GAS PERMEATION THROUGH NANOPOROUS POLYCARBONATE TRACK-ETCHED MEMBRANES: PULSED PLASMA POLYMERIZATION OF THIN COATINGS TO MODULATE GAS PERMEABILITY

by

CHRISTOPHER LEWIS CHAPMAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN BIOMEDICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON AUGUST 2007 Copyright © by Christopher Lewis Chapman 2007

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank Dr. Chuong for giving me a chance to work on this exciting project. I'd also like to thank Dr. Eberhart and Dr. Timmons for their guidance and expertise. This was a project with multiple collaborators involved in many departments. I'd like to thank all the collaborators. Special gratitude goes to Dhiman Bhattacharyya for his plasma coating expertise. I'd like to thank Anna for her support. Finally, I thank my mother for all her love and encouragement.

This research was supported in part by ORtech, Bioengineering, Inc., AFOSR FA-9550-06-0413, Collaborative UTA/SPRING Research & Nanotechnology Transfer Program and MRCEDM grants.

July 23, 2007

ABSTRACT

GAS PERMEATION THROUGH NANOPOROUS POLYCARBONATE TRACK-ETCHED MEMBRANES: PULSED PLASMA POLYMERIZATION OF THIN COATINGS TO MODULATE GAS PERMEABILITY

Publication No.

Christopher Lewis Chapman, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Cheng-Jen Chuong

Polycarbonate track-etched membranes (PCTE) of 50nm and 100nm pore size, precoated with Poly Vinyl Pyrrolidone (PVP), were surface treated with either Vinyl Acetic acid (VAA) or Perfluorohexane (C_6F_{14}) using a low duty cycle pulsed plasma polymerization technique. The effects of this surface treatment on gas permeation properties of the PCTE were addressed. Plasma coating thickness was controllably varied and resulted in gradual reduction of O₂ and CO₂ permeability as thickness increased from 10nm to 100nm. Plasma coating material, permeant gas, membrane pore size, and crosslink density were also varied in order to gain insight into the permeation properties of the PCTE. The results show the wide range of permeability achievable via this method. O₂ was more permeable than CO₂ as expected. Varying the crosslink density had a noticeable effect on the gas permeability as well as the surface wettability. Also, the results from advancing/receding contact angle measurements indicate a much more hydrophobic character when the surface was coated with C_6F_{14} compared to the uncoated and VAA coated samples.

Blood oxygenation is an intended future application of this process. It was shown that the modified PCTE membranes had sufficient O_2 and CO_2 transfer for this purpose. This study supports the idea of utilizing the plasma polymerization process to modulate the gas permeability characteristics of the PCTE membranes and also alter the membrane surface to improve performance.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
LIST OF ILLUSTRATIONS	ix
LIST OF TABLES	xi
LIST OF NOMENCALTURE AND ABBREVIATIONS	xii
Chapter	
1. INTRODUCTION	1
1.1 Membrane Background	1
1.2 Membrane Characteristics	2
1.3 Contact Angle of Surfaces	5
1.4 Motivation for Research	9
1.5 Research Objectives	12
2. EXPERIMENTAL MATERIALS AND METHODS	15
2.1 Introduction	15
2.2 Coating of PCTE Membranes	15
2.3 Gas Permeability Experiments	17
2.3.1 Design of Gas Permeability Apparatus	17
2.3.2 Membrane Permeability Measurements	18
2.3.3 Treatment of Data	19

	2.4 Advancing /Receding Contact Angle Experiments	20
	2.5 SEM Examination	21
	3. RESULTS	23
	3.1 Gas Permeability Measurements	23
	3.1.1 Effect of Coating Thickness	24
	3.1.2 Coating Material	28
	3.1.3 Permeant Gas	29
	3.1.4 Membrane Pore Size	32
	3.1.5 Effect of Crosslink Density	34
	3.1.6 Data Statistics	35
	3.2 Contact Angle Measurements of PCTE Membranes	37
	3.3 SEM Photographs of PCTE Membranes	40
	4. DISCUSSION	42
	4.1 Effect of Coating Thickness	43
	4.2 Coating Material	45
	4.3 Permeant Gas	46
	4.4 Membrane Pore Size	48
	4.5 Effect of Crosslink Density	49
	5. CONCLUSION	50
	6. FUTURE WORK	51
App	endix	
	A. EXPERIMENTAL LEGEND	52

B. RAW FLOWRATE DATA	55
C. PERMEABILITY DATA	72
D. CONTACT ANGLE DATA	75
REFERENCES	79
BIOGRAPHICAL INFORMATION	83

LIST OF ILLUSTRATIONS

Figure		Page
1.1	Illustration of gas transport models through porous media	. 4
1.2	Illustration of the contact angle of a drop of liquid on a solid substrate	. 7
1.3	Hydrophilic porous surface on which the liquid may fill the pores and the drop will find itself on a on a mixed solid/ liquid surface	. 8
1.4	Hydrophobic porous surface on which the liquid does not necessarily fill the pores and the drop rests on a composite of solid and air	. 8
2.1	Photograph of the gas permeability apparatus	. 19
3.1	Flowrate vs. pressure curve for uncoated 50nm pore sized PCTE membranes	. 24
3.2	Linear regression of flowrate vs. pressure plots for 0-60nm VAA coatings (n=3) on 50nm pore sized PCTE membranes	. 26
3.3	Permeability vs. pressure for 0-60nm VAA coatings (n=3) on 50nm pore sized PCTE membranes	. 26
3.4	Plot of O ₂ permeability through 50nm pore sized PCTE membranes with 0-60nm VAA coating thicknesses with polynomial curve fit	. 27
3.5	Plot of O_2 permeability through 100nm pore sized PCTE membranes with 0-100nm C_6F_{14} coating thicknesses with linear curve fit.	. 27
3.6	Vertical bar graph depicting O_2 permeability through 50nm pore sized PCTE membranes with 0-60nm VAA (n=3) and C_6F_{14} (n=3) coating thicknesses	. 28

3.7	Comparison of O ₂ and CO ₂ permeability through 50nm pore sized PCTE membranes with 0-60nm VAA coating thickness with standard error	31
3.8	Linear curve fit of O_2 and CO_2 permeability through 50nm pore sized PCTE membranes with 0-60nm C_6F_{14} coating thicknesses	31
3.9	Flowrate vs. pressure curves for PCTE membranes with 50nm and 100nm pores coated 20-100nm C_6F_{14} coating thicknesses	33
3.10	Vertical bar plot comparison of O_2 permeability through 50nm and 100nm pore sized PCTE membranes at each C_6F_{14} plasma coating thickness	33
3.11	O ₂ permeability vs. pressure plots for 100nm pore sized PCTE membranes coated with 50nm thick VAA plasma coatings at either low, medium, or high crosslink density	34
3.12	Advancing/receding water contact angle vs. water volume plots on PCTE membranes with either A) uncoated (PVP), B) VAA, or C) C_6F_{14} coatings	38
3.13	Advancing/receding contact angle plots of VAA plasma coated PCTE membranes with three different crosslink densities of VAA coating	39
3.14	Water contact angle vs. time for uncoated 50nm pore sized PCTE membrane	39
3.15	SEM photographs of PCTE membranes with nominal pore size of 50nm A) at 10kx magnification, B) an uncoated (control) PCTE membrane at 50kx, and C) VAA plasma coated membrane at 50kx	41

LIST OF TABLES

Table		Page
1.1	Classification of Microfiltration Membranes by Pore Size	. 2
1.2	Conversion Factors for Permeability Units	. 3
2.1	Summary of Experiments Performed on PCTE Membranes and Aspects Investigated	. 22
3.1	Statistical Comparison of Slopes of 50nm Pore Sized PCTE Membranes with Different VAA Plasma Coating Thicknesses	. 35
3.2	Statistical Comparison of Slopes of 50nm and 100nm Pore Sized PCTE Membranes with Different C_6F_{14} Plasma Coating Thicknesses	. 36
3.3	Statistical Comparison of Slopes of O_2 and CO_2 Slopes of 50nm and 100nm Pore Sized PCTE Membranes with Different C_6F_{14} Plasma Coating Thicknesses	. 37
4.1	Properties of Sterlitech Nanoporous PCTE Membranes	. 45

LIST OF NOMENCLATURE AND ABBREVIATIONS

A	membrane area (cm ²)
AFM	atomic force microscope
C ₆ F ₁₄	perfluorohexane
CO ₂	carbon dioxide gas
[COOH]	carboxylic acid concentration
FIB	focused ion beam
НЕ	high energy
J	flowrate (mL/s)
k	Boltzmann's constant (1.38x10 ⁻²³ J/K)
<i>Kn</i>	Knudsen number
L	membrane thickness (um)
LE	low energy
MEMS	microelectromechanical systems
M	molecular weight (g/mol)
N _A	Avogadro's number $(6.02 \times 10^{23} \text{ molecules})$
O ₂	oxygen gas
Р	operating pressure (psi)
РСТЕ	polycarbonate track-etched

PNIPAm	poly-N-isopropyl (acryl-amide)
PVP	poly vinyl pyrrolidone
R	universal gas constant (8.314J/K/mol)
SEM	scanning electron microscopy
Т	absolute temperature (K)
VAA	vinyl acetic acid
XPS	x-ray photoelectron spectroscopy
γ	surface tension (mJ/m ²)
γsv	surface tension between solid and vapor
ΔΡ	pressure differential (cmHg)
θ	contact angle (degrees)
θ _E	equilibrium contact angle (degrees)
λ	gas mean free path (nm)
λ _p	membrane pore diameter (nm)
σ _A	collision diameter of gas A (Angstrom)

CHAPTER 1

INTRODUCTION

1.1 Membrane Background

The first recorded experiment on the transport of gases and vapors through synthetic membranes by Thomas Graham in 1829 laid the foundation for experimental research in membrane transport. Around 1855, Fick first quantitatively described transport across boundary layers through his theory of molecular transport [1]. Around that time, in 1856, Darcy discovered that flow rate through porous media was proportional to the pressure gradient applied [2]. Benchold later found quantitative relationships between physical membrane parameters such as bubble point, pore size, and surface tension and membrane performance [1, 3]. These contributions have provided deep insight into the mechanisms of gas transport through membranes. By the 1960s, membrane science was well established and a multitude of data on performance of polymers was available; however, most membranes were problematic and not sufficient for widespread use. Improvement and refinement of synthetic polymers throughout the 1980s gave rise to improvements in the understanding of membrane transport and presented the opportunity for membranes to be used in large scale processes. Recently, the emergence of nanotechnology and improved membrane fabrication and processing techniques has given the membrane transport community a new direction of scientific study, however; a complete theoretical description and extensive empirical data are yet required to improve understanding of membrane technology.

1.2 Membrane Characteristics

A membrane may be loosely defined as a selective barrier between two phases [4]. The barrier properties depend both on the nature of the membrane as well as the permeant fluid. Membranes can be classified in different ways: biological or synthetic, porous or dense, or thick or thin, etc. Important characteristics of membranes include membrane thickness, surface area available for mass transfer, porosity, pore size, as well as chemical makeup and fabrication process. A membrane may be dense or porous or a combination of the two. One way to classify porous membranes is by pore size. Microfiltration membranes encompass a 0.1um to 1um size range. The classification is further broken down according to Table 1.1 below.

Classification	<u>Pore size, nm</u>
Macropores	>50
Mesopores	2-50
Micropores	<2

Table 1.1: Classification of Microfiltration Membranes by Pore Size [1]

Membranes are most commonly used industrially for gas separation purposes where a feed gas is separated into two pure streams. The permeability of a material, the ability of a fluid to pass through a selective barrier, usually a membrane, can be described by various mechanisms. Regardless of the particular mechanism, the transfer of material across a membrane is gradient-driven. In other words, membrane transfer will not take place without a gradient in pressure, concentration, temperature, or electrical potential [5]. For instance, when a higher pressure is exposed to one side of the membrane, the material will be driven from the higher pressure side to the lower pressure side due to the gradient. Since authors report results in different units, usually in terms of either molar or volume quantities, Table 1.2 lists conversion factors to change from one set of units to the other. In many applications including gas permeation, membrane distillation, gas separation, cell separation, and filtration, the permeability of the membrane is the most important characteristic.

Quantity	<u>Multiply</u>	By	<u>To get</u>	
Permeability	Barrers	3.348x10 ⁻¹⁹	kmol/(m*s*Pa)	
Permeability	Barrers	4.810x10 ⁻⁸	ft ³ (STP)/(ft*psi*day)	
Permeance	Barrers/cm	3.348x10 ⁻¹⁷	kmol/(m ² *s*Pa)	
Permeance	Barrers/cm	1.466x10 ⁻⁶	ft ³ (STP)/(ft ² *psi*day)	

 Table 1.2: Conversion Factors for Permeability Units [6]

The permeation of liquids through membranes can be described by the Hagen-Poiseuille (viscous flow) equation but permeation of gases will be emphasized in this report. The permeation of gases through membranes depends both on the membrane material and structure as well as the properties of the permeant gas (es). For porous membranes, either Knudsen flow, viscous (Poiseuille) flow, or a combination of the two called transition flow describes the transfer of gases through the membrane [2, 3]. These transport mechanisms are illustrated in Figure 1.3. In nonporous membranes, a solution-diffusion model can used to describe the transport of gases but porous membrane transport is emphasized here. Information on other types of membrane transport may be found in [5, 7].

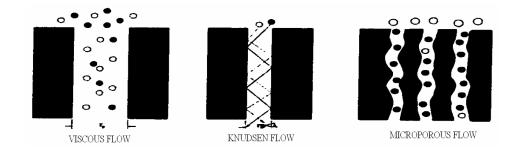


Figure 1.1: Illustration of gas transport models through porous media (adapted from [6])

When working with porous media it is desirable first to assess the relationship between pore size (λ_p) and mean free path (λ) of permeant gas. The Knudsen number, *Kn* is defined as the ratio λ / λ_p . The characteristic diameter in the mean free path is the collision diameter (σ_A) of the gas molecule. From the kinetic theory of gases, σ_A can be calculated as

$$\sigma_A^2 = \frac{5\left(\frac{MRT}{\pi}\right)^{\frac{1}{2}}}{16N_A\mu}$$
(Eq. 1)

where M is molecular weight, R is the universal gas constant, T is absolute temperature, N_A is Avogadro's number and μ is fluid viscosity. To calculate λ we use the following equation:

$$\lambda = \frac{kT}{\sqrt{2\pi\sigma_A^2 P}} \tag{Eq.2}$$

where k is Boltzmann's constant, T is absolute temperature, and P is pressure. The Knudsen number Kn once again is:

$$Kn = \frac{\lambda}{\lambda_p} \tag{Eq.3}$$

If *Kn* is <<1 then this means the mean free path is very small compared to the pore diameter and molecule-wall collisions are not likely to occur. However, if *Kn* is >>1 then the mean free path is along the order of magnitude of the pore diameter and Knudsen flow will occur where gas molecules become more likely to collide with pore walls than neighboring gas molecules. Also λ has a strong dependence on operating pressure. At extremely low pressure, λ becomes very large and Knudsen flow begins to dominate. Once the appropriate flow regime is determined, one may use either the Hagen–Poiseuille equation, the Knudsen equation, or a combination of the two to model the gas transport through the porous membrane. In some cases, a slip term must be incorporated to properly describe the flow.

