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ABSTRACT

SOME PROBLEMS OF INTEGRAL GEOMETRY IN ADVANCED IMAGING

Rim Gouia, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Dr. Ambartsoumian

During the past decade, our society has become dependent on advanced math-

ematics for many of our daily needs. Mathematics is at the heart of the 21st century

technologies and more specifically the emerging imaging technologies from thermoa-

coustic tomography (TAT) and ultrasound computed tomography (UCT) to non-

destructive testing (NDT). All of these applications reconstruct the internal structure

of an object from external measurements without damaging the entity under inves-

tigation. The basic mathematical idea common to such reconstruction problems is

often based upon Radon integral transform.

The Radon integral transform R : f 7→ Rf puts into correspondence to a given

function f its integrals over certain subsets. In this work, we focus on the situation

when the subsets are circles. The major problems related to this transform are the

existence and uniqueness of its inversion, inversion formulas, and the range description

of the transform. When Rf is known for circles of all possible radii, there are well

developed theories addressing most of the questions mentioned above. However, many

of these questions are still open when Rf is available for only a part of all possible

radii.

The aim of my dissertation is to derive some new results about the existence

and uniqueness of the representation of a function by its circular Radon transform
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with radially partial data for both interior and exterior problems. The presented

new results open new frontiers in the field of medical imaging such as intravascular

ultrasound (IVUS) and transrectal ultrasound (TRUS).
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CHAPTER 1

INTRODUCTION

During the past decade, our society has become dependent on advanced math-

ematics for many of our daily needs. Mathematics is at the heart of the 21st century

technologies and more specifically the emerging imaging technologies from thermoa-

coustic tomography (TAT) and ultrasound computed tomography (UCT) to non-

destructive testing (NDT). All of these applications reconstruct the internal structure

of an object from external measurements without damaging the entity under inves-

tigation. Very often the basic mathematical idea common to such reconstruction

problems is based upon integral geometry.

In accordance with the terminology used by I. Gelfand and G. Shilov in [31],

integral geometry is the branch of geometrical analysis that analyzes integral trans-

forms of geometrical nature. More specifically, integral geometry is dealing with

properties of functions that can be determined by transforms integrating the function

over subsets. This type of transforms are named Radon integral transforms after the

Austrian mathematician, Johann Radon (1887-1956), who studied the transform that

integrates functions of two independent variables over all lines in the plane for pure

mathematical reasons. In 1963, the physicist Allan M. Cormack reinvented the classi-

cal Radon transform and supplanted it as the mathematical model of X-ray computed

tomography (CT) in which the internal structure of an object can be determined by

its integrals over all lines in the plane. Based upon Cormack’s work, the engineer

Godfrey Hounsfield invented the CT that revolutionized the field of medical imaging

and resulted in the 1979 Nobel Prize in Physiology and Medicine.

The success of this imaging method and the tremendous improvement in the

computing capabilities boosted the connection between integral geometry and medical

1
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imaging as well as other fields of imaging such as non-destructive testing, geophysics,

radar and sonar. Indeed, integral geometry is used in medicine to visualize internal

organs, in non-destructive testing to evaluate the thickness of objects and flaws in

materials, in geophysics to explore oil and gas, and in remote sensing to detect objects

and monitor risk areas.

In the next chapter, we give a brief survey of some of the major imaging ap-

plications that deal with reconstructing the internal structure of an object without

causing damage to it. The basic mathematical idea common to such reconstruction

problems is based upon integral transforms of Radon type. In chapter 3, some of these

transforms are defined and studied from a theoretical point of view. We first define

the classical Radon transform, then we generalize it to the spherical and the elliptical

Radon transforms, which are more relevant tools in the imaging applications that

we consider. In chapter 4, we discuss some of the main mathematical problems that

typically arise while determining a function from its Radon transforms. We start by a

quick summary of the results regarding the inversion of the classical Radon transform

in R2. We provide some of the important techniques that are used in the case of main

interest. Then we intensively study the inversion of the spherical Radon transform

in R2 and in Rn for n > 2. Once we show some of the techniques of reconstruc-

tion using complete data of the spherical Radon transform, we then concentrate, in

chapter 5, on the question of representing a function by its circular Radon transform

with partial data. We focus on the case of transforms integrating functions of two

independent variables along circles, and present a new inversion formula when the

Radon transform is known for only a part of all possible radii, for both interior and

exterior problems. Finally in chapter 6, an approximate backprojection algorithm is

developed to recover a 2D function from its integrals over a family of ellipses. We
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also present the results of the numerical simulation where the center of the ellipses is

rotating around the origin.



CHAPTER 2

MAJOR FIELDS OF APPLICATION

There are numerous imaging applications that deal with reconstructing the in-

ternal structure of an object without causing damage to it. The basic mathematical

idea common to many of such reconstruction problems is based upon integral geom-

etry. In this chapter, we describe some of the typical applications that use integral

geometry in their mathematical models.

2.1 X-ray computed tomography

X-ray computed tomography, abbreviated to CAT or CT, consists of a tube

emitting a thin collimated beam of X-rays that penetrates the object under investiga-

tion, and of a detector, which is recording the intensity loss of the transmitted X-rays.

By rotating the source and the detector in the same plane around the patient, it is

possible to obtain a set of projections. This collected data is processed by a com-

puter to produce an image of the internal structure of the object from the external

http://www.drkellysmiles.com/NewTechnology.aspx

Figure 2.1. Principle of measurement of an X-ray computed tomography.
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5

measurements. Invented by the engineer Godfrey Hounsfield and the physicist Allan

Cormack in 1972, the CT revolutionized the field of medical imaging.

As X-rays travel along a line L from the X-ray source through the object to an X-

ray detector, the energy is attenuated by the material on the line L. The attenuation

coefficient f(x) at the point x is the function that quantifies the tendency of an object

to absorb X-rays. Assuming all X-rays are sent in the same plane x = (x1, x2) is a

two dimensional variable, and f(x) represents an image of a cross-sectional slice of

the body. Let I(source) and I(detector) are, respectively, denote the initial intensity of the

beam and the intensity of the beam after passing the object. So the relative intensity

loss when the X-rays traverse a distance △x is

△I/I = −f(x)△ x.

By integrating from the source to the detector, we get the following integral transform

ln

[
I(source)
I(detector)

]
=

∫
L

f(x)dx.

Since I(source) and I(detector) are measured, the line integrals of the attenuation coeffi-

cient f along each of the lines L are known and can be used to reconstruct f . It is

this mathematical model upon which CT is used in medicine as well as in industry

for internal inspection of components, flaw detection, failure analysis, and metrology.

An in-depth discussion of the X-ray tomography can be found in [23, 25, 33].

2.2 Ultrasound tomography

Ultrasound tomography is very similar to X-ray tomography. In both cases, we

are trying to reconstruct a cross-sectional image from the recorded data. However,

when using ultrasound as a form of energy to illuminate the object, the transmit-

ted signal is almost immeasurable as most of the the energy is reflected by density

contrasts. Hence, the reconstruction is done using reflected signals (Figure 2.2).
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http://www.sprawls.org/ppmi2/USPRO/

Figure 2.2. The basic ultrasound imaging process.

Object

t

r
p

Figure 2.3. The receiver coincides with the source.

The transducer placed at the edge of the body works in dual modes first as an

emitter of sound waves, and then as a receiver, registering the reflection of ultrasound

waves from the inclusions inside the body.

Assuming that (1) the pulse radiates isotropically in the form of expanding

spherical waves, (2) the speed of sound propagation c is constant, (3) the receiver

coincides with the source, and (4) the medium is weakly reflecting (here by weakly

reflecting we mean that multiple reflections are ignored), the signals registered by

a transducer at any moment of time t would be generated by inclusions lying on a
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sphere of radius r = ct/2 (Figure 2.3) centered at the transducer location. In other

words, the recorded data g(p, r) is surface integrals over spheres S(p, r) centered at

the transducer locations p and of radius r = ct/2.

g(p, r) =

∫
S(p,r)

f(x) dσ.

By moving the transducer over a hyperplane or on a hypersphere around the

object, it is possible to collect enough data to reconstruct the image of the entire

object.

One needs to notice that in the case of the omission of one of these assumptions,

the spherical integral geometry is no longer valid. For example, in a bistatic setup

where the receiver and the source are no longer collocated, the collected data g(r, s, t)

is the integrals of the image function f along ellipses with foci the source s and the

receiver r, and semi-major axis t/2 (see e.g. [39, 40]). This leads us to another

integral transform

g(r, s, t) =

∫
E(r,s,t)

f(x) dσ.

To reduce the imaging geometry to two dimensions, we consider a transducer

that generates a cylindrical wavefront instead of spherical wavefront. This can be

achieved in practice by using a transducer that focuses in the axial direction and

reduce the thickness of the lateral direction.

The most well known application of ultrasound tomography is its use in medical

imaging to produce pictures of the internal structure of the human body. Moreover,

there are a vast number of other applications including radar imaging (Figure 2.5)

and sonar (see e.g. [16, 18, 38]) for the case where the receiver coincides with the
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s

r

f(x,y)

t/2

Figure 2.4. The receiver and the source are no longer collocated.

source, and geophysics (Figure 2.6) for the case where the receiver and the source are

not collocated.

