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ABSTRACT

MODEL REFERENCE ADAPTIVE CONTROL USING STACKED IDENTIFIERS

Publication No. ______

Wei-Der Chung, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Kai S. Yeung

Model reference adaptive control is a major design method for controlling

plants with uncertain parameters. The primary objective of this dissertation is to

develop a new design approach for the model reference adaptive control of a single-

input single-output linear time-invariant plant. The proposed method, called the “Model

reference adaptive control using stacked identifiers,“ uses a stacked identifier structure

that is new to the field of adaptive control. The goal is to make the output of the plant

asymptotically track the output of the first identifier, and then driving the output of the

first identifier to track that of the second identifier, and so forth, up to the q-th identifier

where q is the relative degree of the plant. Lastly, the output of the q-th identifier is

forced to converge to that of the reference model. Simulation results show the
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superiority of the proposed method over the traditional model reference adaptive control

with augmented error in terms of the transient response. Since the resulting control

systems are nonlinear and time-varying, the stability analysis of the overall system

plays a central role in developing the theory.
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CHAPTER 1

INTRODUCTION

Model reference adaptive control (MRAC) was originally proposed to control

plants with uncertain parameters. In traditional MRAC, the adaptive parameters are

adjusted according to the output error, which is the difference between the output of the

plant and that of the reference model. A basis of this method is that if the exact values

of the plant parameters are known, then a controller is to be chosen such that the

transfer function of the closed-loop system matches that of the reference model. The

controller is designed to include adjustable parameters, which are updated through some

parameter adaptation mechanism derived by Lyapunov’s stability theory. Systems with

a unity relative degree are straightforwardly designed using this approach. However, for

the case of relative degree greater than one, where the transfer function is no longer

strictly positive real [1], [6], [7], modification has to be introduced. This difficulty was

first solved using the concept of augmented errors introduced by Monopoli [2]. After

the stability problem was resolved in the early 1980's, most of the existing MRAC

schemes use the same controller structure, which often suffers from poor transient

responses during the initial adaptation stage. Attempts to remedy this situation include

the variable structure control systems [3], [4], multiple models with switching and

tuning [5], [28], [29], [39] and [43]. In this dissertation we present a method, called the
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“Stacked Identifiers model reference adaptive control,” to improve the transient

performance. The idea is to incorporate identifiers in the control scheme in order that

the control structure comes closer to the structure of the plant. No state measurement of

the plant is required. Simulations are given to show that the transient response of the

proposed scheme is substantially better than that of the traditional augmented output

error method.

The dissertation is organized as follows: Chapter 1 gives an introduction to the

area of MRAC research. Chapter 2 begins with Identifier Tracking MRAC of plant with

relative degree two, which is an essential milestone for extending the method to higher

relative degrees. A considerable amount of stability proof is presented and the Identifier

Tracking MRAC to the general case, i.e., plants of arbitrary relative degree q is

extended. Chapter 3 deals with the design and analysis of another more systematic

structure called the Stacked Identifiers MRAC. The performance of this scheme is much

superior to the existing augmented output error and Identifier Tracking MRAC method

as far as transient response is concerned. Chapter 4 gives a conclusion of this

dissertation and possible areas for future research.
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CHAPTER 2

IDENTIFIER TRACKING MODEL REFERENCE
ADAPTIVE CONTROL

2.1 Introduction

For most adaptive schemes, the ability to deal with plants of relative degree two

is an essential milestone for extending the method to higher relative degrees. We

consider second order plants of relative degree 2q = , for which we will develop an

adaptive scheme with a double-identifier structure using the following steps:

(i) Reparametrize the unknown plant into a form so that an appropriate identifier

structure can be employed.

(ii) Derive the parameter update laws for Identifier #1, such that the identifier output

1xy asymptotically tracks the plant output py . Also derive parameter update laws for

Identifier #2 so that the output of Identifier #2, 2xy , asymptotically tracks that of

Identifier #1, 1xy . 

(iii) Design a control law )t(u to drive 2xy asymptotically towards the output of the

reference model, my , and demonstrate that all variables in the feedback system are

bounded.
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The notation used in the adaptive control literature varies widely. In this paper, upper

case letters are used to denote matrices, operators, or transfer functions and lower case

letters are used for scalars or vectors. When )t(u is a function of time, )s(u denotes its

Laplace transform; both u and (.)u denote )t(u or )s(u according to the context. )s(P

is a plant transfer function or a plant transfer function operator with
dt

d
s = .

2.2 Identifier Tracking MRAC of plants with relative degree two

2.2.1. Reparameterization of the Unknown Plant

Consider a linear time-invariant plant )s(P with an input-output pair (.)}y(.),u{ p

described by a transfer function

01
2 ++

=
pp

p

asas

k
)s(P (2.2.1)

where pk , 0pa and 1pa are constant but unknown parameters. The sign of the high

frequency gain pk and a lower bound for pk are assumed to be known, i.e., for the case

of a positive pk , 0kk lowerp >> ; and for the case of a negative pk , 0kk upperp << .

Throughout this paper, pk is assumed to be positive.

We will reparametrize the plant into a form suitable for deriving the identifier and the

parameter update laws.

Express (2.2.1) as
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)t(uk)t(y)asas( pppp =++ 01
2 , 0kk lowerp >> (2.2.2) 

Dividing both sides of the above equation by )s)(s( 10 λ+λ+ , where 0λ and 1λ are

positive constants, we obtain

)t(u
)s)(s(

k
)t(y

)s)(s(

asas

10

p
p

10

0p1p
2

λ+λ+
=

λ+λ+

++
(2.2.3) 

Performing a long division on the L.H.S. gives

L.H.S. of (2.2.3)
( )( ) ( )
( )( ) )t(y

ss

asa
)t(y p

10

100p101p
p λ+λ+

λλ−+λ+λ−
+=

Conducting another long division on the second term yields

L.H.S. of (2.2.3) =

( )( ) ( ) ( ) )t(yaa
s

1
a

s

1
)t(y p

2
001p0p

0
101p

1
p 








λ+λ−

λ+
+λ+λ−

λ+
+

Substituting this expression into (2.2.3) and moving all terms other than the term py to

the R.H.S. gives

( ) ( ) 







λ+

+
λ+

−λ−λ+−λ+λ
λ+

= )t(u
s

1
k)t(y

s

1
aa)t(ya

s

1
)t(y

0
pp

0
0p

2
001pp1p10

1
p

(2.2.4a) 

Define

∆c0
∗

pk (2.2.4b)

∆d0
∗

p0
2
00p1 aλλa −− (2.2.4c)

∆d1
∗

p110 aλλ −+ (2.2.4d)
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∆u~ u(t)
λs

1

0+
(2.2.4e)

∆z1 )t(y
λs

1
p

0+
(2.2.4f)

Then, equation (2.2.4a) becomes

( ))t(yd)t(zd)t(u~c
s

1
)t(y p1100

1
p

∗∗∗ ++
λ+

= (2.2.5) 

In accordance with the form of (2.2.5), Identifier #1 is chosen as

( ))t(yd)t(zd)t(u~c(
s

1
)t(y p1111010

1
1x ++

λ+
= (2.2.6) 

Figure 2.1 shows a schematic diagram of Identifier #1.

+

1z
#1Identifier

x1w

0
λ+

1

s

1
λ+

1

s
0

λ+

1

s

10d 11d

u~

10c

py

u

1xy

Figure 2.1: Identifier Tracking MRAC for Identifier #1.
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Similar to the structure of Identifier #1, Identifier #2 is chosen as

( ))t(yd)t(zd)t(u~c
s

1
)t(y 1x2122020

1
2x ++

λ+
= (2.2.7a)

where

∆z2 )t(y
s

1
x1

0λ+
(2.2.7b)

The corresponding block diagram is shown in Figure 2.2. 

 

1xy

2z

u

#2Identifier

x2w

0
λ+

1

s

1
λ+

1

s
20c

20d 21d

0
λ+

1

s

2xy

u~

Figure 2.2: Identifier Tracking MRAC for Identifier #2.

2.2.2. Parameter Update Laws for the Identifiers

Identifier #1

Define

∆)t(ex1 )t(y)t(y x1p − (2.2.8a)
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10
*
00 cc∆c~ − , 1000 dd∆d

~
−∗ , 1111 dd∆d

~
−∗ (2.2.8b)

∆φ(t) [ ] T

100 d
~

d
~

c~ (2.2.8c) 

∆w(t) [ ] T

p1 )t(y)t(z)t(u~ (2.2.8d) 

From (2.2.8), (2.2.5) and (2.2.6), the error equation is given by

)t(y)t(y)t(e 1xp1x −=

( ))t(yd
~

)t(zd
~

)t(u~c~
s

1
p1100

1

++
λ+

=

( )tw)t(
s

1 T

1

ϕ
λ+

= (2.2.9) 

Multiplying both sides of (2.2.9) by the polynomial operator 1s λ+ and moving all

terms to the R.H.S. except for the 1xe& term gives

)t(yd
~

)t(zd
~

)t(u~c~)t(e)t(e pxx 1100111 +++λ−=& (2.2.10)

To go through a stability analysis, we choose a Lyapunov function candidate

( )







+++= 2

1
2
0

2
0

2
1x d

~
d
~

c~
g

1
e

2

1
V , 0>g (2.2.11)

The derivative of V is given by






 +++= 1100001x1x d

~
d
~

d
~

d
~

c~c~
g

1
eeV &&&&&

Substituting 1xe& from (2.2.10) yields
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







++








++








++λ−= 1p1x1011x001x0

2
1x1 d

~

g

1
yed

~
d
~

g

1
zed

~
c~

g

1
u~ec~eV

&&&&

(2.2.12) 

Choose the parameter update laws as







 ≤≤

=
(2.2.13b)otherwise,u~ge

(2.2.13a)kcand0u~geif0,

c

1x

lower101x

10&

11x10 zged =& (2.2.13c) 

p1x11 yged =& (2.2.13d) 

Note that the adaptation for 10c is divided into two cases. The first case (2.2.13a)

together with the rest of the adaptations (2.2.13c) and (2.2.13d) renders V& in (2.2.12) as

0u~ec~eV 1x0
2

1x1 ≤+λ−=& (2.2.14a) 

Similarly, the second case (2.2.13b) gives

0≤λ−= 2
11 xeV& (2.2.14b) 

We see that in both cases, V& is negative semi-definite. This implies that 1xe , 0c~ , 0d
~

and 1d
~

are bounded; and from (2.2.8b), 10c , 10d and 11d are also bounded.

The division of the adaptation of 10c in two cases as given in (2.2.13a) and (2.2.13b) is

to ensure that

0k)t(c lower10 >≥ , for all 0t ≥ (2.2.14c)

This will be achieved by choosing an initial condition for the adaptive parameter

lower10 k)0(c ≥ .
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Identifier #2

Identifier #2 is chosen as

( ))t(yd)t(zd)t(u~c
s

1
)t(y 1x2122020

1
2x ++

λ+
= (2.2.15a)

where

∆z2 )t(y
λs

1
x1

0+
(2.2.15b)

The purpose of the parameter update laws for Identifier #2 is to achieve

0)yy(e 2x1x2x →−= as ∞→t .

They are chosen as









>++

≤≤+

=
(2.2.16b)0cu~geotherwise,cu~ge

(2.2.16a)ccand0cu~geif0,

c

10c10c

102010c

20

&&

&

&

( )
102

2

22
2
22010

20 d
z1

zzz)d(d
d &&& +

+
+β+α−

= (2.2.16c)

( )
112

1x

x11x
2
x12111

21 d
y1

yyy)d(d
d &&& +

+
+β+α−

= (2.2.16d)

where the design parameters α , β and ce are defined later in the Lyapunov analysis

shown below.

