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ABSTRACT

MODEL REFERENCE ADAPTIVE CONTROL USING STACKED IDENTIFIERS

Publication No.

Wei-Der Chung, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Kai S. Yeung

Model reference adaptive control is a major design method for controlling
plants with uncertain parameters. The primary objective of this dissertation is to
develop a new design approach for the model reference adaptive control of a single-
input single-output linear time-invariant plant. The proposed method, called the “Model
reference adaptive control using stacked identifiers, uses a stacked identifier structure
that is new to the field of adaptive control. The goal is to make the output of the plant
asymptotically track the output of the first identifier, and then driving the output of the
first identifier to track that of the second identifier, and so forth, up to the g-th identifier
where q is the relative degree of the plant. Lastly, the output of the g-th identifier is

forced to converge to that of the reference model. Simulation results show the

il



superiority of the proposed method over the traditional model reference adaptive control
with augmented error in terms of the transient response. Since the resulting control
systems are nonlinear and time-varying, the stability analysis of the overall system

plays a central role in developing the theory.
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CHAPTER 1

INTRODUCTION

Model reference adaptive control (MRAC) was originally proposed to control
plants with uncertain parameters. In traditional MRAC, the adaptive parameters are
adjusted according to the output error, which is the difference between the output of the
plant and that of the reference model. A basis of this method is that if the exact values
of the plant parameters are known, then a controller is to be chosen such that the
transfer function of the closed-loop system matches that of the reference model. The
controller is designed to include adjustable parameters, which are updated through some
parameter adaptation mechanism derived by Lyapunov’s stability theory. Systems with
a unity relative degree are straightforwardly designed using this approach. However, for
the case of relative degree greater than one, where the transfer function is no longer
strictly positive real [1], [6], [7], modification has to be introduced. This difficulty was
first solved using the concept of augmented errors introduced by Monopoli [2]. After
the stability problem was resolved in the early 1980's, most of the existing MRAC
schemes use the same controller structure, which often suffers from poor transient
responses during the initial adaptation stage. Attempts to remedy this situation include
the variable structure control systems [3], [4], multiple models with switching and

tuning [5], [28], [29], [39] and [43]. In this dissertation we present a method, called the



“Stacked Identifiers model reference adaptive control,” to improve the transient
performance. The idea is to incorporate identifiers in the control scheme in order that
the control structure comes closer to the structure of the plant. No state measurement of
the plant is required. Simulations are given to show that the transient response of the
proposed scheme is substantially better than that of the traditional augmented output
error method.

The dissertation is organized as follows: Chapter 1 gives an introduction to the
area of MRAC research. Chapter 2 begins with Identifier Tracking MRAC of plant with
relative degree two, which is an essential milestone for extending the method to higher
relative degrees. A considerable amount of stability proof is presented and the Identifier

Tracking MRAC to the general case, i.e., plants of arbitrary relative degree q is

extended. Chapter 3 deals with the design and analysis of another more systematic
structure called the Stacked Identifiers MRAC. The performance of this scheme is much
superior to the existing augmented output error and Identifier Tracking MRAC method
as far as transient response is concerned. Chapter 4 gives a conclusion of this

dissertation and possible areas for future research.



CHAPTER 2

IDENTIFIER TRACKING MODEL REFERENCE
ADAPTIVE CONTROL

2.1 Introduction

For most adaptive schemes, the ability to deal with plants of relative degree two
is an essential milestone for extending the method to higher relative degrees. We

consider second order plants of relative degree q=2, for which we will develop an

adaptive scheme with a double-identifier structure using the following steps:

(1) Reparametrize the unknown plant into a form so that an appropriate identifier
structure can be employed.

(i1) Derive the parameter update laws for Identifier #1, such that the identifier output
¥, asymptotically tracks the plant output y . Also derive parameter update laws for
Identifier #2 so that the output of Identifier #2, y ,, asymptotically tracks that of
Identifier #1, y, .

(111) Design a control law u(t) to drive y,, asymptotically towards the output of the

reference model, y,_, and demonstrate that all variables in the feedback system are

bounded.



The notation used in the adaptive control literature varies widely. In this paper, upper
case letters are used to denote matrices, operators, or transfer functions and lower case

letters are used for scalars or vectors. When u(t) is a function of time, u(s) denotes its

Laplace transform; both u and u(.) denote u(t) or u(s) according to the context. P(s)

. . . . d
is a plant transfer function or a plant transfer function operator with s = @

2.2 Identifier Tracking MRAC of plants with relative degree two

2.2.1. Reparameterization of the Unknown Plant
Consider a linear time-invariant plant P(s)with an input-output pair {u(.),y ()}

described by a transfer function

k
P(s)=—— 2 —— 2.2.1)
s"+a,s+ay

where k , a , and a, are constant but unknown parameters. The sign of the high

p

frequency gain k  and a lower bound for k are assumed to be known, i.e., for the case

of a positive kp, kp >k >(0; and for the case of a negative kp, kp <k <0.

lower upper

Throughout this paper, k  is assumed to be positive.

We will reparametrize the plant into a form suitable for deriving the identifier and the
parameter update laws.

Express (2.2.1) as



(s? +a,s+a,)y,(=ku), k, >k

b > Kigper >0 (2.2.2)
Dividing both sides of the above equation by (s+i,)(s+A,), where A, and A, are

positive constants, we obtain

$*+a s+a
(s+Ay)(s+A))

y, ()= () (2.2.3)

2 u
(s+Ay)(s+A,))
Performing a long division on the L.H.S. gives

(a, = (g +2,))s+(a, —2o2,)
(s + 7\,0)(8 + Kl)

LHS. of 2.2.3)=y () + Y, ()

Conducting another long division on the second term yields

L.H.S. of 2.2.3) =

1 1
yp(t)+ S+ A |:(ap1 _(7‘0 +7\'1))+ (apo _aplko +7”20) yp(t)

1 (S"‘}‘o)

Substituting this expression into (2.2.3) and moving all terms other than the term y, to

the R.H.S. gives

y, (1) = ; :}H {(7&0 +A, —a, )yp(t) + (aplko -\ —apo)s :M y,(O+k, ; +17»o u(t)}
(2.2.4a)
Define
Ak, (2.2.4b)
doA a k,—Ag—a (2.2.4¢)
dIA A, +2, —a, (2.2.4d)



1
s+,

A u(® (2.2.4¢)

z, A

A5 y, () (2.2.41)

Then, equation (2.2.4a) becomes

3,0 =— 6T + diz, 0 + &7y, 1) (2.2.5)

S+ A,

In accordance with the form of (2.2.5), Identifier #1 is chosen as

Yo (0= (e TO +d 2, (1) + d,y, ) (2.2.6)
S+A,

Figure 2.1 shows a schematic diagram of Identifier #1.

r-—-—-——"—" """ —"—"—"—"—"—{—{—{———— — — — — |
|
| i |
u | 1 " 1 I
'_> CIO
I S+7“O s+7»l |
I |
| I
|
I
| Identifier #1 |
| , |
| ! |
| S+ A I
| ’ !
| - |
3
| I
—————————————————— —t] — — —— —— —— — —
Yo

Figure 2.1: Identifier Tracking MRAC for Identifier #1.



Similar to the structure of Identifier #1, Identifier #2 is chosen as

1 ~
Y2 () = —— (g T(0) + iy 2, (1) + dyyy, (1) (2.2.72)
S+,
where
z,A b (t) (2.2.7b)
22 iy Y L
The corresponding block diagram is shown in Figure 2.2.
S T
u | 1 U ] I
. s+ A
l S+ 7»1 l y .
I | 7
I ]
I I
| Identifier #2 |
| 1 l
I I
I S+ }LO |
I |
- __ i D
¥Yxi
Figure 2.2: Identifier Tracking MRAC for Identifier #2.
2.2.2. Parameter Update Laws for the Identifiers
Identifier #1
Define
e (DA y, () =y, (1) (2.2.8a)



S AC, ¢y, d,Ad —d,o, d,Ad —d,, (2.2.8b)
- ~ ~ T
oA e 4, 4] (2.2.8¢)

- T
woA [T () 7,0 y,0) (2.2.8d)
From (2.2.8), (2.2.5) and (2.2.6), the error equation is given by

e ()= yp(t) — ¥t

1 . - ~
= W(COU(t) + dozl(t) + dlYp (t))

1

0" (w(t) (2.2.9)

S+ A,
Multiplying both sides of (2.2.9) by the polynomial operator s+2, and moving all

terms to the R.H.S. except for the €,, term gives

(D =-Ae, (0+ET(1)+dz,()+dy, (1) (2.2.10)

To go through a stability analysis, we choose a Lyapunov function candidate
V:ﬂeiﬁl(@%ahaf)] g>0 2.2.11)
g
The derivative of V is given by
. . (.2 ~% ~%
V=e,., + —(CO ¢, +d,d, +d, dl)
g

Substituting €, from (2.2.10) yields



V=-Ael + Eo(exlﬁ +léoj+ao(exlzl +lc~10]+ al(exlyp +l&lj
g g g

(2.2.12)
Choose the parameter update laws as
0, if ge ,Uu<0 and c,, <k, ... (2.2.13a)
Cpp =
ge U, otherwise (2.2.13b)
d,, =ge, .z, (2.2.13¢)
d,, =ge,y, (2.2.13d)

Note that the adaptation for c,, is divided into two cases. The first case (2.2.13a)

together with the rest of the adaptations (2.2.13¢) and (2.2.13d) renders V in (2.2.12) as
V=-\el +e, <0 (2.2.14a)
Similarly, the second case (2.2.13b) gives
V=-2e2<0 (2.2.14b)
We see that in both cases, V is negative semi-definite. This implies that e, C,, ao

and &1 are bounded; and from (2.2.8b), c¢,,, d,, and d,, are also bounded.

The division of the adaptation of c,, in two cases as given in (2.2.13a) and (2.2.13b) is

to ensure that

c,o(t)=k >0, forall t>0 (2.2.14¢)

lower
This will be achieved by choosing an initial condition for the adaptive parameter

¢, (0) 2k

lower *



Identifier #2

Identifier #2 is chosen as

1 (.
y () = m(czou(t) +dyz, (1) +dyyy, (D) (2.2.152)

1

where

1
Z, A ——y ,(t 2.2.15b
Chvvy Yy (D) ( )
The purpose of the parameter update laws for Identifier #2 is to achieve

e, =(¥,,—V,)—>0ast—>o.

They are chosen as

0, if ge.i+¢,<0 and c,, <c, (2.2.16a)
Cyo =
ge u+c,,, otherwise ge u+c,,>0 (2.2.16b)
.y —dy) o+ Pzl +2,2,)
d,, = > +d,, (2.2.16¢)
1+2z;
— 2 Y .
d, = (d, d21)(0L+B3/X1 + ylexl) +d,, (2.2.16d)
1+ YXI

where the design parameters o, B and e, are defined later in the Lyapunov analysis

shown below.

Let

ey, -V (2.2.17)

From (2.2.6), (2.2.15a) and (2.2.17), we have

10



1 — !
Cx2 = ST, (ClO _Czo)u +E(dlozl _dzozz)"'m(dllyp _d21yXl)

(2.2.18)

We first establish the boundedness of e ,. This can be accomplished by requiring the

(C10 —Cy )ﬁ >

same for the three R.H.S. terms, i.e., the boundedness of .
s+ A,

L(dlozl —dzozz) and ;(dllyp —d21yx1), respectively, which can be achieved
S+ A, S+ A,

as follows.

