
MONITOREXPLORER: A STATE-SPACE EXPLORATION

BASED TOOL TO TEST JAVA MONITORS

IMPLEMENTATIONS

by

VIDUR GUPTA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

Copyright © by Vidur Gupta 2006

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Jeff Lei, my supervisor and teacher. He has guided me

not only through my thesis but also with various aspects of my student and professional

life. I would also like to mention Monica and Chinmay who also worked on this project.

The discussions and deliberations we had were simulating and educating. I would also

like to thank other members of the Software Engineering Research Group led by Dr. Lei

and my fellow students at UTA. These people have always been there to help and

support me during my stay at Arlington.

I must acknowledge the support and assistance of the staff of the Computer

Science and Engineering Department. I would specially like to thank Ms. Costabile,

Graduate Program Secretary and Ms. McBride, CSE Department Office Manager.

Another group worth mentioning would be my friends from India who have

given me hope and encouragement whenever things got difficult.

No acknowledgements would be complete without the mention of my family

who gave me the opportunity to come and study in this institution. They have given me

every support and strength. I can never thank them enough.

April 13, 2006

iv

ABSTRACT

MONITOREXPLORER: A STATE-SPACE EXPLORATION

BASED TOOL TO TEST JAVA MONITORS

IMPLEMENTATIONS

Publication No. ______

Vidur Gupta, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Jeff Lei

A monitor is a concurrency construct that encapsulates data and functionality

for allocating and releasing shared resources [1]. Java associates a lock with every

object. When a block of code is guarded by the ‘synchronized’ keyword then the thread

has to get lock on objects inside the block. This block is a Java Monitor which

guarantees mutual exclusion and the thread needs to get the locks before it can enter the

monitor. The locks are released when the thread exits the guarded block. If the thread is

not able to get all the locks it waits for the conditions to be right.

v

There are many application classes which are written using the Java Monitors

and these are difficult to test due to the inherent complexities of the concurrent

programs. The key challenge is to be able to trace all possible execution paths and then

able to reproduce them for regression testing. Our work explores the state-space of the

monitor application. The state space is explored in the depth first fashion. At each state

the possible transitions are calculated pushed on a stack. The transition on the top of the

stack is executed. This process is repeated till a duplicate or invalid state is detected.

The key features of the approach are data abstraction which helps reduce the

number of states to be explored and introduction of threads on the fly to execute the

selected transition that simulate the race conditions. We have developed

‘MonitorExplorer’, a tool that can used to test monitor applications. This tool has been

used to test various applications and their mutants. The experimental results show that

the tool is effective in detecting synchronization bugs.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES... ix

Chapter

1. INTRODUCTION ... 1

1.1 Monitor .. 3

1.2 Java Monitor .. 4

1.3 Java Monitor Testing ... 6

2. MONITORTEST: THE ALOGRITHM .. 10

2.1 Abstract State... 11

2.2 Enabled Transitions ... 14

2.3 Bounded Buffer Monitor ... 16

3. MONITOREXPLORER: THE IMPLEMENTATION 21

3.1 Packages .. 21

3.2 Evaluation .. 24

3.3 Sequence .. 26

4. EXPERIMENTS.. 28

4.1 Tool Setup.. 28

vii

 4.2 Mutants .. 30

4.3 Monitors Tested ... 31

4.4 Experiment Results.. 32

5. RELATED WORK.. 33

6. CONCLUSION ... 36

7. FUTURE WORK .. 38

Appendix

A. BOUNDED BUFFER EXPERIMENT .. 39

B. SIMPLE ALLOCATOR EXPERIMENT... 45

C. FAIR BRIDGE EXPERIMENT ... 52

REFERENCES .. 60

BIOGRAPHICAL INFORMATION... 61

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Test result for sequential program... 1

1.2 Possible interleaving and results for
 multithreaded program .. 2

 1.3 Graphic view of a monitor .. 3

 1.4 Graphic view of a Java monitor .. 4

 2.1 MonitorTest Algorithm ... 11

 2.2 getEnabledTransitions() Algorithm... 15

 2.3 Bounded Buffer Monitor... 17

 3.1 Package Diagram... 21

3.2 Sequence Diagram... 26

4.1 eastEnter() Method.. 29

4.2 Instrumented eastEnter() Method.. 29

ix

LIST OF TABLES

Table Page

4.1 Experiment Results ... 32

1

CHAPTER 1

INTRODUCTION

Traditionally multithreaded programs were used in operating systems but now

many application programs are also multithreaded. Some examples of multithreaded

applications used commonly are Web Servers, Database Management Systems, PC

Games and many more. The key issue is access to shared resources between various

threads. The problem becomes worrisome when more than one of the threads wants to

write in the shared space. Another issue is that of non-determinism, which is due to the

fact that the programmer has no control on when and how long will a thread be assigned

the CPU time. This makes it very difficult to reliably test and reproduce an error during

debugging. A multithreaded program which is executed with the same inputs a number

of times might yield different results on each trial. This problem does not exist in a

sequential program. The following example illustrates this: -

Figure 1.1 Test result for sequential program

Assume three data elements, x, y and z, initialized to 0.

Thread 1: x = y + z;
 y = 1;

z = 2;

The possible result is: - x = 0.

2

The following example illustrates the non-determinism in a very simple

application which adds values of two variables and stores them in a third variable [2]: -

Figure 1.2 Possible interleaving and results for multithreaded program

Our work focuses on testing Monitors which are a special synchronization

construct. The testing of monitors is not trivial because of the interleaving. Also, it

difficult to determine how many threads we need to reliably test the monitor.

We now take a look at a generic monitor and then at a Java Monitor. Also, we

would see how these two are different and what makes testing them a difficult problem.

Assume three data elements, x, y and z, initialized to 0.

Thread 1: x = y + z;
Thread 2: y = 1;
 z = 2;

The above high language constructs are converted into the following machine
code: -

Thread 1:
 load r1, y; - (1)
 add r1, z; - (2)
 store r1, x; - (3)
Thread 2:
 assign y, 1; - (4)
 assign z, 2; - (5)

The possible interleaving are: -

• (1), (2), (3), (4), (5) and x = 0.
• (1), (2), (4), (5), (3) and x = 0.
• (1), (2), (4), (3), (5) and x = 0.
• (1), (4), (5), (2), (3) and x = 2.
• (4), (1), (2), (3), (5) and x = 1.
• (4), (5), (1), (2), (3) and x = 3.

3

1.1 Monitor

Monitor is a high-level synchronization construct that supports data

encapsulation and information hiding. It encapsulates shared data, operations on data

and the required synchronization for accessing the data [2]. Monitors guarantees mutual

exclusion. Figure 1.3 illustrates the run-time structure of a monitor.

Figure 1.3 Graphic view of a monitor

A monitor has the following parts: -

• Critical Section: - This section guards the shared data elements. A thread

needs to enter this section to be able to access the shared data element and

execute synchronized operations. There can only be one thread in the critical

section at any point of time.

• Entry Queue: - All threads wait here for the entry into the critical section.

This is a FIFO queue and the thread at the head of queue is allowed to enter

the critical section when it is empty.

Critical Section

Entry Queue

Condition Variable 1

Condition Variable 2
…
Condition Variable N-1

Condition Variable N

4

• Condition Queues: - Each condition queue has a condition variable. A thread

waiting for a condition variable to be true waits in the related condition

queue. Traditionally condition queues are FIFO in nature.