Let

x2x1x2 yy∆e − (2.2.17)

From (2.2.6), (2.2.15a) and (2.2.17), we have
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( ) ( ) ( )x121p11
1

220110
1

2010
1

2x ydyd
λs

1
zdzd

λs

1
u~cc

λs

1
e −

+
+−

+
+−

+
=

(2.2.18)

We first establish the boundedness of x2e . This can be accomplished by requiring the

same for the three R.H.S. terms, i.e., the boundedness of ( )u~cc
λs

1
2010

1

−
+

,

( )220110
1

zdzd
λs

1
−

+
and ( )x121p11

1

ydyd
λs

1
−

+
, respectively, which can be achieved

as follows.

(i). Boundedness of ( )u~cc
λs

1
2010

1

−
+

Let

( )u~cc
λs

1∆e 2010
1

c −
+

(2.2.19)

Multiplying 1s λ+ to both sides of the equation yields

( )u~ccee 2010c1c −+λ−=& (2.2.20)

Choose a Lyapunov function candidate (to secure boundedness of ce and 2010 cc − ) as

( )[ ] 0ccge
2

1
V 2

2010
2
c >−+= (2.2.21)

The derivative of V is given by

( )( )ccccegeV 20102010cc &&&& −−+=
(2.2.22)
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Substituting ce& from (2.2.20) yields

( ) ( )[ ]ccu~geccgeV 2010c2010
2
c1 &&& −+−+λ−= (2.2.23)

Use of the parameter update law (2.2.16a) and (2.2.16b) renders V& as

( )( )









≤λ−

≤≤+≤+−+λ−

=

(2.2.24b)otherwise,0ge

(2.2.24a)

ccand0cu~geif,0cu~geccge

V
2
c1

102010c10c2010
2
c1 &&

&

We can see that V& is negative semi-definite. This implies from Lyapunov’s theory that

2010 cc − and ( )u~cc
λs

1
e 2010

1
c −

+
= are bounded.

The division of the adaptation of 20c in two cases as given in (2.2.16a) and (2.2.16b) is

to ensure that

)t(c)t(c 1020 ≥ , for all 0t ≥ (2.2.24c)

This will be achieved by choosing an initial condition for the adaptive parameter

)0(c)0(c 1020 ≥ .

(ii). Boundedness of ( )220110
1

zdzd
λs

1
−

+

Rearrange 220110 − zdzd as

( ) ( ) 220102110220110 zddzzdzdzd −+−=− (2.2.25)

We shall treat the boundedness of the two terms on the R.H.S. separately.

In accordance with (2.2.4f), (2.2.15b) and (2.2.8a), 21 zz − is given by
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( ) 1x
0

1xp
0

21 e
s

1
yy

s

1
zz

λ+
=−

λ+
=− (2.2.26)

21 zz − is bounded because the same is true for 1xe , (which is the input to the

asymptotically stable system
0s

1

λ+
).

Thus, with a bounded 10d , ( )2110 zzd − is also bounded.

We now turn to the second term in (2.2.25) and let

( ) 22010
1

d zdd
λs

1∆e −
+

(2.2.27)

Multiplying 1s λ+ to both sides of the equation yields

( ) 22010d1d zddee −+λ−=& (2.2.28)

Choose a Lyapunov function candidate

( ) ( )( )[ ] 0zddddge
2

1
V 2

22010
2

2010
2
d >−+−+= (2.2.29)

The derivative of V is given by

( )( ) ( ) ( ) ( )[ ]zddzddzddddddegeV 22010220102201020102010dd &&&&&&& −+−−+−−+=

(2.2.30)

Substituting de& from (2.2.28) yields

( ) ( )( ) ( )zddddddzddgegeV 220102010201022010d
2
d1 −+−−+−+λ−= &&&

( ) ( )[ ]zddzdd 2201022010 &&& −+− (2.2.31)

Let d1 e=σ and 232 zσ=σ . Our purpose is to select an adaptive law for 20d so that V&

will be in the form of
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{ }2
221

2
1

2
3 cbaV σ+σσ−σ−ασ−=& (2.2.32a)

where α , a, b and c are constant design parameters to be chosen so as to make 0≤V& . It

is not difficult to see that (2.2.16c) would bring V& to the required form (2.2.32a) with

g∆a 1λ , g∆b , β∆c , ( )20103 dd∆ −σ (2.2.32b)

With reference to (2.2.32a), by choosing 0>α , the first term is non-positive. Any

choice of a, b and c satisfying

2








2

>
b

ac (2.2.33)

will make the second (quadratic) term also non-positive. In other words, from (2.2.32b)

and (2.2.33), the choice of the adaptive parameters

4
>βλ1

g
(2.2.34)

will render 0≤V& . This implies from Lyapunov’s theory that ( ) 22010 zdd − is bounded.

Hence, from (2.2.25), with both terms on the R.H.S. being bounded, 220110 − zdzd is

bounded. Therefore, with bounded input 220110 − zdzd , the output ( )220110
1

zdzd
λs

1
−

+

is also bounded.

(iii). Boundedness of ( )1x21p11
1

ydyd
λs

1
−

+

The treatment of ( )1x21p11
1

ydyd
λs

1
−

+
follows the same vein as that of
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( )220110
1

zdzd
λs

1
−

+
above, and is therefore omitted.

Summarizing the results of (i)-(iii) in this section, it follows from (2.2.18) that 2xe is

bounded. (The consequence of 0e 2x → will be shown later.) Figure 2.3 shows a

schematic diagram of Identifier #1 and Identifier #2.

1z

1xe
+

_

#1Identifier

Plant

x1w

0
λ+

1

s

1
λ+

1

s
0

λ+

1

s

10d 11d

1xy
u~

py

2z 2xe
+

_

#2Identifier

x2w

0
λ+

1

s

1
λ+

1

s
20c

20d 21d

2xy
0

λ+

1

s

10c

u

u~

Figure 2.3: Identifier Tracking MRAC for Identifier #1 and Identifier #2.
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2.2.3. Control Law u(t)

The reference model is given by an input-output pair (.)}y(.),r{ m with a transfer

function )s(M given as

( )( )01 ++
==

mm

mm

asas

k
)s(M

)s(r

)s(y
(2.2.35)

where mk , 1ma and 0ma are positive design parameters, )t(r is a bounded, piecewise

continuous function of time for 0≥t . The purpose here is to derive a control law such

that 2xy asymptotically tracks my . 

Define tracking error e as

∆e ( ) 2mm0 eas + (2.2.36a)

where

∆em2 mx2 yy − (2.2.36b)

(Note that if 0e → , then 0em2 → and mx2 yy → )

From (2.2.35) and (2.2.36), we have

( )( ) ( ) xm2x0m2xmx2m0 rkyayyyase −+=−+= & (2.2.37a)

where

∆rx
1mas

r

+
(2.2.37b)

Choose a Lyapunov function candidate

0>
2
1

= 2eV

A control law is now to be devised in order to make V& negative definite.
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From (2.2.37a), the derivative of e is given by

xm2x0m2x rk)yay(e &&&&& −+= (2.2.38)

Multiplying 1λ+s to both sides of (2.2.15a) yields

2x11x21220202x yydzdu~cy λ−++=& (2.2.39)

The second derivative of 2xy reads

mu~cy 202x += &&& (2.2.40a)

where

m ∆ 2x11x211x2122022020 yydydzdzdu~c &&&&&& λ−++++ (2.2.40b)

Substituting (2.2.40a) into (2.2.38) yields

xm2x0m20 rkyamu~ce &&&& −++= (2.2.41)

Next we substitute u~& with uu~0 +λ− from (2.2.4e). The result is

( )xm2x0m02020 rkyamu~cuce &&& −++λ−+= (2.2.42)

Since our objective is to design a differentiator-free controller, setting kee −=& in

(2.2.42) and replacing the derivative terms 2xy& and xr& from (2.2.39) and (2.2.37b) gives

the control law

( )(



λ−++−−λ= 2x11x21220200m020

20

yydzdu~camu~c
c

1
)t(u

( ))] kerark x1mm −−+ , 0c20 > , 0>k

(2.2.43a)

where
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( ) ( )1x1p1111010211x21201x2022020 y)t(yd)t(zd)t(u~c(dydzydzdu~cm λ−++++λ−++= &&&

( )2x11x21220201 yydzdu~c λ−++λ−

(2.2.43b)

Note that the derivatives of the adaptive coefficients can be replaced by their respective

adaptive laws in (2.2.16) and (2.2.13) in order to avoid actual differentiations. Also note

from (2.2.14c) and (2.2.24c) that 0kcc lower1020 >≥≥ so division by zero in the control

law would not occur.

Substituting the control law (2.2.43a) into (2.2.42) yields

kee −=& (2.2.44)

which makes

2keeeV −== && (2.2.45)

negative definite. This implies that the equilibrium state 0=e is globally

asymptotically stable, i.e. e is bounded and 0→e as ∞→t .

Therefore, from (2.2.36), 

0→2me and mx2 yy → (2.2.46)

Figure 2.4 shows a schematic diagram of overall system.
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Figure 2.4: Identifier Tracking MRAC for 2nd order plant of relative degree two.
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2.2.4. Boundedness of All Signals in the Entired Feedback System

With reference to the entire system in Figure 2.4, the following signals have been

shown to be bounded:

From the analysis of Identifier #1: 1xe , 10c , 10d and 11d

From the analysis of Identifier #2: 2xe , 20c , 20d , 21d , 2010 cc − , 220110 − zdzd and

1x21p11 ydyd −

From the analysis of control law: e and 2me

From the reference model: r and my

The signals that remain to be shown bounded are:

py , 1xy , 2xy , 1z , 2z , 1z& , 2z& , xr& , my& , e& , em2& , 2xy& , u~ , x1e& , x2e& , 1xy& , 1xw , 2xw , 10c& ,

10d& , 11d& , 20c& , 20d& , 21d& , m and u

Boundedness of py , 1xy and 2xy :

Since my , 2me , 2xe and 1xe are bounded, it follows from (2.2.17) and (2.2.8a) that 2xy ,

1xy and py are bounded.

Boundedness of 1z , 2z , 1z& , 2z& , xr& , my& , e& , em2& and x2y& :

The signals 1z , 2z , 1z& , 2z& , xr& and my& are outputs of “proper” stable transfer functions
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with bounded inputs. Hence they are bounded. Also, from (2.2.44), we see that e& is

bounded. It follows from (2.2.36a) that the same is true of em2& . Consequently, from

(2.2.36b), x2y& is bounded.

Boundedness of u~ , x1e& , x2e& , 1xy& , 1xw and 2xw : 

With bounded x2y& , the boundedness of u~ is derived from (2.2.39). The signal x1e& in

(2.2.10) is bounded because the signals φ and w in (2.2.9) are bounded. In a similar

fashion, the boundedness of x2e& can be established. Finally, 1xy& is also bounded due to

the boundedness of x2e& and x2y& . The signals 1xw and 2xw in Figure 2.4 are composed

of a sum of bounded signals and are therefore bounded.

Boundedness of 10c& , 10d& , 11d& , 20c& , 20d& , 21d& , m and u :

The boundedness of 10c& , 10d& , 11d& , 20c& , 20d& , 21d& and m follows from (2.2.13), (2.2.16)

and (2.2.43b). Finally, the boundedness of u is established through (2.2.43a) because

all signals appearing in the equations are bounded.

Thus, we have shown the boundedness of all signals in the entire control system. Next,

we would like to demonstrate the convergence of the tracking errors.

2.2.5. Convergence of the Tracking Errors

With reference to the entire system in Figure 2.4, our purpose is to demonstrate that

mp yy → as 0t → . This is accomplished by showing the same for the signals 2me , 1xe
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and 2xe .

(i) Convergence of 2me : 

This has been shown in (2.2.46).

(ii) Convergence of 1xe : 

We have shown in Section 2.2.4 that 1xe , 1xe& , 0c~& and u~& are bounded. Thus,

from (2.2.14),

( )









λ−

≤≤+++λ−
=

otherwise,ee2

kcand0u~geif,u~eu~ec~u~ec~ee2

V

1x1x1

lower101x1x1x01x01x1x1

&

&&&&

&&

is bounded. According to Barbalat's Lemma, 0V →& , which means 0→1xe as ∞→t .

