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ABSTRACT

COMPLETE STRESS ANALYSIS FOR
TWO DIMENSIONAL INCLUSION
PROBLEM USING COMPLEX

VARIABLES

Publication No.

Rohan Arun Patil, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Seiichi Nomura

This thesis addresses the problem of finding stresses and displacements in an infinite
plate with a two-dimensional circular inclusion with different material properties using
the complex variable method with biaxial loading acting on it. The complex variable
method is used so that the continuity equations of traction force and displacement field
are satisfied at the interface. All the complex equations are solved using software

Mathematica.
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CHAPTER 1

INTRODUCTION TO ELASTICITY AND
COMPLEX VARIABLE METHOD

1.1 Background

Mechanical engineering uses elasticity in numerous problems in analysis and
design of machine elements. Such applications include general stress analysis, contact
stresses, thermal stress analysis, fracture mechanics and fatigue. Elasticity is an elegant
and fascinating subject that deals with determination of the stress, strain and distribution
in an elastic solid under the influence of external forces. This subject also provides the
basis for more advanced work in inelastic material behavior including plasticity and
viscoelasticity.

Hooke’s Law (Proposed in 1678): - When stress is applied to a solid within the
elastic limit the strain produced is proportional to the loads producing them. Elasticity
theory establishes a mathematical model of the deformation problem and this requires
mathematical knowledge to understand the formulation and solution procedures. This is
where complex variable theory comes into picture.

The complex variable method provides a very powerful tool for solution of many

problems. This theory provided solutions for torsion problem and most



importantly the plane problem. This technique is also useful for cases involving
anisotropic and thermo elastic materials [1]. This method is based on the reduction of the
elasticity boundary value problem to a formulation in the complex domain. This
formulation then allows many powerful mathematical techniques available from the
complex variable theory to be applied to the elasticity problem. The purpose of this
theory is to introduce the basics of this method and to investigate its application to
particular problems of engineering interest.

All realistic structures are three-dimensional. But complexities of elastic field
equations in analytical closed form are very difficult to accomplish. Most of the solutions
developed for elasticity problems include axisymmetry or two- dimensionality which
simplify particular aspects of formulation and solution. Thus the theories set forth will be
approximate models. The nature and accuracy of the approximation depend on problem
and loading geometry.

The two basic theories of plane stress and plane strain represent the fundamental
problem in elasticity. These two theories apply to significantly different types of two-
dimensional bodies; however, their formulations yield very similar field equations. These
two theories can be reduced to one governing equation in terms of a single unknown
stress function. However the resulting strains and displacements calculated from these
common stresses would not be the same for each plane theory. This occurs because plane
strain and plane stress have different forms for Hooke’s Law and strain-displacement

relations.



Numerous solutions to plane stress and plane strain problems can be obtained
through the use of a particular stress technique. The method employs the Airy stress
function and will reduce the general formulation to a single governing equation in terms
of a single unknown. The resulting governing equation is then solvable by several
methods of applied mathematics and thus many analytical solutions to problems of
interest can be generated. The stress function formulation is based on the general idea of
developing a representation for the stress field that satisfies equilibrium and yields a
single governing equation from the compatibility statement. The Airy stress function is
represented in terms of functions of a complex variable and transforms the plane problem
into one involving complex variable theory. This thesis addresses the problem of Infinite
plate with circular inclusion with stresses acting on the plate .In order to solve the

complex equations involved algebraic software Mathematica is used [1].

1.2 Overview of Mathematica

1.2.1 Introduction

Mathematica is a general application organizing many algorithmic, visualization
and user interface capabilities within a document-like user interface paradigm.
Mathematica addresses nearly every field of mathematics, it provides a cross platform
support for a wide range of task such as giving computationally interactive presentations,
a multifaceted language for data integration, graphics editing and symbolic user interface

construction. The Mathematica system is very broad, and provides a systematic interface



to all sorts of computations, from traditional numeric and symbolic computation, to
visualization, to data format conversion, and the creation of user interfaces.

Mathematica is split into two parts, the "kernel" and the "front end"[2]. The
kernel is the algorithmic engine for performing computations. The front end provides a
convenient human interface for creating and manipulating programmatic structures,
allowing graphics, mathematics, programs, text, and user interfaces can be freely edited
and intermingled. The two communicate via the MathLink protocol. It is possible to use
the kernel on one computer and the front end on another, although this is not common.

A distinguishing characteristic of Mathematica, compared to similar systems, is
its attempt to uniformly capture all aspects of mathematics and computation, rather than
just specialized areas. The main innovation that makes this possible is the idea of
symbolic programming captured in the Mathematica programming language, emphasing
the use of simple tree-like expressions to represent knowledge from a large number of

domains.

1.2.2 Features of Mathematica

1. Vast web of mathematical, visualization, graphics, and general programming
functions, typically with state of the art implementations.

2. Ability to instantly create user interfaces to arbitrary computations by just specifying
parameters.

3. Highly general interface that allows the uniform manipulation and intermingling of

graphics, programs, and user interfaces etc.



4. Support for efficient data structures such as sparse arrays, piecewise functions.
5. Support for emerging fields such as graph plotting and analysis, alternate input
devices, new data formats.

6. Ability to create and publish programs that run on the free Mathematica Player.

1.2.3 Advantages

The standard Mathematica front end makes laying out computations very simple. Users
may re-evaluate hierarchically-nested blocks of code by clicking on a set of braces and
hitting shift-enter. Additionally, Mathematica is able to handle arbitrary-precision
numbers and rational numbers, as compared to other mathematics programs such as
Matlab, Excel, and most standard programming languages.

Mathematica also has very generalized functions as well as a great variety of functions.
As a higher-level multi-paradigm programming language, it requires much less code than

most programming languages in order to write the same thing.

1.2.4 Disadvantages

Mathematica code has been criticized as hard to debug, the most common way of
debugging programs written for Mathematica was the use of print statements.
Mathematica's user interface and graphics support was not nearly as intuitive and
advanced as its competitors, but version 6 introduced a large variety of new features and

integration that may assuage these concerns [3].



CHAPTER 2
COMPLEX VARIABLE THEORY

2.1 Review of complex variable theory

A complex variable z is defined by two variables X and y in the form
Z=X+iy (2.1.1)

where i = V-1 is called the imaginary unit, X is known as real part of z, that is, X = Re(z),
while y is called the imaginary part, y = Im(z)
It can be expressed in polar form as

z=r(cos + i sinf) = re" (2.1.2)
wherer = Vx> +y> is known as the modulus of z and 6 = tan ' (y / x) is the argument.
Complex variables includes two quantities (real and imaginary parts) and they can

represented by a two-dimensional vector with x and y components.



Figure 2.1 Complex Plane

The complex conjugate z of the variable z is defined as

Z = x-iy=re’’ (2.1.3)
It is apparent that this quantity is simply a result of changing the sign of the imaginary
part of z, and in complex plane (Figure 2-1) is a reflection of z about the real axis. Note

thatr =z z

Using equations (2.1.1) and (2.1.3) following relationships are held



(2.1.4)

Addition, subtraction, multiplication, and division of complex numbers z; and z, are

defined as

Z] +EZ3 = (X1 + Hal + 1(v1 + ¥zl

Z1 —Z3 = (X1 — E3) + 1 (¥1- ¥2)

(2.1.5)
Z1Z2 = [E1H2 — ¥1¥2) + 1(¥1 %2 + X1 ¥2)

L _ FBtily B E 4T RS A TS )

Zz  Ha + 1y xi + vi %3 + 3

2.2 Formulation of Airy Stress Function

One of the hurdles associated with real world elasticity problems is that we need

to calculate tensor fields for stresses .For this solution, a minimum of three partial



differential equations are needed. A better approach is to reduce the partial differential
equations to a single differential equation with solvable unknowns. This method is known
as Airy stress function method which can be used successfully for plane stress and plane
strain problem.

The stress function formulation is based on the general idea of developing a
representation for the stress field that satisfies equilibrium and yields a single governing
equation from the compatibility statement.

For plane strain, the equilibrium equations are

ATy Ty
Ax

(2.2.1)
ATy Ty

where Fy and Fy are body forces but are assumed that they are derivable from a potential

function V such that

-3V
F..=
* &
(2.2.2)
-3V
F:L;r: e
Iy



This assumption is not very restrictive because many body forces found in applications

(e.g., gravity loading) fall in this category. In this case the plane equilibrium equations

can be written as [1]

Ay = V) N oy

+Fx=|:|
% &y
(22.3)
Aoy =W a7
oy ) i +F},:EI
ay Jx

It is observed that these equations will be identically satisfied by choosing a

representation

a0
x 83?'2
F
Jy=a—}§+v (2.2.4)
Fp
By =7 Jx dy

where ® = @ (x,y) is an arbitrary form called the Airy stress function.

Neglecting body forces equation (2.2.4) reduces to

10



Sy
Fe
YT o
&+
Tar = — e
dxdy

(2.2.5)

Now that the equilibrium condition is satisfied, we can shift our attention to compatibility

relations in terms of stress.

For plane strain, the compatibility relations is given by

a‘*¢+2 Feath a“qb__l—zv[a?v .5%"]

+ = +
St St gyd - gyt 1—w | 32 gy

For plane stress, the compatibility relations is given by

o el o [aﬂv EPV}
T @@ | oy =09z Tl

Equations (2.2.6) and (2.2.7) can also be written as

'cf“ga:_[l_h]vgv _________________________________ Plane Strain
l—w
T = (L =WV Vo, _Plane Stress

11
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(2.2.7)

(2.2.5)

(2.2.9)



The form

ATAR v v (2.2.10)

is called the biharmonic operator. Assuming no body forces, then, both plane strain and

plane stress form reduces to

o el o ~
= +28x383r3 + 5 =7e=10 (2.2.11)

This relation is called the biharmonic equation [1] and its solutions are known as
biharmonic functions. Thus the problem of plane elasticity has been reduced to single
equation in terms of the Airy stress function ®@. This function is to be determined in two

dimensional region R bounded by the boundary S as shown in Figure (2.2)

Figure 2.2 Typical Domain for the plane elasticity problem
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Using appropriate boundary conditions over S, the solution can be obtained. The resulting
strains and displacements calculated from these common stresses would not be the same
for each plane theory. This occurs because plane strain and plane stress have different

forms for Hooke’s Law and strain-displacement relations.

