm to four ppm at each of the plants.

3.6.3 Pareto Optimal Efficient Frontiers

We obtained a six-plant example that included outages of five years. The low

budget used was $67 million while the high budget was $117 million. We did a

preliminary analysis before hand and found those intervals were appropriate because

the lowest possible operating cost is $67.37 million, which is why the first point does

not show any results. Similarly for the high budget, we found that no matter how

much the budget is increased, the best solution that is possible to obtain is an outlet

NOx reduction of 2840.28 lbs/hr. The number of Pareto points was set to 20. The

results are summarized Table 3.4. A plot of the Pareto optimal efficient frontier

from Table 3.4 is given in Figure 3.5. From Figure 3.5, we can observe a large change

in NOx reduction from 2626.52 lbs/hr to 2767.1 lbs/hr with an increase in operating

costs of roughly $4 million. The reason for this significant improvement is due to

the fact that an extra SCR catalyst layer was added to the fleet. This graph is very

helpful since it would allow users to find the trade off of increasing operating costs to

further reduce NOx.

3.6.4 Fixed NOx policy

In this section, we provide a problem instance that employed the fixed NOx

policy and changed the objective to minimize cost. There are total of six plants, and

the planning horizon is five years. The input is a modified version of a real-world

problem instance that we have obtained and will be kept consistent throughout the
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Table 3.4. Pareto optimal plans

Pareto Points Budget ($) NOx Reduction (lbs/hr) Operating Costs ($)

1 67000000
2 69631600 2594.94 67367800
3 72263200 2607.11 71942200
4 74894700 2618.3 73657600
5 77526300 2618.3 73657600
6 80157900 2626.52 79870800
7 82789500 2626.52 79870800
8 85421100 2767.1 85149000
9 88052600 2767.1 85149000
10 90684200 2779.27 89723400
11 93315800 2790.46 91438800
12 95947400 2790.46 91438800
13 98578900 2798.68 97652000
14 101211000 2798.68 98704200
15 103842000 2808.7 102930000
16 106474000 2808.7 104760000
17 109105000 2820.87 107505000
18 111737000 2832.06 109220000
19 114368000 2832.06 109220000
20 117000000 2840.28 116485000

rest of this dissertation. The following Table 3.5 displays an optimal outage plan for

this example.

From Table 3.5, the optimal SCR management schedule were found after 610.67

minutes and the total costs were $137.26 million. As mentioned earlier, the input

information is based on a modified version of a real-world problem instance for a

six-plant and five-year problem.

3.7 Conclusion

In this chapter, we proposed an SGO algorithm that finds an optimal SCR

outage plan. As mentioned earlier in Section 2, there is currently no fleet-wide SCR
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Figure 3.5. Pareto optimal efficient frontiers plot of
operating costs vs. NOx reductions.

management tool that is commercially available. We address this limitation by in-

troducing the ability to solve the fleet SCR management problem. In this chapter,

we started out by discussing the input information as well as key equations. We

then described the two main modules of the SGO algorithm that are SCR schedule

generation and SCR optimization. We then discussed three problem instances to

test the effectiveness of the algorithm. From the final computational experiment, we

found based on a modified version of a real-world problem instance as well as a more

applicable policy that the computational time was 610.67 minutes. While this is a
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Table 3.5. Optimal fleet-wide SCR management schedule

Start Date End Date Plant Action Layer

03/15/2010 03/29/2010 1 ADDregen 2
11/16/2011 11/24/2011 1 ADDregen 1
04/06/2013 05/04/2013 1 CHANGEregen 4
10/30/2010 11/07/2010 2 ADDclean 2
11/08/2011 11/20/2011 2 ADDclean 1
11/02/2012 11/10/2012 2 CHANGEclean 4
10/18/2014 11/15/2014 2 CHANGEclean 3
11/10/2012 11/20/2012 3 ADDclean 2
11/15/2014 11/25/2014 3 ADDclean 1
03/15/2010 03/29/2010 4 ADDregen 2
11/16/2011 11/24/2011 4 ADDregen 1
04/06/2013 05/04/2013 4 CHANGEregen 4
10/30/2010 11/07/2010 5 ADDclean 2
11/08/2011 11/20/2011 5 ADDclean 1
11/02/2012 11/10/2012 5 CHANGEclean 4
10/18/2014 11/15/2014 5 CHANGEclean 3
11/10/2012 11/20/2012 6 ADDclean 2
11/15/2014 11/25/2014 6 ADDclean 1

reasonable computational time, we have tested many problem instances where the

computational time reaches several weeks. Therefore, Chapter 4 will discuss ways to

improve the computational efficiency.



CHAPTER 4

MULTI-COMMODITY NETWORK FLOW MODEL

4.1 Introduction

From the proposed model in Chapter 3, we have found that although the enu-

meration of all possible outage schedules would yield a good set of schedules within a

reasonable computational time, a problem arises when a combination of the number

of outages, the time horizon, and the number of plants increases. In such a case, the

computational time also increases exponentially. There are instances that we have

faced that would require running the SGO algorithm for up to several weeks. In

this chapter, we propose a multi-commodity flow model (MCFP) to replace the SGO

algorithm described in Chapter 3. Instead of generating schedules, we generate edges

that represent all SCR catalyst layers flowing from the start of the time horizon and

through outages until the end of the time horizon. Given a set of scheduled outage

plans with the same input information as in Chapter 3.6.4, these edges are then op-

timized to find a set of edges with the lowest operating cost while limiting the NOx

reduction to a pre-specified amount.