2.3 Thermoacoustic/photoacoustic tomography

Thermoacoustic tomography (TAT) and photoacoustic (PAT) tomography are

two emerging medical imaging modalities based on a physical effect originally dis-

covered by Alexander Graham Bell in 1880. These novel hybrid methods combine

the advantages of optical absorption contrast with ultrasonic spatial resolution (see

[3, 34] for a comprehensive survey on mathematical problems in TAT and PAT).

The part of the human body being imaged is exposed to a short pulse of electro-

magnetic (EM) radiation (radio-frequency (RF) waves in TAT, and lasers in PAT). A

portion of this radiation is absorbed in the body, heating up the tissue, and causing
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1994 Encyclopaedia Britannica, Inc.

Figure 2.5. Radar.

http://www.earth.northwestern.edu/people/seth/107/Seismology/seismicreflection.htm

Figure 2.6. Geophysics.

thermal expansion, which in turn generates pressure waves (an ultrasound signal)

traveling through the body. These acoustic waves are measured by multiple trans-

ducers placed along the body. Then the collected data is processed to generate an

image of the heat absorption function inside the body. The premise here is that there

exists a strong contrast in the amount of absorbed EM energy between different types

of tissues. For example cancerous cells absorb several times more energy than the

healthy ones, hence recovery of the RF absorption function inside the body can help
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RF pulse

transducer

Thermoacoustic tomography

r=ct

Figure 2.7. A sketch of TAT/PAT.

both to diagnose and to locate cancer. Figure 2.7 illustrates the process by which

TAT and PAT are generated.

Since sound waves have very weak contrast in the tissue, we can simplify the

model assuming the sound speed c to be constant in the body. Under this assumption

the signals registered by a transducer at any moment of time t would be generated by

inclusions lying on a sphere of radius r = ct centered at the transducer location. Thus

the problem of image reconstruction in TAT and PAT is equivalent to the recovery of

the RF absorption function (the image to be reconstructed) from its integrals along

spheres centered at available transducer locations. To reduce the imaging process to

two dimensions, we limit the detection to circular signals by focusing the microphone

to the plane.

In this chapter, we have concentrated on some of the imaging applications in

which integral geometry has been found useful. Although a lot of advances have

been made in this field, there are still cases (e.g. incomplete data problems) when

the desired resolution and contrast are not yet achieved. Therefore, there remains a

compelling need for the advancement of integral geometry and more specifically of
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the knowledge about integral transforms of Radon type. That is what motivates our

study in the upcoming chapters.



CHAPTER 3

SOME RADON INTEGRAL TRANSFORMS

The problem of image reconstruction in all the applications presented in the

previous chapter, is equivalent to the recovery of the unknown function f from the

collection of measured data Rf which is the set of integrals of the function f over

certain hypersurfaces. In this chapter, we present a mathematical description of the

relations between f and Rf for various choices of integration subsets. These relations

are named Radon integral transforms after the Austrian mathematician J. Radon

(1887-1956), who studied the transform that integrates functions of two and three

independent variables respectively over lines and hyperplanes. It was later generalized

to higher dimensions, and extended to broader geometries in the context of integral

geometry introduced by I. Gelfand and G. Shilov in [31].

Next, we define and study some of the generalized Radon integral transforms

from a theoretical point of view. First, we define the integral transform along the

simplest path which is the straight line, called the classical Radon transform 1. Then

we generalize it to the spherical and the elliptical Radon transforms which are more

relevant tools in advanced imaging that we consider.

3.1 Classical Radon transform

• Two dimensions

The classical Radon transform in 2D maps a function on R2 into the set of its integrals

over straight lines in the plane. Let (x, y) designate coordinates of points in the plane

and f(x, y) be an arbitrary function defined on some domain D ⊂ R2. The classical

1While this is not the topic of our research, some of the methods and approaches developed for

the study of these transforms prove to be useful for our models later.

12
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s

f(x,y)

L(s, )

y

x

p

(x,y)

t

Figure 3.1. Geometric setup of integration along the line L(s, ϕ).

Radon transform Rf of f is a function defined on the space of straight lines L in R2

by the integral of f along each such line:

Rf(L) =

∫
L

f(x, y) dl,

where dl is the arc length element along L. The lines in the plane can be parameterized

by 2 variables (s, ϕ), s.t. L(s, ϕ) denotes the line at oriented distance s from the origin

and perpendicular to the vector (cos(ϕ), sin(ϕ)) (see Figure 3.1). Any point (x, y)

along L(s, ϕ) can be parameterized by:

x(t) = s cosϕ− t sinϕ,

y(t) = s sinϕ+ t cosϕ,

where the parameter t ∈ (−∞,∞) is the signed distance measured from p to the

point (x, y) on L (see Figure 3.1). The classical Radon transform can be expressed

in these coordinates by

Rf(s, ϕ) =

∫ ∞

−∞
f(s cosϕ− t sinϕ, s sinϕ+ t cosϕ) dt.
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Alternative notation using the one-dimensional Dirac δ function is

Rf(s, ϕ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(x cosϕ+ y sinϕ− s) dx dy.

Note that Rf is an even function in the sense that

Rf(s, ϕ) = Rf(−s,−ϕ). (3.1)

• Higher dimensions

More generally, in the n-dimensional space Rn, the classical Radon transform maps

a function on Rn into the set of its integrals over hyperplanes. Points in Rn are

denoted by single letters x = (x1, x2, · · · , xn) and functions defined on Rn by f(x) =

f(x1, x2, · · · , xn). The unit sphere in Rn is denoted by Sn−1. Let H(s, ϕ) = {s ∈ R :

x · ϕ = s} be the hyperplane orthogonal to ϕ ∈ Sn−1 with oriented distance s from

the origin. Using these notations, the classical Radon transform of f is defined by

Rf(s, ϕ) =

∫
H(s,ϕ)

f(x) dx.

Alternative notation is

Rf(s, ϕ) =

∫
x·ϕ=s

f(x) dx.

We can also generalize the classical Radon transform by integrating over k-dimensional

subspaces of Rn; see, e.g. [32]. The ray transform is the most common case of this

generalization, and is obtained by integrating functions over straight lines in Rn.

Thus for n = 2, the classical Radon transform and the ray transform differ only in

the notation.

As previously explained, a simple imaging modality using the classical Radon

transform is the X-ray tomography that consists of line integrals of the attenuation

coefficient along all lines in the plane. A more precise definition of X-ray tomography

can be found in chapter 2.
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f(x,y)

p

r

Figure 3.2. Geometric setup of integration along the circle C(p, r).

3.2 Spherical Radon transform (SRT)

One can generalize the classical Radon transform to the spherical Radon trans-

form for functions defined on R2, then on Rn as follows.

• Two dimensions

As the circle is the simplest curve in the plane next to the straight line, by analogy

with the classical Radon transform, we define the circular Radon transform (CRT)

of a function to be the path integral of the function along a circle of radius r and

centered at the point p ∈ R2.

Let f(x, y) be a continuous function on R2, then the CRT can be written as

Rf(p, r) =

∫
C(p,r)

f(x, y) dl,

where dl is the arc length element on the circle C(p, r) of radius r and centered at

p ∈ R2. Alternative notation using the one-dimensional Dirac δ function is

Rf(p, r) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(r −

√
x2 + y2) dx dy.
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Remark: Although a lot of problems related to these Radon integral transforms have

direct applications to mathematical models of modern technologies, some of them are

investigated for pure theoretical reasons as they raise interesting and challenging

mathematical questions.

• Extension to higher dimensions

More generally, in the n-dimensional space Rn, we define the spherical Radon trans-

form of a function to be the surface integral of the function along a hypersphere of

radius r and centered at the point p ∈ Rn. Let f(x) be a continuous function on Rn,

then the spherical Radon transform of f can be written as

Rf(p, r) =

∫
|x−p|=r

f(x) dσ,

where dσ is the area element on the sphere |x− p| = r centered at p ∈ Rn.

As mentioned before, the spherical Radon transform is commonly used in the

reconstruction procedure adopted in ultrasound tomography. Indeed, under certain

physical assumptions (1) the pulse radiates isotropically in the form of expanding

spherical waves, (2) the speed of sound propagation c is constant, and (3) the re-

ceiver coincides with the source the problem of image reconstruction in ultrasound

tomography is equivalent to the recovery of the image function f from Rf data along

spheres centered at available transducer locations. Chapter 2 provides a more detailed

description of ultrasound tomography and its imaging technique.

As mentioned before, in the case of the omission of one of these assumptions,

the collected data Rf is the integrals of the image function f along ellipses with foci

the source and the receiver locations. This leads us to the next section on the study

of the elliptical Radon transform.
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Figure 3.3. Geometric setup of integration along the ellipse E(r, s, t).

3.3 Elliptical Radon transform (ERT)

We define the elliptical Radon transform of a function to be the path integral of

the function along an ellipsoid of rotation with semi-major axis t/2 and foci r, s ∈ Rn

(see e.g. [39, 40]).

