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ABSTRACT

COMPLETE STRESS ANALYSIS FOR 

TWO DIMENSIONAL INCLUSION 

PROBLEM USING COMPLEX

 VARIABLES

Publication No. _______

Rohan Arun Patil, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Seiichi Nomura

       This thesis addresses the problem of finding stresses and displacements in an infinite 

plate with a two-dimensional circular inclusion with different material properties using 

the complex variable method with biaxial loading acting on it. The complex variable 

method is used so that the continuity equations of traction force and displacement field 

are satisfied at the interface. All the complex equations are solved using software 

Mathematica.
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CHAPTER 1

INTRODUCTION TO ELASTICITY AND
COMPLEX VARIABLE METHOD

1.1 Background

Mechanical engineering uses elasticity in numerous problems in analysis and 

design of machine elements. Such applications include general stress analysis, contact 

stresses, thermal stress analysis, fracture mechanics and fatigue. Elasticity is an elegant 

and fascinating subject that deals with determination of the stress, strain and distribution 

in an elastic solid under the influence of external forces. This subject also provides the 

basis for more advanced work in inelastic material behavior including plasticity and 

viscoelasticity.

Hooke’s Law (Proposed in 1678): - When stress is applied to a solid within the 

elastic limit the strain produced is proportional to the loads producing them. Elasticity 

theory establishes a mathematical model of the deformation problem and this requires 

mathematical knowledge to understand the formulation and solution procedures. This is 

where complex variable theory comes into picture. 

The complex variable method provides a very powerful tool for solution of many 

problems. This theory provided solutions for torsion problem and most 
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importantly the plane problem. This technique is also useful for cases involving 

anisotropic and thermo elastic materials [1]. This method is based on the reduction of the 

elasticity boundary value problem to a formulation in the complex domain. This 

formulation then allows many powerful mathematical techniques available from the 

complex variable theory to be applied to the elasticity problem. The purpose of this 

theory is to introduce the basics of this method and to investigate its application to 

particular problems of engineering interest.

All realistic structures are three-dimensional. But complexities of elastic field 

equations in analytical closed form are very difficult to accomplish. Most of the solutions 

developed for elasticity problems include axisymmetry or two- dimensionality which 

simplify particular aspects of formulation and solution. Thus the theories set forth will be 

approximate models. The nature and accuracy of the approximation depend on problem 

and loading geometry.

 The two basic theories of plane stress and plane strain represent the fundamental 

problem in elasticity. These two theories apply to significantly different types of two-

dimensional bodies; however, their formulations yield very similar field equations. These 

two theories can be reduced to one governing equation in terms of a single unknown 

stress function. However the resulting strains and displacements calculated from these 

common stresses would not be the same for each plane theory. This occurs because plane 

strain and plane stress have different forms for Hooke’s Law and strain-displacement 

relations.
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Numerous solutions to plane stress and plane strain problems can be obtained 

through the use of a particular stress technique. The method employs the Airy stress 

function and will reduce the general formulation to a single governing equation in terms 

of a single unknown. The resulting governing equation is then solvable by several 

methods of applied mathematics and thus many analytical solutions to problems of 

interest can be generated. The stress function formulation is based on the general idea of 

developing a representation for the stress field that satisfies equilibrium and yields a 

single governing equation from the compatibility statement. The Airy stress function is 

represented in terms of functions of a complex variable and transforms the plane problem 

into one involving complex variable theory. This thesis addresses the problem of Infinite 

plate with circular inclusion with stresses acting on the plate .In order to solve the 

complex equations involved algebraic software Mathematica is used [1].

1.2 Overview of Mathematica

1.2.1 Introduction 

Mathematica is a general application organizing many algorithmic, visualization 

and user interface capabilities within a document-like user interface paradigm. 

Mathematica addresses nearly every field of mathematics, it provides a cross platform 

support for a wide range of task such as giving computationally interactive presentations, 

a multifaceted language for data integration, graphics editing and symbolic user interface 

construction. The Mathematica system is very broad, and provides a systematic interface 
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to all sorts of computations, from traditional numeric and symbolic computation, to 

visualization, to data format conversion, and the creation of user interfaces.

Mathematica is split into two parts, the "kernel" and the "front end"[2]. The 

kernel is the algorithmic engine for performing computations. The front end provides a 

convenient human interface for creating and manipulating programmatic structures, 

allowing graphics, mathematics, programs, text, and user interfaces can be freely edited 

and intermingled. The two communicate via the MathLink protocol. It is possible to use 

the kernel on one computer and the front end on another, although this is not common.