1.3 Contact Angle of Surfaces

Another important characteristic of porous membranes for some applications is its surface wettability. For clarity, the following terms are defined.

- i. Surface tension (γ) the energy that must be supplied to increase the surface area by one unit-> typically in units of mJ/m². Alternatively, γ is a force (per length) along a line where the force is parallel to the surface but perpendicular to the line -> typically in units of mN/m. Note that the units mJ/m² and mN/m are identical.
- Surface energy- the interaction between the forces of cohesion and the forces of adhesion which determines whether or not wetting, the spreading of a liquid over a surface, occurs.
- iii. Contact angle (θ) the angle at which a liquid/vapor interface meets a solid surface.
- iv. Wetting- the contact between a fluid and a surface, when the two are brought into contact.

The wettability of a porous membrane surface can be important in cases when a liquid is to be exposed to the membrane but not allowed to "seep" through the pores. In the case of porous membranes a hydrophilic, or water loving surface will allow water penetration through membrane pores. In contrast, a hydrophobic, or water-hating surface will resist penetration of water. Tailoring of membrane surface chemistry, namely the surface energy could change a hydrophobic material to hydrophilic and vice versa.

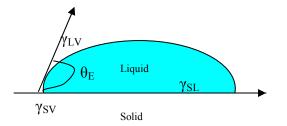


Figure 1.2: Illustration of the contact angle of a drop of liquid on a solid substrate

Figure 1.2 above illustrates the equilibrium contact angle, θ_{E_i} measured on a liquid drop. This angle can be measured using a goniometer. Generally, there are two types of surfaces:

 High energy (HE) surfaces- those for which the chemical binding energy is on the order of 1eV, on which nearly any liquid spreads. Theses surfaces are made of materials that are ionic, covalent, or metallic. The interface tension is given by

$$\gamma_{SV} \approx \frac{E_{binding}}{a^2} \approx 500 - 5000 \, mN/m$$

 Low energy (LE) surfaces- chemical binding energy on the order of kT (Boltzmann's constant multiplied by absolute temperature) and these are hardly wettable surfaces. These include materials such as molecular crystals and plastics. In this case,

$$\gamma_{SV} \approx \frac{kT}{a^2} \approx 10 - 50 \, mN / m$$

The energy of the surface is directly related to the hydrophilic/hydrophobic nature of the surface. Consider a droplet of water in contact with a hydrophilic porous surface. It

can be imagined that some liquid escapes from the liquid drop and penetrates into the "nooks and crannies" of the solid. Ultimately, the drop finds itself on a wet surface seen as patches of solid and liquid as depicted in Figure 1.3 below. At the opposite extreme, consider a water droplet contacting a hydrophobic porous surface.

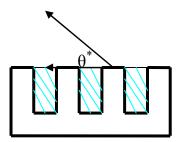


Figure 1.3: Hydrophilic porous surface on which the liquid may fill the pores and the drop will find itself on a mixed solid/ liquid surface

In this situation it is not necessarily expected for the liquid drop to fill or enter the membrane pores [8, 9]. Air can remain trapped in the pores under the drop. If so, the water drop rests on a composite surface of both solid and, air as shown in Figure 1.4 below.

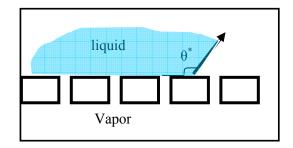


Figure 1.4: Hydrophobic porous surface on which the liquid does not necessarily fill the pores and the drop rests on a composite of solid and air

Simply by measuring the contact angle, one can gain valuable insight into the wetting properties of a surface. A static contact angle measurement may not be sufficient however in "telling the whole story" about the wettability of a surface. For

these situations, an advancing/receding contact angle technique may be implemented. In this technique a drop of water is first placed on the surface and the contact angle is measured just as in the static experiment. Next, the volume of the water droplet is incrementally increased and contact angle is recorded at each increment. Then to recede, the water volume is incrementally decreased. This results in information about the dynamic nature of the wettability of water on the surface.

1.4 Motivation for Research

An important application of membrane mass transfer is in blood oxygenator devices. Blood oxygenators have seen increased clinical use and research focus since the first prototype developed by Kolff in 1955 with polypropylene sheets [10]. They have been a leading topic of research in bioengineering for about 50 years now with little or no significant improvements in the last 20 years or so. Early oxygenator designs such as the film and rotating disc oxygenators found limited success. From the 1950s until the 1980s, the bubble oxygenator was the most widely used but still needed improvements. Beginning in the 1980s, the implementation of membrane oxygenators paved way for some improvements in oxygenator performance; however, they were still fraught with problems such as plasma leakage, hemolysis, and generally produced insufficient gas exchange [11]. Membranes are advantageous for this application since in order to reduce blood trauma, a physical barrier separating the blood phase from the gas phase is necessary. This is similar in some ways to the human lung which provides a massively large surface area, about 70m², for transfer of oxygen into the blood and removal of CO₂; this transfer takes place across a blood gas barrier or membrane. In cases of acute respiratory distress syndrome and other lung pathologies, the lung's inability to provide sufficient gas exchange may become fatal. To combat this, blood oxygenators replenish oxygenated blood to assist the lung in providing proper oxygenation to the body. Both dense and porous membranes have been investigated for oxygenator applications [10-12]. This barrier or membrane must allow the transfer of oxygen and carbon dioxide from one side of the membrane to the other but not allow any transfer of blood plasma from one side to the other.

New techniques such as MEMS fabrication and nanotechnology have brought new tools to the bioengineering realm. In particular, these tools have created the opportunity to develop devices more suitable to physiological dimensions to better mimic natural body processes. The original goal of this research project was of a collaborative effort to develop a novel nanoporous microchannel membrane blood oxygenator. Specifically, it was desired to characterize the gas transport across a microfabricated silicon/silicon nitride membrane as this would be the membrane fabricated for use in the blood oxygenator device. An important advantage of this design is that the silicon material is much stronger compared to other polymeric membranes. As a result, the high material strength and the fabrication techniques allow the creation of an incredibly thin blood channel, minimizing gas transfer resistance through the membranes and into the red blood cells. The silicon nitride membrane is made nanoporous by "drilling" holes using focused ion -beam (FIB) etching, yielding very straight and uniform pores. The membrane surface will be treated to tailor its hydrophobicity and improve biocompatibility. This treatment could alter the pore size

available for gas exchange and hence, alter its gas permeability. Given the inavailability of the silicon nitride membrane during the time period available for this thesis research and also to demonstrate feasibility, a surrogate membrane was chosen for gas transport studies. The surrogate of choice was polycarbonate track-etched membranes (PCTE).

Currently, PCTE membranes are used in various applications such as filtration, blood plasma separations, drug delivery, and flow control of reagents for assays [13, 14] but they have also been investigated for gas permeation/separation applications [15-20]. The PCTE membranes are fabricated by subjecting a thin film sheet of polycarbonate to energy neutron radiation applied perpendicular to the film. The particles damage the polymer and reduce polymer crosslinking, creating tracks. The film is then submerged into an acid or alkaline bath and the polymeric material is etched away along these tracks to form uniform cylindrical pores with a narrow pore size distribution. By varying fabrication operating conditions, a wide variety of pore sizes, from 20nm to 20um, are commercially available. PCTE membranes are unique in that they have rather uniform cylindrical pores of constant pore size as a result of this fabrication process. In other words, their pore morphology is very close to the ideal case of uniform straight cylindrical pores. This is the reason they were chosen as the surrogate material for preliminary study, their similarity in pore structure to the FIB etched silicon nitride which also closely represents an ideal case. In order to develop a suitable membrane for oxygenator applications, the optimum pore size and porosity of the gas-exchange membrane as well as the wettability of the membrane surface must be investigated. The surface tension of blood in the pores can not be so low that blood travels through the pores from the blood side into the gas stream. This is called plasma "wet-out" and has been a problem for many oxygenators in the past. It is hoped that by both reducing pore sizes from the micron scale to the nanoscale as well as applying a hydrophobic coating to the pores, the wet-out phenomena will be further minimized or even prevented. With these objectives in mind, the gas permeation as well as the contact angle of the PCTE membranes have been studied.

1.5 Research Objectives

A simple experimental method and apparatus for determining gas permeability was implemented. Traditionally, these types of simple gas permeation methods on porous membranes were not very informative since detailed knowledge of the pore characteristics must be previously obtained in order to quantify the permeability accurately. PCTE membranes, as mentioned, have the benefit of a very uniform cylindrical pore structure and narrow pore size distribution of known value. As a result, traditional experimental techniques could be implemented since the pore structure represents a near ideal case of perfect cylindrical pores with a narrow range of pore sizes. The investigation of gas permeation characteristics through nanoporous tracketched polycarbonate membranes has led to some interesting findings.

Surface treatment of materials has become a popular tool for improving polymer performance by surface modification [21, 22]. In biomaterials, material surfaces are altered to improve compatibility with the body upon implantation. One common technique used to alter the surface properties is plasma polymerization. Plasma polymerization, by altering the surface of a substrate, can be used to improve biocompatibility and increase gas separation performance [6, 23-26]. In the current study, PCTE membranes were coated to varying thickness via the low duty cycle pulsed plasma polymerization method. A plasma, or partially ionized gas produced by a high frequency electric field is used to bombard the substrate and alter its surface properties. The plasma coating was applied with the intent to coat the membrane pore walls thereby controllably decreasing the membrane pore size, ultimately resulting in a reduction in membrane permeability. Operating parameters such as monomer material, flow rate, pressure, and substrate location and temperature can be varied to adjust the plasma film chemistry [27]. The results from gas permeation experiments will indicate a gradual reduction of gas flux and hence, reduction of permeability through the PCTE membranes as plasma coating thickness increased. The pulsed plasma coatings were also used to alter the surface energy of the PCTE membranes to adjust hydrophobicity of membrane surface.

An extensive look into the effects of various parameters and operating conditions on permeability of PCTE membranes revealed an interesting hypothesis; suppose it was possible to apply a specific plasma coating so that a prescribed permeability could be achieved. It will be shown that the gas permeability can be regulated rather controllably to meet specified permeation needs by varying certain operating conditions in the plasma coating environment. The major parameters investigated were plasma coating thickness, plasma coating monomer (Vinyl Acetic Acid (VAA) or C_6F_{14}), type of permeant gas (CO₂ and O₂), uncoated membrane pore size (50nm and 100nm), and plasma polymerization crosslink density. These factors

were varied and compared in order to understand their effect on gas permeability and surface wettability of PCTE membranes as part of a grand effort to characterize the gas transfer characteristics of nanoporous membranes for application in blood oxygenation. The remaining sections of this report provide a general treatment of gas permeation properties through PCTE with out strict focus on a particular application, reinforcing the idea that this technology may be applicable to numerous fields.

CHAPTER 2

EXPERIMENTAL MATERIALS AND METHODS

2.1 Introduction

PCTE membranes (Sterlitech, Wisconsin) of 47mm diameter, with either 50nm or 100nm pore sizes, and thickness of 6um \pm 0.6 were utilized for this study. The PCTE membranes were subsequently coated either with C₆F₁₄ or VAA (CH₂=CHCH₂COOH) via the pulsed plasma polymerization technique. A gas permeability apparatus was built to measure and compare the O₂ and CO₂ permeabilities of the PCTE membranes that were coated to varying degrees. The flowrate vs. pressure curves were obtained as raw data and after applying appropriate equations, the permeability was calculated. In addition to permeability studies, the PCTE membranes were also examined for their surface characteristics using the advancing/receding contact angle technique. Samples were also viewed under SEM to examine effects the of coatings on pore size and pore structure.

2.2 Coating of PCTE Membranes

PCTE membranes were purchased in 47mm diameter samples with nominal pore sizes of 50nm and 100nm. Samples were coated under varying conditions using the pulsed plasma polymerization technique. The gas flow rates as a function of applied pressure through coated and uncoated membranes were studied using a simple gas permeation apparatus described below. Also, the advancing/receding contact angle measurements were taken to compare nanoporous surfaces with hydrophilic and hydrophobic coatings.

The PCTE membranes were coated via the low duty cycle pulsed plasma polymerization technique. A detailed description of the plasma reactor apparatus used has been described elsewhere [6, 22, 28]. Basically, three membranes at a time were placed in a cylindrical glass reactor and exposed to an ionized gas plasma that ultimately changed the surface of the substrate [25]. After sufficient reaction time (a few seconds to a few minutes) the resulting substrate should contain a uniform, conformal coating free of pinholes. Small square coupons of polished silicon were placed in the reactor environment along with the membranes to serve as controls for surface treatment. The coated silicon wafers were later used for profilometry measurement to determine film thickness and also used as controls for contact angle measurements. Operating conditions were varied in order to apply different coating thicknesses to the membrane surface. The plasma conditions have been well studied and in pulsed plasma polymerization the deposition time is usually linearly proportional to deposition thickness. The more time the sample spends in the reactor, the thicker the plasma coating becomes.

In addition to varying the conditions to adjust coating thickness, a separate study was conducted wherein the crosslink density was varied, also by manipulation of plasma reactor operating conditions. The crosslink density of the polymer film may be altered by adjusting power input as well as concentration of carboxylic acid [COOH] functional groups on the surface. Increasing polymer input increases crosslink density at the risk of reducing surface functional groups. To optimize conditions to obtain reasonable crosslink density as well as sufficient functional groups, [COOH] content must be adjusted. This ultimately means that a lower [COOH] of functional groups available on the surface results in a higher crosslink density of polymer coating, an inverse relationship. For the present study three [COOH] of surface functional groups were compared; 8.9%, 5.6%, and 3.6% and are denoted for the remainder of the present paper as low, medium, and high crosslink density respectively. These [COOH] groups were verified by X-ray photoelectron spectroscopic characterization (XPS) [22, 28].

PCTE membranes containing 50nm or 100nm pore sizes were plasma coated with varying thicknesses from 10nm to 100nm with either Vinyl Acetic Acid (VAA) or Perfluorohexane (C_6F_{14}). Coated membranes were placed in vacuum for 2-3 days in order to remove any unreacted monomer content and subsequently set aside for gas permeation experiments.

