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ABSTRACT

INTEGRATED NURSE STAFFING AND ASSIGNMENT UNDER UNCERTAINTY

Publication No.

PRATTANA PUNNAKITIKASHEM, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Jay M. Rosenberger

One of the major problems in the United States health care system is a shortage

of nurses. Baby boomers and an increasing elderly population are the main reasons for

a rapidly growing demand for nurses. Besides the decline in enrollments in registered

nurse degree programs, many nurses have suffered from work burnout. High workloads

and undesirable schedules are two major issues that cause nurses’ job dissatisfaction. As

a result, nurses plan to leave their jobs causing low retention and low entering rates.

One consequence of the shortage is that excessive workload on nurses decreases the qual-

ity of patient care. Many states have seriously considered taking actions to cope with

the shortage to ensure patient safety, e.g., California has regulated mandatory nurse-to-

patient ratios. To satisfy patient care demands, hospital administrations are obligated

to employ other expensive staffing resources, such as part-time nurses, agency nurses,

overtime nurses, etc. Since nurse staffing costs account for over 50% of hospital expendi-

tures, health care costs are continuously increasing driven by an ongoing severe shortage

of nurses. Consequently, the nursing shortage will become more severe and nurse staffing

has become one of the most attractive research areas.

We describe four phases of nurse planning, which are nurse budgeting, nurse schedul-

ing, nurse staffing, and nurse assignment. The first part of this dissertation considers
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only the last phase of nurse planning, which makes daily decisions on assigning nurses

to patients. With nurses from the nurse staffing phase, a charge nurse assigns nurses

to patients at the beginning of a shift. To capture uncertainty in patient care, we de-

velop a stochastic integer programming model for nurse assignment with an objective to

minimize excess workload on nurses. The problem is solved using a Benders’ decompo-

sition approach, whose master problem assigns nurses to patients, and whose recourse

subproblems penalize the assignment and determine excess workload on nurses. The

recourse subproblems can be considered as network flow problems, in which we develop

a new greedy algorithm to solve them. When hospital units have new hires, there is no

sufficient data to consider them unique. A symmetry problem may arise when there are

identical nurses, which leads us to construct sets of valid inequalities to strengthen the

restricted master problem. We develop sets of valid inequalities to prevent symmetric

assignments, which eventually reduce the computational effort. In addition, we develop

a set of valid inequalities representing the nurse-to-patient ratio to ensure patient safety.

These valid inequalities not only enhance the algorithmic performance, but also prevent

illegal and impractical assignments.

The second part of this dissertation focuses on an integration between the third and

the last phases, which makes short-term decisions (90 minutes before a shift) on staffing

and assigning nurses to patients. We present a stochastic integer programming model for

integrated nurse staffing and assignment with uncertain patient care with an objective

of minimizing excess workload on nurses. We present three decomposition approaches

based on the L-shaped method for solving our model, which are (1) Benders’ decompo-

sition, (2) Lagrangian relaxation with Benders’ decomposition, and (3) nested Benders’

decomposition. The Lagrangian relaxation with Benders’ decomposition approach can

be viewed as a novel search method for bicriteria stochastic integer programs.

Computational results are provided based upon data from two medical-surgical

units at Northeast Texas hospital. The focus of this dissertation is to find good solutions

within 30 minutes. Results suggest that the hospital can save up to 1588 hours of
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excess workload each year in each unit by using our stochastic programming for nurse

assignment model. The greedy algorithm for the network primal subproblem is 30 times

faster than the current commercial network simplex solver (CPLEX 9.1). Moreover,

integrated nurse staffing and assignment results indicated the Lagrangian relaxation with

Benders’ decomposition approach provided the most promising results among the three

methods. Considering our model as two-stage stochastic programming results in better

nurse schedules and assignments than those from three-stage, meaning that it is more

beneficial to perform nurse staffing and assignment simultaneously. The nurse staffs and

assignments found by these methods can be used in a nurse staffing decision supporting

system, which facilitates a nurse supervisor to select a nurse staff and assignment based

on a tradeoff between staffing cost and excess workload on nurses. Moreover, a nurse

supervisor can also use our model to evaluate a float assignment. Our model allows

decision makers to play important roles in utilizing their judgments to comply the right

staffing policy. Furthermore, topics of future research are discussed. Finally, a nurse

assignment decision supporting tool based on our underlying model is provided in the

appendix.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Nurse Planning

One of the greatest problems in health care today is a shortage of nurses. The

demand for nurses is growing, while fewer young nurses are available to provide care.

There were 118,000 vacant positions for Registered Nurses (RNs) in April 2006 [8]. A

survey by the American Hospital Association found that 75% of vacant hospital staffing

positions are for registered nurses [64]. Baby boomers [8] and an increasing elderly

population, who requires a substantial amount of health care, are the main reasons for

a rapid growing demand of nurses [100]. The number of citizens over 65 years old is

expected to be 70 million in 2030, more than twice that of 1999 [1] and they need more

health care services. Despite the current situation, the enrollments in registered nurse

degree programs declined by 50,000 nurses from 1993 to 2001 [64]. The number of nurses

per capita declined by 2% from 1996 to 2000, while the attrition rate of hospital nursing

staff grew from 11.7% in 1998 to 26.2% in 2000 [45]. With fewer new nurses entering the

profession, the average age of the working registered nurse is increasing [26]. From 1983

to 1998, the number of nurses under 30 years of age decreased by 41% [64]. Moreover,

more than 40 % of nurses in the United States have suffered from work burnout and one-

fifth of all nurses planned to leave their job within next year [6]. Due to the current low

retention and low entering rates of nurses, the health care industry will need more than

1.2 million new and replacement nurses by 2014 [49]. Consequently, the shortage will

become more severe. Buerhaus et al [26] predicted that by 2020 the United States will

face a 20% shortage in the number of nurses needed in the nations health care system.

The nursing shortage has a direct effect on patient care. The National Survey

on Consumers’ Experiences with Patient Safety and Quality Information Consumers

1
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showed that the most important factors contributing to medical error are workload,

stress, and fatigue of health professionals (74%); not enough time spent with patients

(70%); and not enough nurses in health care systems (69%) [97]. A study by the Agency

for Healthcare Research and Quality reported that nurses spend insufficient time with

patients in hospitals with low staffing levels [94]. Powers [80] observed that excessive

workload enhances poor quality of patient care. Patients with insufficient care have

higher failure-to-rescue rates and risk adjusted 30-day mortality when they are cared for

by nurses with too many assigned patients [5]. The nursing shortage not only affects

patients, but it also has a significant impact on the quality of nursing work. Having

received too many patients, nurses are more likely to suffer from job dissatisfaction and

burnout [5]. One way to ease the burden of nursing shortage and improve the quality of

nursing work is to balance the workload of nurses or reduce the excessive workload on

nurses.

Nurses work in a variety of environments including hospitals, clinics, private doc-

tors’ offices, nursing homes, and individual homes. Nurses have a major responsibility to

deliver care to patients in hospital units. Hospitals in the United States employ two types

of nurses—registered nurses (RNs) and licensed vocational nurses (LVNs). We describe

the four phases of nurse planning in Section 1.1.1 - 1.1.4.

1.1.1 Nurse Budgeting

The total cost expenditures of health care in the United States were nearly $2

trillion in 2004 [7], and expected to be $4 trillion by 2015 [47]. Nursing accounts for the

largest portion of a hospital budgeting (over 50% as a whole) [60]. Consequently, nurse

budgeting become an important issue for every hospitals and health care providers. In

the nurse budgeting phase, financial planners create an annual budget and determine the

number of nurses they will hire as full-time regular nurses, part-time nurses, and nurses

from an agency. In general, they makes planing decision to satisfy cost control, predicted
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patients care, and regulations by nursing union such as weekends, week offs, holidays,

sick leaves, vacation packages policies.

Warner [103] implemented a Markovian analysis to forecast nursing personnel for

general wards of a hospital. Kao and Tung [58] predicted patient demands over a year by

an autoregressive integrated moving average forecasting method. Dieck [39] compared

the Box-Jenkins modeling and the Winters’ heuristic approach for forecasting patients

admission to public health facilities. Trivedi [98] developed a mixed integer goal program-

ming model to optimize an annual budget for nurses. Kao and Queyranne [57] showed

that a single-period demand estimate provided good approximation to the nursing bud-

get for a hospital nursing unit. Martel and Ouellet [65] applied stochastic programming

to allocate the budget of a nursing unit to different types of nurses.

1.1.2 Nurse Scheduling

The second phase of nurse planning is nurse scheduling or nurse rostering. A nurse

manager forecasts the number of patients that will enter a hospital unit over four to six

weeks. Based upon the forecasted number of patients, the manager uses a census matrix

to determine the number and level of nurses needed. When the number of nurses of each

type is known, a schedule is created that partitions a day into shifts that are typically

8 or 12-hours in length. Typically, the manager posts a schedule two weeks before the

beginning of the time horizon. Nurse scheduling can be classified by a time horizon in

which decisions are made [28]. We refer to nurse rostering as the mid term (several

weeks) allocation of nurses to a working time period. Most nurse rostering literature

can be found in Burke et al. [28], Cheang et al. [33], and Sitompul and Randhawa

[91] providing nurse rostering survey papers. They summarized the overview of the

nurse rostering model and the solution methodologies from the 1960’s until 2004. Nurse

rostering models and solution approaches included linear and integer programming [2,

42, 52, 55, 66, 67, 68, 84, 99, 104, 105, 106], goal programming/multi-criteria approaches

[10, 11, 18, 29, 34, 44, 54, 71, 78, 79], artificial intelligence methods [34, 63, 74, 75, 87],
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heuristics [9, 23, 61], and metaheuristic, i.e., simulated annealing [24, 53], tabu search

[27, 40, 41], genetic algorithms [3, 4, 30, 59]. Because these algorithms only consider the

nurse budgeting and scheduling phases, they ignore changes in staff and patient forecasts

and assume the schedule will be followed as planned. Anecdotal evidence suggests that

changes to the schedule are frequent, so intelligent planning models to reschedule nurses

will dramatically improve nurse planning.

1.1.3 Nurse Staffing

The third phase of nurse planning, nurse staffing, involves revising the set of nurses

scheduled for a shift. The nurse staffing process occurs 90 minutes before each shift. A

nurse supervisor reviews the scheduled nurses based upon the activities of the previous

shift, activities of other units, the patients in the emergency room, and either a census

matrix or a patient classification system. If there is a shortage of nurses for the upcoming

shift, the supervisor tries to recruit additional nurses who work as needed–PRN nurses,

nurses who work part time–part-time nurses, and nurses who are not scheduled for the

upcoming shift–off-duty nurses. If an insufficient set of nurses agrees to work the shift,

the supervisor, upon approval from a nurse manager, hires temporary agency nurses to

satisfy the remaining shortage. If there are too many scheduled nurses for the shift than

needed, then the supervisor has surplus PRN nurses and part-time nurses take the day

off without pay.

Patient classification systems are the most sophisticated technology for nurse reschedul-

ing. These systems group patients into one of several categories. They estimate how many

times certain tasks will be performed in caring for a patient in each category. Using these

estimates and the expected time required to perform each task, the systems determine

the amount of time to care for a typical patient. As patients are admitted into the

unit, the system classifies these patients, and nurse supervisors use the estimated patient

care to determine how many nurses are needed for the shift in nurse rescheduling. As

a patient’s condition changes, he may be given a new patient classification. Although
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patient classifications systems provide benchmarks for nurse planning, they have several

drawbacks as described in Section 2.3.

Nurse staffing has a direct impact on a nurse-to-patient assignment, nurse work-

load, and the quality of care for patients [5, 62]. Survey papers on nurse staffing and

patient outcomes can be found at Lankshear et al. [62] and Curtin [35]. Lankshear et

al. [62] summarized a relationship between nurse staffing and patient outcomes including

mortality rates, failure to rescue, and complications. Hall et al. [48] presented nurse

staffing models as predictors of patient outcomes and revealed a relationship between

the mixture of nursing staffs and patients’ self-reported outcomes. Curtin [35] suggested

nurses can prevent patient complications by spending more time with patients. Accord-

ingly, many states have seriously considered taking actions to cope with the shortage to

ensure patient safety, for instance, Senate Bill 71, Registered Nurse Safe Staffing Act of

2005 requires a minimum number of registered nurses (RNs) on each shift in each unit

to ensure the suitable staffing levels to provide patient care [93, 107]. California was the

first state to regulate mandatory nurse-to-patient ratios [25, 31]. White [107] summa-

rized minimum nurse-to-patient ratios and nurse staffing plans mandated to many states

across the country. However, the relationship between the staffing ratios for registered

nurse and patient care has not been investigated in the literature [16]. Cost effectiveness

and several nurse-to-patient ratios were examined, and nurse staffing ratios of 1:4 was

cost-effective to patient safety [85]. Behan [16] studied the effects of staffing ratio, patient

diagnoses, direct and indirect nursing care time, and nurse level of education on week-

end versus weekday staffing. Recently, nurse researchers addressed their concerns about

nursing staffing in the near future [46]. The success of rescheduling in other industries,

and challenges for nurse staffing were mentioned in Gardner and Gemme [46].