(). Boundedness of (c,y —Cyp )i
s+,
Let
ecé ! (C10 —Cy )ﬁ (2.2.19)
S+,

Multiplying s + A, to both sides of the equation yields
&, =—Ne, +(c,y —Cy ) (2.2.20)

Choose a Lyapunov function candidate (to secure boundedness of e, and ¢, —c,,) as

V:%[gez +(cy —c20)2]>0 (2.2.21)

The derivative of V is given by

Vi=ge &, +(cg—Co e —¢a0) (2.2.22)

11



Substituting €_ from (2.2.20) yields
V=—hgel + (¢ — e Mlge T +¢,0) =y (2.2.23)
Use of the parameter update law (2.2.16a) and (2.2.16b) renders V as

—A,ge? +(c,y —Cy Nge T +¢,,)<0, if ge fi+¢, <0 and c,, <c,,
Ve (2.2.24a)
—\gel <0, otherwise (2.2.24b)

We can see that V is negative semi-definite. This implies from Lyapunov’s theory that

1 ~
Cyp—Cy and e, = E(c10 —Cyy )u are bounded.
1

The division of the adaptation of c,, in two cases as given in (2.2.16a) and (2.2.16b) is

to ensure that
Cyy(t) 2y (t), forall t20 (2.2.24c¢)

This will be achieved by choosing an initial condition for the adaptive parameter

Cy(0)2¢,,(0).

(i1). Boundedness of (dloz | —dyz,)

S+A,
Rearrange d,,z, —d,,z, as
dyoz, —dyz, :dIO(Zl _Z2)+(d10 _dzo)zz (2.2.25)
We shall treat the boundedness of the two terms on the R.H.S. separately.

In accordance with (2.2.4f), (2.2.15b) and (2.2.8a), z, —z, is given by

12



1
s+ A,

1
Z,—-272, = Y (yp - yx1): (2.2.26)
0

exl

z,—2, is bounded because the same is true for e, (which is the input to the

).

asymptotically stable system
s+A,

Thus, with a bounded d,,, dw(zl —2,) is also bounded.

We now turn to the second term in (2.2.25) and let
e4A (dlo —d,, )Zz (2.2.27)
Multiplying s + A, to both sides of the equation yields

&y =-Ae, +(d,, —dy )z, (2.2.28)

Choose a Lyapunov function candidate
1
V= el + (0 —daf + (@ ~do e 50 (2229)

The derivative of V is given by

V= ge.ey t+ (dm —d,, )(dlo _d20)+ (dlo —d,, )Zz [(dlo _dzo)zz + (dm —d,, )Zz]

(2.2.30)
Substituting €, from (2.2.28) yields
Vi=—1,ge; +ge,(dyy —dy )z, +(dy —dy )(dlo —dy )+ (g =dyy )z,
[(dlo _dzo 2 T (dIO —d,, )Zz] (2.2.31)

Let o, =e, and G, = G,z,. Our purpose is to select an adaptive law for d,, so that V

will be in the form of
13



V=—ac? —{as? —bo, 0, +cc2 (2.2.32a)
where o, a, b and c are constant design parameters to be chosen so as to make V<0.It

is not difficult to see that (2.2.16c) would bring V to the required form (2.2.32a) with

aAlg, bAg, cAB, o,A(d,—dy) (2.2.32b)

With reference to (2.2.32a), by choosing o >0, the first term is non-positive. Any

choice of a, b and c satisfying

ac > (_j (2.2.33)

will make the second (quadratic) term also non-positive. In other words, from (2.2.32b)

and (2.2.33), the choice of the adaptive parameters
B> 2 (2.2.34)
B> 2.

will render V < 0. This implies from Lyapunov’s theory that (dlO —-d,, )Z2 is bounded.

Hence, from (2.2.25), with both terms on the R.H.S. being bounded, d,,z, —d,,z, is

bounded. Therefore, with bounded input d,,z, —d,,z,, the output ;(dloz | —dyz,)

S+ A,y
is also bounded.
1
(111). Boundedness of —(d“yp - d21yx1)
S+ A,
The treatment of %(dl WY, — d21yx1) follows the same vein as that of
S+ A,

14



1 . .
——(d,yz, - dzozz) above, and is therefore omitted.

s+A,

Summarizing the results of (i)-(iii) in this section, it follows from (2.2.18) that e , is
bounded. (The consequence of e, — 0 will be shown later.) Figure 2.3 shows a

schematic diagram of Identifier #1 and Identifier #2.

| 1 it '

s+ | Y2
; | B
I

»
= s+ A

|
|
| O
I A
| Identifier #2 | +
| 1 I
I S+ A I
| 0 '
| |
| ' |
C o o I
I_ ________________________ |
| B [
I 1 u 1 |
- | — ¢ Yx
| s+ }»0 10 s+ )Ll | *
| | v
| ' D
I l A €
| Identifier #1 . | +
1
I 1 |
| - '
I s+ }»0 |
| t |
| 1 |
e e e e e o e e e e e — — ——— — M — e — ——
u Yo

> P(s)

Plant

Figure 2.3: Identifier Tracking MRAC for Identifier #1 and Identifier #2.
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2.2.3. Control Law u(t)
The reference model is given by an input-output pair {r(.),y,(.)}with a transfer

function M(s) given as

Yl _ i) = Ky (2.2.35)

r(s) - (s+am1)(s+am0)

where k , a,, and a _, are positive design parameters, r(t) is a bounded, piecewise

mo
continuous function of time for t > 0. The purpose here is to derive a control law such
that y , asymptotically tracks y .
Define tracking error e as

e A(s+a, e, (2.2.36a)

where

€A Yo =Y (2.2.36b)
(Note thatif e >0, thene , >0 and y, > y,)
From (2.2.35) and (2.2.36), we have

€= (S + amO )(YXZ - Ym ) = (YXZ + amOyXZ ) - kmrx (22373)

where

(2.2.37b)
Choose a Lyapunov function candidate
1
V=—e">0
2

A control law is now to be devised in order to make V negative definite.

16



From (2.2.37a), the derivative of e is given by

e=(¥,,ta,0¥.n) K, (2.2.38)
Multiplying s + A, to both sides of (2.2.15a) yields

Vo =CopUu+dyz, +dy Yy, —AY,, (2.2.39)
The second derivative of y , reads

¥, =c,li+m (2.2.40a)
where

m A &yl +dyz, +dyz, +dyy,, +dy ¥, — AV, (2.2.40b)
Substituting (2.2.40a) into (2.2.38) yields

é=cyui+m+a_ .y, -k f (2.2.41)
Next we substitute § with — AoU+u from (2.2.4e). The result is

é=cypu+(—cyy Aii+m+a, ¥y, —k,i) (2.2.42)
Since our objective is to design a differentiator-free controller, setting ¢ =—-ke in
(2.2.42) and replacing the derivative terms y,, and r, from (2.2.39) and (2.2.37b) gives

the control law

1 - -
u(t) = _(Czokou _m_amo(czou +d,z, +d,y, _7‘1yx2)
20

+km(r—am1rx))]—ke, Cyp>0,k>0

(2.2.43a)

where
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m=C,,U +d20Z2 +d20(yx1 —7»022)+d21yx1 +d21((0101~1(t) +d,z,(0) +d11yp(t) _KIYXI)
_7‘1(0206 +dyz, +dyyy _7‘1sz)

(2.2.43b)
Note that the derivatives of the adaptive coefficients can be replaced by their respective
adaptive laws in (2.2.16) and (2.2.13) in order to avoid actual differentiations. Also note

from (2.2.14¢) and (2.2.24c¢) that c,, = c,, 2k, ... > 0 so division by zero in the control

lower
law would not occur.
Substituting the control law (2.2.43a) into (2.2.42) yields

& = —ke (2.2.44)
which makes

V=eé=—ke’ (2.2.45)
negative definite. This implies that the equilibrium state e=0 1is globally
asymptotically stable, i.e. e is bounded and e > 0 as t — .
Therefore, from (2.2.36),

e,—~>0andy, >y, (2.2.46)

Figure 2.4 shows a schematic diagram of overall system.
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Figure 2.4: Identifier Tracking MRAC for 2™ order plant of relative degree two.
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2.2.4. Boundedness of All Signals in the Entired Feedback System
With reference to the entire system in Figure 2.4, the following signals have been

shown to be bounded:

From the analysis of Identifier #1: e, ¢,,, d,, and d,,

From the analysis of Identifier #2: e ,, c,,, d,, d,, C;p —Cs» d,0z,—d,yz, and
diy, —daya

From the analysis of control law: e and e,

From the reference model: r and y

The signals that remain to be shown bounded are:
Yoo ¥Yxio ¥Yx20 Z15 235 Zy5 Zy5 T, Y €5 Goo Yoo Us €405 €05 Yis Wi Wias Cyp

dyy, dy;. €y, dyys dyy, mand u

Boundedness of y_, y,, and y ,:
Since y,., €,,, €,, and e, are bounded, it follows from (2.2.17) and (2.2.8a) that y ,,

¥, and y, are bounded.

Boundedness of z,, z,, z,,z,,I,, y,, €, €,and y,,:

The signals z,, z,, z,, z,, tr, and y_ are outputs of “proper” stable transfer functions

20



with bounded inputs. Hence they are bounded. Also, from (2.2.44), we see that ¢ is

bounded. It follows from (2.2.36a) that the same is true of € _, . Consequently, from

(2.2.36b), y, is bounded.

Boundednessof U, €, €,, y,,, W, and w _,:

With bounded y,,, the boundedness of u is derived from (2.2.39). The signal ¢, in
(2.2.10) is bounded because the signals ¢ and w in (2.2.9) are bounded. In a similar
fashion, the boundedness of € , can be established. Finally, y , is also bounded due to
the boundedness of ¢, and y,,. The signals w , and w_, in Figure 2.4 are composed
of a sum of bounded signals and are therefore bounded.

Boundedness of ¢,,, d,,, d,;, €5, dy, d,;,, m and u:

The boundedness of ¢,,, d,,, d,;, ¢, d,,, d,, and m follows from (2.2.13), (2.2.16)

and (2.2.43b). Finally, the boundedness of u is established through (2.2.43a) because
all signals appearing in the equations are bounded.
Thus, we have shown the boundedness of all signals in the entire control system. Next,

we would like to demonstrate the convergence of the tracking errors.

2.2.5. Convergence of the Tracking Errors
With reference to the entire system in Figure 2.4, our purpose is to demonstrate that

Y, = ¥Yn as t = 0. This is accomplished by showing the same for the signals e, e

m2° “xI
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and e, .

(1) Convergence of €_,:

This has been shown in (2.2.46).

(i1) Convergence of e, :

We have shown in Section 2.2.4 that e ,, €, 30 and U are bounded. Thus,

from (2.2.14),

lower

-2\, e, +Ce, U+C, (exlu + exlu), if ge,,u<0 and c,; <k
V=
—2Ah €€ otherwise

x1°

is bounded. According to Barbalat's Lemma, V — 0, which means e, >0ast—>oo.