(iii) Convergence of 2xe : 

Consider 2xe in (2.2.18),

( ) ( ) ( )x121p11
1

220110
1

2010
1

2x ydyd
λs

1
zdzd

λs

1
u~cc

λs

1
e −

+
+−

+
+−

+
=

Convergence of 2xe follows from the convergence of the signals ( )u~cc 2010 − ,

220110 zdzd − and x121p11 ydyd − . These are show as follows:

Convergence of ( )u~cc 2010 − :
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Differentiating (2.2.24a) and (2.2.24b) gives

( )( ) ( )( )









λ−

≤≤+
++−++−+λ−

=

otherwise,eeg2

ccand0cu~geif

,cu~geu~egcccu~gecceeg2

V

cc1

102010c

10cc201010c2010cc1

&

&

&&&&&&&&

&&

which can be seen to be bounded, (upon insertion of the parameter update laws from

(2.2.13), (2.2.16), (2.2.20) and (2.2.4e)). With bounded V&& , 0V →& in accordance with

Barbalat’s Lemma. Since V& in (2.2.23) consists of two non-positive terms, both terms

must also converge to zero, in particular, ( ) 0u~cc 2010 →− .

Convergence of 220110 zdzd − :

Consider (2.2.25), the convergence of 220110 zdzd − will be demonstrated by the

convergence of its two R.H.S. terms.

Differentiating (2.2.32a) gives

( )( ) ( )( )22010ddd120102010 zddegege2dddd2V −+λ−−−α−= &&&&&&

( )( ) ( )( )[ ] ( )( ) ( )( )[ ]zddzdd2zddzddge 22010220102201022010d
&&&&&& −+−β−−+−+

( )( )22010 zdd −

which can be shown to be bounded, if one inserts the parameter update laws (2.2.13),

(2.2.16), (2.2.28) into the V&& expression. With bounded V&& , 0V →& according to

Barbalat’s Lemma. Since V& in (2.2.32a) consists of two non-positive terms, both terms

must also converge to zero, in particular, ( ) 0zdd 22010 →− . Therefore, the second term

in (2.2.25) converges to zero. The convergence of the first term follows from the
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convergence of 21 zz − , which can be seen as follows. From (2.2.4f), (2.2.15b) and

(2.2.8a), we have 1x
0

21 e
s

1
zz

λ+
=− . Since 1xe is the input of an asymptotically stable

system
0s

1

λ+
and converges to zero, the output 21 zz − also converges to zero. In

conclusion, the convergence of 220110 zdzd − is established.

Convergence of 1x21p11 ydyd − :

The discussion of the convergence of 1x21p11 ydyd − is similar to that of 220110 zdzd −

and is omitted.

Summarizing, with the convergence of the three R.H.S. terms in (2.2.18), the

convergence 0→2xe as ∞→t is ensured.

2.2.6. Simulation Studies

The simulation studies presented in this section are to compare the effectiveness of the

proposed adaptive scheme with the existing augmented output error method in [1]. This

is done for the case of relative degree 2q = (Simulations 2.2.1 and 2.2.2).

Simulation 2.2.1: 2nd order Augmented Output Error Method [1]

The data for the simulation are as follows.
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Figure 2.5: Augmented output error. (relative degree 2q = )

Simulation 2.2.2: 2nd order Identifier Tracking MRAC

The data for the simulation are as follows.
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The initial conditions for the adaptive parameters are chosen in accordance with

(2.2.14c) and (2.2.24c), in this case:

lower2010 k1)0(c)0(c ≥== ( lowerk is taken to be 0.01),

=== )0(d)0(d)0(d 112010 0)0(d 21 = ,

1c*
0 = , 2d*
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1 =
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Figure 2.6: Identifier Tracking MRAC output error. ( relative degree 2q = )
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Figure 2.7: Augmented output parameter error p1 and Identifier Tracking MRAC output
parameter error p2. (relative degree 2q = )

Discussion

Figure 2.5 gives the transient response of the tracking error pe for the augmented

output error method. The corresponding tracking error for the proposed Identifier-

tracking MRAC scheme is shown in Figure 2.6. It can be seen that the tracking error for

the proposed method is substantially smaller (about 60 times) than that of the

augmented output error method (For the case of other initial conditions, the same

superiority of the proposed method over the augmented output error method is

observed). Figure 2.7 shows the r.m.s. parameter error for the augmented output error

method and for the proposed Identifier Tracking MRAC. The reason that the above

errors for the proposed method are smaller than those of the augmented output error

method can be explained by the “closeness” of the proposed identifier structure to the

plant structure.
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2.3 Identifier Tracking MRAC of plants with relative degree greater than two

2.3.1. Reparameterization of the Unknown Plant

In this section, we extend the Identifier Tracking MRAC to the general case, i.e., plants

of arbitrary relative degree q .

Consider a plant with an input-output pair (.)}y(.),u{ p described by a transfer function

01
1n

1n
n

01
qn

qn

asasas

bsbsb

)s(D

)s(N
)s(P

++++

+++
== −

−

−
−

L

L
, 2>≥ qn (2.3.1)

where 01
qn

qn bsbsb +++−
− L is a Hurwitz polynomial in s . The sign of the high

frequency gain qnb − is assumed to be positive, with a known lower bound

0kb lowerqn >>− .

We will reparametrize the plant into a form suitable for the derivation of the identifier

structure and the parameter update laws

Express (2.3.1) as

u)bsbsb(y)asasasas( 01
qn

qnp01
2n

2n
1n

1n
n +++=+++++ −

−
−

−
−

− LL

(2.3.2)

Let )s(λ , )s(wλ and )s(∗λ be Hurwitz polynomials given as

)s(λ ∆ qnqn
q

n
q sss −1+−

2−
2−

1− λ+λ++λ+ L (2.3.3a)

)s(wλ ∆ 01
1−−

1−−
− λ+λ++λ+ sss qn

qn
qn L (2.3.3b)

)s(zλ ∆ )s()s( wλλ = 01
2−

2−
1− λ+λ++λ+

~
s

~
s

~
s n

n
n K (2.3.3c)

)s(∗λ ∆ )s()s( zn λλ+ 1− = ∗
0

∗
1

1−∗
1− λ+λ++λ+ sss n

n
n K (2.3.3d)
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First, divide both sides of (2.3.2) by )s(∗λ using long division. Then, moving all terms

to the R.H.S. except for the py -term and using the definitions in (2.3.3) yields

λ+= yyy cp (2.3.4a) 

where












λ
⋅

λ

+++

λ+
=

−
−

−

u
)s(

1

)s(

bsbsb

s

1
y

w

01
qn

qn

1n
c

L

( ) ( ) ( ) ( )







 −+−++−+−
+

=
∗∗−

−
∗
−

−
−

∗
−

−
λ p

z

0011
2n

2n2n
1n

1n1n

1n

y
(s)λ

aλsaλsaλsaλ
λs

1
y

L

(2.3.4b) 

Carrying out the long division by )s(wλ in the cy expression gives

cy = 










λ
⋅

λ
+++

+
λλ+

∗∗−−∗
−−∗

−
−

u
)s(

1

)s(

cscsc
u

)s(

1
c

s

1

w

01
1qn

1qn
qn

1n

L
(2.3.4c)

In the same way, carrying out the long division by )s(zλ in the λy expression, we

obtain

λy = 







λ

+++
+

λ+
1 ∗

0
∗
1

2−∗
2−∗

1−
1−

p
z

n
n

pn
n

y
)s(

dsdsd
yd

s

L
(2.3.4d)

where *
ic , 1qn,1,0,i −−= L , and *

jd , 2n,1,0,j −= L , are the resulting coefficients

after the long division.

Define

∆∗c [ ] T

01qn cc ∗∗
−− K (2.3.5a)
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∆∗d [ ] T

02n dd ∗∗
− K (2.3.5b)

∆u~ u
λ(s)

1
(2.3.5c) 
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∆1w [ ] T
T

1p
T zywu~ (2.3.5f)

∆φ∗ [ ] T
T

1n

T

qn ddcc ∗∗
−

∗∗
− (2.3.5g)

Then py in (2.3.4) is expressed as

( )1

T

p1n

T

qn
1n

p zdydwcu~c
s

1
y ∗∗

−
∗∗

−
−

+++
λ+

=

( )[ ]1

T

1n

w
s

1 ∗

−

φ
λ+

= (2.3.6) 

Equation (2.3.6) forms the basis of the identifier structures. Accordingly, Identifier #1 is

constructed as

[ ]11
1−

1 φ
λ+
1

= w
s

y T

n
x (2.3.7a)

where
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∆φ1 [ ] T
T
1)1n(1

T
1)qn(1 ddcc −− (2.3.7b)

∆1c [ ] T

10)1qn(1 cc K−− (2.3.7c)

∆1d [ ] T

10)2n(1 dd K− (2.3.7d)

are the adaptive coefficients.

Figure 2.8 shows a schematic diagram of Identifier #1.
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Figure 2.8: Identifier Tracking MRAC for Identifier #1.

For a relative degree of q, we need a total of q identifiers.

Identifier # γ ( q,3,2, L=γ ) is constructed as

[ ]γγ
−

γ φ
λ+

= w
s

1
y T

1n
x (2.3.8a)
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where

∆φγ [ ] T
T
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T

)qn( ddcc γ−γγ−γ (2.3.8b)
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The corresponding block diagram is shown in Figure 2.9. 
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Figure 2.9: Identifier Tracking MRAC for Identifier #q.

In this diagram, the relation between u~ and w as given in (2.3.5d) has been modeled in

the controllable canonical form using (2.3.3b) as
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u~bwΛw ww +=& (2.3.9a)

where q)q)x(n(n
w RΛ −−∈ and qn

w Rb −∈ are given by
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Similarly, the relation between py and 1z in (2.3.5e) has been modeled in the

controllable canonical form using (2.3.3c) as

pz1z1 ybzΛz +=& (2.3.10a)

where )1)x(n1(n
z RΛ −−∈ and 1n

z Rb −∈ are given by
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Figure 2.10: Plant parameterization -- nth order, relative degree 2q >

2.3.2. Parameter Update Laws for the Identifiers

Identifier #1

Define tracking error 1xe as

∆1xe ( )[ ]1

T

1n
1xp w

~

s

1
yy φ

λ+
=−

−

(2.3.11a)

where

∆φ
~

1φ−φ∗

=φ1 [ ] T
T
1)1n(1

T
1)qn(1 ddcc −−

=1w [ ] T
T

1p
T zywu~ (2.3.11b)

Comparing (2.3.11a) with (2.2.9) and following the same Lyapunov analysis as in

Section 2.2.2 leads to the following parameter update laws
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





 ≤≤

=
−

(2.3.12b)otherwise,u~ge

(2.3.12a)kcand0u~geif0,

c

1x

lower)qn(11x

q)-1(n&

T
1x1 wgec =& (2.3.12c)

p1x)1n(1 yged =−
& (2.3.12d)

T
11x1 zged =& (2.3.12e)

which is similar to (2.2.13). The division of the adaptation of )qn(1c − in two cases as

given in (2.3.12a) and (2.3.12b) is to ensure that

0k)t(c lower)qn(1 >≥− , for all 0t ≥ (2.3.13)

This will be achieved by choosing an initial condition for the adaptive parameter

lower)qn(1 k)0(c ≥− .