A distinguishing characteristic of Mathematica, compared to similar systems, is 

its attempt to uniformly capture all aspects of mathematics and computation, rather than 

just specialized areas. The main innovation that makes this possible is the idea of 

symbolic programming captured in the Mathematica programming language, emphasing 

the use of simple tree-like expressions to represent knowledge from a large number of 

domains. 

1.2.2 Features of Mathematica 

1. Vast web of mathematical, visualization, graphics, and general programming 

functions, typically with state of the art implementations. 

2. Ability to instantly create user interfaces to arbitrary computations by just specifying 

parameters.

3. Highly general interface that allows the uniform manipulation and intermingling of 

graphics, programs, and user interfaces etc.
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4. Support for efficient data structures such as sparse arrays, piecewise functions.

5. Support for emerging fields such as graph plotting and analysis, alternate input 

devices, new data formats. 

6. Ability to create and publish programs that run on the free Mathematica Player.

1.2.3 Advantages

The standard Mathematica front end makes laying out computations very simple. Users 

may re-evaluate hierarchically-nested blocks of code by clicking on a set of braces and 

hitting shift-enter. Additionally, Mathematica is able to handle arbitrary-precision 

numbers and rational numbers, as compared to other mathematics programs such as 

Matlab, Excel, and most standard programming languages.

Mathematica also has very generalized functions as well as a great variety of functions. 

As a higher-level multi-paradigm programming language, it requires much less code than 

most programming languages in order to write the same thing.

1.2.4 Disadvantages

Mathematica code has been criticized as hard to debug, the most common way of 

debugging programs written for Mathematica was the use of print statements. 

Mathematica's user interface and graphics support was not nearly as intuitive and 

advanced as its competitors, but version 6 introduced a large variety of new features and 

integration that may assuage these concerns [3].
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CHAPTER 2

COMPLEX VARIABLE THEORY

2.1 Review of complex variable theory

A complex variable z is defined by two variables x and y in the form 

z = x + i  y (2.1.1)

where i = √ -1   is called the imaginary unit, x is known as real part of z, that is, x = Re(z), 

while y is called the imaginary part, y = Im(z)

It can be expressed in polar form as 

z = r (cosθ + i sinθ) = reiθ (2.1.2)

where r = √ x2 + y2      is known as the modulus of z and θ = tan – 1 (y / x) is the argument. 

Complex variables includes two quantities (real and imaginary parts) and they can

represented by a two-dimensional vector with x and y components.
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 Figure 2.1 Complex Plane

The complex conjugate z   of the variable z is defined as 

     z   =   x - i y = r e-i θ (2.1.3)

It is apparent that this quantity is simply a result of changing the sign of the imaginary 

part of z, and in complex plane (Figure 2-1) is a reflection of z about the real axis. Note 

that r = √z z

Using equations (2.1.1) and (2.1.3) following relationships are held



8

Addition, subtraction, multiplication, and division of complex numbers z1 and z2 are 

defined as

2.2 Formulation of Airy Stress Function

One of the hurdles associated with real world elasticity problems is that we need 

to calculate tensor fields for stresses .For this solution, a minimum of three partial 



9

differential equations are needed. A better approach is to reduce the partial differential 

equations to a single differential equation with solvable unknowns. This method is known 

as Airy stress function method which can be used successfully for plane stress and plane 

strain problem.

The stress function formulation is based on the general idea of developing a 

representation for the stress field that satisfies equilibrium and yields a single governing 

equation from the compatibility statement.

For plane strain, the equilibrium equations are

where Fx and Fy are body forces but are assumed that they are derivable from a potential 

function V such that 
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This assumption is not very restrictive because many body forces found in applications

(e.g., gravity loading) fall in this category. In this case the plane equilibrium equations 

can be written as [1]

 It is observed that these equations will be identically satisfied by choosing a 

representation 

where Φ = Φ (x,y) is an arbitrary form called the Airy stress function.

Neglecting body forces equation (2.2.4) reduces to 
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Now that the equilibrium condition is satisfied, we can shift our attention to compatibility 

relations in terms of stress.