• Two dimensions

Let f(x, y) be a continuous function on R2, then the elliptical Radon transform

can be written as

Rf(r, s, t) =

∫
E(r,s,t)

f(x, y) dl,

where dl is the arc length element on the ellipse E(r, s, t). In this work, we only

consider the 2D case, and possible future work can be done in 3D case.

Through this chapter, we presented some Radon integral transforms from a

theoretical point of view and how they are related to data measured in applications.

Therefore, the inverse problem that we consider is to reconstruct the unknown image
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function f from the collection of measurements Rf . This reconstruction problem is

equivalent to that of inverting the operator R defined as follows:

R : f −→ Rf

Unknown? −→ Data.

Many mathematical problems naturally arise while studying the inversion question

such as the existence and uniqueness of the inversion, inversion formulas and al-

gorithms, the stability of these inversion algorithms, and the range of the Radon

transforms (What conditions must the data satisfy?). These problems, with the ex-

ception of the stability and range descriptions, will be discussed intensively in the

next chapter. For the detailed description and known results about stability and

range descriptions, we refer the reader to papers [4, 10, 29, 56].



CHAPTER 4

MAIN MATHEMATICAL PROBLEMS AND KNOWN RESULTS

Among the major problems that naturally arise while studying the Radon in-

tegral transforms are the existence and uniqueness of their inversions, and inversion

formulas and algorithms (e.g. [24, 42, 43]). These problems will be discussed through-

out this chapter. We start by a quick summary of the results regarding the inversion

of the classical Radon transform in R2 without providing details, as they are not our

case of main interest 1. Then we discuss in more details the inversion of the spherical

Radon transform in R2 and in Rn for n > 2.

4.1 Classical Radon transform

Despite the discovery of the inversion formula of the classical Radon transform

derived by J. Radon in his early work in 1917 for pure mathematical reasons, very

little attention was given to implementing the inversion in a practical situation prior

to the pioneering work of A. Cormack in [19] who won the Nobel Prize in Physiology

and Medicine in 1979. Since then, this field has been investigated intensively. Today,

there are well developed theories addressing the reconstruction problem. Several

different approaches exist in the literature for inverting the classical Radon transform.

The first one we introduce employs the harmonic decomposition technique used by

A. Cormack. Then, we present the Fourier slice theorem, establishing a connection

between the Fourier transform and the Radon transform. In the third section, we

explore the most popular implementation of the Fourier slice theorem called filtered

backprojection formula.

1While this is not the topic of our research, some of the methods and approaches developed for

the study of these transforms prove to be useful for our models later.
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s

f(x,y)

L(s, )

Figure 4.1. Coordinates to describe the line L(s, ϕ).

4.1.1 The Cormack method

Let f(r, θ) denote an unknown function supported inside the unit disc centered

at the origin, where (r, θ) are polar coordinates measured from the center of the disc.

The classical Radon transform of f along the line L defined by the parameters

(s, ϕ) is denoted by

g(s, ϕ) = Rf(s, ϕ) =

∫
L

f(r, θ) dl. (4.1)

Equation (4.1) is an integral equation in two variables but it may be reduced to a set

of integral equations in one variable as follows. Since f(r, θ) and g(s, ϕ) are periodic

with respect to the corresponding angular variables θ and ϕ, they can be expanded

as Fourier series

f(r, θ) =
∞∑

n=−∞

fn(r) e
inθ, (4.2)

g(s, ϕ) =
∞∑

n=−∞

gn(s) e
inϕ, (4.3)
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where the Fourier coefficients fn(r) and gn(s) are computed by

fn(r) =
1

2π

∫ 2π

0

f(r, θ) e−inθdθ, (4.4)

gn(s) =
1

2π

∫ 2π

0

g(s, ϕ) e−inϕdϕ. (4.5)

The relation between gn(s) and fn(r) is given in [19] as

gn(s) = 2

∫ 1

s

fn(r) T|n|(s/r) r dr

(r2 − s2)
1
2

, (4.6)

where Tn(x) is the n-th order Tchebychev polynomial of the first kind (e.g. see

[50]). It is easy to notice that by passing to the basis of complex exponentials, A.

Cormack diagonalized the classical Radon transform, i.e. the n-th Fourier coefficient

of g depends only on n-th Fourier coefficient of f . Equation (4.6) has the solution

fn(r) = − 1

π

d

dr

∫ 1

r

gn(s) T|n|(s/r) s ds

s(s2 − r2)
1
2

. (4.7)

This formula is called Cormack’s first inversion formula. Cormack’s second inversion

formula with imposed stability properties was derived later in [20]. Using the Zernicke

polynomials (e.g. see [15]) Rn
l(r), he derived the following reconstruction formula

fn(r) =
∞∑
l=0

(n+ 2l + 1) an
l Rn

l(r),

where the an
l are the coefficients appearing in the expansion

gn(s) = 2
∞∑
l=0

an
l sin [(n+ 2l + 1) arccos(s)].

4.1.2 Fourier slice theorem

The Fourier transform and Radon transform are connected in a simple way.

In imaging, this connection is called the Fourier slice theorem or equivalently the
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projection-slice theorem. Following the same notation as in the previous section, let

us define the one-dimensional Fourier transform of Rf

R̂f(ρ, ϕ) =

∫ ∞

−∞
Rf(s, ϕ) e−2πiρs ds,

and the two-dimensional Fourier transform of f

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−2πi(xu+y v) dx dy. (4.8)

According to the Fourier slice theorem, there is a connection between the two-

dimensional Fourier transform of the function f and the one-dimensional Fourier

transform of the Rf .

Let f be an absolutely integrable function in a domain D ⊂ R2. For any real

number ρ and any angle ϕ, the Fourier slice theorem states

R̂f(ρ, ϕ) = F (ρ cosϕ, ρ sinϕ).

For an in-depth treatment of the theorem and its extension to n dimensions see [23].

4.1.3 Filtered backprojection method

Let us recall first the Fourier inversion of equation (4.8) in polar coordinates

when f is an absolutely integrable function in a domain D ⊂ R2 and F is absolutely

integrable

f(x, y) =

∫ 2π

0

∫ ∞

0

F (ρ cosϕ, ρ sinϕ) e2πi (xρ cosϕ+yρ sinϕ) ρ dρ dϕ. (4.9)

Making use of the Fourier slice theorem, the equation (4.9) and the evenness property

of Rf defined previously in the equation (3.1), we can establish the filtered backpro-

jection (FBP) formula that states

f(x, y) =

∫ π

0

∫ ∞

−∞
R̂f(ρ, ϕ) e2πiρ (x cosϕ+y sinϕ) |ρ| dρ dϕ.

The FBP formula can be understood as a two-step process:
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1. The first inner integral is a filter applied to the Radon transform Rf . The filter

represents a weighting of each projection in the frequency domain.

2. The outer integral is the backprojection of the filtered Radon transform.

To reconstruct the image at every point (x, y), the data is transformed to the fre-

quency domain using one-dimensional Fourier transform, multiplied by the filter in

the frequency domain, and then transformed back to the time domain using the one-

dimensional inverse Fourier transform. The Radon transform data are referred to as

the sinogram due to its characteristic sinusoidal shape. If the reconstruction were

done without filtering, the form of the recovered image would be blurred. So in order

to avoid artifacts and improve the quality of the reconstructed image, it is necessary

to filter the data.

The next step involves a process known as backprojection which takes the fil-

tered data and projects it back along the same lines from where the data was collected.

So to compute the function at any given point (x, y), we average the filtered projec-

tions over all lines passing through that point. This FBP approach is useful for our

discussion of the approximate inversion of the elliptical Radon transform developed

in chapter 6.

Numerous other reconstruction schemes have been developed for inverting the

Radon transform. For a survey see, e.g., [23, 25, 42]. Notice that all these inversion

formulas uniquely determine the unknown function f from its classical Radon trans-

form Rf . Hence, the uniqueness question is well known and answered. The same

question when Rf is known only on a subset of the support of f is more complicated

but well studied for the classical Radon transform (for more details, see [42]).
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4.2 Spherical Radon transform

4.2.1 Uniqueness of reconstruction

Unlike the case of the classical Radon transform, the problem addressing the

uniqueness of reconstruction is still not completely understood for the spherical Radon

transform. In this section, we first formulate the problem of uniqueness of the spher-

ical Radon transform and then present some of the recent mathematical results on

uniqueness in R2 and Rn for n > 2.

4.2.1.1 Formulation of the problem

Let f(x) be a continuous function on Rn, the spherical Radon transform can

be written as

Rf(p, r) =

∫
|x−p|=r

f(x) ds,

where ds is the surface area on the sphere |x − p| = r centered at p ∈ Rn. Without

any restrictions on the set of centers p or radii r, Rf(p, r) depends on n+1 variables

(one for the radius and n for the center’s location). It is clear that the reconstruction

of the function f(x) of n variables from Rf(p, r) is an overdetermined problem. It is

reasonable to expect that one can still uniquely recover f from Rf after reducing the

degrees of freedom of Rf by one. There are many different ways to reduce the dimen-

sions of the Rf , e.g. by considering only the data coming from spheres of a certain

fixed radius, spheres passing through a fixed point, spheres tangent to a hyperplane,

spheres with centers located on a hypersurface, etc. All of these approaches lead to

interesting mathematical problems and various research groups have done extensive

amount of work on this subject. One can find good surveys and abundant lists of

references to papers dedicated to these topics in [6, 9, 28, 30].