A thread enters the condition queue when it executes the wait() operation on the

related conditional variable. It is either placed back in the entry queue or in a special re-

entry queue depending on the signaling discipline when the signal() method on the

condition variable is executed by the thread in the critical section. We will discuss one

of the signaling disciplines in the next section.

1.2 Java Monitor

A Java Monitor is a Java class which provides synchronized data access. The

synchronization is implemented using the keyword ‘synchronized’ to classify a method.

It guarantees mutual exclusion with respect to the access to the shared data elements.

Figure 1.4 Graphic view of a Java monitor

Figure 1.4 shows the graphical view of a Java Monitor at run-time. One

noticeable difference between the structure of a Java Monitor and a general monitor is

that in the general monitor there a condition queue associated with each condition

Critical Section
Entry Queue Condition Queue

5

variable whereas in the Java Monitor there is only one such queue for all condition

variables. A Java monitor has the following parts: -

• Critical Section: - The critical section in a Java Monitor is similar to the

critical section of a traditional monitor. It guards the shared data elements. A

thread needs to enter this section to be able to access the shared data element

and execute synchronized operations. There can only be one thread in the

critical section at any point of time.

• Entry Queue: - Any thread which executes the ‘synchronized’ method waits

in the entry queue. This queue is a FIFO queue like the traditional monitor.

• Condition Queue: - This where the Java monitor differs from the traditional

monitor. The first difference is that unlike the traditional monitor the Java

monitor just has one queue where all threads wait no matter for which

condition variable they are waiting for. The second difference is that this

queue is not FIFO in nature. It is random for the signal() operation. Thus

when a signal() operation is exerted then any thread in the condition queue

is awakened. This also means that a thread which may be waiting for some

other condition to be true might be awakened.

The condition queue’s property requires that we have a mechanism which

allows us to ensure that we do not end up in a situation where a thread is still waiting in

the condition queue even when the condition is right for it to enter the critical section.

Java has added the signalAll() method for this. It awakens all the threads in the

6

condition queue and puts them back in the entry queue. The signaling discipline

explained will illustrate how this works.

Another important aspect about monitors is the signaling discipline. This

defines how a thread when in the condition queue will behave when awakened and also

how the thread in the critical section can behave after executing a signal() operation.

The signaling discipline for a Java monitor is the Signal-and-Continue. This means that

the thread in the critical section can execute the signal() operation and then continue its

work in the critical section. The signaled thread goes to the end of the entry queue and

is treated like any other thread in the entry queue.

Now we know the runtime structure and the behavior of Java Monitors, next we

look in to what makes testing of such programs more challenging than traditional

testing techniques.

1.3 Java Monitor Testing

Testing a sequential program or a program with a single thread of execution is

relatively easier as we saw in Figure 1 and Figure 2. This is because multiple threads

are executing at any point of time in a concurrent system. As we have seen there can

only be one thread in the critical section and multiple threads waiting in the entry queue

and the condition queue. Thus, in order to reliably test the Java Monitor we need to

create multiple threads. This leads to another problem. We have little control over

neither the operating system’s scheduler nor the Java Runtime. Thus we cannot

predictably execute threads in a given order. Thus we cannot ensure a degree of

7

satisfaction i.e. we cannot say that we have tested 99% of possible paths, etc. The major

issues are: -

• Non-deterministic behavior: - As discussed earlier this is an issue with all

concurrent programs. The challenge is how to reliably produce and

reproduce a behavior during testing and regression.

• Number of Threads: - Threads are an operating system resource. They

consume memory, CPU cycles and other system resources. Thus it would

not be prudent or possible to have unlimited number of threads. On the other

hand we have seen that one thread is not enough. So, the challenge is how

many threads we need.

• Runtime Information of Java Monitor: - Java does not provide any control

over the Java Monitor. It also provides no information about the number of

threads in the queues or the thread in the critical section at run-time. Thus

we need a mechanism which simulates the behavior of the Java Monitor yet

gives us all this information.

We have addressed the key challenges as listed above in our work. As we will

illustrate, we are able to exercise well defined possible states the monitor can reach by

exploring the state-space in a depth-first fashion. Chapter 2 discusses the MonitorTest

Algorithm which explores the state-space. We also exercise all possible transitions that

can be executed at each monitor state.

8

We have replicated the behavior of the Java Monitor using our Monitor Toolbox

[3]. It simulated the FIFO nature of the entry queue, guarantees mutual exclusion for the

critical section and provides for random waking of threads on the signal() operation.

We also introduce threads on the fly and maintain a Thread Pool thus reducing

the overhead of creating a thread each time we need one. This pool adjusts in size based

on the need of threads thus reducing the load on the system. Chapter 3 would discuss

the implementation of the MonitorExplorer tool and the key packages.

We introduce the concept of abstraction later in the document. It allows us to

focus on key states and ignore states where the monitor would exhibit similar behavior.

The trade-off is between the level of abstraction and the size of the state-space to be

explored. The finer the abstraction the more the state-space would be. This would

increase the reliability of the tests but increase the computation time. On the other hand

if the abstraction is too coarse we might miss out on some important states and

transitions. This would however a small state-space thus a less execution time.

We have conducted several experiments to show the effectiveness of our

approach. We have used some of the classical monitor implementation and introduced

the common synchronization errors. The effectiveness of the tool is measured by the

percentage of mutants killed by the MonitorExplorer tool. We also track the time of

execution to show that the tests are conducted in reasonable time such that it can be

used in real-life scenarios. In Chapter 4 we present our experiments and results.

Chapter 5 discusses related work. In Chapter 6 we present our conclusion and in

Chapter 7 share the future work.

9

My main contribution to the MonitorExplorer is the MonitorTesting module. It

includes the Controller, ThreadPool and Utilities sub-packages. I implemented the

MonitorTest algorithm and the getEnabledTransitions() method. I also implemented the

logic for retrace, interaction between the user & the system and designed the data

structures like Transition and AbstractState. Another important component that I

designed and implemented was the communcationMonitor() which enforces

synchronization between the main thread and executing threads.

10

CHAPTER 2

MONITORTEST: THE ALOGRITHM

The MonitorTest Algorithm is a depth-first algorithm which traverses the state-

space of the Java Monitor. The algorithm is illustrated in Figure 2.1. As illustrated in

the algorithm there are two key data structures that we maintain. One is the set of

visited states. Thus data structure is used to keep track of the states we have visited. It

usefulness will be illustrated shortly. The other data structure is called stack which is a

stack of all possible transitions that can be executed. This stack is populated by the

getTransitions() method.

An important thing to mention here is that we do not store the actual monitor

state but we store the abstract state which is derived from the actual state. This is a very

powerful tool which allows us to reduce the state-space size. Another is that initial state

of the monitor can be specified the user and we can start working from there. This

allows the tester to exercise a more restrictive path he wants to explore while

regression.

In this chapter we would discuss the key components of the algorithm and then

describe the flow of events.