In this chapter, we begin with the problem formulation where variable creation

and the optimization model will be discussed. Then, we formulate a relaxed MCFP

while ignoring the average daily NOx constraint that was incorporated in Chapter

3. We provide a computational experiment with the results and computational time

comparison with the SGO algorithm that was described in Chapter 3 for a single plant.

We expand the problem further by applying it to an example with six plants and a

five-year planning horizon. Since input information is the same as in Section 3.6.4,

41
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we make the comparison between the SGO algorithm and the MCFP model. From

costs and schedule comparison, we observe that the average daily NOx constraint is

extremely crucial to the model. Therefore, we would like to incorporate the average

daily NOx constraint in the MCFP. However, there is no closed-form equation to cal-

culate average daily NOx reduction. The only way the average daily NOx constraint

can be obtained is through the schedule that can only be found after we obtain the

solution. Therefore, in order to incorporate the average daily NOx constraint to the

model, we introduce an MCFP with schedule elimination constraints (MCFPwSEC).

The MCFPwSEC algorithm uses a single cut per iteration to remove infeasible solu-

tions that do not meet the minimum average daily NOx reduction requirement. We

then compare the computational efficiency of MCFPwSEC with the SGO algorithm

that employed the fixed NOx policy discussed in Chapter 3.6.4. We further reduce

the computational time by introducing a multi-cut MCFPwSEC. Instead of cutting

the solution one by one, we apply a heuristic method that when the solution is found,

we find the NOx reduction value on the schedule. We compare the solution found

with the minimum NOx reduction requirement. If the minimum NOx reduction re-

quirement is satisfied, then the solution found is an optimal solution. However, if

it does not, we investigate the layer actions. As mentioned earlier in Section 3.1,

the set of layer actions consists of ADDnew, ADDregen, ADDclean, CHANGEnew,

CHANGEregen, and CHANGEclean. For instance, consider the following solution se-

quence, CHANGEclean-CHANGEclean-CHANGEclean. First, we determine whether

the minimum NOx reduction requirement is satisfied. Then, if it is unsatisfied, we

replace the solution with the sequence CHANGEnew-CHANGEnew-CHANGEnew.

The new solution sequence just replaces the layer actions while keeping the outage

dates the same. We calculate the average daily NOx reduction for the new sequence.

Recall from Section 3.1, new layers are the most effective method for NOx reduction.
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Therefore, if this new sequence still does not meet the minimum NOx reduction re-

quirement, we can remove a total of 27 solution sequence combinations that consist

of CHANGEnew, CHANGEregen, and CHANGEclean layer actions. The heuristic

method has provided positive results and further reduces computational time. Fi-

nally, from observation of the algorithm, we observe that the average RP associated

with the average daily NOx reduction of the solution is an upper bound to the RP

value associated with the average daily NOx reduction of the schedule. Consequently,

in order to meet the requirement, these values must be higher than the RP value

associated with the minimum NOx reduction requirement. From this relationship, we

can incorporate an additional RP constraint to the MCFP that requires the average

RP of the solution to be greater than the RP value associated with the minimum

NOx reduction requirement. Therefore, with an added RP constraint to the MCFP,

we could potentially reduce the number of schedule elimination constraints generated

early in the algorithm execution.

4.2 Problem Formulation

In this section, we describe the formulation of the relaxed MCFP and the op-

timization model to solve the fleet SCR management problem. The relaxed MCFP

problem ignores the average daily NOx reduction requirement that was incorporated

in Chapter 3. Consequently, for the relaxed MCFP, in order to control the NOx reduc-

tion, we use constraints to limit instantaneous NOx. We formulate edges to represent

the flow of SCR catalyst layers that can be up to four layers per plant. Essentially

we would like to find a path from the start of time horizon (source) to the end of

time horizon (sink) for each layer and each plant throughout the time horizon. Like

time, the flow of the edges can only be forward. A path represents a sequence of out-

ages used for that particular layer. The edges in the path also determine the actions
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used in the outages. Layer actions consist of adding of a new layer (ADDnew), a

regenerated layer (ADDregen), or a cleaned layer (ADDclean) and replacing the layer

with a new layer (CHANGEnew), a regenerated layer (CHANGEregen), or a cleaned

layer (CHANGEclean). As mentioned earlier, only one action can be taken during

each outage due to time and cost restrictions. First, we define the variable vector x

that represents edges that flow from one outage to the next as well as from the start

(source node) of the time horizon and to the end (sink node) of the time horizon.

The edge information also includes which layer it represents and the layer action that

was taken at the previous outage. After each edge is generated, we calculate the

corresponding RP and cost associated with that particular edge. Consequently, for

each edge, a 0-1 decision variable determines whether the edge is used in the solution

plan. The following formulation describes the MCFP variables.

Let

xla
ij =


1 if two consecutive outages i and j

are used for layer l and action a is taken in outage i,

0 otherwise.

