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ABSTRACT

NEW MACROCYCLIC GLYCOPEPTIDE ANTIBIOTIC FOR CHIRAL HPLC STATIONARY

PHASES AND IONIC LIQUIDS IN ANALYTICAL CHEMISTRY

Xiaotong Zhang, PhD

The University of Texas at Arlington, 2011

Supervising Professor: Daniel W. Armstrong

The main focus of this dissertation is on the development of new chiral stationary
phases for HPLC and GC and the application of ionic liquids in analytical chemistry. They will be
discussed separately in two parts.

Enantiomeric separations continue to be of great interest to the pharmaceutical industry.
It is because drug molecules of opposite chirality often possess distinctive effects in biological
environments. Direct chromatography is one of the major techniques used to address the
challenge of enantiomeric analysis. Macrocyclic glycopeptides are a very useful class of chiral
selectors for HPLC stationary phases because of their broad enantioselectivity. A study of a
new macrocyclic glycopeptide antibiotic, dalbavancin, as chiral selector for HPLC will be
described in part one. Two stationary phases based on dalbavancin were synthesized via two
different binding strategies and compared against with commercial teicoplanin column.

The application of lonic liquids in analytical chemistry is growing rapidly due to their
valuable properties such as wide liquid temperature range, high thermal stability, inflammability
etc. Several techniques based on ionic liquids are maturing into commercialized products. In

part two, the synthesis, physical properties, and the use as ion pairing reagent for anion



detection in ESI-MS of linear tricationic ionic liquids will be presented. In chapter 7, a study of
new chiral GC columns using ionic liquids as matrices and methylated ionic cyclodextrin as

chiral selector will be discussed.
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PART ONE: NEW MACROCYCLIC GLYCOPEPTIDE ANTIBIOTIC FOR CHIRAL HPLC

STATIONARY PHASES



CHAPTER 1
INTRODUCTION

1.1 Introduction to chiral chromatography

Chirality (handness) is the property of an object that is non-superimposable upon its
mirror image. This is attributed to the lack of an internal plane of symmetry in the structure. A
chiral molecule and its mirror image are referred to as a pair of enantiomers. Tetrahedral carbon
atoms connected to four different groups are the most common chiral centers for a molecule. In
addition to asymmetric carbon atoms, stereogenic centers can also be based on atoms such as
tetrahedral nitrogen, sulfur and phosphorus. Enantiomers have identical physical and chemical
properties in an achiral environment, but are distinctive in a couple of aspects. The first and
most well-known different behavior observed is that a pure sample of an enantiomer can rotate
plane-polarized light in the same magnitude but in opposite direction as that of its mirror form.
However, the most important differences between enantiomers are their reactivity in biological
environments. Biomolecules such as receptor proteins or enzymes in living organisms are chiral
and they have different binding interactions with enantiomers. This usually results in markedly
different biological responses. It is very common that a chiral molecule is potent in treating a
certain disease while its enantiomer is impotent or even toxic. Thus, chirality has become a
major concern for pharmaceutical industry. It is necessary for researchers to get the pure form
of each pair and individually evaluate their pharmacokinetical, pharmacodynamical and
toxicological properties in the drug development process.1'3 As a result, these data have been
required by the U.S. FDA since 1992* for marketing of new chiral drugs. Besides drug research
and development and the regulatory process, chiral considerations are also integral parts of the
agrochemical industry since enantiomerically pure pesticides are found to be more effective and

environmental friendly.



In this context, producing and analyzing chiral synthetic intermediates and final target
compounds have become a more intriguing challenge to chemists. After decades of extensive
efforts, a variety of different stereoselective separation technologies have been developed.
Among them, direct enantioselective chromatography has grown to be a well established and
widely used technology to meet the needs of preparation and analysis in academia and industry.
For analytical scale, enantiomeric separation is dominated by chiral chromatography especially
chiral high performance liquid chromatography (HPLC) and chiral gas chromatography (GC).
Chiral GC is featured by high efficiency, sensitivity and speed of separation.” It is mainly used
for enantiomeric excess measurements for chiral drug intermediates, pesticides, fungicides,
herbicides, pheromones, essential oil, flavors and fragrances with low to moderate molecular
weight.e'8 Due to the fact that chiral GC requires analytes to be able to transfer to the gas phase
and it is commonly operated at high temperature, its applications are limited to racemates that
are volatile and thermally stable. On the other hand, volatility and thermal stability of an analyte
is no longer a prerequisite for chiral HPLC since HPLC operates at ambient temperature and
analytes are transferred in liquid solvent. Therefore, chiral HPLC has wider applicability. In
addition, with the wide choices and combinations of chiral stationary phases, additives and
mobile phases that have been developed over the past several decades, chiral HPLC is
established as the most used method for enantiomeric separations. Also, analytical scale HPLC
can be easily scaled up to the preparative dimension from gram to kilogram levels, which makes
it a more important technique than chiral GC. It should be noted that asymmetric synthesis is
the ultimate way of producing large quantities of enantiomeric pure drug product. However,
preparative enantioselective chromatography is an important option in early drug development
due to its fast method development process for resolving racemates and the ability to obtain
both enantiomers in one step. Great advances have been made in the development of
preparative separation techniques and instrumentation. Supercritical fluid chromatography

(SFC)® and simulated moving bed (SMB)'® technique are growing rapidly and become the major
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chromatographic methods for large scale enantiomer production in the pharmaceutical industry.
After all, the great success of chiral chromatography emanates from the discovery of several
major classes of chiral selectors with broad enantioselectivity and their development into
effective chiral stationary phases. These achievements enabled enantiomeric separation to be
carried out in a simple and robust fashion. This chapter will summarize the main types of chiral

stationary phases that are utilized in the practice of modern chiral GC and chiral HPLC.

1.2 Chiral stationary phases for gas chromatography

As mentioned beforehand, chiral gas chromatography has narrower applicability than
chiral liquid chromatography due to its restrictions to analytes of high volatility and thermal
stability. However, chiral GC still plays a complementary and particular useful role for the
separation of non-aromatic compounds which cannot be easily resolved and detected by HPLC-
DAD (diode array detector). It also offers many advantages including high efficiency, easy
sample preparation when coupled with head-space to detect fragrances. Several classes of
chiral stationary phases have been developed since the first enantiomeric separation was
obtained on an amino acid based phase in 1966 by Gil-Av et al." They can be divided generally
into three types: amino acid analogs, metal-ligand complexes and cyclodextrin derivatives. Each

will be discussed in detail in the following section.

1.2.1 Amino acids based stationary phases

As the first example of enantiomer discrimination by chiral gas chromatography, a glass
capillary column coated with N-trifluoroacetyl-L-isoleusine ester was used for the enantiomeric
separation of racemic N-trifluoroacetyl amino acid esters in 1966."" This breakthrough has led to
further study in the mechanism of enantiomeric discrimination and development of new chiral
stationary phases based on amino acids derivatives. The following work of using a coated neat

dipeptide phase based on valine revealed that the second amide group is crucial for chiral
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recognition by providing additional hydrogen bonding interaction with analyte.12 However, these
early chiral GC stationary phases shared the same weaknesses such as low thermal stability
and high bleeding, which prevented them from being used for real analysis. It took scientists ten
years since the advent of first successful chiral separation on GC to make the first commercial
chiral GC column (ChirasiI-VaITM) featuring excellent chromatographic properties for the
enantiomeric separation of several classes of chiral compounds over a wide temperature range
0-250 °C."™ Its structure is shown in Fig. 1.1. The improved thermal stability is achieved by
linking the valine ester chiral selector to a copolymer of dimethylsiloxane and (2-carboxypropyl)
methylsiloxane with proper viscosity. Its low bleeding property also enables the coupling of
mass spectrometer for detection to the column.™ Even three decades after its birth, Chirasil-Val
is still one of the most used columns for the chiral separation of trifluoroacetylated amino acid

esters.

N—H N—H
>—¥O >—¥O
H-N H-N

Figure 1.1 structure of Chirasil-Val stationary phase13 based on L-valine

1.2.2 Metal-ligand complex based stationary phases

Chiral metal-ligand complexes were proven to be capable of performing enantiomeric
separation on GC as well by Schurig in 1977." In this work, the chiral alkane 3-
methylcyclopentane was separated on a 200m capillary column coated with dicarbonylrhodium(l)

3-trifluoroacetyl-(1R)-camphorate in squalane solution. In the following work, enantiomeric



separations of oxygen-, nitrogen- and sulfur-containing racemates were successfully performed
by columns coated with manganese(ll), cobalt(ll) and nickel(ll) bis [(3-heptafluorobutanoyl)-

1619 1t was proposed that the enantiomer

(1R)-camphorate]) in squalane or dimethylpolysiloxane.
possessing stronger lone pair or Tr-electron complexing interaction with the 1-orbitals of central
metal atom tends to retain longer on the column, which results in chiral discrimination. Later,
improved column thermal stability was obtained by immobilizing the chiral metal ligand complex
to a siloxane polymer (ChiralsiI-Metal).zo'22 Its structure is illustrated in Fig. 1.2. However, poor

efficiency caused by severe tailing and low enantioselectivity prevent chiral metal-ligand type

chiral GC stationary phases from being widely used for enantiomeric separation.

I |
~-0-8i-0-8i-0--

O\l}li

O

Figure 1.2 Structure of Chirasil-Metal % based on Ni(ll) (1S,2S,3S,4S)-3-((S)-1-hydroxybutyl)-
7,7-dimethylbicyclo[2.2.1]heptan-2-ol
1.2.3 Cyclodextrin derivatives based stationary phases
Cyclodextrins (CDs) are a class of natural cyclic oligosaccharides with 6 to 8 D-glucose
units linked by a-1,4-glucosidic bonds. They are referred to as a-(6 units), B-(7 unites), y-(8
unites) cyclodextrin respectively. Cyclodextrin derivative based stationary phases dominate the
enantioselective GC field and account for 90% of enantiomeric GC separation.23 It is the most
important class of GC chiral stationary phases today.
The first chiral CD stationary phase employed native a-CD as the chiral selector for

the separation of a- and B-pinene and cis- and trans-pinane. Due to its high melting point,
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underivatized a-CD was dissolved in formamide® solution first and then coated onto Celite
which is packed into the glass column prior to coating.24 The breakthrough of CD based chiral
stationary phases took place after liquid derivatized CD columns were developed. This type of
stationary phases utilized either neat alkylated CD derivatives possessing low melting point ®or
methylated CDs dissolved in polysiloxanes26 as coatings. Armstrong et al. synthesized more
polar CD derivatives possessing hydroxypropyl or ftrifluoroacetyl groups.27 They were also
directly coated to GC column and exhibited excellent resolving power to a wide variety of
structural types and classes of compounds. It was proposed that homogeneity of the derivative,
the number of polar functional groups (e.g., hydroxyls), and the overall molecular weight of the
compound are the three factors determining the physical state of a CD derivative. For CD
stationary phases dissolved in polysiloxanes, it has been found that the enantioselectivity does
not necessarily increase with the concentration of the CD derivative. The optimum concentration
for permethylated B-CD and derivatives with high molecular masses were found to be 30% and
50% respectively.5

Chirasil-Dex was the first bonded CD chiral stationary phase and was introduced by
Schurig et al. in the early 1990’s.%8 Permethylated B-cyclodextrin was attached to
dimethylpolysiloxane through a mono-6-octamethylene spacer. Extended operating temperature
range (-20-220°C) and improved robustness were obtained. Polar analytes were able to elute at
lower temperatures, and thus pre-derivatization for polar compounds could be avoided.
Meanwhile, Armstrong et al. demonstrated a different way to immobilize CDs to polysiloxanes

backbone.?” 2°

In this work, CD first reacted with allyl bromide and was subjected to
permethylation in the second step. The derivatized CD was linked to polysiloxanes through the
double bond on the allyl group. The structure of the stationary phase is shown in Fig. 1.3. The

following study of variant wall-immobilized cyclodextrin phases revealed that wall-immobilization

can increase stationary phase stability but can also change enantioselectivity and efficiency



significantly. In addition, bulky analytes were found to be better separated on these bonded

phases.?’0

OCHs

Figure 1.3 Structure of immobilized cyclodextrin stationary phase *

So far, the chiral discrimination mechanism of CD derivatives based GC stationary
phases is still under study. It has been suggested that multimodal recognition is likely to take
place during the chiral separation process involving inclusion complexation, hydrogen-bonding,
dispersion forces, dipole-dipole interaction, electrostatic interactions and hydrophobic

interactions.’

1.2.4 Other types of chiral stationary phases
Stationary phases based on linear polysaccharides have been also developed and
studied. Due to the lack of the ability to form inclusion complex with analytes, these stationary

phases can only separate a fraction of racemates that can be resolved on CD derivatives based

31 31,32

column.” Two new classes of stationary phases based on chiral ionic liquids and
cyclofructans33 have emerged recently. In comparison, CD derivative series columns still

provide the most general applicability for enantiomeric separation.



1.3 Chiral stationary phases for liquid chromatography

Chiral liquid chromatography accounts in large part for the commercial and industrial
success of enantiomeric separation. It provides the most general applicability for all kinds of
enantiomers based on the establishment of more than one hundred commercial chiral stationary
phases. Nowadays, combinations of 10 or fewer of the most popular chiral stationary phases
are able to separate the majority of enantiomer of interest. Plus, these analytical stationary
phases can be easily extended to preparative scale separations to obtain kilogram or greater
amounts of highly enantiomerically pure products per day when coupled with SMB or SFC.
Therefore, it is essential to have the knowledge about existing LC chiral stationary phases of
variant types and their properties. In the following content, several most popular types of chiral

liquid chromatography phases will be discussed.

1.3.1 Linear polysaccharide chiral stationary phases
Cellulose and amylose are the most abundant naturally occurring chiral polymers.
They are unbranched linear polymers of optical active D-glucose linked with 1, 4-glycosidic
bonds. The main difference is the anomeric configuration: amylose’s glucose units are linked
with a-(1,4) glycosidic bonds, whereas cellulose’s glucose units are linked by (3-(1,4) glycosidic
bonds. Unlike small chiral molecules, these chiral macromolecules exhibit hierarchically ordered
chirality originating from (i) molecular chirality in single glucose unite, (ii) helically twisted
polymer backbone, (iii) supramolecular chirality resulting from the alignment of adjacent polymer
chains forming ordered regions.34 Such structural peculiarities provide polysaccharide based
chiral stationary phases with superior chiral recognition abilities.
Polysaccharides were first reported to be used as chiral selectors in chiral liquid
chromatography in 1973.%° Hesse et al. used microcrystalline cellulose triacetate as a polymeric
packing material. Later, plain crosslinked beads of polysaccharide derivatives were also

employed as chiral stationary phase without support. What limited the use of the first generation
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polysaccharide stationary phases are their poor mechanical stability and modest applicability. In
1984, Okamoto et al. coated cellulose and amylose derivatives (phenylcarbamate and
phenylesters) onto the surface of macroporous silica beads as a thin film of about 20wt%.%* This
type of coated polysaccharide stationary phases showed exceptional chiral recognition
properties, wide applicability and high efficiency. Therefore, their practical usefulness in chiral
separations has made them the major workhorses in the chiral HPLC field. It needs to be
mentioned that they are not compatible with common organic solvents such as dichloromethane,
chloroform, tetrahydrofuran, ethyl acetate, acetone, toluene and 1,4-dioxane. Immobilized
polysaccharides HPLC column became commercially available in the mid 2000's."*® The
bonded polysaccharides based stationary phases were prepared via intermolecular
polycondensation and exhibit greatly improved mechanical stability and solvent compatibility
while maintaining excellent enantioselective property. Due to their universal solvent
compatibility, wide applicability and high loading capacity, immobilized polysaccharide phases
are also frequently used in large-scale separations such as SMB chromatography. Some
studies have shown that the immobilized versions are inferior in enantioselectivity compared to
their corresponding coated version in traditional alkane-alcohol normal phase condition.
However, the loss in the selectivity can be compensated by using non-standard solvents such
as dichloromethane and chloroform which typically provide higher enantioselectivity. The most
recent advancement of this cellulose and amylose type stationary phases involves using smaller
supporting silica particles (from 5um to 3um) for the purpose of improving the efficiency. The

most popular cellulose and amylose based stationary phases are listed in Fig 1.4.
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Figure 1.4 Structures and trademark names of the most popular cellulose and amylose columns

1.3.2 Macrocyclic glycopeptide chiral stationary phases
Macrocyclic glycopeptide chiral stationary phases are the second most important
class of commercial chiral stationary phase for liquid chromatography, next to the

polysaccharides type. Vancomycin was first bonded to silica gel and evaluated as chiral
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stationary phase for HPLC by Armstrong et al. in 1994 and showed promising enantioselectivity.
% Subsequently, a number of macrocyclic antibiotic molecules of the vancomycin family were
also exploited as chiral stationary phases and found to be complementary to each other.”®** A
wide variety of racemates with different structures and functional group can be separated on
these phases in different modes including normal, polar organic and reverse phase mode.
Chiral stationary phases based on teicoplanin, vancomycin, restocetin A and teicoplanin
aglycon are now commercially available, the structures of which are depicted in Figure 1.5.
These stationary phases have complementary enantioselectivity to each other. If partial
separation of a racemate is obtained on one of these columns, it is often found that a baseline
separation can be achieved on one of the other antibiotic columns under the same
chromatographic condition.* It also needs to be emphasized that Teicoplanin based stationary
phases provide the highest enantioselectivity for underivatized primary and secondary amino
acids among all commercial chiral stationary phases.46 They are also preferred for preparative
scale separation of native amino acids due to the fact that separation can be simply carried out
without adding any buffer to the mobile phase system. Generally speaking, Teicoplanin based
stationary phases have broader applicability than the rest of the family. In addition, antibiotic
chiral stationary phases are also frequently used in separating chiral and achiral metabolites
based on their specialty in differentiating polar compounds.

The structures of macrocyclic glycopeptides are relatively complex. The
enantiorecognization mechanism is still not clear because there are numerous stereogenic
centers and functional groups on these chiral selectors. However, it is believed that a
combination of hydrogen bonding, Tr-11 complexation, dipole-dipole stacking, inclusion and steric

interaction, and ionic attraction are responsible for the chiral recognition process.
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Figure 1.5 Structures of macrocyclic glycopeptide antiobiotics (a) Vancomycin, (b) Teicoplanin,
(c) Restocetin A, (d) Teicoplanin aglycone. Reprinted from reference 45.
1.3.3 Cyclodextrin chiral stationary phases
Both native cyclodextrins and their derivatives are powerful chiral selectors for liquid
chromatography. A plethora of cyclodextrin-based stationary phases of different derivatization
groups and binding chemistry have been developed since the first cyclodextrin chiral stationary
phase was first introduced by Armstrong et al. in 1984.*” All of them can be operated in three

mobile phase modes. And their distinctive enantioseparation profiles in different modes suggest
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different chiral recognition mechanisms. In the reversed phase mode, an inclusion complex is
first formed driven by hydrophobic interaction between the hydrophobic part of the guest
molecule and cyclodextrin cavity. Hydrogen bonding, steric and -1 interaction that take place
on the rim of cyclodextrin are also important for enantiorecognition. In the polar organic mode,
the chiral discrimination occurs mostly at the mouth of cyclodextrin. It is because the cavity of
the chiral selector is blocked by organic mobile phase molecule such as acetonitrile which is in
great excess and thus the central cavity of the cyclodextrin is not accessible to the analyte to
form inclusion complex.47

Among all the commercial available cyclodextrin based chiral stationary phases,
cyclobond | RSP, DMP, RN and SN are most widely used due to their relatively wide

enantioselectivity. Their structures are shown in Fig 1.6.
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Figure 1.6 Structures of six most popular commercial cyclodextrin stationary phases
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1.3.4 Other types of chiral stationary phases
Although most chiral molecules can be resolved by the combination of the
aforementioned three types of HPLC chiral stationary phases, there are several other classic
chiral stationary phases that are still useful in certain aspect. Protein based chiral stationary
phases were one of the earliest commercial chiral columns.*® However, their importance keeps
declining because of their low loading capacity and poor robustness. They are now more often
employed in protein and drug binding study rather than enantiomeric separation. Chiral crown
ether based chiral stationary phases are effective in separating compounds containing primary
amine group. The chiral crown ether selector can form inclusion complex with the analyte via
primary amine group under acidic reverse phase condition.* Pirkle-type (or brush type)
stationary phases are used specifically in normal phase. It requires -1 donor-accepter
interaction between chiral selector and solute for chiral reorganization. Poly-Whelko-O which is
based on polysiloxane has shown good enantioselectivity and high efficiency in SFC.% Chiral
ion-exchanger is considered as a subcategory under Pirkle-type. The difference lies in that
small molecules containing ionizable group are used as chiral selectors instead of neutral
compounds for Pirkle type. Chiralpak QN-AX is so far the only commercialized chiral stationary
phase of this type. It is based on a quinine derivative and acts as a weak anion exchanger.
The most important class which has emerged recently is cyclofructan derivatives based

9.%"%2 The derivatized

chiral stationary phases. They were developed by Armstrong et al. in 200
cyclofructan chiral stationary phases showed broad enantioselectivity to a wide variety of chiral
molecules. Therefore, several cyclofructan derivatives based stationary phases have been
commercialized in 2010. It needs to be noted that LARIHC CF6-P demonstrated excellent

enantioselectivity to chiral primary amine in particular and it works in aqueous solvents and

supercritical fluids. It is the chiral stationary phase of choice for chiral primary amines.
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CHAPTER 2
EVALUATION OF DALBAVANCIN AS CHIRAL SELECTOR FOR HPLC AND COMPARISON

WITH TEICOPLANIN-BASED CHIRAL STATIONARY PHASES

The experiments were done by me, Ye Bao and Ke Huang.