According to the optimization literature, most research on nurse staffing has emerged

recently. Warner et al. [104] addressed a need for short-term staffing when nurses’ un-

expected absences occur. Abernathy et al. [2] integrated nurse scheduling and nurse

staffing. Siferd and Benton [90] developed a stochastic model based upon the patients in
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a unit to determine how many nurses are required for the shift. Nevertheless, the different

sets of skills among the nurses are ignored. Bard and Purnomo [13, 14, 15] presented de-

terministic integer programming models for daily nurse rescheduling, one of their papers

[14] considered nurse rescheduling with nurse preference and implemented a branch-and-

price algorithm to solve the problem. Moz and Pato described a nurse rerostering as a

multi-commodity flow problem with an objective to minimize the difference between the

original and new schedules [68]. They also constructed a genetic algorithm to cope with

this problem [69]. Vericourt and Jennings [38] employed a queuing model to investigate

nurse-to-patient ratios mandated by California and they proposed two heuristic staffing

policies. They also described that hospitals with no nurse-to-patient ratio policy can

provide consistently good quality of care for every units. Wright et al. [110] developed a

bicriteria nonlinear integer programming model to evaluate the impact of nurse-to-patient

ratios on schedule cost and nurses desirability.

1.1.4 Nurse Assignment

In the final phase of nurse planning, nurse assignment, a charge nurse assigns each

patient to a nurse at the beginning of a shift. Typically, the nurse assignment has to be

performed within 30 minutes before a shift. Although the charge nurse may update an

assignment, in many hospital units, such as medical-surgical units, revised assignments

only include assigning a nurse to a new admission; rarely is a patient reassigned a new

nurse during the middle of a shift. Consequently, the initial assignment can determine

the amount of workload given to each nurse during the shift. A nurse’s workload is the

amount of time required to care for her patients over a time period, and excess workload

is the difference between the workload and the time available for care. In reality, excess

workload results in other nurses assisting overworked nurses. One important considera-

tion in nurse assignment is workload balance.

Developing balanced workloads for nurses is difficult because of the variation of

patients’ conditions [70]. In practice, most nurse assignments are based upon either
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an intuitive judgment or the caseload method, in which each nurse is assigned the same

number of patients [88]. Modern patient classification systems partition the set of patients

into groups, and each group is assigned to a nurse [77]. Walts and Kapadia [102] presented

a patient classification system and optimization model to determine the level of staffing

to meet the required workload level, but they did not use a detailed nurse assignment

model. Mullinax and Lawley [70] developed an integer linear programming model that

assigns patients to nurses in a neonatal intensive care unit. The nurseries are divided

into a number of physical zones. They used a zone-based heuristic that assigns nurses

to zones and computes patient assignments within each zone. Rosenberger et al. [83]

presented an integer programming to assign nurses to patients. These approaches and

patient classification systems ignore uncertainty, which is a major drawback considering

the enormous variance in patient care. Punnakitikashem et al. [81] developed a two-stage

stochastic integer programming model for a nurse-patient assignment that considered

uncertainty in patient care. The model objective was to minimize excess workload for

nurses. Punnakitikashem et al. [82] presented the nurse assignment decision supporting

tool based on the optimization model and they reported positive feedbacks from users.

Sundaramoorthi et al. [96] presented a simulation model from real data to evaluate nurse-

patient assignments.

1.2 Overview of Stochastic Programming

Stochastic programming is a mathematical technique that has been widely used

for many years in a variety of areas for including uncertainty within decision making

models. It was first introduced by Dantzig [36] in 1955. General background can be

found at Birge and Louveaux [22] and Kall and Wallace [56]. Stochastic programming

has been employed into broad areas of applications, for example, finance, manufacturing,

telecommunications, transportation, logistics, airline operations, capacity planning, and

many more. Recent references on applications can be found at Birge [21] and Wallace

and Ziemba [101].
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We present the simplest formulation of a stochastic programming, namely, a two-

stage stochastic linear programs with fixed recourse in Section 1.2.1. In the first stage, we

solve the first-stage linear programming problem to obtain the first-stage decisions, which

are decisions made without full information on some random events. When we obtain

an information on the realization of some random vectors, we solve the recourse problem

or the second-stage linear programming problem to receive the second-stage decisions or

the corrective actions.

1.2.1 Two-Stage Stochastic Linear Programming with Fixed Recourse
Formulation

The two-stage stochastic linear programming with fixed recourse can be formulated

as:

min cT x + Eξ

[
min q(ω)T y(ω)

]
, (1.1)

subject to

Ax = b, (1.2)

T (ω)x + Wy(ω) = h(ω), (1.3)

x ≥ 0, (1.4)

y(ω) ≥ 0. (1.5)

where x ∈ Rn1 is the vector of first-stage decision variables. y ∈ Rn2 is the vector

of recourse or second-stage decision variables. c ∈ Rn1 is the known objective coefficient

vector of x. A ∈ Rm1×n1 is the known first-stage linear constraint matrix with the known

right-hand side vector b ∈ Rm1 . ω represents random events. With the right-hand side

matrix h(ω) ∈ Rm2 , T (ω) ∈ Rm2×n1 (W ∈ Rm2×n2) is called the technology matrix

(recourse matrix), and it is the second stage linear constraint matrix associated with x

(y(ω)). q(ω) ∈ Rn2 is an objective coefficient matrix of vector y(ω). ξ ∈ Ξ is a random

vector representing each scenario ξ with realizations ω. Ξ ∈ RN is a support set of the
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random vector ξ where N = n2 + m2 + (m2 × n1). Eξ is expectation with respect to the

scenarios ξ ∈ Ξ.

To simplify the problem and computation, we assume W is fixed here. The objective

of the model is to minimize current cost and the expected value of future corrective

actions. The first-stage decision variables x are first made. After random events ω ∈ Ω

are realized, problem data h(ω), q(ω), and T (ω) in the second stage problem are known.

Then, the second-stage decision variables y(ω) or recourse actions are taken. Note that

P{ξ ∈ Ξ}, the probability of all random vectors that have finite support is equal to

one. One example of extensions of this above model is a two-stage stochastic integer

programming, where the first stage or second stage decision variables are restricted to

be integers. Theoretical properties and algorithmic solution approaches for stochastic

programming have been extensively studied [22].

Many solution methodologies in literature like decomposition, Lagrangian-based,

and other direct methods using a particular structure are applied to solve stochastic

programming problems. It is well known that two-stage stochastic programming with

recourse can be solved by decomposition, which is described in Section 1.3. Literature

survey on stochastic programming computational implementations is included in Birge

[21].

1.3 Overview of Decomposition

The difficulty of stochastic programming is the computation of the recourse prob-

lem. As the number of realizations increases, the size of the recourse problem becomes

larger resulting in computational intractable problems. In general, the recourse problems

are linear programming problems. One way to handle the large-scale linear programming

problem is to take advantage of problem structures. The large problem with appropriate

structure can be separated into one general problem, called the master problem, and

many small problems, called the subproblems. The systematic procedure will solve and

pass the information between the master problem and the subproblems until either the
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optimal solutions are found or the terminating criteria is reached. The decomposition

principle helps to solve the large problems efficiently.

The decomposition approaches are decided based upon the appropriate structure

of the problems. The general idea can be presented as the following cases:

Case 1: The problems contain the complicating or excessive constraints. We decompose

the constraints into the subproblems and solve them separately. The constraint is added

to the master problem when it is violated by current solutions.

Case 2: The problems contain the complicating or excessive variables. We decompose

the variables into the subproblems and solve them separately. When there is a variable

(column) which can improve the objective function value by having negative reduced

cost, the variable is generated and added to the master problem.

We briefly describe two famous decomposition methods for large-scale linear pro-

gramming problems, which are Dantzig-Wolfe decomposition and Benders’ decomposition

in Section 1.3.1 and 1.3.2, respectively.

1.3.1 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition was introduced in 1960 [37]. The block angular struc-

ture problem with complicating or an excessive number of constraints is appropriate for

Dantzig-Wolfe decomposition. Figure 1.1 depicts the block angular problem structure

for this approach. The constraints of problems can be categorized into easy and hard

constraints. We separate a linear programming problem into the master problem and

the subproblems. Dantzig-Wolfe decomposition works best when the subproblems can

be solved efficiently.

The general form of linear programming can be written as the following:
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Figure 1.1. The block angular structure for the Dantzig-Wolfe decomposition.

max cT x, (1.6)

subject to

A′x = b′, (1.7)

A′′x = b′′, (1.8)

x ≥ 0. (1.9)

where x ∈ Rn1 is a decision vector with the objective function coefficient vector

c ∈ Rn1 . A′ ∈ Rm1×n1 (A′′ ∈ Rm2×n1) is a linear constraint matrix with right-hand

side vector b′ ∈ Rm1 (b′′ ∈ Rm2). Let constraints (1.7) and (1.8) be hard and easy

constraints, respectively. We maximize the objective function (1.6) subject to constraint

sets (1.7)-(1.8). The linear programming problem (1.6)-(1.9) can be rewritten as:

max cT x, (1.10)

subject to

A′x = b′, (1.11)

x ∈ {x|A′′x ≤ b′′, x ≥ 0}. (1.12)

By the Minkowski’s theorem, the polyhedron can be represented in term of extreme

points and extreme rays. Let K and J be sets of extreme points and extreme rays, respec-

tively. For each k ∈ K, let xk be an extreme point. For each j ∈ J , let rj be an extreme
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ray. For a polyhedron x ∈ {x|A′′x ≤ b′′}, let x =
∑

k∈K λkx
k +

∑
j∈J µjr

j,
∑

k∈K λk =

1, λk ≥ 0,∀k ∈ K, µj ≥ 0,∀j ∈ J. By substitute x into (1.10)-(1.12), the reformulation

or the master problem can be written as follows:

max
∑

k∈K

λkc
T xk +

∑
j∈J

µjc
T rj, (1.13)

subject to

∑

k∈K

λkA
′xk +

∑
j∈J

µjA
′rj, ≤ b′, (1.14)

∑

k∈K

λk = 1, (1.15)

λk ≥ 0 ∀k ∈ K, (1.16)

µj ≥ 0 ∀j ∈ J. (1.17)

The subproblem can be written as:

max(cT − yA′)x, (1.18)

subject to

A′′x = b′′, (1.19)

x ≥ 0. (1.20)

In Dantzig-Wolfe decomposition, the number of constraints is reduced at the ex-

pense of large number of extreme point and extreme ray variables. Given that the number

of column in the master problem is large, we can employ the delayed column generation

algorithm to handle it. We can solve the linear programming problem (1.6)-(1.9) by

using the Dantzig-Wolfe decomposition algorithm described in Algorithm 1. First, we

solve the master problem. Its dual multiplier information is passed to the subproblem.

The subproblems are then solved for the extreme points and extreme rays. If the ex-

treme point or extreme ray have promising reduced cost, then the column is added to the
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master problem to improve the objective function. Otherwise, the algorithm terminates

and the optimal solution is obtained.

Algorithm 1 Dantzig-Wolfe Decomposition Algorithm.

Consider a subset of extreme points K ⊂ K, and extreme rays J ⊂ J .

STOP ← FALSE .

while STOP = FALSE do

Solve the master problem (1.13)-(1.17).

Solve the subproblem (1.18)-(1.20) to find additional extreme points (K̃) and ex-

treme rays (J̃).

if no more extreme points and rays are found then

STOP ← TRUE .

end if

Add new extreme points to K ← K ∪ {K̃} and extreme rays to J ← J ∪ {J̃}.
end while

1.3.2 Benders’ Decomposition

Benders’ decomposition was developed in 1962 [17]. It is appropriate for the block

angular problem structure with complicating or excessive number of variables. This

problem structure is displayed in Figure 1.2. Benders’ decomposition can be view as

applying the Dantzig-Wolfe decomposition to the dual problem. The general idea is it

reduces the number of variable by employing the delayed constraint generation procedure.

In Benders’ decomposition, we separate a problem into two simpler problems,

namely, the master problem and the subproblems. The master problem or the first stage

problem contains a portion of original variables and their associated constraints. The

subproblems or recourse problems (for stochastic programming problem) are the remain-

ing problem with fixed first stage variables. We first solve the master problem. Given the
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Figure 1.2. The block angular structure for the Benders’ decomposition.

master solution, the original problem decomposes into many manageable size subprob-

lems. Benders’ decomposition works best when the subproblems are easy to solve. In

general, the subproblems decompose by the number of scenarios. Each recourse problem

penalizes the solution from the master problem. Benders’ decomposition is an iterative

procedure, which passes information back and forth between the master problem and the

subproblem until an optimal solution is found.

Consider the following linear programming formulation:

z = min cT x + hT y, (1.21)

subject to

Ax + Gy ≥ b, (1.22)

y ∈ Rn2
+ , (1.23)

x ∈ X ⊆ Zn
+. (1.24)

where x ∈ Zn1
+ (y ∈ Rn2

+ ) is the decision variable with linear objective coefficient

vector c ∈ Rn1 (h ∈ Rn2
+ ). A ∈ Rm1×n1 and G ∈ Rm1×n2 are linear constraint matrices

with the known right hand side vector b ∈ Rm1 . The problem (1.21)-(1.24) is equivalent

to the following problem:
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z = min cT x + η(x), (1.25)

subject to

Ax ≥ b, (1.26)

x ≥ 0. (1.27)

where η(x) is the minimum value of the following:

η(x) : min hT y, (1.28)

subject to

Gy ≥ b− Ax, (1.29)

y ≥ 0. (1.30)

Let u ∈ Rm1 be a dual variable associating with constraint (1.29). By the duality theory,

the primal and dual problems are interchanged. The dual problem of (1.28)-(1.30) can

be presented as follows:

max(b− Ax)T u, (1.31)

subject to

Gu ≤ h, (1.32)

u ≥ 0. (1.33)
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Let F = {u : Gu ≤ h, u ≥ 0}. Assuming that the dual polyhedron F is nonempty,

which implies that a primal subproblem is either infeasible or unbounded. Consequently,

the Benders reformulation or the master problem can be written as:

min cT x + η(x), (1.34)

subject to

Ax ≥ b, (1.35)

η(x) ≥ uk(b− Ax) k ∈ K, (1.36)

0 ≥ vj(b− Ax) j ∈ J, (1.37)

x ∈ X. (1.38)

where uk, ∀k ∈ K are extreme points of polyhedron {uk|AT uk ≤ h, uk ≥ 0} and

vj, ∀j ∈ J are extreme rays. The drawback of Benders reformulation is that the number

of extreme points and extreme rays is large, therefore delayed constraint generation is

used. Constraints (1.36) and (1.37) are called optimality and feasibility cut, respectively.