11

Figure 2.1 MonitorTest Algorithm

2.1 Abstract State

We would let you consider the following before we go on to discuss the concept

and power of abstract state. A monitor with two synchronized methods and one data

element with ten possible values can have at least three hundred and twenty possible

actual states. The math being that thread waits to execute each of the method and waits

the head of the entry queue. Now each of these methods will enter the critical section

making it four possible combinations with one thread in the critical section while no

thread waits in the entry queue, a thread waits to execute one of the methods or two

Initialize:
1. let stack be an empty stack
2. let visited be an empty set
3. create a instance m of M, and initialize m to state s0
MonitorTest () {
4. AbstractState state = getAbstractState ();
5. add state into visited;
6. transitions = getEnabledTransitions ();
7. Explore (transitions);
}
Explore (transitions: a set of transitions) {
8. for (each transition t in transitions) {
9. push t onto stack
10. execute t;
11. state = getAbstractState ();
12. if (state is valid or state is not in visited) {
13. add state into visited;
14. Explore (getEnabledTransitions ());
 }
15. pop t out of stack;
16. undo t;
 }
}

12

threads wait to execute each of the method. Now, multiplying four by the ten possible

values for the data element we get forty. And then the same situation in the condition

queue as there was in the entry queue makes a total of 320. We still have not considered

possibility of having more than one thread with same method in the entry queue or the

condition queue.

This problem of exploding state-space increases the computation time required

to test. Also, it exponentially increases the number of states and paths of explored thus

required lots of memory space. Thus the challenge is to reduce the state-space such that

all the key features of the state space are captured and at the same time we keep the use

of the resources to the minimum. Also, we need to use this information to determine our

next possible transitions based on the state, check for duplicate and invalid states. Our

technique of state abstraction addresses exactly this issue.

We would like to add a caveat here that abstraction is a powerful tool with a

degree of give-n-take. The finer the granularity of abstraction the more reliable are the

results but more time and resource are needed and converse is also true.

As we have seen in the above example the key characteristics of the Java

Monitor that we need to capture are: -

• State of thread in the critical section.

• The states of threads in the entry queue.

• The states of threads in the condition queue.

• The value of key data members

13

Now, to continue with our discussion on the abstract states for the Bounded

Buffer (section 2.3) problem we would want to trap enough information so that we

know what all transitions can be executed from the current state. To do this we must

know what thread is at the head of the entry queue if any. This is the only significant

thread in the entry queue as the rest cannot do much till this thread enters the critical

section and then gives it up. Also, we really do not care about the thread id, all we really

want to know which of the synchronized method this thread will execute. We might

also want to know if this is the threads first attempt to enter the critical section or not.

Similarly for the critical section and the condition queue what matters to us what

methods these threads execute.

The really interesting one is the data element. Let’s look at the Bounded Buffer

example for clues. The element ‘capacity’ will remain constant over the execution so if

know its value once we do not have to keep track of it. The ‘buffer’, ‘in’ and ‘out’ really

do not affect the synchronization behavior which is of interest to us. So, we have

narrowed down to ‘fullSlots’.

Even for fullSlots not all values are significant to us. More specifically threads

will exhibit similar behavior at a group of values. Let ‘capacity’ be ten, then from value

1 to 9 the Bounded Buffer must have the same behavior. It must allow a producer to

deposit and a consumer to consume. However when value is zero it must not allow

consumption. Similarly when value is ten it must not allow production to continue. We

also must ensure that value of ‘fullSlots’ does not go beyond ten and below zero. Thus

we need to keep track of five types of values for only one data element.

14

The key elements for the queues that we need to track with the following: -

• Entry Queue: - The method executed by the thread at front of the entry

queue or empty if no thread in the entry queue.

• Critical Section: - The method executed by the thread in the critical section

or empty if no thread in the critical section.

• Condition Queue: - One entry for each synchronized method if a thread

executing that method is present in the condition queue or empty if no

thread in the condition queue.

2.2 Enabled Transitions

The second component that is required to explore the state-space is the set of

enabled transitions. Let us first see what we mean by a transition. Simply it is a set of

actions that must be executed atomically to move from state to another. The keyword is

‘enabled’. It means that of all the transitions which when can be executed from a certain

state.

The set of enable transitions is built by the getEnabledTransitions() method

which pushes them onto a stack. The Explorer() method requests for the method to add

new transitions to the stack each time it gets a new valid state. It uses the transition at

the top of the stack to proceed. Figure 2.2 illustrates the getEnabledTransitions()

algorithm.

15

Figure 2.2 getEnabledTransitions() Algorithm

The following is the set of transitions pushed on the stack by the

getEnabledTransitions() in the given scenarios: -

• When entry queue is not empty and the thread in CS is about to exit: - Only

one transition is created. The next operation is exit executed by the thread in

the CS which allows the thread at the head of entry queue.

• When no thread in the entry queue and (the critical section or thread in CS

about to exit): - An introduce transition is created for each synchronized

Set getEnabledTransitions () {
1. let transitions be an empty set
2. if (entry queue is not empty and next operation of thread in the CS is

exit){
3. create an exit transition and let the thread at the entry queue entry
 }
4. else if (no thread in entry queue or critical section){
5. create an Introduce transition for each synchronized method
 }
6. else if (notify/notifyAll operation with thread in entry queue
 but no thread in condition queue){
7. create an transition for the thread to continue
 }
8. else if (notify operation) {
9. create an Introduce transition for each synchronized method
 and notify for each synchronized method in the condition queue.

}
10. else if (notifyAll operation) {
11. create an Introduce transition for each synchronized method
 }
12. add these transitions into transitions
13. return transitions;
}

16

method. Also, if the thread in critical section the exit operation is clubbed

with each introduce. In this case introduce is executed before the exit.

• When notify/notifyAll operation but no thread in the condition queue: - One

transition is added which tells the thread in the critical section to continue.

• When notifyAll with threads in condition queue: - A transition is added with

notifyAll transition and no other action. Then a set of transitions is added

with introduce operation for each synchronized method before the notifyAll

operation.

• When notify with threads in condition queue: - A set of transitions is added

with notify transition for each of the synchronized method in the condition

queue and no other action. Then a set of transitions is added with introduce

operation for each synchronized method before the each of the notify

operations.

The last two sets simulate the race condition where a new thread might barge

ahead of the threads awakened from the condition queue. The last set simulates the

randomness of the Java Monitor where it may wake up any of the threads waiting in the

condition queue on the notify operation. We would like to clarify that the introduce

operation means that the thread enter the entry queue. It then waits for it to get to the

head of the entry queue and for the critical section to get free before it can enter.

2.3 Bounded Buffer Problem

The example of the classic Bounded Buffer problem will be used to explain the

approach and implementation throughout the document. As shown in figure 2.2 there

17

are two synchronized methods in this problem namely, deposit() and withdraw(). A

consumer should be able to withdraw when slots are not empty and a producer should

be able to deposit when the slots are not full.

Figure 2.3 Bounded Buffer Monitor

class BoundedBuffer {
private int fullSlots=0;
private int capacity = 0;
private int[] buffer = null;
private int in = 0, out = 0;
public BoundedBuffer(int bufferCapacity) {
1. capacity = bufferCapacity;
2. buffer = new int[capacity];
}
public synchronized void deposit (int value) {
3. while (fullSlots == capacity) {
4. try { wait(); } catch (InterruptedException ex) {}
}
5. buffer[in] = value;
6. in = (in + 1) % capacity;
7. if (fullSlots++ == 0) {
8. notifyAll();
}
}
public synchronized int withdraw () {
9. int value = 0;
10. while (fullSlots == 0) {
11. try { wait(); } catch (InterruptedException ex) {}
}
12. value = buffer[out];
13. out = (out + 1) % capacity;
14. if (fullSlots-- == capacity) {
15. notifyAll();
}
16. return value;
}
}

18

Now that we have the bounded buffer monitor let is examine the state

abstraction for this monitor.