2.3 Gas Permeability Experiments

2.3.1 Design of Gas Permeability Apparatus

The gas permeability apparatus, originally designed by Vance Ley [6], uses 1/4" and 1/8" steel Swagelok tubing as well as 1/8" flexible tubing that connects a gas cylinder source of either Oxygen gas or Carbon Dioxide gas (Airgas Southwest, Arlington, TX) to a digital pressure gauge (Cole Parmer, Illinois). From the gauge, the tubing feeds into a correlated flowmeter (Cole Parmer, Illinois) and immediately into the membrane chamber in which the membrane under study is securely sealed and mounted. A porous metal disc inside the membrane chamber is used to support the

PCTE membranes but does not have any noticeable impedance to gas flowrate. From the membrane chamber, the tubing connects to a glass bubble flowmeter (Bubble-O-Meter, Ohio). See Figure 2.1 for a schematic. Simply put, a pressure can be applied to the gas, gas will exit the regulator, flow into the membrane chamber with mounted membrane, through the membrane, and finally into the bubble flowmeter. A soap bubble is introduced into the gas stream to calculate the flowrate by timing the rise of the soap bubble through a known volume increment.

2.3.2 Membrane Permeability Measurements

Once membranes were placed and sealed into membrane holder, oxygen was passed through for about two minutes to remove any residual gases. Although the diameter of membranes is 47mm the effective diameter in the flow path once mounted was only 36mm. Next, the vent, used to purge the lines, was closed and a pressure of 0.25psi was applied to the membrane. The SI equivalent of psi is Pa where 101,325Pa = 14.7psi. The resulting flowrate was measured. Five flowrate measurements were taken at a given applied pressure. The pressure was then incrementally adjusted from 0.25psi up to around 3.5psi or when the bubble flowed too fast to obtain accurate measurements. The membrane was then either removed from the membrane holder or a different gas was tested. Either Oxygen (O₂) or Carbon Dioxide (CO₂) were used as permeant gases for these studies. Tested membranes were set aside for preparation of SEM examination or contact angle measurement.

Since different polymers were used to surface treat the nanoporous PCTE membranes, the question of surface wettablity differences needed to be addressed.

Advancing/receding contact angle measurements were used to point out the differences these surface coatings made on the water contact angle, a direct measure of the wettablility of a surface. PCTE membranes before surface treatment are denoted "uncoated" although the membranes actually have a rather hydrophilic poly-vinylpyrrollidione (PVP) wetting agent applied at the manufacturing plant.

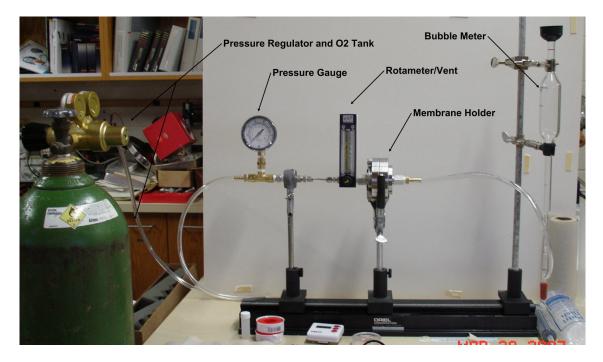


Figure 2.1: Photograph of the gas permeability apparatus

2.3.3 Treatment of Data

The flowrate of the gas exiting the membrane was experimentally measured, as described above, over a range of applied pressures up to around 3.5psi. After averaging the five flowrate measurements at each pressure, the resulting flow rate profile was plotted against pressure and a linear trendline was calculated to check for good correlation. In order to determine the gas permeability from the flowrate vs. pressure

curve, the slope of the linear trendline was calculated and the following equation was used:

$$J = KA \frac{\Delta P}{L}$$
, where (Eq.4)

J= flowrate (mL/s)

A = membrane area exposed to gas stream (cm^2)

 ΔP = pressure gradient (cmHg)

L =thickness of membrane (cm)

K= Permeability
$$(cm^{3}*cm^{2}*s^{-1}*cmHg^{-1})$$

Permeability is be expressed in Barrers where $1Barrer=10^{-10}cm^{3}*cm*cm^{-2}*s^{-1}*cmHg^{-1}$. Since, in the preceding equation the volume flowrate through the membrane is proportional to the pressure difference applied across the membrane, then the permeability may be obtained from the slope of the flowrate vs. pressure line for a given membrane sample. For a plot of J vs. ΔP , the slope is equal to:

$$Slope = \frac{KA}{L}$$
, so the permeability, K is:
 $K = Slope * \frac{L}{A}$ (Eq. 5)

The permeability of the entire set of membranes was determined by the prescribed method and various parameters were compared.

2.4 Advancing/Receding Contact Angle Experiments

A Rame-Hart Goniometer (Rame-Hart Instrument Company, NJ) was used to measure the water contact angle on uncoated and pulsed plasma coated PCTE membranes. Advancing/receding contact angle measurements were taken. The featured membrane was taped onto a clean glass slide so that the membrane lay extremely flat. For advancing/receding measurements, a 2uL water droplet was placed on the membrane surface. With the pipette tip submerged into the droplet, increments of 2uL were released into the droplet causing an increasingly larger water droplet. The contact angle was recorded at each volume increment. For the receding angle, the reverse process was performed: the micropipette was used to withdraw 2uL increments of water back from the droplet until the droplet was gone or the contact angle dropped below 20° . The contact angle again was recorded at each volume increment. The resulting advancing/receding contact angle plots were used to compare hydrophobicity of membrane surfaces.

2.5 SEM Examination

SEM analysis was performed in order visualize the mircoscale structure of the nanoporous PCTE plasma coated membranes with various coating thickness. The membranes were first gold sputter-coated with a thickness around 70A using a MRC sputter coater system (Semicore, CA) to prevent charging. The membranes were then mounted onto sample studs and placed in the Zeiss Supra VP Scanning Electron Microscope (Zeiss, NY). Images were taken at 5 kV and 35kx and 50k magnification.

Table 2.1 below offers an overall summary of the aspects investigated and variables compared in the present study.

PCTE membrane			Contact Angle	SEM
Coating Thickness	10-60nm for 50nm pore membranes 20-100nm for 100nm pore membranes	\checkmark	✓	√
Coating material	VAA, C ₆ F ₁₄	✓	\checkmark	VAA only
Permeant gas	O_2, CO_2	\checkmark		
Pore diameter	50nm, 100nm	\checkmark	~	
Crosslink density	Low, medium, high	~	\checkmark	

Table 2.1: Summary of Experiments Performed on PCTE Membranes and Aspects Investigated

CHAPTER 3

RESULTS

3.1 Gas Permeability Measurements

The purchased PCTE membranes were pulsed plasma coated to varying thicknesses as previously described. The flowrate vs. pressure curves for all samples were linear regressed and the slope was recorded. The gas permeability was determined using the appropriate equations (refer to section 2.3.3). To support the idea that gas permeability through PCTE membranes can be modulated by applying specific plasma coatings; the effects of plasma coating thickness, coating material, permeant gas, membrane pore size, and polymer cross-link density on membrane permeability are illustrated below. In addition, the resulting plots from contact angle measurements comparing different plasma coating materials will be presented. To assess the repeatability of measurements Figure 3.1 shows the flowrate vs. pressure line for n=6 untreated 50nm pore-sized samples with close agreement (r^2 =0.9949). This variation is due to small measurement errors as well as variations in the PCTE samples themselves.

Membrane Repeatability of Measurements

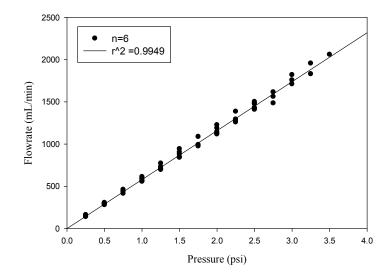
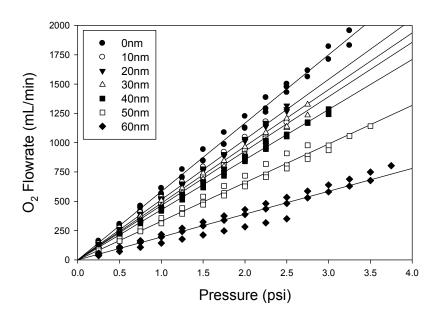



Figure 3.1: Flowrate vs. pressure curve for uncoated 50nm pore sized PCTE membranes 3.1.1 Effect of Coating Thickness

Plasma coatings 10nm to 60nm thick were applied to the 50nm pore-sized PCTE membranes and Figure 3.2 shows the resulting volume flowrate vs. pressure curves for VAA coated samples (n=3) at each coating thickness. A linear regression was calculated for each coating thickness and good correlation was observed. From the slope of the trendline, the gas permeability was calculated as described. In Figure 3.3 the permeability is plotted for a range of pressures for various VAA coatings. Figure 3.4 describes how the VAA coating thickness induces a gradual reduction in gas permeability through the PCTE membranes. A second-order polynomial with r^2 =0.9729 was fit to the data to quantify how increasing coating thickness possibly correlates with permeability reduction. In contrast to the 50nm membranes displaying this polynomial

trend, the permeability vs. coating thickness for the 100nm membranes seemed to follow a more linear trend shown in Figure 3.5.

O₂ Flowrate Decreases as Coating Thickness Increases

Figure 3.2: Linear regression of flowrate vs. pressure plots for 0-60nm VAA coatings (n=3) on 50nm pore sized PCTE membranes

O₂ Permeability Decreases as Coating Thickness Increases

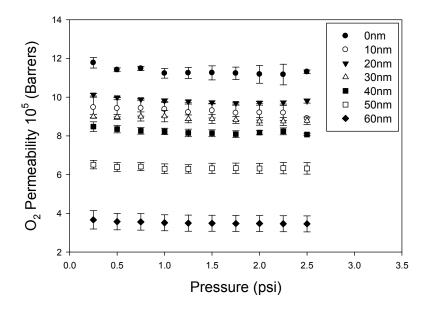
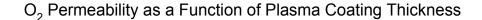



Figure 3.3: Permeability vs. pressure for 0-60nm VAA coatings (n=3) on 50nm pore sized PCTE membranes

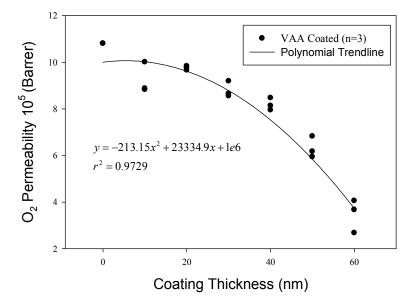


Figure 3.4: Plot of O₂ permeability through 50nm pore sized PCTE membranes with 0-60nm VAA coating thicknesses with polynomial curve fit

O₂ Permeability as a Function of Plasma Coating Thickness

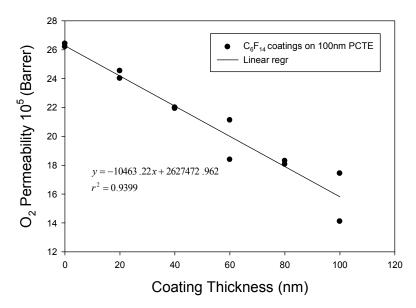
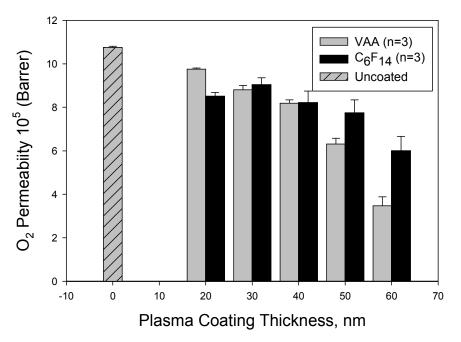



Figure 3.5: Plot of O_2 permeability through 100nm pore sized PCTE membranes with 0-100nm C_6F_{14} coating thicknesses with linear curve fit

3.1.2 Coating Material

Vinyl Acetic Acid (VAA) and perfluorohexane (C_6F_{14}) were employed as monomers for the plasma polymerization reactions. Polymeric C_6F_{14} and VAA coatings were deposited onto the PCTE membranes and subsequent gas permeability experiments were performed. In Figure 3.6, three membrane samples of each coating thickness, with either VAA or C_6F_{14} plasma coatings are presented as mean ± standard error. The differences these coating materials make on the membranes will become apparent in the contact angle analysis.

Comparison of VAA Coating to C_6F_{14} Coating

Figure 3.6: Vertical bar graph depicting O_2 permeability through 50nm pore sized PCTE membranes with 0-60nm VAA (n=3) and C_6F_{14} (n=3) coating thicknesses

3.1.3 Permeant Gas

Oxygen (O₂) and Carbon Dioxide (CO₂) gas were chosen as permeant gases for the membrane permeability experiments. To develop a comparison of these two permeant gases it is helpful to look at the Knudsen number, a ratio of mean free path of the gas to pore diameter. This will help to determine what flow regimes can be used to describe the gas transport through the membrane. If Knudsen flow dominates, then gas molecules find themselves colliding with the pore walls more often than with each other. The opposite is the case in viscous flow. If the Knudsen number lies in the range of unity then a transition regime with contributions from both the Knudsen flow and viscous flow will occur. The characteristic diameter in the mean free path is the collision diameter (σ_A) and it will be calculated first. *Kn* is simply the ratio λ/λ_p and it's value will follow. From the kinetic theory of gases, σ_A for O₂ molecules at room temperature is found by

$$\sigma_{A}^{2} = \frac{5\left(\frac{MRT}{\pi}\right)^{\frac{1}{2}}}{16N_{A}\mu} = \frac{5\left(\frac{\left(32\frac{g}{mol}\right)\left(8.314\frac{J}{K*mol}\right)(298K)}{\pi}\right)^{\frac{1}{2}}}{16\left(6.0223x10^{23}\frac{molec}{mol}\right)\left(0.0002\frac{dynes*s}{cm^{2}}\right)} = 1.30x10^{-19}m^{2}$$

$$\sigma_{A} = 3.61x10^{-10}m \text{ or } 3.61A \qquad (Eq.6)$$

where M is molecular weight, R is the universal gas constant, T is temperature, N_A is Avogadro's number and μ is fluid viscosity. The mean free path λ was calculated from:

$$\lambda = \frac{kT}{\sqrt{2}\pi\sigma_A^2 P} = \frac{1.38x10^{-23}}{\sqrt{2}\pi(3.61A)^2(1.51psi)} = 13.609nm$$
(Eq.7)

where k is Boltzmann's constant, T is absolute temperature, and P is pressure. Kn for 100nm pores will be:

$$Kn = \frac{\lambda}{\lambda_p} = \frac{13.609nm}{100nm} = 0.13609$$
 (Eq.8)

Kn for O_2 at a typical operating pressure of around 1.5psi is 0.136. Since the molecular weight of CO_2 is 44g/mol compared to 32g/mol for O_2 , *Kn*=0.116 for CO_2 at the same conditions. The higher membrane permeability of O_2 over CO_2 is described in Figure 3.7 for 20nm to 60nm C_6F_{14} coatings on the PCTE. In Figure 3.8 the linear relationship between O_2 and CO_2 permeability through 50nm pore sized C_6F_{14} coated membranes is described with a linear trendline (r^2 =0.989). The slope of the trendline was calculated to be 1.1671, the significance of which will be discussed in the next chapter. There is no respective plot for VAA-coated membranes since both gases were not tested on all VAA-coated samples.