We can solve the linear programming problem (1.21)-(1.24) by using the Benders’

decomposition algorithm displayed in Algorithm 2. First, we solve the master problem to

obtain the solution. Given the solution, we solve the subproblems, and pass information

from the dual subproblems to the master problem by adding new constraints. When the

dual subproblems are unbound, we add constraints with respect to their extreme rays,

these constraints are called feasibility cuts. When the dual subproblems produce optimal

solutions, we incorporate the constraint associating with their extreme points information

to the master problem, called optimality cuts. If all constraints in the master problem

are satisfied, then we terminate the algorithm and the optimal solution of the original

problem is obtained. Otherwise, we iteratively perform these procedures.

More information about the stochastic decomposition can be found in Higle and

Sen [51].
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Algorithm 2 Benders’ Decomposition Algorithm.

K ← ∅, J ← ∅, STOP ← FALSE .

while STOP = FALSE do

Solve the restricted master problem (1.34), (1.35), (1.36’), (1.37’), (1.38) to obtain

the solution X and an anticipated objective value η. (On the first iteration, let

η ← −∞, and let X be a feasible solution.)

if the restricted master problem is infeasible then

STOP ← TRUE . The problem is infeasible.

end if

Solve the subproblem (1.31)-(1.33).

if the subproblem is unbound then

Get an extreme ray ṽj.

J ← J ∪ {ṽj}.
Add a feasibility cut ṽj(b− Ax) ≤ 0 to the master problem.

else

Get an extreme point ũ.

if η < ũk(b− Ax) then

K ← K ∪ {ũk}.
Add an optimality cut η(x) ≥ ũk(b− Ax) to the master problem.

else

STOP ← TRUE .

end if

end if

end while
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1.4 Research Overview / Contributions

The objectives of my work can be stated as the following:

1. Comprehensive study of nurse staffing and nurse assignment background.

2. Development of a stochastic programming model for nurse assignment.

• Development of a stochastic programming model formulation for nurse assign-

ment problem.

• Development of a solution methodology for solving the stochastic program-

ming model for nurse assignment.

– An algorithm for solving the stochastic programming model for nurse

assignment.

– Valid inequalities to enhance algorithmic performance.

• Computational study. Comparison of our methodology to current assignment

approaches.

• Investigation of expected value of perfect information and value of the stochas-

tic solution of our algorithmic approach.

3. Development of a stochastic programming model for integrated nurse staffing and

assignment.

• Development of a stochastic programming model formulation for integrated

nurse staffing and assignment.

• Development of algorithms for solving the stochastic programming model for

integrated nurse staffing and assignment.

• Computational study, which includes the following:

– Parameter tuning.

– Algorithmic approaches enhancement.

– Comparison of solution methodologies.

– An evaluation of float assignment policies.

4. Development of an optimization-based Information Technology (IT) prototype for

nurse assignment in hospital units.
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• Overall application framework design.

• Identification of input and output data needed for the IT prototype.

• Structure of optimization-based IT prototype design.

• Development of an underlying model of the IT prototype.

• Development of an IT prototype manual and trouble shooting documentation.

• Implementation and training to the potential users.

• Summary of implementation results from surveys and areas of improvement

discussions.



CHAPTER 2

NURSE ASSIGNMENT PROBLEM FORMULATIONS AND
SOLUTION ALGORITHMS

A nurse-patient assignment is a mandatory routine for all health care units in

almost every hospital in the world, and it is performed daily for every shift for the entire

year. At the beginning of a nursing shift, a charge nurse assigns each nurse to a set of

patients for a shift. Since some patients require more care than others, tending to the

needs of a few patients may consume most of a nurse’s time, while other patients may

receive only minimal care. During the same shift another nurse may have significantly

less workload because his (her) patients may require less care. The second nurse should

assist the first by taking on some of the first nurse’s patients. Similarly, there can also be

differences in the skills of the nurses, so assigning the right nurses to the right patients

can reduce excess workload.

In this chapter, we focus on the last phase of nurse planning, in which a charge

nurse makes daily decisions on assigning nurses to patients. We develop the nurse-patient

assignment models with the objective to minimize the excess workload on nurses. We

begin the chapter with the model assumptions in Section 2.1. In Section 2.2, the simple

deterministic model for nurse assignment is presented. In Section 2.3, we propose a

stochastic programming model, which is an extensive model including uncertainty and

fluctuation in patient care. In Section 2.4, we present an algorithmic approach to solve

a stochastic programming model for nurse assignment.

2.1 Model Assumptions

Prior to the beginning of a shift, a charge nurse assigns each patient to an RN or an

LVN. Although patients can usually be nursed by either type of nurse, state regulations

can preclude LVNs from performing certain patient care. Furthermore, some states, such

20
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as Texas, require that every patient be assessed by an RN within any 24-hour time period.

Consequently, a charge nurse will assign RNs to patients who were assigned LVNs in the

previous shift. We assume:

Assumption A1. A charge nurse determines which nurses can be assigned to which

patients before optimizing nurse assignment.

Because patients enter and leave the hospital unit throughout a shift, nurse assignments

are updated dynamically. However, revised nurse assignments often only include assign-

ing a nurse to a new admission. Rarely is a patient reassigned a new nurse during the

middle of a shift due to concerns for continuity of care. Hence, we make the following

assumption:

Assumption A2. Nurse assignments are not changed, except when there are newly

admitted patients.

Nurses distinguish between two types of patient care. Direct care is the amount

of time nurses spend with patients, while indirect care is time spent on other tasks for

patients, such as documentation of a patient’s condition. In our stochastic programming

model, we divide a nurse shift into several smaller time periods. The amount of direct

and indirect care the patients require in each time period are given as parameters to the

model. Nurses often provide indirect care throughout the shift, but direct care is often

determined by a patient’s condition, which is usually more urgent. Consequently, we

make the following assumption:

Assumption A3. Direct care needs to be performed within the given time period, while

indirect care can be performed in any time period from the given period until the

end of the shift.

In addition to assumption A3, we assume nurses optimally allocate their indirect care to

minimize excess workload. In some assignments, a nurse’s patients will require more care

than the nurse can provide. In such cases, a charge nurse, a nurse aide, or another nurse

may assist the overworked nurse. However, an assignment requiring such assistance

is undesirable. Implicitly, we presume that nurses receive assistance when absolutely



22

necessary. The penalty of an assignment will be determined by a nondecreasing piecewise-

linear convex function. Because the function penalizes assignments with overworked

nurses, an assignment will not include overworked nurses if such a solution exists.

During a shift patients may enter the hospital unit by admission from an emer-

gency room, direct admission from a doctor, transferring from another unit, or birth.

Patients may leave by discharge, transferring to another unit, or death. After a patient

is discharged and his room has been cleaned and sterilized, a charge nurse may assign a

newly admitted patient to the original patient’s room. The charge nurse will often assign

the nurse who cared for the recently discharged patient to the newly admitted patient.

She can anticipate some of the patients that will be admitted because they are currently

in another hospital unit. However, an unanticipated patient may enter a hospital unit

during a shift without any warning prior to the shift. Unanticipated patients must be

assigned a nurse, so we include them in the set of patients. We can represent an un-

known number of patients by increasing the number of patients and randomly allowing

their required care to be zero. Similarly, we can model random times for admissions and

discharges. In this dissertation, we assume:

Assumption A4. The set of patients to be assigned includes potential unanticipated

patients, so the number of patients is fixed.

2.2 Deterministic Model of Nurse Assignment

Rosenberger et al. [83] presented a deterministic model for patient assignment. We

propose an alternative deterministic model assigning nurse to patient with an objective

to minimize the excess workload on nurses in this section.

Let P and N be the sets of patients and nurses for a shift, respectively. We assume

that a charge nurse determines which nurses can be assigned to which patients before

optimizing patient assignment. For each patient p ∈ P , let N(p) be the set of nurses

which can be assigned to patient p. For each nurse n ∈ N , let P (n) be the set of patients
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that can be assigned to nurse n; that is, P (n) = {p ∈ P |n ∈ N(p)}. For each patient

p ∈ P , and nurse n ∈ N(p), let assignment variable

Xpn =





1 if patient p ∈ P is assigned to nurse n ∈ N(p),

0 otherwise.

A shift is divided into a set of time periods T . As the workload of a nurse increases

in a time period τ ∈ T , her patients receive less care, which is unsafe. We model the

penalty for assigning workload to nurses as a monotonically nondecreasing piecewise

linear convex function with k pieces.

For each time period τ ∈ T and each nurse n ∈ N , let Aτni be the amount of

workload assigned to nurse n between time durations mτni and mτn(i+1). Let ατni be

the marginal penalty of Aτni for 1 ≤ i ≤ k. Because the penalty is monotonically

nondecreasing, 0 = mτn1 < . . . < mτnk and 0 ≤ ατn1 < . . . < ατnk. For notation, let

mτn(k+1) be ∞. This penalty function is nondecreasing and piecewise linear convex, so

the marginal penalty for assigning more patient care to an overworked nurse is greater

than that of a nurse with less workload. Consequently, the function naturally balances

the workload and allows nurses to provide better care. One special case of the penalty

function has k = 2, ατn1 = 0, ατn2 = 1, and mτn2 equal to the duration of the time period

τ for each τ ∈ T and each n ∈ N . We refer to the value of variable Aτn2 as the excess

workload on nurse n in time period τ . The objective of our model in the computational

results in Section 3 is to minimize the expected excess workload on nurses.

For each patient p ∈ P , and each t ∈ T , let dtp be the amount of direct care required

by patient p in time period t. Because patient p may be admitted or discharged during

a shift, the patient care may vary dramatically throughout the shift. For each patient

p ∈ P , and each time period t ∈ T , let gtp be the amount of indirect care required by

patient p at the beginning of time period t until the end of the shift. For each pair of

time periods (t, τ) ∈ T × T , where t ≤ τ , and each nurse n ∈ N , let indirect workload

variable Gtτn be the total indirect care that can be performed during or after time period
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t and is performed in time period τ by nurse n. The amount of direct and indirect care

the patients require in each time period under each scenario are given as parameters to

the model.

The deterministic programming model for nurse assignment (DNA) is formulated

as:

min
∑
n∈N

∑
τ∈T

k∑
i=1

ατniAτni (2.1)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (2.2)

∑

p∈P (n)

gtpnXpn =

|T |∑
τ=t

Gtτn ∀t ∈ T, n ∈ N, (2.3)

∑

p∈P (n)

dτpnXpn +
τ∑

t=1

Gtτn =
k∑

i=1

Aτni ∀τ ∈ T, n ∈ N, (2.4)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (2.5)

Gtτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, (2.6)

mτn(i+1) −mτni ≥ Aτni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N. (2.7)

Objective (2.8) minimizes the workload penalty on nurses. The first constraint

set—the nurse assignment constraints (2.9)— ensures that every patient is assigned to

a nurse. The indirect care constraints in set (2.10) determine the total indirect care

performed by nurse n from the beginning of time period t until the end of the shift.

For each time period τ ∈ T , the workload of nurse n ∈ N consisting of direct care

and indirect care is defined by a workload constraint in set (2.11). Constraint set (2.12)

requires that the assignment variables be binary, and set (2.13) ensures the indirect care

variables are nonnegative. Constraints (2.14) give the upper and lower bounds on the

marginal workload variables. Observe that for each τ ∈ T, n ∈ N , Aτnk has no upper

bound since mτn(k+1) = ∞.
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2.3 Stochastic Model for Nurse Assignment

Let Ξ be a set of random scenarios, and for each ξ ∈ Ξ, let φξ be the probability

that scenario ξ occurs. For each time period τ ∈ T and each nurse n ∈ N , let Aξ
τni be

the amount of workload assigned to nurse n between time durations mτni and mτn(i+1)

in scenario ξ ∈ Ξ.

For each patient p ∈ P , each scenario ξ ∈ Ξ, and each t ∈ T , let dξ
tp be the amount

of direct care required by patient p in time period t. For each patient p ∈ P , each scenario

ξ ∈ Ξ, and each time period t ∈ T , let gξ
tp be the amount of indirect care required by

patient p at the beginning of time period t until the end of the shift. For each pair of

time periods (t, τ) ∈ T × T , where t ≤ τ , and each nurse n ∈ N , let indirect workload

variable Gξ
tτn be the total indirect care that can be performed during or after time period

t and is performed in time period τ by nurse n.