2.3 Polar Coordinate Formulation

We will make use of polar coordinates in the solution of many plane problems in
elasticity, thus the previous governing equations will now be developed in this curvilinear
system. For such a coordinate system , the solution to plane stress and plane strain
problems involves the determination of the in-plane displacements, strains and stresses in
R{u;, vy, €, €0 , €0 ,0r, Op, Trg} subject to prescribed boundary conditions on S (Refer to

Figure 2.2) .

Following is the stress transformation to polar coordinates

O = Ty CO5° B + Ty sin° B+ 2 7oy i@ cosd
g = Ty 5 04 0y 008" 0 — 2 Ty SN coS (2.3.1)
T = — 0y 5N 06 + Ty 5i0 6 036 + Tyy (C05° 6 — sin’ &)

Equation (2.2.5) which is a relation between the stress components and the Airy stress

function can be easily transformed to polar form. These equations in polar form are

13



L 1P

i r ar +F Sk
Fep
= — 232
o A ( )
8 1 S
T“’__E[? E]

Also the biharmonic equation in polar form is

@_[aﬂ 1 8 152][52 18 1 &

o 'r ar ' n a@ I3

§+r§+r—2§]¢|:n [233)
The plane problem is then formulated in terms of Airy function @(r, 8) with a single

governing biharmonic equation [1]. Appropriate boundary conditions are necessary to

complete a solution.

2.4 Complex Formulation of the Plane Elasticity Problem

Plane stress and plane strain are two different state of stresses .Although each case is
related to a completely different two dimensional model, the basic formulations are quite
similar, and by simple changes in elastic constants, solutions to each case can be shown.

The equation for plane strain include expressions for stresses

14



J 3 3
-:rxza"t[—u+—v]+2 2

dz  dy #E
a a8 3

.:r},=;t[—u+—V]+zp-,—1"F (24.1)
dx Iy 3y

S [5u+5v]

w = dy Iz

where A is Lames constant and p is the modulus of rigidity
The Navier equation is reduced to
LT+ T (T oW =10 (2.4.2)
where the Laplacian is defined as
T = (e + Oy (2.4 .3)
with the subscripts representing partial differentiation. For both plane strain and plane

stress with zero body forces the stresses are expressed in a self-equilibrated form using

the Airy stress function @ as

= o7 (2.4 .4)

T e
= dxz dy

and from the compatibility relations, @ satisfies the biharmonic equation
T = Orooee + 2 Py + Py (2.4.5)

Thus, the stress formulation to the plane problem is reduced to solving the biharmonic

equation.

15



Now we wish to represent the Airy stress function in terms of functions of a complex
variable and transform the plane problem into one involving complex variable theory.
Using relations (2.1.1) and (2.1.3) the variables x and y can be expressed in terms of z
and z . Repeated use of differential operators defined in equation (2.1.4) allows the

following representation of harmonic and biharmonic operators

_ 4 Z0

V()= 4 —= (24 6]
_ e 30

= 16 A (2.4.7)

Therefore the governing biharmonic elasticity equation (2.4.5) can be expressed as

#()

=0 (2.4 .8)
3z 3T

Integrating this result yields

o
¢ (zZ, Z) = 3 ZyE+ZTy@E@+yE+xE)
(2.4.9)

=Re(Zy (@ + x (@)

where y and y are arbitrary functions of the indicated variables considering @ that
is real [1]. This result demonstrates that the Airy stress function can be formulated in
terms of two functions of a complex variable. Also considering Navier equation (2.4.2)

and introducing a complex displacement U=u+i v we get,

TuUsky (@ - @ & &) (2.4 .10)

16



where again %(z ) and y(z) = %'(z )are arbitrary functions of a complex variable and the

parameter k depends only on Poisson’s ratio v.

K=3-4w Plane Strain
2.4 .11
-
K= Plane Stress
1+¥

Equation (2.4.10) is the complex variable formulation for the displacement field and is
written in terms of two arbitrary functions of a complex variable.

Using equations (2.4.4) and (2.4.9) yields the fundamental stress combinations

T+ 0y = 20y (2 ¥ =)
(2.4 .12

Ty —Ox + 28Ty =2(Z ¥ ([T +¢" Z))

By adding and subtracting and equating real and imaginary parts, relation (2.4.12) can be
easily solved for the individual stresses. Using standard transformation laws, the stresses
and displacements in polar coordinates can be written as

Or+ g = Ty + Ty

Ta—Or +28Tm = [Ty — g+ 22Ty 8 ° (2.4.13)
Ur+2u =+ zi',v]lfr:"”
Thus, we have demonstrated that all the basic variables in plane elasticity are expressible
in terms of two arbitrary functions of a complex variable [1]. The solution to particular
problems is then reduced to finding the appropriate potentials that satisfy the boundary

conditions .This solution technique is greatly aided by mathematical methods of complex

variable theory.
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2.5 General Structure of Complex Potentials

We now have established that the solution to plane elasticity problems involves
determination of two complex potential functions y (z) and y (z) .These potentials have
some general properties and structures as well as the relations for stresses and
displacements that a particular indeterminacy or arbitrariness of the potentials can be
found. Particular general forms of these potentials exist for regions of different topology.
Most problems of interest involve finite simply-connected, finite multiply-connected and

infinite multiply-connected domains.

[ -

(a) (b)

(c)
Figure 2.5 Typical Domains of Interest: (a) Finite Simply Connected Domain,

(b) Finite Multiply Connected Domain, (¢) Infinite Multiply Connected
Domain.

18



2.5.1 Finite Simply Connected Domains
Consider a finite simply-connected domain as shown in Figure 2.5(a). For this case the
potential functions, y (z) and y (z) are analytic and single-valued in the domain and this

allows the power series representation
(2.5.1)

where a, and b, are constants to be determined by the boundary conditions of the

problem under study.

2.5.2 Finite Multiply Connected Domains

For a region shown in Figure 2.5 (b) it is assumed that the domain has k internal
boundaries as shown. For this topology, the potential functions need not be single- valued
demonstrated by considering the behavior of stresses and displacements around each of
the n contours Cy in region R. Since multi-valued displacements lead to the theory of
dislocations, for this case the problem is limited to be single- valued. The general

potential form for this case is given as

¥(2) = EEH 5l z-2+7" @)

k=1
(2.5 .2

_ _ T _ *
mz:l-zzﬂ“”j l0g (2 29 + ¥ (2
k=1

19



where Fy is the resultant force on each contour Cy, y*(z) and y*(z) are arbitrary analytic
function functions in R, z i is a point within the contour Cy, k is the material constant

which depends on Poisson’s ratio defined by equation (2.4.11) .

2.5.3 Infinite Domains

For a region shown in Figure 2.5(c) the general form of potential functions is given by

ﬂzj__z;rmmj gz + 3 +y (Z)
(25.3)
Em K?k aTr g+ 2er?
bi=1 * =y -
Wiz)= 2708 gz+ > +i (2)

where o,” , 0y",Txy  are the stresses at infinity and y**(z) and y**(z) are arbitrary
analytic functions outside the region enclosing all m contours .Using power series theory,

these analytic functions can be expressed as

(2.5.4)

n=1
The displacements at infinity would indicate unbounded behavior unless all stresses at
infinity vanish and £ F, = 3 F,= 0.This happens due to the fact that even a bounded strain

over an infinite length will produce infinite displacements [1].The case of simply-

20



connected domain and infinite domain is obtained by dropping summation terms in

equation (2.5.3)
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CHAPTER 3
APPLICATION OF AIRY STRESS FUNCTION FOR PLANE PROBLEMS

3.1 Infinite Plate with a Hole subjected to Biaxial Loading

A

Y

4—

Figure 3.1 Infinite Plate with a Hole Subjected to Biaxial Loading

Let us consider an infinite plate containing a stress free circular hole with a radius ‘a’

subjected to biaxial stresses at infinity as shown in Figure 3.1 .Here we have taken

22



=T (3.1.1)

" Fp Lol e o
=1 * W Heke
- I+ + Fa
¥ (z) R0+ 8 g i Y (z)
E::j,lff Fkl Oy —Og 2075,
fj=——logz + + rd
Wiz) TS g > W (z)

However in this case, the logarithmic terms are dropped because the hole is stress free.

The complex potentials now are written as

oTF 4+ TF 2
¥zl = % T+ Eanz'n
n=1
(3.1.2)
oFr—g=t+dar® ]
i () L x4 A a, 2 "

Substituting values of equation (3.1.1) in equation (3.1.2) and considering n =3 gives us

l 81 dp Az
H=—B+TIZ+ — + =— + =
Y@= E+Tze —+ 2+
(3.1.3)
| h h h
q{f(Z]:—I:—S+T:IZ+—1+—2 +—=
2 z ¢ g

Integrating v (z) to get second potential function y (z) as

;{_’I:Zjl:%[—S+T]£+Lﬂg[2]h1—%—£ 3143

Incorporating polar coordinates for the problem

23



Z=r¢ (3.1.5)

gives us the Airy stress function as

ih = % [r" (B+T+ -5+ T Coz[26])+4 Cos[4 ] az +
r

2r(2r Cos[26]a; +2 Cos[36]ay +rL|:|g[r2] by — 2 Cos[F] by) (3.1.6)

— 2Cos[26] bs)

Note that this ¢ = f{r,0) since the equations is converted to polar form.