For plane strain, the compatibility relations is given by 

For plane stress, the compatibility relations is given by  

Equations (2.2.6) and (2.2.7) can also be written as  
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The form  

is called the biharmonic operator. Assuming no body forces, then, both plane strain and 

plane stress form reduces to 

This relation is called the biharmonic equation [1] and its solutions are known as 

biharmonic functions. Thus the problem of plane elasticity has been reduced to single 

equation in terms of the Airy stress function Φ. This function is to be determined in two 

dimensional region R bounded by the boundary S as shown in Figure (2.2)

Figure 2.2 Typical Domain for the plane elasticity problem
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Using appropriate boundary conditions over S, the solution can be obtained. The resulting 

strains and displacements calculated from these common stresses would not be the same 

for each plane theory. This occurs because plane strain and plane stress have different 

forms for Hooke’s Law and strain-displacement relations.

2.3 Polar Coordinate Formulation 

We will make use of polar coordinates in the solution of many plane problems in 

elasticity, thus the previous governing equations will now be developed in this curvilinear 

system. For such a coordinate system , the solution to plane stress and plane strain 

problems involves the determination of the in-plane displacements, strains and stresses in 

R{ur, uθ, er, eθ , erθ ,σr, σθ, Τrθ} subject to prescribed boundary conditions on S (Refer to

Figure 2.2 ) .

Following is the stress transformation to polar coordinates

Equation (2.2.5) which is a relation between the stress components and the Airy stress 

function can be easily transformed to polar form. These equations in polar form are



14

Also the biharmonic equation in polar form is 

The plane problem is then formulated in terms of Airy function Φ(r, θ) with a single 

governing biharmonic equation [1]. Appropriate boundary conditions are necessary to 

complete a solution.

2.4 Complex Formulation of the Plane Elasticity Problem

Plane stress and plane strain are two different state of stresses .Although each case is 

related to a completely different two dimensional model, the basic formulations are quite 

similar, and by simple changes in elastic constants, solutions to each case can be shown. 

The equation for plane strain include expressions for stresses
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where λ is Lames constant and μ is the modulus of rigidity 

The Navier equation is reduced to   

where the Laplacian is defined as   

with the subscripts representing partial differentiation. For both plane strain and plane 

stress with zero body forces the stresses are expressed in a self-equilibrated form using 

the Airy stress function Φ as 

and from the compatibility relations, Φ satisfies the biharmonic equation

Thus, the stress formulation to the plane problem is reduced to solving the biharmonic

equation.
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Now we wish to represent the Airy stress function in terms of functions of a complex 

variable and transform the plane problem into one involving complex variable theory. 

Using relations (2.1.1) and (2.1.3) the variables x and y can be expressed in terms of z 

and z . Repeated use of differential operators defined in equation (2.1.4) allows the 

following representation of harmonic and biharmonic operators 

Therefore the governing biharmonic elasticity equation (2.4.5) can be expressed as

Integrating this result yields

where γ  and χ are arbitrary functions of the indicated variables considering Φ that 

is real [1]. This result demonstrates that the Airy stress function can be formulated in 

terms of two functions of a complex variable. Also considering Navier equation (2.4.2) 

and introducing a complex displacement U=u+i v we get,  
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where again χ(z ) and ψ(z) = χ΄(z )are arbitrary functions of a complex variable and the 

parameter κ depends only on Poisson’s ratio υ.

Equation (2.4.10) is the complex variable formulation for the displacement field and is 

written in terms of two arbitrary functions of a complex variable.

Using equations (2.4.4) and (2.4.9) yields the fundamental stress combinations

By adding and subtracting and equating real and imaginary parts, relation (2.4.12) can be 

easily solved for the individual stresses. Using standard transformation laws, the stresses 

and displacements in polar coordinates can be written as

Thus, we have demonstrated that all the basic variables in plane elasticity are expressible 

in terms of two arbitrary functions of a complex variable [1]. The solution to particular 

problems is then reduced to finding the appropriate potentials that satisfy the boundary 

conditions .This solution technique is greatly aided by mathematical methods of complex 

variable theory.
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2.5 General Structure of Complex Potentials

We now have established that  the solution to plane elasticity problems involves 

determination of two complex potential functions γ (z) and ψ (z) .These potentials have 

some general properties and structures as well as the relations for stresses and 

displacements that a particular indeterminacy or arbitrariness of the potentials can be 

found. Particular general forms of these potentials exist for regions of different topology. 

Most problems of interest involve finite simply-connected, finite multiply-connected and 

infinite multiply-connected domains.