(4.1)

Given a set of scheduled outages, consider a set of SCR catalyst layers, where

up to four layers can be filled at the start of the time horizon. Edges are generated

based upon any pair of consecutive outages i and j and include the start of the

time horizon (source node) and the end of time horizon (sink node). Edges are also

generated for the slots that are empty at the start of the time horizon for potential

additions. If a layer at a given slot is already filled prior to the start of the time

horizon, all subsequent outages for that particular slot can only consist of changes

that can be either a new layer, a regenerated layer, or a cleaned layer. Conversely,

if a given slot is unfilled prior to the start of time horizon, subsequent layer actions

can only be additions that can also be either a new layer, a regenerated layer, or a
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cleaned layer. Furthermore, after an addition for a particular layer has been made,

the following actions can only consist of changes. Similarly, at each outage (node),

we determine whether that particular slot has been filled or not, which determines

what set of actions that can be applied at the particular outage. Consequently, after

each edge is generated, we calculate its corresponding RP and cost for that particular

edge, where RP la
ij is the reactor potential between two consecutive outages i and j for

layer l where action a is taken in outage i, and C la
ij is the total cost incurred between

the two consecutive outages i and j for layer l where action a is taken in outage i.

To illustrate the algorithm, consider a simple example of a layer from a single plant

where there are two outages, o1 and o2. The following Figure 4.1 demonstrates the

flow of a catalyst layer from the start of the time horizon (S) to the end of time

horizon (T ).

Figure 4.1. Example of the relaxed MCFP variable creation.

From Figure 4.1, we can observe that there were 12 edges created that are

denoted by their indices with their corresponding xla
ij , RP la

ij , and C la
ij . Note that
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edges must originate from the source to a future outage. Therefore, edge 1 goes from

source to o1, edge 2 goes from source to o2, and edge 3 goes from source to sink,

which means that no action was taken for this particular edge. We refer these types

of edges as from source and source to sink edges. Next, edges must end in the sink

node (T ) so there are edges 3, 7, 8, 9, 10, 11, 12 that go to the sink, and we refer

to these types of edges as source to sink and to sink edges. Observe that from o1

to T there were three edges to sink. These three edges represent changing either a

new layer, a regenerated layer, or a cleaned layer in outage o1. Whether it was an

addition or a change depends upon whether that particular layer slot was filled or

not at the end of o1. Figure 4.2 summarizes an example of having a filled layer at the

source node S. Edges 4, 5, 6 are referred to as intermediate edges. These are edges

that flow between two consecutive outages that do not include the source node and

or the sink node as an endpoint. Similarly, there are three possible actions that can

be done during previous outage.

Figure 4.2. Example with filled layer at source.
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In Figure 4.2, we assumed that the layer was originally filled at the start of the

time horizon. Observe that not all edges are drawn in Figure 4.2. For a complete list

of edges, refer to Figure 4.1. Since the layer is already filled in the particular slot, it

cannot be added, so the only option is to change layers. Consequently, the decision

is to either do a change in o1, a change in o2, or do nothing. Changes in o1 and

o2 can be either with a new layer, a regenerated layer, or a cleaned layer. Suppose

the edge that flows from S to o2 was chosen. There are three edges actions from o2

to T representing the three possible change actions in outage o2. Therefore in this

example, the layer was filled at the start of time horizon, then a change was made at

o2.

Figure 4.3 illustrates the case where the layer slot was empty at the start of

time horizon.

Figure 4.3. Example with empty layer at source.

In Figure 4.3, we assume that the layer slot was not filled at the start of time

horizon and not all edges are drawn in the figure. Since the layer slot is empty, the
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options we have are to add in o1, add in o2, or do nothing. Suppose that the edge that

flows from S to o1 is chosen and the action in o1 is to add a cleaned layer. Then, since

the layer has been added already, meaning the slot is no longer empty, the remaining

options are to either do a change in o2 or go to sink (T ), and in this case we choose

the edge that goes from o1 to T . In summary, this particular layer slot started out as

empty, and then we added a cleaned layer to that slot in o1.

In the formulation, recall that there is a corresponding reactor potential RP la
ij

and a cost C la
ij for each edge. Since the objective is to minimize total cost, and

we currently have no restriction on the NOx reduction, the optimal solution is to

do nothing across all edges and plants, which is certainly infeasible in reality since

the minimum NOx reduction should still be met. As mentioned earlier, since RP

is directly proportional to NOx, we would like to ensure that before each outage oi

across all layers for each plant, a certain RP value is met to ensure that necessary

outages are not skipped. Consequently, at the start of each outage, we would like

to add a constraint where the instantaneous RP value meets at least a pre-specified

minimum value. Furthermore, at the end of the time horizon, power plants are not

shut down. They still must run for a certain period until the next outage in the next

time horizon. Therefore, we would like to impose a constraint that specifies how many

months we would like the plant to run without an outage before the next outage in

the next time horizon. The number of months is then converted to a minimum RP

value needed. Figure 4.4 illustrates an example.

From Figure 4.4, we expanded the example by adding an additional layer slot to

illustrate the RP constraints. Notice that the figure still represents a single plant with

two outages. As mentioned earlier, to ensure that no necessary outages are skipped

by the optimization, we apply minimum RP constraints at the start of each outage, o1

and o2. These minimum RP constraints are derived from the pre-specified minimum
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Figure 4.4. Example of the relaxed MCFP with instantaneous RP constraints.

NOx requirements for the plant. This minimum RP value implies that at the start of

each outage, the minimum NOx requirement must be met. Furthermore, observe that

at the sink node, which is at the end of time horizon, a minimum terminating RP

constraint is added. This constraint is added to ensure that at the end of time horizon,

the NOx reduction for each plant can still be maintained until the next outage after

the time horizon.