Now using the Airy stress function we can derive stresses using equation (2.3.2)

1
or= — (@ S+a' T+a' 8 Cos[28] -
2at

a“TCns[Eﬂ]—Ea2 Cos[26]a; — 20aCaog[3 ] ag - (3.1 .7)

36 Cos[4 ] az + 2 b +4a Cos[@] by + 6 Coz[28] ba)

1
Tag = E

@' S +at T-a' 8 Cos[20])+a" T Cos[26]+4aCos[36]ay +

12 Coz[4 0] as ~2a' bt -4a Cos[f] b — 6 Cos[26] bs) (3.1.8)

1

T = —— (- 5 8in[26] +a* T Hin[26] - 44" Sinf2 6] a -
a

12 a Sin[3 6] az — 24 Sin[4 6] as +4 a Sinf6] by + (3.1.9)

f Sinf2 & bs)

24



Displacements can be calculated by using equation (2.4.10) to yield

U= : ot (5 + Ty +205 - T) Cos[26] - 1 (S + T) Sin[6]) +
B8

4 (rj (x Cos[26]+r5n[3 6] a; +1r (x Cos[38]+ 2r oin[4 &1as +

(3.1.10)
& Cos[46])a; +31 556 az —fh-r Cos[f] ha — Cos[2 F] b))

g = — (r" Cos[B] (r (S + T)+4 (5 - T) Sin[6]) +

B
4 (rj (-t Cos[36]+ & Bin[2 6] a; +

(3.1.11)
ti—2r Cos[4 8]+« Bin[36]1ay —3r Cos[56]az +

« Sin[4 6] as +r Sin[6] by + Sin[2 6] bs))
The real form of equations (3.1.7), (3.1.8), (3.1.9), (3.1.10), and (3.1.11) can be found out

by solving the constants. The only way to find constants is by using boundary conditions.

Since we know that it is a stress free condition on the interior of the hole we can use at r

I
o

(JE_ETn?:Ir:u:D |:3112:|
Using equation (3.1.12) to separate out the terms to give atr =a

Crn'zl:l
(3.1.13)
Tm = 1]

Substituting values of 6,; and 1,9 in equation (3.1.12) to give

25



1 1 T 1

§+—E'MHS+—EME'S+———E':‘WT—
2 4 4 2 4
lEQIET_ EE—QIﬂal B EEEIﬂ a B SE—3IﬂEl2 B 5E3IE'Elz B
4 a a a® a®
0E*%a 0EYYa W EMp  E¥p 3ETh
at at as a’ ¥ a* " 2at
FE 1 1 1 (3.1.14)
3_ 1 pieg  lpilég 1 op-ilég 1 opaldq
2at 4 4 4 4
Eil8,  Fe,  3Eile,  3pHe,  gGEtIE,,
a2 al i 2 S ¥ at -
& E“-Iﬂ a5 B E—IE' 1:'2 N EIE' 1:'2 B 3 E—ﬂIﬂ b3 3 EﬂIﬂ b3
at 2 2 Jat J2at

Equating like powers of ¢ gives relations for the coefficients of a, and b,

1
ay —» EEEI:S—T:I,EQ—?'D,E@—}D
(3.1.15)
1 4 1 4
b1—>—Ea [S+Tj,bg—>ﬂ,h3—>aa = =T

Using equation (3.1.15) we can solve for Airy stress function @ developed in (3.1.6)

s T | 1,
¢E_T+T_EI}SCDS[29]+EH (B—T)Cosg[28] -
(3.1.16)
at (8- T) Cos[26]

4 12

+ % £ T Cos[26] - % a* (S + T) Log[r’]

Using equation (3.1.16) we can obtain stresses and displacements as
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- = fa-dEa+n0(-rf@+T+ (32 - (S -T) Cos[26])

2rt

(@ + 13 (S +T)— (3a* + 14 (S - T) Cos[26]
2t

Tgg =

T ol = % (3a* S 5in[26]- 24 £ 3 5in[26] -

o Bin[26] -3a* TSin[26] +2a° r T Sin[28]

+1* T 3in[26])

g = (—2(5-Tia" —r' —ar &) Cos[28] +
g1 u
P8+ Ti(2a° +1° k— 1" Sin[6]) +
2atr (5 - T) Sin[36])
. (- (S + T) Cos[]+ 2 (5 - T) (2 £ Cos[36] -

@ +1" +a’ £ &) Sin[2 60
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3.2 Infinite Plate with Two-Dimensional Circular Inclusion Subjected to
Biaxial Loading

0

Oy

Figure 3.2 Infinite Plate with Two-Dimensional Circular Inclusion
Consider an infinite plate with a two dimensional circular inclusion as shown in Figure
3.2.The circular inclusion has radius ‘a’ with material properties k and p. To differentiate
between the material properties of the infinite plate and the circular inclusion we shall
assume the material properties of the infinite plate as k1 and pl where « and k1 are the
parameters depending on the Poisson’s ratio and p and pl are the shear moduli of the
circular inclusion and the infinite plate respectively. In order to evaluate the stresses and
displacements, we have to club the results of the infinite plate with a hole subjected to

biaxial loading and the finite simply-connected domain. The results can be only be
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validated by maintaining the equilibrium and continuity of stresses and displacements at

the boundary of two phases. In this case, we assume

G’xzs
oy=T (3.2.1)
Ty =1

3.2.1 Stresses and Displacements in two dimensional circular inclusion

The complex potentials for the two-dimensional circular inclusion are given by

¥ (g = E A T
n=0
(3.2.2)
2
iz = D ba
n=0
Thus
'}“I:Z:I:au+zal+223.g
(3.2.3)
iEl=bp+zh +221:I2
Integrating v (z) to get the second potential function y (z) as
viE=zhy+ 51 + 23;3 (3.2.4
Incorporating the polar coordinates for the problem
z=rg’ (3.2.%)

gives the Airy stress function as
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1
Preirine = 0 r{firay + 6 Cos[8] (ag +1° az + by)

(3.2.8)
+3rCos[28]) 1y + 2 £ Cos[3 8] ba)

Note that ® = f(r,0) since the equation is converted to polar form.
Now using the Airy stress function we can derive stresses using equation (2.3.2).
Also these stresses are taken at conditionr = a
Tmreirne = 281 + 2a Cos[f]ay —Cos[268] by —2aCos[36] by
Tggeime = 281 + 6a Cos[f]az + Cos[268] by +2aCos[3 8] by (3.2.70
Trgerme = 22 Sin[6] g + Sin[2 6] by + 2a Sin[3 6] by

The displacements can be calculated by using equation (2.4.10) at r =a to yield

|
Vreitine = o [ Coz[flap —aay +akg rs Cos[f] as
it

+a° & Cos[6] a; — Cos[8] b — a Cos[2 6] by —a* Cos[36] by
(3.2.8)

1
ggcii: = —— (~ Sin6]ag +2 a° Sin[6]a +4° « Sin[f]a; +
it

Sin[6] by +a Sin[26] by +a° Sin[3 6] by

3.2.2 Stresses and Displacements in Infinite Plate with a Circular Hole

The complex potentials for infinite plate with a hole are given by

S+ T L ™
¥z = 7 z+§mnz
(3.2.9
T-5 2
7] = z+ > f,z "
¥lg) = — nZl] A

Thus
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Integrating v (z) to get the second potential function y (z) as

Incorporating the polar coordinates for the problem

p kA 4 ~
T-3 i & £
i (Z) = 3 z+;+z—2+z—3

Yz = & (-3 +Tj|z:g + Log[z] fi

=T

gives the Airy stress function as

'i’p]m =

i

£y

'y

f5
e

S+ T+(-8+T)Cos[28]) + 2¢° Log[r* ] f1 -

dr Cos[P) £ -2 Coz[20](f5 -2 r 1))

(3.2.10)

(3.2.11)

(3.2.12)

Note that ® = f(r,0) since the equations is converted to polar form.

Now using the Airy stress function we can derive the stresses using equation

(2.3.2). Also these stresses are taken at conditionr =a
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Trplate = 21? @t S+a* T+a' S Cos[20]—a* TCos[26] +2a°f1 +
daCos[@]fh+46 Cos[20] 5 -8 7 Cos[2 8] my)
Tagphte ﬁ @5 +a' T-a'"SCos[26]+a" TCog[26]-2:"F, - (3.2.13)
4a Cos[6] f; — 6 Cos[26] f5)
Trople = 21? (-2t S 8in[26] +a" T Sin[26] + 42 Sin[d] £ +

6 Sin[2 6] fz —4 a° Sin[2 6] my)

The displacements can be calculated by using equation (2.4.10) to yield

1

R @t e-a* T-a'Sal +a" Tl - 22" 3 Cos[29]

+2a' TCos[26]—4a°f; —4aCos[6] f; — 4 Cos[26] &5 +

42 Cos[28]my +4a° 1 Cos[26]my) (3.2.14)
Uatplute = (@' S 8in[26]-a" T Sin[28]- 2a Sin[6] f -

4a% il

25in[26] £ +24° Sin[26]my - 2a° k1 Sin[2 6] m,)

The continuity condition can be satisfied if the traction force and displacements are the

same at the interface.

Equating equations (3.2.7) to (3.2.13) and equations (3.2.7) to (3.2.14), we have
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1
= @ S+a' T+a* 8 Cos[20] 2" T Cos[28] +
a

2atfi + daCos[f]fh+ 60 Cos[20] 5 - 5a Cos[2 8] my) - (3.2.13)

23y +2aCos[f]ay —Cos[d6]by - 2aCos[38] byl =100

= @ S+a' T-a*s Cos[20] +

a' T Cos[26]-2a° f, — 4aCos[6] f; — 6 Cos[26] f) - (3.2.16]

(Zay+6aCos[f]ay + Cos[28]) by + 2aCos[38]) ha) =10

1
- Yomin[26]+ a' TSin[26]+4aSm[6]f +
a

6 Sin[26] fz — 4 a° Sin[26] my) - (3.2.17)

(2a Sin[6]az + Sin[2 6] by + 2a Sin[3 6] by) = 0

1

o @t a-a' T-a'Sul +a* Tl - 2a% S Cos[26]+2a" T Cos[26]-44" f1.
=

4aCos[f]f -4 Cos[20] & +4 2 Cos[26] 1y +4 a* xl Coz[28] ) -
(3.2.18)
1
[2— (x Cos[flap—aa +axa — 2a° Cos[f] az +a° K Cos[f]ax -
it

Cos[] by —a Cos[268] by —a° Cos[36] bz]] =0
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1
4a* 1l

@' 5 5in[26]-a" T Sin[26] -
Ja5in[6] fy — 2 Sin[2 6] £ + 24° Sin[26]my — 24" &1 Sin[2 6] my) -