           (a)                                                                        (b)

(c)

Figure 2.5 Typical Domains of Interest: (a) Finite Simply Connected Domain, 
(b) Finite Multiply Connected Domain, (c) Infinite Multiply Connected 
Domain.
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2.5.1 Finite Simply Connected Domains 

Consider a finite simply-connected domain as shown in Figure 2.5(a). For this case the 

potential functions, γ (z) and ψ (z) are analytic and single-valued in the domain and this 

allows the power series representation

where an  and  bn are constants to be determined by the boundary conditions of the 

problem under study.

2.5.2 Finite Multiply Connected Domains

For a region shown in Figure 2.5 (b) it is assumed that the domain has k internal 

boundaries as shown. For this topology, the potential functions need not be single- valued 

demonstrated by considering the behavior of stresses and displacements around each of 

the n contours Ck in region R. Since multi-valued displacements lead to the theory of 

dislocations, for this case the problem is limited to be single- valued. The general 

potential form for this case is given as 
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where Fk is the resultant force on each contour Ck, γ*(z) and ψ*(z) are arbitrary analytic 

function functions in R, z k is a point within the contour Ck, κ is the material constant 

which depends on Poisson’s ratio defined by equation (2.4.11) .

2.5.3 Infinite Domains 

For a region shown in Figure 2.5(c) the general form of potential functions is given by  

where σx
∞ , σy

∞,τxy
∞  are the stresses at infinity and γ**(z)  and ψ**(z) are arbitrary 

analytic functions outside the region enclosing all m contours .Using power series theory, 

these analytic functions can be expressed as 

The displacements at infinity would indicate unbounded behavior unless all stresses at 

infinity vanish and Σ Fk = Σ Fk = 0.This happens due to the fact that even a bounded strain 

over an infinite length will produce infinite displacements [1].The case of simply-
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connected domain and infinite domain is obtained by dropping summation terms in 

equation (2.5.3)
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CHAPTER 3 

APPLICATION OF AIRY STRESS FUNCTION   FOR PLANE PROBLEMS 

3.1 Infinite Plate with a Hole subjected to Biaxial Loading 

Figure 3.1 Infinite Plate with a Hole Subjected to Biaxial Loading

Let us consider an infinite plate containing a stress free circular hole with a radius ‘a’ 

subjected to biaxial stresses at infinity as shown in Figure 3.1 .Here we have taken 

S

Y

      a

T
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We have complex potentials from Equation (2.5.3) as 

However in this case, the logarithmic terms are dropped because the hole is stress free. 

The complex potentials now are written as 

Substituting values of equation (3.1.1) in equation (3.1.2) and considering n =3 gives us 

Integrating ψ (z) to get second potential function χ (z) as 

Incorporating polar coordinates for the problem 
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gives us  the Airy stress function as 

Note that this φ = f(r,θ) since the equations is converted to polar form.

Now using the Airy stress function we can derive stresses using equation (2.3.2) 
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Displacements can be calculated by using equation (2.4.10) to yield 

The real form of equations (3.1.7), (3.1.8), (3.1.9), (3.1.10), and (3.1.11) can be found out 

by solving the constants. The only way to find constants is by using boundary conditions. 

Since we know that it is a stress free condition on the interior of the hole we can use at r 

= a

Using equation (3.1.12) to separate out the terms to give at r =a 

Substituting values of σrr and τrθ in equation (3.1.12) to give 
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Equating like powers of einθ gives relations for the coefficients of an and bn

Using equation (3.1.15) we can solve for Airy stress function Φ developed in (3.1.6)  

Using equation (3.1.16) we can obtain stresses and displacements as 
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3.2 Infinite Plate with Two-Dimensional Circular Inclusion Subjected to 
Biaxial Loading

Figure 3.2 Infinite Plate with Two-Dimensional Circular Inclusion

Consider an infinite plate with a two dimensional circular inclusion as shown in Figure 

3.2.The circular inclusion has radius ‘a’ with material properties κ and μ. To differentiate 

between the material properties of the infinite plate and the circular inclusion we shall 

assume the material properties of the infinite plate as κ1 and μ1 where κ and κ1 are the 

parameters depending on the Poisson’s ratio  and μ and μ1 are the shear moduli of the 

circular inclusion and the infinite plate respectively. In order to evaluate the stresses and 

displacements, we have to club the results of the infinite plate with a hole subjected to 

biaxial loading and the finite simply-connected domain. The results can be only be 

a

σy
∞

_

σx
∞
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validated by maintaining the equilibrium and continuity of stresses and displacements at 

the boundary of two phases. In this case, we assume

3.2.1 Stresses and Displacements in two dimensional circular inclusion

The complex potentials for the two-dimensional circular inclusion are given by 

Thus 

Integrating ψ (z) to get the second potential function χ (z) as 

Incorporating the polar coordinates for the problem 

gives the Airy stress function as 
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Note that Φ = f(r,θ) since the equation is converted to polar form.