(ii1) Convergence of e, :
Consider e, in (2.2.18),

1 __— !
€ = .y (1o = ) +E(dlozl _dzozz)+ﬁ(dllyp _d21yXl)

Convergence of e, follows from the convergence of the signals (c10 —Cyy )ﬁ,

d,yz, —dyz, and d,;y, —d,y,, . These are show as follows:

Convergence of (c,, —c,, i 2
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Differentiating (2.2.24a) and (2.2.24b) gives

-2\ ge.e, + (élo —Cy )(gecﬁ + é10)+ (Cw —Cy )(gécﬁ + gecﬁ + é10)
V= if ge.u+¢,,<0 and c,, <c,,

-2\, ge e, otherwise
which can be seen to be bounded, (upon insertion of the parameter update laws from
(2.2.13), (2.2.16), (2.2.20) and (2.2.4¢)). With bounded V, V — 0 in accordance with

Barbalat’s Lemma. Since V in (2.2.23) consists of two non-positive terms, both terms

must also converge to zero, in particular, (c,, —c,, Ji — 0.

Convergence of d,,z, —d,z,:
Consider (2.2.25), the convergence of d,z, —d,,z, will be demonstrated by the

convergence of its two R.H.S. terms.

Differentiating (2.2.32a) gives
¥ = 20(dyy — dy Ny — Ao )~ 20,2048, + g8 (dyg — dog )z,)
e [ —da) (4 - du b - 20— )+ (A - e )
((d —dy )z,)
which can be shown to be bounded, if one inserts the parameter update laws (2.2.13),
(2.2.16), (2.2.28) into the V expression. With bounded V, V — 0 according to

Barbalat’s Lemma. Since V in (2.2.32a) consists of two non-positive terms, both terms

must also converge to zero, in particular, (d,, —d,, )z, — 0. Therefore, the second term

in (2.2.25) converges to zero. The convergence of the first term follows from the
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convergence of z, —z,, which can be seen as follows. From (2.2.4f), (2.2.15b) and

1 . . . .
(2.2.8a), we have z, -z, = —XCXI . Since e, is the input of an asymptotically stable
s+A,

system and converges to zero, the output z, —z, also converges to zero. In

s+A,

conclusion, the convergence of d z, —d,,z, is established.

Convergence of d,;y, —d,y;:
The discussion of the convergence of d,y, —d,y,, is similar to that of dz, —d,z,

and is omitted.

Summarizing, with the convergence of the three R.H.S. terms in (2.2.18), the

convergence e, — 0 as t — oo is ensured.

2.2.6. Simulation Studies
The simulation studies presented in this section are to compare the effectiveness of the
proposed adaptive scheme with the existing augmented output error method in [1]. This

is done for the case of relative degree q =2 (Simulations 2.2.1 and 2.2.2).

Simulation 2.2.1: 2" order Augmented Output Error Method [1]

The data for the simulation are as follows.
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1

P(s) = _—
®) s?+2s+1

—— ., M(s) =
S —S

Coo =€, W, /d, doo =—ge,w,,/d, d01 =-ge|y,,/d
w,, =M@)w,, w, =M(@B)w,, y,, = M)y,

w b u, w b
TS s+1yp

d:1+W121+W122 +yi0’ r(t):1’ ep :yP_Ym

Co(®=1,dy,(0)=0,d,0)=0, c,, =-3,d,, =6,d,, =7

r.m.s parameter error A p, = [(Coo - C:;o)z + (doo —dg ) + (d01 —dy, )z] -

Figure 2.5: Augmented output error. (relative degree q =2)

Simulation 2.2.2: 2" order Identifier Tracking MRAC

The data for the simulation are as follows.
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1 . M(s) = 1

P(s) =

s —s s +2s+1

r()=1, A, =X, =1, a=k=1,B=4,¢g=10,¢e,=y,-y,
The initial conditions for the adaptive parameters are chosen in accordance with
(2.2.14c) and (2.2.24c¢), in this case:

C,0(0)=c,(0)=12k (k is taken to be 0.01),

lower lower

le(O) = dzo(o) = du(o) = d21(0) =0,

co=1,d,=-2,d =3

r.m.s parameter error Ap, = [(clo —c, )2 + (d10 - df))2 + (d11 - df)z]

ep=yp-ym
(=)
N
|
|
|
|
|
|
|
|
|
[
|
|

5 10 15 20 25 30 35 40 45 50

Figure 2.6: Identifier Tracking MRAC output error. ( relative degree q =2)
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Figure 2.7: Augmented output parameter error pl and Identifier Tracking MRAC output
parameter error p2. (relative degree q =2)

Discussion

Figure 2.5 gives the transient response of the tracking error e  for the augmented

output error method. The corresponding tracking error for the proposed Identifier-
tracking MRAC scheme is shown in Figure 2.6. It can be seen that the tracking error for
the proposed method is substantially smaller (about 60 times) than that of the
augmented output error method (For the case of other initial conditions, the same
superiority of the proposed method over the augmented output error method is
observed). Figure 2.7 shows the r.m.s. parameter error for the augmented output error
method and for the proposed Identifier Tracking MRAC. The reason that the above
errors for the proposed method are smaller than those of the augmented output error
method can be explained by the “closeness” of the proposed identifier structure to the

plant structure.
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2.3 Identifier Tracking MRAC of plants with relative degree greater than two

2.3.1. Reparameterization of the Unknown Plant
In this section, we extend the Identifier Tracking MRAC to the general case, i.e., plants

of arbitrary relative degree (.

Consider a plant with an input-output pair {u(.),y,(.)} described by a transfer function

b, s *+---+bs+b
P(s) = &) __ Dn® 7 P72 h>g>2 2.3.1)
D(s) s"+a,s" +---+as+a,

n

where b, s" +---+bs+b, is a Hurwitz polynomial in s. The sign of the high
frequency gain b, is assumed to be positive, with a known lower bound

b >k

n—q lower
We will reparametrize the plant into a form suitable for the derivation of the identifier
structure and the parameter update laws

Express (2.3.1) as

(s"+a, s""'+a, 8" +--+as +a, )y, =(b, 8" +--+bs +bj)u

(2.3.2)
Let A (s), A, (s) and A" (s) be Hurwitz polynomials given as
A(s)AsT 4N, s ot A, gaS tA (2.3.3a)
Ay A HA ST s+ (2.3.3b)
A, AL (L, (5)=8"" + A, 8" +. A S+ A, (2.3.3¢)
M)A (S +A, DA, (s)=s"+ X, 8"+ + XS+, (2.3.3d)

28



First, divide both sides of (2.3.2) by A"(s) using long division. Then, moving all terms

to the R.H.S. except for the y, -term and using the definitions in (2.3.3) yields

Y, =Y. tYs (2.3.4a)
where
1 b, s +--+bs +b, 1
yC = * u
s+, A, (8) A(s)
1 (N;fl —aIH)sIH +(7C;72 —aH)s“f2 +---+(Xf —al)s +(X; —ao)
7 s+, A, (s) Yo

(2.3.4b)
Carrying out the long division by A (s) in the y_ expression gives
s et +c)
Y. = ! cry A = 1 0. 1, (2.3.4¢)
S+A,, A(s) A, (s) A(s)

In the same way, carrying out the long division by A (s) in the y, expression, we

obtain

1 ( * d* 8" et d's +d. p] (2.3.4d)

d +
nflyp XZ(S)
where cf, i=0,1,---,n—q—1, and dj, j=0,1,---,n—2, are the resulting coefficients

after the long division.

Define

c¢'Ale; ] (2.3.52)

n—q-1°°"

29



uA Lu
= Ms)
_Wn7q71 Sn—q—l
WA : 1
= w, [T s [AL(8)
| W, 1
_Zl(n72) s"?
: 1
z. A
= Zy |7 | s XZ(S)yp
L Zo 1
T
w,A [ﬁ whoy, le]
T
valr, o an o]

Then y, in (2.3.4) is expressed as

= (cnfqu+c w+d, y,+d zl)

- [(¢*)TW1]

S+A,,

Equation (2.3.6) forms the basis of the identifier structures. Accordingly, Identifier #1 is

constructed as

where

30

(2.3.5b)

(2.3.5¢)

(2.3.5d)

(2.3.5¢)

(2.3.510)

(2.3.5g)

(2.3.6)

(2.3.7a)



T
04 ey o di, df] (2.3.7b)
T
¢A [Cl(n—q—l)"' ClO] (2.3.7¢)

T
dA [dy s dy] (2.3.7d)

are the adaptive coefficients.

Figure 2.8 shows a schematic diagram of Identifier #1.

T~ . L. T T |
I Identifier #1
I
u | 1
—_— e —
| A(s)
I
I
| ~
| u
I
I
I
I
I
I
| { Ay .
I
I
[T
yP

Figure 2.8: Identifier Tracking MRAC for Identifier #1.

For a relative degree of ¢, we need a total of q identifiers.

Identifier #y (y =2,3,---,q) is constructed as

1 [
= w 2.3.8a
yXY S +7\’n71 [(I)V Y] ( )
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where

T
¢vé[cv<nfq) C; d, di] (2.3.8b)
T
N (2.3.8¢)
T
d,A [dy<n—2) dyO] (2.3.8d)
T
w,A [ﬁ w' Yxa-1) Z;r] (2.3.8¢)
Zy(n-2) "
: . .
z A — 2.3.8
2z |2 s ne) Yx-1) ( f)
Z, 1

1

[
Ll

A(s)

Yxa@n

Figure 2.9: Identifier Tracking MRAC for Identifier #q.