Identifier # γ ( q,3,2,γ L= )

Define tracking error γxe as

∆γxe [ ]γγ−γ−γ
−

γ−γ φ−φ
λ+

=− ww
s

1
yy T

)1(
T

)1(
1n

x)1(x (2.3.14)

Parameter update laws are









+

≤≤+

=

−−γγ

−−γ−γ−−γγ

γ

(2.3.15b)otherwise,cu~ge

(2.3.15a)

ccand0cu~geif0,

c

)qn)(1(c

)qn)(1()qn()qn)(1(c

q)-(n

&

&

&

where ( )u~cc
λs

1∆e )qn(q)-1)(n-(
1-n

c −γγγ −
+
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( ) ( ) wgeβwαccc i)1(x
2
iii)1(i −γγ−γγ ++−=& , 1qn,,1,0i −−= L

(2.3.15c)

( )( )
)1n)(1(2

)1(x

)1(x)1(x
2

)1(x)1n()1n)(1(
)1n( d

y1

yyydd
d −−γ

−γ

−γ−γ−γ−γ−−γ
−γ +

+

+β+α−
= &

&
&

(2.3.15d)

( )( )
j)1(2

j

jj
2
jjj)1(

j d
z1

zzzdd
d −γ

γ

γγγγ−γ
γ +

+

+β+α−
= &

&
& , 2n,,1,0j −= L

(2.3.15e)

The division of the adaptation of )qn(c −γ in two cases as given in (2.3.15a) and (2.3.15b)

is to ensure that

)t(c)t(c )qn)(1()qn( −−γ−γ ≥ , for all 0t ≥ (2.3.16)

This will be achieved by choosing an initial condition for the adaptive parameter

)0(c)0(c )qn)(1()qn( −−γ−γ ≥ .

The update laws are derived in a similar way as the derivation of (2.2.16) in the simple

case. The only difference is that we have one additional parameter update equation

(2.3.15c) for the adaptive parameter ic γ . This parameter is needed to take care of the

numerator terms in the plant transfer function in this general case. The update laws are

designed to produce a bounded tracking error γxe . This can be seen by substituting T
γφ ,

T
)1( −γφ from (2.3.8b) and γw , )1(w −γ from (2.3.8e), respectively, into (2.3.14), yielding
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( ) ( )γγ−γ−γγ−γγ −
+

+−
+

= zdzd
λs

1
u~)c(c

λs

1
e T

1)(
T

1)(
1-n

q)-(nq)-1)(n(
1-n

x

( ) ( )wcc
λs

1
ydyd

λs

1 TT
1)-(

1-n
1)x(1)-(np1)-1)(n(

1-n
γγ−γγ−γ −

+
+−

+
+

(2.3.17)

The first three terms on the R.H.S. can be shown bounded as demonstrated for the

simple case in Section 2.2.2. The boundedness of the last term is shown as follows.

Let the last term in (2.3.17) be

w)c(c
λs

1∆e TT
1)-(

1-n
w γγ −

+
(2.3.18)

where )1(c −γ , γc and w are defined as in (2.3.8c) and (2.3.5d).

The derivative of we is given by

w)c(cee TT
1)(w1nw γ−γ− −+λ−=& (2.3.19)

Choose a Lyapunov function candidate

( )[ ] 0ccge
2

1
V

2TT
1)(

2
w >−+= γ−γ (2.3.20)

The derivative of V then becomes

V& = ( )( )TT
)1(

TT
)1(ww ccccege γ−γγ−γ −−+ &&& (2.3.21)

Substituting we& from (2.3.19) and using the parameter update laws in (2.3.15c), we

have

{ }2
221

2
1

2
3 'c'b'aV ζ+ζζ−ζ−αζ−=& (2.3.22a)
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where

g∆a' 1n−λ

g∆b'

β∆c'

w1 e∆ζ

w∆ 32 ζζ

( )TT
)1(3 cc∆ γ−γ −ζ

(2.3.22b)

Following the same argument as in (2.2.32), any choice of the parameter values

satisfying
4

g
1n >βλ − will render 0≤V& .

This implies that w)c(c
λs

1
e TT

1)-(
1-n

w γγ −
+

= is bounded. Consequently, from (2.3.17),

γxe is bounded.

Figure 2.11 shows a schematic diagram of Identifier #1 ,K , Identifier #q.
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2.3.3. Control Law u(t)

The reference model is given by an input-output pair (.)}y(.),r{ m with a transfer

function )s(M given as

01
2−

2−
1−

1− +++
⋅

+
1

==
mm

q
)q(m

q
m

)q(m

m

asasas

k

as
)s(M

r

y

L
(2.3.23)

The above transfer function consists of two blocks in series as shown in Figure 2.13. 

Let the output of the first block be

∆xr
)q(mas

r

1−+
(2.3.24)

Then, (2.3.23) can be rewritten as

01
2−

2−
1− +++

=
mm

q
)q(m

q
m

x

m

asasas

k

r

y

L
(2.3.25a)

or, in time domain,

m0mm1m
)2q(

m)2q(m
)1q(

mxm yayayayrk +++= −
−

− &L (2.3.25b)

Define tracking error e as

∆e ( ) mq0m1m
2q

)2q(m
1q easasas +++ −

−
− L (2.3.26a)

where

∆emq mxq yy − (2.3.26b)

(Note that if 0e → , then 0emq → and mxq yy → )

Substituting (2.3.26b) and (2.3.25b) into (2.3.26a) yields

=e [ ] xmxqmxqm
)q(

xq)q(m
)q(

xq rkyayayay −+++ 01
2−

2−
1− &L (2.3.27)
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Choose a Lyapunov function candidate

0>
2
1

= 2eV (2.3.28)

A control law is now to be devised in order to make eeV && = negative definite. This can

be achieved by setting 0k,kee >−=& .

From (2.3.27), the derivative of e is given by

[ ] xmxq0mxq1m
)1q(

xq)2q(m
)q(

xq rkyayayaye &&&&L& −+++= −
− (2.3.29)

The next step is to find an expression for )q(
xqy . 

Substituting (2.3.8b) and (2.3.8e) into (2.3.8a) and displaying the u-term explicitly, we

have

xq)qn(qxq ru~cy += −& (2.3.30a)

where

∆rxq xq1nq
T
q)1q(x)1n(q

T
q yzdydwc −−− λ−++ (2.3.30b)

Successively differentiating (2.3.30a), gives the thν derivatives of xqy

( ) )1(
xq

)i()1i(
)qn(q

1

0i

1
i

)(
xq ru~cCy −ν−−ν

−

−ν

=

−νν +=∑ , q,,2,1 L=ν (2.3.31)

( 1q
iC − is the combination symbol )

Letting q=ν and utilizing uu~u~u~ qn
)2q(

2n
)1q( +λ−−λ−= −

−
−

− L from (2.3.5c)

and (2.3.3a) yields

)q(
xq)qn(q

)q(
xq ŷucy += − (2.3.32a)

where
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( ) ( ) ( )u~u~cru~cCŷ qn
)2q(

2n)qn(q
)1q(

xq
)i()1iq(

)qn(q

2q

0i

1q
i

q
xq −

−
−−

−−−
−

−

=

− λ++λ−+∆∑ L

(2.3.32b)

After )q(
xqy is found as in (2.3.32), the expression for e& in (2.3.29) becomes

( )[ ] xmxq0mxq1m
)1q(

xq)2q(m
q

xq)qn(q rkyayayaŷuce &&&&L& −++++= −
−−

(2.3.33)

Setting kee −=& and replacing the derivative terms )q(
xqŷ , xq

)1q(
xq y,,y &L− and xr& in (2.3.33)

with (2.3.32b), (2.3.31) and (2.3.24) gives the control law

ke
c

m
)t(u

)qn(q

−−=
−

, 0c )qn(q >− , 0>k

(2.3.34a)

where

( ) ( )+λ++λ−+∆ −
−

−−
−−−

−

−

=

−∑ u~u~cru~cCm qn
)2q(

2n)qn(q
)1q(

xq
)i()1iq(

)qn(q

2q

0i

1q
i L

( ) ( )x)1q(mmxq)qn(q0m rarkru~ca −− −−++L

(2.3.34b)

Note that division by zero in (2.3.34a) will not occur because (2.3.13) and (2.3.16)

guarantee that 0kccc lower)qn(1)qn)(1q()qn(q >≥≥≥≥ −−−− L . Also note that the signals

u~,,u~ )2q( L− , )1q(
xqr − can be obtained without actual differentiation because they are

outputs of proper stable transfer functions with bounded inputs as shown in (2.3.5c). As
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for the derivatives of the adaptive parameters, they can be replaced by their respective

adaptive laws, thus dispensing of the need of differentiations.

Finally, substituting the control law (2.3.34) into (2.3.33) yields

kee −=& (2.3.35)

which makes

kV2keeeV 2 −=−== && (2.3.36)

Solving (2.3.36) gives the solution

)kt2exp()0(V)t(V −= (2.3.37)

In other words, from (2.3.36),

)ktexp()0(V2)t(e −±= (2.3.38)

This implies that the equilibrium state 0e = is globally asymptotically stable and

0e → as ∞→t . It follows from (2.3.26) that

mxq yy → as ∞→t (2.3.39)

Figure 2.12 shows a schematic diagram of overall system.
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Figure 2.12: Identifier Tracking MRAC for an nth order plant of relative degree 2q >
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2.3.4. Boundedness of All Signals in the Entired Feedback System

With reference to the entire adaptive control system in Figure 2.12, the following

signals have been shown to be bounded:

From the analysis of Identifier ,,1# L Identifier q# : xq1x e,,e L , )qn(q)qn(1 c,,c −− L ,

T
q

T
1 c,,c L , )1n(q)1n(1 d,,d −− L and T

q
T
1 d,,d L

From the analysis of the control law: e and mqe

From the reference model: r and my

The signals that remain to be shown bounded are:

py , )1q(x1x y,,y −L , xqy , q1 z,,z L , q1 z,,z &L& , xr& , )q(
mm y,y L& , (q)e,,e,e L&&& ,

(q)
mqmqmq e,,e,e L&&& , (q)

xqxqxq y,,y,y L&&& , u~ , w , xqx1 e,,e &L& , py& , )1q(x1x y,y −&L& ,

xq1x w,,w L , )qn(q)qn(1 c,,c −− &L& , T
q

T
1 c,,c &L& , )1n(q)1n(1 d,,d −−

&L& , T
q

T
q d,,d &L& , xqr& , (q)

pp y,,y L&& ,

m and u .

They are shown to be bounded in accordance to the following grouping:

Boundedness of py , )1q(x1x y,,y −L and xqy :

Since my , mqe , xqe and 1x)1q(x e,,e L− are bounded, it follows from (2.3.14) and

(2.3.11a) that 1xxq y,,y L and py are bounded.
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Boundedness of q1 z,,z L , q1 z,,z &L& , xr& , )q(
mm y,y L& , (q)e,,e,e L&&& , (q)

mqmqmq e,,e,e L&&&

and (q)
xqxqxq y,,y,y L&&& :

The signals q1 z,,z L , q1 z,,z &L& , xr& and )q(
mm y,y L& are outputs of “proper” stable

transfer functions with bounded inputs. Hence they are bounded. Also, from (2.3.38),

we see that (q)e,,e,e L&&& are bounded. It follows from (2.3.26a) that the same is true of

(q)
mqmqmq e,,e,e L&&& . Consequently, from (2.3.26b), (q)

xqxqxq y,,y,y L&&& are bounded.

Boundedness of u~ , w , xqx1 e,,e &L& , py& , )1q(x1x y,y −&L& and xq1x w,,w L :

With bounded xqy& , eliminating w from (2.3.5d) and (2.3.30) gives the boundedness of

u~ because all other variables in the resulting equation are bounded. After we establish

the boundedness of u~ , the boundedness of w follows. Next consider the signal x1e& in

(2.3.11). It is bounded because 1ϕ and 1w are bounded. In a similar fashion, the

boundedness of xqx2 e,,e &L& can be established. Finally, 1x1)-x(q y,y &L& , py& are also

bounded due to the boundedness of xqy& and xqx2 e,,e &L& . The signals xq1x w,,w L in

Figure 2.12 are composed respectively of a sum of bounded signals, and are therefore

bounded.