2.3.1 Extensive Form of the Stochastic Programming Model

The extensive form of the stochastic programming model for patient assignment

(SPA) is formulated as

min
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

k∑
i=1

φξατniA
ξ
τni (2.8)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (2.9)

∑

p∈P (n)

gξ
tpnXpn =

|T |∑
τ=t

Gξ
tτn ∀t ∈ T, n ∈ N, ξ ∈ Ξ, (2.10)

∑

p∈P (n)

dξ
τpnXpn +

τ∑
t=1

Gξ
tτn =

k∑
i=1

Aξ
τni ∀τ ∈ T, n ∈ N, ξ ∈ Ξ, (2.11)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (2.12)

Gξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, ξ ∈ Ξ, (2.13)

mτn(i+1) −mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N, ξ ∈ Ξ. (2.14)
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2.3.2 Deterministic Equivalent Model of the Stochastic Programming Model

The deterministic equivalent model for patient assignment can be written as follows:

min Q(X) (2.15)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (2.16)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (2.17)

where Q(X) is the expected second-stage recourse function defined as:

Q(X) = EξQ(X, ξ), (2.18)

and Q(X, ξ) = min
∑
n∈N

∑
τ∈T

k∑
i=1

ατniA
ξ
τni (2.19)

∑

p∈P (n)

gξ
tpnXpn =

|T |∑
τ=t

Gξ
tτn ∀t ∈ T, n ∈ N, (2.20)

∑

p∈P (n)

dξ
τpnXpn +

τ∑
t=1

Gξ
tτn =

k∑
i=1

Aξ
τni ∀τ ∈ T, n ∈ N, (2.21)

Gξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, (2.22)

mτn(i+1) −mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N. (2.23)

Proposition 1 is obvious. To simplify notation, we ignore ξ ∈ Ξ, τ ∈ T , n ∈ N ,

and let Â represent Aξ
τn.

Proposition 1. Let (X∗, A∗, G∗) be an optimal solution to SPA. Then there exists a

positive integer l ≤ k such that

Â∗
i =





m(i+1) −mi 1 ≤ i < l,

∑i
j=1 Â∗

j −mi i = l,

0 l < i ≤ k.

(2.24)

Given an assignment X, the constraints in (2.10), (2.11), (2.13), and (2.14) can

be decomposed by nurse and scenario resulting in |N | × |Ξ| recourse subproblems. In
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Section 2.4, we implement Benders’ decomposition to solve SPA. Although typical real-

world problems cannot be solved to optimality within 30 minutes, the remainder of this

dissertation focuses on finding a good solution within the time limit.

2.3.3 Side Constraints

In this section,we present side constraints for nurse assignment model. However,

the computational results in Section 3 exclude constraints in this section.

2.3.3.1 Acuity Constraints

Typically, patients in the same unit have different acuity levels. Assignments that

balance the number of patients with certain level of acuity are desirable. Let P 4 be a set

of patients with a certain level of acuity.

∑

p∈P 4(n1)

Xpn1 ≤
∑

p∈P 4(n2)

Xpn2 + 1 ∀(n1, n2) ∈ N ×N, n1 6= n2. (2.25)

For a specific pair of nurses n1 and n2, constraints in set (2.25) ensure that one

nurse has at least one patient with certain acuity or more than another nurse.

2.3.3.2 Preceptor Constraints

It is common for a hospital unit to have a preceptor. In general, the preceptor

receives less patients than other nurses.

∑

p∈P (n1)

Xpn1 ≤
∑

p∈P (n2)

Xpn2 + 2 ∀(n1, n2) ∈ N ×N, n1 6= n2, (2.26)

where n1 represents a preceptor.

Constraints in set (2.26) indicate that every nurse is assigned to at least two patients

or more than the preceptor.
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2.3.3.3 Charge Nurse Constraints

Anecdotal evidence suggests that a charge nurse usually receives less number of

patients than other nurses.

∑

p∈P (n1)

Xpn1 ≤
∑

p∈P (n2)

Xpn2 ∀n2 ∈ N\{n1} (2.27)

∑

p∈P (n1)

Xpn1 ≤ pmax, (2.28)

where n1 represents a charge nurse, and pmax represents the maximum number of patients

for the charge nurse. In general, pmax equals to 3. Constraints in set (2.27) guarantee

that every nurse has more patients than the charge nurse. Constraint (2.28) restricts the

maximum number of patients assigned to the charge nurse for a shift.

2.3.3.4 Room Exception Constraints

Assigning a nurse to two patients in distant rooms can increase workload on nurses.

Assignments that exclude two distant rooms are preferred.

Xp1n + Xp2n ≤ 1 ∀n ∈ N. (2.29)

For a specific pair of patients p1 and p2, constraint set (2.29) ensures that assigning

both patients to same a nurse does not occur.

2.4 Algorithmic Approach

In this section, we present a Benders’ decomposition approach to solve SPA. More-

over, we develop an optimal greedy algorithm for solving the recourse subproblems, and

then we discuss sets of valid inequalities to improve the overall algorithmic performance.



29

2.4.1 Benders’ Decomposition

Solving SPA with many scenarios and many time periods using branch and bound

may be time consuming. However, two-stage stochastic programming models, like SPA,

have a block angular structure that is appropriate for mathematical decomposition. The

standard L-shaped method, based upon Benders’ decomposition, is the most common

solution approach for two-stage stochastic programming problems [22, 32]. Applying

Benders’ decomposition to SPA, the master problem assigns nurses to patients, and

each recourse problem penalizes the assigned workload. Not only does SPA decompose

by scenario like the standard L-shaped method, but it also decomposes by nurse into

|N | × |Ξ| linear programming subproblems. Therefore, the subproblems are even more

manageable than the standard L-shaped method, which only decomposes by scenario.

Let X be a given assignment. For each t ∈ T , let gξ
tn =

∑
p∈P (n) gξ

tpnXpn, and let

d
ξ

tn =
∑

p∈P (n) dξ
tpnXpn. The primal subproblem (PS ξ

n) for each nurse n ∈ N and each

scenario ξ ∈ Ξ is given by

min
∑
τ∈T

k∑
i=1

ατniA
ξ
τni (2.30)

|T |∑
τ=t

Gξ
tτn = gξ

tn ∀t ∈ T, (2.31)

k∑
i=1

Aξ
τni −

τ∑
t=1

Gξ
tτn = d

ξ

τn ∀τ ∈ T, (2.32)

(Aξ
n, G

ξ
n) satisfy (2.13) and (2.14).

In the primal subproblem, the workload variables Aξ
τni are obtained, and the indirect

care variables Gξ
tτn determine the time periods in which indirect care is performed. This

problem always has a feasible solution (Ã, G̃) given by G̃ξ
ttn = gξ

tn and Ãξ
tnk = G̃ξ

ttn + d
ξ

tn

for all t ∈ T , and all other variables are zero.

Each primal subproblem PS ξ
n can be formulated as a network flow problem, as

depicted in Figure 2.1. Consider a directed network G = (N ,A) with node set N and

arc set A, in which |N | = (2 + k)|T |+ 1 and |A| = |T |(|T |+ 1)/2 + 2k|T |. The network
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Figure 2.1. The network flow primal subproblem with |T | = 4 and k = 3.

includes four types of nodes—t nodes (the left nodes in Figure 2.1), t′ nodes (the middle-

left nodes), t′i nodes (the middle-right nodes), and a sink node (the right node labeled

s). For each time period t ∈ T , a t node with supply gξ
tn and a t′ node with supply d

ξ

tn

are in N . An arc between t and t′ nodes is in arc set A whenever t ≤ t′, and the flow on

this arc represents the value of variable Gξ
tt′n in the primal subproblem PS ξ

n. For each

t ∈ T and each i = 1, . . . , k, a t′i node is added to N , and an arc from the t′ node to

the t′i node is included in A. The flow on the arc from the t′ node to the t′i node is

the value of the variable Aξ
t′in, so it has a per unit cost of αt′ni and an upper bound of

mt′n(i+1) − mt′ni. A sink node with a demand of
∑

t∈T d
ξ

tn + gξ
tn is used, and arcs from

the t′i nodes to the sink node are in A.
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Let πξ
tn, Y ξ

τn, and ρξ
τni be the dual variables associated with constraint sets (2.31)

and (2.32) and the upper bounds in set (2.14), respectively. The dual subproblem (DS ξ
n)

is

max
∑
t∈T

[
k∑

i=1

(mti −mt(i+1))ρ
ξ
tni

]
+ gtπ

ξ
t + dtY

ξ
tn (2.33)

Y ξ
τn − ρξ

τni ≤ ατi ∀τ ∈ T, 1 ≤ i ≤ k, (2.34)

πξ
tn ≤ Y ξ

τn ∀t, τ ∈ T, t ≤ τ, (2.35)

ρξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, (2.36)

πξ
tn, Y

ξ
τn free ∀t, τ ∈ T. (2.37)

A dual solution πξ
tn (Y ξ

τn) can be interpreted as the penalty for increasing indirect care

(direct care) at time period t(τ) for each nurse n ∈ N(P ) for each scenario ξ ∈ Ξ. The

solution (π̃ξ
n, Ỹ ξ

n , ρ̃ξ
n) = 0 is always feasible, so both the primal and dual subproblems

have optimal solutions.

Let DS be the combination of all dual subproblems DS ξ
n over all nurses and sce-

narios. Let ∆ be the set of extreme points for the dual subproblem DS . The original

SPA problem is reformulated as follows:

min η (2.38)

η ≥
∑
n∈N

∑

ξ∈Ξ

∑
t∈T

φξ


 ∑

p∈P (n)

(
π̃ξ

tngtpn + Ỹ ξ
tndtpn

)
Xpn +

k∑
i=1

(mtni −mtn(i+1))ρ̃
ξ
tni




∀(π̃, Ỹ , ρ̃) ∈ ∆, (2.39)

where Xpn satisfy (2.9) and (2.12).

The L-shaped method is described as Algorithm 3. Let X̃ be the best assignment

found. Let Z̃UB be the objective value of the best assignment, which is an upper bound

on the optimal solution. On each iteration, we consider a subset of dual extreme points

∆ ⊆ ∆, and let constraint set (2.39’) be the subset of (2.39) over ∆. We solve a

restricted master problem (2.9), (2.12), (2.38), and (2.39’) to find an assignment X and
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an anticipated objective value η. Using the assignment X, we solve the dual subproblem

over all of the nurses and scenarios to obtain (π̃, Ỹ , ρ̃). If the current excess workload for

nurses
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni is smaller than Z̃UB, then we update the best

assignment X̃ and the upper bound Z̃UB. If the anticipated objective value η is less than

the objective value of the dual solution (π̃, Ỹ , ρ̃), then we add a Benders’ optimality cut

to (2.39’). Otherwise, the algorithm terminates and the assignment X is optimal.

2.4.2 Greedy Algorithm

In this section, we present a greedy algorithm to evaluate the recourse function

PS ξ
n. Properties of solutions by the greedy algorithm are stated, and we prove that the

greedy algorithm is a polynomial optimal algorithm. Finally, we describe how to find a

complementary optimal dual solution. To simplify notation, we ignore the superscript ξ

and the subscript n.

The greedy algorithm solves the subproblems optimally under the following rea-

sonable assumption:

Assumption A5 The nondecreasing piecewise linear convex penalty is the same for

each time period; that is, α1i = α2i = · · · = α|T |i and m1i = m2i = · · · = m|T |i for

all i = 1, . . . , k,

The intuitive explanation for Assumption A5 is that workload is equally penalized through-

out a shift.

Consider the greedy algorithm (GAPS) for solving the primal subproblem PS ,

displayed as Algorithm 2. GAPS uses a solution (Ã, G̃) that satisfies constraints in (2.13),

(2.14), and (2.32), and it increases Ã, G̃, and the objective value as little as possible until

constraints in set (2.31) are satisfied. First, GAPS introduces a counter l(τ) such that a

marginal increase in workload for time period τ will increase the objective value by αl(τ).

All direct care is assigned to its given time period, and Ã is increased appropriately. On

every iteration, GAPS considers the time periods in which some indirect care on or prior

to these time periods is unassigned. Among these time periods, GAPS examines those
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with the smallest counter l (equivalently the least marginal penalty α), and it selects

the latest such time period τ . Then GAPS finds the latest time period t ≤ τ that has

remaining unassigned indirect care. Next Ãτl(τ) and G̃tτ are increased until either Ãτl(τ)

reaches its upper bound (2.14) or all indirect care from time period t is assigned. The

counter l(τ) is incremented if Ãτl(τ) is increased to its upper bound.

We give some properties of GAPS solutions and prove that the greedy algorithm is

optimal in Theorems 8. We also show that the dual solution produced by (2.45) - (2.47)

is a complementary optimal dual solution. Let problem

PS (g1, d1, . . . , d|T |) be a special instance of PS in which gt = 0 for all t = 2, . . . , |T |.
Now consider two primal problems PS (g1, d1, d

1

2, . . . , d
1

|T |) and PS (g1, d1, d
2

2, . . . , d
2

|T |).

Let primal problems PS (d
1

2, . . . , d
1

|T |) and PS (d
2

2, . . . , d
2

|T |) be special instances in which

g1 = d1 = 0 and
∑|T |

t=2 d
1

t =
∑|T |

t=2 d
2

t and let z
PS(d

1
2,...,d

1
|T |)

and z
PS(d

2
2,...,d

2
|T |)

be their op-

timal objective values, respectively. Without loss of generality, suppose z
PS(d

1
2,...,d

1
|T |)

<

z
PS(d

2
2,...,d

2
|T |)

.