In this diagram, the relation between U and w as given in (2.3.5d) has been modeled in

the controllable canonical form using (2.3.3b) as
32



w=A,w+b, i (2.3.9a)

where A, e R® ™9 and b, € R"™ are given by

_}\‘n—q—l — Ay
1 0 0 O
A, = :
0 I 0 O
0 01 0|
1
0
b, =|: (2.3.9b)
0
_0_

Similarly, the relation between y —and z, in (2.3.5¢) has been modeled in the
controllable canonical form using (2.3.3c) as
z, =Nz, +b,y, (2.3.10a)

where A, e R®™" D and b, e R"" are given by

(R e o 2R
1 00 0
Al s
0 10 0
L0 01 0|
0
b, =|: (2.3.10b)
0
_0_
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D T P [
—_—» ¢ * > >y,
A(s) n-q s+?»n_1
d*
n-1
{Aw by }9 d*T A
{a, 0, }
Figure 2.10: Plant parameterization -- nth order, relative degree q > 2
2.3.2. Parameter Update Laws for the Identifiers
Identifier #1
Define tracking error e, as
SR — [($)TW] (2.3.11a)
B Y, =V StA 1 .
where
$é ¢* - ¢1
T
o, = [Cl(n—q) ClT dyo le]
T
W, = [ﬁ w'oy, zf] (2.3.11b)

Comparing (2.3.11a) with (2.2.9) and following the same Lyapunov analysis as in

Section 2.2.2 leads to the following parameter update laws
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0, if ge,,u<0 and ¢, , <k (2.3.12a)

Cl(n-q) =

ge ,u, otherwise

. T
C, =g, W
d1(n71) =£g%aY,

1 T
d, =ge,z

— T lower

(2.3.12b)

(2.3.12¢)

(2.3.12d)

(2.3.12¢)

which is similar to (2.2.13). The division of the adaptation of ¢, ,, In two cases as

given in (2.3.12a) and (2.3.12b) is to ensure that

Cringq (D 2Ky, >0, forall t>0 (2.3.13)

This will be achieved by choosing an initial condition for the adaptive parameter

Crne (0 2k

lower *

Identifier #y (y=2,3,---,q)

Define tracking error e as

1 T — T—
€y Yy " Yy = m[‘i’(y—nww—l) _¢wa] (2.3.14)

Parameter update laws are

0,

Cv(n»q) =

ge, u+¢

(y=D)(n—q)°

if gecyu +C(y—1)(n*q) <0 and Cy(nfq) < C(“{*l)(ﬂ*q)

(2.3.15a)
otherwise (2.3.15b)

1 ( )ﬁ
where ewéT C(y»l)(n»q) _Cv(n—q)

S+

n-1
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. 2 .
Cn = (C(y—l)i _Cyi) (O“LBWi )+ g8 -yW; »1=0,1,---,n-q-1

(2.3.15¢)
d _ (dw—l)(n—l) —d, Xoc +BY o+ yx(y—nyx(v—l)) J
y(n-1) = 3 T dnm-n
I+ y5q
(2.3.15d)
: (d(_l).—d.XochBzz.Jrz,z.) : '
dyj: y-Dj YJI+Z§j Y Yi© i +d(y—l)j’ JzO,l,m,Il_Z
(2.3.15¢e)

The division of the adaptation of c in two cases as given in (2.3.15a) and (2.3.15b)

y(n—q)
is to ensure that

Coingy (D 2 € g (), forall t20 (2.3.16)

This will be achieved by choosing an initial condition for the adaptive parameter

Coinmq) (0) 2 € pyng) (0) -

The update laws are derived in a similar way as the derivation of (2.2.16) in the simple
case. The only difference is that we have one additional parameter update equation
(2.3.15c¢) for the adaptive parameter c.;. This parameter is needed to take care of the
numerator terms in the plant transfer function in this general case. The update laws are

designed to produce a bounded tracking error e, . This can be seen by substituting (1)3,

d)(Ty_l) from (2.3.8b) and Wy , W(Y_l) from (2.3.8e), respectively, into (2.3.14), yielding
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1 - 1 T T
Co = s+ (Cw—l)(n-q) _(Cvm-q)))“ + . >\’_n-1 (dw—nzw—l) —dyzy)
1 1 T T
+ (d e Yp — e Y )+ (C 1 € )W
S+7\’n—1 (y=D(-1)J p y(n-1) 7 x(y-1) S+7\’n-l (v-1) Y

(2.3.17)
The first three terms on the R.H.S. can be shown bounded as demonstrated for the
simple case in Section 2.2.2. The boundedness of the last term is shown as follows.

Let the last term in (2.3.17) be

1
e AT(C(TH) —Cy )W (2.3.18)

n-1

where ¢, ¢, and w are defined as in (2.3.8¢c) and (2.3.5d).
The derivative of e, is given by
e, =—A, e, +(c,—c)w (2.3.19)

w

Choose a Lyapunov function candidate

V= %[gei (e c’;)z]> 0 (2.3.20)

G-
The derivative of V then becomes
V=geé, +(ch, —cT)er, —¢T) (23.21)
Substituting €, from (2.3.19) and using the parameter update laws in (2.3.15c), we

have

V=—al?-f'¢? -b'¢,¢, +c'C} (2.3.22a)
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where

Czé@ w

;A (C<Ty—1> _Ci)
(2.3.22b)

Following the same argument as in (2.2.32), any choice of the parameter values

satisfying A3 > % will render V <0.

This implies that e =+(C(Ty_l) —ci)w is bounded. Consequently, from (2.3.17),
S+

n-1

e,, is bounded.

Figure 2.11 shows a schematic diagram of Identifier #1 ,..., Identifier #q.
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Figure 2.11: Identifier Tracking MRAC for Identifier #1 ,..., Identifier #q.
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2.3.3. Control Law u(t)
The reference model is given by an input-output pair {r(.),y ()} with a transfer

function M(s) given as

k
In _Mgy=— “o (2.3.23)
r s+a s a8t A sta

m(q-1)
The above transfer function consists of two blocks in series as shown in Figure 2.13.

Let the output of the first block be

rA— (2.3.24)

Tstag

Then, (2.3.23) can be rewritten as

Im ___ Ky (2.3.25a)

r, s% +a,,08" +.as+a,
or, in time domain,

Ko =yu D +a, oy +a Yo a0y, (2.3.25b)
Define tracking error e as

e A (S‘H + a8 T A+ amo)emq (2.3.26a)
where

€A Yy~ Ym (2.3.26b)
(Note thatif e >0, then e, —>0and y  —vy,)
Substituting (2.3.26b) and (2.3.25b) into (2.3.26a) yields

e= [y ba, oy ea Y F ey |- Kl (2.3.27)
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Choose a Lyapunov function candidate
1
V= Ee >0 (2.3.28)

A control law is now to be devised in order to make V =eé negative definite. This can

be achieved by setting ¢ = —ke, k>0.

From (2.3.27), the derivative of e is given by

e= [yf:) + am(q—Z)yi‘;ﬁl) tean Yt amoym]_ LS (2.3.29)

(q)

The next step is to find an expression for y .

Substituting (2.3.8b) and (2.3.8e) into (2.3.8a) and displaying the u-term explicitly, we

have
Yig = Cqmgql+Ty (2.3.30a)
where

rxqé C;FW + dq(nfl)yx(qfl) + d;rzq - anlqu (2.3.30b)

Successively differentiating (2.3.30a), gives the v derivatives of Y

v-1 ) )
Y = 20 gy TS V=12, (23.31)
i=0

xq

(C{'is the combination symbol )
Letting v =q and utilizing T = - ,d“™? —...— & _ i +u from (2.3.5¢)
and (2.3.3a) yields
Y9 = ut 9@ (23.32a)

where
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q-2
o (@) q—l( <q+l>~<i>) @ _ ( S ~)
quéZCi Cq(n—q) u +rxq Cq(n—q) }\’n—Zu + +7“n—qu
i=0

(2.3.32b)

After y;?; is found as in (2.3.32), the expression for € in (2.3.29) becomes

- C) (@ . - ] :
e_[cq(nfq)u-i_YXq +am(q72)YXq +'“amIYXq +am0qu _kmrx

(2.3.33)

Setting ¢ =—ke and replacing the derivative terms §¥', yid™,---,y . and £, in (2.3.33)

with (2.3.32b), (2.3.31) and (2.3.24) gives the control law

u(t) =-

. — ke, cq(nfq)>0,k>0
q(n-q)

(2.3.34a)

where

K=}

mA 3 c! (c

i

(q=i-1) ~ (i) (@D _ ( F@2 4 ... ’“)
q(n-q) u )+ Iy Can-q) 7\‘n—2u + +7\‘“‘qu *

Il
(=]

et am()(Cq(n—q)u +rxq )_km(r _am(q—l)rx)

(2.3.34b)

Note that division by zero in (2.3.34a) will not occur because (2.3.13) and (2.3.16)

guarantee that ¢, ., 2C uq =" 2 Cruq = Kigwer > 0. Also note that the signals

~(q-2 ~ -1
u(q )’,“’u, r(q )

. can be obtained without actual differentiation because they are

outputs of proper stable transfer functions with bounded inputs as shown in (2.3.5¢). As
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for the derivatives of the adaptive parameters, they can be replaced by their respective

adaptive laws, thus dispensing of the need of differentiations.

Finally, substituting the control law (2.3.34) into (2.3.33) yields

e =—ke (2.3.35)
which makes

V=eé=-ke’ =-2kV (2.3.36)
Solving (2.3.36) gives the solution

V(t) = V(0)exp(-2kt) (2.3.37)
In other words, from (2.3.36),

e(t) = +/2V(0) exp(—kt) (2.3.38)
This implies that the equilibrium state e =0 is globally asymptotically stable and

e > 0 as t > oo. It follows from (2.3.26) that

Y ? YmaS @ (2.3.39)

Figure 2.12 shows a schematic diagram of overall system.
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Figure 2.12: Identifier Tracking MRAC for an n™ order plant of relative degree q > 2
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2.3.4. Boundedness of All Signals in the Entired Feedback System
With reference to the entire adaptive control system in Figure 2.12, the following

signals have been shown to be bounded:

From the analysis of Identifier#l,---,Identifier#q: e,,"*",€,5 Ciu g Coma >
T T T T
CrsrtsCys dyyyysresdyyy and dy,---,d,

From the analysis of the control law: e and ¢,

From the reference model: r and y

The signals that remain to be shown bounded are:

. . . . q) . I o)
ypa yxl"“’yx(q_l)’ qua Zl,"',Zq, Zl,"',Zq, rxa yma'”ym , €, ,,8 7,

(@)

. . Q@ =~ . . . . .
“’emq’ YXq’qu"“’qu ’u’w’exl’“.’exq ’YP’YXI’.'.YX(C[*I)’

€,.,€

mq ’ mq"
. . - T . T " p 1T 1T . . ()
Wits" s Wiq 2 Cin-g)» " s Cqm-q) 2 €157 Cq dl(nfl)"“’dqul)’ dq"“’dq’ Lg» Yoo ¥p o
m and u.

They are shown to be bounded in accordance to the following grouping:

Boundedness of y_, ¥, ;5 ¥, ) and ¥, :

e, and e e,, are bounded, it follows from (2.3.14) and

SIHCC Ym’ emq’ Xq x(q—l)’“.’ x1

(2.3.11a) that y ,---,y,, and y, are bounded.
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(q) (@)

Boundedness of z,,--,z,, Z,,",Z,, T,,¥ps Y ,€,6 e ¢ @

mq’emq’ =, €

- U @ .
and qu’ YXq"”’ YXq :

The signals z,---,z,, Z,"",Z

. . ()
r, and y_,---y!

. are outputs of “proper” stable
transfer functions with bounded inputs. Hence they are bounded. Also, from (2.3.38),

we see that ¢ ,& ,---,e? are bounded. It follows from (2.3.26a) that the same is true of

(@

mq *

(@

émq,émq, -,e. . Consequently, from (2.3.26b), qu,qu,-~-,qu are bounded.

Boundedness of U, w, € ,=,€ ., V.5 Vs Vg and W -, w o

With bounded y, , eliminating w from (2.3.5d) and (2.3.30) gives the boundedness of

U because all other variables in the resulting equation are bounded. After we establish

the boundedness of U, the boundedness of w follows. Next consider the signal €, in
(2.3.11). It is bounded because @, and w, are bounded. In a similar fashion, the

boundedness of ¢,,---,&,, can be established. Finally, yx(q_l),---yxl, yp are also

xq

bounded due to the boundedness of y . and e, --,¢, . The signals w ,---,w_ in

Figure 2.12 are composed respectively of a sum of bounded signals, and are therefore

bounded.