2.1 Abstract

Dalbavancin is a new compound belonging to the macrocyclic glycopeptide family. It
was covalently linked to 5 pym silica particles by using two different binding chemistries.
Approximately two hundred and fifty racemates including (A) heterocyclic compounds; (B) chiral
acids; (C) chiral amines; (D) chiral alcohols; (E) chiral sulfoxides and sulfilimines; (F) amino
acids and amino acid derivatives; and (G) other chiral compounds were tested on the two new
chiral stationary phases (CSP) using three different mobile phases. As dalbavancin is
structurally related to teicoplanin, the same set of chiral compounds was screened on two
commercially available teicoplanin CSPs for comparison. The dalbavancin CSPs were able to
separate some enantiomers that were not separated by the teicoplanin CSPs and also showed
improved separations for many racemates. However, there were other compounds only
separated or better separated on teicoplanin CSPS. Therefore, the dalbavancin CSPs are

complementary to the teicoplanin CSPs.

2.2 Introduction
Macrocyclic antibiotics were first introduced as a new class of chiral selectors for
enantioseparations by HPLC and capillary electrophoresis in 1994.* The ANSA family

(rifamycin B and SV)***° and glycopeptides group (vancomycin, ristocetin and teicoplanin®®)
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were demonstrated to have the most advantageous structures for enantiomeric separations.
There are many structurally related oligophenolic glycopeptides belonging to the later group
which have proven to be useful. Thus far, vancomycin, ristocetin, teicoplanin, A82846B,61
LY307599,% avoparcin,® and A40926% of the macrocyclic glycopeptide family, have been
evaluated as chiral selectors. These chiral selectors can be further divided into two groups
according to the number of fused rings in the aglycone part of their structure. In comparison,
vancomycin types have a three ring aglycone, while the teicoplanin-type glycopeptides have
one more ring in the aglycone which makes it “semi-rigid”. They all show great selectivity over a
wide range of chiral molecules including amino acids, carboxylic acids and neutral compounds.
Their excellent enantioselective separation capability have been attributed to the richness of
different functional groups in their structures such as aromatic rings with and without chloro-
substituents, ionizible phenolic moieties, amino groups, amide groups, carboxylates and
carbohydrate moieties. Therefore, many kinds of intermolecular interactions, such as -1 and
dipole-dipole interactions, hydrophobic interactions and hydrogen bonding, can be involved in
the chiral recognition via association with these functional groups.65

Although all the macrocyclic glycopeptides are within the same family of compounds,
small changes in their structure can result in significant differences in their enantiorecognition
abilities. For example, a-amino acids are better separated on the teicoplanin aglycone based
CSP, that is produced by cleaving all the carbohydrate moities from Teicoplanin.66 In the case of
A40926, there are only a few small structural variations compared to teicoplanin. However, it is
found that some compounds can only be separated or better separated on the HPLC chiral
stationary phase based on A40926, while the teicoplanin column separates a larger total

number of racemates.®*
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Dalbavancin is a new semisynthetic lipoglycopeptide derived from A40926, a
naturally occurring glycopeptide produced by actinomycete Nonomuraea species.67 It has
enhanced activity against gram-positive bacteria and unique pharmacokinetics compared with
existing drugs in its class.® In this work, two CSPs were prepared by binding dalbavancin to two
different 5 uym spherical silica gels respectively as to mirror the synthesis and makeup of the
Chirobiotic T and T2 columns. They are designated as the D1 and D2. Their enantioseparation
capabilities were evaluated with 250 pairs of enantiomers containing different functional groups.
These analytes were also screened on the commercial teicoplanin CSPs (i.e. Chirobiotic T and

Chirobiotic T2) for comparison. These two CSPs are designated as the T1 and T2.

2.3 Materials and methods

2.3.1 Materials

All the racemic analytes tested in this study were purchased from Sigma-
Aldirich. All HPLC grade solvents were obtained from VWR (Bridgeport, NJ). HPLC grade
Kromasil silica gel (particle size 5 ym, pore size 100 A, and surface area 31Om2/g) was obtained
from Akzo Nobel (EKA Chemicals, Bohus, Sweden). LiChrospher Si(100) silica gel (particle size
5um, pore size 100 A, and surface area 400m2/g) was purchased from Merck (Darmstadt,
Germany). All organosilane compounds were obtained from Silar Laboratories (Wilmington, NC).
These include: (3-aminopropyl) dimethylethoxysilane, (3-aminopropyl) triethoxysilane, [2-
(carbomethoxy) ethyl] trichlorosilane, [1-(carbomethoxy)ethyl] methyldichlorosilane, (3-
isocyanatopropyl) triethoxysilane, and (3-glycidoxypropyl) triethoxysilane. Dalbavancin was the

generous gift of Pfizer(Washington, MO).
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2.3.2 Methods
2.3.2.1 Preparation of the D1 CSP

One gram of dried dalbavancin (0.53 mmol) was dissolved in 55 ml anhydrous DMF in
a 250 ml 3-neck round flask with mechanical stirring. Then triethylamine (0.72 ml, 5.16 mmol)
and 3-(triethoxysilyl)propyl isocyanate (0.865 ml, 3.50 mmol) were added into the solution at
room temperature under argon protection. The solution was heated to 9501 for 5 h and cooled to
60(1. The dried Kromasil silica (3.50 g, 5um, 100 A) was added into the solution. The mixture
was heated to 10507 overnight and then cooled to room temperature and filtered. The CSP was
washed by methanol, methanol/water (50/50, v/v), pure water, and methanol (50 ml for each
solvent), and dried in oven at 100(] overnight. Elemental analysis showed it has 8.0% carbon

loading.

2.3.2.2 Preparation of the D2 CSP

The D2 stationary phase was prepared as previously described for the teicoplanin
CSP. Five gram of Lichrospher silica gel was first dried at 15007 under vacuum, and then it is
heated in toluene to reflux to remove azaeotropically all residual water. It is followed by adding
2.5 mL of 3-aminopropyl triethoxysilane and the reaction mixture was heated to reflux for 4h.
The modified silica gel was filtered and washed with toluene, methanol and dichloromethane
and dried at 900J overnight. Elemental analysis showed the derivatized silica gel has 4.0%
carbon loading. A 2.5 mL portion of 1,6-diisocyanatohexane (15 mmol) was added to an ice-
bath-cooled slurry of 2.5 g of 3-aminopropyl- Lichrospher in 50 mL of anhydrous toluene. Next,
the mixture was heated at 7001 for 2 h. After cooling, the supernatant toluene phase was
removed under an argon atmosphere. The excess reactant was removed by dry toluene
washing. A suspension of 1 g of Dalbavancin (0.53 mmol) in 100 mL of dry pyridine was added
dropwise to the wet activated silica. Next, the mixture was heated at 701 for 12 h with stirring

under an argon atmosphere. After cooling, the Dalbavancin bonded silica was washed with
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50mL portions in the sequence pyridine, water, methanol, acetonitrile and dichloromethane. It
was dried under vacuum. Elemental analysis showed it has 11.0% carbon loading (increased by

7.0%).

2.3.2.3 Chromatographic condition

CSPs were slurry packed into 250*4.6mm stainless steel columns at 600 bar.
Evaluation of the columns was conducted on HP 1090 HPLC system with a DAD detector and
autosampler. Detection wavelengths were selected at 220 nm, 230 nm and 254 nm. The
injection volumes were 5 pl. All sample concentrations were ~1 mg/ml. Separations were
carried out under isocratic conditions at flow rate of 1 mL/min at 25 C. The mobile phases were
premixed and degassed under vacuum for 10 minutes. The column dead times were tested by

injection of solution of 1,3,5-tri-tert-butylbenzene in 100% methanol.

2.4 Results and discussion

2.4.1 The structure of dalbavancin

Dalbavancin is a second generation glycopeptide antibiotic molecule (see Fig. 2.1). The
major difference between dalbavancin and teicoplanin are: (a) different phenyl rings are chloro-
substituted (see ring 2 and 3, Figs. 2.1 & 2.2) ; (b) the B-D-N-acety-glucosamine unit of
teicoplanin (see ring 5, Figs. 2.1 & 2.2) is replaced by a simple hydroxyl group; (c) the primary
hydroxyl group of N-acyl-glucosamine unit of teicoplanin has been oxidized to a carboxylic acid,
which can generate an anion; (d) the primary amine group on the aglycone portion of
teicoplanin is a secondary amine substituted by methyl group;(e) the carboxylic group close to
phenyl ring 7 is converted to an amide group connected with three methylene groups and it has
a dimethylamino group at the end (in dalbavancin); and (f) dalbavancin has 10 carbons in the
carbon chain of 3-D-N-acyl-glucosamine while teicoplanin only has 9. The last difference noted

above is the least likely to affect enantioseparation since one more methylene

20



Anionic site

HO. Cationic site
Y cl o
Y o]
ER H H ®/
r N s N A R _NH,
0:(\1’\‘7/5 R ” u :
o] = 0

‘ e} Cl
NH* s
~ V\ o
N
H

HO
Cationic site o OH OH

HO

a-D-Mannose

R
B-D-N-Acetyl-glucosamin
OH
o
R L OH
0.
Cationic site
o o
H @
s _N )]\R/NHS
R\ RN -
H H H
o) o
-00C s
Anionic site o
HO
OH

OH a-D-Mannose

Figure 2.2 The structure of macrocyclic glycopeptide teicoplanin
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group does not provide any additional interactions that are beneficial to chiral recognition.
Previous studies by our group has shown that the teicoplanin carbohydrate units play an
important role in chiral recognition in that it helps in the separation of non-amino acid
compounds. However, they also decrease the separation of many a-amino acid enantiomers.®
Thus, the elimination of the B-D-N-acety-glucosamine unit in dalbavancin can substantially
affect its enantioselectivity. The other changes made to carboxylic groups, hydroxyl group and
amino groups can also contribute to differences in the enantioselectivity of dalbavancin relative
to teicoplanin. Dalbavancin has one tertiary amine and secondary amine respectively, and one
carboxylic group on the 3-D-N-acyl-glucosamine (Figs. 2.1 & 2.2). Whereas teicoplanin has only
one carboxylic group connected to the aglycone and one primary amino group. As amine and
carboxylic acids group are ionizable in aqueous solution and can interact via electrostatic
interactions with charged analytes, these changes could lead to different chiral recognition

abilities especially in the reversed phase.

2.4.2 Chromatographic evaluation

The four columns, D1, D2, T1 and T2 were evaluated in three mobile phase modes:
the normal phase, polar organic, and reversed phase modes. In the normal phase mode, a
mixture of 20% ethanol and 80% heptane were used as mobile phase. In the polar organic
mode, 100% methanol was evaluated. In the reversed phase mode, methanol and water were
mixed at the ratio of 1 to 1, and 0.1% NH4,OAc was used as buffer to adjust to pH 4.2. In order
to compare the behavior of the different CSPs, results presented were obtained with the same
mobile phase compositions for all of the CSPs. However, these conditions are not necessarily
optimal for all the enantiomeric separations. Better separations can be obtained in specific
cases if the mobile phase compositions and organic modifiers are optimized. Other compounds

for which standards are not available have not yet be determined.
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Approximately 250 compounds were injected on these columns. These analytes
include (A) heterocyclic compounds; (B) chiral acids; (C) chiral amines; (D) chiral alcohols; (E)
chiral sulfoxides and sulfilimines; (F) amino acid and amino acid derivatives; and (G) other chiral
compounds. To simplify the presentation, Table 2.1, Table 2.2 and Table 2.3 list only the

chromatographic results obtained when an enantiomeric separation was achieved.

2.4.2.1 Comparison of CSPs in the normal phase mode

Table 2.1 lists the separations achieved on the four columns when used in the normal
phase mode. The number of successful enantioseparations achieved on D1, D2, T1 and T2 is
16, 17, 17 and 15 respectively. Interestingly, D2 always gives much greater retention for most of
the analytes than the other three columns. Conversely, D1 has the least retention for most
compounds. In the case of 2-azabicyclo [2.2.1]-hept-5-en-3-one, the retention factor (k) on D2 is
three times as great as it is on D1. According to elemental analysis results of the CSPs, the
carbon loading of D2 is higher than D1 by 3%. This can be caused either by more chiral selector
loading or more unreacted linkages. And both of these factors can contribute to longer retention
of analytes. Also, the additional ureic group of the D2 linkage can interact with analytes and
increase the retention time. However, longer retention does not necessarily result in better
resolution of racemates. Among the racemates that both D1 and D2 can separate, 6 are better
separated on D2 and 4 are better separated on D1 according to the separation factors (a). The
enantiomeric separations of 2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine, DL-3,4-
dihydroxyphenyl-a-propylacetamide, cis-4,5-diphenyl-2-oxazol-idinone, phenyl vinyl sulfoxide
were only achieved on the D1 CSP in the normal phase mode. While methyl trans-3-(4-
methoxyphenyl) glycidate and 5-hydroxymethyl-2(5H)-furanone enantiomers were separated on
the D2 CSP only. Thus, it is obvious that the binding chemistry not only affects the retention
factors, but it also changes the enantioselectivity in some cases. The influences of the nonchiral

spacers on chiral separation were first studied for B-cyclodextrin chiral stationary phases.70
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774 It was found that different

Other studies have been done by several research groups.
types of chiral selectors favor linkages with different nature and length. However, for
macrocyclic glycopeptide chiral selectors, each binding methods has its own advantages, and
sometimes unique selectivities.

Teicoplanin-based columns can separate five compounds which the dalbavancin-based
CSPs did not. 2-Carbethoxy-y-phenyl-y-butyrolactone was barely separated by T1 and T2. But
its separation was greatly improved to baseline on the D2 CSP. Among the total 29 compounds
separated by these four columns in the normal phase mode, nineteen compounds are better or
only separated by the dalbavancin based CSPs. There are no obvious structural differences

between the solutes separated by one CSP versus another CSP. Representative

chromatograms of analytes separated on the macrocyclic glycopeptide CSPs are shown in Fig.
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Figure 2.3 Representative chromatograms of two analytes on the T1 and D2 CSPs in the
normal phase mode: heptane/ethanol 80/20 v/v; flow rate 1ml/min

24



2.4.2.2 Comparison of CSPs in the polar organic mode

Methanol is used as mobile phase for the polar organic mode because it can elute
analytes faster than acetonitrile for teicoplanin type CSPs.”® A total of 13, 17, 18 and 18
racemates have been separated on D1, D2, T1 and T2 respectively. These analytes include
carboxylic acids, amine, alcohol and neutral compounds. The results are listed in Table 2 and
representative chromatograms are shown in Fig. 4. According to the enantioselectivity factors,
three enantiomers are best separated on the D1 CSP, including one that was separated only on
this CSP, 12 solutes were best separated by the D2 CSP including 4 that were separated only
on this stationary phase, ten racemates were best separated by the T1 column including 4 that
were separated only by this CSP, ten analytes were best separated by the T2 CSP including 9
that were separated only by this CSP. There are five compounds can be separated by all of the
four CSPs. All of them are neutral molecules containing a hetero-five-member-ring in the
structure. For the compound 5-(4-hydroxyphenyl)-5-phenylhydantoin, both the D1 and D2 CSPs
gave much higher enantioselectivities and resolutions than those of T1 and T2 CSPs. The
enantioselectivity factors for D1 and D2 are 1.95 and 4.07 respectively, and their resolutions
correspond to 2.5 and 7.0 respectively, which indicates the excellent chiral resolving capabilities
of dalbavancin. Interestingly, the separation results changed significantly if a small alteration is
made to the analyte’s structure. For example, the only structural difference between 5-(3-
hydroxyphenyl)-5-phenylhydantoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin is position of the
phenolic group. However, the previous baseline separation (Rs 7.0) achieved on D2 for 5-(4-
hydroxyphenyl)-5-phenylhydantoin was downgraded to a partial separation (Rs 1.3) on D2 for 5-
(3-hydroxyphenyl)-5-phenylhydantoin. The substantial decline in the enantiomeric selectivity
and resolution indicates that the position of phenol group is very important for chiral recognition.
Some of the compounds separated in the polar organic mode can also be separated in the
normal phase mode. For example, enantiomers of 2-carbethoxy-y-phenyl-y-butyrolactone can

be separated on all of the four CSPs and was baseline separated by D2. However, it was only
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partially separated on D2 in the polar organic mode (Rs 0.7). This is because the analyte does

not retain long enough to interact with the chiral selectors in the polar organic mode.
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Figure 2.4. Representative chromatograms of two analytes on the T1 and D2 CSPs in the polar
organic phase mode: 100% methanol; flow rate 1ml/min

2.4.2.3 Comparison of CSPs in the reversed phase mode

Previous studies have revealed that reversed phase separations are among the
most successful for the glycopeptide CSPs. Clearly, dalbavancin and teicoplanin CSPs follow
this trend (see Fig. 5). 54 racemates have been separated by these four columns together. The
results are listed in Table 3. Twenty three racemic solutes can be separated on both
dalbavancin and teicoplanin CSPs. This suggests that these two chiral selectors have
somewhat analogous chiral recognition capabilities due to their similar structures. Fourteen
racemates were only separated on the dalbavancin columns. This also demonstrates that these
two classes of CSPs are complimentary to each other. Atrolactic acid hemihydrate was baseline

separated by D1 (a = 1.82, Rs = 2.4) and D2 (a = 5.05, Rs = 4.9) CSPs, but it was not
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separated on either of the teicoplanin based columns. These differences in enantioselective
Gibbs energy correspond to 0.3 kcal/mol for D1, 0.9 kcal/mol for D2 and 0 kcal/mol for T1 and
T2. In this particular example, the dalbavancin columns are much more effective. Interestingly,
many of the analytes that are only separated on dalbavancin based CSPs have a free
carboxylic group in their structure, such as N-(a-methylbenzyl)phthalic acid monoamide, a-
methoxyphenylacetic acid, 3-oxo-1-indancarboxylic acid, 2-phenoxypropionic acid, 2-
phenylpropionic acid, B-phenyllactic acid and 1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid
hydrochloride. This improved enantioselectivity towards carboxylic acids may be partly
attributed to the tertiary amino group coupled to dalbavancin via an amide linkage (Fig. 2.1). In
aqueous solution at pH 4.2, this group is protonated and carries a positive charge. This cationic
site can interact with deprotonated carboxylic anions through charge-charge interactions which
is an important process in chiral recognition. In contrast, the teicoplanin based CSPs (i.e. T2)
only separated one of the tested amino acids, DL-a-aminophenyl-acetic acid and one of the
tested carboxylic acids, 2-(2-chlorophenoxy)-propionic acid (Rs=0.4). Although there is one
cationic site on native teicoplanin, it can be converted to a carbamate group when bonded to
silica gel. Thus, the teicoplanin chiral selector only has one anionic site after linked to silica gel.
The poorer enantioselectivity of teicoplanin to some of the carboxylic acids in this study should

be partially due to the lack of cationic sites on the teicoplanin molecule.
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Figure. 2.5 Representative chromatograms of two analytes on the T2 and D2 CSPs in the
reversed phase mode: 20mM NH4NO; buffer/methanol 1/1 v/v; flow rate 1ml/min
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Table 2.1 Chromatographic data for the normal phase resolution of racemic compounds on D1,
D2, T1 and T2 columns

80% Heptane/20% Ethanol
k1 a RS

Compound name Structure CSPs

B o2 >/C N 3\< D1 1.04 1.18 1.0

oxazolin-2-yl)pyridine .