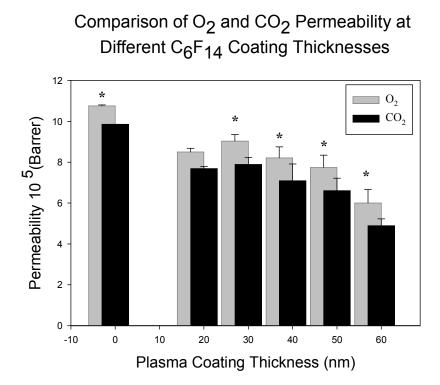


Figure 3.7: Comparison of O₂ and CO₂ permeability through 50nm pore sized PCTE membranes with 0-60nm VAA coating thicknesses with standard error

Relationship Between O₂ and CO₂ Permeability

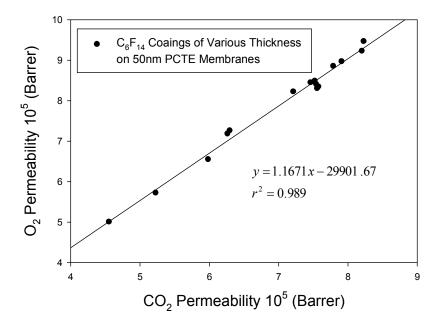


Figure 3.8: Linear curve fit of O_2 and CO_2 permeability through 50nm pore sized PCTE membranes with 0-60nm C_6F_{14} coating thicknesses

3.1.4 Membrane Pore Size

PCTE membranes with 50nm and 100nm pores were compared for their relative gas permeabilities. In Figure 3.9 the flowrate vs. pressure curves for 50nm and 100nm membranes are plotted. This plot comprises data points from all C_6F_{14} coating thicknesses. The flowrates obtained ranged from around 200-2000 mL/min to around 70-1200mL/min for 100nm and 50nm pore-sized membranes, respectively. Figure 3.10 shows the permeability values obtained for each coating thickness and how they vastly differ when comparing PCTE membranes with 50nm pores to those with 100nm pores. The PCTE membranes with 50nm pores were coated with thicknesses at 10nm increments from 20-60nm whereas the membranes with 100nm pores were coated at 20nm increments from 20-100nm coating thicknesses. Permeability values from 5x10⁵ to 2.5x10⁶ Barrers were calculated.

Flow vs. Pressure Curves for 50nm and 100nm Pore Sizes in PCTE

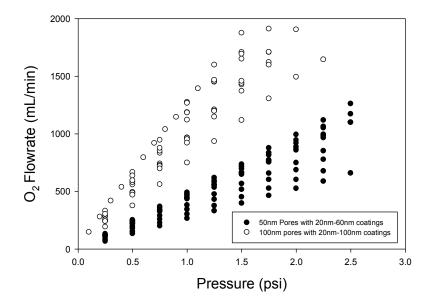
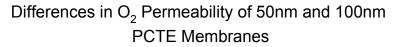



Figure 3.9: Flowrate vs. pressure curves for PCTE membranes with 50nm and 100nm pores coated with 20-100nm C_6F_{14} coating thicknesses

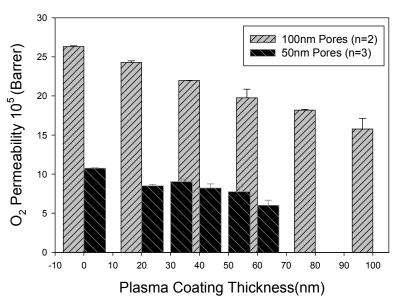


Figure 3.10: Vertical bar plot comparison of O₂ permeability through 50nm and 100nm pore sized PCTE membranes at each C₆F₁₄ plasma coating thickness

3.1.5 Effect of Crosslink Density

Samples for this study consisted of 100nm pore-sized PCTE membranes with a 50nm VAA plasma coating. Three coatings each with a different level of crosslink density were produced, each with constant 50nm thickness. It is possible to adjust reaction conditions in the plasma reactor environment in order to vary the crosslink density of the plasma polymerized films. This is primarily due to a relationship between carboxylic acid content and crosslink density. In Figure 3.11 the O₂ permeability is plotted along a series of applied pressures for three different crosslink densities denoted low, medium, and high crosslink density.

Permeability vs. Pressure for Three Different Crosslink Densities

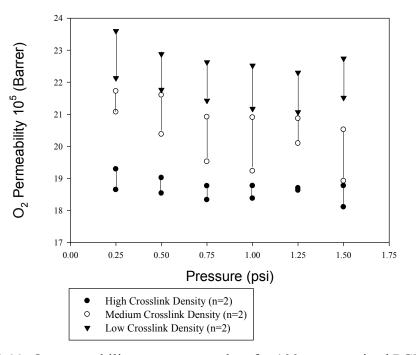


Figure 3.11: O₂ permeability vs. pressure plots for 100nm pore sized PCTE membranes coated with 50nm thick VAA plasma coatings at either low, medium, or high crosslink density

3.1.6 Data Statistics

The flowrate vs. pressure data for all membrane measurements was linearly regressed. The slopes of these regression lines were statistically compared. Firstly, the hypothesis test of equal slopes for all data failed implying that altering the plasma coating thickness causes a significant change in the slope of the flowrate vs. pressure curves, which is proportional to the membrane permeability. Three overall comparisons were made using this hypothesis of equal slopes: 1) The effect of VAA plasma coating thickness on 50nm pore sized PCTE membranes (see Table 3.1), 2) the effect of C_6F_{14} coating thickness on 50nm and 100nm pore sized PCTE membranes (See Table 3.2), and 3) the difference in slope between O_2 and CO_2 permeability through 50nm and 100nm pore sized PCTE membranes plasma coated with C_6F_{14} (See Table. 3.3). In addition, the differences in individual pairs of slopes were compared and found generally to be significantly different as shown in the following tables. Table 3.1 below shows the resulting statistics from comparing the differences of slopes for the two thinnest and the two thickest VAA plasma coatings. Likewise, Table 3.2 shows corresponding results for C₆F₁₄ plasma coated PCTE membranes of both 50nm and 100nm pore sizes.

Table 3.1: Statistical Comparison of Slopes of 50nm Pore Sized PCTE Membranes with Different VAA Plasma Coating Thicknesses

Membrane 1	Membrane 2					
Coating	Coating	Difference	<u>Std.</u>	DF	<u>t value</u>	$\underline{Pr} > t $
Thickness, nm	Thickness, nm	in Slope	Error			
uncoated	10	-99.8909	17.9116	204	-5.58	< 0.0001
60	50	-138.93	17.4494	204	-7.96	< 0.0001

	Membrane 1	Membrane 2					
Membrane	<u>Coating</u>	Coating	Difference	<u>Std.</u>	DF	<u>t value</u>	$\underline{Pr} > t $
Pore Size, nm	<u>Thickness, nm</u>	<u>Thickness, nm</u>	in Slope	Error			
50	20	Uncoated	-160.30	18.3253	213	-8.75	< 0.0001
50	60	50	-96.1325	40.5658	213	-2.37	.0187
100	40	20	-137.23	17.6224	213	-7.79	< 0.0001
100	100	80	-132.59	63.5161	213	-2.09	0.0380

Table 3.2: Statistical Comparison of Slopes of 50nm and 100nm Pore Sized PCTE Membranes with Different C₆F₁₄ Plasma Coating Thicknesses

The statistical comparison of permeant gases also failed the hypothesis test of equal slopes. This means that the O_2 and CO_2 permeability were significantly different for a given membrane. The difference in slopes for the two gases were also compared at each individual C_6F_{14} coating thickness on both 50nm and 100nm pore sized PCTE membranes. Those results are shown in Table 3.3 below. All membranes except the 20nm coated membranes show a highly significant difference in slopes between O_2 and CO_2 ($P_r < 0.0001$). Also with those two exceptions, the difference in slopes are close to the same for all 50nm pore sized PCTE membranes and the same is true of the 100nm pore sized PCTE membranes. This reinforces the idea that there is a difference of proportion between the O_2 and CO_2 permeability through the PCTE membranes.

Membrane	Coating	Difference	<u>Std.</u>	DF	<u>t value</u>	$\underline{Pr} > t $
Pore Size, nm	Thickness, nm	in O ₂ and	Error			
		CO ₂ Slope				
100	20	-517.89	233.10	375	-2.22	0.0269
100	40	150.19	12.8041	375	11.73	< 0.0001
100	60	124.58	17.8380	375	6.98	< 0.0001
100	80	122.34	15.1945	375	8.05	< 0.0001
100	100	52.8337	5.5097	375	9.59	< 0.0001
50	20	125.45	67.5347	375	1.86	0.0640
50	30	59.8921	6.0229	375	9.94	< 0.0001
50	40	57.7495	5.3594	375	10.78	< 0.0001
50	50	51.6540	5.5086	375	9.38	< 0.0001
50	60	41.2012	9.7184	375	4.24	< 0.0001

Table 3.3: Statistical Comparison of O₂ and CO₂ Slopes of 50nm and 100nm Pore Sized PCTE Membranes with Different C₆F₁₄ Plasma Coating Thicknesses

3.2 Contact Angle Measurements of PCTE Membranes

The results of advancing/receding contact angle measurements on multiple PCTE membranes each either uncoated (PVP coated), VAA coated, or C_6F_{14} coated can be seen in Figure 3.12. The relatively constant data points beginning each curve represents the advancing angle, and likewise the second slanted line represents the receding part of the measurements.

A separate set of samples were prepared for a study comparing the contact angles on membranes with varying crosslink density. These samples were coated with VAA at three different crosslink densities. The results from the advancing/receding contact angle measurements are shown in Figure 3.13. To illustrate the concept of water penetration through the pores explicitly, Figure 3.14 shows the water contact angle vs. time for an uncoated 50nm pore-sized PCTE sample.

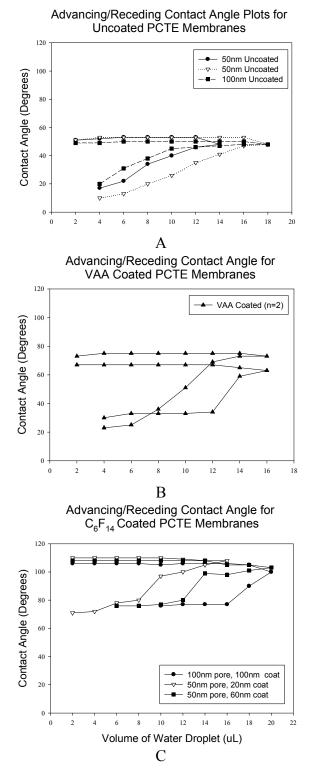


Figure 3.12: Advancing/receding water contact angle vs. water volume plots on PCTE membranes with either A) uncoated (PVP), B) VAA, or C) C₆F₁₄ coatings

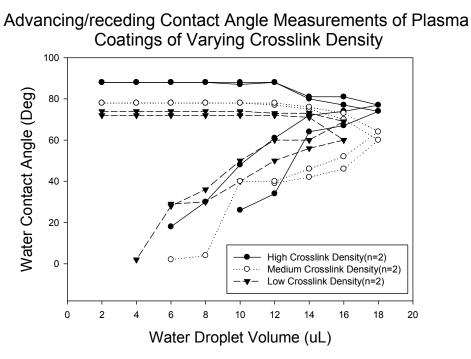


Figure 3.13: Advancing/receding contact angle plots of VAA plasma coated PCTE membranes with three different crosslink densities of the VAA coating

Contact Angle on Nanoporous PCTE Membranes Decreases with Time

Figure 3.14: Water contact angle vs. time for uncoated 50nm pore sized PCTE membrane

3.3 SEM Photographs of PCTE Membranes

PCTE membranes were examined under SEM for their pore structure. Three photographs in Figure 3.15 show A) PCTE membrane with 50nm pores at 35kx magnification, B) the same membrane at 50kx magnification and a measured pores size of about 50nm, and C) a VAA plasma coated membrane with a measured reduction in pore size of around 30nm. These images clearly show a reduction in pore sizes from uncoated to VAA plasma coated PCTE.

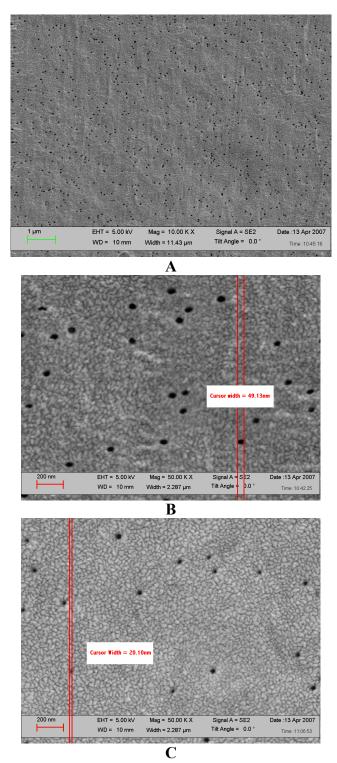


Figure 3.15: SEM photographs of PCTE membranes with nominal pore size of 50nm A) at 10kx magnification, B) an uncoated (control) PCTE membrane at 50kx, and C) VAA plasma coated membrane at 50kx.

CHAPTER 4

DISCUSSION

Two main objectives of this study were to measure the gas permeability through and the water contact angle on nanoporous PCTE membranes. A low duty cycle pulsed plasma polymerization technique was implemented to apply a hydrophobic C_6F_{14} or a more hydrophilic VAA coating of varying thickness onto PCTE membranes. The application of the plasma coating served to alter the gas permeability properties of the membrane as well as the wettability of the membrane surface. In order to better understand the effect of plasma coating parameters on permeability and wettability of the membranes, five principal factors affecting the membrane performance were highlighted, namely plasma coating thickness, coating material, permeant gas, membrane pore size, and crosslink density of plasma coating. Three replicates of each sample were studied to demonstrate reproducibility of the plasma treated membranes.