For each outage i ∈ O and each layer l ∈ L, we let El(i) be the set of edges

from the node representing outage i in the sub-network representing layer l. The

relaxed 0-1 integer program to solve the fleet SCR management problem is given by

the following.
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min
∑
l∈L

∑
a∈A

∑
(i,j)∈E

C la
ij x

la
ij (4.2)

s.t.
∑
l∈L

∑
a∈A

∑
(j,k)∈El(i)

RP la
jkx

la
jk ≥ min RP ∀i ∈ O (4.3)

∑
l∈L

∑
a∈A

∑
j|∃(i,j)∈E

xla
ij ≤ 1 ∀i ∈ O (4.4)

∑
a∈A

∑
j|∃(i,j)∈E

xla
ij =

∑
a∈A

∑
j|∃(j,i)∈E

xla
ij ∀i ∈ O, l ∈ L (4.5)

∑
a∈A

∑
j|∃(s,j)∈E

xla
sj = 1 ∀l ∈ L (4.6)

∑
a∈A

∑
j|∃(j,t)∈E

xla
jt = 1 ∀l ∈ L (4.7)

xla
ij ∈ {0, 1}|E| (4.8)

The problem is to minimize the total costs across all edges in the fleet subject

to flow constraints. Essentially the problem is to find paths where edges flow from

sources to sinks in the layer sub-networks that incur the least total costs while satis-

fying the constraints. The optimal solution is an SCR management schedule for all

plants in the fleet that is comparable to Chapter 3. After the MCFP algorithm has

been formulated, the next section, we discuss computational experiments.

4.3 Computational Experiments

In this section, we present the computational experiments of the relaxed MCFP.

First, we start with a single plant example. Then we expand the problem further by

introducing a six-plant example with the same input information as Section 3.6.4.

The solver used was CPLEX version 12.1 callable library [50].
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4.3.1 Single Plant Computational Experiments

In this section, consider a single plant with five scheduled outages during a

five-year planning horizon. From the available four catalyst layer slots, two layers

were installed prior to the start of the horizon while two slots were empty. Layers are

indexed 1, 2, 3, and 4 where layer 4 is the one closest to the inlet. The pre-specified

conditions are that NOx reduction of at least 75% must be met before each outage and

that at the end of time horizon, the plant must go without an outage for 8 months.

The summary of an input scheduled outage is shown in Table 4.1, and the optimal

solution obtained is shown in Figure 4.5.

Table 4.1. Example of a scheduled outages plan

Start Date End Date

o1 03/15/2010 03/29/2010
o2 11/16/2011 11/24/2011
o3 10/27/2012 11/04/2012
o4 04/06/2013 05/04/2013
o5 10/24/2014 11/01/2014

Figure 4.5 illustrates the optimal SCR management schedule for the plant. To

interpret the figure, layer four needs to be changed with a cleaned layer during o4,

layer three requires a change with a cleaned layer during o1, layer two needs to be

added with a cleaned layer during o2, and the fourth layer slot is kept emptied for the

time horizon. The maintenance plan has incurred the total costs of $13.20 million.

Finally, we compare the computational time with the schedule generation algorithm

that is described in Table 4.2.

From the Table 4.2, the results have shown a significant reduction in the com-

putational time from the SGO algorithm for a single plant example. While this may
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Figure 4.5. Solution of the relaxed MCFP for a single plant.

Table 4.2. Single plant computational time comparison

SGO Multi-Commodity

Fixed NH3 Slip Fixed NOx

Flow Problem

Policy Policy (Relaxed MCFP)
CPU Time 5 minutes 22 minutes <1 second

not seem such a big difference for a single plant, as the problem size gets larger, the

difference will also increase exponentially as with the computational time.

4.3.2 Fleet-Wide Computational Experiments

From a single plant example in Section 4.3.1, we expanded the problem further

to solve a fleet SCR management problem. As described earlier in Section 3.6.4, we

applied a six-plant example with five years planning horizon. The input information

were exactly the same as Section 3.6.4 for a consistent computational time and solu-
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tion comparison. Table 4.3 displays the optimal SCR management schedule for the

relaxed MCFP.

Table 4.3. The relaxed MCFP fleet-wide solution

Start Date End Date Plant Action Layer

03/15/2010 03/29/2010 1 CHANGEclean 3
11/16/2011 11/24/2011 1 ADDclean 2
04/06/2013 05/04/2013 1 CHANGEclean 4
10/30/2010 11/07/2010 2 CHANGEclean 4
11/08/2011 11/20/2011 2 ADDclean 2
12/02/2013 12/10/2013 2 CHANGEclean 3
11/10/2012 11/20/2012 3 ADDclean 2
03/15/2010 03/29/2010 4 CHANGEclean 3
11/16/2011 11/24/2011 4 ADDclean 2
04/06/2013 05/04/2013 4 CHANGEclean 4
10/30/2010 11/07/2010 5 CHANGEclean 4
11/08/2011 11/20/2011 5 ADDclean 2
12/02/2013 12/10/2013 5 CHANGEclean 3
11/10/2012 11/20/2012 6 ADDclean 2

From Table 4.3, we found that the total cost for the optimal SCR management

schedule for the relaxed MCFP during the five-year planning horizon was $66.73

million. Next, we compare the computational time with the SGO algorithm. Table

4.4 shows the comparison.