F
o D1 1.34 1.13 0.9
2-Carbethoxy-gamma- i 4 D2 2.90 1.35 1.5
phenyl-gamma-butyrolactone ° T1 1.47 1.03 0.5
\ T2 1.15 1.07 05
D1 3.93 1.38 14
0,
5,5-dimethyl-4-phenyl-2- /Eo D2 10.72 1.57 1.8
oxazolidinone
N T2 4.19 1.44 1.4
A D2 2.28 1.12 0.9
N-(2,3-E| 1)- A
prinatme AN
T 1.99 1.07 1.0

carbamate

Guaiacol glyceryl ether O\J\/OTNHZ T1 7.72 1.05 0.5
/ o

)

2 D1 2.02 1.1 0.9
alpha-Methyl-alpha-phenyl- NH D2 4.52 1.44 2.2
succinimide
T 2.37 1.23 1.5
o
T2 2.40 1.21 1.4

2-Phenylglutaric anhydride @—gﬁ—}:O T1 3.27 1.06 0.5

o
Methyl trans-3- (4- N ] coocHs D2 107 158 18
methoxyphenyl) glycidate o . . .

o

D1 0.88 1.39 1.4
3-(alpha-Acetonyl-4- ™
chlorabanay) 4. ‘i%\(i;\ D2 0.85 121 0.7
hydroxycoumarin
o o T2 0.89 1.21 1.2

. D1 0.83 1.44 15
Warfarin [ D2 1.91 1.7 0.8
(X C ;

T2 0.89 1.17 1.0

29



Table 2.1 Continued

80% Heptane/20% Ethanol

Compound name Structure CSPs " 2 R
1 S
. D1 1.49 1.13 1.0
e @ o . D2 2.97 1.36 2.2
chlorophenoxy)propionamide \©/ T1 2219 1.09 1.2
T2 2.18 1.12 1.3
I
H3CHQCH2C\CH /C\O
DL-3,4-dihyd henyl-alfa-
Cahycrosphenyafa D1 7.43 1.07 06
OH
OH
1 D2 262 1.26 13
1,5-Dimethyl-2-pyrrolidinone o N Me
v T 3.31 1.03 1.4
D1 1.05 1.33 1.5
H
[e] N
alpha,alpha-Dimethyl-beta- ° D2 2.10 1.51 2.5
methylsuccinimide
e e T 1.69 1.10 1.4
T2 1.55 1.16 1.3
D1 1.57 1.26 1.4
0. H
1,5-Dimethyl-4-phenyl-2- N
Oy orery YN D2 486 165 36
° T1 3.24 1.70 2.3
" T2 2.78 1.11 1.0
ﬁ OH
N,N"-Dibenzyl-tartramide ya Ve “\/"" T 6.41 1.04 0.5
ph’ H
OH ]
1 D2 5.03 1.05 0.5
2,2'-Diamino-1,1"- NH2
binaphthalene HN OO
T2 3.40 1.16 1.3
cis-4,5-Diphenyl-2-oxazolidinone T:Q/Ph D1 452 1 66 26
Ph
2,3-Dihydro-7a-methyl-3- ﬁ/o T 2.29 1.04 0.8
phenylpyrrolo[2,1-bJoxazol- M
5(7aH)-one
(7er y \> T2 1.90 1.05 05
! e coos D2 1.03 1.17 0.8
Ethyl 11-cyano-9,10-dihydro-
endo-
9,10-ethanoanthracene-11- O ‘
carboxylate O T 0.72 1.05 0.5
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Table 2.1 Continued

80% Heptane/20% Ethanol

Compound name Structure CSPs " 2 R
1 S
D1 2.61 1.04 1.0
o
D2 6.45 1.28 1.3
furoin / \ g l
o \ T1 3.28 1.22 2.3
OH
T2 3.88 1.20 1.8
F
_ D1 7.58 1.33 14
Ftorafur o N4<j
““ﬂ ° T1 15.90 1.17 0.9
o
Ph Q,
Glycidyl trityl ether T2 024 1.1 5 05
[e) 0,
5-hydroxymethyl-2(5H)-furanone \(y/\m‘ D2 777 1 27 1 5
I
S,
Phenyl vinyl sulfoxide ©/ \/ D1 1 41 1 09 08
o ,‘, D2 2.55 1.12 0.9
AN =°
Phensuximide T1 2.28 1.1 14
T2 213 1.22 1.6
D2 0.79 1.09 0.5
o]
Ruelene I
MeNH——P——0
| 4 T2 0.66 1.71 1.2
OMe
0 D1 5.93 1.44 1.8
N
3a,4,5,6-Tetrahydro- NH
succininido[3,4- T 6.79 1.25 1.4
blacenaphthen-10-one °
T2 0.59 1.94 0.9
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Table 2.2 Chromatographic data for the polar organic phase resolution of racemic compounds

on D1, D2, T1 and T2 columns

100% MeOH

Compound name Structure CSPs K a R
S
NG
Chlorthalidone O . I D2 0.44 1.28 07
2-Carbethoxy- - f o/
phei;/l-i;agﬁziim;]rilactone D2 0.13 1.51 0.7
o D1 0.22 1.38 1.0
5,5-dimethyl-4-phenyl-2-
oxazolidinone /L_O
N T2 0.13 2.03 1.4
PH H
Ipha-Methyl-alpha-phenyl- NH
e pnarPheny D2 0.23 1.30 0.7
v/ D1 0.84 1.98 3.0
is)-(+)-3,3a,8,8a-
gl?elfr)a(r:y)dro-gH-in?ieno[‘l ,2- To D2 2.74 1.96 2.7
d]oxazol-2-one T 1.02 1.23 1.0
T2 0.70 1.15 0.9
. o CH3
iz:(iéé—N|tr0phenyl)prop|on|c OZN@CHCOOH T2 017 1.35 0.7
D1 0.26 2.36 25
HN
4-Methyl-5-phenyl-2-
oxasolimoma e )\ D2 0.53 4.24 55
[¢]
(e)
T 0.28 2.79 44
Alprenolol @ T2 3.46 1.25 2.7
DL-alpha-Aminophenyl- it
ot g nopheny \ N T2 0.30 3.77 1.3
NH,
D1 0.24 1.20 0.8
2-Azabicyclo[2.2.1]-hept-5- _ o
en-3-one —
/ N D2 0.61 1.19 0.9
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Table 2.2 Continued

100% MeOH

Compound name Structure CSPs P 2 R
1 s
1.1-Binaphthyl-2,2'-diyl OO %
hydro;ei%ho;/phate Y OO A T1 0.21 1.87 3.2
D1 0.61 1.16 0.9
H
o N o D2 2.07 1.08 0.5
4-Benzyl-2-oxazolidinone §<
o T 0.72 1.29 1.5
T2 0.39 1.23 0.9
D1 0.29 1.20 0.8
4-Benzyl-5, 5-dimethyl-2-
oxaigﬁé,inone e T:(\Ph D2 0.65 1.78 2.3
™ 0.36 2.73 4.8
T2 0.15 1.84 14
DL-2-(2-Chlorophenoxy)- ©
propionic acci)c;Op onoy @i \<COOH T2 0.04 3.85 1.3
o N D1 0.22 1.62 14
Ph
is-4,5-Diphenyl-2- \(/
oxazandinong” 0\2/ T1 0.25 1.75 3.2
" T2 0.21 1.71 15
on D1 0.38 1.45 1.2
NH o
4-(Diphenylmethyl)-2-
oxazolidinons y 7/ D2 1.08 147 15
o
™ 0.41 1.55 1.6
el 2 V) 0.24 1.10 05
N D1 0.29 1.20 08
Ftorafur [ N—G
H“& ° ™ 0.50 1.08 0.6
Glycidyl trityl ether T1 0.09 1.23 0.5
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Table 2.2 Continued

100% MeOH

Compound name Structure CSPs
k1 a Rs
D1 0.51 1.95 25
}/“ P D2 2.59 4.07 7.0
5-(4-hydroxyphenyl)-5-
phenylhydantoin HN ™ 0.36 1.08 0.5
OH T2 0.68 1.44 1.4
o " D2 1.51 1.32 1.3
5-(3-hydroxypheny|)-5- }/ - T 0.32 1.11 0.6
phenylhydantoin
T2 0.49 1.23 0.9
Ph Ph
Hydrobenzoin >—< T1 0.09 1.22 0.5
HO OH
s o
( Z%
DL-H tei
thiolaggﬁgyr?yzlrr:)ihloride wer T2 3.06 1.19 1.8
NHy
R
4-Hydroxy-2-pyrrolidinone Oﬁ D2 0.60 1.37 1.3
oH
N D2 0.68 2.06 29
5-(Hydroxymethyl)-2- OH
pyrrolidinone
™ 0.50 1.19 1.4
s D2 0.42 1.54 1.4
5-hydroxymethyl-2(5H)- OH
furanone
— ™ 0.29 1.08 0.5
lopanoic acid or(3-[3-Amino- oH
2,4,6-triiodophenyl]-2-ethyl- D1 0.26 1.23 0.9
propanoic acid
HN o
\0 D2 0.50 1.78 2.2
Methoxyphenamine ©_>7 T 0.31 1.27 1.2
o T2 0.34 1.23 0.8
Mephenesin T 0.09 1.32 0.6
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Table 2.2 Continued

100% MeOH

Compound name Structure CSPs 2 2 R
j))l’ﬁ OH n
Metanephrine hydrochloride e, o o T2 1.83 1.29 1.0
o COOH
2-Phenoxypropionic acid \'/ T2 0.02 6.80 1.2
CHy
° D1 0.27 1.88 1.3
5-Phenyl-2-(2-propynyl- J\ /\% D2 0.46 3.81 3.0
amino)-2-oxazolin-4-one N N : : :
T1 0.31 1.46 0.9
OH
s
Bamethane Seen T2 3.88 119 15
HO
o D1 0.30 1.14 0.7
o
3a,4,5,6-Tetrahydro- N NH D2 0.81 1.24 09
succininido[3,4-
gLaecenaphthen-‘IO- o T 0.31 1.16 1.0
T2 0.33 1.19 0.7
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Table 2.3 Chromatographic data for the reversed phase resolution of racemic compounds on
D1, D2, T1 and T2 columns

NH4OAc Buffer 50%/ MeOH 50%

Compound name Structure CSPs K, A Re

10
Benzoin methyl ether O D2 6.25 1.29 1.4

° ¢ D2 1.74 1.58 2.3
2,6-Bis(4-isopropyl-2- N/ Sy
oxazolin-2-yl)pyridine .
F

T2 0.79 1.94 3.0
) D2 1.86 1.41 13
S

Chiorthalidone O . I T1 0.45 1.12 0.8
T2 0.93 1.06 0.5

2-Carbethoxy- - 7 o/
phenyl-agrarimc;)%ugt;glrzgone @/d\\( D2 5.21 1.11 0.8
D2 2.80 1.21 1.4

0 H
1,5-dimethyl-4-phenyl-2- N
imidazolidinone Y Me T1 0.57 1.05 0.5
(0]
" T2 2.06 1.10 0.9
" D2 2.80 1.21 1.4
e
ey e %I ™ 057 1o 00
Ph
T2 2.06 1.10 0.9
OH

3,4-dihydroxyphenyl-2- o D2 2.19 0.90 0.6

propylacetamide HoN
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Table 2.3 Continued

Compound name

Structure

CSPs

NH4OAc Buffer 50%/ MeOH 50%

methoxyphenyl)glycidate

Ki A Rs
2,3-Dibenzoyl-DL-tartari
e D2 3.01 1.10 0.5
5,5-dimethyl-4-phenyl-2-
I(;r)](‘;zglidin%niny D1 0.75 1.84 1.2
HOOC
1 3 ™~
5-Methoxy-1-ind 3
S ceticacd D2 1.41 1.10 06
o
D2 1.20 1.23 1.2
o]
Ipha-Methyl-alpha-phenyl-
e sesczinailrgidaep o NH T1 0.49 1.13 1.0
o]
T2 0.69 1.12 0.8
o
NH\{/
3,3a,8,8a-Tetrahydro-2H-
Sgaspe T, @ o st s
C D2 4.81 1.10 0.8
(1-phenethyl)phthalimide o o T 0.89 1.07 0.8
N
H
T2 2.38 1.06 0.5
- D1 1.29 1.30 14
2-(4-Nitrophenyl)propionic | °
acid ON CHCOOH
D2 3.33 1.17 1.0
H3C\ ] COOCH,
e OW D2 1.49 1.10 0.6
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Table 2.3 Continued

NH4OAc Buffer 50%/ MeOH 50%

Compound name Structure CSPs K, A R.
D1 0.80 1.82 2.4
Me, OH
Atrolactic acid hemihydrate
‘COOH
D2 0.59 5.05 4.9

H T1 8.50 1.03 0.9

° N
4-Benzyl-2-oxazolidinone W
e} Ph
T2 1.29 1.30

1.5

° N D1 1.46 1.31 1.5
(-/+)-4-Benzyl-5, 5-dimethyl- ﬁ:(\
2-oxazolidinone o Ph
™ 1.00 3.57 5.9

\( CooH D1 1.00 1.42 1.2

2-(2-Chlorophenoxy)- °
propionic acid D2 1.10 2.43 24
Cl

T2 0.04 0.62 04
D1 1.21 1.33 1.2
o COOH
2-(4-chloro-2-methyl- /@i Y
phenoxy)propionic acid
¢ D2 1.63 1.64 2.0
0 D2 1.42 1.18 1.0
2.(3- cl o
chlorophenoxy)propionamide \©/ Ntz

T2 0.77 1.04 04

o
(+)Camphor p-tosyl hydrazon —@—\L\—NQ T1 0.97 1.14 1.0

o
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Table 2.3 Continued

NH4OAc Buffer 50%/ MeOH 50%

Compound name Structure CSPs K, A R
S
o y
Y N D1 1,63 1.23 1.3
cis-4,5-Diphenyl-2-
oxazolidinone o T1 0.87 1.42 29
Ph T2 1.94 1.44 2.7
D1 2.28 1.20 1.2
Ph
4-(Diphenylmethyl)-2- NH o
oxazolidinone \ﬁ T 1.31 1.59 1.8
Ph 0
T2 2.06 1.22 1.3
it 2 T 1.01 1.11 1.0
1,5-Dimethyl-2-pyrrolidinone o\C)/ D2 0.35 1.16 0.6
D2 0.37 1.52 14
(o]
Ipha,alpha-Dimethyl-beta- HN
O atyleucoinimide T1 0.30 1.07 0.5
(0]
T2 0.29 1.14 0.6
Europium tris[3- —0-..__
(trifluoromethylhydroxymethy Eu D2 2.09 1.33 0.8
lene)]-(-) camphorate \ O/
FaC
i
DL-alpha-Aminophenyl-
P csticac .. T2 0.50 5.05 46
NH,
Ethyl 11-cyano-9,10-dihydro- " oo D2 4.66 1.04 0.5

endo-
9,10-ethanoanthracene-11-
carboxylate

O T2 2.07 1.07 0.6
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Table 2.3 Continued

NH4OAc Buffer 50%/ MeOH 50%

Compound name Structure CSPs K, A R.

o Q D2 0.73 1.09 0.5

o

furoin | / \ /
OH T2 0.42 1.07 0.4
Ftorafur Olzj\<\14@ T 0.94 1.08 0.9
HN: O
o
0 D2 0.67 1.15 0.8
DL-Homocysteine
thiolactone hydrochloride HCl

T2 1.40 1.04 0.5

NH,
0. H
5-(Hyd thyl)-2-
Crondinons. \V\JA D2 0.24 1.99 1.4
H
° on D2 0.31 1.79 1.4
5-hydroxymethyl-2(5H)- 1}/\

furanone
T2 0.15 1.20 0.5

}/H P D1 3.00 1.48 1.8

5-(4-hydroxyphenyl)-5- HN
phenylhydantoin

o T1 1.27 117 1.2
D1 2.36 1.18 1.2
9, H
N Ph
5-(3-hydroxyphenyl)-5- OH
i HN

phenyihydantoin T 1.15 1.15 12
T2 4.1 1.36 1.5

lopanoic acid or(3-[3-Amino-
2,4 6-triiodophenyl]-2-ethyl- D1 1.94 1.16 0.9

propanoic acid
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Table 2.3 Continued

NH4OAc Buffer 50%/ MeOH 50%

Compound name Structure CSPs K, A R.

o\\ OH
4-Isobutyl-alpha-
methyﬁ)%eizlllaigti(?acid D1 1.91 1.08 0.7

(+)2,3-O-Isopropylidene 2,3- ; °)<

dihydroxy-1,4- ’ Q
bis(dispr:eﬁylrsr)gsphino)buta ©/ % D2 4.67 1.21 1.0

i O

\
o D2 1.68 2.00 1.2
Methoxyphenamine
T2 9.30 1.03 0.4
— NH
N-(alpha- o

Methylbenzyl)phthalic acid | D1 0.71 1.66 2.0

monoamide

alpha-Meth(:::)i/ghenylacetic O_%io D1 0.66 1.07 0.5
o

3-Oxo-1-indancarboxylic acid ©$ D2 1.64 1.50 1.5

o COOH
2-Phenoxypropionic acid O/ Y D2 0.57 2.73 3.3
CH,

CH,
2-Phenylpropionic acid ©/‘\COOH D2 1.10 1.10 05
|
5-Phenyl-2-(2- - G

aming)lz-ox;zglli'gzy-gie ’ N/\/ D1 0.86 1.69 1.5
° D2 1.08 1.25 1.3

[

s

. . S

Phenyl vinyl sulfoxide ©/ - 0.52 113 10
T2 0.56 1.27 1.4
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Table 2.3 Continued

NH4OAc Buffer 50%/ MeOH 50%

Compound name Structure CSPs K, A R.

DL-beta-Phenyllactic acid wm D1 0.41 1.14 0.6

+)-5-(alpha-
Phenet%)?l)séii‘z);mazide D2 0.70 1.07 0.5
R R—nh,
o T2 0.50 1.13 0.7

Vi
\

Phensuximide D2 1.01 1.31 14

T2 1.00 1.31 14
1,2,3,4-Tetrahydro-3-
isoquinolinecarboxylic acid D1 0.73 1.65 1.5
hydrochloride
Terbutaline hemisulfate salt T2 5.63 1.22 3.1
3a,4,5,6-Tetrahydro- °
ininido[3,4-
blacenaphthan: o D1 1.06 1.30 1.2

10-one . NH
o
O ™ 0.93 1.42 5.0
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2.5 Conclusion

Two dalbavancin-based CSPs were made using two different linkages to silica gel.
Their enantiomeric separation capabilities have been investigated by comparison of the
separations achieved on Chirobiotic T and T2 commercial columns. The structural differences in
the chiral selectors and linkages between the four CSPs presented in this work do not make
one superior to another. All of them can separate some racemic solutes that cannot be
separated by the other CSPs tested. It is as expected that they show similar enantiomeric
separation abilities to many analytes since their structures are very closely related. However,
dalbavancin based CSPs exhibits enhanced enantioselectivities to carboxylic acids, where the
additional cationic site of the chiral selector may play an important role during the chiral
recognition process. Thus, it is obvious that these four CSPs are complementary to one another.
If a racemate is poorly separated on one CSP, it is possible the other related CSPs will produce
an enhanced separation. This is the principal of complementary separation that was model for
the class of chiral selectors. Future work will involve the detailed study of elution order of

enantiomers and binding linkage effects on dalbavancin based CSPs.
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PART TWO: IONIC LIQUIDS IN ANALYTICAL CHEMISTRY
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CHAPTER 3
GENERAL INTRODUCTION TO IONIC LIQUIDS AND THEIR APPLICATIONS IN

ANALYTICAL CHEMISTRY

lonic liquids (ILs) are salts that melt below 10007. Room temperature ionic liquids
(RTIL) are defined as salts that are liquid at room temperature (2507). ILs are composed of
cations and anions just like inorganic salts such as sodium chloride. Cations are typically based
on bulky organic cations such as imidazolium, pyridinium, pyrrolidinium, phosphonium, and
ammonium. Anions are relatively simpler in structure and could be either inorganic ions (such
as CI, Br, BF,~, PFe¢™) or organic ions (such as trifluoromethylsulfonate [CF3;SOj]~,
bis[(trifluoromethyl)sulfonyl]imide [(CF3SO,),N]~ (or NTf2 ), trifluoroethanoate [CF;CO,] .
Structures of cations and anions that are commonly used in IL are listed in figure 3.1. The high
conformational flexibility and low symmetry of the cations or anions lead to inefficient packing in
the solid state which results in low melting points for these materials.”” More importantly, the
physical and chemical properties can be easily altered by tuning the combination of cations and

anions.

Common Cations

@/\ R1 R2 R3 33
RN R 5 (o)  RgRe R
\:/ (_7 ﬁ/ R2 RZ
|
R
Common anions
CF4COy 0 'cs') CF g
cr Br BF 4 PFg 32 ('5 3 FiC” % & “CF,

Figure 3.1 Structures of common cations and anions of ionic liquids
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The history of IL can be traced back to 1914 when Walden found that ethylammonium
nitrate was a liquid at room temperature.”® However, this moisture sensitive salt did not trigger
much interest in developing IL until the first air-water-stable based ILs were synthesized by
Wilkes et al. in 1992.”" These imidazolium based ILs have improved stability and wider liquid
ranges and thus allowed scientists to further explore the potential applications of ILs in different
aspects of chemistry. ILs were first applied in organic synthesis as substituents for traditional
organic solvents especially for two phase catalysis reactions.”® They can also be used as
reaction media for all kinds of reactions such as metal complex synthesis, catalytic
hydrogenation,79 asymmetric synthesis,80 etc.