25

Motivated by several imaging applications described in chapter 2, we restrict

the centers p to a set Γ ⊂ Rn while not imposing any conditions on the radii. So

the first question that arises is whether knowing all the values of Rf on the set Γ

uniquely determines the function f . Before addressing this problem, let us first define

the notion of injectivity sets.

Definition 1. Suppose Γ is a subset of Rn. The spherical Radon transform is injective

on Γ if for any f ∈ Cc(Rn), the condition Rf(p, r) = 0 for all r ≥ 0 and for all p ∈ Γ

implies f ≡ 0. Such subsets Γ are called sets of injectivity for the spherical Radon

transform on the class of compactly supported smooth functions.

Here Cc(Rn) denotes the space of compactly supported continuous functions on Rn.

Using this definition, we can formulate the uniqueness question as follows: Which

subsets Γ of Rn are injectivity sets of the spherical Radon transform?

4.2.1.2 Uniqueness of the circular Radon transform

The problem of describing the sets of injectivity of the circular Radon transform

has been investigated intensively due to their connection to nodal sets for eigenfunc-

tions of the Laplacian. The first work concerning non-injectivity sets was made in [37]

by V. Lin and A. Pincus who considered the problem in relation to approximation

theory. They proved that if Rf is not injective on Γ then Γ is contained in the zero

set of a harmonic polynomial.

Their results were used in [6] by M. Agranovsky and T. Quinto who completely

characterized the structure of the injectivity sets of a compactly supported function

f when Rf is known along circles of all possible radii and centered on a given set.

We will state their results but refer the reader to [6] for further details. Let us first

introduce the following definition.
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Figure 4.2. Lk = {te iπk
N | −∞ < t < ∞}.

Definition 2. For any positive integer N define
∑

N to be the Coxeter system of N

lines L0, ..., LN−1

Lk = {r eiπk/n|k = 1, ..., N, r ∈ R}.∑
N are N lines passing through the origin and forming equal angle π/N .

M. Agranovsky and T. Quinto characterized the injectivity sets in R2 in terms

of Coxeter systems of lines.

Theorem 3. A subset Γ ⊂ R2 is a set of injectivity for Rf on R2 if and only if Γ is

not contained in any set of the form Q(
∑

N) ∪ Y for some N, for some rigid motion

Q in the plane and some finite set Y .

So the only subsets Γ of R2 which fail to be injectivity sets are either an empty

set, a finite set or the union of a finite set and a Coxeter system of lines
∑

N . Any

rigid motion Q preserves non-injectivity property, so Q(
∑

N) is also a non-injectivity

set.
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For example in planar geometry, the line is a non-injectivity set, i.e. we can

not recover f from the circular Radon transform Rf centered on a line. Indeed, if

f(x) is odd with respect to a line L, then if we integrate the function along circles

centered on L, the measured data Rf is zero. So clearly the line, which is a subset

of the
∑

N , is eliminated from the injectivity sets of the circular Radon transform.

However, it is well known that functions that are even with respect to a line L can

be reconstructed using the circular Radon transform centered on L (see [21]). It is

also easy to see from this statement, that the functions supported only on one side of

the line can be recovered uniquely (consider an even function which is equal to half

of the previous function in the support).

4.2.1.3 Uniqueness of the spherical Radon transform

M. Agranovsky and T. Quinto in [6] conjectured the structure of the injectivity

sets for the spherical Radon transform on the class of compactly supported function

in higher dimensions.

Conjecture 4. A set Γ ⊂ Rn is an injectivity set for the spherical Radon transform

on Cc(Rn), if and only if it is not contained in any set of the form Q(
∑

N)∪Y , where

Q is a rigid motion of Rn,
∑

N is the zero set of a non-zero homogeneous harmonic

polynomial, and Y is an algebraic subset in Rn of co-dimension at least 2.

Unfortunately, the techniques of microlocal analysis and geometric properties

of zero sets of harmonic polynomials used to prove the 2-dimensional conjecture, do

not work well in dimensions higher than two or when the function is not compactly

supported. So no proof of the conjecture is known at this time, as well as little is

known about the non-injectivity sets for functions that are not compactly supported.

A new alternative method based on a relation between the solutions of the wave

equation and the spherical Radon transform has been investigated by M. Agranovsky,
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C. Berenstein and P. Kuchment in [2]; D. Finch, S. Patch and Rakesh in [30]; and

G. Ambartsoumian and P. Kuchment in [9]. This approach has led to new results

promising possible progress to prove the n-dimensional conjecture.

We first mention the theorem in [2] of M. Agranovsky, C. Berenstein and P.

Kuchment, who used PDE tools to study the injectivity of the spherical Radon trans-

form when f ∈ Lp(Rn) and Rf is known for spheres of all possible radii centered at

every point of the boundary of some domain.

Theorem 5. The boundary Γ of any bounded domain in Rn is uniqueness set for

f ∈ Lp(Rn) iff p ≤ 2n
n−1

.

In [30], D. Finch, S. Patch and Rakesh studied this uniqueness problem for

smooth f supported in a bounded connected domain, proving the uniqueness of in-

version using Rf from spheres centered on any open subset of the boundary of D and

all possible radii D ⊂ Rn.

Theorem 6. Suppose D is a bounded open subset of Rn, n ≥ 2, with a smooth

boundary S and the closure set D̄ is strictly convex. Let Γ be any relatively open

subset of S. If f is a smooth function on Rn, supported in D̄, and Rf(p, r) = 0 for

all p ∈ Γ and all r ∈ [0, diamD] then f ≡ 0.

Another result was reported in [9] by G. Ambartsoumian and P. Kuchment who

reproved some known theorems using simpler methods and obtained further results on

the injectivity of spherical Radon transform. They discovered same strong necessary

conditions that any non-injectivity set has to satisfy, regardless of the dimensions of

the problem and without requiring finite support of f . The formulation of the full

result will require substantial space for extra definitions, so we present here just one

corollary of the main theorem, referring the reader to [9] for more details.
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Theorem 7. Let Γ be a relatively open piece of C1-hypersurface and f ∈ Cc(Rn) be

such that Rf(p, r) = 0 for all (p, r) ∈ Γ× R. If there is a point p0 ∈ Γ such that the

support of f lies strictly on one side of the tangent plane TpoΓ to Γ at p0, then f ≡ 0.

Conclusion: We have presented some of the recent mathematical results on

the uniqueness of the spherical Radon transform. In the case of compactly supported

functions, non-uniqueness sets of the circular Radon transform are completely char-

acterized. However, the uniqueness problem remains unresolved in dimensions higher

than two, and even in dimension two it is not resolved for functions that are not com-

pactly supported. Indeed, the problem is much harder to study without compactness

of support.

Remark: All three theorems above guarantee the unique inversion of Rf in

circular acquisition geometry when Rf is available for all possible radii (complete

data). But the uniqueness question when Rf is available for only a part of all possible

radii (partial data) is still an open problem. In the case of odd n, D. Finch, S. Patch

and Rakesh proved in [30] the uniqueness of inversion from data with spheres centered

at every point of the boundary and radii limited to r < (diamD)/2. The proof of

the latter result would not extend to even dimensions, since it was based on the

solution properties of certain problems related to wave equation, that hold only in

odd dimensions. In addition, M. Anastasio et al. showed in [11] that the 3D spherical

Radon data for half of all possible radii is sufficient for unique reconstruction of the

unknown function supported inside the sphere.

However, to the best of our knowledge no uniqueness result is known for even

dimensions when only partial data is available. In our paper [7], we made progress in

filling this gap in R2, by proving uniqueness for the circular Radon transform collected

along all circles of radii r < (diamD)/2. We also addressed another open problem of
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uniqueness when the support of the unknown function extends outside of the circle.

These new results are presented in details in the next chapter.

4.2.2 Reconstruction formulas

Many explicit inversion formulas have been derived from the spherical Radon

transform centered on some simple geometries. The first studied geometry was the

hyperplane in [14, 21, 26, 44]. As it has been mentioned in the previous section,

there is no uniqueness in this case, only even functions can be reconstructed from

the spherical Radon transform. Another geometry investigated in [47, 54] was the

infinite cylinder in three-dimensional space. We do not provide details about the

reconstruction formulas in these geometries as they are not our case of interest.

In this section, we confine our discussion to the spherical geometry as it is the

most relevant acquisition to the imaging modalities described in the first chapter.

We state some of the known methods to derive explicit inversion formulas from the

spherical Radon transform centered on a sphere.

4.2.2.1 Fourier expansion methods

The first approach to tackle the problem of reconstructing a function supported

in a disc D from its spherical Radon transform along circles centered on the boundary

of D, was described by S. Norton [46] in his study of ultrasonic reflection tomography.

He derived an inversion formula based on harmonic decompositions for the measured

circular Radon transform and the 2D unknown function. This paper has been an

inspiration to many subsequent works.