Table 4.4. Fleet-wide computational time comparison

SGO Relaxed
(Fixed NOx Policy) MCFP

CPU Time 610.67 minutes 2 seconds
Total Costs $137.26 million $66.73 million
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From Table 4.4, we can observe that there was a significant reduction in com-

putational time from 610.67 minutes down to two seconds. However, the total costs

were different for the relaxed MCFP as compared to the SGO fixed NOx policy. As

mentioned earlier, the optimal solutions from Table 4.3 were obtained from the exact

same input information as the solution shown in Table 3.5. However, for the relaxed

MCFP, we ignored the average daily NOx constraints while the SGO based upon the

fixed NOx policy did not. Recall from Section 4.2, when we defined and formulated

the algorithm, we had two types of RP constraints that imply NOx reduction. There

were constraints on the RP value before each outage that must be more than an RP

value based upon the minimum NOx reduction. Furthermore, there were constraints

at the end of time horizon for RP that must be greater than an RP value based

upon NOx reduction level that must be maintained over minimum NOx value until

the next outage in the next time horizon. These constraints are based upon instan-

taneous RP value at a certain point in time. Even though we can obtain the RP

value of each edge and then sum them up to get the total RP for the schedule, all

of the information here cannot directly derive the average daily NOx reduction. As

described earlier in Chapter 3, for the average daily NOx reduction, the minimum

NOx reduction required that the average daily NOx reduction must be satisfied. If we

refer to Equations 3.3 and 3.4, NOx reduction is a function of RP and NH3 slip, and

there is no closed-form function to obtain the average daily NOx reduction. The only

way to obtain the average daily NOx reduction is with the entire SCR management

schedule. An example of a schedule is shown in Table 4.3. In the relaxed MCFP

model, edges are generated one by one, therefore we do not have any prior knowledge

about the schedule. The only way we can obtain the schedule from this model is after

a solution is obtained. To address this limitation of the relaxed MCFP, we introduce
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the schedule elimination constraints, where we developed an algorithm to incorporate

the average daily NOx constraint into MCFP.

4.4 Schedule Elimination Constraints

In this section, we introduce MCFP with schedule elimination constraints (MCF-

PwSEC). As mentioned earlier, for minimum NOx constraints, it is the average daily

minimum constraint over the time horizon. For the MCFP model, the only way to

obtain average daily NOx reduction is via the schedule after optimization has been

done and a solution is obtained. Therefore, after a solution is obtain and the schedule

is found, we determine whether or not it violates the average daily minimum NOx

constraint. If it does not, then it is an optimal solution. If it does, then we make

that solution infeasible and then re-optimize the problem.

Consider the following set elimination constraints. Let F be the set of all

feasible flows in MCFP. Let Sp be the set of all feasible schedules for plant p ∈ P . Let

Sc
p = F \ Sp be the set of flows in MCFP that are infeasible schedules. For example,

schedule s ∈ Sc
p may violate average daily NOx constraint. Then, the set of schedule

elimination constraints is given by (4.9).

∑
e∈s

xe ≤ |s| − 1, ∀s ∈ Sc
p. (4.9)

Figure 4.6 and Algorithm 3 summarizes the MCFPwSEC algorithm.

From Algorithm 3, Sc
p can be potentially huge. In addition, generating all Sc

p

at the beginning is probably equivalent to SGO schedule generation. Therefore, we

can generate Sc
p dynamically through MCFPwSEC.

From Figure 4.6, we can observe that a cut is added after a schedule is found

that violates the minimum average daily NOx constraint. Cuts are added one by one

until the optimal solution is found where the minimum average daily NOx constraint
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Figure 4.6. Overview of the MCFPwSEC algorithm.

Algorithm 3 Summary of the MCFPwSEC algorithm

Let S̄c
p ∈ Sc

p

Relaxed problem step: Solve MCFP with schedule elimination constraints

from S̄c
p to obtain s∗.

Feasibility check: If s∗ ∈ Sp, then return s∗.

Cut generation step: Set S̄c
p ← S̄c

p

∪
{s∗}, and go to Relaxed problem step.

is met. To demonstrate the cut generation, consider a single plant example with

the same input information as Section 4.3.1 with the minimum average daily NOx

reduction of 75%. Recall that in Section 4.3.1, a solution is found as shown in Figure

4.5. From the schedule in figure 4.5, we found that the solution consists of x202 =

x158 = x153 = x152 = x101 = x50 = x0 = 1. From the solution, we found that the
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average daily NOx reduction of the schedule violates the minimum average daily NOx

constraint, therefore we need to make this solution infeasible. For this example, the

first cut would be x202 + x158 + x153 + x152 + x101 + x50 + x0 ≤ 6. After 875 cuts, we

found the optimal solution that satisfies the minimum average daily NOx reduction,

which is shown in Table 4.5.

Table 4.5. MCFPwSEC optimal solution for a single plant

Start Date End Date Plant Action Layer

03/15/2010 03/29/2010 1 ADDregen 2
11/16/2011 11/24/2011 1 ADDregen 1
04/06/2013 05/04/2013 1 CHANGEregen 4

Then, we applied the algorithm to the six-plant problem described in Section

4.3.2. We found the optimal schedule after 5250 solution cuts, and it is the exact

same solution obtained in Section 3.5. The optimal schedule is displayed in Table

4.6.

Finally we compare the computational time of SGO with the fixed NOx policy

with MCFPwSEC in Table 4.7.

From Table 4.7, we can observe that the optimal schedule is found after 57.11

minutes for the six-plant example. While the computational time is still significantly

faster than the SGO algorithm for MCFPwSEC model, we would like to explore

ways to further reduce the computational time. By observation of the cuts, we found

that a single cut MCFPwSEC is not very efficient in eliminating infeasible solutions.