Besides organic chemistry, ILs are valuable in various subdisciplines of analytical
chemistry. i) Extractions. ILs such as butylmethylimidazolium (BMIM) BF,®' demonstrated great
potential for liquid-liquid extractions in part because they possess good extraction power while
their vapor pressures are negligible. Extractions of metal ions, small organic molecules and
large molecules such as protein and DNA have all been performed successfully with ILs.® The
application of ILs in liquid phase microextraction (LPME) and solid phase microextraction
(SPME) have also been exploited.83 (ii) Chromatography. ILs are desirable coating materials for
GC stationary phases due to their unique properties including low volatility, high viscosity, good
thermal stability, and variable polarities. A plethora of GC achiral stationary phases based on a
wide range of ILs of different structures and properties have been developed and studied.
Among them, a cross-linked ionic liquid based stationary phase showed high selectivity and
high thermal stabili’[y.84 GC columns coated by dicationic RTILs with poly(ethyleneglycol) (PEG)
Iinkages85 and RTILs containing phosphornium86 are particularly thermally stable at high
temperatures. It needs to be noted that several IL-based GC stationary phases developed by
Armstrong are now commercially available, which is indicative of the practical use of ILs in
separation science. As for liquid chromatography, ILs can be either used as additive in mobile

87, 88

phases or be used as stationary phases after immobilized onto silica geI.89 (iii) MS. One of
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the most successful applications of IL in analytical chemistry is their use as ion pair reagents for
anion detection in positive ion mode of ESI-MS.*° Improvements in anion detection limits of
several orders of magnitude were reported. Typically, a dicationic IL can pair with a singly
charged anion to form a complex possessing an overall positive charge. Monitoring the anion-
dication complex in the positive mode, at higher mass range, is more sensitive than detecting
anions in the negative mode. It is because the corona discharge is more prevalent in the
negative mode of detection and thus the signal to noise ratio in the negative mode are always
lower as a result of the unstable ion current and high background noise. It needs to be
mentioned that a liquid state for the ionic component is not required since ILs function just as
common organic salts. MALDI-MS is another new application of ILs. IL matrixes are capable of
minimizing polymer degradation and improving accuracy of molecular weights determination.”’
Improved reproducibility for biomolecules were also achieved with IL matrices, which allows
quantitative analysis without using internal standards.”

Research in ILs is still growing rapidly and their applications will continue to expand
into more fields in analytical chemistry. In the following chapters, application of newly developed

ILs in mass spectrometry and gas chromatography will be discussed in detail.
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CHAPTER 4

EVALUATION OF FLEXIBLE LINEAR TRICATIONIC SALTS AS GAS-PHASE ION-PAIRING

REAGENTS FOR THE DETECTION OF DIVALENT ANIONS IN POSITIVE MODE ESI-MS

In this work, ion pairing reagents were designed and synthesized by me and Eranda. The MS

detection is done by Zachery.

4.1 Abstract

Anion analysis is of great importance to many scientific areas of interest. Problems with
negative mode ESI-MS prevent researchers from achieving sensitive detection for anions.
Recently, we have shown that cationic reagents can be paired with anions, such that detection
can be done in the positive mode, allowing for low limits of detections for anions using ESI-MS.
In this analysis, we present the use of 16 newly synthesized flexible linear tricationic ion-paring
reagents for the detection of 11 divalent anions. These reagents greatly differ in structure from
previously reported trigonal tricationic ion-pairing agents, such that they are far more flexible.
Here we present the structural features of these linear trications that make for good ion-pairing
agents as well as show the advantage of using these more flexible ion-pairing reagents. In fact,
the limit of detection for sulfate using the best linear trication was found to be 25 times lower
than when the best rigid trication was used. Also, MS/MS experiments were performed on the
trication—dianion complex to significantly reduce the detection limit for many dianions. Limits of

detection in this analysis were as low as 50 fg.
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4.2 Introduction
Anion analysis is of great importance to environmental researchers, biochemists, food
and drug researchers, and the pharmaceutical industry, all of which are continually in need of

facile, sensitive analytical techniques that can be used to both detect and quantitate trace

93-112

anions. Often, the anions of interest exist in complex matrixes such as blood, water, and

uring. > 98 100, 113, 104106 £ this reason, separation techniques are routinely coupled with anion

detection. Currently, some of these techniques utilize flow injection analysis or ion

109-112, 114-116

chromatography, with detection frequently obtained through the use of ion selective

117-121

electrodes, conductivity, or spectroscopic techniques. Yet, these detection methodologies

lack either universality or specificity.121

For many analytes, ESI-MS has provided broad
specificity and lower detection limits. Given the anion’s inherent charge, it is not surprising that
negative ion electrospray ionization mass spectrometry (ESI-MS) has come to the forefront as a
general analytical approach that can be directly coupled with liquid chromatography (LC) if
desired. Unfortunately, for most types of analytes, the negative ion mode often results in poorer

limits of detection (LOD) than the preferred positive ion mode.'? %

Because of high negative
voltages, the negative ion mode is more prone to corona discharge than the positive mode. This
causes the negative mode to have an increased chance for arcing events and ultimately more

122

noise resulting in unsatisfactory LODs. “© Corona discharge in the negative mode can be

controlled by using halogenated solvents and substituting more alkylated alcohols (i.e., butanol

or isopropanol) for methanol.'?*'?

Ideally, LC-ESI-MS methodologies would use more common
solvents, such as, methanol, water, and acetonitrile. Furthermore, it would be more practical to
do all ion detection in the more stable and sensitive positive ion mode. Recently, we have
developed a method for the detection of singly charged anions in positive mode ESI-MS using
only water/methanol solvents.'® This technique involves the addition of a low concentration of a

dicationic ion pairing reagent to the mobile phase. The dication pairs with the singly charged

anion, resulting in a complex possessing an overall plus one charge, which can be detected in
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the positive ion mode. The benefits of this technique include (a) the use of more practical
solvents, (b) substantial increases in the sensitivity, (c) ease of use, (d) the ability to detect
anions that fall below a trapping mass spectrometer’s low mass cutoff region, and (e) detection
of the complex at a much higher mass-to-charge region where there is far less chemical noise.
To fully take advantage of factor e alone, it is best to choose a relatively high-molecular weight
pairing agent that will result in a complex of a single positive charge. Subsequently, the
dicationic ion-pairing agent was used to determine the LODs for over 30 singly charged

126 Also in this work, it was shown for the first time that MS/MS can often be used to

anions.
further lower the LODs of these anions. Overall, this analysis showed the true ultrasensitivity of
ion-pairing by producing the lowest reported LODs for several anions by any known
technique.126 The effectiveness of over 20 dicationic ion-pairing agents was evaluated in order

to determine the structural properties that allow for low LODs."*’

A major finding in this study
was that flexibility of the dication seemed essential for good sensitivity. Therefore, the best
dicationic ion-pairing reagents cited were those which possessed a flexible alkyl chain that
linked the two cationic moieties. Recently, the ion-paring technique was extended to the use of
tricationic reagents for the detection of divalent anions.'”® The essential tricationic reagents
were found to bind divalent anions, and monitoring the complex in the positive ion mode was a
more sensitive detection method than monitoring the naked doubly charged anions in the
negative mode. However, the tricationic reagents used had a somewhat rigid trigonal structure

(for a representative structure see the bottom of Figure 4.1), which may be an undesirable

feature of an ion-pairing agent from a sensitivity standpoint.
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Figure 4.1 Structures of the tricationic ion pairing reagents used in this analysis

Recently, we devised a synthetic method to produce more flexible linear trications. In

this work, we present the use of 16 newly synthesized linear tricationic ion-pairing reagents to

determine the LOD for 11 divalent anions. Herein, we describe the differences and advantages

of using the more flexible linear trications versus the more rigid trigonal trications. Also, we
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show that MS/MS experiments can be performed on the linear trication—dianion complex and
that by monitoring a fragment of the complex, the LOD often can be dramatically lowered. This
is the first ever report of using this type of an MS/MS experiment to detect doubly charged

anions in the positive ion mode with any tricationic ion-pairing agent.

4.3 Experiment Section

Materials and the synthetic procedure for the tricationic ionic liquids are described in
literature.'? Throughout this study, a Finnigan LXQ (Thermo Fisher Scientific, San Jose, CA)
ESI-MS was used for all of the analyses. The MS was equipped with a six port injector (5 pyL
loop) and was coupled with a Finnigan Surveyor MS pump. Between the injector and the
ionization source, a Y-type mixing tee allowed for the addition of flow from a Shimadzu LC-6A
pump. It was from this pump that the tricationic ion-pairing agent was introduced to the solvent
flow. Overall, the total flow to the ESI was 400 uL/min. The MS pump accounted for 300 uL/min
(67% MeOH/33% H,0), while the LC pump applied the 40 uM trication solution in water at a
rate of 100 pyL/min. All the anions were dissolved HPLC grade water, such that their initial
concentration was 1 mg/mL. Serial dilutions were made from the stock solutions, and the anions
were directly injected using the six port injector. New stock solutions were prepared weekly, and
the injector was expected to be the largest cause for possible experimental error (+5%). The
limits of detection were determined to be when an injection at a given concentration resulted in
peaks giving a signal-to-noise ratio of 3. The ESI-MS conditions used here were the same as
those previously used and optimized for the detection of perchlorate with a dicationic reagent,
and were as follows: spray voltage,3 kV; sheath gas flow, 37 arbitrary units (AU); auxiliary gas
flow rate, 6 AU; capillary voltage,11 V; capillary temperature, 350 [J; tube lens voltage, 105 V.
When detecting the trication/dianion complex in the positive SIM mode, the SIM width was 5.

When performing the SRM experiments, the isolation widths were between 1 and 5, the
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normalized collision energy was 30, and the activation time was 30 ms. All data analysis was
performed using the Xcalibur and Tune Plus software.

4.4 Results and Discussion

In previous reports, we have shown that dicationic ion-pairing reagents can be used
to pair with singly charged anions, such that, the positively charged complex can be monitored

126, 127

in the positive mode, resulting in extremely low LODs. More recently, we demonstrated

that tricationic reagents could also be used to complex doubly charged anions, leading to much

28 Since

lower LODs for those divalent anions when detecting the complex in the positive mode.
the trications used previously had relatively rigid structures, a series of flexible ion-pairing
agents were synthesized and tested to see if they offer greater sensitivity for the detection of
anions in positive mode ESI. In addition, MS/MS of the paired ions was examined in hopes of
further lowering the LOD in many cases.

Figure 4.1 shows the structures of the 16 linear tractions used in this analysis (A1-4,
B1-4, C1-4, and D1-4). All of the 16 linear trications have the same imidazolium core. They
differ in the length of the alkyl chain (C;, Cg, C4o, and Cy,) that tethers the terminal charged
moieties to the central imidazolium as well as in the nature of the terminal charged moieties
(methylimidazolium, butylimidazolium, benzylimidazolium, and ftripropylphosphonium). By
examining this series of linear trications, we were able to observe possible advantages of
varying the chain length (i.e., flexibility) as well as determine which cationic moieties produce
the lowest LOD for the sample anions. Also shown in Figure 4.1 are the structures of two
previously reported rigid trications.'® Of these, the E1 trication was shown to be a moderately
successful pairing agent, while trication E2 was found to be the best known trigonal tricationic
ion-pairing agent.'®® The results of these two rigid trications allows for a definitive comparison to
the new flexible trications developed for this study.

Table 4.1 lists the LODs for the 11 doubly charged anions, when paired with the 16

linear trications and monitored in the positive mode. Overall, the LODs for the divalent anions
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ranged from the nanogram (ng) to the picogram (pg) level. In order to evaluate the effect of the
chain length in the linear tricationic ion-pairing reagent, one can compare the trications of the
same letter. For example, trications D1-4 differ only in the length of the hydrocarbon chain
connecting the charged moieties (Figure 4.1). In general, it appears that the common trend is
that linear trications with hexyl or decyl linkage chains gave the lowest LODs, whereas trications
with propyl or dodecyl linkages resulted in higher LODs. This trend can be easily seen by
comparing the LOD for thiosulfate when using the “D” series of linear trications. In this
comparison, the order from best to worst ion-pairing agent was found to be D3, D2, D4, and D1.
A likely explanation for this observation is that when the alkyl linkage chain is too short, the
linear trication is less flexible and not as likely to “bend” around the anion. This finding supports
our hypothesis that flexibility is a key feature in a good tricationic ion-pairing reagent. In contrast,
when the alkyl chain gets too long, the cationic moieties are too far from each other and cannot
work as a single unit when binding the anion. However, the effect of the linkage chain being too
short is far more unfavorable then it being too long. An example of this can be seen in Table 4.1,
where trication A1 with the shortest linkage chain was found to be one of the three worst ion-
pairing agents for all anions. Clearly, the results (Table 4.1 and Figure 4.1) suggest that when
using linear tricationic ion-pairing reagents, the alkyl linkage chain should be between 6 and 10

carbons in length.
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Table 4.1 Limits of detection for divalent anions with linear tricationic reagents®

sulfate thiosulfate oxalate fluorophosphate
trication | LOD (pg) | trication | LOD (pg) | trication | LOD (pg) | trication | LOD (pg)
D3 2.00x10" D3 6.25x10" C2 1.20x 10’ D4 2.50x10"
D4 7.50x 10" C2 6.25x 10" D2 3.50x 10" D3 2.63x10'
D2 1.25 x 10? B3 6.25x10" A2 8.10x10" E2 3.75x10"
B3 2.00 x 10° B2 6.25x 10" D4 1.25 % 10° D2 4.25%10"
B4 2.60 x 10° D2 7.50x10" B4 1.25 x 10° B3 9.00x 10"
C1 3.00 x 10° B4 7.50x 10" D3 2.50 x 10° C3 1.50 x 10°
B2 3.25x10° C1 8.75x10" E2 2.50 x 10° A3 2.00 x 10°
C4 3.50 x 10° D4 9.00x 10" A3 3.00 x 10° A2 2.00 x 10°
C3 3.75x10° D1 1.00 x 10° B1 3.00 x 10° D1 2.00 x 10°
Cc2 4.50 x 10° c4 1.00 x 10° B2 3.25x 10° c4 2.10 x 10°
B1 5.00 x 10° A3 1.00 x 10° C4 4.00 x 10? Cc2 2.25x10°
E2 5.00 x 10° A4 1.00 x 10° C3 4.40x10° B2 2.75 % 10°
A2 5.50 x 10° A2 1.25 x 107 C1 5.00 x 10° A4 4.50 x 10?
A4 5.75 x 10° B1 1.25 x 10° E1 5.00 x 10° B4 5.00 x 10°
A3 6.00 x 10° E2 1.25 x 107 A4 5.50 x 10° B1 8.75x 10°
D1 6.25x 10° C3 1.75 x 10° A1 6.50 x 10° C1 1.50 x 10°
E1 6.25 x 10° A1 5.00 x 10° D1 8.25x 10° A1 4.50x10°
A1 1.75%10° E1 7.50 x 10° B3 2.08x10° E1 5.00 x 10*
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Table 4.1 — Continued

dibromosuccinate hexachloroplatinate nitroprusside dichromate
trication | LOD (pg) | trication | LOD (pg) | trication | LOD (pg) | trication | LOD (pg)
D3 1.25 x 10° D2 3.50 x 10" c2 7.00 c4 3.50 x 10°
E2 1.79 x 10° B2 3.50x 10" D1 7.50 B4 3.75x 10°
D1 2.00 x 10° D1 3.75x 10" E2 7.50 C3 3.88x 10°
C1 2.75 % 10° D3 4.00x 10" C1 1.00x 10’ B3 4.25x10°
B4 3.25x 10° Cc2 5.00 x 10" D2 1.25x10' A3 5.00 x 10°
B1 3.50 x 10° B1 7.00x 10" B1 1.25x%10' D4 5.50 x 10°
B3 3.75x 10° B3 7.50 x 10" D3 2.00x 10" D3 6.25 x 10°
A3 4.50 x 10° B4 7.50 x 10" B2 2.00x 10" A4 6.25 x 10°
C3 5.00 x 10° C1 7.50 x 10" C3 2.25x 10" B1 6.25 x 10°
D4 5.00 x 10° A2 7.50x 10" B3 2.50x10" C2 6.38 x 10°
Ad 5.00% 10° E2 7.50 x 10" A2 2.50 x 10" C1 6.50 x 10°
D2 6.25x 10° C4 8.50x 10" A3 3.00x10' D2 7.50 x 10°
Cc2 7.50 x 10° D4 1.00 x 10° B4 3.25x 10" B2 7.50 x 10°
B2 7.50 x 10° C3 1.25 % 10° D4 3.75x 10" A2 7.50 x 10°
A2 2.50 x 10° A3 1.25x 10° C4 3.75x 10" D1 8.75x 10°
A1 3.00 x 10° A4 1.75 % 10° A1 3.75x 10" E2 1.00 x 10*
E1 5.00 x 10° A1 5.00 x 10° E1 4.86x10" E1 1.25x10*
C4 5.00 x 10* E1 1.58 x 10° Ad 5.00 x 10" A1 1.50 x 10*
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Table 4.1 — Continued

selenate o-benzenedisulfonate bromosuccinate
trication LOD (pg) trication LOD (pg) trication LOD (pg)
E2 7.50 x 10" E2 1.50x 10" E2 7.50 x 10"
B3 2.50 x 10° D1 1.63 %10’ c4 6.25 x 10°
C4 2.75% 10° C1 1.75%10' D3 7.50 x 10°
D3 3.75x 10° B1 2.00x 10" D1 7.50 x 10°
B1 4.00 x 10° C2 3.20x 10" Ad 8.00 x 10°
Cc2 4.25 x 10° B4 4.00x 10" C2 1.00 x 10°
C3 4.40 x 10° B2 4.00x 10" B4 1.00 x 10°
D4 5.00 x 10° D2 4.75% 10" C3 1.50 x 10°
D2 5.00 x 10° D3 6.50 x 10" D4 2.00 x 10°
C1 5.00 x 10° Ad 6.50 x 10" D2 2.25x 10°
B2 5.00 x 10° C3 7.50 x 10" A3 3.75x 10°
B4 5.25 x 10° E1 7.50x 10" B3 4.00 x 10°
Ad 5.50 x 10° D4 1.00 x 10° E1 4.99 x 10°
A3 7.00 x 10° B3 1.00 x 10° C1 5.00 x 10°
D1 7.50 x 10° A3 1.00 x 10° A2 5.00 x 10°
A2 7.50 x 10° A2 1.25 x 10° B2 5.50 x 10°
E1 1.13x10° A1 3.75x 10° B1 7.50 x 10°
A1 3.38x 10° c4 8.75x 10° A1 1.25x 10"

a: The limit of detection was determined to be the amount of analyte that resulted in S/N = 3.
Also, the data for E1 and E2 were extracted from ref'?®. Note that the bold numbered ion-pairing
agents are the two best linear trications, and the italicized ion-pairing agents are the two trigonal

trications.