Boundedness of )qn(q)qn(1 c,,c −− &L& , T
q

T
1 c,,c &L& , )1n(q)1n(1 d,,d −−

&L& , T
q

T
q d,,d &L& and xqr& :

The boundedness of the variables )qn(q)qn(1 c,,c −− &L& , T
q

T
1 c,,c &L& , )1n(q)1n(1 d,,d −−

&L& and
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T
q

T
q d,,d &L& as given in (2.3.12) and (2.3.15) can be seen through the substitution of all

occurring derivative terms by their respective adaptive laws. For example, )qn(qc −& in

(2.3.15b) has the derivative term )qn)(1q(c −−& , which is the adaptive law in Identifier #(q-

1). Consequently, q
T
q)1q(x)1n(q

T
qq

T
q)1q(x)1n(q

T
qxq zdydwczdydwcr &&&&&&& +++++= −−−−

xq1n y&−λ− (as obtained from 2.3.30b) is also bounded. Note that by following the above

procedure, we can also demonstrate the boundedness of any derivative term of an

adaptive parameter up to the q-th derivative.

Boundedness of (q)
pp y,,y L&& , u and m :

The boundedness of u is established from (2.3.1) if one can demonstrate the

boundedness of (q)
pppp y,,y,y,y L&&& . This is demonstrated as follows. Substituting

(2.3.5c) and (2.3.1) into (2.3.30a) gives

xqp)qn(qxq ry
)s(N

)s(D

)s(

1
cy +








λ

= −&

Dividing )s(N)s(λ into )s(D yields

xqp
0

3n
3n

2n
2n

p1np)qn(qxq ry
)s(N)s(

ss
yycy +








λ

ζ+ζ+ζ
+ξ+=

−
−

−
−

−−

L
&&

(2.3.40)

Differentiating (2.3.40) once gives









λ

ζ+ζ+ζ
+ξ+=

−
−

−
−

−− p
0

3q
3n

2n
2n

p1np)qn(qxq y
)s(N)s(

ss
yycy

L
&&&&
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xqp
0

3n
3n

2n
2n

p1np)qn(q ry
)s(N)s(

ss
yyc &&

L
&&& +








λ

ζ+ζ+ζ
+ξ++

−
−

−
−

−−

(2.3.41)

Since xqy&& , )qn(qc −& , py , py& and xqr& in (2.3.41) have been shown to be bounded, py&& is

bounded. Using the same approach, differentiating (2.3.40) twice will leads to the

boundedness of py&&& . Continuing on in this fashion would lead to the boundedness of

(q)
p

(4)
p y,,y L . With the boundedness of u , the boundedness of m is assured from

(2.3.34a). In conclusion, all signals in the overall system are bounded.

2.3.5. Convergence of the Tracking Errors

The discussion of the convergence is the same as that in Section 2.2.5 and is omitted.

2.3.6. Simulation Studies

Simulation 2.3.1: 3rd order Identifier Tracking MRAC

The data for the simulation are as follows.

1ss2s

1
)s(P

23 −++
= , ( )( )1s1s2s

1
)s(M

2 +++
=

1=)t(r

1+3+3+=λ 23∗ sss

1k ==α , 4=β , 2g = , mpp yye −=

The initial conditions for the adaptive parameters are chosen in accordance with
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(2.3.13) and (2.3.16), in this case:

lower0i k1)0(c ≥= ( lowerk is taken to be 0.01)

0=0)(dij , 31= Ki , 20= Kj

0 5 10 15 20 25 30 35 40 45 50
-15

-10
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Time

ep
=
yp

-y
m

Figure 2.13: Identifier Tracking MRAC output error. ( relative degree 3q = )

Discussion

Figure 2.13 shows the simulation for the case of relative degree 3q = , which has not

been reported in the current literature. It is seen that the transient response of the

tracking error is also small.
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CHAPTER 3

STACKED IDENTIFIERS MODEL REFERENCE
ADAPTIVE CONTROL

3.1 Introduction

The primary objective of this chapter is to develop a new design approach for

the model reference adaptive control of a single-input single-output linear time-

invariant plant. The proposed method, called the “Model reference adaptive control

using stacked identifiers,“ uses a stacked identifier structure that is new to the field of

adaptive control. The goal is to make the output of the plant asymptotically track the

output of the first identifier, and then driving the output of the first identifier to track

that of the second identifier, and so forth, up to the q-th identifier where q is the relative

degree of the plant. Lastly, the output of the q-th identifier is forced to converge to that

of the reference model. Simulation results show the superiority of the proposed method

over the traditional model reference adaptive control with augmented error in terms of

the transient response. Since the resulting control systems are nonlinear and time-

varying, the stability analysis of the overall system plays a central role in developing the

theory.

3.2 Stacked Identifiers MRAC of plants with relative degree two

3.2.1. Reparameterization of the Unknown Plant

Consider a linear time-invariant plant )s(P with an input-output pair (.)}y(.),u{ p
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described by a transfer function

01
2 ++

=
pp

p

asas

k
)s(P (3.2.1)

where pk , 0pa and 1pa are constant but unknown parameters. The sign of the high

frequency gain pk and a lower bound for pk are assumed to be known, i.e., for the case

of a positive pk , 0kk lowerp >> ; and for the case of a negative pk , 0kk upperp << .

Throughout this paper, pk is assumed to be positive.

We will reparametrize the plant into a form suitable for deriving the identifier and the

parameter update laws.

Express (2.1) as

)t(uk)t(y)asas( pppp =++ 01
2 , 0kk lowerp >> (3.2.2) 

Dividing both sides of the above equation by 2)s( λ+ , where λ is a positive constant,

we obtain

)t(u
)s(

k
)t(y

)s(

asas
2

p
p2

0p1p
2

λ+
=

λ+

++
(3.2.3) 

Performing long division on the L.H.S. gives

L.H.S. of (3.2.3)
( ) ( )

( )
)t(y

s

as2a
)t(y p2

2
0p1p

p
λ+

λ−+λ−
+=

Conducting another long division on
( ) ( )

λ+

λ−+λ−

s

as2a 2
0p1p yields

L.H.S. of (3.2.3) =
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( ) ( ) )t(yaa
s

1
2a

s

1
)t(y p

2
1p0p1pp 



 λ+λ−

λ+
+λ−

λ+
+

Substituting this expression into (3.2.3) and moving all terms other than the term py to

the R.H.S. gives

( ) ( ) 





λ+
+

λ+
−λ−λ+−λ

λ+
= )t(u

s

1
k)t(y

s

1
aa)t(ya2

s

1
)t(y pp0p

2
1pp1pp

(3.2.4) 

Let

∆1
∗α pk (3.2.5a)

∆1
∗β p0

2
p1 aλλa −− (3.2.5b)

∆0
∗β p1a2λ − (3.2.5c)

∆u~ u(t)
λs

1

+
(3.2.5d)

∆y~p )t(y
λs

1
p+

(3.2.5e)

Equation (3.2.4) becomes

( ))t(y~)t(y)t(u~
s

1
)t(y p1p01p

∗∗∗ β+β+α
λ+

= (3.2.6) 

In accordance with the form of (3.2.6), Identifier #1 is chosen as

( ))t(y~)t(y)t(u~
s

1
)t(y p11p10111x β+β+α

λ+
= (3.2.7) 

Figure 3.1 shows a schematic diagram of Identifier #1.



53
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u
x1w

10β
11β

u~

py

11α

p
~y

1xy

λ+s

1

λ+s

1

λ+s

1

Figure 3.1: Stacked Identifiers MRAC for Identifier #1.

Similar to the structure of Identifier #1, Identifier #2 is chosen as

( ))t(y~)t(y)t(u~
s

1
)t(y 1x211x20212x β+β+α

λ+
= (3.2.8a) 

where

∆y~x1 )t(y
s

1
x1λ+

(3.2.8b) 

 

The corresponding block diagram is shown in Figure 3.2. 

 



54

1xy
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#2Identifier

x2w

λ+s

1
2xy

λ+s

1
21α

20β
21β

1x
~y

u~

λ+s

1

u

Figure 3.2: Stacked Identifiers MRAC for Identifier #2.

3.2.2. Parameter Update Laws for the Identifiers

Identifier #1

Define

∆)t(ex1 )t(y)t(y x1p − (3.2.9a)

11
*
11∆

~ α−αα , 1000∆
~

β−ββ ∗ , 1111∆
~

β−ββ ∗ (3.2.9b)

From (3.2.9), (3.2.6) and (3.2.7), the error equation is given by

)t(y)t(y)t(e 1xp1x −=

( )p1p01 y~
~

y
~

u~~
s

1
β+β+α

λ+
= (3.2.10)

Multiplying both sides of (3.2.10) by the polynomial operator λ+s and moving all

terms to the R.H.S. except for the 1xe& term gives
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p1p011x1x y~
~

y
~

u~~)t(e)t(e β+β+α+λ−=& (3.2.11)

To go through a stability analysis, we choose a Lyapunov function candidate

( )







β+β+α+= 2

1
2
0

2
1

2
1x

~~~
g

1
e

2

1
V , 0>g (3.2.12)

The derivative of V is given by






 ββ+ββ+αα+= 1100111x1x

~~~~~~
g
1

eeV &&&&&

Substituting 1xe& from (3.2.11) yields









β+β+








β+β+








α+α+λ−= 1p1x10p1x011x1

2
1x

~
g

1
y~e

~~
g

1
ye

~~
g

1
u~e~eV &&&&

(3.2.13) 

Choosing the parameter update laws as







 ≤α≤
=α−=α

(3.2.14b)otherwise,u~ge

(3.2.14a)kand0u~geif0,
~

1x

lower111x

111
&&

p1x010 yge
~

=β−=β && (3.2.14c)

p1x111 y~ge
~
=β−=β && (3.2.14d)

renders









≤λ−

≤α≤≤α+λ−

=

(3.2.15b)otherwise,0ge

(3.2.15a)kand0u~geif,0u~e~ge

V
2

1x

lower111x1x1
2

1x

&
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Remark:

(a) We see that in both cases, V& is negative semi-definite. This implies that 1xe , 1
~α , 0

~
β

and 1

~
β are bounded; and from (3.2.9b), 11α , 10β and 11β are also bounded. The

convergence to zero of 1xe will be shown later using Barbalat's Lemma after

establishing the boundedness of all signals in the entire system.

(b) The division of the adaptation of 11α into two cases as given by (3.2.14a) and

(3.2.14b) is to ensure that, with the choice of initial condition lower11 k)0( ≥α ,

0k)t( lower11 >≥α , for all 0t ≥ (3.2.16)

This is needed in order to avoid division by zero later.

Identifier #2

Identifier #2 is chosen as

( ))t(y~)t(y)t(u~
s

1
)t(y 1x211x20212x β+β+α

λ+
= (3.2.17a)

where

∆y~x1 )t(y
s

1
x1λ+

(3.2.17b)

Let

∆)t(ex2 )t(y)t(y x2x1 − (3.2.18)

The purpose of the parameter update laws for Identifier #2 is to achieve

0)yy(e 2x1x2x →−= as ∞→t .

They are chosen as
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( )

( )











α++α−α

>α≤α
≤α++α−α

=α

α

α

)b19.2.3(otherwise,u~ged

)a19.2.3(

0d,

and0u~gedif0,

112111

1121

112111

21

&

&

&

( ) 101x0201020 yged β++β−β=β β
&& (3.2.19c)

( ) 111x1211121 y~ged β++β−β=β β
&& (3.2.19d)

where ( )u~
λs

1∆e 2111 α−α
+α (3.2.19e)

( ) 1x20100 y
λs

1∆e β−β
+β (3.2.19f)

( ) 1x21111 y~
λs

1∆e β−β
+β (3.2.19g)

(The update laws are derived as a natural consequence of observing the V& expression

in the Lyapunov analysis, which will be shown later.)

From (3.2.18), (3.2.7) and (3.2.17a), the error equation is given by

( ) ( ) ( )x121p11x120p1021112x y~y~
s

1
yy

s

1
u~

s

1
)t(e β−β

λ+
+β−β

λ+
+α−α

λ+
=

(3.2.20)

Based on this equation, it is noted that though a traditional treatment of Lyapunov’s

analysis is possible for the first term, it is not possible for the second and third term.

The reason is due to the occurrence of a product of a parameter with a signal, such as

p10yβ , instead of the product of a “parameter deviation” with a signal as in the first

term. So, we resort to establishing the boundedness of “all” signals in the overall system
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first, and then assuring the convergence to zero of 2xe through the use of Barbalat's

Lemma later.