We have already seen in the previous section that we would really like to just

capture the values for fullSlots only. To summarize that discussion the abstract values

for fullSlots will be: -

• 0 when fullSlots == 0.

• 0 – N when 0 < fullSlots < capacity

• N when fullSlots == capacity

• 0-- when fullSlots < 0

• N++ when capacity < fullSlots

The last two values would represent invalid state. We would consider the

possible states for the entry queue. As discussed earlier we want only to capture the type

of threads at the head of the entry queue, thus four possible abstractions are: -

• deposit

• withdraw

• Redeposit

• Rewithdraw

The last two values represent threads which have been to the condition queue

and are making an attempt after being signaled. In case of the critical section we again

want to capture the type of thread in the critical section, thus possible abstractions are: -

• deposit

• withdraw

19

The final component in the abstract state is the state of the condition queue. This

would be a set with size equal to the number of synchronized methods. Another issue

we need to take care of is that there may be some distinction between one thread of a

type waiting and multiple threads of the same type. Thus we have the following

abstractions: -

• When no thread in condition queue then (“”,””)

• When deposit in condition queue only (“deposit”, “”)

• When withdraw in condition queue only (“”, “withdraw”)

• When one deposit and one withdraw in condition queue (“deposit”,

“withdraw”)

• When more than one deposit in condition queue only (“deposit++”, “”)

• When more than one withdraw in condition queue only (“”, “withdraw++”)

• When more than one deposit and more than one withdraw (“deposit++”,

“withdraw++”)

• (“deposit++”, “withdraw”)

• (“deposit”, “withdraw++”)

 Thus we have 360 possible states. All of these are not valid states and thus the

exploration may yield a much smaller state-space. If abstraction is not used the number

of possible states would increase exponentially. A simple example would be that we

would detect all the eleven valid values of fullSlots and unknown number of illegal

values of fullSlots. This alone would increase the number of states of a factor 2.5. If we

20

go on to consider the numerous possible combinations of thread in the entry queue and

condition queue the number of states will explode.

21

CHAPTER 3

MONITOREXPLORER: THE IMPLEMENTATION

In this chapter we will take a look at the implementation of the MonitorExplorer

tool. We would discuss the package structure and the key features of each package. We

would also see the flow of control as the tool tests a package.

3.1 Packages

There are four major packages our implementation. Figure 3.1 shows the

packages implemented and their interaction.

Figure 3.1 Package Diagram

The Monitor package belongs to the user. This is where she defines the monitor

to be tested, the abstraction and testing condition. The major components of this

package are: -

• Java Monitor: - This is the Java Monitor to be tested. We have to do some

instrumentation so that it can be tested. At the beginning of each

synchronized method we add enterMonitor() and at the end we have the

exitMonitor() call. Also, wait() operation is replaced by suspend(), notify()

by signal() and notifyAll() by signalAll().

Monitor Monitor
Testing

SemaphoreMonitor
Toolbox

22

• UserExtension: - This is where the user defines the abstraction and

evaluation conditions. We have provided user APIs which she can use to get

the values for the state. Thus the user does not have to worry about the

internal structures.

The second component is the brain and brawn of the tool. Here we have the

algorithm which builds the transitions and directs the exploration process and the

execution module which manipulates the actual monitor, threads & executes the

transitions. The major components of this package are: -

• Controller: - Controller is the brain of the tool. It itself is a package with

several components. The main part is Controller.java which has the

implementation of the algorithm and as the name suggest controls the

progress of the tool. It also does the book-keeping and initiates file I/O. It is

also the access point for all user entities to interact with lower modules. The

other key parts are: -

o CommunicationMonitor: - This construct is used to synchronize

operations between the tool thread and the threads performing

operations on the Java Monitor.

o Data Structures: - The abstract state and transition classes are also

defined in this package.

• Execution: - This is brawn of the tool. This package is the execution

environment and performs the requests of the controller. The main

components of this package are: -

23

o MonitorDriver: - This is go-through between the controller and the

monitor toolbox. We have used the Reflection API provided by Java

to extract runtime information of the Java Monitor. Thus we can use

generic threads to execute the synchronized methods. This allows

user to use the tool without any knowledge of the internal working.

o MonitorToolBoxWrapper: - This is where we have our monitor

operation defined. This part does book-keeping at the execution level

and builds the information about the actual state of the monitor.

o RunTimeHelper: - This class interacts with the threads executing the

synchronized methods.

• Evaluation: - This package provides the user API and the utilities to test the

monitor. We would discuss this in greater detail later.

• ThreadPool: - This is a pool of generic threads which adjusts in size as the

demand varies. This allows us to reuse threads and reduce the load on the

system.

• Utilities: - This package has the file I/O files, commonly used definitions

and other utilities.

The third package is the MonitorToolBox. The need for this arises because the

Java does not provide any insight into the data structures of its monitor. The data values

can be retrieved using Java Reflection API but we also need information like the size

and contents of the entry and condition queues. In addition to this we need to know

which thread is executing inside the critical section and which method it is executing.

24

Thus we have tweaked the implementation of a generic monitor to behave like the

internal java monitor. It implements the Signal and Continue signaling discipline. It

implements the FIFO nature of entry queue. We have not simulated the randomness of

the signal() operation. That is simulated by the controller; however we can specify

which thread we want to signal. We also do the book-keeping regarding the queues and

critical section in this package.

The last package is the Semaphore package which has the semaphore

implementations used by the MonitorToolBox to enforce synchronization.

3.2 Evaluation

We earlier talked about the Evaluation module which is a part of the

MonitorTesting package. This sub-package is an important component as this is where

the checking of the Java Monitor is done. The current and previous states are verified

against the conditions provided by the user. The conditions have to be specified by the

user as each monitor has a different behavior. We have provided user API which hides

the implementation details from the user and allows her to easily define the

requirements. The main parts of this module are: -

• Requirement: - In this class we define the requirement code, the description

of the requirement and the category like functional or starvation.

• Condition: - Condition is associated with the requirement code, a condition

code, the description of the condition. The most important field is the

condition type which can be WARNING or ERROR. In case of an error we

terminate the execution the path where as in case for warning we continue

25

the execution. This is useful as in some cases the user may believe the

current condition may lead to an error but currently we can proceed to

explore further.

• userAPI: We have mentioned this class a number of times. It provides easy

access to the monitor state and transition information to the user without

knowing the internal functioning. Here are a few examples are: -

o public boolean threadTypeInConditionQueue(String threadType,

AbstractState state): - This method allows the user to check if a

thread type is in the condition queue or not.

o public int getAttributeValue(int attributeNumber): - The user can get

the actual value of a shared variable.

• EvaluationRun: - This class stores all the errors and warning over an

execution. The MonitorExplorer terminates the current path of execution

when error is found and continues to explore the other paths. This class

stores conditions over all paths.

• MonitorEvaluation: - An abstract class provides abstract method which

define how to associate requirements with conditions and evaluateMonitor()

which takes the stack of visited states and stack of transitions on the path.