By evaluation of the data for a series of trications that all have the same linkage chain

but different cationic moieties, the best terminal charged groups can be determined. Typically,

the linear trications possessing the N-benzylimidazolium (the “C” moiety) and the
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tripropylphosphonium (the “D” moiety) terminal charged groups resulted in lower LODs than the
N-methylimidazolium (the “A” moiety) or butylimidazolium (the “B” moiety) cationic groups. This
observation is shown by the LODs for oxalate when paired with the linear tricationic “2” series.
The order from best to worst ion-pairing agents was found to be C2, D2, A2, and B2. Another
example of this can be seen in the LODs for both nitroprusside and dichromate, where (from
best to worst) the order was C2, D2, B2, and A2. These results, along with the previously noted
optimum linkage chain lengths, allow for the determination that trications C2 and D3 were the
overall best tricationic ion-pairing agents. Trication C2 has hexyl linkage chains and
benzylimidazolium terminal charged groups, and trication D3 has decyl linkage chains and
tripropylphosphonium cationic moieties. Interestingly, in the three comprehensive studies we
have done on ion-pairing agent structures, the tripropylphosphonium cationic moiety is the only
one that has always resulted in a recommended ion-pairing agent.'?” "%

The other important comparison to be made with the data in Table 4.1 is the LODs
resulting from using the flexible linear trications versus the more rigid trigonal trications (E1 and
E2). As can be seen, the best linear trications, C2 and D3, rank very near the top for most of the
anions tested. However, the best trigonal trication, E2, also ranks very near the top for many of
the tested anions. From this observation, it was determined that the best linear trications and
the best trigonal trication both work well when monitoring the same divalent anions. Interestingly,
the linear and trigonal ion-pairing reagents seem to be complimentary to one another. Overall,
the best linear trication was not found to be a greatly superior ion-pairing agent when compared
to the best trigonal trication. Yet, some very useful and somewhat complimentary tricationic ion-
pairing reagents were added to our repertoire. However, if you compare trigonal trication E1
(the moderately successful trigonal trication) to the flexible linear trications, it can be seen that
trication E1 ranks near the bottom for all the anions tested. It was determined that in general,
the more flexible trications are better ion-pairing agents than the rigid trications. Obviously,

there are other factors that play a part in finding the optimum ion-pairing agent, which allow
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trication E2 to work as well as the linear trications. Perhaps the most important factor is that it

contains the highly favorable tripropylphosphonium moiety.
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Figure 4.2 Comparison of the detection of sulfate in the positive mode using tricationic ion-
pairing reagents D3 (l) and E2 (Il)

Figure 4.2 illustrates the benefits of using a linear trication versus a trigonal trication for
the detection of sulfate in the positive mode. In both detection scenarios, the same
concentration of sulfate was injected (500 pg). In the upper panel (I), the ion-pairing agent was
the best linear trication D3, and in the lower panel (I) the best trigonal trication E2 was used. It
is apparent that the linear trication resulted in superior detection of sulfate, with a signal-to-noise
7 times greater than that for the trigonal trication. It should be noted that sulfate itself has a
mass-to-charge ratio of —48, thus falling below the low mass cutoff of our MS instrument and

rendering itself undetectable in the negative mode.
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Another facet of this study was to show that single reaction monitor (SRM) experiments
could be performed on the trication—anion complex and that by monitoring a positively charged
fragment of the complex, lower LODs for the divalent anions could be achieved. The key part of
this type of experiment is to find the proper fragment to monitor. In many cases the
fragmentation was the same but not always. Figure 4.3 shows a proposed fragmentation pattern
for the more commonly observed disassociation of a trication D3—-dianion complex. As is shown
by Figure 4.3, collision induced disassociation (CID) typically resulted in a singly charged alkyl
linked phosphonium imidazole, which had a mass-to-charge ratio of 367.4. Monitoring this

fragment can lead to a decrease in the LOD for the anion that was part of the parent complex.
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Figure 4.3 Proposed fragmentation pattern for a typical SRM experiment using trication D3
Table 4.2 lists the results for the SRM experiments that were performed in this analysis.
Trications D3 and C2 were paired with 11 divalent anions and tested for their LOD using the
SRM method. For comparison, the SIM results are listed next to the SRM results. As can be
seen, the SRM mode often resulted in lower LODs than the SIM mode. There were two analytes

(D3/bromosuccinate and C2/oxalate) that showed no improvement, but in general there was
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nearly an order of magnitude improvement when using the SRM mode. In three cases, the SRM
mode resulted in a 2 orders of magnitude decrease in the LOD. One of these cases was the
detection of nitroprusside using trication C2 as the ion-pairing agent and employing the SRM
mode. For this system, the LOD for nitroprusside was determined to be 50 fg, which is the
lowest LOD for any mono- or divalent anion that has been tested to date. Clearly this is a very

facile and sensitive method.
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Table 4.2 Comparison of LODs in the SIM positive and SRM positive modes

trication D3 trication C2
SIM LOD |SRM LOD SIM LOD |SRM LOD
SRM mass SRM mass
(Pg) (P9) (P9) (Pg)
sulfate 2.00x10"' |1.50x10" | 367.4 |4.50x10°|3.00x10*°| 309.2
thiosulfate 6.25x10" [5.00x107"| 367.4 |6.25x10"'|3.50x10" | 309.2
oxalate 250%x10°|1.00x10° | 367.4 |1.20x10"|7.50x10"'| 549.2

fluorophosphate |2.63x10'|2.05%x10" | 367.4 |[2.25x10°[1.00%x10°| 309.2

dibromosuccinate |1.25x10°|1.25x10" | 745/747 |7.50x10° [2.00x 10" | 629/631

hexachloroplatinate |4.00x10" |  4.50 1003.5 |5.00x10"' [2.00x10"| 889.4

nitroprusside 2.00x 10’ 3.50 853.5 7.00 |5.00x107%| 737.4

dichromate 6.25x10° | 5.75%x10°| 367.4 |6.38x10°|3.00x10°| 643.4

selenate 3.75x10°| 2.00 367.4 |4.25x10%(6.00x10"| 309.2

o-Benzenedisulfonate |6.50% 10" [ 1.00x10" | 367.4 [3.20x10'|3.75%x10"' | 309.2

bromosuccinate |7.50x 10% | 1.00x10° | 745/747 [1.00x10° | 1.00x 10° | 629/631

Also, listed in Table 4.2 are the SRM fragment masses that were monitored. As noted
previously, many complexes produce the same 367.4 fragment for trication D3 and the 309.2

fragment for trication C2. However, it was observed that there are some trication/dianions that
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follow different disassociation pathways. For example, the trication D3-hexachloroplatinate
complex produced a fragment with a mass-to-charge ratio of 1003.5. This fragment corresponds
to the loss of one chlorine atom from the hexachloroplatinate, while the overall cation—anion
complex remained intact. A similar effect was seen with the SRM detection for nitroprusside.
Here, nitroprusside loses a nitro group and still stays complexed with the trication. For these
cases, it is interesting to see that the noncovalent trication—dianion complex remains intact,
while covalent bonds have been broken. One more example of this type of fragmentation was
for bromine containing anions. Here the central imidazolium loses its acidic proton (in the 2
postion of the imidazolium ring) and becomes a dication. This dication then complexes with a
bromide anion that was lost from the dianion. This means that for any bromine containing
dianions, the same fragment could be monitored (m/z 745/747 for D3 and m/z 629/631 for C2).
It should be noted that although the LODs for the 11 divalent anions in SIM and SRM
are already quite low, they could be lowered further by completely optimizing the conditions for
a particular complex. In this analysis, one general set of conditions were used for the entire
study. Previously, we have shown that the LODs can be further decreased by a factor of 3-10
with individual optimization.'*"® Finally, the use of some other types of MS systems (triple

quad, etc.) with this technique can further reduce detection limits.

4.5 Conclusion
A total of 16 newly synthesized linear tricationic ion-pairing agents were evaluated for
their ability to detect doubly charged anions in positive mode ESI-MS. It was found that for
linear trications, the optimum alkyl chain lengths coupling the cationic moieties should be
between 6 and 10 carbons in length. It was determined that the best cationic moieties were
tripropylphosphonium and benzylimidazolium. In comparison to previously reported rigid
tricationic ion-pairing agents, the flexible linear trications presented here generally make better

MS ion-pairing agents. It was shown that when the same amount of sulfate was injected, the
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signal-to-noise ratio when using the best linear trication was 7 times greater than when using
the best trigonal trication. However, it was found that trigonal trication E2 remained useful as it
was often complementary to the linear trications. Lastly, 1-3 orders of magnitude decreases in

the LODs were found when using SRM.
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CHAPTER 5

LINEAR TRICATIONIC ROOM-TEMPERATURE IONIC LIQUIDS: SYNTHESIS,

PHYSIOCHEMICAL PROPERTIES, AND ELECTROWETTING PROPERTIES

The synthesis of all the ILs and viscosity tests were shared by me and Eranda. Eranda took all

the NMRs and elemental analysis. The electrowetting experiments were done by Yasith.

5.1 Abstract
Efficient and facile synthesis of novel linear tricationic room-temperature ionic liquids
was performed, and their physiochemical properties were determined. Different physiochemical
properties were observed according to the structural variations such as the cationic moiety and
the counteranion of the ionic liquid. The electrowetting properties of these ionic liquids were also
investigated, and linear tricationic ionic liquids were shown to be advantageous as effective

electrowetting materials due to their high structural flexibility.

5.2 Introduction
Room-temperature ionic liquids (RTILs) are a class of salts that are liquids at or near
room temperature.130 Recently RTILs have attracted much attention in academic research and
industry, since they have shown profound advantages in the context of green chemistry and

have great technological potential.'"®

Recently monocationic, dicationic, and tricationic ionic
liquids have been used extensively in the field of analytical chemistry as ion-pairing reagents for
the ultra trace detection of anions in the positive mode of electrospray ionization mass

spectrometry (ESI-MS),"**"** high thermal stability gas chromatographic (GC) stationary
65



136-139 140 141-143

phases, capillary electrophoresis (CE), ™ and electrowetting applications. We have

recently reported the synthesis and physiochemical properties of a series of dicationic and

138, 144, 145

tricationic ionic liquids. These reported ILs possessed good thermal stabilities and

higher viscosities in comparison to monocationic ILs. 67

Moreover, it was shown by Payagala
et al. that physicochemical properties such as viscosity, density, thermal stability, melting point,
and solubility behaviors can be varied (tuned) to a greater extent in multicationic ILs than in the

138, 144,145 However, the

conventional ILs by changing the cation type, linkage chain length, etc.
tuning capability for trigonal tricationic ILs'*® was lower than that of linear dicationic ILs."** This
was because, in most of the trigonal ILs synthesized, there were only two methylene moieties
between the rigid trigonal core and the three pendant cationic moieties. The rigid trigonal
geometry and the existence of three charge-carrying moieties in close proximity resulted in high
apparent polarity and relatively high melting salts. On the basis of these observations, it was
concluded that, for multicationic ILs, the linear geometry would give the best tunability in terms
of physicochemical properties and the highest probability of forming RTILs.

The interesting physicochemical properties of the ILs have led to their use in
applications  involving electrowetting on dielectric-based  microfluidic  devices.'*'*?
Electrowetting (EW) is the decrease in contact angle when an external voltage is applied across
the solid/liquid interface. Simple EW which utilizes a metal base to hold the droplet is often
associated with the drawback of droplet instability with change of the voltage, whereas
electrowetting on a dielectric solid (e.g., Teflon) produces stable and reversible droplet shape
with changes in the voltage.148 Since reversibility of the droplet shape with a change in voltage
is an important factor in microfluidic devices, electrowetting on dielectric (EWOD) has shown
greater success in applications such as fluid lens systems, electrowetting displays, optical filters,
paint drying, micromotors, electronic microreactors, and controlling fluids in multichannel

148-152

structures. Water or aqueous electrolytes are used in nearly all EWOD devices. Water-

based systems are known to create complications due to their evaporation, low thermal stability,
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and tendency to contribute to corrosion in integrated electronics.®

The unique properties of
RTILs, including negligible vapor pressure, ultra high stability over a wide temperature range,
and large electrochemical windows, ' make them ideal in EWOD applications over traditional
aqueous or electrolyte solutions. Recently a detailed study was carried out to find the
electrowetting properties of traditional and multifunctional ILs."""** These EWOD-based micro
reactors and micro extraction devices have been used in various scientific areas. Dubois et al.
demonstrated the use of IL droplets as electronic microreactors on open digital microfluidic

153 Also, Chatterjee et al. recently demonstrated that ILs can be used in digital microfluidic

chips.
devices."™ Moon et al. used ILs in an EWOD-based micro heat transfer device, and Kunchala
et al. used an IL in a EWOD-based liquid-liquid extraction device."®

The contact angle 6 between a dielectric surface and an ionic liquid droplet under an
external voltage of V is derived from a combination of Young’s and Lippmann’s equations (eq
5.1).141‘ 2 Here, ¢ is the capacitance per unit area (specific capacitance), € is the relative
permittivity of the dielectric layer (dielectric constant), ¢, is the permittivity of a vacuum, vy is the
surface tension of the liquid, t is the thickness of the dielectric layer, 6 is the contact angle at the
designated voltage across a dielectric layer, and 6, is the contact angle at zero voltage. As the
voltage increases, the contact angle also increases according to eq 5.1. After a certain point,
the contact angle starts to deviate from regular behavior with increasing voltage. The voltage
and corresponding contact angle where this occurs is referred to as the saturation voltage and

saturation angle, respectively. According to eq 5.1, a plot of contact angle versus applied

voltage should give a parabolic graph, as shown in Figure 5.1.

E€,

12

g — oo
cos ) = cos, + zvlf“ cos 6, + 2yt

Equation 5.1
Our previous studies have shown the use of a series of RTILs in EW experiments and a

correlation between contact angle variation and the structure of the ionic liquid (IL).
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Monocationic, dicationic, and tricationic ILs were used in those experiments. The trigonal
tricationic ILs in our previous study were of trigonal geometry and, hence, had a relatively rigid
structure.*®

In this study, we report the synthesis and physiochemical properties and electrowetting
properties of linear tricationic ionic liquids (LTILs) for the first time. Furthermore, we explore the

electrowetting properties and their correlation with structural flexibility.

AN Contact Angle
Saturation
- Point
e
-
Voltage

Figure 5.1 Plot of contact angle vs voltage according to Young’s and Lippmann’s equation.

5.3 Experimental Section

The structures of the LTILs synthesized are illustrated in Figure 5.2, and Scheme 5.1

illustrates the synthesis of the core structure. All TH NMR, 13C NMR (data reported are for
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bromide salts), and 31P NMR spectra were recorded at 295 + 1 K on JEOL Eclipse 300 MHz
spectrometer. All NMR spectra were recorded in deuterated dimethylsulfoxide and the chemical
shifts were measured relative to residual nondeuterated solvent resonances. Electrowetting
experiments were conducted by using a slightly modified contact angle goniometer
(www.ksvltd.com, Monroe, CT). Elemental analysis was performed on a Perkin-Elmer 2400

CHN analyzer.

5.3.1 Materials

The reagents required for synthesis included anhydrous dimethylformamide, anhydrous
acetonitrile, anhydrous tetrahydrofuran, sodium imidazole, 1,3-dibromopropane, 1,6-
dibromohexane, 1,10-dibromodecane, 1-methylimidazole, 1-butylimidazole, 1-benzylimidazole,
and tripropylphosphine, which were purchased from Sigma-Aldrich (Milwaukee, WI). All
chemicals were of reagent grade and were used without further purification. For column

chromatography, silica gel 60 A (Sorbent Technologies, Inc.; 200-425 mesh) was used.

@ @
R\/\\/\\/\/\/\@)//\ AN NSNS SUR R=(@) NN~
NN \—/
\—/ ) =
2 10 C units 14.0 A ® N7N

N
©) @ c) N“ N
R\/\/\/\(S%N/\/\/\IR © —/ /\Q

\—/ - (d)
3 6 Cunits 8.9 A

4 3Cunits 4.1 A

Figure 5.2 Structures of linear tricationic ionic liquids.
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Scheme 5.1 Synthesis of LTIL with R-substituted imidazole as the charge-carrying moiety

5.3.2 Procedure for the synthesis of the core structure 1-(bromodecyl)-3-
(bromodecyl)imidazolium bromide Salt (1a)

Sodium imidazole (1.0 g, 12.1 mmol) in 20 mL of anhydrous DMF was added slowly to
a solution of dibromodecane (18.2 g, 60.5 mmol) in 100 mL of anhydrous DMF by using a
syringe pump over a period of 3 h at room temperature. After completion of the addition, the
reaction mixture was heated to 70 °C for 12 h. Then DMF was evaporated under vacuum and
the resulting crude material was washed with hexane (5 x 100 mL) to remove excess
dibromoalkane. At this point the resulting crude product was subjected to column
chromatography using CH;OH/CH.ClI, (1:9) as the eluent system. The purified product was then
dried under vacuum overnight to give the desired product in 65% yield. Brown liquid. 'H NMR
(300 MHz, DMSO-ds): 6 9.21 (s, 1H), 7.80 (d, J = 1.7 Hz, 2H), 4.15 (t, J = 7.0 Hz, 4H), 3.51 (t, J
= 7.0 Hz, 4H), 1.77 (m, 8H), 1.33 (m, 4H), 1.24 (br s, 20H). °C NMR (75 MHz, DMSO-dg): &
136.4, 123.0, 49.4, 35.8, 32.7, 29.7, 29.2, 28.8, 28.6, 28.0, 25.9. Anal. Calcd for C,3H,3Br3N,: C,
47.04; H, 7.38; Br, 40.82; N, 4.77. Found: C, 47.08; H, 7.42; N, 4.81. ESI-MS (m/z): calcd

507.41 (M"), found 507.25.

5.3.3 Procedure for the synthesis of the core structure 1-(bromohexyl)-3-
(bromohexyl)imidazolium bromide Salt (1b)

This compound was prepared by a procedure similar to that described above for 1a.
Sodium imidazole (1.0 g, 12 mmol) in 20 mL of anhydrous DMF was added slowly to a solution
of dibromodecane (14.8 g, 60.5 mmol) in 100 mL of anhydrous DMF by using a syringe pump

over a period of 3 h at room temperature. After completion of the addition, the solution was
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stirred for an additional 12 h. Then DMF was evaporated under vacuum and the resulting crude
material was washed with hexane (5 x 100 mL) to remove excess dibromoalkane. At this point
the resulting crude product was subjected to column chromatography using CH3;0OH/CH,CI, (1:9)
as the eluent system. The purified product was then dried under vacuum overnight to give the
desired product in 72% yield. Brown liquid. 'H NMR (300 MHz, DMSO-ds): 6 9.38 (s, 1H), 7.84
(s, 2H), 4.18-4.13 (t, J = 7.2 Hz, 4H), 3.50-3.46 (t, J = 6.5 Hz, 4H), 1.81-1.70 (m, 8H),
1.41-1.31 (m, 4H), 1.25-1.15 (m, 4H). °C NMR (75 MHz, DMSO-ds): 5 136.48, 122.94, 60.93,
49.29, 32.69, 29.87, 25.86, 25.34. Anal. Calcd for C4sH,7Br3sN,: C, 37.92; H, 5.73; N, 5.90.

Found: C, 37.93; H, 5.80; N, 5.95. ESI-MS (m/z): calcd 475.10 (M"), found 475.10.

5.3.4 Procedure for the synthesis of the core structure 1-(bromopropyl)-3-
(bromopropyl)imidazolium bromide salt (1c)

This compound was prepared by a procedure similar to that for 1b. 'H NMR (300 MHz,
DMSO-ds): & 9.27 (s, 1H), 7.83 (d, J = 1.4 Hz, 2H), 4.28 (t, J = 7 Hz, 4H), 3.54 (t, J = 7 Hz, 4H),
2.37 (m, 4H). °C NMR (75 MHz, DMSO-ds): & 136.4, 122.9, 49.3, 29.9, 29.2, 28.9, 20.4, 19.8,
15.9, 15.2. Anal. Calcd for CgH45BrsN,: C, 27.65; H, 3.87; Br, 61.32; N, 7.17. Found: C, 27.68; H,

3.92; N, 7.20. ESI-MS (m/z): calcd 311.04 (M"), found 311.00.

5.3.5 Procedure for the synthesis of LTILs 2a—d, 3a—d, and 4a—-d

All the reactions were carried out in tetrahydrofuran (THF), except for 4a—d, for which
acetonitrile (ACN) was used as the reaction solvent. The linear core structures 1a—c (1 equiv in
THF or ACN) were reacted with 2.5 equiv of methylimidazole, butylimidazole, benzylimidazole
or tripropylphosphine under reflux over 36—-48 h (phosphonium ILs need to be reacted for 48 h).
Then the solvent was removed in vacuo and the resulting thick liquid or solid was dissolved in
5-10 mL of deionized water. The aqueous layer was then washed with ethyl acetate (6 x 100
mL), and water was removed in vacuo. The final product as the bromide salt was then dried

under high vacuum (75-85% yield).
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Final products were synthesized through a metathesis reaction of the bromide salts
with lithium trifluoromethanesulfonimide (LiNTf;), sodium tetrafluoroborate (NaBF,), and lithium
trifluoromethanesulfonate (LiTfO) according to the previously published procedure.144 Elemental

analysis were all measured by

5.3.5.1 1-(1-Methyl-3'-decylimidazolium)-3-(1"-methyl-3"-decylimidazolium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (2a)

'H NMR (300 MHz, DMSO-ds): & 9.15 (s, 1H), 9.08 (s, 2H), 7.78 (d, J = 1.4 Hz, 2H),
7.75 (t, J = 1.4 Hz, 2H), 7.69 (t, J = 1.4 Hz, 2H), 4.14 (t, J = 7.2 Hz, 8H), 3.84 (s, 6 H), 1.65-1.80
(m, 8H), 1.24 (br s, 26H). *C NMR (75 MHz, DMSO-ds): 5 137.2, 136.4, 124.1, 122.9, 122.8,
49.3, 49.2, 36.3, 29.9, 29.3, 28.9, 26.06. '°F NMR (282 MHz): & -78.6. Anal. Calcd for
Ca7HssF1sNgO1,Se: C, 32.86; H, 4.10; N, 9.32. Found: C, 32.89; H, 4.15; N, 9.38. ESI-MS (m/z):

calcd 170.48 (M*"), found 170.50.