1
- (-~ Sinf6]ag + 2 a* Sin[f]a; +a° & Sin[6] a; + (3.2.19)
it

Sin[6] by +a Sin[26] 0y +a° Sin[36]ba) | =0

Equating coefficients of cos [0],cos [2 0],cos [3 0],cos [4 6],sin [0],sin [2 0],sin[3 0], sin[4

0] and then equating them to zero would give us the following equations
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233—3—3
1 ﬁf3 Eml
5[—S+T—2b1——+ 5 ]
—Eabg
1]
2f

2332—3—3

1 ﬁf3 41111
el el
Eabg
1]
K g ElgElg azxag b fa

- + -— —
2 it 2 o 2t pl
ans aT aly fz 1

&1 1y

-— -— + -— -
4pl  4pl  2p 283l Zapl  Zapl
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(3.2.21)

(3.2.23)

(3.2.24)

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)



-'EI.2 tlg

- 3.2.30
T (3.2.30)
0 (3.2.31)
] ] h f
S e P e e (3.2.33)
2 it 2 dp 2atpl
5 T ah f 1
L L L R L L B PR L)
4l dpl  2p 285l Zapl  Zapl
I
) (3.2.34)
4t
0 (3.2.35)

Since the above equations are insufficient to solve for the number of constants we get two

more equations

an aT abil aTxl aa; axay fi

_ + + - = + (3.2.360)
sl Bl 8l 8l i 2 dapl
s T fi

- ——— 423 -—= 3.2.37
0 1= ( ]

Solving equations (3.2.20) to (3.2.37) we get constants as
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3 —
Y
al_}_[—ES—T+SK1—Tx1]|,u,
42 p—pl+apnl)
ay — (1

S —Sp+Tp+8xlpu-Txl g

by
2l g+ pl)
hg—>|:|
Ty & (-38-T+38xl-Txl
fl_}ag[____J_a( +BK &l
2 2 p—pl+apnl)
fg—)ﬂ
4 4 4 4
g - aap+a Tp—-a"Spul+a Tpl

2ixl g+ pl)

B p-Tp+3pl=Tal
2l e+ pl)

1y =

Using the above values of the constants to get revised equation (3.2.7) and equation

(3.2.8) to get

I—35-T+5xl -Txl)n . (-5 pu+Tpu+5xlp—Texl ) Cos[2F]

Toie = —
T 2(2 40— el 4+ el 20l + el
—35-T+3xl -Taxl -3 T Sulp— Tl p) Cos[2e
ran o +Sl Tl g CSprTe+Selu-Tel WCos[26] ) o
22 n—pl+apnl) 2l o+ pl)
(S p+To+3xl g —Txl p) Sin[d8]
Tricirine = —

2l g+ pl)
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1 r[_ (140 E 3+ =TI +xl)  2(3-T) (1 +«1) Cos[26]

uﬂng du+-1+& 0l wlp+pel
r(3-T)i-1+xl) 3in[28
uﬂcin'n-:=_|: A ) 5 26] (3.2.39
Gl p+pl)

Again using the values of the constants to get revised equation (3.2.13) and equation
(3.2.14)
plate =

3 a's T &'T Jat 3 2T

e + + -
2002 3 2 272 p-plvapll 2022 p-pl+sxpl)

2t Sl 2 Txl g
+
2R Qp—-plvapl) 20302 p-pl4+xpl)

1
+ ) S Cos[26]-

1 Fa* 3¢ Cos[28] 22 3 Cos[26]
— T Cos[26]+ - - (3.2 40)
2 el o+ ) 2wl +pl)

3a* T Cos[26] 2aTpCos[26]  3a*S ul Cos[26]
+ +
2t (el o+ 1) 2kl e+ pl) Irtiel o+ 1)

22 3l Cos[26]  3a*TplCos[26]  22°T il Cos[24)
+

2l e+ pel) et el p+ n D 2 (el e+ e )
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” _S+EFS+T+&2T a8
BT o T i 2 IR 2 (2p-pl4apl)

2T at 3l at Tal e

22 (e —pl v pel) " Qe —plyapl) S r Bp—pl+apl) -

(3.2 .41)
3a* 3 Cos[26] .\ Ja* T Cos[26] _
2t e+ ey 2t el e+ )

1 1
7 o Cos[28]+ 7 T Coz[d6] -

Fa* 2l Cas[26] . 3a* T el Cos[26)
Irtil p+ e 1) 2 (el e+ 1)

32880 Sin[26]  a® S p Sin[26]
It (el g+ 1) 2wl g+ pl)

1 1
Tops = — 5 Sin[26] + — T Sin[26]+

32 T Sin[26] 2T xSin[26] 3a* Sl Sin[26]
+ +

3241
Irvil p+ 1) 2l e+ el vl o+ pel) ( )

a8 plSin[26] 32 TglSin[26] o' TplSinf26]

2 (el e+ pel) et (el g+ ) 2 (wl je +pel)

_ 1 28 P (BTl +all g —(3+ TV (=1 +4) 1)
urplm__Eﬁlml *

dp+-1+xpl

288 (B3-TE -2 (1 + 1)) (e + 1) Cos[26]
&l +nl

(3.2 .43)

+1 (S - T) (-1 + &1 +2 Cos[24])

(BT (4l +a® 2 (=1 +al) (e + ) —1* (ol e+ 1)) Sin[2 8]
403 plixl e +pel)

Ugpts = — (3.2 44)

39



3.3 Example

Consider an infinite plate with a two-dimensional circular inclusion .The material of the
infinite plate is iron while the two dimensional circular inclusion with a radius of 50 mm
is made of chromium. There is a biaxial force acting on the plate with 1000N/mm? in the

X-direction while a biaxial force of 500N/mm? in the Y direction.

500N/m’

A

Figure 3.3 Infinite iron plate with chromium inclusion

We have the material properties of chromium [5] as
Poisson’s ratio, v = 0.21

Shear modulus, p= 115GPa

We have the material properties of iron [6] as

Poisson’s ratio, v = 0.28
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Shear modulus, pl1= 82GPa
Also
K=3-4v

Thus

K=2.16.. i for chromium

KL =188 for iron
Substituting these values in equations (3.2.38), (3.2.40), (3.2.41), and (3.2.42) we get
For the chromium circular inclusion

Treirne = 452,756 + 84,842 Cozg[26]
Tgcirne = 452,755 — 84,5412 Cos[2 6] (34.1)
Trocine = —od. 542 Binf2 &]

For the infinite iron plate

743110.230 3.096 Cos[26
Crphee = 750 = ———"— + 1250 Cos[26] + % -
I

1.651 Cos[26]
1—2
(3.4.2)
743110.236 3.006 Cas[26]

Capiee = 750 + ———— ~ 250 Cos[26] - .

5,096 Sin[26]  525783.061 Sin[26]

Togpuss = —250 Sin[28] + . =

Converting equations (3.4.1) and (3.4.2) to the Cartesian coordinate system we obtain the

following result
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For the chromium inclusion

Crycivine = 537,508
T gricne = 367.914 (3.4.3)
Tx}.,.cm = D
For the iron plate
- - 2
Tiphte = —————— | —4. 7684107 +3.492 107 (2 + v%) + 2000 (= + v +
T g [

(47683 1077 3137+ 10° &2 + 1) r:us[z tan ™! (i]]+
= (3.4 4
(6.193#10° — 1.651 + 10° (& +y2)j|c.:s[4 tan ™t [3]]]
H
1 _ _
Tryplits = 1@ 7R (4.?53*10 T +3.4924 107 2 + 9+
1000, (2 +v°1 + (4768 1077 - 165355650 2 + v (3.4 .5)
Ay a¢y
r:us[ztan l[g]] + (—6.193410% + 1651+ 10° (2 +97)) r:us[4tan I[E]D
743110.23 Sin[ 2 tan ™! [ X]]
Frpbis = 7 @+ ) *
(3.4 .6

(23842 1077 + 250 (2 + 7)) Sin[4 tan™! (L]

@+
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

All the work presented in Chapters 1 to Chapter 3 shows an estimated idea for solving
elasticity problems using the complex variable theory method. Using the Airy stress
function method we can arrive at results for stresses and displacements. Although the
work is mostly restricted to two-dimensionality, it gives a fair idea of the behavior of an
infinite plate with a hole and an infinite plate with a two-dimensional circular inclusion
under biaxial loading. The value of stresses and displacements are dependent on the
material properties of both the plate and two dimensional circular inclusion. For circular
inclusion the stresses are constant while the shear stress is zero subjected to a far field
stress.

4.2 Future Work

In this thesis, mostly the work is done for biaxial stresses as well as considering only one
two-dimensional circular inclusion. Here are few suggestions for future work

1. Inclusion of shear stress.

2. Introduction of an elliptical hole as a two dimensional inclusion.

3. Multiple circular inclusions.

43



APPENDIX A
MATHEMATICA CODE FOR INFINITE PLATE

WITH A HOLE SUBJECTED TO
BIAXIAL LOADING
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_+_ —_—

N

a4+ T \

= Z+

¥ P ¥
a a
—[S+T]z+—1+—2+—3
z T

1 b, b
— -8+ T2 +Loglz] by - — - —
4 z dg

T = ComplexzFxpand| Conjugate[z]]

r Cos[f]- 11 5imn[d]



P =ZY+y

1 E—IEI a E—EIE a E—EIE 3
— F*1 2 (-8 + T+ (r Cos[€] - I 1 Sin[g]) E”r[5+T] Ly g &
4 T 1 13
E—Iﬂh E—ﬂlﬂb
Log[E r]h; — C = :
p*=

43[ E-FE-T+T+4E P ra; +4E* %2 +41" Log[E¥ r] b, -
I

4E vy + 2E7 ¥ (217 2, - b))

1
el fE-ElE-T+ T +4E ray + 4E ™ % +4¢° Log[E¥r]b, —4E ¥ rg +
I

2E2M (217 &) b))

1B g R Y ey 4 E T ¥ e+ 4 P Log[E¥ £ b -4 E ¥ r by +
2E2 2 8 - 1s))