These can be used by the user API for evaluation.

 Another class which needs to be mentioned is the UserEvaluation. It is a part of

UserExtension sub-package in the Monitor package. This is where the user defines

the condition and requirements.

26

3.3 Sequence

Now that we are familiar with the packages and the static details of the Explorer,

let us take a look at the run-time scenario. Figure 3.2 is the sequence diagram for

execution of one transition.

Figure 3.2 Sequence Diagram

There are two major threads of execution: -

• Main Thread: - This is MonitorExplorer thread with four major objects: -

o Controller: - This is the first object created when execution starts.

This creates the Driver and Evaluation object. The controller tells the

Evaluation Controller Driver

Thread
Pool

Monitor
Wrapper

27

Driver what needs to be done and gets the actual monitor state. It

extracts abstract state and sends it to the Evaluation.

o Evaluation: - This get the state from the Controller, evaluates the

state and returns if it error or not.

o Driver: - It gets the transitions to execute from the Controller. It sets

up the ThreadPool, gets a thread from it and executes the transition.

It returns the actual Monitor state to the Controller. It sets up and

interacts with the MonitorWrapper where the actual threads execute

the monitor operations.

o ThreadPool: - This pool of thread creates generic threads has hands

one the Driver when required.

• Monitor Threads: - This has the MonitorDriver object which interacts with

Driver. There are multiple threads running here which execute the

synchronized operations on the Java Monitor.

28

CHAPTER 4

EXPERIMENTS

In this chapter we look at several experimental results which confirm the

effectiveness of MonitorExplorer in detecting synchronization mistakes. We also take a

look at the steps required to setup the tool.

4.1 Tool Setup

We need to first establish the requirements that the monitor must fulfill. This is

line with traditional testing techniques and must be done independently of the

implementation.

In order to use toolbox we need to change the monitor code. The following

changes are required for all synchronized methods: -

• Remove the synchronized keyword.

• Add enterMonitor() as the first line.

• Add exitMonitor() as the last line.

• Replace wait() with suspend().

• Replace notify()/notifyAll with suspend()/suspendAll().

We also provide an initialization method for the monitor. This allows the user to

test the monitor with different starting conditions. In case of BoundedBuffer Monitor

the initialization method allows to specify the size of the buffer and how many slots are

filled. Figure 4.1 shows the implementation of eastEnter() method for the FairBridge

29

Monitor and figure 4.2 show the code for the method after instrumentation so it can be

used for the MonitorExplorer tool.

Figure 4.1 eastEnter() Method

Notice that the synchronized keyword is missing in the instrumented method.

Also, enterMonitor() and exitMonitor() methods have been added and wait() has been

replaced by suspend().

Figure 4.2 Instrumented eastEnter() Method

We then define the Abstract State. Actually the user only needs to define the

abstract values for the data elements. The abstraction for the critical section and

condition & entry queue is handled by the tool itself based on the names of the

synchronized methods.

1. public synchronized void eastEnter() throws InterruptedException {
2. ++eastCarsWait;
3. while (westCars>0 || (westCarsWait > 0 && eastTurn == 0))
4. wait();
5. --eastCarsWait;
6. ++eastCars;
}

1. public void eastEnter() {
2. enterMonitor();
3. ++eastCarsWait;
4. while (westCars>0 || (westCarsWait > 0 && eastTurn == 0))
5. suspend();
6. --eastCarsWait;
7. ++eastCars;
8. exitMonitor();
}

30

We also need to define the evaluation function. We have provided the user API

which allows the user to easily define this function. This is used to check if the current

abstract state violates any of the requirements. The user can use the current abstract

state, the last transition executed and any of the older states or transitions to verify the

current state.

The last bit is the input file which has the following format: -

• The first line is the name of the monitor.

• The second line is an integer which can be used to supply the argument for

the monitor constructor.

• The third line has the number of synchronized methods followed by two

lines for each method. The first of these lines is the name of method and the

second is the argument. Incase of no argument we pass the value as -1.

• This block is followed by the number of data members to be tracked. Each

data element is represented by two lined. First line has the name and the

second has the initial value.

4.2 Mutants

The main objective of conducting these experiments is to establish the

effectiveness of our tool. To achieve this goal we introduce some errors, which are

commonly found in monitor implementations, and track how many of these errors we

can detect. Please note that the objective of our tool is to detect synchronization faults

and thus are mutants are focused only common synchronization mistakes. The

following guidelines are used to create mutants: -

31

• Replace while with if statement incase the block contains a suspend()

operation.

• Replace signal() with signalAll() and the other way round.

• In case a conditional block contains a synchronization operation change the

relational/Boolean operator or use negation of the Boolean variable at the

branching point.

• Remove the synchronization operations.

The first mutant detects if the case where we want to recheck the condition when

a thread re-enters the critical after it awakened by signal() or signalAll(). The second

condition checks if one thread is awakened from the condition queue when we expect

all of them to be awakened. The remaining conditions check for conditions where we

expect to execute a synchronization operation but that does not happen and also the

other way around.

We exercise each mutant independent of other as two mutants may have a

masking effect.

4.3 Monitors Tested

We have tested the following monitors: -

• BoundedBuffer: - This monitor solves the Producer/Consumer problem.

When the buffer is full, the producer must wait for the consumer to withdraw

an item. Similarly, when the buffer is empty the consumer should wait for

the producer to produce an item.

32

• FairBridge: - A solution that prevents collisions in a single-lane bridge. The

solution guarantees no starvation. That is, cars from both directions get a fair

chance to access the bridge.

• SimpleAllocator: - A solution used to allocate a pool of balls to the golf

player. A player must wait if he requests more balls than available.

The BoundedBuffer problem is from [6] and the rest are from [9]. The details of

the instrumentation, mutants, requirements, abstraction and results, for each of the

monitors, is provided in appendix.

4.4 Experiment Results

Table 4.1 Experiment Results
Monitor # of

Require
ments

of
Mutants

of
Mutants
Killed

of
Paths
Explored

of
Transitions
Executed

of
States
Explore

Exploration
Time
(Seconds)

Bounded
Buffer 7 12 12 15 47 33 3.2
Fair
Bridge 10 22 20 160 386 227 45.4
Simple
Allocator 5 14 12 123 248 126 29.7

33

CHAPTER 5

RELATED WORK

There has been much work done in the area of testing in general but the

problems of determining the number of threads and non-deterministic execution does

not exist in sequential programs. Our work focuses on testing monitors, thus we review

existing work on testing monitors and concurrent programs.

The monitor was proposed by Brinch Hansen and Tony Hoare and Hansen was

the first person to propose a solution to test monitors [4]. He suggested an approach to

test Pascal monitors with the following steps: -

• The tester identifies a set of preconditions that will cause each branch of

operation to be executed at least once.

• Then a single sequence of monitor calls is constructed. This sequence

satisfies each identified precondition at least once.

• A test driver is created with multiple threads to execute the monitor call

sequence identified in the previous step.

Each of the threads in the test driver executes one or more of the monitor call in

the sequence. Also, the threads in the driver are synchronized during testing to ensure

they execute in the specified order.

The approach given above was extended to Java Monitors [5]. The work in [5]

adds that we identify preconditions that cause each loop to be executed zero, one and

34

more than one times. This is required as the wait() operation in Java Monitors is often

inside a loop.