Throughout this section f(r, θ) denotes a two-dimensional function supported

inside the disc D(0, R), where (r, θ) are polar coordinates measured from the center

of that disc, and R > 0 is a fixed number. The circular Radon transform Rf along a
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Figure 4.3. Circle geometry C(ρ, ϕ).

circle of radius ρ centered at a point with polar coordinates (R, ϕ) (see Figure 4.3) is

denoted by

g(ρ, ϕ) = Rf(ρ, ϕ) =

∫
C(ρ,ϕ)

f(r, θ) ds. (4.10)

Since f(r, θ) and g(s, ϕ) are periodic with respect to the corresponding angular

variables θ and ϕ, they can be expanded as Fourier series

f(r, θ) =
∞∑

n=−∞

fn(r) e
inθ, (4.11)

g(ρ, ϕ) =
∞∑

n=−∞

gn(ρ) e
inϕ, (4.12)

where the Fourier coefficients fn(r) and gn(ρ) are computed in (4.4) and (4.5).

The circular Radon transform as expressed by Eq.(4.10), can be written in

terms of Dirac delta function

g(ρ, ϕ) =

∫ ∞

0

r dr

∫ 2π

0

dθ f(r, θ) δ[ρ − (r2 +R2 − 2rR cos(ϕ− θ))1/2].
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The solution to the problem is obtained by using the property of Dirac delta function

δ(β − ρ) = ρ

∫ ∞

0

J0(βz)J0(ρz)z dz,

and deriving a relation expressing the n-th Fourier coefficient fn(r) in terms of the n-th

Fourier coefficient gn(ρ). In other words, the circular Radon transform is diagonalized

by passing to the basis of complex exponentials. This is not surprising due to the

rotation invariance of g(ρ, ϕ) in the circular geometry. As a result the problem breaks

down to the following set of one-dimensional integral equations

gn(ρ) = 2πρ

∫ ∞

0

zJ0(ρz)Jn(Rz)Hn{fn(r)}dz, (4.13)

where Hn with Hn{p(r)}z =
∫∞
0
p(r)Jn(rz)rdr is the n-th order Hankel transform

and Jn(r) are the Bessel functions of the first kind.

Using the fact that the Hankel transform is its own inverse, the coefficients fn(r) can

be recovered by the following formula

fn(r) = Hn

{
1

Jn(Rz)
H0

{
gn(ρ)

2πρ

}
z

}
r

. (4.14)

The function f(r, θ) can now be reconstructed by inserting the fn(r) into the angular

Fourier series (4.11). Notice this inversion formula requires a division of the Hankel

transform by the Bessel functions that have infinitely many zeros. In the numerical

implementation, these zeros would create instabilities. So recently, there have been

new additions in this approach in [34] to avoid this instability problem by replacing

the Bessel functions by Hankel functions H
(1)
n which does not have zeros for any real

values. Eq. (4.14) becomes

fn(r) = Hn

{
1

H
(1)
n (Rz)

∫ 2R

0

gn(ρ)H
(1)
0 (ρz)dρ

}
. (4.15)

In a similar way, S. Norton and M. Linzer in [47] derived an inversion formula for the

three-dimensional case involving a series expansion in spherical harmonics.
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All these mentioned works assume that the object of interest is entirely sur-

rounded by the circular aperture. They also require a complete knowledge of the

circular Radon transforms g(ρ, ϕ) for all the values of ρ and ϕ. In fact, to be able to

reconstruct the function f at any point (r, θ), all the values of g(ρ, ϕ) are essential.

4.2.2.2 Filtered backprojection methods

The filtered backprojection method is the most common technique in image

reconstruction that requires the inversion of the spherical Radon transform. It trans-

forms the data to the frequency domain, then filters in order to smooth out the noise,

returns to the time domain and then applies a backprojection. The inversion formulas

of filtered backprojection type do not involve series but are instead given as integrals.

The first exact formulas of this type were proven in [30] by D. Finch, S. Patch and

Rakesh in odd dimensions, and then extended recently to even dimensions in [27] by

D. Finch, M. Haltmeier and Rakesh.

Let us start with some notations to state the explicit inversion formulas. For

any integer n > 1, we assume that the unknown function f(x) is supported inside

the ball B of radius R in Rn, which is centered at the origin. We also assume that

the spherical Radon transform Rf(p, r) = g(p, r) is known for all spheres of radius r

centered at the point p on the spherical boundary SR of the ball.

g(p, r) =

∫
|p−x|=r

f(x) dσ. (4.16)

Let Ĉ∞(SR × [0,∞)) denote the class of smooth functions g(p, t) which are zero to

infinite order in t at t = 0. The operator D is defined as follows
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D : Ĉ∞(SR × [0,∞)) → Ĉ∞(SR × [0,∞))

g(p, t) →
(

1

2t

∂

∂t

)
g(p, t).

It is also convenient to define N

N : C∞
0 (B̄) → Ĉ∞(SR × [0,∞))

f(p, t) → tn−2g(p, t),

whose L2-adjoint is N ∗, which is given as follows

N ∗ : Ĉ∞(SR × [0,∞)) → C∞
0 (Rn)

F (x) → 1

wn−1

∫
|p|=R

F (p, |p− x|)
|p− x|

ds,

where wn−1 surface area of the unit sphere. Since the inversion formulas are different

for the odd and even dimensions, we state them separately.

• Inversion for odd n

Theorem 8. If n is odd and f ∈ C∞
0 (B̄) then for all x ∈ B, the following reconstruc-

tion formulas hold true

f(x) =
cn
R

△x

(
N ∗tDn−3tn−4g

)
(p , t),

where △x is the Laplacian with respect to the first variable and

cn =
(−1)(n−1)/2π

2Γ(n/2)2
.

In the case n = 3, it may be written

f(x) = − 1

2π R
△x

∫
|p|=R

1

|x− p|
g(p, |x− p|)ds.
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The proof of the three-dimensional theorem is based on an explicit computation of the

integral. However, the n-dimensional theorems were deduced by the use of spherical

harmonic expansions.

• Inversion for even n

Theorem 9. If n is even and f ∈ C∞
0 (B̄) then for all x ∈ B

f(x) =
2

cnR

∫
|p|=R

∫ 2R

0

(
log|t2 − |x− p|2|

) (
(tDn−1tn−1∂tg)(p , t)

)
dt ds,

where

cn = (−1)n−2/22 [(n− 2)/2)!]πn/2.

In the case n = 2, it may be written

f(x) =
1

2πR

∫
|p|=R

∫ 2R

0

log|t2 − |x− p|2|(∂t t ∂t g)(p , t) dt ds. (4.17)

The theorem was proved in [27] using a spherical harmonic expansion and the trace

of the solution of the wave equation in even dimensions.

Another interesting inversion formula for the spherical geometry was presented

by M. Xu and L. Wang in [54] called the universal backprojection algorithm which

offers exact reconstruction for three common geometries: planar, spherical and cylin-

drical surfaces.

In [35], L. Kunyansky presented an inversion formula for any arbitrary dimen-

sions n > 1, similar to the result of M. Xu and L. Wang in [54].

Remark: We have summarized some of the recent mathematical results for the

problem of recovering a function from the spherical Radon transform. All presented

formulas assume that a complete data set is available, i.e. the values of the spherical

Radon transforms g(p, r) are known for all the values of p and r. For example in the

equation (4.17), a complete knowledge of g(p, r) is needed to reconstruct the function

f at any point x. So how to recover f if the experimental implementation does not

provide the complete data set?
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The hypothesis that all the values of the spherical Radon transform are known,

is not always possible in imaging applications. For example, in some cases, because

some regions of the object to be imaged strongly attenuate the signal, only partial

data is available. In [12], M. Anastasio and his collaborators showed that using a

partial data in Norton’s formula [46] (r ≤ (diamD)/2) instead of the complete data

(r ≤ diamD), results in severe image artifacts. Clearly, there is a significant need for

a new reconstruction formula using partial data.

In our paper [7], we made progress in filling this gap by deriving new inversion

formulas for the circular Radon transform collected along all circles of radii r ≤ r0 for

∀ r0 < (diamD)/2. These new results are presented in details in the next chapter.



CHAPTER 5

RECONSTRUCTION FROM PARTIAL DATA OF SRT1

After we have shown some of the techniques of reconstructing f using com-

plete data of the spherical Radon transform Rf , we now concentrate on the question

of representing a function by its circular Radon transform with partial data. In

this chapter, we present our new results about the existence and uniqueness of such

representations, and a new inversion formula in the case of the circular acquisition

geometry for both interior and exterior problems. The results are not only interesting

as original mathematical discoveries, but can also be useful for many applications,

e.g. in medical imaging.

5.1 Interior problem

Throughout this section f(r, θ) denotes an unknown function supported inside

the disc of radius R, where (r, θ) are polar coordinates measured from the center of

that disc, and R > 0 is a fixed number. The circular Radon transform of f along a

circle of radius ρ centered at a point with polar coordinates (R, ϕ) (see Figure 5.1) is

denoted by

g(ρ, ϕ) = Rf(ρ, ϕ) =

∫
C(ρ,ϕ)

f(r, θ) dσ. (5.1)

The Fourier series generated by f(r, θ) and g(ρ, ϕ) with respect to corresponding

angular variables are denoted by

f(r, θ) =
∞∑

n=−∞

fn(r) e
inθ, (5.2)

g(ρ, ϕ) =
∞∑

n=−∞

gn(ρ) e
inϕ, (5.3)

where the Fourier coefficients fn(r) and gn(ρ) are computed in (4.4) and (4.5).