. . - T - T P P 9T 9T . .
Boundedness of Crinqys s Cqtnagys €157 75Cq s dl(n_l),-~-,dq(n_l), dq,m,dq and Ig:
. . . . T - T " p
The boundedness of the variables ¢, ,,=**,C nq)> €5 5Cqs> dyuyysrsdyy, and
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d;,m,c'qu as given in (2.3.12) and (2.3.15) can be seen through the substitution of all

occurring derivative terms by their respective adaptive laws. For example, ¢, _ . in
q(n—q)

(2.3.15b) has the derivative term ¢ which is the adaptive law in Identifier #(q-

(q-1)(n—q)°
1). Consequently, £, =¢IW +d o Yaqn +d0zg +C0W +dy Ve +diz,
—X,.Y,, (as obtained from 2.3.30b) is also bounded. Note that by following the above

procedure, we can also demonstrate the boundedness of any derivative term of an

adaptive parameter up to the g-th derivative.

Boundedness of §_,---,y, u and m:

The boundedness of u is established from (2.3.1) if one can demonstrate the

(@

boundedness of yp,yp,j}p,n-,yp . This is demonstrated as follows. Substituting

(2.3.5¢c) and (2.3.1) into (2.3.30a) gives

. ! (&

a = Cqm-q) TS) N(s) ij‘i' Ty

Dividing A(s)N(s) into D(s) yields

Sn—2+ Sn—3+.”
C.>n—2 Cn—3 CJ() ypj_’_rxq

qu = Cq(nq)(yp + E"“*lyP * k(S)N(S)

(2.3.40)

Differentiating (2.3.40) once gives

qu = éq(n—q)[yfy + é;n—lyry +

A(S)N(s)

Cnfzsm2 "'(-;nf3sqi3 +--Gy j
Yo
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Cn—2sn_ +Cn—38n_ +'”C0 y J+fx
A(s)N(s) P d

+ Cq(nq)(.yp + anflyp +

(2.3.41)

Since qu, éq(nfq), Yoo yp and fxq in (2.3.41) have been shown to be bounded, yp is

bounded. Using the same approach, differentiating (2.3.40) twice will leads to the
boundedness of y . Continuing on in this fashion would lead to the boundedness of

@ (@

Yo oYy - With the boundedness of u, the boundedness of m is assured from

(2.3.34a). In conclusion, all signals in the overall system are bounded.

2.3.5. Convergence of the Tracking Errors

The discussion of the convergence is the same as that in Section 2.2.5 and is omitted.

2.3.6. Simulation Studies
Simulation 2.3.1: 3" order Identifier Tracking MRAC
The data for the simulation are as follows.

1 1

—— M) =
s +28% +s—1 ®) (

P =
®) sz+2s+1Xs+1)

r(t)=1
A =8> +3s* +3s+1
a=k=1,B=4,g=2,¢,=y,-V,

The initial conditions for the adaptive parameters are chosen in accordance with
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(2.3.13) and (2.3.16), in this case:
Cip(0)=12Kk,... (K. 15 taken tobe 0.01)

d;(0)=0,1=1...3, j=0...2

Figure 2.13: Identifier Tracking MRAC output error. ( relative degree q =3)

Discussion

Figure 2.13 shows the simulation for the case of relative degree q =3, which has not

been reported in the current literature. It is seen that the transient response of the

tracking error is also small.
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CHAPTER 3

STACKED IDENTIFIERS MODEL REFERENCE
ADAPTIVE CONTROL

3.1 Introduction

The primary objective of this chapter is to develop a new design approach for
the model reference adaptive control of a single-input single-output linear time-
invariant plant. The proposed method, called the ‘“Model reference adaptive control
using stacked identifiers,* uses a stacked identifier structure that is new to the field of
adaptive control. The goal is to make the output of the plant asymptotically track the
output of the first identifier, and then driving the output of the first identifier to track
that of the second identifier, and so forth, up to the g-th identifier where q is the relative
degree of the plant. Lastly, the output of the g-th identifier is forced to converge to that
of the reference model. Simulation results show the superiority of the proposed method
over the traditional model reference adaptive control with augmented error in terms of
the transient response. Since the resulting control systems are nonlinear and time-
varying, the stability analysis of the overall system plays a central role in developing the

theory.

3.2 Stacked Identifiers MRAC of plants with relative degree two

3.2.1. Reparameterization of the Unknown Plant

Consider a linear time-invariant plant P(s)with an input-output pair {u(.),y ()}
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described by a transfer function

k
P(s)=——>—— (3.2.1)
s*ta,stay

where k , a , and a, are constant but unknown parameters. The sign of the high
frequency gain kp and a lower bound for k]D are assumed to be known, i.e., for the case

of a positive kp, kp >k >(; and for the case of a negative kp, kp <k <0.

lower upper

Throughout this paper, k  is assumed to be positive.

We will reparametrize the plant into a form suitable for deriving the identifier and the
parameter update laws.
Express (2.1) as

(s® +a,s+a,)y,(H=ku), k, >k >0 (3.2.2)

lower
Dividing both sides of the above equation by (s+21)>, where A is a positive constant,
we obtain

2
s"+a,s+a,
(s+21)*

k
= . 323
Y, (D) L) u(t) (3.2.3)

Performing long division on the L.H.S. gives

(ap1 —2k)s+ (apo —73)

(s+0)

(apl - 27\.)S+ (apo _7\‘2)
S+ A

LHS.of 3.23)=y, (O)+ y, ()

Conducting another long division on yields

L.H.S. of (3.2.3) =
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=21

- (apo —aplx+k2)}yp(t)

t)+
¥y (V) S+ A

Substituting this expression into (3.2.3) and moving all terms other than the term y, to

the R.H.S. gives

I .o I
y, (1) —m[(Zk—apl)yp(t)Jr(aplk—k apo)sﬁ y, (0 +K, S+ku(t)}

(3.2.4)
Let
oA k, (3.2.53)
BiA aplX—Xz —ay (3.2.5b)
BoA 2L-a, (3.2.5¢)
~ 1
uA u(t) (3.2.5d)
= s+A
FA v () (3.2.5¢)
Vo2 S+A Yo e
Equation (3.2.4) becomes
1 * o~ * * ~
y, (0 :m(alu(t)+Boyp(t)+Blyp(t)) (3.2.6)
In accordance with the form of (3.2.6), Identifier #1 is chosen as
1 ~ ~
Va0 = (0, T+ By, 0+, 7, (1) (327)

Figure 3.1 shows a schematic diagram of Identifier #1.
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yxl
u I
— L ] a, %» Lo
| S+ A i S+ A |
| |
| By, Bio :
I A
| Identifier #1 _ !
| | yP |
| 1 :
| s+ A |
I
I L |
yp __________________ -t e e e e e e
Figure 3.1: Stacked Identifiers MRAC for Identifier #1.
Similar to the structure of Identifier #1, Identifier #2 is chosen as
1 - -
V()= m(aﬂu(t) + By YO+ (t)) (3.2.82)
where
¥, A ; (1) (3.2.8b)
YX1= S+ 7\‘ YXl e

The corresponding block diagram is shown in Figure 3.2.
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u | i
1 I W, 1 '

| S+A 2l — S+A |—> Yz
| I
| l321 [520 I
| A |
| Identifier #2 T V. |
| I
| : !
| S+ A |
| I
| T—o |
- o

yxl

Figure 3.2: Stacked Identifiers MRAC for Identifier #2.

3.2.2. Parameter Update Laws for the Identifiers

Identifier #1

Define
e (DA y, () -y, (1) (3.2.9a)
& Ao —ay,, ByAB, =By, BAB —B, (3.2.9b)

From (3.2.9), (3.2.6) and (3.2.7), the error equation is given by

e ()= yp(t) ¥t

1o o~
- Sm(aluwoyp +B.3,) (3.2.10)

Multiplying both sides of (3.2.10) by the polynomial operator s+A and moving all

terms to the R.H.S. except for the € , term gives
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(0 =-he, (O+&T+Byy, +B7,

(3.2.11)

To go through a stability analysis, we choose a Lyapunov function candidate

veleh e e o B )], >0
g

The derivative of V is given by

. . (. o 5% =
V=e,e, +g[a10‘1 +BoBo + B, BJ

Substituting €, from (3.2.11) yields

~

(3.2.12)

. - - 1. ~ 1+ ~ - 1=
Vz_keil_i_al{exlu—i—_ lj—'—BO{eXIYp+gBOJ+B1{eXIYp+§BIJ

g

Choosing the parameter update laws as

0, if ge, <0 and o, <k

Oy =-Q, =

ge .U, otherwise

~

Bm =B, = g8,Y,

Bn = _B1 = gex&p

renders

2 ~ ~ . ~
—Age,, +ae, u<0, if ge , U<0and a, <k

V=
~Lge2, <0,

otherwise
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(3.2.13)

(3.2.14a)

(3.2.14b)

(3.2.14¢)

(3.2.14d)

(3.2.15a)

(3.2.15b)



Remark:

(a) We see that in both cases, V is negative semi-definite. This implies that e, , &,, BO
and El are bounded; and from (3.2.9b), a,,, B,, and B,, are also bounded. The

convergence to zero of e, will be shown later using Barbalat's Lemma after
establishing the boundedness of all signals in the entire system.

(b) The division of the adaptation of o, into two cases as given by (3.2.14a) and

(3.2.14b) is to ensure that, with the choice of initial condition o, (0) > k

lower

a,(t)=k >0, forall t>0 (3.2.16)

lower

This is needed in order to avoid division by zero later.

Identifier #2

Identifier #2 is chosen as

1 ~ ~
V()= —(a21u(t) Py (O +B2 ¥ (t)) (3.2.17a)
S+A

where

Yl Lyxl () (3.2.17b)

= s+A

Let

(DA ¥, (1) =y, (D) (3.2.18)

The purpose of the parameter update laws for Identifier #2 is to achieve
e,=(y,,—V,)—>0ast—>ow.

They are chosen as
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0, if d(OL11 —oc21)+ ge u+a, <0 and

o, <oy, d>0

0y =
(3.2.19a)
d(oc11 —oc21)+ ge U+a,,, otherwise (3.2.19b)
Bzo :d( 10 _B20)+geBOYX1 +B10 (3.2.19¢)
le = d( The Bz1)+ gemyu + Bn (3.2.19d)
where eaéﬁ(a“ —a21)ﬁ (3.2.19¢)
epl (Bw Bao )Y (3.2.190)
em (Bn B, )g’xl (3.2.19g)

(The update laws are derived as a natural consequence of observing the V expression
in the Lyapunov analysis, which will be shown later.)

From (3.2.18), (3.2.7) and (3.2.17a), the error equation is given by

1 - -
e, = ( 0L21)tl + (Bloyp BZOy}(l)—i_m(BllyP _Bz1yX1)

(3.2.20)
Based on this equation, it is noted that though a traditional treatment of Lyapunov’s
analysis is possible for the first term, it is not possible for the second and third term.

The reason is due to the occurrence of a product of a parameter with a signal, such as

By, instead of the product of a “parameter deviation” with a signal as in the first
term. So, we resort to establishing the boundedness of “all” signals in the overall system
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first, and then assuring the convergence to zero of e _, through the use of Barbalat's

Lemma later.

We would like to demonstrate the boundedness of e,, when the update laws (3.2.19)

are used. This can be accomplished by requiring the same for the three R.H.S. terms of

(3.2.20).