Recall that there are 9 SCR layer actions that are ADDnew, ADDregen, ADDclean,

CHANGEnew, CHANGEregen, and CHANGEclean. If we refer to the initial optimal

solution for a single plant example from Figure 4.5, the sequence of actions were
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Table 4.6. Fleet-wide optimal schedule from MCFPwSEC

Start Date End Date Plant Action Layer

03/15/2010 03/29/2010 1 ADDregen 2
11/16/2011 11/24/2011 1 ADDregen 1
04/06/2013 05/04/2013 1 CHANGEregen 4
10/30/2010 11/07/2010 2 ADDclean 2
11/08/2011 11/20/2011 2 ADDclean 1
11/02/2012 11/10/2012 2 CHANGEclean 4
10/18/2014 11/15/2014 2 CHANGEclean 3
11/10/2012 11/20/2012 3 ADDclean 2
11/15/2014 11/25/2014 3 ADDclean 1
03/15/2010 03/29/2010 4 ADDregen 2
11/16/2011 11/24/2011 4 ADDregen 1
04/06/2013 05/04/2013 4 CHANGEregen 4
10/30/2010 11/07/2010 5 ADDclean 2
11/08/2011 11/20/2011 5 ADDclean 1
11/02/2012 11/10/2012 5 CHANGEclean 4
10/18/2014 11/15/2014 5 CHANGEclean 3
11/10/2012 11/20/2012 6 ADDclean 2
11/15/2014 11/25/2014 6 ADDclean 1

Table 4.7. Fleet with MCFPwSEC comparison

SGO Fixed NOx Policy MCFPwSEC

CPU Time 610.67 minutes 57.11 minutes

CHANGEclean, ADDclean, and CHANGEclean. As mentioned earlier, cleaning of

a catalyst is the least effective in terms of NOx reduction, where regeneration is the

next best alternative, and a new layer is obviously the best option. Since the objective

is to minimize cost, the first solution we obtain is usually involves cleaning due to

the fact that it is also the least expensive option. Therefore, after we cut of this

solution, for the next iteration, the solution found was the sequence CHANGEclean,

ADDclean, CHANGEregen. We can observe that each cut only marginally improves
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the solution and adding one cut at a time and re-optimizing is not effective in terms

of the computational efficiency. To potentially improve the computational efficiency,

we introduce heuristic generation of schedule elimination constraints that will be

described in Section 4.5.

4.5 Heuristic Generation of Schedule Elimination Constraints

In this section, we introduce additional elimination constraints that can be gen-

erated based upon heuristics. Instead of adding a single cut for the infeasible solution

one at a time, we introduce multiple cuts to speed up the algorithm performance

(multi-cut MCFPwSEC). As we examine the cuts generated in Section 4.4, we found

that the cut in each iteration only marginally improves the solution. As mentioned

earlier, cleaning a catalyst is least effective at reducing NOx but is also the least

expensive method. Consequently, the optimization would choose this before regener-

ation and including a new layer. From this observation, we find that after the initial

solution is found, we can try the same sequence of outages but replace them with a

new layer. For example, if the sequence of outages were CHANGEclean, ADDclean,

and CHANGEclean, then we know that, from Section 4.4, after we add the cut, the

next solution will be CHANGEclean, ADDclean, and CHANGEregen. In order to

eliminate multiple cuts in each iteration, we can try the sequence CHANGEnew,

ADDnew, and CHANGEnew, which replaces the layers with new ones while keeping

the outage dates the same. If this new sequence of actions still does not satisfy the

minimum average daily NOx constraint, we can eliminate 27 schedules immediately,

which would reduce the number of optimization iterations that could potentially re-

duce the computational time. The following Figure 4.7 describes the algorithm.

Consider the optimal solution obtained for the single plant example shown in

Figure 4.5. Tables 4.8 and 4.9 illustrate an example of the algorithm.
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Figure 4.7. Overview of the multi-cut MCFPwSEC algorithm.

Table 4.8. Example of the multi-cut MCFPwSEC algorithm

1 Consider a solution sequence:
CHANGEclean, ADDclean, CHANGEclean.

2 Does it violate average daily NOx constraint?
If yes, go to 3. If no, go to 8.

3 Calculate average daily NOx reduction for sequence:
CHANGEnew, ADDnew, CHANGEnew.

4 Does it violate average daily NOx constraint?
If yes, go to 6. If no, go to 5.

5 Add the schedule elimination constraint for the sequence:
CHANGEclean, ADDclean, CHANGEclean, and go to 7.

6 Add heuristic generation of
schedule elimination constraint and go to 7.

7 Optimize and go to 1.
8 Return s∗
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Table 4.9. Example of step 6 from the multi-cut MCFPwSEC algorithm in Table 4.8