In [3] [6] Carver and Tai have generalized Hansen’s work for synchronizing

threads during testing and they have demonstrated how to apply their technique to test

monitors, semaphores, locks and message passing. These are the steps suggested by

them in [6]: -

• Derive a set of validity constraints from the specification of the program.

• Then perform non-deterministic to determine the coverage and validity.

• Generate additional test sequences for the paths that were not covered and

perform deterministic testing for those test sequences.

The works shown above are the only approaches to testing monitors in the

literature. Even with tool supports for [3] [5] and [6] the first two steps are manual and

error prone. On the other hand, our approach as shown is more systematic and highly

automated. Also, we do not rely on loop and branch coverage as these approaches do.

We explore the state space of the Java Monitor till we reach a duplicate or error state.

The approaches suggested by Godefroid [7] and Havelund & PressBurger [8]

use state space exploration to test concurrent programs. They either directly explore the

state space of the concurrent program or extract an abstract model from the program and

then explore the abstract model using a model checker.

They problem with these approaches are they do not solve the problem of state

explosion. Also, these approaches assume that the program in test is complete. This

means that program can be executed in isolation. Thus before we use can test a Java

35

Monitor a program that uses the monitor under test must be constructed. The problem

with this is that the program we construct may not trigger unexpected scenarios which

are often the cause of failure. Our approach however is different as we introduce threads

on fly, during state space exploration. Also, we impose no restriction on number or type

of threads to be introduced. To best of our knowledge, only our work has such

capability.

36

CHAPTER 6

CONCLUSION

This document shows that are approach to testing Java Monitors has

successfully used the state exploration technique to test monitors. This undoubtedly will

be an asset to developers of Java Monitors in unit testing. The key benefit is the

automation of the process thus ensuring greater coverage which is guaranteed neither by

current sequential program testing techniques nor by manually creating test sequences

and executing them. Our approach also simplifies regression testing of Java Monitors.

The main contribution of our work is introduction of threads on-the-fly. This

allows us not to impose restrictions on number or type of threads we introduce. Thus we

can generate and execute test sequences on the fly which create race conditions and thus

are able to detect more errors. This allows us to detect conditions like starvation,

violation of the critical section. An example of this is when the loop condition around

the suspend() in FairBridge Monitor is changed to a branch condition, i.e. while is

replace by if, we are able to detect violation of the critical section.

The experiment results in chapter 4 show that our tool is able to kill a large

percentage of mutants. One mutant that we are not able to kill is when the suspend() is

removed from loop condition. However this error will be visible to the user in terms of

the system entering a livelock. Another important achievement is that the entire state

37

space is explored in a small time. Thus the tool can be used for regression without much

time penalty.

Our tool also allows us to control the intercept synchronization operation with

the help of the toolbox. This allows us to refresh the monitor state on every

synchronization operation, thus enabling us to determine the possible transitions at each

of these states and explore the state space.

My main contribution to the MonitorExplorer is the MonitorTesting module. It

includes the Controller, ThreadPool and Utilities sub-packages. I implemented the

MonitorTest algorithm and the getEnabledTransitions() method. I also implemented the

logic for retrace, interaction between the user & the system and designed the data

structures like Transition and AbstractState. Another important component that I

designed and implemented was the communcationMonitor() which enforces

synchronization between the main thread and executing threads.

38

CHAPTER 7

FUTURE WORK

Our work has made significant contributions to testing of Java Monitors.

However, we see some enhancements in this future which would make the tool easier to

use. The following would be the future enhancements: -

• Automatic instrumentation the Java Monitor code. This would allow the

user to provide us with the Java Monitor and the tool would do all the

required instrumentation like adding enterMonitor() and exitMonitor()

methods.

• A graphical user interface to input the files and setup the tool would be

another task in the future. We would also like to present the state space

being explored in a graphical form.

• There are some monitors which have a protocol which defines in what order

the methods can be executed. An example of this would the Allocator

problem. The golfer should only be able to return the balls if he has been

given any. The user should be allowed to specify such a protocol.

We would also like to do a comparative study between the performance of the

existing approaches and our work.

39

APPENDIX A

BOUNDED BUFFER EXPERIMENT

40

Bounded Buffer Experiment

1. Requirements

Requirement # Requirements Description

1 If buffer is full Producer cannot produce
2 If buffer is empty Consumer cannot consume
3 If buffer is not full Producer should be able to produce
4 If buffer is not empty Consumer should be able to

consume
5 An item cannot be overridden
6 An item cannot be consumed twice
7 Consumers and Producers should not be waiting at the

same time

2. Abstract State

Date Members Abstraction

Variable Name: FullSlots
Abstract Value Actual Value Valid

0 fullSlots == 0 Y
0-N 0 < fullSlots < N Y
N fullSlots == N Y

N++ fullSlots > N N
0-- fullSlots < 0 N

Entry Queue Abstraction: - {withdraw, deposit, rewithdraw, redeposit, “”}

Critical Section Abstraction: - {withdraw, deposit, “”}

Condition Queue Abstraction: - { {“”, “”}, {withdraw. “”}, {“”, deposit}, …,
{withdraw++, “”}, {“”, deposit++}, {withdraw++, deposit++} }

41

3. Source Code

package edu.uta.cse.Monitor;

import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper;
import java.lang.Integer;

public class BoundedBuffer extends MonitorToolBoxWrapper {

public int fullslots=0;
private int capacity = 0;
private Integer[] buffer = null;
private int in = 0, out = 0;
public BoundedBuffer() {

this.buffer=new Integer[this.capacity];
}
public BoundedBuffer(int capacity, int fullSlots) {

this.fullslots=fullSlots;
this.capacity=capacity;
this.buffer=new Integer[this.capacity];

}

public void deposit(Integer value) {
enterMonitor();
while(fullslots == capacity) {

suspend();
}
buffer[in]=value;
in=(in +1)%capacity;
if(this.fullslots++ == 0) {

signalAll();
}
exitMonitor();

}

public Integer withdraw() {
enterMonitor();
Integer value=new Integer(0);
while (fullslots == 0){

suspend();
}
value = (Integer)buffer[out];
out = (out + 1) % capacity;
if (fullslots-- == capacity){

signalAll();

42

}
exitMonitor();
return value;

}
}

4. Mutant
Replace while with if in withdraw() method

public Integer withdraw() {
enterMonitor();
Integer value=new Integer(0);
if (fullslots == 0){ =� Replaced while with if

suspend();
}
value = (Integer)buffer[out];
out = (out + 1) % capacity;
if (fullslots-- == capacity){

signalAll();
}
exitMonitor();
return value;

}

5. Results

BOUNDED BUFFER: Please enter the path of input file:
c:\input.txt
Path: 1 begins....
Path: 2 begins....
---- CONDITION FOUND!!! ----
Condition #: 02 Type: ERROR
Category : lower_bound
Description: Data value is lower than lower bound
Requirement: 02 - If buffer is empty Consumer cannot consume
ATTRIBUTES :
Name : fullslots current value: -1
PRINTINT STATES STACK IN THIS PATH...
----------------Start of Abstract State----------------
State #: 1
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0