. 1 ~
(1). Boundedness of m(a“ - OLZI)U
Consider

e, :ﬁ(an —a21)ﬁ (3.2.1%¢)
Multiplying s+ A to both sides of the equation yields

&, =—he, +(o, — oy (3.2.21)
Choose a Lyapunov function candidate (to secure boundedness of e, and a,, —a.,,) as

V:%[gei+(a“—a21)2]>0, g>0 (3.2.22)

The derivative of V is given by

V=ge &, + (o, — oy Ny, — ) (3.2.23)

Substituting ¢, from (3.2.21) yields

V=—hge + (o, —auy )|(ge, b+, )—ciy | (3.2.24)
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It is seen that the application of the parameter update laws as given in (3.2.19a) and
(3.2.19b) will render
—\ge’ + (OL11 —~ GZI)(geaﬁ + d“)ﬁ —Age’l —d(oc11 - 0(21)2, (3.2.25a)

if d(oc11 —oc21)+ ge i+a,<0and a, <o,

—\gel —d(oc11 - OLZI)Z, otherwise (3.2.25b)

(The inequality in the first case follows as a result of the condition imposed for this

case.)
Thus, V is negative definite, implying that the equilibrium state is globally
asymptotically stable. Hence, both e, and a,, —a,, are bounded, and

e, >0,a,-a, =0 (3.2.26)
The division of the adaptation of a,, into two cases as given in (3.2.19a) and (3.2.19b)
is to ensure that

o, (t)=ao,(t), forall t=0 (3.2.27)
This will be achieved as long as the initial conditions are chosen such that

a,,(0) = a,,(0). Condition (3.2.27) is needed in order to avoid division by zero later.

(ii). Boundedness of %(Bmyp - Bzoyxl)
S+

1
Rearrange m(BlOyP _BZOYXI) as
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1

1 1
m(BIOYP _Bon;d):mb(yp _yxl)+m(B10 By )yxl (3.2.28)

We shall treat the boundedness of the two terms on the R.H.S. separately.

In accordance with (3.2.9a), the first term %Bm (yp - yxl) is bounded because f3,,
s+

and e, =y, —y,, are bounded. We now turn to the second term and let

1
ey = m(ﬁw ~Ba )Y u (3.2.19f)

Multiplying s + A, to both sides of the equation yields
éﬁo = _}\‘eBO + (BIO =B )yxl (3.2.29)

Choose a Lyapunov function candidate (to secure boundedness of e, and B,, —B,,)

1
v :E[geéo +(B10 _Bzo)z]>0 (3.2.30)
The derivative of V is given by

Vzgeﬁoéﬁo +(,Blo _Bzo)[Bm _Bzo] (3.2.31)

Substituting €, from (3.2.29), we have

V=-hge;, + ( 0 =B )[(geﬁoyXl +Byo )— BZOJ (3.2.32)
Applying the parameter update law in (3.2.19¢), renders

V=-hey —d(B, —Ba ) (3.2.33)
which is negative definite. This implies that the equilibrium state is globally

asymptotically stable. Hence, e, and B,, —3,, are bounded, and
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1
€po :m(ﬁw _Bzo)yxl —>0ast—oo (3.2.34)

Consequently, from (3.2.28), with both terms on the R.H.S. being bounded,

1

Y (Blo Yo~ BZnyl) is also bounded.

(iii). Boundedness of %(ﬁn'}"’p - BZlyxl)
S+

1 ~ ~
The treatment of m(ﬁnyp —Bmyxl) follows the same pattern as that of
1 . .
m(ﬁmyp - Bonn) above, and is therefore omitted.

Summarizing the results of (i)-(iii) in this section, it follows from (3.2.20) that e , is

bounded. (The convergence e , — 0 will be shown later.)
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Figure 3.3: Stacked Identifiers MRAC for Identifier #1 and Identifier #2.

3.2.3. Control Law u(t)

Let the reference model with the input-output pair {r(.),y,(.)}be

Yn®) _ vis) = Ky, (3.2.35)

1(s) (s+am1)(s+am0)
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where k _, a_, and a_, are positive design parameters, r(t) is a bounded, piecewise

continuous function of time for t > 0. The purpose here is to derive a control law such

that y , asymptotically tracks y .

Define tracking error e as

€ é (S + a9 )emZ (32363.)

where

€mA Yo = Yn (3.2.36b)

(Note thatif e >0, thene, , >0 and y, =y, .)

From (3.2.35) and (3.2.36), we have

€= (S + am() )(YXZ - Ym) = (}'IXZ + amOyXZ)_ kmrx (3237&)
where

r
r.A
s+a,

(3.2.37b)

Choose a Lyapunov function candidate
1,
V= Ee >0 (3.2.38)

A control law is now to be devised in order to make

V=eé=-ke’, k>0 (3.2.39)
negative definite. This will be done by making

é=—ke (3.2.40)

through an appropriate control law to be derived as follows:

63



From (3.2.37a), the derivative of e is given by

€=(¥,,ta,¥.n) Kk, (3.241)
Multiplying s+ A to both sides of (3.2.17a) yields

¥ = 0, T +Bayy (0 +B,, T, (D -2y, (3.2.42)
The second derivative is given by

¥, =0, () +m (3.2.43a)
where

m A G, T+ By (0485, T (0 + By (0 +B T (D=2,

(3.2.43b)

Substituting (3.2.43a) into (3.2.41) yields

é=a,li(t)+m+a, V., -k, i (3.2.44)

m~X

Next we substitute U with — Al +u from (3.2.5d) and é=-ke from (3.2.40). The
result is

—ke=o,u+(—ay A T+m+a, ., ki) (3.2.45)
Since our objective is to design a differentiator-free controller, replacing y , and 1, in

(3.2.45) with (3.2.42) and (3.2.37b), respectively, gives the control law
1 - ~ ~
u(t) = _(a21 Au-m-a, (azlu(t) B Yu (O+PB Y (O - }\'YXZ)

21

+k, (r—a,r ))-ke, o, >0,k>0 (3.2.46)
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Remarks:

(a). Note that the term m above as defined by (3.2.43b) still contains the derivatives of
some adaptive coefficients. They can be replaced by their respective adaptive laws in
(3.2.19). Also the other derivative terms y ,, 3;/“ and y_, can be substituted by their
expressions in (3.2.7), (3.2.17b) and (3.2.42), respectively, so as to dispense with the
need of differentiations.

(b). Note from (3.2.16) and (3.2.27) that a,, 2o, 2k >0 so that division by zero

lower

in the control law would not occur.

Thus, with V in (3.2.39) being negative definite, the equilibrium state e = 0 is globally
asymptotically stable, 1.e. eis bounded and e -0 as t — 0.
Consequently, from (3.2.36a) and (3.2.36b),

e.,—>0andy, >y, (3.2.47)
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Figure 3.4: Stacked Identifiers MRAC for 2™ order plant of relative degree two.
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3.2.4. Boundedness of All Signals in the Entired Feedback System
With reference to the entire system in Figure 3.4, the following signals have been

shown to be bounded:

From the analysis of Identifier #1: e ,, a,,, B,, and B,
From the analysis of Identifier #2: e ,, a,,, B,, and B,
From the analysis of the control law: € and e,

From the reference model: r and y

The signals that remain to be shown bounded are as follows:

Boundedness of y_, y,, and y,:
Since y ., e,,, €,, and e, are bounded, it follows from (3.2.18) and (3.2.9a) that y , ,

¥, and y, are bounded.

Boundedness Of yp’ ’yxl’ ?p’ 37)(1’ I.‘x’ }.Im’ ym’ é’ é’ QnZ’ énZ’ SIXZ and SIXZ:
The signals ¥, ¥, Iys Yoo Yo §p and };’n are outputs of “proper” stable transfer

functions with bounded inputs. Hence they are bounded. Also, from (3.2.40), we see

that ¢ and € are bounded. It follows from (3.2.36a) that the same is true of

e, and € , . Consequently, from (3.2.36b), y , and y , are bounded.
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Boundedness of U, ¢, ¢€,, ¥, ¥,, W, and w ,:

With bounded y,,, the boundedness of U is derived from (3.2.42). The signal ¢,, in
(3.2.11) is bounded because the signals U, y, and y are bounded. In a similar fashion,
the boundedness of ¢, can be established. Finally, y,, and y  are also bounded due to

the boundedness of y,, €, and € ,. The signals w , and w_, in Figure 3.4 are

composed of a sum of bounded signals and are therefore bounded.

Boundedness of &,,, B,y B> Oy » By and B, :

The boundedness of the variables «,,, Bw’ B“, Oy s B20 and B21 as given in (3.2.14)

and (3.2.19) can be seen through the substitution of all occurring derivative terms by

their respective adaptive laws. For example, a,, in (3.2.19b) has the derivative term

a,, - It can be substituted with a,, from (3.2.14), which is the adaptive law in Identifier

#1.

Boundedness of yp, u and m:

The boundedness of u is established from (3.2.2) if one can show the boundedness of

Y,» ¥, and ¥ . This is demonstrated as follows. Substituting (3.2.5d) and (3.2.1) into

(3.2.42) gives

D —a
Y2 20 K

2
1 (s +a s+ay
P

YPJ+ By (D+ByY, (D—Ry,,
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Dividing s+ A into s* + a,s+a, yields

2
o —ayAt

S+ A

YPJ+ By (OD+By Y, (D—Ay,,

(3.2.48)

. — . a
Yo = kplaﬂ(yp +(ap1 _}‘)yp +—

Differentiating (3.2.48) once gives

) o a,—a A+A . :
Y2 = kpl{azl{yp +(ap1 _K)yp + 0 S _:lx pr-’_aZl(yP +(aP1 _}\’)yp

a,—aL+A . . . N .
+ Yo By Y (D +By ¥ (D +B Y, (D +P,, ¥ (DAY,

S+ A

(3.2.49)
Since ¥,,, V.20 $os Yor Yuis s Gars Bags Bus ¥, and y, have been shown to be

bounded, Y, is bounded. With the boundedness of u, the boundedness of m is assured

from (3.2.46). Thus, we have shown the boundedness of all signals in the entire control

system. Next, we would like to demonstrate the convergence of the tracking errors.

3.2.5. Convergence of the Tracking Errors
With reference to the entire system in Figure 3.4, our purpose is to demonstrate that

Y, = ¥ as t— 0. This is accomplished by showing the same for the signals e, , e

x1

and e_,, which is given as follows:

(1) Convergence of € _,:
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This has been shown in (3.2.47).

(i1) Convergence of e, :

We have shown in Section 3.2.4 that e, , € &1 and {i are bounded. Thus,

x> ¥xI?

from (3.2.15),

lower

-2)e e, +o,e U+ ocl(éxlu +ex1u) if ge,, u<0 and a,, <k
V=

-2\e e, otherwise

is bounded. According to Barbalat's Lemma, V — 0, which means from (3.2.15) that

e, >0ast—>oo.

(111) Convergence of €, :

Consider e, in (3.2.20),

1 - -
e, = ( 21)ﬁ + (Bloyp BZOYXI)—i_m(Bllyp _Bz1yX1)

Convergence of e , will follows from the convergence of each individual term.

lx(an _azl)ﬁ:

This has been shown in (3.2.26).