5.3.5.2 1-(1'-Butyl-3'-decylimidazolium)-3-(1"-butyl-3"-decylimidazolium)imidazolium  Tris[bis
((trifluoromethyl)sulfonyl)imide] (2b)

'H NMR (300 MHz, DMSO-dg): 8 9.17 (s, 1H), 9.15 (s, 2H), 7.80-7.77 (m, 6H),
4.18-4.11 (q, J = 6.8 Hz, 12H), 1.81-1.74 (m, 12H), 1.30-1.18 (br s, 28H), 0.89 (t, J = 7.5 Hz,
6H). °C NMR (75 MHz, DMSO-ds): 3 136.5, 122.9, 122.8, 49.3, 49.0, 31.8, 29.8, 29.2, 28.8,
26.0, 19.3, 13.8. "°F NMR (282 MHz): 5 ~78.6. Anal. Calcd for CssHerF1sNgO1,Ss: C, 35.95; H,
4.70; N, 8.78. Found: C, 35.50; H, 4.65; N, 8.80. ESI-MS (m/z): calcd 198.51 (M**), found

198.58.

5.3.56.3 1-(1-Benzyl-3'-decylimidazolium)-3-(1"-benzyl-3'-decylimidazolium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (2¢)

'H NMR (300 MHz, DMSO-dg): 8 9.25 (s, 2 H), 9.12 (s, 1H), 7.79-7.75 (m, 6H), 7.38 (d,
J=1.7 Hz, 10H), 5.38 (s, 2H), 4.14 (q, J = 7.0 Hz, 8H), 1.79-1.72 (m, 8H), 1.20 (br s, 24H). °C

NMR (75 MHz, DMSO-ds): 6 136.6, 136.4, 135.4, 129.5, 129.3, 128.7, 123.3, 123.1, 122.9, 52.4,
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49.5, 29.8, 29.3, 28.8, 26.1. '°F NMR (282 MHz): & -78.6. Anal. Calcd for CagHgsF1sNO12S6: C,
39.12; H, 4.22; N, 8.38. Found: C, 39.18; H, 4.26; N, 8.42. ESI-MS (m/z): calcd 221.17 (M*),

found 221.25.

5.3.5.4 1-(Decyltripropylphosphonium)-3-(decyltripropylphosphonium)imidazolium Tris[bis((tri-
fluoromethyl)sulfonyl)imide] (2d)

'H NMR (300 MHz, DMSO-dg): 5 9.33 (s, 1H), 7.83 (d, J = 1.4 Hz, 2H), 4.18 (t, J = 7.2
Hz, 4H), 2.17-2.10 (m, 18H), 1.77-1.73 (m, 18H), 1.37-1.22 (m, 20H), 0.98 (t, J = 7.0 Hz, 18H).
3C NMR (75 MHz, DMSO-dg): & 136.4, 122.9, 49.3, 29.9, 29.3, 28.8, 26.1, 21.24, 20.4, 19.8,
18,5, 17.9, 15.9, 15.2. "®F NMR (282 MHz): & -78.6. Anal. Calcd for Cs7HgsF1sNgO1.P2Ss: C,
37.42; H, 5.68; N, 4.64. Found: C, 37.75; H, 5.70; N, 4.68. ESI-MS (m/z): calcd 222.54 (M*"),

found 222.56.

5.3.5.5 1-(1'-Methyl-3"-hexylimidazolium)-3-(1"-methyl-3"-hexylimidazolium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (3a)

"H NMR (300 MHz, DMSO-ds): 5 9.50 (s, 1H), 9.35 (s, 2 H), 7.86 (s, 2H), 7.84 (s, 2H),
7.73 (s, 2H), 4.17 (m, 8H), 3.84 (s, 6H), 1.77 (m, 8H), 1.24 (m, 8H). "*C NMR (75 MHz, DMSO-
ds): & 137.07, 136.57, 124.09, 122.96, 122.82, 49.15, 49.08, 36.35, 29.63, 29.56, 25.32. "°F
NMR (282 MHz):  -78.6. Anal. Calcd for CagHsoF1sNgO1,Se: C, 28.09; H, 3.17; N, 10.17. Found:

C, 28.11; H, 3.20; N, 10.20. ESI-MS (m/z): calcd 133.10 (M*"), found 133.10.

5.3.5.6 1-(1'-Butyl-3'-hexylimidazolium)-3-(1"-butyl-3"-hexylimidazolium)imidazolium  Tris[bis
((trifluoromethyl)sulfonyl)imide (3b)

"H NMR (300 MHz, DMSO-dg): & 9.47 (s, 1H), 9.43 (s, 2H), 7.86 (s, 4H), 7.84 (s, 2H),
417 (t, J = 7.2 Hz, 12 H), 1.79-1.72 (m, 12 H), 1.24-1.17 (m, 12H), 0.85 (t, J = 7.2 Hz, 6H). "°C
NMR (75 MHz, DMSO-ds): 5 136.56, 122.94, 49.17, 49.07, 31.84, 29.57, 25.32, 19.32, 13.84.
F NMR (282 MHz): 5 -78.6. Anal. Calcd for CasHsiF1gNgO1.Ss: C, 31.75; H, 3.88; N, 9.52.

Found: C, 31.78; H, 3.90; N, 9.55. ESI-MS (m/z): calcd 161.14 (M**), found 161.10.
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5.3.5.6 1-(1'-Benzyl-3'-hexylimidazolium)-3-(1"-methyl-3"-hexylimidazolium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (3c)

'H NMR (300 MHz, DMSO-dg): 5 9.52 (s, 1H), 9.44 (s, 2H), 7.85 (s, 6H), 7.44-7.34 (m,
10H), 5.45 (s, 4 H), 4.19-4.15 (m, 8H), 1.77 (s, 8H), 1.24 (m, 8H). °C NMR (75 MHz, DMSO-
ds): 0 136.68, 135.49, 129.53, 129.43, 128.86, 123.37, 123.05, 122.98, 52.34, 49.31, 49.17,
29.60, 29.53, 25.35. "°F NMR (282 MHz): & -78.6. Anal. Calcd for C4H47F1gNgO1,Se: C, 35.37;
H, 3.40; N, 9.05. Found: C, 35.39; H, 3.45; N, 9.10. ESI-MS (m/z): calcd 183.79 (M3+), found

183.85.

5.35.7 1-(Hexyltripropylphosphonium)-3-(hexyltripropylphosphonium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (3d)

'H NMR (300 MHz, DMSO-ds): & 9.55 (s, 1H), 7.87 (s, 2H), 4.21 (t, J = 6.9 Hz, 4H),
2.24-2.12 (m, 16H), 1.85-1.75 (m, 4H), 1.56-1.26 (m, 24H) 1.00-0.95 (t, J = 6.8 Hz, 18H). '°C
NMR (75 MHz, DMSO-ds): 5 136.62, 122.98, 49.22, 29.55, 25.32, 21.09, 20.53, 19.91, 15.96,
15.74, 15.34. "°F NMR (282 MHz): 5 -78.6. Anal. Calcd for CagHegF1sNsO12P,Sg: C, 33.55; H,
4.98; N, 5.02. Found: C, 33.60; H, 5.00; N, 5.05. ESI-MS (m/z): calcd 185.16 (M*"), found

185.25.

5.3.56.8 (1'-Methyl-3"-propylmidazolium)-3-(1"-methyl-3"-propylimidazolium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (4a)

'H NMR (300 MHz, DMSO-dg): 5 9.50 (s, 1H), 9.32 (s, 2H), 4.31-4.25 (m, 8H), 3.87 (s,
6H), 2.46-2.42 (m, 4H). *C NMR (75 MHz, DMSO-dg): & 137.1, 123.0, 49.6, 26.0, 22.1, 20.4,
19.8, 15.9, 15.7, 15.3. "°F NMR (282 MHz): & -78.6. Anal. Calcd for Cp3H,7F1sNg01,S6: C, 23.90;
H, 2.35; N, 10.91. Found: C, 23.92; H, 2.40; N, 10.97. ESI-MS (m/z): calcd 105.07 (M*"), found

105.17.
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5.3.5.9 1-(1'-Butyl-3"-propylimidazolium)-3-(1"-butyl-3"-propylimidazolium)imidazolium Tris[bis
((trifluoromethyl)sulfonyl)imide] (4b)

'H NMR (300 MHz, DMSO-dg): & 9.50 (s, 1H), 9.43 (s, 2H), 7.90-7.84 (m, 6H),
4.32-4.29 (m, 8H), 4.19 (t, J = 7.2 Hz, 4H), 2.48-2.43 (m, 4H), 1.81-1.76 (m, 4H), 1.31-1.23
(m, 4H), 0.90 (t, J = 7.2, 6H). "*C NMR (75 MHz, DMSO-ds): & 137.1, 136.8, 49.2, 46.4, 31.7,
29.9, 19.3, 13.8. "°F NMR (282 MHz): & -78.6. Anal. Calcd for CagHsgF1sNsO12PSe: C, 28.09; H,
3.17; F, 27.58; N, 10.17. Found: C, 28.09; H, 3.22; N, 10.20. ESI-MS (m/z): calcd 133.19 (M*"),

found 133.17.

5.3.5.10 1-(1'-Benzyl-3'-propylmidazolium)-3-(1"-benzyl-3"-propylimidazolium)imidazolium Tris
[bis((trifluoromethyl)sulfonyl)imide] (4c)

'H NMR (300 MHz, DMSO-dg): 8 9.52 (s, 2H), 9.48 (s, 1H), 7.48-7.38 (m, 10H), 5.47 (s,
4H), 4.29 (q, J = 5.8 Hz, 8H), 2.45 (m, 4H). °C NMR (75 MHz, DMSO-dg): 5 137.2, 123.0, 62.5,
49.4, 26.0, 22.1, 20.5, 19.9, 16.1, 15.9, 15.3. "°F NMR (282 MHz): 5 -78.6. Anal. Calcd for
C3sH3sF138NgO12Ss: C, 32.14; H, 2.70; N, 9.64. Found: C, 32.14; H, 2.78; N, 9.65. ESI-MS (m/z):

caled 155.76 (M**), found 155.75.

5.3.5.11 1-(Propyltripropylphosphonium)-3-(propyltripropylphosphonium)imidazolium  Tris[bis
((trifluoromethyl)sulfonyl)imide] (4d)

'H NMR (300 MHz, DMSO-ds): & 9.12 (s, 1H), 7.84 (s, 2H), 4.24 (t, J = 6.8, 4H),
2.23-2.21 (m, 20H), 0.57-1.47 (m, 12H), 1.04-1.00 (m, 12H), 1.04 (t, J = 7.2 Hz, 18H). °C
NMR (75 MHz, DMSO-ds): & 137.9, 123.0, 62.5, 49.6, 26.0, 22.1, 20.4, 19.8, 15.9, 15.3. °F
NMR (282 MHz): & -78.6. Anal. Calcd for CasHsrF1gNsO12P»Se: C, 30.21; H, 4.38; N, 5.34.

Found: C, 30.22; H, 4.44; N, 5.34. ESI-MS (m/z): caled 157.13 (M**), found 155.17.

5.3.6 Glass transition temperature/melting point
The thermal measurements were performed with a differential scanning calorimeter

(DSC, PerkinElmer Diamond DSC, 710 Bridgeport Ave., Shelton, CT). The Diamond DSC was
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calibrated using an indium primary standard, with solid—solid transitions for cyclohexane and
ethylbenzene as supplementary low-temperature standards. IL samples (5—-10 mg) were sealed
in aluminum pans, and an empty aluminum pan was used as reference. The measurements
were carried out in the temperature range of —120 °C to a predetermined temperature. The
samples were sealed in aluminum pans and then heated and cooled at a scan rate of 10 °C
min~" under a flow of nitrogen. For solid compounds, the melting points were verified using a

Mel-Temp capillary melting point apparatus (Cambridge, MA).

5.3.7 Density
The densities of the ionic liquids were determined at 23 + 1 °C with a Kimble Glass

specific gravity pycnometer (Vineland, NJ).

5.3.8 Refractive index
Refractive index measurements were conducted at 23 £ 1 °C using a Bausch & Lomb

Abbe-3L refractometer.

5.3.9 Viscosity
Kinematic viscosities were determined at 30 + 1 °C using a Cannon-Manning semi-

micro capillary viscometer (State College, PA).

5.3.10 Thermal stability analysis

Thermogravimetric analysis (TGA) was done using a TGA 2050 instrument (TA
Instruments Inc., Thermal Analysis & Rheology, New Castle, DE). Samples (ca. 20 mg) were
placed on the platinum pans and heated at 10 °C min™" from room temperature to 600 °C under
a dynamic nitrogen atmosphere. The decomposition temperatures were reported as the

temperatures of 1%, 5%, and 50% weight loss of the sample.
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5.3.11 Electrowetting Experiments
Electrowetting experiments were conducted by using a slightly modified contact angle

goniometer (www.ksvltd.com, Monroe, CT). Figure 5.3 shows the arrangement for the

electrowetting experiment. Indium tin oxide (ITO, 30 nm thickness) precoated unpolished float

glass slides (www.delta-technologies.com, Stillwater, MN) were used as purchased. They were

dip-coated in a 4% (w/v) Teflon AF1600 (www2.dupont.com, Wilmington, DE) in Fluoroinert

FC75 solvent (www.fishersci.com, Barrington, IL) solution. The dipping speed was

approximately 0.78 + 0.03 mm s in a custom-made dipcoater. Only three-fourths of the slide
was dipped in the solution; then the movement was stopped for 5 s, and after that the slide was
raised at the same speed. The coated slides were kept in an oven at 112 °C for 6 min, at
165 °C for 5 min, and at 328 °C for 15 min. Once Teflon-coated glass slides were taken out
from the oven, they were allowed to reach room temperature. Then they were washed
thoroughly with acetone and deionized water followed by air drying. A capillary tube was used to

place a drop of IL on top of the Teflon layer. CAM 200 software (www.ksvltd.com, Monroe, CT)

was used to calculate the drop volume; it was between 5 £ 2 L for all experiments. A Keithley

2400 SourceMeter (www.keithley.com, Cleveland, OH) was used to apply voltage in 5 V

increments from 0 to +70 V. The positive probe was connected to the Pt wire, and the negative
probe was connected to the ITO layer (see Figure5.3). Afterward, the above procedure was
repeated for 0 to =70 V for a fresh drop of IL placed at a different position on the surface. At
each voltage increment a picture was taken and then CAM 200 software was used to measure

corresponding contact angles. Finally, the contact angle versus voltage curves were plotted.
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Figure 5.3 Electrowetting experimental setup. Here, v, ysy, and ys_ are the interfacial tensions
associated with the liquid/vapor, solid/vapor, and solid/liquid interfaces.

All tested ILs were kept in a vacuum oven at room temperature overnight with

phosphorus pentoxide (P,Os) to minimize the water content.

5.4 Results and discussion

The synthetic strategy involved in these linear tricationic ILs was different from
previously reported ionic liquids for the following reasons. (1) Core 1 (Scheme 5.1) was
designed and synthesized in-house. It was separated and isolated from the dicationic and
polycationic impurities that were formed during the reaction, by running through a flash
chromatography column (SiO, 60 A, CH,CI,/CH3;OH 1:9). (2) In previous dicationic and trigonal
tricationic IL syntheses, isopropyl alcohol was used as the reaction solvent in most cases.'?®
'*® However, when alcohols were used, the basic imidazole tended to deprotonate the alcohol,
enabling unwanted nucleophilic substitution reactions."® This complicated the separation of the

pure LTILs from the reaction mixture. Therefore, the solvent used in the synthesis of Core 1 was

dimethylformamide (DMF). This was because DMF dissolved sodium imidazole (NalM) and it
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minimized the side reactions that take place with protic solvents. Other reaction solvents for the
synthesis of ILs involving imidazolium moieties were found to be acetonitrile (ACN) and
tetrahydrofuran (THF). However, isopropyl alcohol can be used as the solvent in reactions
involving tripropylphosphonium, which has a weakly nucleaphilicity character compared to
imidazole.

In this study, 14 linear tricationic ionic liquids were synthesized and their
physicochemical properties were investigated. The results are given in Table 5.1. Phase
transition temperatures, including glass transition temperatures (Tg), were determined using
differential scanning calorimetry (DSC). LTILs show significantly lower glass transition
temperatures (except for 4d) compared to many other types of ILs in the literature, such as

138,144,145 It has been shown for most dicationic ILs that when the

symmetrical dicationic ILs.
chain length is smaller than three methylene units, the IL becomes solid regardless of other
structural changes."® However, we found that LTILs with C3 linkage chains (4a—c) (Figure 5.1)
do exist as RTILs when the counteranion is bis(trifluoromethylsulfonyl)imide (NTf, ). This can be
explained by the relative flexibility of the LTILs. Unlike trigonal tricationic ILs, the LTILs have
greater conformational degrees of freedom which help to minimize charge repulsion interactions.
" The T, values are mainly governed by the size and charge distribution of the anion and/or
cation.'® According to the literature, most ILs containing NTf, are observed to be liquids at

138, 144, 145,159, 158, 160, 161

room temperature. When the negative charge carrying moiety is a halide,

X (X =F,CI,Br, ), BF,, TfO (trifluoromethanesulfonate), or PF¢ ", the ILs tend to have
higher melting points.m’ 144,145

The LTILs with methylimidazolium charge carrying moieties 2a-4a showed the lowest
melting temperatures of the series. According to the melting point data in Table 5.1, the
butylimidazole cationic moiety produces ILs with higher melting points compared to the
methylimidazole moiety. This is probably because of the butyl group’s greater van der Waals

interactions. Relatively higher melting temperatures were observed when the IL incorporated
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the benzylimidazole moiety, mainly because of the additional -1 stacking introduced by the
phenyl groups.138’ 144, 145

The kinematic viscosities of these LTILs range from 372 to 4200 cSt at 303 K. LTILs
with the C6 linkage chain generally showed lower viscosities ranging from 600-840 cSt.
Typically, monocationic ILs have lower kinematic viscosities."’ The viscosities are markedly
higher in ILs with benzyl groups (see Table5.1). The same phenomenon was observed in

dicationic and trigonal tricationic |Ls."38 144145

It is interesting to note that ILs with a C3 linkage
chain have higher viscosities compared to ILs with C6 linkage chains and lower viscosities
when compared to those with C10 linkage chains. According to these results, ILs having C3
linkage chains seem to possess greater ionic nature, owing to the closeness of the charged
groups. When the distance between charged groups is increased to six methylene units (~8.9
A), as in ILs with C6 linkage chains, the ionic nature is reduced, resulting in lower viscosity.
However, when the linkage chain is further increased up to 10 methylene units (~14 A), higher
viscosities are observed, again due to the increase of intermolecular van der Waals interactions
over ionic interactions.'®®

The densities of LTILs with accompanying NTf,™ anions range from 1.36 to 1.65 g cm™>.
The lowest density was observed for 2¢, which has a benzylimidazolium cation and C10 linkage
chains. Higher density values are obtained for LTILs with methylimidazolium groups. Moreover,
when the chain length of the substituent at the 3-position of the imidazole increases from
methylimidazolium to butylimidazolium, the density decreases (2a,b, 3a,b, and 4a,b). Similar
observations have been reported for monocationic and dicationic ILs as wel| 138 144,145
The refractive indices of the LTILs range from 1.44 to 1.49 and lie within the general

160, 161

range observed for monocationic ILs. The solubility of these LTILs parallels that of

monocationic ILs,'®? 6% 161

in which all Br', BF,, and TfO (trifluoromethanesulfonate) salts
synthesized were soluble in water, while all NTf,” salts were insoluble in water. All of the LTILs

synthesized were insoluble in n-heptane.
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For RTILs to be used in applications such as high-temperature organic reactions'®> "%

and as GC stationary phases, they should possess a good thermal stability. Generally,
phosphonium cation based ILs show higher thermal stabilities compared to nitrogen cation

based ILs such as imidazolium and pyrolidinium |Ls."38 144 145,162

This trend was clearly seen in
this study as well. LTIL 2d, with two tripropylphosphonium cations, has the highest thermal
stability, displaying only 5% thermal degradation at 410 °C.

The electrowetting properties of ILs are given in Table 5.2. Figure 5.4 shows the
electrowetting curves of linear tricationic ionic liquids with C6 linkage chains, and Figure 5.6

shows the electrowetting curves of benzylimidazolium-substituted tricationic ionic liquids with

different linkage chain lengths and core structures.
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Table 5.2. Electrowetting properties of linear tricationic ionic liquids®

ionic liquid 6, A6, ABg VL Ve
2a 83 16 18 —40 50
2b 80 14 15 —35 30
2c 83 17 18 —50 40
2d 80 16 16 —60 40
3a 85 13 18 —40 40
3b 81 15 14 —30 35
3c 84 12 16 —35 40
3d 78 i1 1 —30 35
4a 82 21 16 —35 40
4b 88 19 14 —40 50
4c 86 23 16 —60 55
4d
IL13% 77 >25 >20 <—70 >70
IL14° 88 18 18 —65 60
IL15° 77 20 25 —55 60
IL16” 82 >15 >14 <—70 >70

a Legend: By, contact angle at zero voltage; A8, apparent contact angle change at negative
voltages; ABg, apparent contact angle change at positive voltages; V|, saturation voltage in the
negative voltage realm; Vg, analogous saturation voltage in the positive voltage realm.b Data

141

taken from ref .