1
= SE  4E T ey v 4E T a4 Log[E 1] -4 E  r g +
I

2E21 3% a) — 1))
¢ = FullSimplify[ ComplexFzpand[Re[* 1]]
412

[r4 B+T+(-5+T)Coz[26]) +4 Cos[4]az +
2t (drCos[d6]ar +2 Cos[36]ay +rL|:|g[r2]1:|1 — 2Cos[f] ha) — 2 Cos[2 ] bs)

3 f~T Cos[36]a,
@E:—+—-—r250usze +—r2TCDSEE']+CDs[29]al+—+
4 4 4 4 r

Cos[4 8] a 1 Cos[@] b Cos[28]h
[ ]3+—Lug[r2]b1— [Blb;  Cos[26]bs
t2 2 r 12
S T Cos[38]a
T+T——Fschze +—9TC0529]+C05[29]31+A+
Ir
Cos[48]a 1 Cnsﬁ' Cos[28]h
[ ]3+—Lng[r2]h1— [F]b;  Cos[2€]b;
t p r 1r?
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Pr=

1
o (! 5 Sin[A] + 2 Cos[48]as + 21 Cos[26]a; + 21 Cos[36]ag + 1 Log[t by —
I

2t Cos[8] by — Cos[2 6] bs)

T t* 3 Sin[e] + 21" Cos[26]ay + 21 Cos[36]ay + 2 Cos[4 6] as +r Log[r* ] by —

2t Cos[6] by — Cas[26] bs)

T = (D[, t]+ 1) + D, {6, 2= 1/ r = af CosP] = —Sin[e] /.
Cos"[f] = —Coz[d] /¥ TrigReduce

1
= @ S+a' T+a' 8 Cos[20]-a* T Cos[26] - 8a° Cos[28]a, — 20a Cos[36]ag -
a

36 Cos[4 @] az +2 b +4a Coz[f] bs + 6 Coz[28] bs)

Tag = (D[, i, 2171/ r=a ff TrgReduce

1
o @ S+a' T-a'SCos[20]+a' TCos[26] +4aCos[36]a; + 12 Cos[4 8] as -
a

2a by — 4 aCos[] by — 6 Cas[26] ba)

T = —D[D[bg, 8]+ 1 /1, 1]/ r = ajf TrigReduce
1
7
—at 9 8in[26]+a" T Sin[26]-42° Sin[26]a; — 12a Sin[3 8] a; — 24 Sin[4 6] a5 +
4 3 Sin[6] by + 6 Sin[2 6] bs)

¥ =Dy, 7]

IE-18a, 21E-219g 3FIE-3g,

r 2 3

1
I1E”'r[5+Tj|—

v = CommplexFzpand] Conjugate[y]]

IF¥a,  21E1¥a, 31394
+ + +
r 1 t#

1 1
—_IEYrz_ Z1EMyT
4 4
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ifr = ComplexFaxpand[ Conjugatelii]]

1 1 E,IE h Eﬂlﬂb EEIE h
——EMrs+ ZEMrTH S 2 4 :
2 2 r 1 t#

i’

zl =Ty

IE-1%a, 2IE2185 3FIE3#g

(r Cos[8] - It Sin[6]) [% IEr(3+T)-

t 12 3
zl=xy-zl-if
1 1
—E"¥rs_—ETrT-
2 2
) 1 18 IE8a, 2IE2fg, 3FIE3Ifg
[t Cos[@]-IrBmf]) | - IE " r(5+T]- - - +
4 r 2 3
1 E—IEl a E—EIE a E—EIE a EIE h EEIE h EEIE b
K—EIEr[S+T]+ L+ Cn ® |- L_ : :
4 t 12 3 r 2 13
T
T3 = =
leit.lf“g
1
it

1 1
[-E‘”rs——E'”rT-
2 2

_ 1 10 [Efg,  2IE-2fg, 3FIEFI9g
[t Cos[f] -t Bmf&]) ZIE rB+T)- - - +

r 2 3
1 E—IEl a E—EIE a E—EIE a EIE' b EEIE b E_EIE B
x[—EIEr[S+T]+ Ly 24 3]— L : 3]]
4 r 2 t3 t 2 3
= =
1
r Sa+r Ta- os[6] — os[6] + 21 03 —2r o3 =
= okt Ta -1 8 Cos[] - 11 T Cos[f] + 21" 3 Cos[26] - 2% T Cos[28
e

£ 5 3in[6] -1 T Sin[A] - 21t* SSin[26]+ 21¢* T Sin[26]+ 41" x Cos[26]a; +
411 Cos[36]a; -4 1« Sin[26]a; +4 1 Sin[36])a, + 41« Cos[36]a; +
EIrQCns[-’-IE]ag—4IrxSin[Eﬂ]ag+ErQSm[4ﬂ]ag+4xCDs[4ﬂ]ag+

1211 Cos[56]a; —4 [« Bin[4 6] as + 121 Sin[56]as —41° by — 41 Cos[6] by —

411 Sin[6] by —4 Cos[26]bs —4 1 Sin[26] b)
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1
= f Sx+r To—1 5 Cos[0] - 11 T Cos[#] + 21* S Cos[26] - 21" T Cos[28] -
& ft

£ 8 %n[E] -1 TSin[e]-21r* S8in[26]+ 21" T Sin[26] + 41° « Cos[26]a; +
417 Cos[36]a; - 411 £ Sin[26]a; +41° Sin[38]a; +4r& Cos[36]a +
EIrQCDs[dlﬂ]ag—4Irﬁc3jn[36]ag+ErQSm[4ﬂ]ag+4xCDs[4ﬂ]a3+

121r Cos[56]as —4 1« Sin[4 6] as + 121 Sin[58]as — 41" by — 4 r Cos[6] by —

4 1r 3in[d] by —4 Cos[26] by —4 [ Sin[2 6] ba)
ur = FullBirmplifsy] ComplesFxpand[Fe[z4]]]
|
L)
S+ T+ 2(3- T) Cos[26] - 1 (S + T) Sin[6]) +

4 [r2 [w Coz[28] +rBm[3 8] a; +1(x Cos[368] + 21 5in[4 )y + & Cos[4 ] az +
3r Bin[5 6] as —h-r Cos[] by — Cos[28] bs))

Uy = FullSitnplify[ CormplesFEapand[ Tm[z4]]]

1
B

(t* Cos[B] (r (5 + T) +4 (S — T) Sin[e]) +

4t (—r Cos[36] + & Sin[26]) a1 +r (-2 Cos[4 8]+ & Sin[38]) a3 — 3r Cos[56]as +
« 5inf4 8] az +1 Sinf6] by + Sin[2 6] bs))

Ugg =

T (' 8 Cos[B] + 41" S Cos[6] Sin[f] -4 £ Cos[38]a, + 41 « Sin[26]a; -
£

51 Cos[40]a; +4rabin[36]ay — 12r Cos[50]az +4 x Sin[4 ) az + 4 ¢ Sin[d] b +
4 Bin[2 8] by)

= (3 Cos[B] + 41 S Cos[6] Sin[8] —4 ¢ Cos[36]ay +4 1% « Sin[26]a; —

31 Cos[4f]as+drasm[3f]as— 12r Coz[58]az + 4 « 5[4 Flaz + 4 r Sin[d] ba +
4 3in[2 ] bz)

T
1

oo @ S+at T+a' SCos[26]—a' T Cos[26] - 8a® Cos[26]a; — 20a Cos[36]ag —
a

36 Cos[4 8] az +2 b +4a Cos[?] bs + 6 Coz[28] bs)
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SIS | 1 T 1 1 Aoty
gl — 4 —F g _pMegy, _ __pRlr__per_-- 1 _
2 4 4 2 4 4 as
2 E.EIIEI d; 5 E_EIE dn 5 E.EIE da o E_”IEI dz q :E.“IEI dz tl]_ E._IIEI tlg
g - a @ - at - at a2 af *
FIe tlg . FE-i8 1II3 . 3E21ﬂh3
at 2at 2at
E_l_ lE-:;IsS_l_ lE:;IsSJr I_ lE-:;Is T lEﬂﬂT— 2E71 ) _ 2EA g _
2 4 4q 2 4 4 g a2
5E_31E =5 5 :E-EIE =5 g :E-_I”:E dz 9 Eﬂ-IE dz h]_ E_IE hg E—IE hg
aF - a - at - zt ) a * a2 *
JE-41d 1II3 3 Eld 1II3
+
2at 2at
= T 1 1 4 Cos[26] 5, 10 Cos[3 8] ay
gl=—+—+ =8 Cog[20] - = T Cog[28] - = =
R | p a a7
18 Cos[48]a; by 2Cos[f]by 3 Cos[2d]bs
— 2 =2 = at
e T 1 1 4 Cog[28]a;  10Cos[36]ay
—+ — +—5Cos[28] - = T Cos[28] - - -
22 12 2 a2 at
18 Coz[46]a; by 2Co:s[E]by  3Cos[28]bs
4+ — 4 +
at a2 a at
gz =2Tm
1
2at

(1(-a* 8 Sin[26]+a' T Sin[26]- 4 &° Sin[26]a; — 12a Sin[3 6] a3 — 24 Sin[4 6] a5 +
4 3 Bin[6] by + 6 Sin[2 6] bs))

E—EIE‘ a Ezmal EE—3IE' 2,
+

g3:lE'MES—%E“ES—lE'MﬂT+%E“ET+ _

4 4 a a a*
3B 6E4Pa  6EMa ET Efh  3ETNR, 3ED
a* at at a? a? 2at 2at
1 Fril o l FAI18 o _ l Fo2E L l FAI8 T E-1%g _ E*f + FE71 g N
4 4 4 4 2 2 a®
3FEHE,,  GE*Eg  gEy,  Eley,  Eley,  3EHep, 3EHEG,
A at T @ @ o 2at

50



Eql = Coeffici e
efficient[gl, &'° ] - Coefficient[g3, ¢ ®]

Eq2 = Coeffici e
cient[gl, & %] - Coefficient[g3, %]

2t
a3

Eq3 = Coeffici o
cient[gl, &% - Coefficient[g3, e° 7]

Eq4 = Coeffici =
cient[gl, & %] - Coefficient[g3, e ™'%]

331 3133

3% at

Eq5 = Coeffici .
cient[gl, &* ] Coefficient[g3, " ®]