Step 6 from Table 4.8

CHANGEnew, ADDnew, CHANGEnew
CHANGEnew, ADDnew, CHANGEregen
CHANGEnew, ADDnew, CHANGEclean
CHANGEnew, ADDregen, CHANGEnew
CHANGEnew, ADDregen, CHANGEregen
CHANGEnew, ADDregen, CHANGEclean
CHANGEnew, ADDclean, CHANGEnew
CHANGEnew, ADDclean, CHANGEregen
CHANGEnew, ADDclean, CHANGEclean
CHANGEregen, ADDnew, CHANGEnew
CHANGEregen, ADDnew, CHANGEregen
CHANGEregen, ADDnew, CHANGEclean
CHANGEregen, ADDregen, CHANGEnew
CHANGEregen, ADDregen, CHANGEregen
CHANGEregen, ADDregen, CHANGEclean
CHANGEregen, ADDclean, CHANGEnew
CHANGEregen, ADDclean, CHANGEregen
CHANGEregen, ADDclean, CHANGEclean
CHANGEclean, ADDnew, CHANGEnew
CHANGEclean, ADDnew, CHANGEregen
CHANGEclean, ADDnew, CHANGEclean
CHANGEclean, ADDregen, CHANGEnew
CHANGEclean, ADDregen, CHANGEregen
CHANGEclean, ADDregen, CHANGEclean
CHANGEclean, ADDclean, CHANGEnew
CHANGEclean, ADDclean, CHANGEregen
CHANGEclean, ADDclean, CHANGEclean

From Figure 4.5 and Tables 4.8 and 4.9, we observe that multiple cuts are added

per iteration instead of just a single cut in Section 4.4. The number of cuts would

depend upon the solution obtained during each iteration. If the sequence consists of

clean or regeneration, we replace them with new and compute the average daily NOx

reduction. Then if the sequence with new still does not meet the minimum average

daily NOx requirement, we cut off this solution as well as all the combination of the

less effective solutions as shown in Table 4.9, since a new layer is the most effective
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action for NOx reduction. Whereas, if the sequence with a new layer does meet the

minimum average daily NOx requirement, then we just cut off the initial optimal

solution and re-optimize since in this case we are nearing the optimal solution. We

then apply this algorithm to our initial six-plant example described in Section 4.3.2,

and the optimal solution was found to be the same as Section 4.6. We then compare

the computational time of multi-cut MCFP with MCFP and SGO with fixed NOx

policy in Table 4.10.

Table 4.10. Fleet with multi-cut MCFPwSEC comparison

SGO MCFPwSEC MCFPwSEC
(Fixed NOx Policy) (Single Cut) (Multi-Cuts)

CPU Time 610.67 minutes 57.11 minutes 20.36 minutes

From the Table 4.10, we have managed to reduce the computational time fur-

ther from 57.11 minutes down to 20.36 minutes with the multi-cut MCFP. While the

computational time of 20.36 minutes is very reasonable for this type of problem, we

try to explore potential ways to reduce this even further. As mentioned earlier, in the

relaxed MCFP formulation, we cannot directly derive average daily NOx reduction.

In addition, recall that RP is directly proportional to NOx, so we would like to incor-

porate a constraint that reduces the generation of schedule elimination constraints

in Section 4.4. Consequently, we introduce the average RP constraint that will be

described in Section 4.6.
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4.6 Average RP Constraints

In this section, we incorporate a constraint that represents the relationship

between RP and NOx reduction. From the MCFP structure, the average daily NOx

reduction cannot be obtained directly prior to a solution. We realize that we would

like the RP to be as high as possible. From observations of the solutions and the

formulation of edges, we observe the following relationship.

DNOX%(Avg.RP) ≥ Average Daily daily NOx reduction (4.10)

As mentioned earlier in Section 4.2, when edges are formulated, the average daily RP

value incurs between two consecutive outages i and j is also calculated. Consequently,

if we sum the RP across all edges for each plant over the time horizon, we would

obtain the weighted average of RP over the time horizon for the schedule. This

weighted average RP can then be used to determine a bound on NOx reduction.

DNOX%(Avg.RP) represents this calculation. From observation, we have found that

this is an upper bound to the average daily NOx reduction. In addition, we would like

these values to be greater than the minimum average daily NOx value. Therefore, we

obtain the following relationship.

DNOX%(Avg.RP) ≥ Average Daily NOx reduction

≥ Minimum average Daily NOx (4.11)

For each edge i ∈ E, let RP i be the average daily RP of edge i. Consequently, we

add the following valid inequality as a constraint to the MCFP.∑
i∈E

RP ixi ≥ DNOX−1
% (Minimum average daily NOx) (4.12)

After the constraint 4.12 is added to the optimization model, we ran the exper-

iment again using the MCFPwSEC described in Section 4.4. After the run, we found



64

the optimal solution with no improvement in the computational time as compared to

that of Section 4.4. The computational time found was 60.85 minutes compared with

the computational time in Section 4.4 that was 20.35 minutes. The reason for an

increase in the computational time is due to the nature of the constraint. Although

the added RP constraint resulted in the reduction of 1738 iterations in the generation

of schedule elimination constraints, we also introduce large fractional coefficients to

the problem. These fractional coefficient reduce the CPU time required to solve the

relaxed MCFP. Therefore, the RP constraint has provided no further improvement in

terms of the computational efficiency to the MCFP model. The following Table 4.11

summarizes the MCFP model.

Table 4.11. Summary of fleet MCFP comparison

MCFPwSEC
MCFPwSEC MCFPwSEC (Single Cut)
(Single Cut) (Multi-Cuts) w/Average RP Constraint

CPU Time 57.11 minutes 20.36 minutes 60.85 minutes
Number of Iterations 5250 776 3512

4.7 Conclusion

In this chapter, we proposed the MCFP model to solve the fleet SCR manage-

ment problem. The motivation for this is purely due to the computational time of

the SGO algorithm. While the SGO algorithm discussed in Chapter 3 has produced

the optimal solution within a reasonable time of 610.67 minutes. We have found

that as the problem size gets larger especially based upon the length of time horizon,

the computational time increases exponentially. In this chapter, we first formulated
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the relaxed MCFP. We then applied the formulation on a single plant example. We

expanded the problem further by applying it to a six-plant example with the same in-

put information as the SGO fixed NOx policy. Since the average daily NOx reduction

constraint is critical to the model, it is essential to incorporate it into MCFP model.