1 This chapter is mainly based on the paper [7].
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Figure 5.1. Geometric setup of integration along the circle C(ρ, ϕ).

We show that the function f can be uniquely recovered from Radon data with

only part of all possible radii, and then provide a reconstruction formula.

5.1.1 Uniqueness of reconstruction

Theorem 10. Let f(r, θ) be an unknown continuous function supported inside the

annulus A(ε,R) = {(r, θ) : r ∈ (ε,R), θ ∈ [0, 2π]}, where 0 < ε < R. If Rf(ρ, ϕ)

is known for ϕ ∈ [0, 2π] and ρ ∈ [0, R − ε], then f(r, θ) can be uniquely recovered in

A(ε,R).

Proof. We use an approach similar to Cormack’s inversion of the classical Radon

transform [19]. Let us rewrite formula (5.1) by considering the contribution dg to

g(ρ, ϕ) from two equal elements of arc ds of the circle C(ρ, ϕ). If the two elements

of the arc are located symmetrically with respect to the polar radius of the center of

integration circle (see Figure 5.1), then

dg =
∞∑

n=−∞

[fn(r) e
inθ + fn(r) e

in(2ϕ−θ)] ds, 0 ≤ ϕ ≤ θ ≤ 2π

so we can write
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g(ρ, ϕ) =

∫
C+(ρ,ϕ)

∞∑
n=−∞

[fn(r) e
inθ + fn(r) e

in(2ϕ−θ)] ds, 0 ≤ ϕ ≤ θ ≤ 2π,

where C+(ρ, ϕ) denotes half of the circle C(ρ, ϕ) corresponding to θ ≥ ϕ. Notice that

einθ + ein(2ϕ−θ) = 2 einϕ cos[n(θ − ϕ)] , and s = ρ arccos
(

ρ2+R2−r2

2ρR

)
, hence

ds =
rdr

R

√
1−

(
ρ2+R2−r2

2ρR

)2 .
Exchanging the order of summation and integration and using these relations we get

g(ρ, ϕ) =
∞∑

n=−∞

2 einϕ
∫ R

R−ρ

fn(r) r cos[n(θ − ϕ)]

R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr.
Applying θ − ϕ = arccos

(
r2+R2−ρ2

2rR

)
, we obtain

g(ρ, ϕ) =
∞∑

n=−∞

2 einϕ
∫ R

R−ρ

fn(r) r cos
[
n arccos

(
r2+R2−ρ2

2rR

)]
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr. (5.4)

Comparing equations (5.3) and (5.4) it is easy to notice that by passing to the basis

of complex exponentials we diagonalized the circular Radon transform, i.e. the n-th

Fourier coefficient of g depends only on n-th Fourier coefficient of f . This is not

surprising, due to rotation invariance property of Rf in the circular geometry. As

a result our problem breaks down to the following set of one-dimensional integral

equations

gn(ρ) = 2

∫ R

R−ρ

fn(r) r T|n|

(
r2+R2−ρ2

2rR

)
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr, (5.5)

where Tk(x) is the k-th order Chebyshev polynomial of the first kind (e.g. see [50]).

Let us make a change of variables in the integral (5.5) by setting u = R − r. Then

equation (5.5) becomes

gn(ρ) =

∫ ρ

0

fn(R− u) 4ρ (R− u) T|n|

[
(R−u)2+R2−ρ2

2R (R−u)

]
√
ρ− u

√
(u+ ρ)(2R + ρ− u)(2R− ρ− u)

du, (5.6)
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which can be rewritten as

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (5.7)

where

Fn(u) = fn(R− u), (5.8)

Kn(ρ, u) =
4ρ (R− u) T|n|

[
(R−u)2+R2−ρ2

2R(R−u)

]
√
(u+ ρ)(2R + ρ− u)(2R− ρ− u)

. (5.9)

Equation (5.7) is a Volterra integral equation of the first kind with weakly singular

kernel (e.g. see [49, 51]). Indeed, due to the assumptions on the support of f we

know, that Fn(u) ≡ 0 for u close to R or 0. Therefore from formula (5.9) and the

properties of Chebyshev polynomials, it follows that the kernel Kn(ρ, u) is continuous

in its arguments (and hence bounded) along with the first order partial derivatives

on the support of Fn. To remove the singularity in the kernel of equation(5.7), we

apply the standard method of kernel transformation [53]. Multiplying both sides of

equation (5.7) by
1√
t− ρ

dρ and integrating from 0 to t we get∫ t

0

gn(ρ)√
t− ρ

dρ =

∫ t

0

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

√
t− ρ

du dρ, t > 0.

Changing the order of integration, we obtain∫ t

0

gn(ρ)√
t− ρ

dρ =

∫ t

0

Fn(u) Qn(t, u) du, (5.10)

where

Qn(t, u) =

∫ t

u

Kn(ρ, u)√
ρ− u

√
t− ρ

dρ.

The advantage of equation (5.10) in comparison to equation (5.7) is that the modified

kernelQn(t, u) is finite. Indeed, making a change of variables ρ = u+(t−u) l, 0 ≤ l ≤ 1

in the last integral, we get

Qn(t, u) =

∫ 1

0

Kn(u+ (t− u) l, u)√
l
√
1− l

dl. (5.11)



41

Since Kn is bounded (say |Kn| < M), we obtain

|Qn(t, u)| < M

∫ 1

0

dl√
l
√
1− l

= Mπ.

In addition Qn(t, t) = πKn(t, t) = π

√
2t (R− t)

R
̸= 0 on the support of Fn. Now we

can easily modify equation (5.10) to a Volterra equation of second kind. Differenti-

ating equation (5.10) with respect to t we get

d

dt

∫ t

0

gn(ρ)√
t− ρ

dρ = πFn(t) Kn(t, t) +

∫ t

0

Fn(u)

[
∂

∂t

∫ t

u

Kn(ρ, u)√
ρ− u

√
t− ρ

dρ

]
du.

Dividing both sides of the last equation by πKn(t, t) and denoting

Gn(t) =
1

πKn(t, t)

d

dt

∫ t

0

gn(ρ)√
t− ρ

dρ, (5.12)

and

Ln(t, u) =
1

πKn(t, t)

∂

∂t

∫ t

u

Kn(ρ, u)√
ρ− u

√
t− ρ

dρ. (5.13)

We finally obtain a Volterra equation of second kind

Gn(t) = Fn(t) +

∫ t

0

Fn(u)Ln(t, u) du, (5.14)

where the kernel Ln(t, u) is continuous on the support of Fn. To see the continuity of

Ln one can make a change of variables in equation (5.13)

ρ = t cos2 β + u sin2 β, β ∈ [0, π/2],

and express Ln as

Ln(t, u) =
2

πKn(t, t)

∂

∂t

∫ π/2

0

Kn(t cos
2 β + u sin2 β, u) dβ.

The Volterra equation of the second kind (5.14) has a unique solution, which finishes

the proof of the theorem. 2
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Figure 5.2. The interior problem.

5.1.2 Reconstruction formulas

Using the Picard process of successive approximations (e.g. see [51]) for the

solution of Volterra equations of second kind one can immediately obtain the following

Corollary 11. An exact solution of equation (5.14) is given by the formula

Fn(t) = Gn(t) +

∫ t

0

Hn(t, u)Gn(u) du, (5.15)

where the resolvent kernel Hn(t, u) is given by the series of iterated kernels

Hn(t, u) =
∞∑
i=1

(−1)iLn,i(t, u), (5.16)

defined by

Ln,1(t, u) = Ln(t, u), (5.17)

and

Ln,i(t, u) =

∫ t

u

Ln,1(t, x) Ln,i−1(x, u) dx, i ≥ 2. (5.18)

This corollary (with notations defined in formulas (5.8), (5.9), (5.12), (5.13))

provides a new exact formula for inversion of the circular Radon transform in circular

acquisition geometry. Its advantage compared to all the other known exact inversion

formulas is the fact that only part of the Rf data is used. Notice that to reconstruct

the function f(r, θ) in any subset Ω of the disc of its support D(0, R), the inversion
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formula in Corollary 11 requires the knowledge of Rf(ρ, ϕ) only for ρ < R−R0, where

R0 = inf{|x|, x ∈ Ω}. In medical imaging reducing the radial data redundancy can

be essential for increasing the depth and reducing the time of imaging.

We can also remark that the resolvent kernel Hn(t, u) is the same for any func-

tions f and g. Hence in practice one needs to compute it with the desired accuracy

only once, and then it can be used with any data set.

In Theorem 10, we require f to be continuous, which guarantees the convergence

of the Fourier series (5.2) and (5.3) almost everywhere. If one needs to ensure con-

vergence everywhere, then some additional conditions on f (e.g. bounded variation)

should be added in all the theorems.

5.2 Exterior problem

Let us now consider an exterior problem in the circular acquisition geometry,

i.e. the Radon data is still collected along circles centered on a circle of radius R,

however the unknown function f is supported outside of the disc D(0, R).