Convergence of
S

Convergence of —— Y (BIOYp Bzoyx1)5
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. 1 1 1
Consider m(BIOYP _Bzoyx1):mﬁ1o(yp _yx1)+m(B1o —Bao )yxlfrom (3.2.28),

the convergence of the first term on the R.H.S. %Blo (yp —Yx1) follows from the
s+
convergence of e, =y, —y,,. The convergence of the second term %(Bw B )Y
S+

is assured by (3.2.34). Therefore, the convergence of %(Bwyp—Bzoyxl) is
S+

established.

1 ~ ~
Convergence of m(ﬁuyp - B21yX1):

The discussion of the convergence of %(B“'}"lp —Bzﬁxl) is similar to that of
S+

1

m(Bloyp - Bonn) and is here omitted.

Summarizing, with the convergence of all three R.H.S.-terms in (3.2.20), the

convergence €., — 0 as t — oo is assured.

3.2.6. Simulation Studies
The simulation studies presented in this section are to compare the effectiveness of the
proposed adaptive scheme with the existing augmented output error method in [1]. This

is done for the case of relative degree q =2 (Simulations 2.2.1 and 3.2.1).
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Simulation 3.2.1: 2" order Stacked Identifiers MRAC

The data for the simulation are as follows.

N
s?+2s+1

P(s) = M(s) =

SZ—S’
r(y=1,r=1,g=10,¢e,=y, -y,

The initial conditions for the adaptive parameters are chosen in accordance with

(3.2.16) and (3.2.27), in this case:
a,0)=0a,0)=1=k,,. (k... 1staken to be 0.01)

B1o(0) =P, (0)=B,,(0)=B,,0)=0, OLT =1, B; =3, BI =-2

r.m.s parameter error épz = [(OCU —OCT)Z +( 10 _BZ )2 +(B11 _BT)Z] h

Figure 3.5: Stacked Identifiers MRAC output error. (relative degree q =2)
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——  p1: Augmented parameter error|
— p2 MRAC parareter error

Figure 3.6: Augmented output parameter error pl and Stacked Identifiers MRAC output
parameter error p2. (relative degree q =2)

3.3 Stacked Identifiers MRAC of plants with relative degree greater than two

3.3.1. Reparameterization of the Unknown Plant
In this section, we extend the Stacked Identifiers MRAC to the general case, i.e., plants

of arbitrary relative degree q. Consider a plant with an input-output pair {u(.),y ()}

described by a transfer function

n—q

_N(s) _ b, s "+---+bs +b,
D(s) s"+a, 8" +a, 8" +--+as +a,

P(s)

, n=>2q>2

(3.3.1)

where b, s" +---+b;s+b, is a Hurwitz polynomial in s. The sign of the high
frequency gain b, is assumed to be positive, with a known lower bound

b >k

n—q lower

>0.

We will reparametrize the plant into a form suitable for the derivation of the identifier
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and the parameter update laws

Express (3.3.1) as

(s"+a, s""'+a, 8" +--+as +a, )y, =(b, s +--+bs +bj)u

(3.3.2)
Let the plant be parametrized by
1 * ~ * ~ * ~ * k* ~ * ~
Y, = m(aqflu(qfl) toau, e to Uy + Boyp + BIYPI teeet an1yp(n71))
(3.3.3a)
where A is a positive constant and
u A ! u, u=q-1,-,n-1 (3.3.3b)
P= s+ T o
y ! y, o=1--,n-1 (3.3.3¢)
pc= (S )\I)G p, & 9 . .

Coefficient matching of terms of like powers in s in (3.3.2) and (3.3.3a) gives the

relationship between the parametrized coefficients w and the original plant coefficients

Aw=z, A:{---L--} (3.3.4a)

where w,ze R A g REaDCrarh) DA g RO and A, e R™ are given
by

*

w q-1 OLq an—Z 0Ln—l BO Bl Bn—z Bn—l

I
R
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(3.3.4b)

H T
z:[bnq b, - b boianl—(j’)k anz—(g)kz al—(nnl)k‘” ao—(z)k“}

(3.3.4¢)

1
(
:( . )wl (3.3.4d)
(

A, = :o :1 2}% t“l)x“ (3.3.4e)

(H] are combination symbols employed in the expansion of
\Y

(s+x)“:s“+i((“jw]s“-x v=12,n (3.3.4f)
v=I1 v

which is used in the derivation of (3.3.4).

To re-write (3.3.3a) in a more compact form, let
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T
cp*g[af;_l o B, B*T] (3.3.50)
o - - - T
wAli, @y, 3, (3.3.5b)
T
Aol o] (33.5¢0)
* % * T
BA .. Bl (3.3.5d)
T
dAf,... T, (3.3.5¢)
~ . - T
YA [ypl"' yp(n—l)] (3.3.5%)

Then y, in (3.3.3a) can be expressed as

1 ( .~ VT . T )
yp=maq71u(q71)+a u +Boyp+B Yo

oW (3.3.6)
S+ A

For a relative degree of q, we need a total of q identifiers.

In accordance with the form of (3.3.6), Identifier #1 is constructed as

1 - - -
Ya = m(al(q—l)u(q—l) + OHTu + Bmyp + B1Typ)
|
= s+k(plw (3.3.7a)
where
[ ! gk
QA [0y @ Bo B (3.3.7b)
T
A oy o oy (3.3.7¢)
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B,A [Bn Bl(n—])] ' (3.3.7d)

Figure 3.7 shows a schematic diagram of Identifier #1.

1 x1 1
———Pp U —» Ju
| (quw 1(q-1 S+ A i
| } .
I ii :
| T T
[ 1 —> ¢ p [
. oy : L 5 |
| 0 'y * 10
| 5 p A |
I 1 1 :
: (s+)»)"—z (s+1) |
i I
| e 1 |
I (sery |
ey W IS .
Yo

Figure 3.7: Stacked Identifiers MRAC for Identifier #1.

As for the rest of the identifiers, Identifier #y (y =2,3,---,q) is constructed as

1 ~ ~ ~
Yo = Y (av(v—l)u(v—l) + aju +B0Yxgon + B;/FYX(}/—I))
| B
= S+7\,(PVWY (3.3.8a)
where
T T]"T
¢, A [ay(v—l) a, ByO By ] (3.3.8b)
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T
WYQ I:u(“lfl) u yx(yfl) YX(y—l)] (338C)

T
a Ao, .. o] (3.3.8d)
T
Bvé [Byl By(nfl)] (3.3.8e)
- . - T
yx(v—l)é [yx(y,m yx(yfl)(nfl)] (3.3.8f)
1

Yo —(s+x)“ Yo, O=1--n-1 (3.3.82)

The corresponding block diagram is shown in Figure 3.8.

S S —

1

s+ Y

|

|

|

|

|

! q
| (s+2.)0 N A
: : yx(q—l) f
I —

|

|

|

|

|

|

|

Y@

Figure 3.8: Stacked Identifiers MRAC for Identifier #q.

78



3.3.2. Parameter Update Laws for the Identifiers
Identifier #1

Define tracking error e, as

€AY, ~Yu
_s-il-k[( o T - 1))ﬁ(q n T ( - )j (B BIO (*T_Bl)y ]

(3.3.9)
Comparing (3.3.9) with (3.2.10) and following the same Lyapunov analysis as in

Section 3.2.2 leads to the following parameter update laws

0, if ge,,u<0 and o, ;) <Ky (3.3.10a)
Uiy =

ge ,u, otherwise (3.3.10b)
&, =ge,l (3.3.10¢)
B =geqy, (3.3.10d)
B =ge.d, (3.3.10¢)

which are similar to (3.2.14), with the exception of an additional update law for o, in
(3.3.10c). Choosing an initial condition for the adaptive parameter o, ,,(0) 2k,

will ensure

Ay (D 2Ky, >0, €20 (3.3.10f)
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Identifier #y (y=2,3,---,q)

Define tracking error e as

exvé Yxa-n ~ Yy

1

_ - _ T _ T _
Y (aw—l)(v—l) ay(v—l))ﬁw—l) + (aw—l) a, )ﬁ + (Bw—l)oyx(v—l) Bvoyxv)

+ (B<Ty—1>§’x<v—1> B,V )]
(3.3.11)
Comparing (3.3.11) with (3.2.19) and following the same Lyapunov analysis as in

Section 3.2.2 leads to the following parameter update laws

0,

if d(aw-lxv»n ~ Oy )+ geq, U+ 0y, <0 and o) <o, .,
Oy = (3.3.12a)

d(a(v-l)(v-l) ~ &y )+ geowﬁ + O.L(v—l)(v—l) >

otherwise (3.3.12b)
6, =dla,, —a,)+ge, T+, (3.3.12¢)
ByO = d(B(y-l)O - ByO )+ gCs,0Y (- T B(y—l)o (3.3.12d)
B, = d(Bw-l) -B, )+ geg, Vi +Bomn (3.3.12¢)

1 .

S (R (3.3.120)

=s+A

80



1
eﬁyOé S+ 7\, (B(V—l)o - ByO )yx(y—l) (3312g)

1 -
T Sy (R4 (3.3.12h)

which are similar to (3.2.19), with the exception of an additional update law for o, in

(3.3.120).
The choice of an initial condition for the adaptive parameter o, ,,(0) 2 a, ., (0)
will ensure

Oy (D = 0,y (>0, €20 (3.3.12i)

Figure 3.9 shows a schematic diagram of Identifier #1 ,..., Identifier #q.
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Y
- ey
+
l Y@
: Identifier #q-1 —

—P: : - €x(q-1)
| I
o } ______ }__________'! +

d Yx@2
L]
[ ]
L]
| Identifier #1 |
I a I
: : 1(q-1) . W 1 v

— T o > 1(q-1 S+ A ' .
| (s+12) |
! |
: i T T : - %
: | e ﬁl |

(s+n)° ~ |
: : ¥ Po ! A+
1 1 A |
I (s+A)~2 5+ I Yy
| 1 : |
: (s+2)" . |
| B |
e e e e e A J
y
u p
P P(s)
Plant

Figure 3.9: Stacked Identifiers MRAC for Identifier #1 ,..., Identifier #q.
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3.3.3. Control Law u(t)
The reference model has an input-output pair {r(.),y,(.)} and a transfer function M(s)
given by

K
Ym _ M(s)=— b - Zn (3.3.13)
r s+a ST a8 +ora s+ay,

m(q-1)
The above transfer function consists of two blocks in series as shown in Fig. 3.10.

Let the output of the first block be

rA—1 (3.3.14)

= s+ A4 g

Then, (3.3.13) can be rewritten as

Yo ___ qlfzm (3.3.152)

r, sT a8t T e sta,
or, in time domain,

Ko =Y da, Ly +a Y, +ay, (3.3.15b)
Define tracking error e as

e A (s +a, s 4ea, sta,, e, (3.3.16a)
where

€A Vg =Y (3.3.16b)
(Note thatif e >0, then e, >0 and y , —>Vy,)
Substituting (3.3.16b) and (3.3.15b) into (3.3.16a) yields

e= [yff]_” +a, oY Fea Y, + amoqu]— k., (3.3.17)
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Choose a Lyapunov function candidate

V:le2 >0
2

A control law is now to be devised in order to make

V =eé = —ke?

negative definite. This will be achieved by making

e=-ke, k>0

(3.3.18)

(3.3.19)

(3.3.20)

through the use of an appropriate control law to be derived as follows:

From (3.3.17), the derivative of e is given by

(q)

S (q_l) . . .
€= [qu + am(q—Z)YXq +- .aml}qu + amOqu]_ kmrx

(q)

The next step is to find an expression for y .