43

----------------Start of Abstract State----------------
State #: 2
Thread at the head of the Entry Queue is withdraw
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 3
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is withdraw
The value of data element is 0
----------------Start of Abstract State----------------
State #: 4
Thread at the head of the Entry Queue is withdraw
Critical Section is Empty
Thread in the Condition Queue is withdraw
The value of data element is 0
----------------Start of Abstract State----------------
State #: 5
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is withdraw+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 6
Thread at the head of the Entry Queue is deposit
Critical Section is Empty
Thread in the Condition Queue is withdraw+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 7
Entry Queue is Empty
Thread in Critical Section is deposit
Thread in the Condition Queue is withdraw+
The value of data element is 0-N
----------------Start of Abstract State----------------
State #: 8
Thread at the head of the Entry Queue is withdraw
Thread in Critical Section is deposit
Condition Queue is Empty
The value of data element is 0-N
----------------Start of Abstract State----------------
State #: 9

44

Thread at the head of the Entry Queue is Rewithdraw
Thread in Critical Section is withdraw
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 10
Thread at the head of the Entry Queue is Rewithdraw
Thread in Critical Section is withdraw
Condition Queue is Empty
The value of data element is 0--
STATE NOT VALID!!!!!!!!!!!
Path: 3 begins....
Path: 4 begins....
Path: 5 begins....
Path: 6 begins....
Path: 7 begins....
Path: 8 begins....
Path: 9 begins....
Exploration has ended...
Total Paths explored: 9
Unique Transitions executed are: 28
Unique States explored: 20
Total Exploration Time (in milliseconds): 890

45

APPENDIX B

SIMPLE ALLOCATOR EXPERIMENT

46

Simple Allocator Experiment

1. Requirements

Requirement # Requirements Description

1 If one or more than one ball available then pro should
not be waiting.

2 If two or more than two balls available then amatuer
should not be waiting.

3 If enough balls not available then the request should
not be granted.

4 Balls can only be returned by golfer who received
them.

5 Golfers should be allowed to return balls.

2. Abstract State

Date Members Abstraction

Variable Name: Available
Abstract Value Actual Value Valid

0 available == 0 Y
1 available == 1 Y
2 available == 2 Y

3 – (N -3) 3 <= available <= (N-3) Y
N -2 available == N - 2 Y
N -1 available == N – 1 Y

N available == N Y
N++ available > N N
0-- available < 0 N

Entry Queue Abstraction: - { get_pro, put_pro, get_am, put_am, reget_pro, reput_pro,
reget_am, reput_am, “”}

Critical Section Abstraction: - { get_pro, put_pro, get_am, put_am, “”}

Condition Queue Abstraction: - { {“”, “”, “”, “”}, {get_pro,””,””, “”},{“”, put_pro, ””,
“”}, …, { get_pro++, put_pro++, get_am++, put_am++ } }

47

3. Source Code

package edu.uta.cse.Monitor;

import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper;

public class SimpleAllocator extends MonitorToolBoxWrapper {

public int available = 0;

public int max = 0;

private int proIn = 0;

private int amIn = 0;

public SimpleAllocator(int max, int available, int proIn, int amIn) {
 this.available = available;
 this.max = max;
 this.proIn = proIn;
 this.amIn = amIn;
 }

public void get_pro() {
 enterMonitor();
 int n = 1;
 while (n > available)
 suspend();
 available -= n;
 proIn++;
 exitMonitor();

}

public void put_pro() {
 enterMonitor();
 if (proIn > 0) {
 int n = 1;
 available += n;
 }

48

exitMonitor();
 }

public void get_am() {
 enterMonitor();
 int n = 2;
 while (n > available)
 suspend();
 available -= n;
 amIn++;
 exitMonitor();

}

public void put_am() {
 enterMonitor();
 if (amIn > 0) {
 int n = 2;
 available += n;
 amIn--;
 }

exitMonitor();
 }
}

4. Mutant
Replace signalAll() with signal() in put_pro() method

public void put_pro() {
 enterMonitor();
 if (proIn > 0) {
 int n = 1;
 available += n;
 signal(); =� signalAll() replaced by signal()
 proIn--;
 }

exitMonitor();
 }

5. Results

Simple Allocator: Please enter the path of input file:
c:\input.txt

49

…
…
Path: 48 begins....
Path: 49 begins....

---- CONDITION FOUND!!! ----
Condition #: 01 Type: ERROR
Category : starvation
Description: Pro waiting when balls avialable
Requirement: 01 - If one or more than one ball available then pro should not be waiting.
ATTRIBUTES :
Name : available current value: 1
Name : max current value: 10

PRINTINT STATES STACK IN THIS PATH...

----------------Start of Abstract State----------------
State #: 1
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 2
Thread at the head of the Entry Queue is get_pro
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 3
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is get_pro
The value of data element is 0
----------------Start of Abstract State----------------
State #: 4
Thread at the head of the Entry Queue is get_pro
Critical Section is Empty
Thread in the Condition Queue is get_pro
The value of data element is 0
----------------Start of Abstract State----------------
State #: 5
Entry Queue is Empty

50

Critical Section is Empty
Thread in the Condition Queue is get_pro+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 6
Thread at the head of the Entry Queue is get_am
Critical Section is Empty
Thread in the Condition Queue is get_pro+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 7
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am
The value of data element is 0
----------------Start of Abstract State----------------
State #: 8
Thread at the head of the Entry Queue is get_am
Critical Section is Empty
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am
The value of data element is 0
----------------Start of Abstract State----------------
State #: 9
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 10
Thread at the head of the Entry Queue is put_pro
Critical Section is Empty
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 11
Entry Queue is Empty
Thread in Critical Section is put_pro
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am+
The value of data element is 1

51

----------------Start of Abstract State----------------
State #: 12
Thread at the head of the Entry Queue is get_am
Thread in Critical Section is put_pro
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am
The value of data element is 1
----------------Start of Abstract State----------------
State #: 13
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is get_pro+
Thread in the Condition Queue is get_am+
The value of data element is 1
STATE NOT VALID!!!!!!!!!!!
Path: 50 begins....
Path: 51 begins....

52

APPENDIX C

FAIR BRIDGE EXPERIMENT

53

Fair Bridge Experiment

1. Requirements

Requirement # Requirements Description

1 Cars coming from different directions cannot access
the bridge at the same time

2 If no West cars in the bridge or waiting, East cars
should be able to access

3 If no East cars in the bridge or waiting, West cars
should be able to access

4 East or West cars can only exit once they have entered
5 If at least one East car is in the bridge and no West Car

waiting, all east cars should be able to access the
bridge

6 If at least one West car is in the bridge and no East Car
waiting, all west cars should be able to access the
bridge

7 If east car waiting and east car turn then West car
should not enter.

8 If west car waiting and west car turn then East car
should not enter.

9 Only cars which are waiting or requesting to enter can
do so.

10 Cars that have entered should not be in the waiting
queue.

2. Abstract State

Date Members Abstraction

Variable Name: westCars and eastCars
Abstract Value Actual Value Valid

0;0 westCars == 0 && eastCars == 0 Y
W;0 westCars => 1 && eastCars == 0 Y
0;E westCars == 0 && eastCars => 1 Y
W;E westCars => 0 && eastCars => 0 N
-;- westCars < 0 && eastCars < 0 N
X;- westCars => 0 && eastCars < 0 N
-;X westCars < 0 && eastCars => 0 N