Now using the Airy stress function we can derive stresses using equation (2.3.2).

Also these stresses are taken at condition r = a

The displacements can be calculated by using equation (2.4.10) at r =a to yield 

3.2.2 Stresses and Displacements in Infinite Plate with a Circular Hole

The complex potentials for infinite plate with a hole are given by 

Thus 
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Integrating ψ (z) to get the second potential function χ (z) as

Incorporating the polar coordinates for the problem 

gives the Airy stress function as  

Note that Φ = f(r,θ) since the equations is converted to polar form.

Now using the Airy stress function we can derive the stresses using equation 

(2.3.2). Also these stresses are taken at condition r = a
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The displacements can be calculated by using equation (2.4.10) to yield 

The continuity condition can be satisfied if the traction force and displacements are the 

same at the interface.

Equating equations (3.2.7) to (3.2.13) and equations (3.2.7) to (3.2.14), we have
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Equating coefficients of cos [θ],cos [2 θ],cos [3 θ],cos [4 θ],sin [θ],sin [2 θ],sin[3 θ], sin[4 

θ] and then equating them to zero would give us the following equations 
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Since the above equations are insufficient to solve for the number of constants we get two 

more equations 

  Solving equations (3.2.20) to (3.2.37) we get constants as
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Using the above values of the constants to get revised equation (3.2.7) and equation 

(3.2.8) to get 
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Again using the values of the constants to get revised equation (3.2.13) and equation 

(3.2.14) 
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3.3 Example

Consider an infinite plate with a two-dimensional circular inclusion .The material of the 

infinite plate is iron while the two dimensional circular inclusion with a radius of 50 mm 

is made of chromium. There is a biaxial force acting on the plate with 1000N/mm2 in the 

X-direction while a biaxial force of 500N/mm2 in the Y direction.

Figure 3.3 Infinite iron plate with chromium inclusion

We have the material properties of chromium [5] as 

Poisson’s ratio, υ = 0.21

Shear modulus, μ= 115GPa

We have the material properties of iron [6] as 

Poisson’s ratio, υ = 0.28

Y

      

500N/m2

1000N/m2

X
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Shear modulus, μ1= 82GPa

Also 

κ = 3-4 υ

Thus 

κ =2.16……………………for chromium

κ1 =1.88……………………..…for iron

Substituting these values in equations (3.2.38), (3.2.40), (3.2.41), and (3.2.42) we get

For the chromium circular inclusion

For the infinite iron plate

Converting equations (3.4.1) and (3.4.2) to the Cartesian coordinate system we obtain the

following result
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For the chromium inclusion

For the iron plate
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions

All the work presented in Chapters 1 to Chapter 3 shows an estimated idea for solving 

elasticity problems using the complex variable theory method. Using the Airy stress 

function method we can arrive at results for stresses and displacements. Although the 

work is mostly restricted to two-dimensionality, it gives a fair idea of the behavior of an 

infinite plate with a hole and an infinite plate with a two-dimensional circular inclusion 

under biaxial loading. The value of stresses and displacements are dependent on the 

material properties of both the plate and two dimensional circular inclusion. For circular 

inclusion the stresses are constant while the shear stress is zero subjected to a far field 

stress.

4.2 Future Work

In this thesis, mostly the work is done for biaxial stresses as well as considering only one 

two-dimensional circular inclusion.  Here are few suggestions for future work

1.      Inclusion of shear stress. 

2.      Introduction of an elliptical hole as a two dimensional inclusion.

3.      Multiple circular inclusions. 
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APPENDIX A

MATHEMATICA CODE FOR INFINITE PLATE
WITH A HOLE SUBJECTED TO

BIAXIAL LOADING
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APPENDIX B

MATHEMATICA CODE FOR INFINITE PLATE 
WITH A TWO DIMENSIONAL

 CIRCULAR INCLUSION
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