Plasma surface treatments have been applied in many applications including biomaterials, sterilization, reverse osmosis, surface modification, and gas separation. Pulsed plasma polymerization, specifically, has been used to alter the gas permeation properties of polymer substrates as well as alter the wettability surfaces [23, 29-32]. Using this technique, biomolecules can be grafted to the membrane surface to improve biocompatibility. A significant portion of the recent literature has focused on demonstrating good controllability of film chemistry during plasma treatment [21]. It is known that conditions in plasma reactor environment, such as the duty cycle, can be precisely manipulated in order to create a surface coating that is conformal with a specific thickness. This paper demonstrates this controllability through the altered permeation properties of the PCTE membranes. In short, as the plasma films are grown for longer time, the thicker the coating deposited becomes, resulting in a reduced permeability through the membrane. The feasibility of this technique is presently demonstrated on PCTE membranes and is intended to be applied to modify nanoporous silicon nitride membranes. These silicon nitride membranes will be part of a series of microfabricated nanoporous microchannels combined to form a novel blood oxygenator device.

4.1 Effect of Coating Thickness

Authors have shown that plasma treatment can be used to alter the pore characteristics in porous substrates by increasing plasma deposition times to adjust coating thickness [24, 33-36]. Another group has recently grafted PNIPAm to nanoporous PCTE membranes and demonstrated a gradual reduction in pore size directly resulting in a gradual reduction in water permeability through the porous membrane [37, 38]. The concept of coating the pore walls gradually narrowing the pores is not new, however. It has been verified by AFM that pulsed plasma treatment will reduce the pore size by coating the pore walls on 200nm PCTE membranes [25]. Yamammoto and others report that a coating thickness of five times the pore radius is typically needed to completely clog the pores [34] and clogging the pores is typically essential to cause permselectivity of gases through the membrane. In another similar

study the authors used the same approach on siloxane-type plasma coated Polypropylene membranes [35, 39] and although the substrates and plasma coatings were of different materials, the same magnitude of permeability values were observed in the present study, some of the highest permeability values recorded for any polymer. It is known that siloxane-type materials have some of the highest O₂ and CO₂ permeability characteristics of any polymer. Consequently, siloxane coatings are currently applied to blood oxygenator membranes to improve compatibility and performance.

Tables of data are available on gas permeability through many polymers [3, 5, 7, 40]. Gas permeability values reported in the aforementioned studies by other investigators ranged from 10 Barrers up to around $2x10^6$ Barrers depending on the film and substrate under study. In the present study permeability values ranged from about $1x10^5$ to $2x10^6$ Barrers depending on the membrane pore size and the thickness of plasma coating although there should be no reason that an even wider range could be achieved with even thicker coatings and other pore sizes.

In the past, gas permeation measurements were commonly used as a means of determining mean pore size of a material [41]. However, in the case of the PCTE membranes under study the details of the pore sizes are already known. This allows the investigator to consider methods traditionally used to characterize nonporous membranes to characterize porous membranes. Table 4.1 lists some important characteristics of the commercially available PCTE membranes [14].

Pore Size (nm)	Pore Density (pores/cm ²)	Nominal Thickness (um)
50	$6e8 \pm 9e7$	6 ± 0.6
100	$4e8 \pm 6e7$	6 ± 0.6

Table 4.1: Properties of Sterlitech Nanoporous PCTE Membranes

Pulsed plasma polymerization of films with different thicknesses was applied to enable one to prescribe specific permeability ranges to the porous substrate. Sakata, Yamamoto, and Hirai indicate that "In the course of the deposition process, reduction of pore size, gradual clogging of pores and formation of homogeneous pinhole-free films" can be achieved using this approach [34]. When applying very thin films, however, say in the 10nm-20nm range, it can be difficult to precisely control the deposition. This could be the reason a significant difference in gas flux can be seen with plasma coatings 30nm or higher whereas the thinner coatings do show noticeable, but not significant, differences (see Figure 3.2). Some evidence of the pore reduction concept has been presented in this study through SEM photographs. The photographs show a definite reduction in pore size of up to 60% as a result of plasma coating.

4.2 Coating Material

VAA and C_6F_{14} were used as plasma coating materials. These coatings, along with many others, have been used previously in pulsed plasma polymerization [26, 42]. There was a noticeable but not significant trend. As coating thickness increased, VAA coated membranes first resulted in higher permeability than C_6F_{14} . As the thicker coating thicknesses are approached the opposite is true: C_6F_{14} coated membranes become more permeable than VAA coated membranes. Also, this difference increases as coating thickness increases. The effects of the different coating materials on PCTE membranes are also illustrated through the contact angle experiments.

The purchased PCTE membranes are denoted "uncoated" although a hydrophilic PVP wetting agent was applied by the manufacturer. As a result, contact angle measurements should indicate a hydrophilic surface. This was in fact the case.

The uncoated contact angle was measured to be around 53^0 and the contact angle for the VAA and C₆F₁₄ coated samples were around 73^0 and 105^0 , respectively. C₆F₁₄ successfully altered the membrane surface from hydrophilic to hydrophobic. This is the reason C₆F₁₄ was chosen as a polymer for surface treatment, its hydrophobic nature. De Gennes [8, 9] reported that advancing/receding contact angle measurements on nanoporous membranes is not very informative since water will immediately penetrate the pores. This is true in some cases, but in the current study after careful comparison of the advancing/receding contact angle plots, an important trend is seen. A simple contact angle vs. time experiment nicely demonstrated the penetrated the pores in all samples; however, the more hydrophobic the coating, the less water penetrates the pores. In other words, upon receding, the contact angle of the C₆F₁₄ samples only dropped to around 70^0 while the other samples dropped below 20^0 .

4.3 Permeant Gas

Two different low molecular weight gases, O_2 and CO_2 , were used as permeant gases for the permeability studies. With a specific application in mind, membranes for blood oxygenators, the author was interested in characterizing the permeability of O_2 and CO₂ specifically, through the PCTE membranes. For gas separation applications however, an emphasis is placed on the relative permeability of one permeant gas over another. Typically, when dealing with porous materials, it is helpful to first calculate the Knudsen number *Kn* to determine the flow regime. In this case, for *Kn*=0.116 it is expected that the flow lie in the transition regime since *Kn* is neither extremely smaller than one nor extremely larger than one. If Knudsen flow dominates then the gas permeability through the PCTE membranes should be proportional to $(\sqrt{M})^{-1}$. It was immediately noticed that O₂ was more permeable than the CO₂. A plot of O₂ permeability vs. CO₂ permeability from all C₆F₁₄ treated samples, including all coating thicknesses and both 50nm and 100nm pore sized membranes, was linearly regressed (r^2 =0.9958) and the slope was calculated to be approximately 1.12. When only considering the 50nm pore-sized PCTE data points, a ratio of 1.167 was calculated from the linear trendline in accordance with a Dalton's law-type dependence on the ratio of the square roots of molecular weight for CO₂ and O₂, namely:

$$\frac{\sqrt{44}}{\sqrt{32}} = 1.172$$
.

This close agreement suggests that the transport through the PCTE membranes may be dominated by Knudsen-type flow although this should be verified through more permeability studies using more permeant gases. This dependence on Knudsen flow is also more pronounced in the 50nm as opposed to the 100nm pore sized PCTE membranes. An important physiological note is that the ration of O_2 and CO_2 regarding human metabolism is around 1.2.

4.4 Membrane Pore Size

PCTE membranes with 50nm and 100nm pores were chosen for this study. Both were, of course, plasma coated to varying degrees as before. Table 4.1 lists the pore density for the PCTE membranes. The ratio of pore densities for the 50nm and 100nm pore-sized PCTE is:

$$\frac{\frac{6x10^8 \text{ pores}}{cm^2}}{\frac{4x10^8 \text{ pores}}{cm^2}} = 1.5$$

But remember, the surface area of each of the 100nm pores is 4 times larger than the 50nm pores. The end result is, assuming the gas flow through both pore sizes follows the same type of transport, then the PCTE with 100nm pores should have a flux roughly 8/3 higher than the 50nm pores. Results agreed within the range of tolerances. Again, it remains unclear though, the extent of Knudsen flow behavior for both cases.

The permeability through PCTE membranes, as plasma coating thickness increased, behaved differently for the two membrane pore sizes. For the PCTE with 50nm pores, the permeability vs. coating thickness plot was fitted to a second order polynomial whereas the same plot in the 100nm case seemed to indicate a linear trend. This nonlinearity could simply be the result of a non-uniform coating at the lower coating thicknesses or it could mean that the pores were not all coated equally. Sae-Joong et al applied 0.1 to 1um thick plasma coatings and also reported a linear correlation between plasma coating thickness and permeability [43]. This again was the case in the present study only for the PCTE membranes with 100nm pores. In addition, it was also noticed that for the 100nm PCTE, the permeability change was minimal when the coating thickness approached the pore diameter.

4.5 Effect of Crosslink Density

Reactor conditions were manipulated in order to coat low, medium, and high crosslink density polymer films onto PCTE membranes. A 50nm thick VAA-coated sample set was compared for gas permeability studies and samples from both 50nm and 80nm VAA coated PCTE membranes were used for contact angle measurements. Results indicated a decrease in permeability for both gases as crosslink density was increased. The permeability measured from 0.25psi to 1.75psi yielded three distinct ranges of values corresponding to the level of crosslink density. The permeability values ranged from 1.8x10⁶ Barrers, at high crosslink density, to 2.3x10⁶ Barrers, at low crosslink density. The author suggests it may be possible to custom-tailor the permeability in two steps, first by applying a specific thickness of coating, and secondly, by applying that coating with a specific level of crosslink density. It was also recognized that the contact angle increased by around 10⁰ as crosslink density increased, demonstrating a more hydrophobic surface.

CHAPTER 5

CONCLUSION

As membranes have become important components in many mass transfer applications, an interest has been dedicated to finding the best materials for the intended application. To contribute to this, the current study has aimed to demonstrate the feasibility of modifying nanoporous PCTE membranes via the low duty cycle pulsed plasma polymerization of thin films with the purpose of modulating the gas permeability through the membranes. As was shown, these films have important consequences on the wettability of the membrane surface as well. Aspects such as plasma coating thickness, coating material, permeant gas, membrane pore size, and crosslink density were shown to affect gas permeability and water contact angle on modified PCTE membranes.

Blood oxygenation is an intended future application of this process. It was shown that the modified PCTE membranes had sufficient O_2 and CO_2 transfer for this purpose. In addition to this, the C_6F_{14} -modified membranes demonstrated hydrophobic properties suitable for oxygenator applications.

CHAPTER 6

FUTURE WORK

An important goal for future work will focus on characterizing the morphology of the coated pore cross-section, to gain insight into the consistency of the plasma coating along the pore walls. This can be done by cutting or fracturing the membranes along a cross-section and viewing under SEM. In addition to this, it will be helpful to develop a correlation between plasma reactor conditions and permeability of a certain gas through the membrane. Two important pieces of information that need to be elucidated are: 1) at what plasma coating thickness do the pores become completely clogged and 2) if very thin coatings are applied, say in 5-10nm range, does partial coating occur? As a result, how do these affect the permeability and permselectivity of the membranes? Future studies will involve applying this process to membranes for blood oxygenator devices, particularly to microfabricated silicon nitride nanoporous microchannels.

APPENDIX A

EXPERIMENTAL LEGEND

	SUMMA	RY OF ALL MEMBI	RANE E	XPERIMEN	NTS
Exp	Pore		Gases		<u>Coat</u>
<u>#</u>	<u>size,nm</u>	Name,Coat thickness,nm	<u>1,2</u>	<u>ΔΡ, psi</u>	Material
23	50	U5 (40nm)	1	0.25-4	VAA
24	50	U4 (30nm)	1	0.25-4	VAA
25	50	P2 (20nm)	1	0.25-4.5	VAA
26	50	U6 (Blank)	1	0.25-3.5	VAA
27	50	U6 rerun	1		VAA
28	50	U7 (Blank)	1	0.25-3.25	VAA
29	50	U3 (10nm)	1	0.25-2.75	VAA
30	50	U2 (20nm)	1	0.25-3.25	VAA
31	50	U1 (30nm)	1	0.25-4	VAA
32	50	U8 (Blank)	1	0.1-1,0.25- 2.5	VAA
33	50 50	U9 (Blank)	1	0.1-1,0.25-3	VAA
34	50 50	U10 (Blank)	1	0.1-1,0.25-3	VAA
35	50 50	60A	1	0.1-1,0.23-3	VAA
36	50 50	50A	1	0.1-3	VAA VAA
37	50 50	40A	1	0.1-3	VAA
38	50 50	30A	1	0.1-3	VAA
39	50 50	20A	1	0.1-3	VAA
40	50 50	10A	1	0.1-3	
41	50 50	60B	1	0.1-3	VAA
42	50 50	50B	1	0.1-3	VAA
42	50 50	40B	1	0.1-3	VAA VAA
44	50 50	40B 30B	1	0.1-3	VAA
45	50 50	20B	1	0.1-3	VAA
46	50 50	10B	1	0.1-3	VAA VAA
47	100	Blank	1	0.1-3	VAA
47	50	60C	2	0.1-3	VAA VAA
40 49	50 50	60A	2,1	0.25-2.5	C6F14
49 50	100	60A	1,2	0.25-2.5	C6F14
50 51	50	50C	1,2 2,1	0.25-2.5	VAA
52	50 50	40C	2,1 1,2	0.25-2.5	VAA VAA
53	100	100A	2,1	0.25-2.5	C6F14