Lemma 2. z
PS(g1,d1,d

1
2,...,d

1
|T |)

≤ z
PS(g1,d1,d

2
2,...,d

2
|T |)

.

Proof. Let (A2, G2) be an optimal solution to PS (g1, d1, d
2

2, . . . , d
2

|T |). Construct the fol-

lowing solution (A1, G1). Let the set of time periods T 1 ⊂ T be such that ∀t1 ∈ T 1,

d
1

t1 > d
2

t1 + G2
1t1 . For each time period t ∈ T \ T 1, increase the value of G1

1t such that

d
1

t +G1
1t = d

2

t +G2
1t. Since g1 +

∑
t∈T d

1

t = g1 +
∑

t∈T d
2

t =
∑

t∈T\T 1 d
2

t +G2
1t +

∑
t∈T 1 d

2

t +

G2
1t <

∑
t∈T\T 1 d

1

t +G1
1t +

∑
t∈T 1 d

1

t , then
∑

t∈T G1
1t > g1. Let t1 be a time period that has

maximum penalty on d
1

t + G1
1t and G1

1t > 0, let l1 = max{i = 1, . . . , k|d1

t1 + G1
1t1 > mi},

and reduce G1
1t1 until either G1

1t1 = 0, d
1

t1 + G1
1t1 = ml1 , or

∑
t∈T G1

1t = g1. Repeat the

selection of t1 and reduction of G1
1t1 until

∑
t∈T G1

1t = g1. Consider the subset of time

periods T 2 ⊂ T for which a time period t2 ∈ T 2, d
2

t2 > d
1

t2 . Reducing the most penalized

d
2

t2 in time periods t2 ∈ T 2 and increasing d
2

t1 in time periods t1 ∈ T 1 does not increase

the objective penalty because z
PS(d

1
2,...,d

1
|T |)

< z
PS(d

2
2,...,d

2
|T |)

. By definition T 2 ⊆ T \ T 1,

so reducing d
1

t2 + G1
1t2 in the most penalized time periods t2 ∈ T \ T 1 to account for
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∑
t1∈T 2 d

1

t1−d
2

t1 +G2
1t1 will not increase the objective penalty. Thus the objective function

value of (A1, G1) is less than that of (A2, G2), so z
PS(g1,d1,d

1
2,...,d

1
|T |)

≤ z
PS(g1,d1,d

2
2,...,d

2
|T |)

.

Consider the following general greedy algorithm (GGAPS) for PS as given by

Algorithm 5.

Lemma 3. Let (Ã, G̃) be a solution found by GGAPS. Then (Ã, G̃) is an optimal solution

for PS.

Proof. By induction and Lemma 2, (Ã, G̃) is an optimal solution for PS .

In GGAPS, we can implement GAPS to solve PS (gt, dt, . . . , d|T |) with Assumption

A5.

Lemma 4. Let (Ã, G̃) be a solution found by GAPS on PS (g1, d1, . . . , d|T |). Then (Ã, G̃)

is an optimal solution to PS (g1, d1, . . . , d|T |).

Proof. Suppose to the contrary that (Ã, G̃) is not an optimal solution. Let l̃(τ), ∀τ ∈ T be

the counters defined in GAPS. Let (A∗, G∗) be an optimal solution to PS ξ
n(g1, d1, . . . , d|T |)

that minimizes the distance ||G∗ − G̃||. Let l∗(τ), ∀τ ∈ T , be the counters defined in

Proposition 1. If A∗
τi = mi+1 − mi and A∗

τ(i+1) = 0, then l∗(τ) = i + 1. Because

(A∗, G∗) 6= (Ã, G̃) and
∑|T |

τ=1 G∗
1τ =

∑|T |
τ=1 G̃1τ = g1, there exist time periods τ̃ , τ ∗ ∈ T

such that dτ̃ ≤
∑l̃(τ̃)

i=1 Ãτ̃ i = dτ̃ + G̃1τ̃ <
∑l∗(τ̃)

i=1 A∗
τ̃ i = dτ̃ + G∗

1τ̃ and dτ∗ ≤
∑l∗(τ∗)

i=1 A∗
τ∗i =

dτ∗ + G∗
1τ∗ <

∑l̃(τ∗)
i=1 Ãτ∗i = dτ∗ + G̃1τ∗ . Now consider the following cases:

Case 1: Suppose dτ∗ + G̃1τ∗ ≤ ml̃(τ̃)+1. Then dτ∗ + G∗
1τ∗ < dτ∗ + G̃1τ∗ ≤ ml̃(τ̃)+1 and

dτ̃ + G∗
1τ̃ > dτ̃ + G̃1τ̃ ≥ ml̃(τ̃). By Assumption A5, increasing G∗

1τ∗ and decreasing

G∗
1τ̃ does not increase the objective value of (A∗, G∗). Consequently, it is not an

optimal solution to PS (g1, d1, . . . , d|T |) that minimizes the distance ||G∗ − G̃||.
Case 2: Suppose dτ∗+G̃1τ∗ > ml̃(τ̃)+1. Consider the last iteration of GAPS in which G̃1τ∗

was increased. By the definition of GAPS, l̃(τ ∗) ≤ l̃(τ̃), so dτ∗ + G̃1τ∗ would have
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increased to at most ml̃(τ̃)+1, in contradiction to the assumption that dτ∗ + G̃1τ∗ >

ml̃(τ̃)+1.

Thus, (Ã, G̃) is an optimal solution to PS (g1, d1, . . . , d|T |).

We refer to using GGAPS with GAPS to solve PS (g1, d1, . . . , d|T |) as the revised

greedy algorithm for the primal subproblem (RGAPS).

Corollary 5. RGAPS is an optimal algorithm for PS.

Proof. The proof is immediate from Lemmas 3 and 4.

Lemma 6. The complexity of RGAPS is O(k|T |2) time.

Proof. We allocate patient care for all |T | time periods. For each time period, the indi-

rect care is assigned to appropriate time periods taking at most k|T | operations. Conse-

quently, the complexity of RGAPS is O(k|T |2) time.

Remark. Assumption A5 was need to prove Lemma 4. However, this assumption can be

relaxed by using a list of time periods T̂ that is sorted by αl(τ). Algorithm 6 is a GAPS

with Sorting algorithm that solves PS (g1, d1, . . . , d|T |) without needing Assumption A5.

To sort the list T̂ uses O(|T | log |T |) operations, and to insert in the list T̂ requires

O(log |T |) computational effort. Consequently, GGAPS using GAPS with Sorting uses

O(k|T |2 log |T |) operations.

Lemma 7. Let (Ã, G̃) be a solution found by GAPS. Let time period τ ∈ T be such that

there exist time periods t1, t2 ∈ T , where t1 < t2 ≤ τ and G̃t1τ > 0 and G̃t2τ > 0. Then

GAPS increases G̃t2τ to its final value before it increases G̃t1τ .

Proof. Consider the first iteration in which G̃t1τ was increased. By the definition of

GAPS, G̃t2τ would have been selected unless
∑|T |

τ̃=t2
G̃t2τ̃ = gt2 . Consequently, G̃t2τ must

have been increased its final value before the iteration.

Theorem 8. GAPS finds an optimal solution (Ã, G̃).

Proof. By Lemma 3, it remains to be proven that RGAPS and GAPS return equivalent

solutions. Consider the following induction proof on the number of time periods |T |.
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(Base Case) For |T | = 1, RGAPS has one iteration, which uses GAPS, so they are

equivalent algorithms. (Induction Hypothesis) Suppose RGAPS and GAPS are equivalent

algorithms for a problem instance PS in which |T | = T. Let (AT, GT) be the optimal

solution given by both algorithms with counters lT(t), ∀t ∈ T . Consider an instance

of PS in which |T | = T + 1 and d
T+1

t+1 = d
T

t and gT+1
t+1 = gT

t , ∀t = 1, . . . ,T. Let

(AT+1, GT+1) be the solution given by GAPS. Let τ̂ ∈ T be such that GT+1
1τ̂ > 0, and

consider the iteration in which GT+1
1τ̂ was first increased. Prior to the iteration, GT+1

t̂τ̂
had

been increased to its final value and
∑|T |

τ=t̂
GT+1

t̂τ
= gT+1

t̂
for all time periods t̂ = 2, . . . , τ̂

by Lemma 7 and the definition of GAPS. Since ∀t̂ = 2, . . . , τ̂ ,
∑|T |

τ=t̂
GT+1

t̂τ
= gT+1

t̂
, GT+1

t̂τ

must have been its final value, so the value of GT+1
1τ̂ has no effect on the value GT+1

t̂τ
. The

iteration then increases GT+1
1τ̂ and updates l(τ̂) if necessary but makes no changes to l(τ)

for τ 6= τ̂ . Hence the order of the selection of a time period τ in GAPS is not changed

for τ 6= τ̂ . Thus the value of GT+1
1τ̂ has no effect on the value GT+1

t̂τ
, ∀t̂ = 2, . . . , |T |,

and by the induction hypothesis, GT+1
t̂τ

must be the same in the solution found using

RGAPS. Moreover, prior to the iteration that first increased GT+1
1τ̂ , the counter l(τ̂) must

be equal to the equivalent counter in RGAPS after the iteration in which t = T. Since

the magnitude of an increase in GT+1
1τ̂ uses the same rule in both GAPS and RGAPS,

the selection and changes in the counters are the same. Thus GAPS and RGAPS are

equivalent algorithms.

Theorem 9. The complexity of GAPS is O(k|T |2) time.

Proof. By Lemma 6 and the fact that RGAPS and GAPS are equivalent in Theorem 8,

the complexity of GAPS is O(k|T |2) time.
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We now describe a dual solution (π̃, Ỹ , ρ̃) to DS that is complementary to a solution

from GAPS (Ã, G̃). The complementary slackness conditions of PS and DS are

(−Aτi −mτi + mτ(i+1))ρτi = 0 ∀i = 1, . . . , k, ∀τ ∈ T, (2.40)

(ατi − Yτ + ρτi)Aτi = 0 ∀i = 1, . . . , k, ∀τ ∈ T, (2.41)

(πt − Yτ )Gtτ = 0 ∀t, τ ∈ T, t ≤ τ. (2.42)

For each time period τ , consider the following two sets of time periods:

T (τ) = {τ̃ ∈ T |∃t1, . . . , tq−1, τ1, ..., τq, τ1 = τ, τq = τ̃ , t1 ≤ τ2, t2 ≤ τ3, tq−1 ≤ τq,

G̃t1τ1 , G̃t2τ2 , ..., G̃tq−1τq−1 > 0} ∪ {τ}, (2.43)

T −1(τ) = {t|Gtτ̃ > 0,∀τ̃ ∈ T (τ)}. (2.44)

Let time period τ̃ ∈ T (τ). Consider the dual solution (π̃, Ỹ , ρ̃) given by

Ỹτ =





minτ̃≥min T −1(τ){αl(τ̃)} if T −1(τ) 6= ∅

αl(τ) otherwise

∀τ ∈ T, (2.45)

π̃t = min
τ≥t

Ỹτ ∀t ∈ T, (2.46)

ρ̃τi = max{Ỹτ − αi, 0} ∀i = 1, . . . , k, ∀τ ∈ T. (2.47)

Theorem 10. Let (Ã, G̃) be an optimal solution from GAPS. The dual solution given by

(2.45)—(2.47) is a complementary optimal dual solution.

Lemma 11. Let (Ã, G̃) be an optimal solution found by GAPS with objective value z.

Let (Ỹ , π̃, ρ̃) be the dual solution given by (2.45)-(2.47). With a sufficiently small ε > 0

increase in dτ for some τ ∈ T , there exists a primal feasible solution with an objective

function value z + εỸτ .

Proof. Consider the following two cases:

Case 1: Suppose T −1(τ) = ∅. If dτ is increased by ε ≤ ml(τ)+1 − ml(τ) − Ãτl(τ), then

a feasible solution in which Ãτl(τ) is increased by ε can be constructed. Since the

penalty on Ãτl(τ) is αl(τ), the increase in the objective value is εαl(τ) = εỸτ .
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Case 2: Suppose T −1(τ) 6= ∅. Let τ̂ ∈ arg minτ̃≥min T −1(τ){αl(τ̃)}, and let t̂ = min T −1(τ).

By the definition of T −1(τ), ∃τ̃ ∈ T (τ) such that G̃t̂τ̃ > 0. By definition of T (τ),

∃t1, . . . , tq−1, τ1 = τ, . . . , τq = τ̃ such that t1 ≤ τ2, t2 ≤ τ3, . . . , tq−1 ≤ τq and

G̃t1τ1 , G̃t2τ2 , . . . , G̃tq−1τq−1 > 0. Now suppose

ε ≤ min(G̃t1τ1 , G̃t2τ2 , . . . , G̃tq−1τq−1 , G̃t̂τ̃ ,ml(τ̂)+1 −ml(τ̂) − Ãl(τ̂)).

If dτ were increased by ε, a feasible solution can be constructed in which both

G̃t1τ1 , G̃t2τ2 , ..., G̃tq−1τq−1 and G̃t̂τ̃ were decreased by ε, and G̃t1τ2 , G̃t2τ3 , ..., G̃tq−1τq ,

G̃t̂τ̂ , and Ãl(τ̂) were increased by ε. Since the penalty on Ãl(τ̂) is αl(τ̂) = Ỹτ , the

increase in the objective value is εỸτ .