We would like to demonstrate the boundedness of x2e when the update laws (3.2.19)

are used. This can be accomplished by requiring the same for the three R.H.S. terms of

(3.2.20).

(i). Boundedness of ( )u~
λs

1
2111 α−α

+

Consider

( )u~
λs

1
e 2111 α−α

+
=α (3.2.19e)

Multiplying λ+s to both sides of the equation yields

( )u~ee 2111 α−α+λ−= αα& (3.2.21)

Choose a Lyapunov function candidate (to secure boundedness of αe and 2111 α−α ) as

( )[ ] 0ge
2

1
V

2

2111
2 >α−α+= α , 0g > (3.2.22)

The derivative of V is given by

( )( )egeV 21112111 α−αα−α+= αα &&&&
(3.2.23)

Substituting αe& from (3.2.21) yields

( ) ( )[ ]21112111
2 u~gegeV α−α+α−α+λ−= αα &&& (3.2.24)
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It is seen that the application of the parameter update laws as given in (3.2.19a) and

(3.2.19b) will render

( )( ) ( )
( )

( )












α−α−λ−

α≤α≤α++α−α

α−α−λ−≤α+α−α+λ−

=
α

α

ααα

(3.2.25b)otherwise,dge

and0u~gedif

(3.2.25a),dgeu~gege

V
2

2111
2

1

1121112111

2

2111
2

112111
2

&

&

&

(The inequality in the first case follows as a result of the condition imposed for this

case.)

Thus, V& is negative definite, implying that the equilibrium state is globally

asymptotically stable. Hence, both αe and 2111 α−α are bounded, and

0e →α , 02111 →α−α (3.2.26)

The division of the adaptation of 21α into two cases as given in (3.2.19a) and (3.2.19b)

is to ensure that

)t()t( 1121 α≥α , for all 0t ≥ (3.2.27)

This will be achieved as long as the initial conditions are chosen such that

)0()0( 1121 α≥α . Condition (3.2.27) is needed in order to avoid division by zero later.

(ii). Boundedness of ( )x120p10 yy
λs

1
β−β

+

Rearrange ( )x120p10 yy
λs

1
β−β

+
as
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( ) ( ) ( ) 1x20101xp10x120p10 y
λs

1
yy

λs

1
yy

λs

1
β−β

+
+−β

+
=β−β

+
(3.2.28) 

We shall treat the boundedness of the two terms on the R.H.S. separately.

In accordance with (3.2.9a), the first term ( )1xp10 yy
λs

1
−β

+
is bounded because 10β

and 1xp1x yye −= are bounded. We now turn to the second term and let

( ) 1x20100 y
λs

1
e β−β

+
=β (3.2.19f)

Multiplying 1s λ+ to both sides of the equation yields

( ) 1x201000 yee β−β+λ−= ββ& (3.2.29)

Choose a Lyapunov function candidate (to secure boundedness of 0eβ and 2010 β−β )

( )[ ] 0ge
2

1
V 2

2010
2

0 >β−β+= β (3.2.30)

The derivative of V is given by

( )[ ]egeV 2010201000 β−ββ−β+= ββ
&&&&

(3.2.31)

Substituting 0eβ& from (3.2.29), we have

( ) ( )[ ]20101x02010
2

0 ygegeV β−β+β−β+λ−= ββ
&&& (3.2.32)

Applying the parameter update law in (3.2.19c), renders

( )22010
2

0 deV β−β−λ−= β
& (3.2.33)

which is negative definite. This implies that the equilibrium state is globally

asymptotically stable. Hence, 0eβ and 2010 β−β are bounded, and
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( ) 0y
λs

1
e 1x20100 →β−β

+
=β as ∞→t (3.2.34)

Consequently, from (3.2.28), with both terms on the R.H.S. being bounded,

( )x120p10 yy
λs

1
β−β

+
is also bounded.

(iii). Boundedness of ( )x121p11 y~y~
λs

1
β−β

+

The treatment of ( )x121p11 y~y~
λs

1
β−β

+
follows the same pattern as that of

( )x120p10 yy
λs

1
β−β

+
above, and is therefore omitted.

Summarizing the results of (i)-(iii) in this section, it follows from (3.2.20) that 2xe is

bounded. (The convergence 0e 2x → will be shown later.)
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Figure 3.3: Stacked Identifiers MRAC for Identifier #1 and Identifier #2.

3.2.3. Control Law u(t)

Let the reference model with the input-output pair (.)}y(.),r{ m be

( )( )01 ++
==

mm

mm

asas

k
)s(M

)s(r

)s(y
(3.2.35)
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where mk , 1ma and 0ma are positive design parameters, )t(r is a bounded, piecewise

continuous function of time for 0≥t . The purpose here is to derive a control law such

that 2xy asymptotically tracks my . 

 

Define tracking error e as

∆e ( ) 2mm0 eas + (3.2.36a)

where

∆e 2m mx2 yy − (3.2.36b)

(Note that if 0e → , then 0em2 → and mx2 yy → .)

From (3.2.35) and (3.2.36), we have

( )( ) ( ) xm2x0m2xmx2m0 rkyayyyase −+=−+= & (3.2.37a)

where

∆rx
1mas

r

+
(3.2.37b)

Choose a Lyapunov function candidate

0e
2

1
V 2 >= (3.2.38)

A control law is now to be devised in order to make

2keeeV −== && , 0k > (3.2.39)

negative definite. This will be done by making

kee −=& (3.2.40) 

through an appropriate control law to be derived as follows:
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From (3.2.37a), the derivative of e is given by

xm2x0m2x rk)yay(e &&&&& −+= (3.2.41)

Multiplying λ+s to both sides of (3.2.17a) yields

2x1x211x20212x y)t(y~)t(y)t(u~y λ−β+β+α=& (3.2.42)

The second derivative is given by

m)t(u~y 212x +α= &&& (3.2.43a)

where

m ∆ 2x1x211x201x211x2021 y)t(y~)t(y)t(y~)t(y)t(u~ &&&&&& λ−β+β+β+β+α

(3.2.43b)

Substituting (3.2.43a) into (3.2.41) yields

xm2x0m21 rkyam)t(u~e &&&& −++α= (3.2.44)

Next we substitute u~& with uu~ +λ− from (3.2.5d) and kee −=& from (3.2.40). The

result is

( )xm2x0m2121 rkyamu~uke && −++λα−+α=− (3.2.45)

Since our objective is to design a differentiator-free controller, replacing 2xy& and xr& in

(3.2.45) with (3.2.42) and (3.2.37b), respectively, gives the control law

( )( 2x1x211x20210m21
21

y)t(y~)t(y)t(u~amu~
1

)t(u λ−β+β+α−−λα
α

=

( )) kerark x1mm −−+ , 021 >α , 0>k (3.2.46)
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Remarks:

(a). Note that the term m above as defined by (3.2.43b) still contains the derivatives of

some adaptive coefficients. They can be replaced by their respective adaptive laws in

(3.2.19). Also the other derivative terms 1xy& , 1xy~& and 2xy& can be substituted by their

expressions in (3.2.7), (3.2.17b) and (3.2.42), respectively, so as to dispense with the

need of differentiations.

(b). Note from (3.2.16) and (3.2.27) that 0k lower1121 >≥α≥α so that division by zero

in the control law would not occur.

Thus, with V& in (3.2.39) being negative definite, the equilibrium state 0=e is globally

asymptotically stable, i.e. e is bounded and 0→e as ∞→t .

Consequently, from (3.2.36a) and (3.2.36b),

0e 2m → and mx2 yy → (3.2.47)
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Figure 3.4: Stacked Identifiers MRAC for 2nd order plant of relative degree two.
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3.2.4. Boundedness of All Signals in the Entired Feedback System

With reference to the entire system in Figure 3.4, the following signals have been

shown to be bounded:

From the analysis of Identifier #1: 1xe , 11α , 10β and 11β

From the analysis of Identifier #2: 2xe , 21α , 20β and 21β

From the analysis of the control law: e and 2me

From the reference model: r and my

The signals that remain to be shown bounded are as follows:

Boundedness of py , 1xy and 2xy :

Since my , 2me , 2xe and 1xe are bounded, it follows from (3.2.18) and (3.2.9a) that 2xy ,

1xy and py are bounded.

Boundedness of py~ , 1xy~ , py~& , 1xy~& , xr& , my& , my&& , e& , e&& , em2& , em2&& , x2y& and x2y& :

The signals py~ , 1xy~ , xr& , my& , my&& , py~& and 1xy~& are outputs of “proper” stable transfer

functions with bounded inputs. Hence they are bounded. Also, from (3.2.40), we see

that e& and e&& are bounded. It follows from (3.2.36a) that the same is true of

em2& and em2&& . Consequently, from (3.2.36b), x2y& and x2y&& are bounded.
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Boundedness of u~ , x1e& , x2e& , 1xy& , py& , 1xw and 2xw : 

With bounded x2y& , the boundedness of u~ is derived from (3.2.42). The signal x1e& in

(3.2.11) is bounded because the signals u~ , py and py~ are bounded. In a similar fashion,

the boundedness of x2e& can be established. Finally, 1xy& and py& are also bounded due to

the boundedness of x2y& , x2e& and x1e& . The signals 1xw and 2xw in Figure 3.4 are

composed of a sum of bounded signals and are therefore bounded.

Boundedness of 11α& , 10β& , 11β& , 21α& , 20β& and 21β& :

The boundedness of the variables 11α& , 10β& , 11β& , 21α& , 20β& and 21β& as given in (3.2.14)

and (3.2.19) can be seen through the substitution of all occurring derivative terms by

their respective adaptive laws. For example, 21α& in (3.2.19b) has the derivative term

11α& . It can be substituted with 11α& from (3.2.14), which is the adaptive law in Identifier

#1.

Boundedness of py&& , u and m :

The boundedness of u is established from (3.2.2) if one can show the boundedness of

py , py& and py&& . This is demonstrated as follows. Substituting (3.2.5d) and (3.2.1) into

(3.2.42) gives

2x1x211x20p
p

0p1p
2

212x y)t(y~)t(yy
k

asas

s

1
y λ−β+β+









 ++

λ+
α=&
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Dividing λ+s into 0p1p
2 asas ++ yields

( ) 2x1x211x20p

2
1p0p

p1pp21
1

p2x y)t(y~)t(yy
s

aa
yayky λ−β+β+











λ+

λ+λ−
+λ−+α= − &&

(3.2.48)

Differentiating (3.2.48) once gives

( ) ( )

y)t(y~)t(y~)t(y)t(yy
s

aa

yayy
s

aa
yayky

2x1x211x211x201x20p

2
1p0p

p1pp21p

2
1p0p

p1pp21
1

p2x

&&&&&&

&&&&&&&

λ−β+β+β+β+











λ+

λ+λ−
+





λ−+






α+











λ+

λ+λ−
+λ−+α= −

(3.2.49)

Since 2xy& , 2xy&& , py~ , py~& , 1xy~ , 1xy~& , 21α& , 20β& , 21β& , py and py& have been shown to be

bounded, py&& is bounded. With the boundedness of u , the boundedness of m is assured

from (3.2.46). Thus, we have shown the boundedness of all signals in the entire control

system. Next, we would like to demonstrate the convergence of the tracking errors.

3.2.5. Convergence of the Tracking Errors

With reference to the entire system in Figure 3.4, our purpose is to demonstrate that

mp yy → as 0t → . This is accomplished by showing the same for the signals 2me , 1xe

and 2xe , which is given as follows:

(i) Convergence of 2me : 
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This has been shown in (3.2.47).

(ii) Convergence of 1xe : 

We have shown in Section 3.2.4 that 1xe , 1xe& , 1
~α& and u~& are bounded. Thus,

from (3.2.15),

( )









λ−

≤α≤+α+α+λ−
=

otherwise,ee2

kand0u~geif,u~eu~e~u~e~ee2

V

1x1x

lower111x1x1x11x11x1x

&

&&&&

&&

is bounded. According to Barbalat's Lemma, 0V →& , which means from (3.2.15) that

0→1xe as ∞→t .