Theorem 12. Let f(r, θ) be an unknown continuous function supported inside the

annulus A(R, 3R) = {(r, θ) : r ∈ (R, 3R), θ ∈ [0, 2π]}. If Rf(ρ, ϕ) is known for

ϕ ∈ [0, 2π] and ρ ∈ [0, R1], where 0 < R1 < 2R then f(r, θ) can be uniquely recovered

in A(R, R +R1).

Proof.

The argument of the proof of the previous theorem repeats here with minimal changes.

The condition 0 < R1 < 2R guarantees that all integration circles C(ρ, ϕ) intersect

the boundary of the disc D(0, R). Hence equation (5.4) in this case becomes

g(ρ, ϕ) =
∞∑

n=−∞

2 einϕ
∫ R+ρ

R

fn(r) r cos
[
n arccos

(
r2+R2−ρ2

2rR

)]
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr. (5.19)
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Figure 5.3. The exterior problem.

Then in a similar way, we have

gn(ρ) = 2

∫ R+ρ

R

fn(r) r T|n|

(
r2+R2−ρ2

2rR

)
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr, (5.20)

Now making a change of variables u = r −R in the last expression we get

gn(ρ) =

∫ ρ

0

fn(R + u) 4ρ (R + u) T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√
ρ− u

√
(u+ ρ)(2R + u+ ρ)(2R + u− ρ)

du. (5.21)

which can be rewritten as

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (5.22)

where

Fn(u) = fn(R + u), (5.23)

Kn(ρ, u) =
4ρ (R + u) T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√

(u+ ρ)(2R + u+ ρ)(2R + u− ρ)
. (5.24)

Notice, that if one would allow ρ > 2R , thenKn(ρ, u) would become unbounded

due to the last multiplier in the denominator. This shows that 3R is an accurate upper

limit for the outer radius of the annulus in the hypothesis of the theorem.



45

In analogy with the proof of the previous theorem we get

Kn(t, t) =

√
2t (R + t)

R
̸= 0.

All the other steps literally repeat the proof of Theorem 10.

5.3 Special case

It is easy to note that in some special cases one can combine the results of the

previous two theorems to reconstruct a function whose support is located both inside

and outside of the circular path C(R) of data acquisition. For example

Theorem 13. Let f be an unknown continuous function supported inside the disc

D(0, 2R). Assume also that f ≡ 0 in some neighborhood of the circle C(R), and

all its Fourier coefficients are even (or odd) with respect to C(R), i.e. fn(R + u) =

fn(R − u) (or fn(R + u) = −fn(R − u)) for ∀u ∈ [0, R]. If Rf(ρ, ϕ) is known for

ϕ ∈ [0, 2π] and ρ ∈ [0, R1], where 0 < R1 < R then f(r, θ) can be uniquely recovered

in A(R−R1, R +R1).

Proof. Combining the two previous results, we obtain a Volterra integral equation

of the first kind

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (5.25)

where

Fn(u) = fn(R + u), (5.26)

and

Kn(ρ, u) = (5.27)
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4ρ√
u+ ρ

 (R + u) T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√
(2R + u+ ρ)(2R + u− ρ)

±
(R− u) T|n|

[
(R−u)2+R2−ρ2

2R (R−u)

]
√

(2R + ρ− u)(2R− ρ− u)

 .

The rest of the proof is carried out along the same lines as before.

It is interesting to note that the circular Radon transform in the linear acquisi-

tion geometry can be uniquely inverted on the class of continuous functions that are

even with respect to the linear path of the data acquisition. At the same time all odd

functions are mapped to zero by that transform. In our case of circular acquisition

geometry, the circular Radon transform can be uniquely inverted on classes of func-

tions with Fourier coefficients that are even with respect to the circular path of data

acquisition, as well as with the ones that are odd.

Conclusion: The purpose of this chapter has been to present our new mathe-

matical results on uniqueness and recovery of the image function from radially partial

data. To our knowledge, this is the first work to explicitly formulate such inversion

formulas in the case of the circular acquisition geometry for both interior and exterior

problems. The numerical implementation of these formulas is an important topic for

future investigation.

The results are not only interesting as original mathematical discoveries, but

can also be useful for applications, e.g. in medical imaging. While it is well estab-

lished that acoustic tomography in its various forms is a classic example of spheri-

cal Radon-based imaging inside a spherical/circular (3D/2D) aperture, the case of

imaging outside a spherical aperture is less described biomedically. Two biomedical

imaging methods can currently be modeled in the time domain through spherical

transforms of a function exterior to the aperture: transrectal ultrasound (TRUS) [48]

and intravascular ultrasound (IVUS) [17]. In both TRUS (Figure 5.5) and IVUS

(Figure 5.4), a ultrasound array arranged on the surface of a cylinder is introduced
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http://www.orau.gov/ehsd/Ivus.GIF

Figure 5.4. Intravascular ultrasound.

http://www.drjhendricks.com/BPH.htm

Figure 5.5. Transrectal ultrasound.

into the body with the goal of producing a transverse or axial image. In TRUS, the

typical application is imaging of the male prostate, while IVUS is a higher resolu-

tion ultrasound technique typically used to evaluate plaques in blood vessels. A less

natural setup where the support of the unknown function is located on both sides of

the data acquisition path may not be relevant to medical imaging, however it can be

applicable in radar and sonar imaging.



CHAPTER 6

APPROXIMATE INVERSION OF ERT: NUMERICAL RESULTS

In circular acquisition geometry, we presented several exact inversion formulas

to recover an unknown function from its circular Radon transform. That setup corre-

sponds to the mathematical model of ultrasound reflection tomography in monostatic

regime. As it was mentioned before, in bistatic regime the corresponding mathemat-

ical model is based on the elliptical Radon transform. Although, S. Mensah and E.

Franceschini investigated the inversion of the elliptical Radon transform in [39, 40],

this case is still not completely understood. To the best of our knowledge no exact

inversion formula is known for the reconstruction from elliptical Radon transform in

the circular aperture. Instead, many authors resort to approximate inversion algo-

rithms, such as the recent publication [52] and the work done by T. Quinto and his

student H. Levinson to develop novel local reconstruction methods for bistatic radar

and ultrasound imaging [36].

In this chapter, we describe an approximate inversion of the elliptical Radon

transform when the source and the receiver (the foci of the integration ellipse) are

rotating around the origin at a fixed distance from each other, as illustrated in Fig-

ure 6.1. We demonstrate the efficiency of the suggested algorithm by presenting a

computational implementation of the method on a numerical phantom. We explain

how to generate a sample image, collect its integrals over a family of ellipses and then

derive a filtered backprojection (FBP) algorithm to reconstruct important features

(e.g. boundaries) of the original image.

48
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Figure 6.1. Circular acquisition geometry.

6.1 Reconstruction algorithm

Let C designate the circle centered at the origin (0, 0) and of radius R. We

consider the case of circular acquisition geometry where the source and the receiver

are rotating on the circle C. We also assume that the distance c between the source

and the receiver is constant (see Figure 6.1). We parameterize the source and the

receiver location by the angle ϕ, where ϕ ∈ [0, 2π) is the polar angle of the midpoint

(cx, cy) measured from the x-axis. For simplicity, we assume that the centers (cx, cy)

are rotating on the unit circle. The Figure 6.2 illustrates the circular acquisition

geometry and the center’s location at a rotation angle ϕ.

To generate the data, we create a sample image called a phantom. Then we

compute its integrals over family of ellipses with foci at the source and the receiver

locations. The collected integrals are the values of elliptical Radon transform Rf

that we use later in the FBP algorithm to reconstruct the features of the original

phantom. Now let us look at each of these steps in a little more detail.



50

(cx,cy)

X

Y

-1 1

-1

1

Ф

0

S

b R

Figure 6.2. Geometric setup of integration.

Figure 6.3. Phantom image.

6.1.1 Generation of the phantom image

Numerically, we consider the grid that specifies a pixelated representation of

[-1,1] × [-1,1]. The phantom images that we consider are represented by sums of

indicator functions of simple objects, like circles and squares. To determine whether

a particular pixel lies in the interior of a circle or a square, we look at the center

of the pixel. If the center of the pixel lies within a circle/square then we attribute

the intensity of the circle/square to the pixel’s value. If a pixel is not part of any
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Figure 6.4. Projection data.

circles/squares, its value is 1. In other words, the intensity values of all the pixels in

the unit circle define the function f(x, y) as follows:

f(x, y) =

 I the center of the pixel inside some of the circles/squares,

1 the center of the pixel outside all circles/squares.

where I is equal to the sum of the additive intensity values of all circles/squares that

the pixel is a part of.

6.1.2 Computation of the projection data

Once we create the phantom, we need to generate the projection data which is

the integrals of the phantom over family of ellipses. As defined in the introduction,

we specify the position of the integration ellipse E(b, ϕ) by the angle ϕ which is the

polar angle of the center of the ellipse (cx, cy) and the semi-minor axis b. Because in

practical applications the data is sampled at a finite set of points on the unit circle,

we discretize the problem by considering only a finite number of angles ϕ and a finite

number of samples of the semi-minor axis b. So we uniformly discretize the data
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Figure 6.5. Intersection points of an ellipse with the grid.