Therefore, we introduced the MCFPwSEC discussed in Section 4.4. From the MCF-

PwSEC algorithm, we have found significant reduction in computational time from

SGO algorithm while achieving the same result. The computational time of 610.67

minutes for SGO has been reduced down to 57.11 minutes. We then explored further

to find ways to improve the algorithm performance. From investigation of the cuts

generated in each iteration by MCFPwSEC, we introduced multi-cut MCFPwSEC

where instead of adding a single cut per iteration, we applied a heuristic method to

determine the average daily NOx reduction for the best solution for the particular

sequence and are able to add multiple cuts per iteration. The multi-cut MCFPwSEC

algorithm has shown positive results where the computational time has reduced down

to 20.36 minutes. Because of the relationship between RP and NOx reduction, we

derived a constraint based upon the relationship. We incorporated an average RP

constraint to reduce the generation of heuristic schedule elimination constraints a

priori. However, since RP values are fractional, we also introduced large fractional

coefficients to the problem. Therefore, the RP constraint has provided no further

improvement in terms of the computational time to the model. In future research,

we can potentially improve the algorithm performance by introducing independent

set constraints based upon the RP constraint. Note that the schedule elimination

constraints are also a class of independent set constraints. In summary, we have

found the MCFP model to be significantly faster than the SGO algorithm and we

have managed to reduce the computational time from 610.67 minutes down to 20.36
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minutes with multi-cut MCFPwSEC. Finally, Chapter 5 discusses conclusions and

future directions.



CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we proposed an SCR management framework to solve the

fleet SCR management problem using mathematical optimization techniques. We

solved the SCR management problem with two main approaches, which were the

SGO algorithm and an MCFP model. From the study on SCR management, we

have found little research on optimization of SCR management, and the main focus

of most literature is on optimizing the process design. In addition, we have found

that most commercial software focuses on SCR management of a single plant. We

addressed these limitations by introducing an SCR management framework that max-

imizes NOx reduction or minimizes the total operating costs over a fleet-wide set of

plants given a scheduled outage plan. In the first part of the dissertation, we proposed

the SGO algorithm with recursion to enumerate a set of potential outage schedules

for all plants in the fleet. From these generated schedules, a 0-1 large-scale integer

programming model, with COIN-OR CBC as the solver, selects an optimal set of

schedules. We then demonstrated the effectiveness of the algorithm by providing

three computational experiments. The first two computational experiments used the

fixed NH3 slip policy with simulated data. The experiments considered different ob-

jectives and Pareto optimal efficient frontiers. The third computational experiment

was based upon a modified version of a real-world problem instance using the fixed

NOx policy. From the model, we found that the solution is applicable in a real-world

situation. However, one of the main drawbacks of SGO is the computational time

due to the recursion method. The problem instance included six plants and a five-

67
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year planning horizon, and the optimal solution was obtained with a computational

time of 610.67 minutes. However, as the problem size gets larger, the computational

time also increases exponentially. We then addressed this limitation by introducing

an MCFP model, where the solver used for the MCFP is the CPLEX 12.1 callable

library. Instead of generating schedules, edges are generated to represent the flow of

all SCR layers in the fleet. We started out with a relaxed MCFP that solved a single

plant example. We then expanded further to that six-plant example used in the SGO

computational experiments with the fixed NOx policy. In order to incorporate the

average daily NOx reduction constraint implemented in SGO to the MCFP model,

we introduced schedule elimination constraints that cut off solutions that did not

meet the minimum average daily NOx reduction requirement. Consequently, we de-

veloped MCFPwSEC that iteratively solves MCFP and adds a schedule elimination

constraint until the minimum average daily NOx reduction condition is met. From

this algorithm, we found that the computational time was 57.11 minutes, which was

significantly less than that of the SGO algorithm. We improved this further by in-

troducing multi-cut MCFPwSEC, where instead of cutting infeasible solutions one

by one, we could eliminate many schedules at once by observation of the cuts. From

there, we reduced the computational time down to 20.36 minutes. To potentially

further reduce the computational time, we explored the relationship between average

daily NOx reduction and average daily RP. Consequently, we added an RP constraint

to the MCFP in order to eliminate the generation of schedule elimination constraints

early in the algorithm execution. We found that although the number of generated

cuts decreased, the added constraint provided no improvement in the computational

time. The primary reason is due to the nature of the constraints. Since RP val-

ues are fractional, when the constraint is added, we also introduced large fractional

coefficients into the problem. In future research, we will explore potential ways to
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reduce the computational time further, especially on a larger problem instance. From

what we have learned from the relationship between average daily NOx reduction and

average daily RP, we could incorporate independent set constraints based upon the

RP constraint to the model. Note that the schedule elimination constraints are also a

class of independent set constraints. Consequently, we can also explore lifting of either

or both independent set constraints based upon the RP constraint and the schedule

elimination constraints. Furthermore, for a larger problem instances, branch-and-

price may be helpful. Finally, in this dissertation, the scheduled outage plan was

assumed to be pre-specified, and swapping outage dates was not allowed. Based

upon discussions with users, we have found that this policy is practical in real-world

situations. However, we could potentially extend the flexibility of the framework by

allowing the swapping of outage dates.
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