Eq7 = Coeffici M
cient[gl, €' %] Coefficient[g3, &' %]

333

E|.4

Eqg = Coeffici ~Hie
cient[gl, e *%] - Coefficient[g3, e ™* %]

15 g
a4
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Egl=—+ —+ —
: 2 gf
5 T h
22 &

SEIIRFE[{EL]I == . qu == |:|, Eq3 == |:|, Eq4 == |:|, Eq5 == |:|, Eqﬁ == |:|, Eq? == |:|,

Egd ==10, Eq? == 0}, {a1, az, a3, by, b, ba}]

{{hﬁga E-Thhs-=d ($+T).h=0a - —a [S—T],ag—:olil,ag—ﬂ]}}

P
s T Cos[36]a
T+T——r25i30526'+—3TCDSEE‘]+CDS[29]&1+¥+
r
Cos[48]a 1 Cos[@]b Cos[28]h
[ ]3+—Lug[r"]h1— [P1b;  Cos[28]b;
1 t 212
P =
#s AT Cos[3@
- T——rf‘sr:ns[ze +—r2TCns[29]+Cns[29]al+M+
I
Cos[48]a; 1 Cos[@]b, Cos[26 1
SRl T e S R
r? 2 r ir? 2
1 1
h1—>—§af‘@+T];.hg—>ng.al—>Eaﬂ[s—nmﬁw%—m
s AT 1 at (53— T) Cos[26]
— ———rgSCnszﬁ']+—a[S T) Cog[28] - +
4 4 2 41

%rﬁ T Cos[26] - % a (3 +T)Log[t’]

I 1= R
_ 1 [_ [a r“] [(5—T)Coz[28] FE+T) [rz_ag Lng[rj]]]

r

2

2 e
[— @ - ) (8- T) Cosl26] +(E+T) [rz—aang[rj]]]
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Pes = —4—11,; @ @ -2r") 8 Cos[26]+ " ' S Log[r"] - 21" 5 Sin[6]")

af(a® — 2188 Cos[26] + 2% r* SLogr?] — 21* 3 Sin[6]
4r?

g = _4_12 (@° (2° - 2¢%) 5 Cos[26] + & r* SLog[r*] - 21* S Sin[6T)
I

a*(a® - 2073 Cos[28] +a°r* SLog[r'] - 21* 3 Bin[6]
- 41t

Tl = (D[t t]# 111+ D, {6, 2} 170720 Cos'[8] = - Bin[¢] /. Cos’[#] — —Cos[e] ff
TrigReduce

= (2 S+rt S-a®r T+r' T+3a" S Cos[26]-42° ¥ S Cos[26] +1 8 Cos[28] -
3a' TCos[26] +4a° ¢ T Cos[26] —1* T Cos[28])

A-ra+0-rfE+TI+ G2 - (8- T)Cos[26])
Futal = 2t

A-NE+0-r @ +TI+Ga -3 -T) Cos[28])
2t

Tgginal = (D¢ . {1, 2H]) / TrigReduce

S+t S+ P T+t T-3a* 3 Cos[26] —r* SCos[20]) +3a* T Cos[28]+1* T Cos[28]
it

Togmal = —D [0, 6]+ 1/1, 1]/ TrigReduce
% (3a' S 8in[26]-2a° " SSin[26] —r" S3in[26]-3a" TSin[26]+2a° ¢ T Sin[2 6] +
* T Sin[26])
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g at g 23

a a
uﬂﬂm:uﬂ-’.{bg%T,hl—>—T,hg—>ﬂ,al—>T,a;—;-[l,a;%[l},-’.aer

1
R

+ - s 1, I 4 :
f 8k +2Cos[28]) —rom[f]+4 T_Er SCDS[29]+§I’ S[ans[29]+rSm[39]]J]

r(de+5n+ 258, Cog[20]-r3383m[E] + 213 3m[36])
8 it

at 3 a®s 223
11ﬁm=11ﬂﬂf.{h3—>T,hl—>—T,hj—}I:I,a]_—)T,aj—}D,a3—>D}l|'r.a—>r
1

B8

(' S Cos[f] - 217 8 Cos[36] +4 1 8 Cos[8] Sin[6] + 21 & Sin[26] + 21" S« Sin[28])

EquilibriumCondition] = opmen Lt =2

EquilibrinmCondition = Tgm [/ <2
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APPENDIX B
MATHEMATICA CODE FOR INFINITE PLATE

WITH A TWO DIMENSIONAL
CIRCULAR INCLUSION
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2
':}" = EEIILZH
n=10
ap +Z3; +Z'2Elg
2
;&:Ebnz“
n=1

hg+Zh1+Zztlg

il = T-5 Z il

2
1 i & £
E[_S+T]z+;+z_ﬂ+z_3
d=D[y, 2]
a) + 2z as
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dl =Dl z]

B+ T 1y

I

x:ﬁifcfz
=hy  hy

ho o4 21

zhy + 7 + 7

xl = fi:,.!rl dz

1 L g
I[-5+T]:¢2+L,ug[z]f1— — - ==
z=regtl

Flfy

= = ComplexFxpand [ Conjugate[z]]
t Cos[f] - It 5m[f]

h = Fullsimplify [ComplestFzpand [[T ) + y]] /f TrigFeduce

1
EE'”r[ﬁau +6F % ra) +6E M 0 ey + 6 E 0y + SE Y rhy + 2EM P )

hl = FullBmmplify [ ComplezExzpand [[T ¥11+ y1]] /¥ TrigReduce

[E—EIE [_EEIEIA o +E4IEII,4 o _EEIEIIA T_E4IEII,4 T-
4IEA 2 proEV r] £ - 2E* P Log[®1f, +4EYr f +2 5 — 418 my))

RE
4
Grire = FullSimplify [ComplexEspand [Re[h]]]

1
& T (6ra1+ 6Cos[f] (a0 108y +hg) + 31 Cos[28]hy + 21 Cos[3 6] hy)
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Ppe = Full Simplify [ComplexExpand [Re[h1]]]
1
)

(Ff (S+T+(-5+T)Cos[26]) + 21 Log[f*]fi — 4 r Cos[#] f — 2 Cos[28](fs — 215 my))

Orrticirine = (D[ @erine . 1]# 1/1) + (D@ . {8, 21] % 1 /17 2)) £ Cos’[B] » -5 (6] /.
Cos"[f] = - Cos[?] /f TrigReduce

da; +2rCos[f]ay — Cos[28]b; — 21 Cos[38] by

Turtiplite = ((D[dprate, 11 1/1) + (Dldprare, {6, 23]+ 1/ 17 d)) [ Cos’[F] —» —5in[d] [
Coz"[8] = - Cos[?] jf Trigheduce

% (* S+r* T+ 3Cos[20]—1* TCos[28] +
2r £ + 4r Cos[f] £, + 6 Cosz[20] 6 — 81 Cos[2 6] my)

Trrcirine = FULSHOPEEY [[D[domme, 11+ 1/) + Do {8, 23] 1720 ] /1 »af
Coz'[f] = —-3mn[f] [/ Cos"[f] = —Cos[?] jf TrigReduce

2a; +2aCos[flaz — Cos[28] by — 2a Cos[3 6]y

Trplare = FULSMPLEY [([D{dp1ge, 1]+ 1/1) +(Ddpaae. ., 2]+ 1 /17 2)] 122
Cos'[f] = -5in[f] ) Cos®[f] = —Cos[f] /f Trigheduce

21_.; @*S+a*T+a*SCos[26])—a* TCos[268] +
a

2a*fy +4aCos[f]fy + 6 Cos[26] & — 8 a° Cos[28]my)

Toghicirine = 1 [@emme - {1, 21] /f TrigReduce

da; +6rCos[f]ax+ Cos[20]by + 2 Cos[38] by
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Ogeirine = [D[Perine . i1, 21] [ 1 =& ff Trigheduce
Z2a; +HaCos[flag + Cos[28] by + 2a Cos[3 8]y

Tagplas = D[@p1as . {1, 2}]/ £ =2 /f TrigReduce

1
- a*S+a T -a*SCos[26])+a* TCos[26] - 2a° f| —4aCos[@]fy - 6 Cos[28] &)

Tramicirne = FUlBimnplity [ DD [ . 1+ 1 /1. 111/ Cos'[8] = = Sin[e] /.
Cos"d] = —Cos[@] /f Trigheduce
2r Binff]ay + Sin[2 0] + 2 Bin[3 6] by

T = FullSimplity [ - DD e, 8]+ 1 /L 0]]f r=af Cosg’[8] = —Sin[8] [
Coz"[8] = - Cos[d] /f TrigReduce

Za Sin[6]a, + Sin[26]b; +2a Sin[36] b

Trabuiplae = [ UISImMplify [—-D[D[dpie, 8]+ 1 /1, £]] /. Cos'[F] = —Sin[@] /.
Cos"d] = —Cos[@] /f Trigheduce

—r* S Sin[26]+ r* TSn[26] + 41 Sin[6] £ +6 Sin[26]f — 41° Sin[26]m,
1t

Traplare = FUllSimplify [-D[D[gpue.. 0]+ 1 r]] f r = af Cos’[8] - —3in[8] /.
Cos"[d] = —Cos[d] /f Trigheduce

_a* 8 Sin[26] +a* T Sin[26] + 4a Sin[6]f, + 6 Sin[26] £ -4 & Sin[26]m,
dat

% = ComplexFaxpand [Conjugate[d]]

a; +2E1%ra,

¥1' = ComplexFzpand [ Conjugate[d1]]

Fald try
2

5. 1.
373
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iff = ComplexFaxpand [Conjugate [i4]]

by +ETr by +E2 8Py
i1 = ComplexEzxpand [Conjugate [i1]]

L Etrs+ % ErT +

Id 2Id 3Id
- E f1 + E fg + E f3

r 14 3

=z

(r Cos[8] — It Sin[#]) (a1 + 2E 1P ray)

zl' = zyl’

[r Cos[6] — Ir 5m[8]) [% + '

A U A

—(rCos[B] -1t 2in[@]) (a; + 2E ¥ ra,) +
ilag +E%ra + B2l P ay) — by —E-¥rh —E-28 2,