54

Variable Name: westCarsWait and eastCarsWait
Abstract Value Actual Value Valid

0;0 westCarsWait == 0 &&
eastCarsWait == 0 Y

WW;0 westCarsWait > 0 &&
eastCarsWait == 0 Y

0;WE westCarsWait == 0 &&
eastCarsWait > 0 Y

WW;WE westCarsWait > 0 &&
eastCarsWait > 0 Y

-;- westCarsWait < 0 &&
eastCarsWait < 0 N

X;- westCarsWait => 0 &&
eastCarsWait < 0 N

-;X westCarsWait < 0 &&
eastCarsWait => 0 N

Variable Name: eastTurn
Abstract Value Actual Value Valid

True 1 Y
False 0 Y

Entry Queue Abstraction: - {enterEast, enterWest, exitEast, exitWest, reenterEast,
reenterWest, reexitEast, reexitWest, “”}

Critical Section Abstraction: - {enterEast, enterWest, exitEast, exitWest,, “”}

Condition Queue Abstraction: - {{“”, “”, “”, “”}, { enterEast,””,””, “”}, {“”,
enterWest,””, “”}, …, { enterEast++, enterWest++, exitEast++, exitWest++} }

3. Source Code

package edu.uta.cse.Monitor;

import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper;

public class FairBridge extends MonitorToolBoxWrapper{

public int westCars = 0;
 public int eastCars = 0;
 public int westCarsWait = 0;

55

public int eastCarsWait = 0;
 public int eastTurn = 1;

public FairBridge(int eastCars, int westCars){
 this.eastCars = eastCars;
 this.westCars = westCars;
 }

public void eastEnter() throws InterruptedException {
 enterMonitor();
 ++eastCarsWait;
 while (westCars>0 || (westCarsWait > 0 && eastTurn == 0))
 suspend();
 --eastCarsWait;
 ++eastCars;
 exitMonitor();
 }

public void eastExit(){
 enterMonitor();
 if (this.eastCars >0){
 --eastCars;
 if (eastCars==0){
 signalAll();
 }

eastTurn = 0;
 }

exitMonitor();
 }

public void westEnter(){
 enterMonitor();
 ++westCarsWait;
 while (eastCars>0 || (eastCarsWait > 0 && eastTurn == 1))
 suspend();
 --westCarsWait;
 ++westCars;
 exitMonitor();
 }

public void westExit(){
 enterMonitor();
 if (this.westCars >0){
 --westCars;

56

if (westCars==0){
 signalAll();
 }

eastTurn = 1;
 }

exitMonitor();
 }
}

4. Mutant
Change the condition in the while statement in the enterEast() method

public void eastEnter() {
 enterMonitor();
 ++eastCarsWait;
 while (westCars<0 || (westCarsWait > 0 && eastTurn == 0))
 =� Changed westCars > 0 to westCars < 0
 suspend();
 --eastCarsWait;
 ++eastCars;
 exitMonitor();
 }

5. Results

…
…
Path: 9 begins....
Path: 10 begins....

---- CONDITION FOUND!!! ----
Condition #: 01 Type: ERROR
Category : collision
Description: West and East Cars are in the bridge
Requirement: 01 - Cars coming from different directions cannot access the bridge at the
same time
ATTRIBUTES :
Name : westCars current value: 2
Name : eastCars current value: 1
Name : westCarsWait current value: 0
Name : eastCarsWait current value: 1
Name : eastTurn current value: 0

57

PRINTINT STATES STACK IN THIS PATH...

----------------Start of Abstract State----------------
State #: 1
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;0
The value of data element is 0;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 2
Thread at the head of the Entry Queue is eastEnter
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;0
The value of data element is 0;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 3
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;E
The value of data element is 0;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 4
Thread at the head of the Entry Queue is westEnter
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;E
The value of data element is 0;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 5
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is westEnter
The value of data element is 0;E
The value of data element is WW;0
The value of data element is true
----------------Start of Abstract State----------------

58

State #: 6
Thread at the head of the Entry Queue is westEnter
Critical Section is Empty
Thread in the Condition Queue is westEnter
The value of data element is 0;E
The value of data element is WW;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 7
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is westEnter+
The value of data element is 0;E
The value of data element is WW;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 8
Thread at the head of the Entry Queue is eastExit
Critical Section is Empty
Thread in the Condition Queue is westEnter+
The value of data element is 0;E
The value of data element is WW;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 9
Entry Queue is Empty
Thread in Critical Section is eastExit
Thread in the Condition Queue is westEnter+
The value of data element is 0;0
The value of data element is WW;0
The value of data element is true
----------------Start of Abstract State----------------
State #: 10
Thread at the head of the Entry Queue is eastEnter
Thread in Critical Section is eastExit
Condition Queue is Empty
The value of data element is 0;0
The value of data element is WW;0
The value of data element is false
----------------Start of Abstract State----------------
State #: 11
Thread at the head of the Entry Queue is RewestEnter
Thread in Critical Section is westEnter
Thread in the Condition Queue is eastEnter

59

The value of data element is W;0
The value of data element is WW;WE
The value of data element is false
----------------Start of Abstract State----------------
State #: 12
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is eastEnter
The value of data element is W;0
The value of data element is 0;WE
The value of data element is false
----------------Start of Abstract State----------------
State #: 13
Thread at the head of the Entry Queue is eastEnter
Critical Section is Empty
Thread in the Condition Queue is eastEnter
The value of data element is W;0
The value of data element is 0;WE
The value of data element is false
----------------Start of Abstract State----------------
State #: 14
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is eastEnter
The value of data element is W;E
The value of data element is 0;WE
The value of data element is false
STATE NOT VALID!!!!!!!!!!!
Path: 11 begins....
Path: 12 begins....

60

REFERENCES

[1] http://today.java.net/pub/a/today/2004/08/02/sync1.html
[2] Lei, Jeff (2006). Class notes for Advanced Topics in Software Engineering.

http://crystal.uta.edu/~ylei/cse6324/
[3] Carver, Richard H. & Tai, Kuo-Chung. Modern Multithreading, John Wiley

& Sons, 2005, ISBN: 0-471-72504-8
[4] Hansen, P. Brinch (1978). “Reproducible testing of monitors,” Software

Practice and Experience, vol. 8, pp. 721-729.
[5] Long, B., Hoffman, D., & Strooper, P. “Tool support for testing concurrent

Java components”, IEEE Trans. On Software Engineering, 29(6):555-566, 2003.
[6] Carver, Richard H. & Tai, Kuo-Chung, “Replay and Testing for Concurrent

Programs,” IEEE Software, March 1991, pp.66-74.
[7] Godefroid, P. “Model Checking for Programming Languages using

VeriSoft,” Proc. of the 24th ACM Symposium on
[8] Havelund, K. & Pressburger, Tom. “Model Checking Java Programs Using

Java PathFinder,” International Journal on
[9] Magee, J. & Kramer, J. “Concurrency: State Models & Java Programs”,

John Wiley & Sons, 1999.

61

BIOGRAPHICAL INFORMATION

Vidur Gupta received his M.S. in Computer Science degree from University of

Texas at Arlington in May 2006. He received Post Graduate Diploma in Computer

Applications from the Institute of Management Technology, India in May 2003 and

Bachelors of Commerce with Honors from University of Delhi, India in May 2000. His

research interests include testing of concurrent programs, networking and use of

computer science in enhancing quality of life.