Let (Ã, G̃) be a primal solution found by GAPS, and let (Ỹ , π̃, ρ̃) be the dual solution

given by (2.45)-(2.47).

Lemma 12. (Ỹ , π̃, ρ̃) satisfies the complementary slackness conditions (2.40).

Proof. Suppose to the contrary, there exists a time period τ ∈ T such that Ãτi < mi+1−
mi and ρ̃τi > 0. If dτ is increased by a sufficiently small ε > 0, then a primal feasible

solution in which the objective value is increased by εαi can be constructed by Case 1

of Lemma 11. Consequently, Ỹτ ≤ αi, in contradiction to the assumption that ρ̃τi =

Ỹτ − αi > 0. Hence no such τ ∈ T exists.

Lemma 13. (Ỹ , π̃, ρ̃) satisfies the complementary slackness conditions (2.41).

Proof. Suppose to the contrary, there exists a time period τ ∈ T such that Ãτi > 0 and

Ỹτ − ρ̃τi < αi. The index i ≤ l(τ) since Ãτi = 0, ∀i ≥ l(τ) + 1. This implies ρ̃τi = 0 and

Ỹτ < αi by definition (2.47) and Ỹτ < αi ≤ αl(τ) by the definition of α. Since Ỹτ < αl(τ),

the set T −1(τ) 6= ∅ by the definition (2.45). For a sufficiently small ε > 0 increase in dτ ,

a primal feasible solution can be constructed in which the objective value is increased by

εỸτ by case 2 in Lemma 11. Similarly, for a small ε′ = min(ε, Ãτi) > 0 decrease in Ãτi, a

primal feasible solution can be constructed in which the objective value is decreased by
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ε′(αi− Ỹτ ) > 0. The assumption that (Ã, G̃) is optimal is contradicted, so no such τ ∈ T

exists.

Lemma 14. (Ỹ , π̃, ρ̃) satisfies the complementary slackness conditions (2.42).

Proof. Suppose there exist time periods t ≤ τ in which G̃tτ > 0. By definition (2.46), let

τ̃ ∈ arg minτ̄≥t

{
Ỹτ̄

}
, so π̃t = Ỹτ̃ and τ̃ ≥ t. By Lemma 11, for a sufficiently small ε > 0

increase in dτ̃ , a primal feasible solution in which the objective value is increased by εỸτ̃

can be constructed. Similarly, for a small ε′ = min(ε, G̃tτ ) > 0 increase in dτ̃ , a primal

feasible solution in which the objective value is increased by εỸτ̃ can be constructed by

decreasing G̃tτ , increasing G̃tτ̃ , and changing the same variables as done for an increase

in dτ̃ by ε′. Since case 2 of Lemma 11 includes all such general constructions of primal

feasible solutions, the increase in the objective function value ε′Ỹτ̃ is no less than ε′Ỹτ .

Hence, Ỹτ = Ỹτ̃ = π̃t.

Theorem 10. Let (Ã, G̃) be an optimal solution from GAPS. The dual solution given

by (2.45) - (2.47) is an complementary optimal dual solution.

Proof. By definitions of (Ỹ , π̃, ρ̃) in equations (2.45) - (2.47), the dual feasibility con-

straints (2.34) - (2.37) are satisfied. By Lemmas 12 - 14, (Ỹ , π̃, ρ̃) satisfies the comple-

mentary slackness conditions (2.40) - (2.42).

The greedy algorithm provides a good intuitive explanation corresponding to a

nurse’s behavior in practice. In constructing the test instances for our computational

results, we noticed that direct care was generally less at the end of a shift. In conversations

with nurses, we were told that nurses tend to perform indirect care at the end of a shift,

which is similar to results from GAPS.

2.4.3 Strengthening the Master Problem

One major drawback of Benders’ decomposition is that the first-stage constraints

(2.9) and (2.12) in the master problem do not encourage balanced workloads. Con-
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sequently, it may spend excessive computational effort generating cuts for extremely

imbalanced assignments. In this section, we propose four sets of valid inequalities to

tighten the master problem, which are maximum patients constraints, minimum patients

constraints, and two sets of symmetry breaking constraints. The results of implementing

these valid inequalities to the master problem are demonstrated in Section 3.

2.4.3.1 Maximum Patients Constraints

Many states limit the number of patients that can be assigned to a nurse for certain

units in a hospital. For instance, California mandates nurse-to-patient ratio regulations

that allow no more than six patients assigned to any one nurse for a medical-surgical

unit [31]. Typically, the total number of nurses for a shift is obtained from the nurse

rescheduling phase. We enforce the following constraint set based upon the number of

nurses and the number of patients. To avoid any illegal or unbalanced assignments, we in-

troduce the following patient-to-nurse ratio constraints or maximum patients constraints

(MXPC):
∑

p∈P (n)

Xpn ≤
⌈ |P |
|N |

⌉
∀n ∈ N, (2.48)

where dxe represents the ceiling of the value x. MXPC prevents assignments with uneven

patient loads, which would not be popular with the nurses even if it were balanced in

terms of required care. MXPC improves the solvability of the problem because it reduces

the feasible region of SPA. Although MXPC can lead to suboptimal solutions, we were

unable to construct such a solution in any of our computational experiments.

2.4.3.2 Minimum Patients Constraints

Anecdotal evidence suggests that it is common for nurses to receive no fewer than

a certain number of patients. We use the following minimum patient constraints (MPC):

∑

p∈P (n)

Xpn ≥
⌊ |P |
|N |

⌋
∀n ∈ N, (2.49)
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where bxc represents the floor of the value x. MPC requires each nurse receive at least a

minimum number patients. Incorporating both MXPC and MPC to the master problem

enhances algorithmic performance because they eliminate unbalanced and impractical

assignments.

2.4.3.3 Symmetry Breaking Constraints

A symmetry problem may arise when there are sets of indistinguishable nurses. If

we assume that all nurses are identical, given an assignment, there are |N |!−1 equivalent

alternative assignments that occur from rearranging the identical nurses with the sets of

patients. In other words, symmetry could potentially lead to adding an unnecessary set

of Benders’ cuts to the master problem. Sherali and Smith [89] investigated symmetry

issues in discrete optimization problems, and they developed a method to reduce the

number of symmetric solutions. Smith et al. [92] illustrated that incorporating hierarchy

constraints to a Synchronous Optical Network Ring Design problem resulted in significant

improvement in algorithm efficiency.

We propose two sets of constraints to reduce the symmetry problem. We assume

that all nurses are identical for the remainder of this section. Let Θ be an assignment

for a shift in which a set of patients Pi is assigned to each nurse ni, i = 1, ..., |N |; that is,

Θ = ((n1, P1), (n2, P2), ..., (n|N |, P|N |)). To eliminate an assignment Θ, we introduce an

assignment symmetry breaking constraints (ASBC) as follows:

|N |∑
i=1

∑
p∈Pi

Xpni
−

|N |∑
i=1

∑

p/∈Pi

Xpni
≤ |P | − 1. (2.50)

Given any assignment, the master problem requires |N |!−1 constraints to eliminate each

symmetric assignment individually. Alternatively, we can replace the constraint set (2.50)

with the constraint set (2.52). With the same principle as Sherali and Smith [89], we

denote an assignment vector (X1n, X2n, ..., X|P |n) to be lexicographically greater than or
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equal to (≥L) an assignment vector (X1,n+1, X2,n+1, ..., X|P |,n+1) for each n = 1, ..., |N |−1.

The hierarchy constraints are given by:

∑
p∈P

|P |p−1Xpn ≥
∑
p∈P

|P |p−1Xp,n+1 ∀n = 1, ..., |N | − 1. (2.51)

We also consider pairwise symmetry breaking constraints (PSBC), which can be written

as:

∑
p∈P2

Xpn1 −
∑

p/∈P2

Xpn1 +
∑
p∈P1

Xpn2 −
∑

p/∈P1

Xpn2 ≤ |P1|+ |P2| − 1 ∀n1, n2 ∈ N,n1 > n2,

∀P1, P2 ⊆ P, P1 >L P2.

(2.52)

PSBC ensures that identical nurses are assigned to sets of patients in lexicographic order.

The number of PSBC added to each iteration of the restricted master problem is
(|N |

2

)2−1.

ASBC and PSBC reduce the number of symmetric solutions, and because all nonzero

coefficients of constraints are equal to positive or negative one, they encourage integrality

of solutions more than the hierarchy constraints in set (2.51). In theory, as the number

of nurses scales up, the number of ASBC increases exponentially while PSBC increases

polynomially with the number of identical nurses. In practice, we do not often encounter

the symmetry problems because nurses do not have identical skills. However, we may not

have sufficient data on temporary agency nurses or new hires to consider them unique.
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Algorithm 3 Nurse Assignment Benders’ Decomposition Algorithm (SPA-BA).

∆ ← ∅, the best assignment X̃ ← ∅ , objective value of the best assignment Z̃UB ←∞,

STOP ← FALSE .

while STOP = FALSE do

Solve the restricted master problem (2.9), (2.12), (2.38), and (2.39’) to obtain an

assignment X and an anticipated objective value η. (On the first iteration, let

η ← −∞, and let X be a feasible assignment.)

for all n ∈ N , ξ ∈ Ξ do

Solve the dual subproblem (DSξ
n) to obtain extreme point (π̃ξ

n, Ỹ ξ
n , ρ̃ξ

n).

end for

if
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni < Z̃UB then

X̃ ← X.

Z̃UB ←
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni.

end if

if η <
∑

p∈P

∑
n∈N(P )

∑
ξ∈Ξ

∑
t∈T φξ[

(
π̃ξ

tngtpn + Ỹ ξ
tndtpn

)
Xpn+

∑k
i=1(mtni −mtn(i+1))ρ̃

ξ
tni] then

∆ ← ∆∪
{

(π̃, Ỹ , ρ̃)
}

, where (π̃, Ỹ , ρ̃) is the combination of the vectors (π̃ξ
n, Ỹ

ξ
n , ρ̃ξ

n).

else

STOP ← TRUE .

end if

end while

return the best assignment X̃.
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Algorithm 4 Greedy Algorithm for the Primal Subproblem (GAPS).

for all τ ∈ T do

Let the counter l(τ) be such that mτl(τ) ≤ dτ < mτl(τ)+1.

Ãτi ←





mτ(i+1) −mτi 1 ≤ i < l(τ),

dτ −mτi i = l(τ),

0 l(τ) < i ≤ k.

G̃tτ ← 0, ∀t ≤ τ

end for

while
∑|T |

τ̃=t G̃tτ̃ < gt,∀t ∈ T do

τ ← max
{

arg minτ̂∈T

{
l(τ̂)

∣∣∣∃t̂ ≤ τ̂ ,
∑|T |

τ=t̂
G̃t̂τ < gt̂

}}
.

t ← max
{

t̂ ∈ T
∣∣∣t̂ ≤ τ,

∑|T |
τ̂=t̂

Gt̂τ̂ < gt̂

}
.

δ ← min
{

gt −
∑|T |

τ̃=t G̃tτ̃ ,mτ(l(τ)+1) − Ãτl(τ)

}
.

Ãτl(τ) ← δ + Ãτl(τ)

G̃tτ ← δ + G̃tτ

if Ãτl(τ) = mτ(l(τ)+1) then

l(τ) ← l(τ) + 1.

end if

end while

Algorithm 5 General Greedy Algorithm for the Primal Subproblem (GGAPS)

t ← |T |.
while t ≥ 1 do

Solve PS (gt, dt, . . . , d|T |).

dt̂ ← dt̂ + Gtt̂, ∀t̂ = t, . . . , |T |.
t ← t− 1.

end while
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Algorithm 6 GAPS with Sorting

for all τ ∈ T do

Let the counter l(τ) be such that mτl(τ) ≤ dτ < mτl(τ)+1.

Ãτi ←





mτ(i+1) −mτi 1 ≤ i < l(τ),

dτ −mτi i = l(τ),

0 l(τ) < i ≤ k.

G̃tτ ← 0, ∀t ≤ τ.

end for

Sort a list of time periods T̂ by αl(τ).

while
∑|T |

τ̃=t G̃tτ̃ < gt do

Let τ be a time period in T̂ with minimum αl(τ).

δ ← min
{

gt −
∑|T |

τ̃=t G̃tτ̃ ,mτ(l(τ)+1) − Ãτl(τ)

}
.

Ãτl(τ) ← δ + Ãτl(τ)

G̃tτ ← δ + G̃tτ

if mτ(l(τ)+1) − Ãτl(τ) then

l(τ) ← l(τ) + 1.

end if

Reinsert τ into T̂ according to αl(τ).

end while



CHAPTER 3

NURSE ASSIGNMENT COMPUTATIONAL RESULTS

In this chapter, we provide a computational study on nurse assignment described in

Chapter 2. Problem instances were generated based upon data from a Northeast Texas

hospital as described in Section 3.1. These instances, however, cannot be solved exactly

within 30 minutes. Consequently, the focus of the computational study is to find good

solutions within the time limit. We describe several alternative assignment methods in

Section 3.2. In Section 3.3, we compare the solutions from these methods with those

from executing the Benders’ approach for 30 minutes. We examine the performance

of solving the second-stage recourse subproblems by using the greedy algorithm versus

the network simplex method. Moreover, we investigate the effects of imposing sets of

valid inequalities to strengthen the relaxed master problem. We discuss the number

of occurrences of symmetric solutions in the problem instances with identical nurses.

Finally, the expected value of perfect information and the value of the stochastic solution

of the problem instances are presented in Section 3.4.