Since there is no external voltage at 6y, only the three interfacial tensions (solid/liquid,

liquid/air, and air/solid) govern the 6, value. However, solid (Teflon) is common in all

experiments; therefore, only the surface tension of the IL governs the 8, value.”' The higher the

surface tension value of the IL, the higher the 6, value obtained.

141

Therefore, from the

observed 6, values the relative surface tension of these ILs can be deduced. This is a good
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Figure 5.4 Electrowetting curves of (a) linear tricationic ionic liquids with C6 linkage chains and
(b) linear tricationic ionic liquids with C6 linkage chains overlaid normal to the maximum 6,
value.
indirect method to evaluate the relative surface tensions of this new class of ILs. According to
Figure 5.4 and Table 5.2, for ionic liquids 3a—-d, which have the same anion (NTf,") and the

same linkage chain length (C6), the 8, values decrease in the order 3a > 3¢ > 3b > 3d. This

decrease is solely due to the end cationic moieties. The 6, value directly correlates with the
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surface tension. Therefore, the surface tension of these ILs decrease on the basis of the cation
in the order methylimidazolium > benzylimidazolium > butylimidazolium > tripropylphosphonium.

According to Figure 5.6 and Table 5.2, by considering 8y, surface tension values of
benzyl-substituted ILs decrease in the order IL 14 > 4c > 3c > 2c > IL 16. Surface tension
values of liquids tend to increase with an increase in hydrophilicity.'® IL 14, with a nitrogen core
(see Figure 5.5), has more hydrophilic character compared to IL 16, with a mesitylene core.
Therefore, IL 14 has higher surface tension than IL 16, which is reflected by the 6, value.
Similarly, when the alkyl chain length of the LTILs increases from C3 to C10 as in 4c to 2c, the

hydrophobic character increases and therefore surface tension decreases.
R R
\L R= @/\ \/\/
N/\/R \___/

H . NTf,
®AN
: L OO
IL13 .15 NTf,

IL14 IL16

Figure 5.5 Structures of rigid core tricationic ionic liquids.

Figure 5.6a shows the electrowetting curves of benzylimidazole-substituted ILs, both
rigid core (IL 14, IL 16) and flexible core (2c—4c) ILs. In Figure 5.6b curves are overlaid normal
to the maximum 6, value. According to Figure 5.6b and Table5.2, it can be clearly observed that
rigid core ILs (IL 14 and IL 16) have V| and VR values wider than those of flexible core
ILs(2c-4c). However, flexible core ILs produced much smoother curves than rigid core ILs. This
means that their electrowetting properties are much closer to the ideal behavior expected
according to Figure 5.6 Electrowetting curves of (a) benzylimidazole-substituted linear and rigid
type tricationic ionic liquids and (b) benzylimidazole-substituted linear and rigid type tricationic

ionic liquids overlaid normal to the maximum 6y value.Young’s and Lippmann’s equations.
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Similar observations can be seen in butylimidazolium -substituted rigid ILs (IL 13, IL 15) and

flexible ILs (2b—4b) as well.

Contact Angle [deg]

P IR U TN NS S NS TR IS ST R
-60 -40 -20 0 20 40 60

Voltage [V]
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Contact Angle [deg]

iV VST [T S T ST ST TR S N U S S N U S
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Figure 5.6 Electrowetting curves of (a) benzylimidazole-substituted linear and rigid type
tricationic ionic liquids and (b) benzylimidazolesubstituted linear and rigid type tricationic ionic
liquids overlaid normal to the maximum 6, value.
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Electrowetting curves of linear ftricationic ILs with C6 linkage chains, each with four
different end groups, are plotted in Figure 5.4a. In Figure 5.4b these curves are overlaid normal
to the maximum B, value. There are no significant differences in electrowetting properties by
changing the end groups, except for 8, values. 8, values are different from one IL to another,
due to surface tension differences, which was explained previously. It is interesting to note that
the electrowetting properties of these ILs are fairly similar, regardless of their different
physicochemical properties. This unique situation enables one to choose an ionic liquid with the
desired physical property from a large library of ionic liquids that have the same electrowetting
properties. For example, if fast changes in contact angles are required in an electrowetting
application, ILs with lower viscosities can be used. LTIL 3a has significantly lower viscosity than
3c, but their electrowetting properties are approximately the same (Table5.2). These
observations are valid for the other C3 linkage chain and C10 linkage chain ILs as well.

Examining electrowetting properties and physical properties of the relevant ILs listed
here, one can find a suitable replacement for aqueous electrowetting in traditional EWOD-based

devices.

5.5 Conclusion

The synthesis and physiochemical properties of 14 linear tricationic ionic liquids were
reported, and these have been explored as potential electrowetting liquids. These LTILs have
shown high thermal stabilities and considerably high viscosities compared to traditional
monocationic and dicationic ionic liquids. Most of the LTILs synthesized were room-temperature
ILs due to their higher structural flexibilities. This structural flexibility was advantageous in
electrowetting applications, as LTILs were observed to be much closer to the ideal behavior
described in Young’s and Lippmann’s equation than any other ionic liquids reported in the

literature.
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CHAPTER 6

IONIC CYCLODEXTRINS IN IONIC LIQUID MATRICES AS CHIRAL STATIONARY PHASES

FOR GAS CHROMATOGRAPHY

In this work, | designed and synthesized all the chiral selectors. The column coating and

evaluations were done by Ke Huang.

6.1 Abstract

lonic liquids (ILs) are used to dissolve ionic cyclodextrin (CD) derivatives to produce a
new type of gas chromatographic chiral stationary phase. Compared to a previous study with
neutral cyclodextrin chiral selectors, the new ionic liquid-based stationary phase exhibits
broader enantioselectivities, up to seven times higher efficiencies, and greater thermal
stabilities. When compared to the analogous commercial column with polysiloxane matrix, it
exhibits different enantioselectivities, more symmetric peak shapes and some complementary
enantioseparations. The most profound separation enhancements are usually found for more
polar analytes.

6.2 Introduction
Cyclodextrins (CDs) have been used successfully in different chromatographic

167178 Modified cyclodextrins constitute the dominant

techniques for enantiomeric separations.
type of chiral selectors for gas chromatography. They can be coated either as neat chiral

stationary phases (CSPs) if they are viscous liquids at ambient temperatures or as cyclodextrin-
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solvent mixtures if they possess higher melting points and exist as solids at room
temperatures. Extensive studies have been performed on the successful use of different

179, 180

polysiloxanes as solvent matrices for derivatized cyclodextrins. Although more scarce,

research articles also suggest the potential of using modified cyclodextrins in polyethylene

glycol matrices for enantioselective gas chromatographic applications." %

However, no
comparable applicability has been obtained with any solvent matrices other than polysiloxanes
and polyethylene glycols.

Room temperature lonic liquids (RTILs) possess unique physicochemical properties
including low melting points, negligible vapor pressures, wide temperature ranges for liquid
state, non-flammability, high thermal stabilities, tunable viscosities and variable polarities. They
have been developed as a very important and new class of GC stationary phase materials over
the last a few years.'®"®"

A single report has appeared on the use of achiral ionic liquids as stationary phase

solvents for derivatized cyclodextrins in 2001.'%

In this work, permethylated B-cyclodextrins
(BPM) and dimethylated B-cyclodextrins (BDM) were dissolved in 1-butyl-3-methylimidazolium
chloride (BMIM-CI) and the column performances were evaluated against those of analogous
polysiloxane-based commercial columns (Chiraldex BPM and Chiraldex BDM). It was found that
the IL-based column efficiencies were up to 10 times higher than the commercial columns.
However, they separated only about a fifth to a third of the racemic analytes that could be
separated on the commercial columns.’® A reason for the narrower range of enantioselectivity
was proposed by the authors and confirmed in later reports.m‘ 194 |t was that the small BMIM-CI
ion pair can be included in the cyclodextrin cavity and consequently reduce the inclusion
complexation interaction between the chiral selector and the analyte molecules, which can be
crucial for chiral recognition of some molecules. Conversely, molecules that were separated by

an external adsorption process were unaffected and showed excellent resolutions (because of

the higher efficiencies).195 Since this report, neat chiral ionic liquids have been used as GC
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chiral stationary phases,'®

but there have been no further developments involving
functionalized cyclodextrins dissolved in ionic liquids. The question arises, can a system be
developed that combines the higher efficiency of the IL based chiral stationary phases as well
as the superb enantioselectivity of the polysiloxane-based chiral stationary phases. Such a
stationary phase could greatly enhance the GC separation of enantiomers.

In this work, two strategies are proposed to reduce the accessibility of IL matrices to the

cyclodextrin cavity while maintaining the higher efficiencies observed in the 2001 study,192

they
are: (1) use of bulkier ILs to make the IL molecule less able to fit inside the cyclodextrin cavity
and (2) attachment of pendent cationic groups to the cyclodextrin structure, thereby providing
an electrostatic barrier to other cations. In addition, we expect that by introducing ionic moieties
to the cyclodextrin molecule, stronger solute—solvent interactions will occur, thereby enhancing

the limited solubility of cyclodextrins in many ionic quuids.192

Also these bulky charged moieties
could offer different selectivities.
Charged cyclodextrin derivatives have been widely employed as chiral selectors in

capillary electrophoresis (CE) for years.m" 174, 197199

However, the use of charged cyclodextrins
as chiral selectors has not been reported in GC. In this study, permethylated mono-6-
(butylimidazolium)-cyclodextrin (BIM-BPM) and permethylated mono-6-(tripropylphosphonium)-
cyclodextrin (TPP-BPM) were synthesized and dissolved in various dicationic and tricationic
ionic liquids and examined as GC chiral stationary phases. The performance of these columns
was compared to that of their neutral cyclodextrin containing IL-based predecessors. The new

IL column was also evaluated against the commercial polysiloxane-based CSPs with analogous

chiral selectors.
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6.3 Experimental

6.3.1. Materials

The reagents, imidazole, 1-methylimidazole, 1-butylimidazole, 1-(2-hydroxyethyl)
imidazole, 1-tosylimidazole, tripropylphosphine, tris(2-aminoethyl)amine, pentaethylene glycol,
1,12-dibromododecane silver trifluoromethanesulfonate (TfO), lithium
bis(trifluoromethanesulfonyl)imide (NTf2), p-toluenesulfonyl chloride, B-cyclodextrin, methyl
iodide, sodium hydroxide, sodium hydride, ammonium chloride (NH4CI), trifluoroacetic
anhydride and silicone OV-101 were purchased from Sigma-—Aldrich (Milwaukee, WI). The
solvents, anhydrous dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone,
chloroform were also obtained from Sigma—Aldrich. Dichloromethane, ethyl acetate and toluene
were obtained from EMD Chemicals (Gibbstown, NJ). The 70 test compounds were attained
from different commercial sources (Sigma—Aldrich, etc.). They were either tested directly if they
were obtained as racemates, or they were tested as mixtures of enantiomers if they were
obtained as individual enantiomers. Chiraldex BPM column (2,3,6-tri-O-methyl-B-cyclodextrin in
polysiloxane-based matrices, 30 m x 250 ym i.d. x 0.12 ym film thickness) was obtained from

Supelco (Bellefonte, PA). A 10 m segment of this column was tailored and used for testing.

6.3.2. Methods

6-(Butylimidazolium)-B-cyclodextrin tosylate was prepared following the literature
procedures.200 First, 6-tosyl-B-cyclodextrin was synthesized by reacting 35 g of B-cyclodextrin
with 8 g of 1-tosylimidazole in 350 mL of deionized water. After the addition of 50 mL of
aqueous NaOH (20%, w/v), the solids were filtered from the solution and the filtrate was
collected and subsequently neutralized by NH4Cl, washed by acetone and vacuum dried
overnight. Subsequently, 13 g of the synthesized 6-tosyl-B-cyclodextrin was weighed out and
reacted with 3 g of 1-butyllimidazole in 25 mL DMF at 100 °C for two days. Acetone was then

added to induce precipitation at ambient temperature. The reaction workup involved filtration of
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the product followed by acetone washing and vacuum drying to afford the dry white powder of
6-(butylimidazolium)-B-cyclodextrin. The 1H NMR spectrum indicates the 6-position
substitutions on the cyclodextrin primary rim. Subsequently, this material was permethylated
using the method described in a 1984 publication.201 Resultantly, permethyl 6-
(butylimidazolium)-B-cyclodextrin iodide (BIM-BPM-I) was obtained as the final product, which
can be exchanged to trifluoromethanesulfonimide (NTf2-) and trifluoromethanesulfonate (TfO)
salt if needed. 6-(Tripropylphosphonium)-B-cyclodextrin tosylate was prepared and
permethylated in the same fashion. The structure of the two charge bearing cyclodextrins is
illustrated in Figure 6.1. Dicationic and tricationic ionic liquids were synthesized according to the

183, 185,186, 187

literature guidelines and their structures are depicted in Figure 6.2.
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Figure 6.1 Structures of ionic permethyl 8-cyclodextrins used in this study. A. BIM-BPM-A, B.
TPP-BPM-A
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Figure 6.2 Structures of the ionic liquid matrices used for the dissolution of chiral selectors.

For comparison purposes, all GC columns were prepared following the literature recipe.

The derivatized cyclodextrins were dissolved in ionic liquids to make solution of 25% (w/w)

concentration. The mixture was then dissolved in dichloromethane to give a coating solution of
0.45% (w/v) concentration. The static coating method was used in this work. In a water bath
maintained at 40 °C, the coating solution was injected to completely fill a segment of the salt
pretreated capillary. The capillary was then sealed at one end and the solvent was evaporated
at a steady speed from the other end under vacuum. Coated columns were flushed with dry

helium gas overnight and conditioned at 120 °C for 2 h prior to use. Column efficiency was
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measured using naphthalene at 100 °C. Columns prepared in this study were made of a uniform
length of 10 m. They were all determined to possess efficiencies of 4000-5000 plates/m and
film thickness of 0.25 uym.

The samples assayed by thermogravimetric analysis (TGA) were made by dissolving
target cyclodextrins in ionic liquids (25%, w/w). These solutions were analyzed in 20 mg aliquot
and they were heated in a platinum pan from 100 °C to 500 °C at 10 °C/min in a dynamic
nitrogen atmosphere. The decomposition profile for each sample was recorded and the 5%

weight loss temperatures were marked to determine the stationary phase thermal stabilities.

6.3.3. Equipment

The GC equipment used was an Agilent (Columbia, MD) model 6892N (G 1540N) gas
chromatograph equipped with a flame ionization detector and Agilent ChemStation data
acquisition software. All analyses were performed isothermally with a helium carrier gas flow
rate of 1 mL/min and a split ratio of 100/1. The injector and detector temperature was set at
250 °C and 300 °C, respectively. TGA measurements were performed using a TGA 2050 (TA

Instruments Inc., New Castle, DE, USA).

6.4 Results and discussion

The structures of the modified cyclodextrins used in this study are shown in Figure 6.1.
They are permethyl-6-(butylimidazolium)-B-cyclodextrin (BIM-BPM) and permethyl-6-
(tripropylphosphonium)-3-cyclodextrin (TPP-BPM) paired with iodide, NTf2, and triflate anions.
Different cyclodextrin and ionic liquid combinations were evaluated for optimization of the

stationary phase composition.
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6.4.1. Optimization of the stationary phase composition
6.4.1.1. Optimization of the chiral selector

The two cyclodextrin derivatives investigated as chiral selectors were permethyl-6-
(butylimidazolium)-B-cyclodextrin iodide (BIM-BPM-I) and permethyl-6-(tripropylphosphonium)-
B-cyclodextrin iodide (TPP-BPM-I). They were dissolved in MIM2PEG3-2NTf2 (1,11-di(3-
methylimidazolium)-3,6,9-trioxaundecane bis(trifluoromethane)sulfonimide) and TPP2C12-
2NTf2 (1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane)sulfonimide) (see Figure
6.2) and coated as GC stationary phases using the same procedures (see Section 2). The

enantioseparation of a-ionone on the four stationary phases is shown in Figure 6.3.

R |

Figure 6.3 Separation of a-ionone on: A. BIM-BPM-I plus MIM2PEG3-2NTf2 B.BIM-BPM-I plus
TPP2C12-2NTf2 C. TPP-BPM-I plus MIM2PEG3-2NTf2 D. TPP-BPM-I plus TPP2C12-2NTf2.
Helium at 1 mL/min, 100°C

All four ionic cyclodextrin containing CSPs showed good efficiencies in the range of
4000-5000 plates/m. However the enantioselectivity of the TPP-BPM-I stationary phase was
relatively low. As indicated by Figure 6.3, the enantioselectivity of a-ionone (Qg.ionone) Was only

1.03 when MIM2PEG3-2NTf2 was used as the solvent matrix. Even when TPP2C12-2NTf2 was

used as the solvent, the enantioselectivity remained low for the TPP-BPM-I chiral selector. On
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the contrary, the BIM-BPM-I containing IL stationary phases provided not only high efficiencies
but also high enantioselectivities. Therefore, the BIM-BPM-I chiral selector appears to be quite
advantageous compared to its tripropylphosphonium derivatized counterpart. It appears that
while high efficiency columns can be achieved with both these ionic chiral selectors, the nature
of the ionic functionality has a significant impact on the enantioselectivity of the stationary
phases.

After BIM-BPM was determined to be the best cationic moiety for the chiral selector,
attention was focused on the counter ion that provides the best efficiency, enantioselectivity and
thermal stability. For this purpose, BIM-BPM-I, permethyl-6-(butylimidazolium)-f-cyclodextrin
bis(trifluoromethane)sulfonimide  (BIM-BPM-NTf2), and permethyl-6-(butylimidazolium)-(-
cyclodextrin trifluoromethanesulfonate (BIM-BPM-TfO) were prepared for evaluation. To obtain
their thermal stabilities, they were individually dissolved in MIM2PEG3-2NTf2 (25%, w/w) and
subjected to thermogravimetric analysis (TGA). As was indicated by the TGA readings, when
mixed with MIM2PEG3-2NTf2, the three compounds vyielded very similar
decomposition/volatilization profiles in the temperature range of 100-250 °C. They all showed a
weight loss of approximately 5% at 250 °C. Thus, at normal chiral GC operating temperatures,
anion identity has little effect on the thermal stability of the chiral selector molecules.

Subsequently, analytes with a range of different functionalities were assayed on the
three columns to evaluate the impact of the anion on the stationary phase enantioselectivities. A
few examples are given in Figure 6.4. Symmetrical peaks were observed for these analytes on
both the BIM-BPM-I and BIM-BPM-TfO columns. However, BIM-BPM-NTf2 induced severe
tailings for these analytes. Since BIM-BPM-I and BIM-BPM-TfO exhibited similar
chromatographic behaviors, the iodide salt form of the chiral selector was used for the rest of

the study due to its ease of preparation.
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Figure 6.4 Examples of separations achieved on BIM-BPM-I, BIM-BPM-TfO, and BIM-BPM-
NTf2 containing columns. Helium at 1 mL/min.
A. Separation of 2-(bromomethyl) tetrahydro-2H-pyran, 60°C.
B. Separation of borneol, 80°C.
C. Separation of butyl lactate, 80°C.
*Borneol samples were manual mixtures of the (+) and (-) enantiomers. The peak area ratios of
the two enantiomer peaks were therefore not always identical
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6.4.1.2. Optimization of the matrix

Based on their merits established in previous studies,183' 185-187

six different ionic liquids
were investigated to determine the most appropriate ionic liquid matrix for this work. The ionic
liquids tested are shown in Figure 6.3 (referred to as: MIM2PEGS3-2NTf2, MIM2C12-2NTf2,
MIM2PEG3-2TfO, HelM2PEG3-2NTf2, D5, and TPP2C12-2NTf2). Silicone OV-101 was also
investigated as a solvent for comparison with the selected ionic liquids. The column containing
MIM2PEG3-2NTf2 matrix produced the highest efficiency (ca. 5000 plates/m) and the best
enantioselectivity (e.9. Qgionone = 1.1). Meanwhile the polysiloxane-based stationary phase
displayed decent enantioselectivity (Qg.ionone = 1.07) but extremely low efficiency in the 500-
1000 plates/m range. This is probably due to the low polarity of the polysiloxane used which is

unfavorable for the dissolution of the ionic substances. Therefore MIM2PEG3-2NTf2 was

employed in the following studies.

6.4.2. Improvement over the first ionic liquid containing cyclodextrin-based CSPs

According to the 2001 report,192

of the 68 pairs of enantiomers separated on a
commercial Chiraldex BPM column, only 21 were separated on the neutral permethyl-3-
cyclodextrin-based stationary phase (BPM), albeit with much higher efficiency. Conversely in
this study by using an imidazolium salt cyclodextrin derivative, very different results were
obtained. A total number of 70 compounds were selected and tested based on their previously
proved separation on Chiraldex BPM and/or Chiraldex BDM column.*”* Fifty-one compounds
showed enantiomeric separation on the BIM-BPM-| stationary phase. In addition, 6 compounds
that were not separated on the commercial Chiraldex BPM column were separated on the BIM-
BPM-I column.