	SUMMAF	RY OF ALL MEMBRA	ANE EXP	PERIME	NTS
Exp	Pore		Gases		Coat
<u>#</u>	<u>size,nm</u>	Name,Coat thickness,nm	<u>1.2</u>	<u>ΔΡ, psi</u>	<u>Material</u>
54	100	80A	1,2	0.25-2.5	C6F14
55	100	40A	2,1	0.25-2.5	C6F14
56	100	20A	1,2	0.25-	C6F14
57	50	50A	2,1	0.25-	C6F14
58	50	40A	1,2	0.25-	C6F14
59	50	30A	2,1	0.25- 0.25-	C6F14
60	50	20A	1,2	2.25	C6F14
61	50	30C	1,2	0.25-2.5	VAA
62	50	20C	1,2	0.25-2.5 0.25-	VAA
63	50	10C	1,2	2.25	VAA
64	50	20B	1,2	0.25-2.5	C6F14
65	50	30B	1,2	0.25-2.5	C6F14
66	50	40B	1,2	0.25-2.5	C6F14
67	50	50B	1,2	0.25-2.5	C6F14
68	50	60B	1,2	0.25-2.5	C6F14
69	100	50A-L	1,2	0.25-1.5	VAA
70	100	50A-M	1,2	0.25-1.5	VAA
71	100	50A-H	1,2	0.25-2.0 0.25-	VAA
72	100	20B	1,2	1.75	C6F14
73	100	40B	1,2	0.25-1.5 0.25-	C6F14
74	100	60B	1,2	1.75 0.25-	C6F14
75	100	80B	1,2	1.75 0.25-	C6F14
76	100	100B	1,2	1.75 0.25-	C6F14
77	100	50B-L	1,2	1.75 0.25-	VAA
78	100	50B-M	1,2	1.75 0.25-	VAA
79	100	50B-H	1,2	1.75	VAA
80	50	50-60C	1,2	0.25-2.5	C6F14
81	50	50-50C	1,2	0.2-2.5	C6F14
82	50	50-40C	1,2	0.25-2.5	C6F14
83	50	50-30C	1,2	0.25-2.5	C6F14
84	50	50-20C	1,2	0.25-2.5	C6F14

APPENDIX B

RAW FLOWRATE DATA

	RAV	RAW PERMEABILITY DATA FOR UNTREATED PCTE	FOR UNT	REATED	PCTE
<u>Exp.</u> #	<u>Pore</u> size,nm	Coating thickness,nm	<u>P</u> (psi)	<u>Flow</u> rate	Permeability (Barrer)
26	50	0	0.25	162	1229228
26	50	0	0.5	306	1161080
26	50	0	0.75	461	1167627
26	50	0	1	612	1163107
26	50	0	1.25	772	1173877
26	50	0	1.5	943	1193680
26	50	0	1.75	1088	1180816
26	50	0	2	1226	1164554
26	50	0	2.25	1386	1170005
26	50	0	2.5	1501	1140409
26	50	0	2.75	1616	1116010
26	50	0	3	1821	1152859
26	50	0	3.25	1957	1143915
27	50	0	0.5	299	1135292
27	50	0	1	594	1128105
27	50	0	1.5	906	1147032
27	50	0	2	1190	1129897
27	50	0	2.5	1482	1126380
27	50	0	3	1758	1113132
27	50	0	3.5	2061	1118409
28	50	0	0.25	154	1168444
28	50	0	0.5	299	1134501
28	50	0	0.75	446	1129274
28	50	0	-	567	1076761

B.1 RAW FLOWRATE DATA FOR UNCOATED PCTE

1074555	1069366	1069881	1072129	1063384	1121407	1078863	1083741	1069974	1070789	1071272	1070100	1064073	1058351	1065509	1077692	1088464	1092272	1080922	1060325	1114315	1111444	1114644	1110148	1117825	1058763	1060914	1071036	1070825	1025459	1096573	1063083
707	844	986	1129	1259	1476	1562	1711	1830	141	282	431	560	696	841	663	1146	1294	1422	140	293	439	587	730	883	975	1117	1269	1409	1484	144	280
1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	0.25	0.5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
28	28	28	28	28	28	28	28	28	32	32	32	32	32	32	32	32	32	32	33	33	33	33	33	33	33	33	33	33	33	34	34

1048411	1056200	1065282	1073611	1070230	1066090	1089483	1085571
414	556	701	848	986	1122	1290	1429
0.75	1	1.25	1.5	1.75	2	2.25	2.5
0	0	0	0	0	0	0	0
50	50	50	50	50	50	50	50
34	34	34	34	34	34	34	34

B.2 RAW FLOWRATE DATA FOR C6F14-COATED PCTE

_		r		8	2				r	r						r		r	r		r	r			1
		CO2 Permeability (Barrer)	1687460	1634176	1560668	1497824	1449817	1390740	1367336	1345577	1359654	1679204	1662050	1642298	1620494	1647183	1663802	1597276	1533754	2065460	1940809	1899749	1876609	1874160	1856157
	CO2 Flow	rate	222	430	616	788	954	1098	1260	1417	1610	221	437	648	853	1084	1314	1471	1615	272	511	750	988	1233	1466
RAW C6F14-COATED PCTE PERMEABILITY DATA		UZ Permeability (Barrer)	1464160	1429086	1422485	1424154	1420383	1415687	1417254	1418532	1388184	1827862	1863785	1877311	1837261	1840152	1806989	1853706	1809452	2146174	2123792	2110321	2129782	2202832	2090260
TED PCTE F	<u>O2 Flow</u>	rate	193	376	562	750	935	1118	1306	1493	1644	241	491	741	967	1211	1427	1708	1905	282	559	833	1121	1449	1650
4-COA	٩	(ISd)	0.25	0.5	0.75	.	1.25	1.5	1.75	2	2.25	0.25	0.5	0.75	.	1.25	1.5	1.75	2	0.25	0.5	0.75	Ļ	1.25	1.5
RAW C6F1		Coating thickness,hm	100	100	100	100	100	100	100	100	100	80	80	80	80	80	80	80	80	60	60	60	60	60	60
	:	Name	100-100A	100-100A	100-100A	100-100A	100-100A	100-100A	100-100A	100-100A	100-100A	100-80A	100-80A	100-80A	100-80A	100-80A	100-80A	100-80A	100-80A	100-60A	100-60A	100-60A	100-60A	100-60A	100-60A
	Pore	size,nm	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Exp.	ŧ	53	53	53	53	53	53	53	53	53	54	54	54	54	54	54	54	54	50	50	50	50	50	50

85

																					6	5															1	1		1		
1829794	2142945	2081192	2078168	1963965	2036930	1958948	2254504	2219999	2193981	2215870	2197909	1849821	2217846	2200134	2170947	2196377	2317451	565399	544106	546330	542571	538296	535284	528168	522584	517358	509431	615491	602136	603661	596086	592813	594501	591478	589616	594733	607593	603356	790792	793366	827468	823938
1686	282	548	820	1034	1340	1547	119	234	346	467	578	584	817	927	1028	1156	1342	74	143	216	286	354	423	487	550	613	670	81	158	238	314	390	469	545	621	704	800	873	104	209	327	434
2074516	2191807	2201312	2155729	2253805	2208029	2163812	2794457	2664928	2645200	2557401	2532970	2517604	2493678	2467659	2417951	2422207	2406520	594285	580964	575500	574802	571419	572983	571351	572441	571667		676096	680845	655416	653152	654515	654531	654347	652580	656227			907527	918927	868944	886711
1911	288	579	851	1186	1453	1709	147	281	418	538	667	795	919	1039	1146	1275	1393	78	153	227	303	376	452	526	603	677		89	179	259	344	431	517	603	687	777			119	242	343	467
1.75	0.25	0.5	0.75	-	1.25	1.5	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	.	۲. ۲.	0.25	0.5	0.75	.	1.25	1.5	1.75	2	2.25	2.5	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	0.25	0.5	0.75	-
60 5	40	40	40	40	40	40	20	20	20	20	20	20	20	20	20	20	20	60	60	60	60	60	60	60	09	60	60	50	50	50	50	50	50	50	50	50	50	50	40	40	40	40
100-60A	100-40A	100-40A	100-40A	100-40A	100-40A	100-40A	100-20a	100-20a	50-60A	50-60A	50-60A	50-60A	50-60A	50-60A	50-60A	50-60A	50-60A	50-60A	50-50A	50-40A	50-40A	50-40A	50-40A																			
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
50	55	55	55	55	55	55	56	56	56	56	56	56	56	56	56	56	56	49	49	49	49	49	49	49	49	49	49	57	57	57	57	57	57	57	57	57	57	57	58	58	58	58

	-1								1	1											0	9	1	1													1	1	1	T		
822256	/843//	794906	79443	726414	785163	764493	772757	774034	767832	761262	752828	745602	747663	654174	625679	634035	630788	632455	626767	627020	619479	627763	744037	797769	749700	746372	741737	750607	759711	754528	769012	0	869188	843845	840679	830783	829424	825791	818264	817718	812126	830797
541	6.9 	732	836	860	103	201	305	407	505	601	693	785	886	86	165	250	332	416	495	578	652	744	86	210	296	393	488	593	200	794	911	0	114	222	332	437	546	652	754	861	962	1093
881550	7/1788	885713	873067	897465	836914	840525	841795	845824	847146	840585	838328	842832	839852	788569	744046	734194	724720	724176	719057	713896	711210	719389	917410	866814	850766	848599	843081	840214	828137	829419	830257	835082	943351	956085	933762	932761	939529	930100	951763	943318	944174	958669
580	160	816	919	1063	110	221	332	445	557	664	772	887	995	104	196	290	381	477	568	658	749	852	121	228	336	447	555	663	763	873	983	1099	124	252	369	491	618	734	877	993	1118	1262
1.25	0.T	1.75	2	2.25	0.25	0.5	0.75	~	1.25	1.5	1.75	2	2.25	0.25	0.5	0.75	~	1.25	1.5	1.75	2	2.25	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50
40	40	40	40	40	30	30	30	30	30	30	30	30	30	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	30	30	30	30	30	30	30	30	30	30
50-40A	50-40A	50-40A	50-40A	50-40A	405-05	405-05	405-03	50-30A	50-30A	50-30A	50-30A	50-30A	50-30A	50-20A	50-20B	50-30B																										
50	nç	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
58	86	58	58	58	59	59	59	59	59	59	59	59	59	60	60	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	65	65	65	65	65	65	65	65	65	65

							1	1	1	r –	1	1	1	1	1	1	r –	1	1	1	I	9	T	1	r –		r –	r	r	1	1				1		1	1]
845908	6GC/28	804881	802590	798906	778580	782907	784578	783965	802720	773050	734194	739335	733861	731019	720685	721948	717782	723733	715111	459547	492412	478944	471683	465192	454208	455925	455425	453535	448755	2172759	2151853	2142356	2089998	2048337	2090105	2111501	2046048	2053791	2045817
111	2.18	318	422	526	615	721	826	929	1056	102	193	292	386	481	569	665	756	857	941	60	130	189	248	306	359	420	479	537	591	286	566	846	1100	1348	1650	278	539	811	1077
992663	913490	908529	902486	901428	905503	906658	897508	887906	890887	844361	830914	822593	827767	813256	819914	819299	814872	815794	835662	512430	508534	507404	503774	503517	503240	503505	499143	496757	500476	2212872	2176518	2142509	2117112	2106967	2151502	2107125	2037603	1952505	1922857
131	240	359	475	593	715	835	945	1052	1172	111	219	325	436	535	647	755	858	966	1100	67	134	200	265	331	397	464	525	588	659	291	573	846	1114	1386	1699	277	536	771	1012
0.25	0G:0	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	0.25	0.50	0.75	1.00
40	40	40	40	40	40	40	40	40	40	50	50	50	50	50	50	50	50	50	50	60	60	60	60	60	60	60	60	60	60	50	50	50	50	50	50	50	50	50	50
50-40B	50-40B	50-40B	50-40B	50-40B	50-40B	50-40B	50-40B	50-40B	50-40B	50-50B	50-60B	100-50A-L	100-50A-L	100-50A-L	100-50A-L	100-50A-L	100-50A-L	100-50A- M	100-50A- M	100-50A- M	100-50A- M																		
50	00	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	100	100	100	100	100	100	100	100	100	100
66 66	00	66	66	66	99	99	99	99	99	67	67	67	67	67	67	67	67	67	67	68	68	68	68	68	68	68	68	68	68	69	69	69	69	69	69	70	70	70	70

											79)																			— 1	
1992480	1955562		1645071	1718979	1740115	1724550	1717965	1676129	1629269	1636914	2211755	2222771	2200056	2122674	2076426	2024807	2018555	2177314	2061619	2002916	1955226	1935421	1872729	1724950	1741006	1718452	1722989	1734335	1625106	1670536	1728489	1671314
1311	1544		216	452	687	908	1130	1323	1501	1723	291	585	869	1117	1366	1599	1859	287	543	791	1029	1273	1479	227	458	678	206	1141	1283	1539	227	440
2009529	1891730	1788486	1929195	1901629	1876273	1876645	1862531	1810644	1853293		2513715	2417001	2397906	2406926	2429928	2375329	0	2307348	2259332	2219987	2248339	2229692	2144548	1875814	1877506	1843957	1831421	1821581	1822629	1856381	1935069	1854346
1322	1494	1648	254	501	741	988	1226	1430	1707		331	636	947	1267	1599	1876	0	304	595	876	1184	1467	1693	247	494	728	964	1199	1439	1710	255	488
1.25	1.50	1.75	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	0.25	0.50	0.75	1.00	1.25	1.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	0.25	0.50
50	50	50	50	50	50	50	50	50	50	50	20	20	20	20	20	20	20	40	40	40	40	40	40	60	60	60	60	60	60	60	80	80
100-50A- M	100-50A- M	100-50A- M	100-50A- H	100-20B	100-40B	100-40B	100-40B	100-40B	100-40B	100-40B	100-60B	100-80B	100-80B																			
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
70	70	70	71	71	71	71	71	71	71	71	72	72	72	72	72	72	72	73	73	73	73	73	73	74	74	74	74	74	74	74	75	75

	-						1	1	1					1	I			٤	9	1				1		1	1	1	1		
1660969 1637782	100//02	1677545	1574418	1675516	1631831	1619210	1571057	1576043	1599210	1552498	2146244	2107313	2055440	2010697	2047620	2040493	2031262	1944776	1905455	1805060	080808	1883463	1908048	1702436	1664238	1626841	1599540	1583731	1564359	674276	657455
656 867	902 1001	1325	1450	220	429	639	827	1037	1263	1430	282	555	811	1058	1347	1611	267	512	752	800	330	1239	1507	224	438	642	842	1042	1235	80	173
1820100 1808180	1010100	1848173	1759495	1829592	1784617	1768458	1750364	1743592	1737393	1734968	2359946	2287915	2262469	2251839	2229887	2273926	2172354	2160023	2091680	2000360	2030000	2086939	2052231	1864307	1853407	1832838	1837288	1869711	1876733	739204	709995
719 052	202	1197	1621	241	470	698	921	1147	1372	1598	311	602	893	1185	1467	1795	286	569	826	1100	001	1373	1620	245	488	724	967	1230	1482	97	187
0.75	00.1	150	1.75	0.25	0.50	0.75	1.00	1.25	1.50	1.75	0.25	0.50	0.75	1.00	1.25	1.50	0.25	0.50	0.75	6	00.1	1.25	1.50	0.25	0.50	0.75	1.00	1.25	1 50	0.25	0.50
80 80	00	00 80	80	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	007	100	100	100	100	100	100	100	100	100	60	60
100-80B		100-80B	100-80B	100-100B	100-50B-L	100-50B-L	100-50B-L	100-50B-L	100-50B-L	100-50B-L	100-50B- M	100-50B- M	100-50B- M	100-50B- M	M	100-50B- M	100-50B- M	100-50B- H	100-50B- H	100-50B- H	100-50B- H	100-50B- H	100-50B- H	50-60C	50-60C						
100	00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	50	50
75 75	2 1	c/ 52	75	76	76	76	76	76	76	76	77	77	77	77	77	77	78	78	78	78	0)	78	78	79	79	79	79	79	62	80	80