22 = klyl -zl =l

1 y 1 o EIEI fl EEIH f2 EEIE f3
R e e e e
o T EEIEI 1 E—IEI
rCos[e] = r5in[d —+———ml +xl |=E¥r(5+ T+ m
773 e 4
2322—2.
E#fzﬂ

L

T (E~18 (—(r Cos[8]— IrSin[e]) (a + 2E ¥rag) +

wlag+ E¥ra) + F2 9 ag) — by —E-1¥rh) —E-218 2 1))
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74 = ﬁ (—IxSin[f]ag —ra; + raa; — 21 Coz[f]a; + 2 £ Cos[P]a, +
211 Sin[d]a, + 112 « Sin[#]a, — Cos[8] by + 1 Sin[8]b, - Cos[2 8]k, +
Lt in[26] 1y — 12 Cos[3 @] by + 112 Sin[3 6] by + ag 4 Cos[6])

2—1# (% Cos[@)ap — L aSin[@]ag —ray + raa; — 21° Cos[@]ay +

£ xCos[8]ay + 2 112 Binf8]ay + I & Sin[6] ag — Cos[@] by + I Sin[#] by —
rCos[28]hy + I Sin[2 €)1, - £ Cos[36]hy + 11 Sin[3 6]hy)

|
B (-lxSin[@]ay —tay + raay — 21 Cos[@]ay + 1 « Cos[8] ag +

211 Sin[6] ag + 112 « Sin[6]ag — Cos[6] by + 1 Sin[6]bg —r Cos[26] by +
IrSin[26]b, - 1 Cos[38]by + 112 Sin[368] by + a, « Cos[8])
1

e (xCos[@)ay — [« Sin[@]ag —ra) + reay — 21° Cos[@]ay +1° £ Cos[68]a +

211 Sin[6]a; + 12 & Sinfd]ay — Cos[@] by + I Sin[8]hy -
rCos[28]h, + I Sin[2 €)1, - £ Cos[36]h, + 1 Sin[3 6]h,)

z2'
3=
z dplegtt
1 [E—IE [l Flf o lE'”rT— E' ) _ B2 f _ B9 N
2l 2 p, r 12 i

. S T EEIE m]_ ]. Id E_Iﬂm]_
[rCns[ﬂ]—IrSm[ﬂ]}{E+E— e ]+K1[EE r[S+T]+T]D

4 = 81_31—#1[—1“ (T-8) +* (TSl +2¢* (T -8) Cos[20]- 21+ (T - &) Sin[26] -

476 —4rCos[6] £ —4 Ir Sin[6]f; — 4 Cos[26] 5 — 4 1 Sin[26] 6 +
412 Cos[26]my +4 12«1 Cos[26]my +4 I12 Sin[26]m, — 4 112 «1 Sin[2 8]m)

ﬁ (= 8+ T+ -8+ Tal + 264 (-5 4 T) Cos[26]- 211 (-5 + T) Sin[28] -

412 f) —4r Cos[8]fy — 41 Sin[é]f — 4 Cos[26] & —4 I Sin[26]f5 +
412 Cos[28]my +41° &1 Cos[28]my + 4112 Sin[28]rmy — 4 11 1 Sin[2 6] my)
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Ui = Fullsimplify [ComplexExzpand [Fe[z4]]]

|
2—# (xCos[@]ag +1 (-1 +x)a; — 2% Cos[d]ay +

t kCos[8] ag — Coz[#]bo —r Cos[26] by — £ Cos[36]hy)

Upite = Full Simplify [ ComplexExpand [Re[z4']]]

BEE gl
(5 =TI (~1+&l +2Cos[28]) +41° f; + 4 r Cos[#] f + 4 Cos[28] (fs — £ (1 + x1) 1))

Ugeirne = Fullimplify [ComplesFapand [Tm[z4 1]]

—x Sin[@]ag +12 (2+ &) Sin[@]a + Sin[@] by +r Sin[2 €] by + £ Sin[3 8] by
2t

Ugplae = FullBimplify [ ComplexEaxpand [Im[z4 )]

Sn[6](~rf; + Cos@](t (5= T) - 26 — 222 (=1 + 11 my))
2l

Urbicirine = I WSI0plify [Upeim, |/ TrigReduce
EE_IIu, (xCos[f]ay —ta; +txa; — 21 Coz[d]a; +

t x Cos[6] a; — Cos[f]h, —r Cos[26] by — £ Cog[36] hy)
Whiplare = FULlBHOPHTY [Upia. ]/ TrigReduce

1
2l
41 f) —4r Cos[B]fy — 4 Cos[26] 6 + 412 Cos[26]my +4 1 «1 Cos[26] my)

(S T Sl + 7" Twl =243 Cos[26]+ 24 TCos[26] -

Urreirine = FUllBHnphify [Upcm: | -+ =2 TrigReduce

L

o (kCos[]ay —aa; +axa; — 2a° Cos[@]a, +

a* x Cos[8]a, — Cog[8]hy —a Cosz[26] b, — a® Cos[3 6] by)
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Unplae = FUlEHTPHEY [Uipia. ] /. + =2 /f TrigReduce

1
gaf nl
da*fy —4aCos[d]fy -4 Cos[26] & +4a° Cos[26]m; + 4 a° «1 Cos[26]my)

Ero—at T—a*Swl +a* Tal - 22" S Cos[26] +2a* TCos[26] -

Ughicirine = FUlSHTpIfyY [Ugcimn ]/ Cos® 6 + Sin® 6 - 1/ TrigReduce

ﬁ (i Sin[6] ag + 21 Sin[6]a, + %k Sin[f]a, + Sin[6]by +r Sin[2 6] by + £ Sin[3 €]by)

Ughiplae = FULBImplify [Ugpyg,] /. Cos? 8+ Sin? 8 - 1 f TrigReduce

ﬁ (* S Sin[26] - * T Sin[26] -

2t Sin[6] § — 2 Sin[26] 6 + 212 Sin[26]m, — 262 «l Sin[26]my)

Uggcirre = FWISioplify [Uamicrme |/ ¢ — 2/ TrigReduce

1
75 (CeSinlélae +2 a® Sin[6]ag + &° « Sin[6]ag + Sin6] by +a Sin[2 €]by +a® Sin[3 €] by

Uggples = FUllSImphify [Uskiplae ] £+ —a /f TrigReduce

T= Al (a* S 5in[26]-a* Toin[26] -

2a Sin[6]f; - 2 Sn[26] & + 2 a° Sin[26]my — 24 «1 Sin[2 6] my)

Egl =Full3implify [
Coefficient | e 4 Expand , Cos[f]] - Coefficient [oupie. /i Expand , Cos[@]]]

i

daay - —
8.3

Eq2 = Full3implify [
Coefficient | T 4 Expand |, Coz[2 8]] - Coefficient [ Cupia. /f Expand |, Coz[26]]]

1 Iﬁf3 Eml
j[—sn—zhl—?Jr = ]
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Eq3 = Full3implify [
Coefficient [ e/ Expand |, Cos[38]] — Coefficient [ duprae. /f Expand | Coz[36]]]

-2 Eltlg

Eg4 = Full Simplify [
Coefficient [ Cuerm: /f Expand | Cos[4 #]] - Coefficient| ompiae. /f Expand | Cos[4£]]]

Eg5 = FullSimplify [
Coefficient [Tracm: /f Expand , Sin[6]] — Coefficient [7mpu. / Expand , Sin[8]]]

2f

2aay - —
a5

Egf = Full Simplify |
Coefficient [Toerme /f Expand | Sin[2 6]] - Coefficient [Trpue /f Fxpand , Sin[26]]]

1:.1+l[s—T-

7 @er}ml]

a4 a2

Eq7 = FullSimplify [
Coefficient [Trerm: /f Expand | Sin[3 8]] - Coefficient [Ty / Expand |, Sin[36]]]

Eahg

Eg8 = FullSimplify |
Coefficient [Trerme /f Expand , Sin[4 6]] - Coefficient [Trpe. /f Fxpand , Sin[46]]]

Eq® = Expand[Full 3umplify [
Coefficient [Ur g, /f Expand , Cos[@]] - Coefficient [u,, / Expand | Cos[#]]]]

K3, ata; atia, by £
— +

— +—
2 it 2 2 2atpl
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Eql0 = Fxpand[Full Birmplify [
Coefficient (Ve /f Expand , Cos[2 #]] — Coefficient [Uppiee / Expand |, Cos[28]]]]

an _aT_ab1+ f5 _my _xlml
4l d4pl  2p o 288l Zapl  dapl

Eqll = Fxpand[Full Birmplify [
Coefficient (Ve /f Expand , Cos[3 #]] - Coefficient [Unpies / Expand |, Cos[38]]]]

El2 tlg
2t

Eq12 = Expand[Full Simplify [
Coefficient [Unerm: /f Expand , Cos[4 6]] - Coefficient [umpie. /f Expand , Cos[46]]]]

Eql3 = Expand[FullSimplify [
Coefficient [Uggem,: // Expand , Sin[6]] - Coefficient [Uggpee / Expand | Sin[8]]]]

k3 afa;  axa by £y

_2,u,+ it In Elu,+233,u,1

Fqld = Expand [Full Simplify [
Coefficient [Uggean, /f Expand , Sin[26]] - Coefficient [Uggpye, /f Expand , Sin[2 6]]]]

an . aT +a1:|1 . f5 1 +x1m1
dul  d4pl  2p 0 2a%pl Zapl  Zapl

Eq15 = Expand[Full Simplify |
Coefficient [Uggem // Ezpand , Sin[3 6]] - Coefficient [vggpue. / Expand , Sin[3 6]]]]

Eql6 = Expand[Full Simplify [
Coefficient [Ugacane /f Expand , Sin[4 6]] - Coefficient [Uggpe. /f Expand , Sin[4 8]]]]