From (3.3.8a), displaying the U,  term explicitly, we have

qu = OLq((rl)u((rl) +rxq

where

(3.3.21)

(3.3.22a)

LA Oy Uy + o+ Oy Uy +BooY xqon + 77+ Pynon Yxig-vin-n ~ Mg

(3.3.22b)

Successively differentiating (3.3.22a), gives the v" derivatives of Y

v—1
v-1 ( (v=i-1) o )
V) _ ~ (i) (v-1)
Y = Z( : j A1) Ug-1 + g

i=o\ 1

b

v=L12,---,q

a-! -1
Letting v =q and utilizing (!} = —([ ((q j?uv js(‘”” jﬁ(qn
v=1 v
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and (3.3.4f) yields

y;? = Oy U 95:‘11) (3.3.24a)
where
q-2 _1 L ) q-1 _1
N q (@D~ _ q v Dev |~
yX?J)é ( i ](aqm—l) ! ugq)—l))+ r;g Y ERLTICE) [[ (( v Jx }(q ) ju(q_l)}
i=0 v=l1
(3.3.24b)

After y(x‘;) is found as in (3.3.24), the expression for ¢ in (3.3.21) becomes

& =otgqut 99 +a, 0y 9 Heay, Yo F A —kaf,  (33.25)
Next we substitute ¢ = —ke from (3.3.20). The result is

—ke = [ty U+ 9 Fay Y A Y F Y] —Knh (33.26)
Since our objective is to design a differentiator-free controller, replacing the derivative
terms §/§?]), y;‘;—“,-~-,qu and 1, in (3.3.26) with (3.3.24b), (3.3.24a) and (3.3.14),

respectively, gives the control law

u(t) =— —ke, >0,k>0

Qgq-1)
q(q-1)

(3.3.27a)

where



ot (0 T + 1 )~ K (=21, ) (3.3.27b)

q(q-D

Note that division by zero in (3.3.27a) will not occur because (3.3.10f) and (3.3.121)

guarantee that o, = 22 0y 2 Ky > 0. Also note that the signals

(q-D(q-1) = lower

q(q-1

~(q-2)

g9 ...,4 and "

«  can be obtained without actual differentiation because they are
outputs of proper stable transfer functions with bounded inputs as shown in (3.3.3b). As

for the derivatives of the adaptive parameters, they can be replaced by their respective

adaptive laws, thus dispensing of the need of differentiations.

Thus, with V in (3.3.19) being negative definite, the equilibrium state e = 0 is globally
asymptotically stable, 1.e. eis bounded and e -0 as t — 0.
Consequently, from (3.3.16a) and (3.3.16b),

ey 2> 0andy, >y, (3.3.28)
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Reference Model :

r k |
r 1 X m
— >
a-1 q-2
m(q - 1) m(g — 2)

S —

Identifier #q
L o

i
|
—
: (s+2) s+
' f
! ﬁ T T
| a
o e Y
| (s+2)
[ : Yx@-1 ? 4
T Ll 1
! (s+2)™2 i
| 1 (s+1)
| (s+2)"!
! 1
L <f__ —_———— ] —t————— -
Yx@
: Identifier #q-1 ?
> : V- &a@n
: o
e * - _f ——————————— ! A+
@ Yx@-2)
L]
L]
L]
r———-—- T TS T oSS
| Identifier #1 :
|
|
| 1
L > ! Yxi
! s+2) ! I !
| |
| I S
| | + —
| (s+2) | (
| : | A+
1 : . |
: war | Y
i |
: (s+2.) L |
| ) |
b e A __________________ a4
y
u P
Control Law .
(3.3.272) B Pls)
Plant

Figure 3.10: Stacked Identifiers MRAC for an n™ order plant of relative degree q > 2
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3.3.4. Boundedness of All Signals in the Entired Feedback System
With reference to the entire adaptive control system in Figure 3.10, the following

signals have been shown to be bounded:

From the analysis of Identifier#l,---,Identifier#q: e, =-,€,, Oy "0

T T T T
o, e, 0, s, By and Bl oo, Br
From the analysis of the control law: e and ¢,

From the reference model: r and y

The signals that remain to be shown bounded are, in appropriate groups:

Boundedness of y , ¥ . ¥ ) and ¥, ¢

mg> €xq and it

Since y,_, e -,e,, are bounded, it follows from (3.3.11) and (3.3.9)

that y,,---,y,, and y, are bounded.

~ ~ ~ ~ ~ . . (q) . . ()
Boundedness of ¥, V.. yq> Yair > Yxiany o Ixs Yoo Yers €,€ -2,

@ @ .

Cing>Cmg> "> C€mg AN Y (5 V(5 Vg -

(q)

The signals ¥, V.. ¥qns Yar> Vx> L, and y .-y " are outputs of

“proper” stable transfer functions with bounded inputs. Hence they are bounded. Also,
from (3.3.20), we see that ¢ ,é ,---,e® are bounded. It follows from (3.3.16a) that the

(@

€ g Co . Consequently, from (3.3.16b), y,..¥,.-»ye are

same is true of ¢ €ng> "> Cmq -

mq ?
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bounded.

Boundedness of Uy Uggys > Uy Ty Uyl s €05 €00 Yoo Vi Ve

and W, -, W, ¢

With bounded Vg eliminating ﬁq,---,ﬁ(nfl) from (3.3.3b), and (3.3.22) gives the

boundedness of U, ,, because all other variables in the resulting equation are bounded.

After we establish the boundedness of U the boundedness of U, --, U, and U

(g-1)° (@

follows. Furthermore, the signals i (q_l),~--,ﬁ 1y are outputs of “proper” stable transfer
functions with bounded inputs U, , . Hence they are bounded. Next consider the signal
€,; in (3.3.9). It is bounded because U, y, and Yy, are bounded. In a similar fashion,

the boundedness of ¢,,:--,é,  can be established. Finally, y ., ,---y,, ¥, are also

bounded due to the boundedness of y and ¢, --,¢, . The signals w ,---,w  in

Figure 3.10 are composed respectively of a sum of bounded signals, and are therefore

bounded.
. . - T - T A 3 35T 35T .
Boundedness of Oynys™ "> Ogiqnys O s ts Oy s Blo,---,qu, B, ,---,Bq and f,:
. . . . T - T . )
The boundedness of the variables Oygrys" > Ogqnys Opst >0y BIO"“’BqO and

Bl.--.B: as given in (3.3.10) and (3.3.12) can be seen through the substitution of all

occurring derivative terms by their respective adaptive laws. For example, o, In
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(3.3.12a) has the derivative term o - It can be substituted with & .
= 2€4(q-1)U + 0y 2 q.1)» Which is the adaptive law in Identifier #(q-1). Consequently, f,,

(as obtained from 3.3.22b) is also bounded. Note that by following the above procedure,
we can also demonstrate the boundedness of any derivative term of an adaptive

parameter up to the g-th derivative.

(@)

Boundedness of 'yp,~--,yp u and m:

The boundedness of u is established from (3.3.1) if one can show the boundedness of
Yoo Vs Voo ¥ . This is demonstrated as follows. Substituting (3.3.3b) and (3.3.1)

into (3.3.22a) to give

e L(D® T,
Ysa = %qa-n) As) N(S)yP xq

Dividing A(s)N(s) into D(s) yields

- . L8+ 8" L
Vi = aq(q_l)(yp +&,,Y, + 2 k(s)l\;(s) 0 Y, [+1 (3.3.29)

Differentiating (3.3.29) once gives

Cn—zsn_2 "’Cn—3sq_3 +-C, ]
Yo

.qu = dq(ql)[S’p + (tOnfl}Ip + K(S)N(S)

£, 8" 2+, 8" +C, . '
A(S)N(s) yp]""rxq (3.3.30)

+ Ocq<q71) [yp + é;nflyp +

Since qu, dq(qfl), Yoo yp and fxq have been shown to be bounded, yp 1s bounded.
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Using the same approach, differentiating (3.3.29) twice will leads to the boundedness of

Y, - Continuing on in this fashion would lead to the boundedness of

i,y . With the boundedness of u, the boundedness of m is assured from

(3.3.27a). In conclusion, all systems in the overall system are bounded.

3.3.5. Convergence of the Tracking Errors
The discussion of the convergence is exactly the same as that in Section 3.2.5 and is

omitted.

3.3.6. Simulation Studies

We include a simulation for the case of q =3 (Simulation 3) which has not been done

in the literature.

Simulation 3.3.1: 3" order Stacked Identifiers MRAC
The data for the simulation are as follows.

s+1 1
P(s) =—F—————, M(s) =
® st +3s% —s” ® (s> +2s+1)s +1)

r(t)=1
rA=1,g=2,¢e,=y,-Y,

The initial conditions for the adaptive parameters are chosen in accordance with

(3.3.10f) and (3.3.121), in this case:
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a,,n0)=-=a,,0) =12k, (K, istaken to be 0.01)

B =-=P,,,,(0)=0

Figure 3.11: Stacked Identifiers MRAC output error. (relative degree q =3)

Discussion

Figure 3.11 shows the simulation for the case of relative degree q =3, which has not

been reported in the current literature. It is seen that the transient response of the

tracking error is also small.
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CHAPTER 4

CONCLUSIONS

4.1 General Conclusions

In this dissertation, a new adaptive control scheme (referred to as the Stacked

Identifiers model reference adaptive control) is proposed for controlling a single-input

single-output, linear time-invariant plant containing uncertain parameters. The scheme

incorporates a total of q (q being the plant relative degree) layers of identifiers in the

control. Each identifier mimics the structure the plant directly, so that the control

adaptations deviates less from the true plant values than other conventional methods

(which adapt in such a way that the transfer function of the entire control loop matches

that of the reference model). To achieve this, we adopt the following steps:

1.

Reparametrize the unknown plant into a form so that an identifier can be
constructed.

Choose an identifier and a parameter update algorithm such that the plant output
asymptotically tracks the identifier output.

Design a control law to make the identifier output asymptotically track the
reference model output. That means output of plant will track reference model
asymptotically.

Give proof that all states generated are bounded.

Give proof that all tracking errors are converged.
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The Stacked Identifiers MRAC design method is much superior than the existing
augmented output error method as far as transient response is concerned. Simulations
for the cases of q=2 and q =3 are given to demonstrate the effectiveness of the
method. In conclusion, this work introduces an adaptive framework, which is
completely different from existing ones and which produces much smaller transient

excursions from the desired output response.

4.2 Future Research

We have developed only a fundamental theory for identifier-tracking MRAC. There
remains much to do. On the basis of its structure, some future works are as follows:
e Extension of the continuous time schemes to the discrete time case.
e Extension of the single-input single-output plants to multi-input multi-output
plants.
e Design a real-time system parameter identification algorithm.
e Robustness in the presence of unmodeled dynamics, time-varying parameters,
and other perturbations.
e Relaxing assumptions.

e Implementations and applications.
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