(iii) Convergence of 2xe : 

Consider 2xe in (3.2.20),

( ) ( ) ( )x121p11x120p1021112x y~y~
s

1
yy

s

1
u~

s

1
)t(e β−β

λ+
+β−β

λ+
+α−α

λ+
=

Convergence of 2xe will follows from the convergence of each individual term.

Convergence of ( )u~
λs

1
2111 α−α

+
:

This has been shown in (3.2.26).

Convergence of ( )x120p10 yy
λs

1
β−β

+
:
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Consider ( ) ( ) ( ) 1x20101xp10x120p10 y
λs

1
yy

λs

1
yy

λs

1
β−β

+
+−β

+
=β−β

+
from (3.2.28),

the convergence of the first term on the R.H.S. ( )1xp10 yy
λs

1
−β

+
follows from the

convergence of 1xp1x yye −= . The convergence of the second term ( ) 1x2010 y
λs

1
β−β

+

is assured by (3.2.34). Therefore, the convergence of ( )x120p10 yy
λs

1
β−β

+
is

established.

Convergence of ( )x121p11 y~y~
λs

1
β−β

+
:

The discussion of the convergence of ( )x121p11 y~y~
λs

1
β−β

+
is similar to that of

( )x120p10 yy
λs

1
β−β

+
and is here omitted.

Summarizing, with the convergence of all three R.H.S.-terms in (3.2.20), the

convergence 0→2xe as ∞→t is assured.

3.2.6. Simulation Studies

The simulation studies presented in this section are to compare the effectiveness of the

proposed adaptive scheme with the existing augmented output error method in [1]. This

is done for the case of relative degree 2q = (Simulations 2.2.1 and 3.2.1).
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Simulation 3.2.1: 2nd order Stacked Identifiers MRAC

The data for the simulation are as follows.

ss

1
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2 ++
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1)t(r = , 1=λ , 10=g , mpp yye −=

The initial conditions for the adaptive parameters are chosen in accordance with

(3.2.16) and (3.2.27), in this case:
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Figure 3.5: Stacked Identifiers MRAC output error. (relative degree 2q = )
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Figure 3.6: Augmented output parameter error p1 and Stacked Identifiers MRAC output
parameter error p2. (relative degree 2q = )

3.3 Stacked Identifiers MRAC of plants with relative degree greater than two

3.3.1. Reparameterization of the Unknown Plant

In this section, we extend the Stacked Identifiers MRAC to the general case, i.e., plants

of arbitrary relative degree q. Consider a plant with an input-output pair (.)}y(.),u{ p

described by a transfer function

01
2n

2n
1n

1n
n

01
qn

qn

asasasas

bsbsb

)s(D

)s(N
)s(P

+++++

+++
== −

−
−

−

−
−

L

L
, 2qn >≥

(3.3.1)

where 01
−

− +++ bsbsb qn
qn L is a Hurwitz polynomial in s . The sign of the high

frequency gain qnb − is assumed to be positive, with a known lower bound

0kb lowerqn >>− .

We will reparametrize the plant into a form suitable for the derivation of the identifier
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and the parameter update laws

Express (3.3.1) as

u)bsbsb(y)asasasas( 01
qn

qnp01
2n

2n
1n

1n
n +++=+++++ −

−
−

−
−

− LL

(3.3.2)

Let the plant be parametrized by

( ))1n(p1n1p1p0)1n(1nqq)1q(1qp y~y~yu~u~u~
s

1
y −

∗
−

∗∗
−

∗
−

∗
−

∗
− β++β+β+α++α+α

λ+
= LL

(3.3.3a)

where λ is a positive constant and

∆u~µ ( )
u

λs

1
µ+

, 1n,,1q −−=µ L (3.3.3b)

∆y~pσ ( ) py
λs

1
σ+

, 1n,,1 −=σ L (3.3.3c)

Coefficient matching of terms of like powers in s in (3.3.2) and (3.3.3a) gives the

relationship between the parametrized coefficients w and the original plant coefficients

z .

zwΛ = , 







=

2

1

Λ0

0Λ
Λ (3.3.4a)

where 1q2nRzw, +−∈ , 1)q1)x(2nq(2nRΛ +−+−∈ , 1)q1)x(nq(n
1 RΛ +−+−∈ and nxn

2 RΛ ∈ are given

by

[ ]T*
1n

*
2n

*
1

*
0

*
1n

*
2n

*
q

*
1qw −−−−− ββββαααα= LL
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(3.3.4b)

T
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(3.3.4d)



























λ




λ





λ





−

λ




λ





−

λ




−
−

=

−

−

−
−

−
−

−

1n2

2n2

1

10

100

1000

Λ

1n

1n

2

2

1

1

2n

1n

1

2

1

1n

L

L

MMNNM

L

L

(3.3.4e)









ν
µ

are combination symbols employed in the expansion of

( ) ∑
µ

=ν

ν−µνµµ









λ








ν
µ

+=+
1

ssλs , n,,2,1 L=ν (3.3.4f)

which is used in the derivation of (3.3.4).

To re-write (3.3.3a) in a more compact form, let



76

∆ϕ* [ ] T
T**

0

T*
1q ββαα∗
− (3.3.5a)

∆w [ ] T

pp)1q( y~yu~u~ − (3.3.5b)

∆α∗ [ ] T

)1n(q
∗
−

∗ αα K (3.3.5c)

∆β∗ [ ] T

)1n(1
∗
−

∗ ββ K (3.3.5d)

∆u~ [ ] T

)1n(q u~u~ −K (3.3.5e)

∆py~ [ ] T

)1n(p1p y~y~ −K (3.3.5f)

Then py in (3.3.3a) can be expressed as

( )p

T

p0

T

)1q(1qp y~yu~u~
s

1
y ∗∗∗

−
∗
− β+β+α+α

λ+
=

w
s

1 T*ϕ
λ+

= (3.3.6)

For a relative degree of q, we need a total of q identifiers.

In accordance with the form of (3.3.6), Identifier #1 is constructed as

( )p
T
1p10

T
1)1q()1q(11x y~yu~u~

s

1
y β+β+α+α

λ+
= −−

w
s

1 T
1ϕλ+

= (3.3.7a)

where

∆ϕ1 [ ] T
T
110

T
1)1q(1 ββαα − (3.3.7b)

∆α1 [ ] T

)1n(1q1 −αα K (3.3.7c) 
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∆β1 [ ] T

)1n(111 −ββ K (3.3.7d) 

 

Figure 3.7 shows a schematic diagram of Identifier #1.
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Figure 3.7: Stacked Identifiers MRAC for Identifier #1.

As for the rest of the identifiers, Identifier # γ ( q,3,2, L=γ ) is constructed as

( ))1(x
T

)1(x0
T

)1()1(x y~yu~u~
s

1
y −γγ−γγγ−γ−γγγ β+β+α+α

λ+
=

γγϕλ+
= w

s

1 T (3.3.8a)

where

∆ϕγ [ ] T
T

0
T

)1( γγγ−γγ ββαα (3.3.8b)
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∆γw ( )[ ] T

1x)1(x)1( y~yu~u~ −γ−γ−γ (3.3.8c)

∆αγ [ ] T

)1n( −γγγ αα K (3.3.8d)

∆βγ [ ] T

)1n(1 −γγ ββ K (3.3.8e)

∆−γ )1(xy~ [ ] T

)1n)(1(x1)1(x y~y~ −−γ−γ K (3.3.8f) 

∆y~ 1)-x( σγ ( ) 1)-x(y
λs

1
γσ+

, 1n,,1 −=σ L (3.3.8g) 

The corresponding block diagram is shown in Figure 3.8. 
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Figure 3.8: Stacked Identifiers MRAC for Identifier #q.
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3.3.2. Parameter Update Laws for the Identifiers

Identifier #1

Define tracking error 1xe as

∆1xe 1xp yy −

( ) ( ) ( ) ( )[ ]p
T
1

T*
p10

*
0

T
1

T*
)1q()1q(11q y~yu~u~

s

1
β−β+β−β+α−α+α−α

λ+
= −−

∗
−

(3.3.9)

Comparing (3.3.9) with (3.2.10) and following the same Lyapunov analysis as in

Section 3.2.2 leads to the following parameter update laws







 ≤α≤

=α
−

(3.3.10b)otherwise,u~ge

(3.3.10a)kand0u~geif0,

1x

lower)1q(11x

1)-1(q&

u~ge 1x1 =α& (3.3.10c) 

p1x10 yge=β& (3.3.10d) 

p1x1 y~ge=β& (3.3.10e) 

which are similar to (3.2.14), with the exception of an additional update law for 1α in

(3.3.10c). Choosing an initial condition for the adaptive parameter lower)1q(1 k)0( ≥α −

will ensure

0k)t( lower)1q(1 >≥α − , 0t ≥ (3.3.10f)
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Identifier # γ ( q,3,2,γ L= )

Define tracking error γxe as

∆γxe γ−γ − x)1(x yy

( ) ( ) ( )[ γγ−γ−γγ−γ−γ−γγ−γ−γ β−β+α−α+α−α
λ+

= x0)1(x0)1(
TT

)1()1()1()1)(1( yyu~u~
s

1

( )]γγ−γ−γ β−β+ x
T

)1(x
T

)1( y~y~

(3.3.11)

Comparing (3.3.11) with (3.2.19) and following the same Lyapunov analysis as in

Section 3.2.2 leads to the following parameter update laws

( )

( )














α++α−α

α≤α≤α++α−α

=α

−γ−γαγγγγγ

−γ−γ−γγ−γ−γαγγγγγ

γγ

(3.3.12b)otherwise

,u~ged

(3.3.12a)

and0u~gedif

0,

)1)(1(1)-(1)-1)(-(

)1)(1()1()1)(1(1)-(1)-1)(-(

1)-(

&

&

&

( ) )1(1)-( u~ged −γαγγγγ α++α−α=α && (3.3.12c) 

( ) 0)1()1(x001)0-(0 yged −γ−γβγγγγ β++β−β=β && (3.3.12d) 

 ( ) )1()1(x1)-( y~ged −γ−γβγγγγ β++β−β=β && (3.3.12e) 

( )u~
s

1
e TT

)1( γ−γαγ α−α
λ+

∆ (3.3.12f) 
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( ) )1(x00)1(0 y
s

1
e −γγ−γβγ β−β

λ+
∆ (3.3.12g) 

( ) )1(x
TT

)1( y~
s

1
e −γγ−γβγ β−β

λ+
∆ (3.3.12h) 

which are similar to (3.2.19), with the exception of an additional update law for γα in

(3.3.12c).

The choice of an initial condition for the adaptive parameter )0()0( )1)(1()1( −γ−γ−γγ α≥α

will ensure

0)t()t( )1)(1()1( >α≥α −γ−γ−γγ , 0t ≥ (3.3.12i)

Figure 3.9 shows a schematic diagram of Identifier #1 ,K , Identifier #q.
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Figure 3.9: Stacked Identifiers MRAC for Identifier #1 ,K , Identifier #q.
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3.3.3. Control Law u(t)

The reference model has an input-output pair (.)}y(.),r{ m and a transfer function )s(M

given by

0m1m
2q

)2q(m
1q

m

)1q(m

m

asasas

k

as

1
)s(M

r

y

+++
⋅

+
== −

−
−

− L
(3.3.13)

The above transfer function consists of two blocks in series as shown in Fig. 3.10.