			1	1			1	1	1								1	1	1	7	9	1	1	1	1	1	1								1	1	1	1	1	1	
649978 643628	640987	636849	633225	629885	621893	623385	784302	762988	767022	763145	752737	750881	747123	743693	750512	735630	833362	782493	774764	765519	758751	755208	756542	750488	749628	745257	853512	855852	834881	828010	829130	825433	815197	808452	824283	819439	795998	761451	745867	739095	736089
257	422	503	583	663	737	820	103	201	303	402	495	593	688	783	889	968	110	206	306	403	499	596	697	262	888	981	112	225	330	436	546	652	751	851	976	1078	105	200	294	389	484
713311 715796	711400	716488	726144	735956	725166	730900	837837	856704	856408	854329	854779	849806	848539	838914	840689	842603	20000	887204	868356	862596	860257	857470	850984	844346	840709	845424	1057372	947200	941394	934449	932987	929433	914610	608606	922839	924456	885129	853169	840030	837634	834287
282 377	468	566	699	775	859	962	110	225	338	450	562	671	782	883	966	1109	119	234	343	454	566	677	784	889	966	1113	139	249	372	492	614	734	843	957	1093	1217	116	225	332	441	549
0.75	1 25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	0.25	0.50	0.75	1.00	1.25
60 60	60	60	60	60	60	60	50	50	50	50	50	50	50	50	50	50	40	40	40	40	40	40	40	40	40	40	30	30	30	30	30	30	30	30	30	30	20	20	20	20	20
50-60C	50-600	50-60C	50-60C	50-60C	50-60C	50-60C	50-50C	50-40C	50-30C	50-30C	50-30C	50-30C	50-30C	50-30C	50-30C	50-30C	50-30C	50-30C	50-20C	50-20C	50-20C	50-20C	50-20C																		
50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
80	80	80	80	80	80	80	81	81	81	81	81	81	81	81	81	81	82	82	82	82	82	82	82	82	82	82	83	83	83	83	83	83	83	83	83	83	84	84	84	84	84

727864	765992	764205	763002	757882
575	902	805	904	266
825438	820152	814414	833322	841231
652	756	857	987	1107
1.50	1.75	2.00	2.25	2.50
20	20	20	20	20
50-20C	50-20C	50-20C	50-20C	50-20C
50	50	50	50	50
84	84	84	84	84
	50 50 50-20C 20 1.50 652 825438 575	50 50-20C 20 1.50 652 825438 575 50 50-20C 20 1.75 756 820152 706	50 50-20C 20 1.50 652 825438 575 50 50-20C 20 1.75 756 820152 706 50 50-20C 20 2.00 857 814414 805	50 50-20C 20 1.50 652 825438 575 575 50 50-20C 20 1.75 756 820152 706 706 50 50-20C 20 2.00 857 814414 805 50-50 50 50-20C 20 2.20 857 813312 904 50-50

	RAW	PERMEABILITY DATA	ON VAA	-COATED) PCTE
<u>Exp.</u> #	<u>Pore</u> size,nm	<u>Coating</u> thickness,nm	<u>P</u> (psi)	Flow rate	<u>Permeability</u> (Barrer)
23	50	40	0.25	126	959324
23	50	40	0.5	235	892733
23	50	40	0.75	341	864108
23	50	40	1	451	856636
23	50	40	1.25	555	843544
23	50	40	1.5	661	837071
23	50	40	1.75	766	831852
23	50	40	2	877	832975
23	50	40	2.25	979	826417
23	50	40	2.5	1073	815049
23	50	40	2.75	1187	819824
23	50	40	3	1296	820627
23	50	40	3.25	1388	811502
23	50	40	3.5	1517	823280
23	50	40	3.75	1642	831866
23	50	40	4	1742	827434
25	50	20	0.25	131	997054
25	50	20	0.5	255	969328
25	50	20	0.75	379	959941
25	50	20	1	493	936439
25	50	20	1.25	613	931048
25	50	20	1.5	734	929190
25	50	20	1.75	853	925985
25	50	20	2	995	945153
25	50	20	2.25	1111	937791
25	50	20	2.5	1220	927074
25	50	20	2.75	1361	940497
25	50	20	3	1532	970269
25	50	20	3.25	1621	947415
25	50	20	3.5	1739	944066
25	50	20	3.75	1898	961299
25	50	20	4	2037	967291
29	50	10	0.25	157	1196799
29	50	10	0.5	303	1150301
29	50	10	0.75	449	1138415
29	50	10	1	593	1127436
29	50	10	1.25	748	1136142
29	50	10	1.5	889	1126114
29	50	10	1.75	1031	1118750

B.3 RAW FLOWRATE DATA FOR VAA-COATED PCTE

29	50	10	2	1174	1115324
29	50	10	2.25	1335	1127271
29	50	10	2.5	1386	1053025
29	50	10	2.75	1509	1042531
30	50	20	0.25	135	1028497
30	50	20	0.5	268	1016618
30	50	20	0.75	389	985980
30	50	20	1	519	986704
30	50	20	1.25	645	980503
30	50	20	1.5	782	990272
30	50	20	1.75	949	1030333
30	50	20	2	1018	966628
30	50	20	2.25	1132	955498
30	50	20	2.5	1264	960380
30	50	20	2.75	1381	953752
30	50	20	3	1497	947993
30	50	20	3.25	1571	918131
31	50	30	0.25	99	749158
31	50	30	0.5	186	707272
31	50	30	0.75	274	695118
31	50	30	1	362	688141
31	50	30	1.25	452	687166
31	50	30	1.5	539	682862
31	50	30	1.75	625	678191
31	50	30	2	712	676393
31	50	30	2.25	796	672066
31	50	30	2.5	898	682343
31	50	30	2.75	999	690127
31	50	30	3	1129	714993
31	50	30	3.25	1176	687697
31	50	30	3.5	1293	701583
31	50	30	3.75	1374	696217
31	50	30	4	1534	728449
35	50	60	0.25	51	386124
35	50	60	0.5	100	379084
35	50	60	0.75	150	379200
35	50	60	1	195	370570
35	50	60	1.25	243	368640
35	50	60	1.5	290	367701
35	50	60	1.75	339	367611
35	50	60	2	387	367262
35	50	60	2.25	435	366937
35	50	60	2.5	481	365804
35	50	60	2.75	529	365250
35	50	60	3	580	367453

35	50	60	3.25	629	367861
35	50	60	3.5	676	367156
41	50	60	0.25	57	436552
41	50	60	0.5	110	417994
41	50	60	0.75	164	415030
41	50	60	1	216	411225
41	50	60	1.25	269	409497
41	50	60	1.5	323	409114
41	50	60	1.75	375	407542
41	50	60	2	429	407144
41	50	60	2.25	480	405469
41	50	60	2.5	533	405059
41	50	60	2.75	586	404772
41	50	60	3	639	404713
41	50	60	3.25	688	402384
41	50	60	3.5	749	406397
41	50	60	3.75	804	407229
48	50	60	0.25	36	276731
48	50	60	0.5	72	274793
48	50	60	0.75	108	272977
48	50	60	1	143	272037
48	50	60	1.25	178	269783
48	50	60	1.5	213	269559
48	50	60	1.75	247	268105
48	50	60	2	282	268196
48	50	60	2.25	316	267134
48	50	60	2.5	351	266410
36	50	50	0.25	85	646164
36	50	50	0.5	166	630464
36	50	50	0.75	248	627178
36	50	50	1	328	623541
36	50	50	1.25	409	621332
36	50	50	1.5	489	619308
36	50	50	1.75	570	619026
36	50	50	2	651	618547
36	50	50	2.25	728	614358
36	50	50	2.5	808	613817
36	50	50	2.75	890	614604
36	50	50	3	976	618005
36	50	50	3.25	1057	617910
36	50	50	3.5	1140	618907
42	50	50	0.25	91	692080
42	50	50	0.5	180	682978
42	50	50	0.75	269	681332
42	50	50	1	356	676861

42	50	50	1.25	441	670293
42	50	50	1.5	539	683128
42	50	50	1.75	631	684610
42	50	50	2	718	681750
42	50	50	2.25	818	690771
42	50	50	2.5	908	690184
42	50	50	2.75	978	675288
51	50	50	0.25	81	616118
51	50	50	0.5	159	604549
51	50	50	0.75	243	615330
51	50	50	1	311	591383
51	50	50	1.25	392	596177
51	50	50	1.5	471	596271
51	50	50	1.75	549	595939
51	50	50	2	627	595287
51	50	50	2.25	705	595179
51	50	50	2.5	779	591986
51	50	50	2.75	861	594669
51	50	50	3	935	592012
37	50	40	0.25	107	816809
37	50	40	0.5	211	800481
37	50	40	0.75	315	798370
37	50	40	1	418	794087
37	50	40	1.25	514	780577
37	50	40	1.5	617	781136
37	50	40	1.75	717	778384
37	50	40	2	842	799327
37	50	40	2.25	945	798046
37	50	40	2.5	1053	800448
37	50	40	2.75	1174	810813
37	50	40	3	1243	787291
43	50	40	0.25	118	897176
43	50	40	0.5	228	866002
43	50	40	0.75	338	856019
43	50	40	1	448	851513
43	50	40	1.25	558	847308
43	50	40	1.5	665	842079
43	50	40	1.75	773	838708
43	50	40	2	883	838872
43	50	40	2.25	1016	857785
52	50	40	0.25	109	829617
52	50	40	0.5	221	838825
52	50	40	0.75	325	823911
52	50	40	1	433	823104
52	50	40	1.25	538	817675

52	50	40	1.5	646	818188
52	50	40	1.75	747	810520
52	50	40	2	857	814195
52	50	40	2.25	965	814727
52	50	40	2.5	1071	813950
52	50	40	2.75	1167	806516
52	50	40	3	1286	814638
38	50	30	0.25	119	904666
38	50	30	0.5	243	923466
38	50	30	0.75	374	947139
38	50	30	1	505	960267
38	50	30	1.25	611	928021
38	50	30	1.5	738	934698
38	50	30	1.75	846	917896
38	50	30	2	962	914225
38	50	30	2.25	1084	915420
38	50	30	2.5	1206	916282
38	50	30	2.75	1325	915408
44	50	30	0.5	233	884074
44	50	30	0.75	344	871237
44	50	30	1	458	870903
44	50	30	1.25	569	864009
44	50	30	1.5	678	859224
44	50	30	1.75	794	862020
44	50	30	2	898	852924
44	50	30	2.25	1004	847722
44	50	30	2.5	1126	855770
44	50	30	2.75	1234	852535
39	50	20	0.25	135	1025046
39	50	20	0.5	264	1002055
39	50	20	0.75	391	989851
39	50	20	1	526	999507
39	50	20	1.25	652	990730
39	50	20	1.5	780	987894
39	50	20	1.75	902	979180
39	50	20	2	1033	980937
39	50	20	2.25	1170	987528
39	50	20	2.5	1286	977190
45	50	20	0.25	133	1009175
45	50	20	0.5	263	998540
45	50	20	0.75	387	981389
45	50	20	1	515	979260
45	50	20	1.25	643	976726
45	50	20	1.5	764	967787
45	50	20	1.75	891	966967

45	50	20	2	1014	963027
45	50	20	2.25	1138	960588
45	50	20	2.5	1268	963567
40	50	10	0.25	138	1050572
40	50	10	0.5	271	1028637
40	50	10	0.75	404	1022322
40	50	10	1	533	1013010
40	50	10	1.25	663	1007589
40	50	10	1.5	794	1005147
40	50	10	1.75	920	998983
40	50	10	2	1048	995687
40	50	10	2.25	1180	996125
46	50	10	0.25	116	881590
46	50	10	0.5	233	884152
46	50	10	0.75	350	886793
46	50	10	1	466	884694
46	50	10	1.25	578	878317
46	50	10	1.5	696	881149
46	50	10	1.75	808	877113
46	50	10	2	921	874390
46	50	10	2.25	1051	887528
46	50	10	2.5	1171	890162

APPENDIX C

PERMEABILITY DATA

	PE	RMEABILI	Y DATA FROM LIN	EAR REGI	RESSION O	F F VS. P	CURVES	
Sample	<u>Pore</u> size	Coating	<u>Coating</u> Thickness	slope O2	<u>O2</u> Perm	<u>slope</u> CO2	CO2 Perm	pO2/PCO2
60A	<u>50</u>	C6F14	60	301	572442	275	522708	1.10
50A	50	C6F14	50	345	654928	315	598564	1.09
40A	50	C6F14	40	378	718341	330	626489	1.15
30A	50	C6F14	30	443	841386	397	754208	1.13
20A	50	C6F14	20	466	885478	410	779018	1.12
60A	50	VAA	60	193	367254	+10	110010	1.14
50A	50	VAA	50	325	617504			
40A	50	VAA	40	419	795393			
30A	50	VAA	30	484	919692			
20A	50	VAA	20	518	983732			
10A	50	VAA	10	527	1001095			
60B	50	VAA	60	214	405894			
50B	50	VAA	50	359	682417			
40B	50	VAA	40	446	847199			
30B	50	VAA	30	450	855634			
20B	50	VAA	20	509	966083			
10B	50	VAA	10	465	883331			
60C	50	VAA	60	141	268088	112	213281	
50C	50	VAA	50	313	594327	293	557435	1.07
40C	50	VAA	40	428	813498	370	702041	1.16
30C	50	VAA	30	456	865360	398	755518	1.15
20C	50	VAA	20	514	976608	443	841519	1.16
40nm	50	VAA	40	434	825276		011010	
30nm	50	VAA	30	525	998245			
20nm	50	VAA	20	500	950278			
10nm	50	VAA	10	574	1090876			
20nm	50	VAA	20	503	955768			
blank	100		0	1264	2400485			
U6	50		0	606	1151268			
U7	50		0	569	1080826			
U8	50		0	569	1080408			
U9	50		0	561	1065306			
U10	50		0	567	1076476			
100A	100	C6F14	100	742	1410238	731	1388752	1.02
80A	100	C6F14	80	963	1829677	843	1600684	1.14
60A	100	C6F14	60	1112	2112108	979	1859198	1.14
40A	100	C6F14	40	1154	2192846	1053	2000404	1.10
20A	100	C6F14	20	1292	2453677	1158	2200065	1.12
10C	50	C6F`14	10	467	887454	410	778372	1.14
20B	50	C6F14	20	439	834718	399	757874	1.10
30B	50	C6F14	30	498	946554	433	823015	1.15
40B	50	C6F14	40	472	896819	416	791138	1.13
50B	50	C6F14	50	433	822350	380	721494	1.14