[0, 2]× [0, 2π] of b and ϕ to Nb and Nϕ points, respectively. At each point (bk,ϕj), we

compute the value of the elliptical Radon transform Rf(bk, ϕj):

Rf(bk, ϕj) := Rfk,j (k, j) ∈ {0, ..., Nb} × {0, ..., Nϕ}.

Our appraoch for approximating the integral of the intensity function along any given

ellipse E(bk, ϕj) is to measure the distance between the neighboring intersection points

of the ellipse with vertical and horizontal grid lines and then multiply it by the

intensity of the pixel where the points are located.

• Step 1

Using N × N grid that represents [-1,1] × [-1,1], we compute the intersections of a

given ellipse E(bk, ϕj) with all vertical and horizontal grid lines located in the unit

circle (Figure 6.5).

• Step 2

Then by applying the equation (6.1), we estimate the polar angle α between the

vector v (connecting the intersection point and (cx, cy)) and the unit vector î of the

x-axis (Figure 6.6).

α = ± arccos

(
v · î

∥v∥∥̂i∥

)
. (6.1)



53

(cx,cy)

X

Y

-1
1

-1

1

0

v

α

Figure 6.6. The vector v and the angle α.

A major advantage of computing the values of α for the forward problem is that

now one can sort the intersection points into the order in which they occur along the

ellipse clockwise starting at the west pole. Then, we can easily measure the distance

between any consecutive points (see Figure 6.6).

• Step 3

Once we measure the distance between any two intersection points, we multiply it

by the intensity of the pixel where the points are located. The obtained value is

the approximation of the integral of the intensity function along the arc joining these

points. This operation is repeated for each pair of intersection points and the resulting

values are summed to form an approximate integral of the phantom along the ellipse

E(bk, ϕj).

We repeat the same process for all the ellipses E(bk, ϕj) with (k, j) ∈ {0, ..., Nb}×

{0, ..., Nϕ}. The result is the discrete value of the elliptical Radon transform Rf that

we will use in the FBP algorithm to reconstruct the phantom.
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6.1.3 Reconstruction of the phantom image

In the following reconstruction approach, we simply use an approximate FBP

algorithm similar to the reconstruction algorithm for the classical Radon transform

described in chapter 4. The FBP algorithm involves two steps: (1) each of the

projections in the Radon transform is filtered then (2) backprojected to reconstruct

the original image.

• Step 1

Here we implement a similar procedure for the elliptical Radon transform using the

coordinates (b, ϕ) that are analogs of (ρ, ϕ) in the classical Radon transform. Let us

recall the filter F defined in the equation (4.9) and represented as follows:

Ff(w) =

∫ ∞

−∞
f̂(b) eibw |b| db. (6.2)

This equation represents a filtering operation that can be expressed as a composition

of two simpler operations: differentiation and the Hilbert transform. In fact, the

Fourier transform of the derivative of the function f is equal to the Fourier transform

of f multiplied by ib

∂̂tf(b) = (i b) ĝ(b).

So to use differentiation and account for the difference between b and |b|, we define

another operator called the Hilbert transform

Hf(x) =
1

π

∫ ∞

−∞

f(y)

x− y
dy.

This implies that

Ĥf(w) = (−i sgn(w)) f̂(w),
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where

sgn(w) =


1 if w > 0,

0 if w = 0,

−1 if w < 0.

By the above equation (6.2), the filtering operation consists of differentiating the func-

tion with respect to the semi-minor axis b and then applying the Hilbert transform.

• Step 2

The next main reconstruction step involves a process known as backprojection which

takes the data from the filtered projections and projects it back along the same ellipses

from where the data was collected. So to compute the function at any given point

(x, y) in the unit circle, we average the filtered data over all ellipses passing through

that point.

f(x, y) =

∫ 2π

0

F (b(ϕ), ϕ) dϕ,

This equation adds the resulting filtered projections F (b, ϕ) for different angles ϕ to

form the estimate of f(x, y). A common discrete approximation to the integral is

obtained by:

f(xn, yn) = △ϕ

Nϕ∑
m=0

F (b(ϕm), ϕm),

where △ϕ = 2π
Nϕ

. Nϕ is the number of angles ϕ for which the projections Rf(b, ϕ) are

known. It should be noted here that the value of b(ϕm) may not correspond exactly

to a value of m for the filtered projections that we calculated in the previous step. In

order to be able to compute f(xn, yn) one must then interpolate b(ϕm).

To implement the algorithm, we sampled the filter and discretized the backpro-

jection operation. The important steps of the approximate FBP are outlined below:
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1. Perform the FFT of the projection data for each angle ϕ.

2. Multiply the result with response function in the frequency domain.

3. Perform the IFFT of the result. This provides us the filtered projections in the

discrete domain at the various angles ϕ.

4. Sum the filtered projections. The result fFBP (x, y) is an approximation of

f(x, y).

6.2 Numerical results

In this section, we present some numerical results of our inversion algorithm

for different phantoms to demonstrate its performance. The data is collected from

detectors located on the unit circle. Therefore, the region of reconstruction is the

unit circle centered at the origin.

In a recent work [8], the authors studied microlocal properties of the ERT in

the circular acquisition geometry, and showed that the composition of the ERT with

its adjoint (the backprojection operator) is an elliptic pseudo-differential operator.

This means that the approximate inversion algorithm based on the backprojection

correctly reconstructs the singularities of the object and does not add any additional

singularities. Our numerical experiments below validate this result, and present an

effective implementation of the technique. Similar algorithms have been recently by

other authors, including [36], and [52].

In the results in Figure 6.7, the resolution is 64×64. The angles ϕ of the center

locations were uniformly discretized to Nϕ = 64 points between 0 and 2π. The semi-

minor axis of the integration ellipses were uniformly discretized to Nb = 64 points

between 0 and 2.
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(a) The original phantom
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Figure 6.7. Numerical results for 2 squares using N = 64.
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Figure 6.8. Numerical results for 2 squares using N = 128.

Next, we increase the number of discretization. We present new set of results

with resolution 128 × 128. As one might expect, we achieve a better reconstruction

when we decrease the sampling interval (see Figure 6.8). Additionally, the noisy

images in Figure 6.7 appear to be smoothed as compared to the Figure 6.8.

We tested the algorithm on a phantom containing 3 circles (Figure 6.10), the

parameters of which are given in Table 6.1. We enumerate the circles from 1 to 3

starting with the circle with highest center.
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(a) The orginal phantom
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Figure 6.9. Numerical results for a phantom with 2 circles.

Table 6.1. Parameters for the Fig. 6.10

Circle Coordinates of the center (x, y) radius intensity
1 (0.6,0.4) 0.2 2
2 (0.0,-0.1) 0.5 3
3 (-0.5,-0.5) 0.1 1

We tested the algorithm on a phantom containing 3 squares (Figure 6.11), the

parameters of which are given in Table 6.2. We enumerate the squares from 1 to 3

starting with the square with highest center.

Table 6.2. Parameters for the Fig. 6.11

Square Coordinates of the center (x, y) length intensity
1 (0.4,0.5) 0.2 1
2 (0.6,0.25) 0.3 2
3 (0.0,-0.1) 0.8 3
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(a) The original phantom
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Figure 6.10. Numerical results for a phantom with 3 circles.
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Figure 6.11. Numerical results for a phantom with 3 squares.



CHAPTER 7

DIRECTIONS FOR FURTHER WORK

The new mathematical results presented in this dissertation have the potential

to be generalized to higher dimensions using spherical harmonics and Gegenbauer

polynomials [1], similarly to the generalization of Cormack’s original inversion formula

(e.g. see [22, 41]). In addition, possible future work can be done to extend our

approach to other transforms of Radon type e.g. the elliptical Radon transform.

Another perspective for future work is to derive an accurate and efficient nu-

merical implementation of our new inversion formulas for both interior and exterior

problems when the Radon transform is known for only a part of all possible radii.

The algorithm described in chapter 6 used an approximate inversion formula to

reconstruct the image function from its integrals along ellipses rotating around the

origin. A direction for future work is to derive an exact inversion formula for the ellip-

tical Radon transform in 2D and 3D cases, and then implement it numerically. Also

the uniqueness problem for the elliptical Radon transform still remains unresolved in

the case of circular and spherical aperture. These open problems may be relevant to

several imaging modalities and practical applications working in the near field zone

or with bistatic measurements.
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CHAPTER 8

CONCLUSION

In the last decade, there has been a substantial spike of interest towards the

problem of reconstructing a function from its circular Radon transform mainly due

to its connection with some mathematical models of advanced imaging modalities. In

circular acquisition geometry there are various inversion formulas when the circular

Radon transform Rf is known for circles of all possible radii. However, to the best of

our knowledge no exact formula is known for the case when Rf is available for only a

part of all possible radii, or when the support of the function f is outside the circle.

In this dissertation, we presented our new results about the existence and

uniqueness of the representation of a function by its circular Radon transform with

radially partial data. A new inversion formula is described in the case of the cir-

cular acquisition geometry for both interior and exterior problems when the Radon

transform is known for only a part of all possible radii. We also investigated a recon-

struction algorithm applicable in the case of elliptical Radon transform based on an

approximate backprojection formula.

The results are not only interesting as original mathematical discoveries, but

can also open new frontiers in the field of imaging.
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