65



Eql7 = Expand [Ureim, — Coefficient [Umem: . Cos[6]]+Cos[#] -
Coefficient [Ureig,: , Cos[268]]+ Cos[2 ] - Coefficient [Upei,: , Cos[38]]+ Cos[38] -
Coefficient [Urerpe . Cos[48]]+ Coz[4 8] - Umpra. —
Coefficient [Unpla. . Cos[6]]+ Cos[f] - Coefficient [Unpia. . Cos[28]]+ Cos[26] -
Coefficient [Unple. . Cos[3 0]]+ Cos[30] — Coefficient [Unple. . Cos[4 6]+ Cos[4671]

_aS N aT +ESK1_ELTK1_E+EKE11+ fi
apl  Eul Bl ael i 2 dapnl

Eqls = Expand[ omeire — Coefficient [T . Cos[f]] + Cos[F] —
Coefficient | e, . Cos[2 8]+ Cos[2 6] - Coefficient [omeme. Cos[3F]]+Cos[36] -
Coefficient [ Crn: , Cos[4 &]]+Cos[4 0] - [ Tuplae —
Coefficient [ duplas . Cos[F]] + Cos[@] — Coefficient [ Oxpie. . Cos[2 8]]+ Cos[26] -
Coefficient [ oupia. . Cos[3 8]]+ Cos[3 6] — Coefficient [pig. . Cos[48]]+ Cos[4 2] ]

s T f,
Tyt a
Eql9 = Expand[

Uageirime: — o oefficient [Vagem,., Sin[@]] 5 [f] — Coefficient [Wagerm,, =in[2 #]]+3m[2 8] -
Coefficient [Uager,, Sitn[36]] = Zin[3 &] — Coefficient [Vagepm,, Sin[4 8]« 5[4 6] -
(Wagplaes — Coefficient [Uagpies, Sin[6]]+ Sin[6] — Coefficient [Uaspia.. Sin[2 6]]+ Sin[260] -

Coefficient [Uggpige, Sin[3 8]+ Sin[3 ] — Coefficient [Ugapge, Sin[4 &]] + Sin[4 6]1]

Eq20 = Expand[

Tdeirr — C0EfACient [T, S]]+ 5m[f] — Coefficient [Trcg,: , Sm[28]]= 3m[2 8] -
Coefficient [ Tgepm, . =3 6]]+3in[30] - Coefficient [T, S[d 8] = Sin[4 8] -
(Trgplae — COETACIENt [Trapige, SIN[E]]+ Sin[F] — Coefficient [Trpyg,, Sin[2 0]+ 5in[2 6] -

Coefficient [ Trapige, S10[3 8]]#3m[3 6] — Coefficient [Toplge, Sinf4 &]]+ Sin[4 £])]

molve [[Eql7 == 0, Eqls == 0}, {f, a1}]

dr_qo_ - —3o_ -
{{f1—>ag[ a T]_ g [-35-T+5xl Txl]lu,,al%_[ 3E-T+3al Tﬁcl]lu,}}
2 —pl+apl) 2 —pl+upl)

b2
)
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SDIVE[{EIZ]I ==1, qu ==1, Eq3 ==1, Eq5 ==1, quﬁ ==1, Eq? ==1,
qu ==, quﬂ == D,qul == |:|,qu3 == |:|,qu4 == D,quﬁ ==,
Eql7 ==0,Eql8 ==0} {fi, a1, f, 2z, 5, 20, by, 1y, by, 11, o]

3 T] a2t (-38-T+3xl —Txallp
42 1 22p—pl+apl)
(35 -T+3xl -Txllp
- fo =10 0
N
—at8p+at Tp—-a*Spl+a* Trl

—Sp+Tp+5ulp-Tal

fi—=- b
37 20l 2+ 12l) Pz Il + 2l)
23y _
ml_}a B -Tp+3nl Tﬂl],hg—}ﬂ}}
Al +pll

[-35-T+3xl -Txl)pe
42p—pl +xpl)
Cmmp+Tp+nalpe-Taly fay=0/ by =0
2xl g+l

Opcirine = Trrhicirine (- 31 = —

(F35-T+8xl-Tallp [-5p+Tp+5x1p— Tkl g Cos[2¢]
T d2g—plrxpy Tirl b+ 1)

—at B+t Tp—a*t3pl +a* Tl
2l g+ 1el)

Crplate :Expand[o’nmm fE=0f—>- /

(B -Te+3pl-Tel)

B 2(xl g + 1)

L = 0f

5 0T 2 (38 -T+ 3«1 -Txl
fl_}ag[____]_a[ + 5K x]lu,]
42 12 22n—-pul+xpl)
3 a3 T 8T Jat 3 at T
7T I T I " 22 (2 p—pnl+xpel) * 2 (2p— pl+xpl)
ad Sl 2 Txle

1 1
~ 5C0s[28] — = T Cos[28
TEGa—pleral I Qpoplexpn 7o Coelaf] - g TCos[26])+

32t SpuCos[26] 223 pCos[26]  3a' T pCos[26] . 2a° T Cos[28]
Irtiel o+ ) 2 [l e+ 1) Art (el e+ pel) 2 (k1 e+ e1)
3a*SulCos[26]  2a*SplCos[26]  3a*TplCos[26] . 2a® Tl Cos[26]
2t (xl g+l 12 [xl g+l 2t (xl g+ nl) 2 (&l w+pl)
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(-35-T+5xl-Txllp
20—l +xpl)
—mp+Tp+5xl g -Talpu
by = — . 0fby =0
1 T it ) fag =07 by

Tacirng = T gkiciine /- 21 = —

(F35-T+3x1-Tallp [-8p+Tp+3xlp—Txl g Cos[26]

(2 —pl+wpel) 2l pp+ el

—at B p+at Tp—a* 3l +2* Tl
el e +pel)

Copiae = Expand| Cogpipiae /. = 0/ & = - /

at (B -Tr+3ul-Tel)

U Tl g + 1)

fmy =0/

a2 T P35 -T+3xl-Txl
ﬂ%ag[—_—_]_a[ + 5K ﬁc]lu,]
2 2 22 n-pul+xpl)
3 a3 T AT a2t S aTp
—+—+ =+ - - +
2002f 2 28 I8 (2p-plexpll 20R(3p-pnl+xpl)
a? Bul a® Tl jt 1

1
- — L $C0s[26] + = TCos[26] -
T8 (a—pliral] IR (Qp—glewgl) 1 - Coel6l+ 5 TCos2e]

Fa* B Cos[20]  3a*TpCos[26]  3a* SplCos[28]  3a* TplCos[26]
I (Klp+el) | IfEl g+l | Ife+el) | I (Kla+ al)

[-35-T+5x1 -Txlln
2p—pl+upnl)
—mp+Tp+5xl g -Talpu
2lxl g+ pl)

Trdeirine = Trdldcirng /- 31 = —

1:I1—>—

fa—=0,by =10

(8 +Tp+5ulp—Tal 1) Sin[2 8]
2xl g+ pl)

—at B+t Tpe—a*Spl+a* Tel
2l e+ el)

Trplate = EXIJElﬂd[Tren«.jpm L =015 =-

at (S —Tu+3pl
2xl p+pl)

g T az[—ES—T+Sx1—TK1]Iu,]

E_f]_ 22 - pul+ipl)

“TeD) o 0

fj =a’ [—
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Lo L 32t S Sin[28] 2 5 Sn[26]
_Z S Sin[26]+ = TSin[26 - -
7 S emldel+ o T v k) Bl g+ )

3a* TuSin[26] a'TgSin[26]  3a'SulSin[26]
et (wl g+ pl)  Blelp+pl) el e+ pel)

al Sl Sin[26] _ 3a‘ Tyl Sin[26] a2 Tl Sin[26]
2l +pel) et (el e+ pnl) 2kl e +pl)

—((5 - T (-3a e+ el) + 2@ (0 + gel) + o (] e+ 2 1)) Bin[260) /(2% (cl p + 1)

Urcirine =

itrpli —38 T+ 38«1 -Txl
FulSimplfy [tncrme £ b = K30 £ by >0/ 3 50/ 31 & 4[2;::#;(”#1?]#!-

hl_}_—S,u,+T|n:r,+Sx1|u—Tx1p¢]

2xl g+ pl)
Lr[_ Cl+aE(-3+xl)-T(L+&l]) E[S—T][—1+x1]c|:s[2e]]
g+ (=1 +x) el il e+ el

Ugcirne =
FullSimplify [Ugpgcrme £ Do = &3 £ 1y > 0/ 2y 5 0/ el GO N I

ddn—pl+upl)

h1—>—

—S,u+T|u,+Sx1|u—Tx1|u]
2l e+ el

r(S—TI(-1 +«1) Sin[2 6]
- 4kl + el

—at8p+at Tp—-a*3pl+a* Tl
2l p+ el

Urptaee = FUlSHTPLEY [vrpes £ B2 > 0/ f5 = — /

a (S —Te+3pl-Trl)
dxlp+pl)

8 T] (38 -T+8xl —Tallpe

2 2 2R p—pl+uapl)

1Ty —+

ft =0/

]

fj = a’ [—

1
+K1||',|',+,|',|',1

(2af(8-TiE* - (1 + &) (+ ) Cos[ 26D + 1 (S =TI (=1 + &l + zr:us[zeu]

[[EHEFE—ES—T] (=1 +al)pp=(5+T) (=1 +a) )} /{dig+ (=1 + 4 el
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—atSp+at Tp-a*Spl+a* Tl /

Ugplee = FULSIMPLFY [gpra. /. B > 0/ F = -

2l g+ pl)
(B -Tp+8pl-Tel)
. 0fr
e 2kl g+ 1l) f-mg =07
2 0Ty a2 (-38-T+3al-Tallp
foalf-2 - 2)-
1_}3[2 2] T2 = pl+rpl) ]

~((5 =T (p+pl)+a (=1 +al) (p+pl) - (el e+ 2 1)) Bin[26]1
(4% el (xl p + 1))

Siplify [ D Oretrine - 11+ Dl Tegeicine - 6] *% P T ;':rﬂ-:in'rn.c] ]

1 e — 7
Simplify [D[ Giprte » 1]+ D[Tudplae. 6] * — [mm—r‘"’w]
0

. . 1 Efﬁcm
Simplify | D fgcirine - 1+ Dl Tacirine, 0] * — + — e |

0

27
Sitplify Dl Togpge - 1]+ D[ Capse, €] % + ripl*“ ]
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