3.1 Problem Instances

Each nurse at the Northeast Texas hospital wears a badge that locates the nurse

in the hospital unit. The purpose of the locator is so a charge nurse can inform a nurse

immediately when one of her patients calls the nurses’ station. The locator system stores

data on the location of the nurses for one month. In addition to these data, the Northeast

Texas hospital provided encrypted patient data for a medical-surgical unit to study for

this research from March 2004 - December 2004.

We generated four random instances based upon these data. The first two instances

were day shifts from 7:00 AM to 3:00 PM, while instances 3 and 4 were evening and night

46



47

Table 3.1. Instances generated from the Northeast Texas hospital data

Instance Shift Pat RN LVN
1 Day 23 2 1
2 Day 18 4 0
3 Evening 18 2 1
4 Night 13 1 1

shifts from 3:00 PM to 11:00 PM and 11:00 PM to 7:00 AM, respectively. Sundaramoorthi

et al. [95] noted that patients’ diagnoses and locations are the most significant factors

affecting the amount of time nurses spend with patients. For each instance, we sampled

a random set of patients from an empirical distribution of patients with similar diagnoses

and patient rooms. We used a census matrix from a medical-surgical unit to determine

the number and type of nurses for the shift. Table 3.1 displays characteristics of the four

instances. The column labeled “Instance” is the random instance, “Shift” is the time

of the shift, “Pat” is the number of patients, and “RN” and “LVN” are the number of

registered and licensed vocational nurses on duty, respectively.

We partitioned the shift into eight one-hour time periods for T , and we randomly

generated 100, 200, 500, 700, 3000, 5000, and 7000 scenarios for Ξ. The probability of

each scenario is equally likely. We assumed that the admit and discharge processes were

Poisson with mean equal to the number of patients in a shift divided by the average

length of stay. Our data indicated that the average length of stay of patients in a

medical-surgical unit was 2.725 days per patient. For each time period τ ∈ T , each

patient p ∈ P , and each scenario ξ ∈ Ξ, the direct care dξ
τp, was sampled from a gamma

distribution. Each gamma distribution was fitted by the moment estimator method [108]

from the amount of time during time period τ that nurses were in the rooms of patients

with diagnoses and rooms similar to those of patient p. We distinguished each nurse

by using her badge number. For each time period τ ∈ T , let d̄τ• be the mean of the

direct care performed by all nurses in time period τ , and for each nurse n ∈ N , let d̄τn

be the mean of the direct care performed by nurse n in time period τ . For each time



48

period τ ∈ T , each patient p ∈ P , each nurse n ∈ N , and each scenario ξ ∈ Ξ, the

amount of direct care was obtained by dξ
τnp =

dξ
τp×d̄τn

d̄τ•
. In our computational experiment

in Section 3.3.3, we assumed that nurses were identical for the symmetry study. Because

indirect care can be performed in several locations, it cannot be estimated from the data

from the Northeast Texas hospital. However, in some patient classification systems for

similar medical-surgical units, total indirect care is 32% of direct care. Consequently, we

estimated indirect care gξ
τnp = 0.32 × dξ

τnp, ∀τ ∈ T , ∀p ∈ P, ∀n ∈ N , and ∀ξ ∈ Ξ. In

addition, we implicitly assumed that direct care engenders indirect care.

3.2 Alternative Assignments

In this section, we describe several alternative approaches to find an assignment.

With many scenarios, stochastic integer programming problems are often computation-

ally intractable, but the Mean Value Problem (MVP) often provides a good solution [22].

For each of the four instances from Section 3.1, we replaced the direct and indirect care

random variables with their mean, and we solved the deterministic integer programming

problem. In all four instances, solving MVP required less than one minute of CPU time,

so finding a good solution is computationally tractable.

In addition to MVP, we also used a heuristic that balanced workload based upon

the expected total required care of the patients. When the number of nurses divides

the number of patients evenly, the heuristic assigns the patients with the greatest and

least required care time to the same nurse. Otherwise, the heuristic assigns the patients

with greatest required care to the nurses who are assigned to fewer patients. Finally, we

randomly divided the patients evenly among the nurses without considering workload.

In practice, charge nurses often intuitively assign patients to nurses. More sophis-

ticated hospitals use patient classification systems that only consider the expected total

care and ignore the fluctuations and uncertainty of care. Consequently, assignments in

practice are often similar to those of the heuristic or random assignment.
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3.3 Computational Results

In this section, we begin with determining a number of scenarios that gives the

best SPA results, and we compare the excess workload assignments from the five different

assignment methods in Section 3.3.1. In Section 3.3.2, we discuss the efficiency of GAPS

versus the network simplex method to solve the second-stage recourse subproblems. In

Section 3.3.3, we study the effects of implementing sets of valid inequalities to strengthen

the master problem. Finally, we discuss the occurrences of symmetric solutions in our

problem.

We solved SPA with and without using the Benders’ approach, denoted as SPA-

BA and SPA-IP, respectively. If a method required more than 30 minutes to solve, we

considered the best solution found within the time limit. MVP, SPA-IP, and SPA-BA

were implemented in ANSI C and processed by a Dual 3.06-GHz Intel Xeon Workstation

using CPLEX 9.1 callable library. To find an initial solution for SPA-BA, we used the

MVP for less than one minute and then used SPA-BA for the remaining time. Solving

the MVP for SPA-BA also served as an initial upperbound for the problem.

Before selecting the number of scenarios providing the best SPA results, we con-

ducted an experiment to select an appropriate number of scenarios to evaluate the re-

course function. Estimated excess workload was calculated by evaluating assignments

with 3000, 5000, and 7000 scenarios. Because the difference between excess workload es-

timated under 5000 and 7000 scenarios was within one minute of each other, we concluded

that the recourse function converged by evaluating it with 5000 scenarios. Consequently,

after having obtained solutions from each approach, GAPS calculated the excess workload

of each assignment with 5000 scenarios.

We examined the number of scenarios that gave the best SPA results. We obtained

assignments by optimizing based upon the four patient instances with 100, 200, 500, and

700 scenarios and evaluated those assignments with 5000 scenarios with GAPS. Table 3.2

compares the average excess workload of optimizing SPA-IP and SPA-BA with different

numbers of scenarios. Results indicated that as the number of scenarios increases, SPA-
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Table 3.2. The computational results comparing average excess workload from solving
SPA-IP and SPA-BA with different numbers of scenarios

Expected 100 scenarios 200 scenarios
Instance Algorithm Patient Avg Excess % Avg Excess %

Workload Workload Workload
1 SPA-IP 1103 89.47 8.11 84.94 7.70
1 SPA-BA 1103 89.36 8.10 88.23 8.00
2 SPA-IP 759 4.38 0.58 5.50 0.72
2 SPA-BA 759 4.48 0.59 4.53 0.60
3 SPA-IP 939 47.35 5.04 46.67 4.97
3 SPA-BA 939 49.67 5.29 46.67 4.97
4 SPA-IP 327 2.12 0.65 2.61 0.80
4 SPA-BA 327 2.38 0.73 1.97 0.60

Expected 500 scenarios 700 scenarios
Instance Algorithm Patient Avg Excess % Avg Excess %

Workload Workload Workload
1 SPA-IP 1103 91.17 8.27 111.35 10.10
1 SPA-BA 1103 86.91 7.88 87.47 7.93
2 SPA-IP 759 4.00 0.53 3.85 0.51
2 SPA-BA 759 4.21 0.55 3.69 0.49
3 SPA-IP 939 46.67 4.97 47.35 5.04
3 SPA-BA 939 48.00 5.11 46.67 4.97
4 SPA-IP 327 1.87 0.57 2.46 0.75
4 SPA-BA 327 1.78 0.55 1.81 0.55

BA was preferable to SPA-IP in most problem instances, and SPA-BA outperformed SPA-

IP in all instances with 700 scenarios. The reason SPA-BA performed better with many

scenarios is the amount of CPU time that GAPS spent to solve the recourse subproblem

is small. In general, more scenarios are necessary for problems with large variance.

However, as the number of scenarios increases, more computational time is required

to solve problems. The tradeoff between solution quality and the computational effort

to solve problems should be considered. To make SPA-BA and SPA-IP comparable, we

optimized SPA-BA and SPA-IP with 500 scenarios in the remainder of this computational

study.
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3.3.1 Comparison to Other Assignments

We evaluated the performance of five different nurse assignment methods–the ran-

dom assignment method, the heuristic, MVP, SPA-IP, and SPA-BA. Table 3.3 displays

the expected total workload in minutes, the average excess workload, and the average

excess workload as a percentage of the expected total workload minutes for assignments

given five different assignment approaches. All assignments from SPA-IP and SPA-BA

were obtained by optimizing the four patient instances with 500 scenarios, and they were

evaluated with 5000 scenarios. On each iteration of SPA-BA, we solved the restricted

master problem optimally and a single Benders’ optimality cut was added.

In all four instances, SPA-IP and SPA-BA competed to find the best solution within

the time limit. Assignments from SPA-BA reduced the average excess workload for nurses

between 1 minute and 87 minutes over the random assignment, between 1 minute and 85

minutes over the heuristic assignment, and upto 52 minutes over MVP. Considering there

are 1095 8-hour shifts per year, SPA-BA could save up to 1588 hours of excess workload

each year in each unit of a hospital. Thus, a nurse-assignment decision-support system

that used SPA-BA would reduce the burden of the nursing shortage. Note that in the

last instance, MVP provided large average excess workload compared to those from other

assignments because we did not enforce any strengthening constraints in the problem,

which resulted in one nurse assigned to 11 patients while another received only two.

3.3.2 Greedy Algorithm versus Network Simplex

We compared the computational efficiencies of GAPS and the network simplex

method to solve the recourse subproblems. Assignments were obtained by optimizing

SPA-BA with the four patient instances using both GAPS and the network simplex

optimizer in CPLEX 9.1 to solve the linear subproblems. Table 3.4 displays the average

CPU time in seconds that GAPS and the network simplex used to update data and solve

one subproblem and the total number of Benders’ optimality cuts added to the restricted

master problem. GAPS is about 30 times faster than the network simplex.
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Table 3.3. The computational results comparing solutions from 5 methods on instances
1, 2, 3, and 4

Instance Algorithm Expected Total Average Excess Percent
Workload Workload

1 Random 1103 174.02 15.78
1 Heuristic 1103 153.22 13.89
1 MVP 1103 109.48 9.93
1 SPA-IP 1103 91.17 8.27
1 SPA-BA 1103 86.91 7.88
2 Random 759 13.95 1.84
2 Heuristic 759 15.32 2.02
2 MVP 759 23.91 3.15
2 SPA-IP 759 4.00 0.53
2 SPA-BA 759 4.21 0.55
3 Random 939 114.33 12.17
3 Heuristic 939 133.50 14.21
3 MVP 939 100.71 10.72
3 SPA-IP 939 46.67 4.97
3 SPA-BA 939 48.00 5.11
4 Random 327 3.74 1.14
4 Heuristic 327 3.68 1.13
4 MVP 327 14.75 4.51
4 SPA-IP 327 1.87 0.57
4 SPA-BA 327 1.78 0.55

Table 3.4. The computational comparison between solving SPA-BA with GAPS versus
the network simplex

Instance Greedy Algorithm Network Simplex
CPU time/cut No. of cuts CPU time/cut No. of cuts

1 0.0329 387 0.9180 364
2 0.0351 857 1.1368 860
3 0.0311 580 0.9040 525
4 0.0213 38 0.7342 38
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3.3.3 Strengthening Constraints

The computational effects of applying sets of valid inequalities to the master prob-

lem are discussed in this section. We assumed that all nurses were identical. Assignments

were obtained by solving SPA-BA with and without sets of valid inequalities, which are

MXPC, MPC, maximum patients and minimum patients constraints (MX-MPC), ASBC,

and PSBC. Table 3.5 shows the average excess workload of assignments from SPA-BA

with and without sets of valid inequalities. The column labeled “Iter No.” is the total

number of iterations or the number of single Benders’ optimality cuts added to the re-

laxed master problem within 30 minutes. The last column labaled “Cut No./Iter” is the

number of strengthening cuts added to the relaxed master problem along with a single

Benders’ cut on each iteration.

In general, implementing MX-MPC tended to be the best option to improve the

overall algorithmic performance for these problem instances. Although enforcing MX-

MPC did not provide a significant improvement, it enhanced the quality of solutions

in most instances. Neither of the symmetry breaking constraints significantly reduced

average excess workload.

Moreover, we conducted an analysis on the occurrences of symmetric solutions

within 30 minutes. Ignoring sets of valid inequalities, we solved SPA-BA for all identical

nurses. Although we expected to obtain many symmetric assignments by reshuffling

identical nurses to sets of patients, only five pairs of symmetric solutions occurred in one

out of four problem instances. The explanation is that the coefficients of the Benders’

cuts are often similar when the total workload in each time period is balanced. In other

words, a single Benders’ cut often accounts for the symmetric solutions. Since there were

few symmetric solutions, neither ASBC nor PSBC significantly improved the solvability

of the problem.