Let the output of the first block be

∆xr
)1q(mas

r

−+
(3.3.14)

Then, (3.3.13) can be rewritten as

0m1m
2q

)2q(m
1q

m

x

m

asasas

k

r

y

+++
= −

−
− L

(3.3.15a)

or, in time domain,

m0mm1m
)2q(

m)2q(m
)1q(

mxm yayayayrk +++= −
−

− &L (3.3.15b)

Define tracking error e as

∆e ( ) mq0m1m
2q

)2q(m
1q easasas +++ −

−
− L (3.3.16a)

where

∆emq mxq yy − (3.3.16b)

(Note that if 0e → , then 0emq → and mxq yy → )

Substituting (3.3.16b) and (3.3.15b) into (3.3.16a) yields

=e [ ] xmxq0mxq1m
)2q(

xq)2q(m
)1q(

xq rkyayayay −+++ −
−

− &L (3.3.17)
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Choose a Lyapunov function candidate

0>
2
1

= 2eV (3.3.18)

A control law is now to be devised in order to make

2keeeV −== && (3.3.19)

negative definite. This will be achieved by making

kee −=& , 0k > (3.3.20) 

through the use of an appropriate control law to be derived as follows:

From (3.3.17), the derivative of e is given by

[ ] xmxq0mxq1m
)1q(

xq)2q(m
)q(

xq rkyayayaye &&&&L& −+++= −
− (3.3.21)

The next step is to find an expression for )q(
xqy . 

From (3.3.8a), displaying the )1q(u~ − term explicitly, we have

xq)1q()1q(qxq ru~y +α= −−& (3.3.22a)

where

∆rxq xq)1n)(1q(x)1n(q)1q(x0q)1n()1n(q)q()q(q yy~yu~u~ λ−β++β+α++α −−−−−− LL

(3.3.22b)

Successively differentiating (3.3.22a), gives the thν derivatives of xqy

( ) )1(
xq

)i(
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)1i(

)1q(q
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)(
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1
y −ν
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−ν

=

ν +α






 −ν
=∑ , q,,2,1 L=ν (3.3.23)

Letting q=ν and utilizing uu~s
1q

u~ )1q(
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
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



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
ν
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−

=ν

ν−−ν−
− ∑ from (3.3.3b)
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and (3.3.4f) yields

)q(
xq)1q(q

)q(
xq ŷuy +α= − (3.3.24a)

where
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ŷ

(3.3.24b)

After )q(
xqy is found as in (3.3.24), the expression for e& in (3.3.21) becomes

( )[ ] xmxq0mxq1m
)1q(

xq)2q(m
q

xq)1q(q rkyayayaŷue &&&&L& −++++α= −
−− (3.3.25)

Next we substitute kee −=& from (3.3.20). The result is

( )[ ] xmxq0mxq1m
)1q(

xq)2q(m
q

xq)1q(q rkyayayaŷuke &&&&L −++++α=− −
−− (3.3.26)

Since our objective is to design a differentiator-free controller, replacing the derivative

terms )q(
xqŷ , xq

)1q(
xq y,,y &L− and xr& in (3.3.26) with (3.3.24b), (3.3.24a) and (3.3.14),

respectively, gives the control law

ke
m

)t(u
)1q(q

−
α

−=
−

, 0)1q(q >α − , 0>k

(3.3.27a)

where

( ) +

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
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
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
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


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
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
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






λ








ν
−

α−+α






 −
∆ −

−

=ν

ν−−ν
−

−−−

−

−

=
∑∑ )1q(

1q

1

)1q(
)1q(q

)1q(
xq

)i()1iq(

)1q(q

2q

0i

u~s
1q

ru~
i

1q
m
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( ) ( )x)1q(mmxq)1q()1q(q0m rarkru~a −−− −−+α+L (3.3.27b)

Note that division by zero in (3.3.27a) will not occur because (3.3.10f) and (3.3.12i)

guarantee that 0k lower)1q(1)1q)(1q()1q(q >≥α≥≥α≥α −−−− L . Also note that the signals

u~,,u~ )2q( L− and )1q(
xqr − can be obtained without actual differentiation because they are

outputs of proper stable transfer functions with bounded inputs as shown in (3.3.3b). As

for the derivatives of the adaptive parameters, they can be replaced by their respective

adaptive laws, thus dispensing of the need of differentiations.

Thus, with V& in (3.3.19) being negative definite, the equilibrium state 0=e is globally

asymptotically stable, i.e. e is bounded and 0→e as ∞→t .

Consequently, from (3.3.16a) and (3.3.16b),

0emq → and mxq yy → (3.3.28)
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Figure 3.10: Stacked Identifiers MRAC for an nth order plant of relative degree 2q >
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3.3.4. Boundedness of All Signals in the Entired Feedback System

With reference to the entire adaptive control system in Figure 3.10, the following

signals have been shown to be bounded:

From the analysis of Identifier ,,1# L Identifier q# : xq1x e,,e L , )1q(q)1q(1 ,, −− αα L ,

T
q

T
1 ,, αα L , 0q10 ,, ββ L and T

q
T
1 ,, ββ L

From the analysis of the control law: e and mqe

From the reference model: r and my

The signals that remain to be shown bounded are, in appropriate groups: 

 

Boundedness of py , )1q(x1x y,,y −L and xqy :

Since my , mqe , xqe and 1x)1q(x e,,e L− are bounded, it follows from (3.3.11) and (3.3.9)

that 1xxq y,,y L and py are bounded.

Boundedness of py~ , )1q(x1x y~,,y~ −L , )1q(x1x y~,,y~ −
&L& , xr& , )q(

mm y,y L& , (q)e,,e,e L&&& ,

(q)
mqmqmq e,,e,e L&&& and (q)

xqxqxq y,,y,y L&&& :

The signals py~ , )1q(x1x y~,,y~ −L , )1q(x1x y~,,y~ −
&L& , xr& and )q(

mm y,y L& are outputs of

“proper” stable transfer functions with bounded inputs. Hence they are bounded. Also,

from (3.3.20), we see that (q)e,,e,e L&&& are bounded. It follows from (3.3.16a) that the

same is true of (q)
mqmqmq e,,e,e L&&& . Consequently, from (3.3.16b), (q)

xqxqxq y,,y,y L&&& are
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bounded.

Boundedness of )1q(u~ − , )1n()q( u~,,u~ −L , u~ , )1n()1q( u~,,u~ −−
&L& , xqx1 e,,e &L& , py& , )1q(x1x y,y −&L&

and xq1x w,,w L :

With bounded xqy& , eliminating )1n(q u~,,u~ −L from (3.3.3b), and (3.3.22) gives the

boundedness of )1q(u~ − because all other variables in the resulting equation are bounded.

After we establish the boundedness of )1q(u~ − , the boundedness of )1n()q( u~,,u~ −L and u~

follows. Furthermore, the signals )1n()1q( u~,,u~ −−
&L& are outputs of “proper” stable transfer

functions with bounded inputs )1q(u~ − . Hence they are bounded. Next consider the signal

x1e& in (3.3.9). It is bounded because u~ , py and py~ are bounded. In a similar fashion,

the boundedness of xqx2 e,,e &L& can be established. Finally, 1x1)-x(q y,y &L& , py& are also

bounded due to the boundedness of xqy& and xqx2 e,,e &L& . The signals xq1x w,,w L in

Figure 3.10 are composed respectively of a sum of bounded signals, and are therefore

bounded.

Boundedness of )1q(q)1q(1 ,, −− αα &L& , T
q

T
1 ,, αα &L& , 0q10 ,, ββ &L& , T

q
T
1 ,, ββ &L& and xqr& :

The boundedness of the variables )1q(q)1q(1 ,, −− αα &L& , T
q

T
1 ,, αα &L& , 0q10 ,, ββ &L& and

T
q

T
1 ,, ββ &L& as given in (3.3.10) and (3.3.12) can be seen through the substitution of all

occurring derivative terms by their respective adaptive laws. For example, )1q(q −α& in
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(3.3.12a) has the derivative term )1q)(1q( −−α& . It can be substituted with )1q)(1q( −−α&

)1q)(2q()1q( u~ge −−−α α+= & , which is the adaptive law in Identifier #(q-1). Consequently, xqr&

(as obtained from 3.3.22b) is also bounded. Note that by following the above procedure,

we can also demonstrate the boundedness of any derivative term of an adaptive

parameter up to the q-th derivative.

Boundedness of (q)
pp y,,y L&& u and m :

The boundedness of u is established from (3.3.1) if one can show the boundedness of

(q)
pppp y,,y,y,y L&&& . This is demonstrated as follows. Substituting (3.3.3b) and (3.3.1)

into (3.3.22a) to give

xqp)1q(qxq ry
)s(N

)s(D

)s(

1
y +








λ

α= −&

Dividing )s(N)s(λ into )s(D yields

xqp
0

3n
3n

2n
2n

p1np)1q(qxq ry
)s(N)s(

ss
yyy +








λ

ζ+ζ+ζ
+ξ+α=

−
−

−
−

−−

L
&& (3.3.29)

Differentiating (3.3.29) once gives









λ

ζ+ζ+ζ
+ξ+α=

−
−

−
−

−− p
0

3q
3n

2n
2n

p1np)1q(qxq y
)s(N)s(

ss
yyy

L
&&&&

xqp
0

3n
3n

2n
2n

p1np)1q(q ry
)s(N)s(

ss
yy &&

L
&&& +








λ

ζ+ζ+ζ
+ξ+α+

−
−

−
−

−− (3.3.30)

Since xqy&& , )1q(q −α& , py , py& and xqr& have been shown to be bounded, py&& is bounded.
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Using the same approach, differentiating (3.3.29) twice will leads to the boundedness of

py&&& . Continuing on in this fashion would lead to the boundedness of

(q)
p

(4)
p y,,y L . With the boundedness of u , the boundedness of m is assured from

(3.3.27a). In conclusion, all systems in the overall system are bounded.

3.3.5. Convergence of the Tracking Errors

The discussion of the convergence is exactly the same as that in Section 3.2.5 and is

omitted.

3.3.6. Simulation Studies

We include a simulation for the case of 3q = (Simulation 3) which has not been done

in the literature.

Simulation 3.3.1: 3rd order Stacked Identifiers MRAC

The data for the simulation are as follows.

234 ss3s

1s
)s(P

−+
+

= , ( )( )1s1s2s

1
)s(M

2 +++
=

1=)t(r

1=λ , 2g = , mpp yye −=

The initial conditions for the adaptive parameters are chosen in accordance with

(3.3.10f) and (3.3.12i), in this case:
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Figure 3.11: Stacked Identifiers MRAC output error. (relative degree 3q = )

Discussion

Figure 3.11 shows the simulation for the case of relative degree 3q = , which has not

been reported in the current literature. It is seen that the transient response of the

tracking error is also small.



93

CHAPTER 4

CONCLUSIONS

4.1 General Conclusions

In this dissertation, a new adaptive control scheme (referred to as the Stacked

Identifiers model reference adaptive control) is proposed for controlling a single-input

single-output, linear time-invariant plant containing uncertain parameters. The scheme

incorporates a total of q (q being the plant relative degree) layers of identifiers in the

control. Each identifier mimics the structure the plant directly, so that the control

adaptations deviates less from the true plant values than other conventional methods

(which adapt in such a way that the transfer function of the entire control loop matches

that of the reference model). To achieve this, we adopt the following steps:

1. Reparametrize the unknown plant into a form so that an identifier can be

constructed.

2. Choose an identifier and a parameter update algorithm such that the plant output

asymptotically tracks the identifier output.

3. Design a control law to make the identifier output asymptotically track the

reference model output. That means output of plant will track reference model

asymptotically.

4. Give proof that all states generated are bounded.

5. Give proof that all tracking errors are converged.
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The Stacked Identifiers MRAC design method is much superior than the existing

augmented output error method as far as transient response is concerned. Simulations

for the cases of 2q = and 3q = are given to demonstrate the effectiveness of the

method. In conclusion, this work introduces an adaptive framework, which is

completely different from existing ones and which produces much smaller transient

excursions from the desired output response.

4.2 Future Research

We have developed only a fundamental theory for identifier-tracking MRAC. There

remains much to do. On the basis of its structure, some future works are as follows:

• Extension of the continuous time schemes to the discrete time case.

• Extension of the single-input single-output plants to multi-input multi-output

plants.

• Design a real-time system parameter identification algorithm.

• Robustness in the presence of unmodeled dynamics, time-varying parameters,

and other perturbations.

• Relaxing assumptions.

• Implementations and applications.
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