A performance comparison between the BIM-BPM-I stationary phase and the neutral

BPM containing IL-based stationary phase was carried out by examination of the

enantioseparations achieved on the two stationary phases (Table 6.1). When testing Table 6.1

99



compounds under the same conditions, the BIM-BPM-I column produced up to seven times
more efficient enantioseparations than the neutral BPM stationary phase. Generally, the BIM-
BPM-I stationary phase produced greater analyte retention than the BPM stationary phase, with
two exceptions, i.e. a-pinene and B-pinene. Moreover, the majority of analytes showed better
enantioselectivities on the BIM-BPM-I stationary phase. The biggest improvement of
enantioselectivity from 1.04 to 1.10 was achieved for 2-ethoxytetrahydrofuran. With higher
enantioselectivities, efficiencies and retentions, the BIM-BPM-| stationary phase afforded up to
six times greater resolutions than the neutral BPM stationary phase (see tetrahydro-2-(2-
propynyloxy)-2H-pyran).

In the previous 2001 work it was also observed that a ring structure was important for
enantiomeric separations on the neutral BPM-based IL CSP. However, compounds without ring
structures, e.g. acetoin, 3-butyn-2-ol, linalool, t-butyloxy-2-propanol, methyl-2-chloropropionate,
methyl-2-bromopropionate, methyl lactate and butyl lactate (see Table 6.3), were easily
separated on the new ionic cyclodextrin-based IL CSP. For example, methyl-2-chloropropionate
enantiomers were baseline separated with a retention factor of 4.00 at 55 °C. Clearly, structural
rigidity of analytes becomes less of a requirement for enantiomeric separation on the charged
CD-based stationary phase.

When the column stability was studied, it was noted that no compounds were tested

over 110 °C in the previous work."®?

That was because the BMIM-CI ionic liquid used in this
early work was stable only up to around 140 °C."®® Since MIM2PEG3-2NTf2 has a
decomposition/volatilization temperature of over 300 °C,"® it clearly is a more robust matrix
material for GC stationary phases. The compounds in this study were separated at
temperatures up to 175 °C (see 2,3-dihydro-7a-methyl-3-phenylpyrrolo[2,1-b]Joxazol-5(7aH)-

one). Now that the IL column operation temperature has been extended, a broader pool of less

volatile compounds can be analyzed.
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Table 6.1 Performance improvement of the new IL phase gained over its 2001 predecessor192.

BPM in BMIM-CI, 10 m BIM-BPM-I in MIM2PEG3-

Compound (°Tc | . 2NTf2, 10 m .

K o RS (plates) K1 @ Rs (plates)
camphene 25 102 111 09 1400 119 1.05 0.7 1850
a-pinene 25 158 1.07 12 5000 93 110 1.0 2100
B-pinene

30 258 1.03 1.0 15300 121 1.05 1.2 3640

2-ethoxy tetrahydrofuran 45 554 104 08 11200 46 110 15 6820

2-acetyl-5-norbornene 40 557 1.05 09 6000 1058 1.04 2.0 43560

Fenchone 40 277 104 10 13600 610 1.02 1.0 14570
tetrahydro-2-(2-

propynyloxy) 50 191 1.02 05 19400 358 1.08 2.9 26530
-2H-pyran

3-chloro-2-norbornanone o 764 105 14 7500 164.8 1.08 4.0 36560

a-ionone 100 212 106 15 12300 26.8 1.10 4.4 39100

4-methyl-tetralone 100 354 1.03 12 21500 823 1.06 27 51650

k', is the retention factor of the first eluted enantiomer. It is calculated as k’;= (t,~ty)/ty,, whereas
t; is the retention time of the first eluted peak and {, is the column dead time.
®ais the enantioselectivity exhibited by a pair of enantiomers. It can be obtained from equation
a = k’,/ k’s, whereas k’; and k’; are the retention factors of the first and second eluted peak,
respectively.
° Rs is the resolution obtained for a pair of enantiomers. It can be retrieved as follows, Rs =
2*(t-t;) (W4+W,). Note that f; and ¢, are the retention times of the first and second eluted
enantiomers, while W, and W, are the baseline peak width of the first and second peaks.
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Table 6.2 Performance comparison of neutral BPM stationary phases based on the
monocationic IL (BMIM-CI) and a dicationic IL (MIM2PEG3-2NTf2).192

BPM in BMIM-CI, 10 m

BIM-BPM-I in MIM2PEG3-

T ONTF2, 10 m

Compound °C) N N
K a Rs (plates) K a Rs (plates)

2-acetyl-5-norbornene 40 557 105 09 6000 486 10 0 2760
tetrahydro-2-(2-
propynyloxy) 50 191 102 05 19400 48 10 08 7300
-2H-pyran
3-chloro-2-norbornanone g5 764 4105 11 7500 869 1.03 0.8 9240
g-ionone 100 212 106 15 12300 182 1.04 1.3 15680
4-methyl-tetralone 100 354 1.03 12 21500 500 1.02 06 8950
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6.4.3. Comparison of the BIM-BPM-I CSP to the corresponding commercial CSP

Given the improved enantioseparation power of the charged cyclodextrin containing
CSP, it is valid to assume the BIM-BPM-I column may accomplish comparable or possibly
better enantiomeric separations than its commercialized analog. The Chiraldex BPM column
was selected for comparison as the commercial stationary phase. The stationary phase of this
column is composed of permethylated B-cyclodextrin (BPM) dissolved in a polysiloxane-based
matrix.

In total, 56 compounds achieved enantiomeric resolution on BIM-BPM-I and Chiraldex
BPM combined. The structures, retention factors, selectivities, resolutions and theoretical plate
numbers of the 56 compounds are shown in Table 6.3. Due to the doubled film thickness of
stationary phase on the BIM-BPM-I column (film thickness: 0.25 pym), compound retentions
were usually longer on this column than on the Chiraldex BPM column (film thickness: 0.12 ym).
Respectively, 28 and 33 compounds showed baseline separation on the BIM-BPM-I column and
the Chiraldex BPM column. In the meantime, 23 compounds showed improved
enantioseparations on the ionic liquid-based column, while 33 showed comparable or better
enantioseparation on the commercial column.

The compounds showing better enantioseparations on the ionic liquid column were
mostly ketones, esters, secondary and tertiary alcohols. Despite the fact there were 6
racemates separated solely on the commercial column, 6 other racemates that displayed no
enantioselectivity on Chiraldex BPM were separated on BIM-BPM-I. Figure 6.5 provides
examples of the enantioseparation of these compounds on both stationary phases. As is
indicated by the structure, 5-norbornene-2-ol is composed of two pairs of enantiomers, one for
the endo-configuration and one for the exo-configuration. One pair of enantiomers was
separated on the BIM-BPM-I column while the other pair was separated on the Chiraldex BPM
column. This demonstrates the complementary enantioselectivity of the two stationary phases.

When the endo- and exo-isomers of 2-benzoyl-5-norbornene were injected on the commercial

109



column, only one pair of enantiomers was partially separated while the other pair eluted in one
single tailing peak. However, both pairs of enantiomers were separated on the |IL-based column,
with excellent peak shape and one baseline separation. Also on the IL phase, the endo- and
exo-isomers were better separated from each other. Indeed, it has been reported that IL phases
show better separations of structural and geometric isomers than conventional GC stationary
phases.?®

Interestingly, for compounds with higher polarities, BIM-BPM-| offered improved peak
shapes over the commercial column. The chromatograms of some of these compounds on both
stationary phases are shown in Figure 6.6. These analytes were also injected on the neat
MIM2PEG3-2NTf2 stationary phase and a neat polysiloxane stationary phase (Rtx-5). Their
peak shapes on the two neat stationary phases are shown in Figure 6.7. Slight to moderate
peak tailing was observed for these compounds on the polysiloxane stationary phase, however,
little tailing was found for the eluted peaks on the MIM2PEG3-2NTf2 stationary phase.
Therefore, it is highly possible the distorted peak shapes on Chiraldex BPM were caused by the
polysiloxane matrix used for the commercial column.

In this study, it was observed that the efficiencies on the two CSPs were also largely
dependent on the analytes’ polarities. Hydrocarbons, tetrahedro-2H-pyrans and ethers are
compounds of low to moderate polarities. They exhibited worse efficiency on the IL-based
column than on the Chiraldex BPM column (see pinenes, 2-methyltetrahydro-2H-pyran and 2-
ethoxytetrahydrofuran). However, more polar compounds, such as ketones and alcohols,
produced plate numbers up to 10 times higher on the BIM-BPM-I CSP than on the Chiraldex

BPM CSP (see 3-chloro-2-norbornanone).
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6.5 Conclusions

A charged cyclodextrin GC chiral selector was introduced in combination with ionic
liquid matrices and successfully applied to the enantioseparation of a variety of chiral molecules.
While the nature of cationic cyclodextrin chiral selectors makes a crucial contribution to the
significantly enhanced column efficiency, the type of ionic functional group on the cyclodextrin
has a major impact on the chiral recognition capabilities of the stationary phase. When
compared to a comparable commercial stationary phase, the new IL-based stationary phase not
only improved enantioseparations for more than one-third of the test solutes, but also managed
to separate some compounds that were not separated on the commercial column. Furthermore,
the IL-based column provided better peak shapes and improved peak efficiencies for racemic
analytes with higher polarities.

This work demonstrated comparable and complementary performance of IL-based
columns to the potent commercial chiral stationary phase. It not only introduced a new concept
of using charged cyclodextrins as chiral selectors in GC, but also demonstrated the feasibility of
using ionic liquids for high enantioselectivity GC-CSPs. With the large pool of ionic liquids and
variety of ionic cyclodextrin structures available nowadays, these types of GC-CSPs offer a new

avenue of potentially useful and interesting research and development.
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CHAPTER 7
GENERAL SUMMARY

7.1 Part one (Chapter 1-2)

The first chapter provided a background to chirality and explained what chirality is and
why chiral separation is critical to industries and especially for pharmaceutical companies. The
history, mechanism and properties of each of the major types of chiral GC and chiral HPLC
stationary phases have been discussed briefly. In the second chapter, the macrocyclic antibiotic
dalbavancin was linked to silica gel by two different binding chemistries. The enantiomeric
separation capabilities of the two columns D1 and D2 were evaluated and compared with
Chirobiotic T and T2 commercial columns. The dalbavancin based columns can separate some
racemic solutes that cannot be separated on commercial teicoplanin based columns. Moreover,
dalbavancin based CSPs exhibits enhanced enantioselectivities to carboxylic acids, where the
additional cationic site of the chiral selector may play an important role during the chiral

recognition process.

7.2 Part two (Chapter 3-6)

Chapter three gives a general introduction to the history and properties of ionic liquids
and their applications in analytical chemistry. The next chapter focused on the evaluation of
linear tricationic ion pairing reagents for divalent anion detection in positive mode ESI-MS. It has
been revealed that these linear ion pairing reagents provided improved LOD for anions than
trigonal ion pairing reagents in general. The optimum chain length was found to be either 10 or
6 carbons. The best ionic moieties are tripropylphosphornium and benzylimidazolium. The
synthesis of these linear ftricationic ionic liquids was described in Chapter five. The

physicochemical properties of these linear ionic liquids and their ability to be used in
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electrowetting applications have been studied. The linear tricationic ionic liquids have lower
melting points compared to more rigid trigonal tricationic ionic liquids.

Chapter 6 reported a new type of chiral GC stationary phases using a methylated
cationic cyclodextrin derivative as chiral selector and ionic liquids as matrices. High efficiencies
and broad enantioselectivities were obtained on these columns. When evaluated against the
commercial stationary phase using polysiloxanes as matrix and neutral cyclodextrin as chiral
selector, the IL-based stationary phase showed comparable and complementary selectivity for
the 70 compounds tested. Furthermore, the IL-based column provides improved peak shapes
and peak efficiencies for compounds with higher polarities. However, the commercial column

still provides in broader applicability in general.
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APPENDIX 1

'"H AND "®*C NMR SPECTRA OF
1-BROMODECYL-3-BROMODECYL IMIDAZOLIUM BROMIDE SALT (1a)
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APPENDIX 2

'"H AND "*C NMR SPECTRA OF
1-BROMOHEXYL-3-BROMOHEXYL IMIDAZOLIUM BROMIDE SALT (1b)
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APPENDIX 3

'H AND *C NMR SPECTRA OF
1- BROMOPROPYL-3-BROMOPROPYL IMIDAZOLIUM BROMIDE SALT (1c)
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APPENDIX 4
'"H AND *C NMR SPECTRA OF

1-(1-METHYL-3'-DECYLIMIDAZOLIUM)-3-(1"-METHYL-3"-DECYLIMIDAZOLIUM)
IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (2a)
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APPENDIX 5
1H AND 13C NMR SPECTRA OF

1-(1-BUTYL-3'-DECYLIMIDAZOLIUM)-3-(1"-BUTYL-3"-DECYLIMIDAZOLIUM)IMIDAZOLIUM
TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (2b)
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APPENDIX 6

'"H AND "*C NMR SPECTRA OF
1-(1-BENZYL-3'-DECYLIMIDAZOLIUM)-3-(1"-BENZYL-3"-

DECYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (2c)
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APPENDIX 7
'H, *C AND *'P NMR SPECTRA OF 1-DECYLTRIPROPYLPHOSPHONIUM-3-
DECYLTRIPROPYLPHOSPHONIUM IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (2d).
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APPENDIX 8
'H AND ™C NMR SPECTRUM OF 1-(10-METHYL-3-HEXYLIMIDAZOLIUM)-3-(1"-METHYL-
3"-HEXYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE]

(3a).
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APPENDIX 9
'H AND "*CNMR SPECTRUM OF 1-(17-BUTYL-311-HEXYLIMIDAZOLIUM)-3-(1”-BUTYL-3"-

HEXYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE]
(3b).
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APPENDIX 10
'H AND "*C NMR SPECTRUM OF 1-(1(1-BENZYL-3[1-HEXYLIMIDAZOLIUM)-3-(1"-BENZYL-
3"-HEXYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE]

(3b).

167



[oplz g2
[81969LTLOG L

[snlsos s
[anly

(Baplcy
[2]969LTL06°2
I*n]T0°ET

T
Z1

1
FSTYA

[mdd]g
[*malzecco62c 0CC
ET

[wdd]g

[=ER] 26559625 O0E
HL

[=zm] veLoLses s
[zd] LEQLEEYE "0

[=malz6559625 0CE
Bl

[s]1969LTL06 T
2HR] 00E) [LIETO9850°L

HHH TVLTED
00E M2T

sstnd atbuis

GC EZ°ET 0T0T-425-21

STICELT OTOT—d36-TT
ST'EZS'9T 800T-IJ0-E

A0=ORW

GOTO0IRS

gxa-as[nd ayjburs

ITeP

FE( "Z-HTIIIHITATUSq

Jeb duel

auty uor3tiadey
Aepwp uopave ey
wTob Tansyg

ITEA TETITUT
jesazd sjueg
spow TIJL

spow IIL

espnd"x

I

Issgjo TIL
bary~yrr
uTEweR TiL
I@EFFO IIT
besz asr
PR T ey
deans y
UOTINTOSeT X
suedsard ¥
g3uTod ¥
FeEFIOK
beaz x
TTTWOR X
uoTIRINg bow X
yaibuexis preTd

rajaucrjoadg
a3Te
FuoTeUsMTg
S3TUNWIg
BLITI WIQ
eETs wyg
JEuro]T eleq
Jusano]

BWTy JUBIING
suty uotsTaey
suTy vOTIeeI]
IUBATOR

Py erduvg
JusmTIadxy
JogIne
sarousTTI

TIFT'T
SELLT
JAVE &4
Flo9'T
TISRT
Lariny
BISI'Y
SILI'Y
61t
0igrs

HI:

P pE g
Erziie
=ndged

Vi ry

m -
E%

B d

s

HILE pUN &

T

168

=]

= RIS
) = =\ = {W?/
a % S \F\z@z\/\,f\/.\z/\\m/\/\: xﬂdzﬂ“z /v



N
1
|
{
i it
N
FTTT 01 80 Y0 10 TO
dauepunqe

4.0

42

43

4.4

4.7

49

50

LN |

52

53

54

5.5

56

5.7

6ISIt
STLIE
salr

DISE'S

Xt parts per Million : 1H

T

169

0T

80

a0

o

(a1

aurpUNgE

1.1

1.2

1.3

1.4

14

1.7

19

240

21

22

THTT

SELLT

X : parts per Million : 1H



0

LD

¥

0

ro

£o

o T0

MIEPUNAE

20

21

24

2.0

98

2.9

L0

1.1

IiEt'6

GEIS6

X : paris per Million - 1H

L |

170

i

[l

80

L]

ro o

BEPUNGE

7.2

74

7.5

146

.7

7.

79

&0

i ¥

THHL
SE9TL

LESEL
6EITL
6LETL

LirSL

1

X : parts per Millisn



0 ool 00z

A

[oRls-v2 = =6 dwag
[elrsorzaoL "y = =uwry uorjTiadey
[s]lz = &etep uorjexeyey

8g = uteb~aacey

[slz = sury soy

H0NI = soN

[sl1 = JIrea TeTITUL

AN = Buridnoseq

ZLTYM = °ITOU 3IT

[aplsz = Sou U3 IIL

lgrlge = 298p uUje IIL

lenlsz e = ssnd %

[aplg = UK

[Bap]oE = aybus
[elvsovesoL’z = sury Boe
Isnlge s = U3IpTA 06 X

008 = suess Te3jor

ong = sueas

0T = :H—Juynul.ﬁnx

HIEL = poddrTd

[wdd]g = J@sFFo_AIL

[ZHW] 26559625 00E = barz aIr
HI = UTEWop AIT
[zux]zrzezeLo e2 = deens X
[2H]LZ0VZT9E"Q = uoTINTOESI §
B = gueogexd ¥

9EGE = s3uTtod X

|udd] got = W@EIFO X

[=HH] ZYETROG ' SL = bexz y
J€L = U EWOET X
[S1700¥280L°2 = uoTieInp Bos ¥
zaRlooe) [x]1£109850°L = y3buez3s preTa
RN Z¥I730 = Feqavoriosdy

00E ®DE = 2318

X = SucTsusSwIO

[wdd] = e3TUn WIQ

QLT = BLITY wig

8EPIS = BZTS WA

XATdWOD a1 = JRuIoy ejeqg
o1dnooep esTnd e1burs = Fueunron

LZ-0T-T2 0T02-495-12
01:60°12 0T0E2-dd5-12
ED:T0:T0 BOOZ-NOC-TT

swT3 JusIIng
SWTY UOTETADIY
BWE3 UOTIERBID

0zZa IURATOE

zzazseds = pr ordwes

oep esTnd a21buts = JuswrIedxy
eyTep = ToyIng

FPL Z-3TUT=q019080 = sweusTTa

103PY

ooe

oor

oos

0woe 0oL

008

¥o6 0001

0oLt

0oz

0oL

oor1

ost

DET  uoppipy 1ad sped @ y

U091 00l 0081 0061 00T

duRpunYR

£0 4] ro

o

20

171



DEN ¢ moppyig dod stued @ ¥

SHINTT
LT 6T
GOM6T
[ d
LCEETGk
SIS

P ST 0T 0T 0BT 0T 00 OTE OTE 0B IRE O°SE 09 LS 08 068 O'0F OTF 0T OFEF W 0°SF O0GF OF 0°RF P6F 07D 0TS 0TS S O°HS

- éaﬁﬁ

01T 600 W0 S0 €00 T00 100

Lro sro

261 = wopuyy dad spwed :

ERE 2 g2 2
mww 2 e b
B3 5 UK S
oz i T 0EL] Ly st (L] il LLe.rd wetl 0oEn FIEr [Lraa ] TEEl 0rEl

E e

To

RPN

SOURPU R

172



APPENDIX 11
'H, *C AND *'P NMR SPECTRA OF 1-(HEXYLTRIPROPYLPHOSPHONIUM)-3-
(HEXYLTRIPROPYLPHOSPHONIUM)IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (3d).
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APPENDIX 12
1H AND 13C NMR SPECTRA OF (1'-METHYL-3'-PROPYLMIDAZOLIUM)-3-(1"-METHYL-3"-
PROPYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE]

(4a).
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APPENDIX 13
"H AND ™C NMR SPECTRA OF (1'-BUTYL-3-PROPYLMIDAZOLIUM)-3-(1"-BUTYL-3"-

PROPYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE]
(4b).
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APPENDIX 14
'H AND ™C NMR SPECTRA OF (1'-BENZYL-3'-PROPYLMIDAZOLIUM)-3-(1"-BENZYL-3"-
PROPYLIMIDAZOLIUM)IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE]

(4c).
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APPENDIX 15
'H, *C AND *'P NMR SPECTRA OF 1-PROPYLTRIPROPYLPHOSPHONIUM-3-
PROPYLTRIPROPYLPHOSPHONIUM IMIDAZOLIUM

TRI[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (4d)
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