60B	50	C6F14	60	264	500728	240	455496	1.10
20B	100	C6F14	20	1264	2401435	1085	2061195	1.17
40B	100	C6F14	40	1158	2200445	1015	1928975	1.14
60B	100	C6F14	60	968	1838586	885	1681726	1.09
80B	100	C6F14	80	951	1806424	859	1632657	1.11
100B	100	C6F14	100	918	1743144	831	1578268	1.10
60C	50	C6F14	60	382	726073	332	629757	1.15
50C	50	C6F14	50	445	844748	393	746381	1.13
40C	50	C6F14	40	447	848890	396	752441	1.13
30C	50	C6F14	30	486	922751	432	820470	1.12
20C	50	C6F14	20	437	830557	398	755898	1.10

APPENDIX D

CONTACT ANGLE DATA

		RAW DATA OI	ATA OBTAINED I	FROM WATER CONTACT	CONTACT	ANGLE EXPERIMENTS	IMENTS		
50nm Uncoated	ated	50nm Uncoated	bated	100nm Uncoated	oated	VAA 50-60B	30B	VAA 50-10B	0B
<u>Contact angle</u> (deq)	<u>Volume</u> (uL)	<u>Contact angle</u> (deg)	<u>Volume</u> (uL)						
51	2	51	2	49	2	73	2	67	2
52	4	53	4	49	4	75	4	67	4
53	9	53	9	50	9	75	9	67	9
53	8	53	8	50	8	75	8	67	8
53	10	53	10	50	10	75	10	67	10
53	12	53	12	50	12	75	12	67	12
48	14	53	14	50	14	75	14	65	4
46	12	53	16	50	16	73	16	63	16
40	10	48	18	48	18	73	41	59	4
34	8	47	16	48	16	69	12	34	12
22	9	41	14	47	14	51	10	33	10
17	4	35	12	46	12	36	8	33	8
		26	10	45	10	25	9	33	9
		20	8	38	8	23	4	30	4
		13	9	31	9				7
		10	4	20	4				
C6F14 50-60A	60A	C6F14 100-20A	-20A	C6F14 50-20A	20A	C6F14 100-100A	-100A	100nm blank	ank
Contact angle	<u>Volume</u>	Contact angle	<u>Volume</u>	Contact angle	Volume	Contact angle	<u>Volume</u>	Contact angle	
110	י <u>וחר</u> ז	106 106	، ۱۳	100	، ۱۳	100 100	، ۱۳		ume, s
	N .	001	V	0	N .	601	V ·	5	5
110	4	106	4	108	4	108	4	54	30
110	9	106	9	108	9	108	9	50	60
110	80	106	8	108	8	108	80	45	06
110	10	105	10	108	10	108	10	42	120
109	12	106	12	108	12	108	12	38	150
108	14	106	14	108	14	107	14	32	180
108	16	106	16	105	16	107	16	31	210
105	18	105	18	105	18	103	18	27	240
100	20	100	20	103	20	100	16	24	270
67	18	06	18	101	18	98	14	22	300

L

330	SLINK																		
5	WATER CONTACT ANGLE EXPERIMENTS OF VAA COATINGS AT DIFFERENT CROSSLINK DENSITY		<u>Volume (uL)</u>	0	4	9	8	10	12	14	16	14	12	10	Ø	9	4		
ç, ç ∞ ∞ 4 ø	s at difi	M	Avg.	78	78	78	78	78	77.5	75.5	71.5	62	49	44	39.5	40	4	N	
90 81 77 72 72	AA COATING	100-50A M	<u>Contact angle</u> (deg)	78	78	78	78	78	78	76	73	64	52	46	40	40	4	2	
φ 4 7 0 ∞ ∞	RIMENTS OF V Y		<u>Contact angle</u> (deg)	78	78	78	78	78	77	75	70	60	46	42	39				
99 99 77 76	ANGLE EXPERI DENSITY		<u>Volume (uL)</u>	2	4	9	8	10	12	14	16	18	16	14	12	10	8	9	4
<u>φ</u> 4 7 0 ∞ ∞	ONTACT		Avg.	88.0	88.0	88.0	88.0	87.7	87.7	79.7	7.7	72.0	63.7	55.3	47.5	37.0	30.0	18.0	
77 77 76		100-50A H	<u>Contact angle</u> (deg)	88	88	88	88	87	88	81	81	77	74	72	61	48	30	18	
6 4 5 0	RAW DATA OBTAINED FROM	Ţ	<u>Contact angle</u> (deg)	88	88	88	88	88	88	80	77	74	67	64	34	26			
80 72 71	RAW DATA		<u>Contact angle</u> (deg)	88	88	88	88	88	87	78	75	65	50	30					

LL

				2					
	100-50A L	L		100-80A H	0A H	100-80A M	М	100-80A L	١L
<u>Contact angle</u> (deg)	Contact angle (deg)	Avg.	<u>Volume</u> (uL)	<u>Contact angle</u> (deg)	<u>Volume (uL)</u>	<u>Contact angle</u> (deg)	<u>Volume</u> (uL)	<u>Contact angle</u> (deg)	<u>Volume</u> (uL)
72	74	73	2	73	2	76	7	76	0
72	74	73	4	73	4	76	4	76	4
72	74	73	9	73	6	76	9	76	9
72	74	73	8	73	8	77	8	76	ω
72	74	73	10	73	10	77	10	76	10
72	73	72.5	12	71	12	75	12	76	12
71	73	72	14	69	14	75	14	70	44
60	69	64.5	16	70	12	63	12	60	12
56	60	58	14	63	10	60	10	57	10
50	60	55	10	47	8	43	8	48	ω
40	50	45	8	34	9	43	9	37	9
30	36	33	9	30	4	40	4	20	4
29	28	28.5	4		2		2		2
	7	2							

L

REFERENCES

- 1. Pandey, P. and R.S. Chauhan, *Membranes for gas separation*. Progress in Polymer Science, 2001. **26**(6): p. 853-893.
- 2. Truskey, G.A., Yuan, Fan, and Katz, David F., *Transport Phenomena in Biological Systems*. Pearson Prentics Hall Bioengineering. 2004: Pearson Education, Inc. 793.
- 3. Welty, J.R., Wicks, Charles E., Wilson, Robert E., and Rorrer, Gregory, *Fundamentals of Momentum, Heat, and Mass Transfer*. fourth ed. 2001, New York: John Wiley and Sons.
- 4. Seader, J.D.a.H., Ernest J., *Separation Process Principles*. 1998: John Wiley and Sons.
- 5. Mulder, M., *Basic Principles of membrane Technology*. 1st ed. 1996: Kluwer Academic Publishers.
- 6. Ley, V., Gas Permeation Properties of Selected Pulsed Plasma Polymers, in *Chemistry*. 2002, University of Texas at Arlington: Arlington.
- 7. Perry, R.H.a.G., Don W., *Perry's Chemical Engineers' Handbook*. Seventh ed. 1997.
- 8. de Gennes, P.-G., Brochard-Wyart, Francoise, and Quere, David, *Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves.* 1st ed. 2004: Springer.
- 9. de Gennes, P.G., *Wetting: statics and dynamics*. Reviews of Modern Physics, 1985. **57**(3): p. 827.
- Drummond, M., Domingo M. Braile, Domingo M., Lima-Oliveira, Ana Paula M., Camim, Adalberto S., *Technological evolution of membrane oxygenators*. Brazilian Journal of Cardiovascular Surgery, 2005. 20(4): p. 432-437.
- 11. Iwahashi, H., K. Yuri, and Y. Nosé, *Development of the oxygenator: past, present, and future.* Journal of Artificial Organs, 2004. 7(3): p. 111-120.
- 12. Fournier, R.L., *Extracorporeal devices*, in *Basic transport phenomena in biomedical engineering*. 1999, Edwards Brothers: Lillington, NC.

- 13. Rao, V., et al., *Etched ion track polymer membranes for sustained drug delivery*. Radiation Measurements, 2003. **36**(1-6): p. 585-589.
- Sterlitech. 2002 [cited 2007 March 13]; http://www.sterlitech.com/products/membranes/polycarbonate/PCTEFeatures.ht m].
- 15. Acharya, N.K., et al., *Gas permeation study of Ti-coated, track-etched polymeric membranes.* Vacuum, 2006. **81**(3): p. 389-393.
- 16. Kulshrestha, V., et al., *Study of gas permeation for asymmetric track-etched polymer blends*. International Journal of Hydrogen Energy, 2006. **31**(10): p. 1266-1270.
- 17. Kulshrestha, V., et al., *Gas and ion transport through a track-etched large-area polymer film.* Desalination, 2006. **195**(1-3): p. 273-280.
- 18. Schofield, R.W., A.G. Fane, and C.J.D. Fell, *Gas and vapour transport through microporous membranes*. *I. Knudsen-Poiseuille transition*. Journal of Membrane Science, 1990. **53**(1-2): p. 159-171.
- 19. Tung, K.-L. and C.-J. Chuang, *Effect of pore morphology on fluid flow and particle deposition on a track-etched polycarbonate membrane*. Desalination, 2002. **146**(1-3): p. 129-134.
- 20. Vijay, Y.K., et al., *Characterization of track etched membranes by gas permeation.* International Journal of Hydrogen Energy, 2004. **29**(5): p. 515-519.
- Han, L.M.a.T., Richard B, *Pulsed-plasma polymerization of 1-vinyl-2-pyrrolidone: Synthesis of a linear polymer*. Journal of Polymer Science: Part A: Polymer Chemistry, 1998. 36(17): p. 3121-3129.
- Rinsch, C.L., et al., Pulsed Radio Frequency Plasma Polymerization of Allyl Alcohol: Controlled Deposition of Surface Hydroxyl Groups. Langmuir, 1996. 12(12): p. 2995-3002.
- Kessler, L., et al., Surface treatment of polycarbonate films aimed at biomedical application. Journal of Biomaterials Science -- Polymer Edition, 2003. 14(10): p. 1135.
- Ley, V., Kruzic, Andrew P., and Timmons, Richard B., *Permeation rates of low molecular weight gases through a plasma synthesized allyl alcohol membrane*. Journal of Membrane Science, 2003. 226(1-2): p. 213-226.

- 25. Thomes, B., *The Influence on Protein Adsorption of Surface Chemistry and Surface Roughness Produced via the Pulsed Plasma Teqhnique*, in *Biomedical Engineering*. 1998, University of Texas at Arlington: Arlington. p. 70.
- 26. Zhang, J., et al., *The characterization of structure-tailored plasma films deposited from the pulsed RF discharge*. Thin Solid Films, 2003. **435**(1-2): p. 108-115.
- 27. Yasuda, H., *Plasma Polymerization*. 1985, Orlando, FL: Academic Press.
- 28. Bhattacharyya, D., et al., *A New Class of Thin Film Hydrogels Produced by Plasma Polymerization*. 2007. **19**(9): p. 2222-2228.
- 29. Chen, T.N., et al., *Effects of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates.* Thin Solid Films, 2006. **514**(1-2): p. 188-192.
- 30. Chen, X., et al., *Pulsed Plasma Polymerization of Tetramethyltin: Nanoscale Compositional Control of Film Chemistry.* Chemistry of Materials 1996. **8**(5): p. 1067-1077.
- Poncin-Epaillard, F. and G. Legeay, Surface engineering of biomaterials with plasma techniques. Journal of Biomaterials Science -- Polymer Edition, 2003. 14(10): p. 1005.
- 32. Teare, D.O.H., et al., *Pulsed Plasma Deposition of Super-Hydrophobic Nanospheres.* Chemistry of Materials, 2002. **14**(11): p. 4566-4571.
- Sakata, J., Yamamoto, Minoru, and Hirai, Masana *Plasma polymerized* membranes and gas permeability. II. Journal of Applied Polymer Science, 1986. 31(7): p. 1999-2006.
- Sakata, J., ,Hirai , Masana,and Yamamoto,Minoru *Plasma-polymerized* membranes and gas permeability III. Journal of Applied Polymer Science, 1987. 34(8): p. 2701-2711.
- 35. Sakata, J., Yamamoto, Minoru, and Tajima, Ichiro *Plasma polymerization of mixed monomer gases*. Journal of Polymer Science: Part A: Polymer Chemistry, 1988. **26**(7): p. 1721-1731.
- 36. Sakata, J., Yamamoto, Minoru, and Hirai, Masana *Plasma-polymerized membranes and gas permeability. IV.* Journal of Applied Polymer Science, 1989. **37**(9): p. 2773-2779.

- 37. Lue, S.J., et al., *Thermally on-off switching membranes of poly(N-isopropylacrylamide) immobilized in track-etched polycarbonate films*. Journal of Membrane Science. In Press, Corrected Proof.
- Xie, R., et al., Characterization of microstructure of poly(Nisopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization. Journal of Membrane Science, 2005. 258(1-2): p. 157-166.
- 39. Yamamoto, M., Sakata , Jiro and Hirai, Masana, *Plasma polymerized membranes and gas permeability*. *I*. Journal of Applied Polymer Science, 1984. **29**(10): p. 2981-2987.
- 40. Bird, B.R., Stewart, Warren E., and Lightfoot, Edwin N., *Transport Phenomena*. second ed. 2002, New York: John wiley and Sons.
- 41. Altena, F.W., et al., Some comments on the applicability of gas permeation methods to characterize porous membranes based on improved experimental accuracy and data handling. Journal of Membrane Science, 1983. **12**(3): p. 313-322.
- 42. Hynes, A.M., M.J. Shenton, and J.P.S. Badyal, *Pulsed Plasma Polymerization of Perfluorocyclohexane*. Macromolecules, 1996. **29**(12): p. 4220-4225.
- 43. Oh, S.-J. and W.P. Zurawsky, *Gas permeation through poly(dimethylsiloxane)plasma polymer composite membranes.* Journal of Membrane Science, 1996. **120**(1): p. 89-99.

BIOGRAPHICAL INFORMATION

Christopher Chapman was born and raised in South Texas. After receiving his GED, he attended community college for two years. He received his Bachelor's of Science Degree in Chemical Engineering from Texas A&M Kingsville in May 2004. He hopes to complement it with a Master's of Science Degree in Biomedical Engineering and gain industrial research and development experience specializing in medical devices, particularly mass transfer applications.