3.4 Expected Value of Perfect Information and Value of the Stochastic
Solution



54

Table 3.5. The computational results comparing average excess workload from solving
SPA-BA with and without sets of valid inequalities to strengthen the master problem

Instance Strengthening Iter No. Total Excess % Cuts No./
cut Workload Workload Iter

1 None 278 1103 74.07 6.71 0
1 MXPC 277 1103 74.30 6.74 0
1 MPC 277 1103 74.30 6.74 0
1 MX-MPC 266 1103 72.98 6.62 0
1 ASBC 277 1103 73.59 6.67 5
1 PSBC 124 1103 73.57 6.67 9
2 None 305 759 8.42 1.11 0
2 MXPC 282 759 8.20 1.08 0
2 MPC 282 759 8.20 1.08 0
2 MX-MPC 285 759 7.64 1.01 0
2 ASBC 295 759 8.42 1.11 23
2 PSBC 83 759 8.45 1.11 36
3 None 297 939 58.95 6.28 0
3 MXPC 297 939 58.62 6.24 0
3 MPC 297 939 58.62 6.24 0
3 MX-MPC 311 939 59.24 6.31 0
3 ASBC 297 939 58.95 6.28 5
3 PSBC 139 939 59.78 6.37 9
4 None 18 327 1.10 0.34 0
4 MXPC 16 327 1.12 0.34 0
4 MPC 16 327 1.12 0.34 0
4 MX-MPC 16 327 1.12 0.34 0
4 ASBC 18 327 1.10 0.34 1
4 PSBC 57 327 1.04 0.32 1

In this section, we discuss the value of information and the benefit of applying

stochastic programming to our problem instances. The wait-and-see solution (WS) is the

expected value of the optimal solution when we have perfect information. The expected

value of perfect information (EVPI) is the loss of objective value due to the presence of

uncertainty, which can be defined as the difference between the optimal value of SPA and

WS [22]. The value of the stochastic solution (VSS) describes the loss of ignoring un-

certainty in our problem instances when we solve the deterministic programming model,

which all random variables are replaced by their mean, instead of the stochastic one.

We obtained WS by solving deterministic problems in which each problem corresponded
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with one scenario from each of the 5000 scenarios. From Table 3.3, the average excess

workload from SPA-BA is an upper bound on the optimal value of SPA. Consequently, we

can only calculate upper bounds (lower bounds) for EVPI (VSS). Table 3.6 displays WS,

EVPI upper bounds, and VSS lower bounds of 4 problem instances. The forth and sixth

column represent the EVPI upper bound percentages and VSS lower bound percentages

of total objective of SPA-BA, which optimized with 500 scenarios and evaluated with

5000 scenarios, respectively.

The EVPI upper bounds of instances 2 and 4 were relatively low because the sets

of nurses scheduled for the shifts had sufficient time and skills to care for the patients,

which resulted in small excess workload for nurses in most solutions in Table 3.3. In

practice, good nurse budgeting, scheduling, and rescheduling yield low EVPI values. In

contrast, instances 1 and 3 had high EVPI upper bounds meaning that perfect infor-

mation would be helpful to substantially improve the objective function. For example,

we reduced excess workload by more than half of an hour with perfect information for

instance 1. Instances 2 and 4 had extremely high VSS lower bound percentages. The

explanation is that MVP had multiple optimal solutions, and our MVP algorithm arbi-

trarily selected solutions that did not performed well in these instances. Especially with

problem instances that had enormous variance in patient care, the solutions given by

the deterministic models would not be able to yield minimal excess workload. Instances

1 and 3 had relatively high VSS lower bound values because these instances contained

patients who required a high fluctuation of care. SPA-BA were able to manage varia-

tion in patient care better than MVP, which did not consider it. For instance, solutions

from SPA-BA provided much less excess workload than MVP, random, and heuristic

approaches in Instances 1 and 3 in Table 3.3. Overall, we had considerably large lower

bounds for VSS for all instances indicating that using MVP was not as beneficial as SPA.
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Table 3.6. An upper bound on the expected value of perfect information and a lower
bound on the value of the stochastic solution of 4 problem instances

Instance WS EVPI UB % EVPI UB VSS LB % VSS LB
1 52.36 34.55 39.75 22.57 25.97
2 0.25 3.96 94.06 19.70 467.93
3 9.70 38.30 79.79 52.71 109.81
4 0.50 1.28 71.91 12.97 728.65



CHAPTER 4

INTEGRATED NURSE STAFFING AND ASSIGNMENT
PROBLEM FORMULATIONS AND SOLUTION ALGORITHMS

Nurse staffing is an important issue of hospitals for several reasons. It is a routine

performed by all units in every shift everyday throughout a year. Given that nursing

consumes the largest portion of hospital budget, the health care cost is driven by nursing

cost. Without an efficient decision planning, hospitals might spend unnecessarily for

hiring costly agency nurses or excess permanent staffing. Moreover, the shortage of

nurses, which is one of the greatest problem in health care system, is becoming more

severe. In addition to the nursing shortage and financial issues, staffing has been a conflict

between hospital administration and nurses. Hospital administrations prefer to provide

care with minimal cost whereas nurses require minimal excess workload with sufficient

staffing. One way to deal with the staffing problem is to determine an efficient staffing

decision that optimizes resource allocation to satisfy the demand and to benefit all parties.

The goals are to improve the quality of nursing work by balancing nurse workload, to

provide an amount of sufficient care to patients, and to reduce the overall cost of hospital.

Ultimately, the long-term goal is to reduce the burden of nursing shortage.

The nurse staffing problem involves creating a schedule for nurses determining

nursing staffs in charge of working for a shift on a given day. We refer to nurse scheduling

or nurse rostering as a mid-term scheduling, which occurs a couple weeks before a shift.

Much research has been done on nurse rostering problems. Recent literature surveys

include Cheang et al. [33] and Burke et al. [28]. We refer to nurse staffing as a short-

term nurse scheduling that occurs 90 minutes before the upcoming shift.

In nurse staffing, we consider scheduled nurses, float nurses, PRN nurses, overtime

nurses, and agency nurses in nurse staffing. Scheduled nurses are nurses who scheduled to

work for a particular unit in a given shift on a given day. Float nurses are those trained

57
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for a particular floor or specialty. They report to work not knowing which unit will need

help. When help is needed, they go to the floor that is short for a shift. A PRN nurse

is one that works primarily on one unit. They are called as needed to come in and work

when there is a shortage in a shift. They also can schedule themselves to work after the

schedule is made when they see the holes that need to be filled. On-call nurses cannot

get further than about a 30 mile radius from the hospital. They must carry a beeper,

and be ready to go to the hospital when they are called. If they are called to go in, they

will get paid the full amount for their services. Given that on-call nurses usually work for

gastrointestinal laboratories, operating rooms, or other special areas, and they are not

assigned to the patients, we exclude on-call nurses in our model. Agency nurses are also

available to call in from agency nurse services. Overtime nurses are nurses who worked

the previous shift and will work the next shift consecutively.

Based upon the mid-term schedule, a nurse supervisor reevaluates the schedule 90

minutes prior to a shift. If there are more nurses than needed, she lets voluntary surplus

scheduled nurses take that day off without pay. When there is a shortage of nurses, she

recruits nurses from the following priorities:

1. excess nurses from other units,

2. float nurses,

3. PRN nurses,

4. overtime nurse,

5. agency nurses.

With nurses from the nurse staffing phase, a charge nurse assigns nurses to patients

at the beginning of a shift. Staffing has a direct effect on a nurse-patient assignment,

nurse workload, and the quality of care for patients [5, 62, 81]. Incorporating staffing

decision within a nurse-patient assignment would likely provide better care for patients

as well as balance workload for nurses. Hospitals also benefit from having better budget

control, providing quality care to patient, and reducing liability cost. Nevertheless, there
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is little literature on nurse staffing, and no one has ever integrated the staffing problem

with assignment.

The focus of this dissertation is on integrating nurse staffing with the nurse-patient

assignment decision. Our model focuses on short-term staffing, therefore it is unnecessary

to account for nurse preference because it was included in mid-term scheduling. The goal

of our model is to determine nurse staffing and their assignment, which minimize excess

workload on nurses while meeting uncertain patient care and satisfying a controlled

budget. Our model can be viewed as either a general resource allocation model or a

general complex personnel scheduling model, therefore it can also be applied to other

organizations.

In Section 4.1.1, we present assumptions made for our model. In Section 4.1.2, we

describe decision variables and parameters, which are used in the model. The integrated

staffing and assignment model is discussed in Section 4.1.3. In Section 4.2, we propose

the algorithmic approaches to solve the problem.

4.1 The Nurse Staffing Problem Formulation

4.1.1 Model Assumptions

We made the following reasonable assumptions:

Assumption 1: The number of nurses in each type who are available to provide services

to each hospital unit is known.

Assumption 2: The qualifications and specialties of nurses in each type are known.

A list of qualified nurses who can provide care to each patient is known prior to when

staffing occurs.

Assumption 3: The cost function is linear.
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4.1.2 Decision Variables and Parameters

In addition to decision variables and parameters described in Chapter 2, we use

the following notation in our model.

Let J be the set of units. Based on a mid-term schedule, let N denote the set

scheduled nurses, including full-time nurses and float nurses, assigned to work for a shift.

Let R, O, and A be the sets of PRN nurses, overtime nurses, and agency nurses for a shift,

respectively. Let N be the set all nurses including full-time nurses, float nurses, PRN

nurses, overtime nurses, and agency nurses for a shift; that is, N = N ∪ R ∪O ∪ A. For

each unit j ∈ J , let P (j) be the set of patients who stay in unit j. For each unit j ∈ J , let

N(j) be set of full-time nurses and float nurses who are scheduled to work for a shift in

unit j. Let R(j), O(j), and A(j) be the sets of PRN nurses, overtime nurses, and agency

nurses qualified to work in unit j, respectively. For each patient p ∈ P , let N(p), R(p),

O(p), and A(p) be the sets of scheduled nurses, PRN nurses, overtime nurses, and agency

nurses who can be assigned to patient p, respectively. For each patient p ∈ P , let N(p)

be the set of nurses which can be assigned to patient p. For each nurse n ∈ N, let P (n)

be the set of patients that can be assigned to nurse n; that is, P (n) = {p ∈ P |n ∈ N(p)}.
For each unit j ∈ J , and nurse n ∈ N(j), let scheduled nurse variable

Ynj =





1 if a scheduled nurse n ∈ N(j) is assigned to work for a shift

for unit j ∈ J ,

0 otherwise.

For each nurse n ∈ N , let cancellation variable

Y c
n =





1 if a scheduled nurse n ∈ N is canceled for her shift,

0 otherwise.

For each unit j ∈ J , and nurse n ∈ R(j), let PRN staffing variable

Y r
nj =





1 if a PRN nurse n ∈ R(j) is assigned to work for a shift in unit j ∈ J ,

0 otherwise.
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For each unit j ∈ J , and nurse n ∈ O(j), let overtime staffing variable

Y o
nj =





1 if an overtime nurse n ∈ O(j) is assigned to work for a shift in unit j ∈ J ,

0 otherwise.

For each unit j ∈ J , and nurse n ∈ A(j), let agency staffing variable

Y a
nj =





1 if an agency nurse n ∈ A(j) is assigned to work for a shift in unit j ∈ J ,

0 otherwise.

There are costs associated with hiring nurses. For each unit j ∈ J and each nurse

n ∈ N(J), let cs
nj be the cost associated with hiring full-time nurse or float nurse n

scheduled to work for unit j. For each nurse n ∈ N , let cc
n be the cost of canceling

scheduled nurse n. For each unit j ∈ J and each nurse n ∈ R(j), n ∈ O(j), and

n ∈ A(j), let cr
nj, co

nj, and ca
nj be the cost of hiring PRN nurses, overtime nurses, and

agency nurses n for unit j, respectively. Let B be a budget for hiring nurses for all units

on a particular shift. All costs and the budget are given as parameters to the model.

4.1.3 Integrated Nurse Staffing and Assignment Model

In this section, we introduce an extension of the SPA model from Section 2.3 by

incorporating the staffing decision into the assignment model. The Stochastic Integrated

Nurse Staffing and Assignment Model (SINSA) can be formulated as:
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min
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

k∑
i=1

φξατniA
ξ
τni, (4.1)

subject to

∑
j∈J

∑

n∈N(j)

cs
njYnj +

∑
n∈N

cc
nY

c
n+

∑
j∈J

∑

n∈R(j)

cr
njY

r
nj +

∑
j∈J

∑

n∈O(j)

co
njY

o
nj+

∑
j∈J

∑

n∈A(j)

ca
njY

a
nj ≤ B, (4.2)

∑

j∈J(n)

Ynj + Y c
n = 1 ∀n ∈ N, (4.3)

Ynj ≥ Xpn ∀n ∈ N(p), p ∈ P (j), j ∈ J, (4.4)

Y r
nj ≥ Xpn ∀n ∈ R(p), p ∈ P (j), j ∈ J, (4.5)

Y o
nj ≥ Xpn ∀n ∈ O(p), p ∈ P (j), j ∈ J, (4.6)

Y a
nj ≥ Xpn ∀n ∈ A(p), p ∈ P (j), j ∈ J, (4.7)

Ynj ∈ {0, 1} ∀n ∈ N(j), j ∈ J, (4.8)

Y c
n ∈ {0, 1} ∀n ∈ N, (4.9)

Y r
nj ∈ {0, 1} ∀n ∈ R(j), j ∈ J, (4.10)

Y o
nj ∈ {0, 1} ∀n ∈ O(j), j ∈ J, (4.11)

Y a
nj ∈ {0, 1} ∀n ∈ A(j), j ∈ J, (4.12)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (4.13)
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∑

p∈P (n)

gξ
tpnXpn =

|T |∑
τ=t

Gξ
tτn ∀t ∈ T, n ∈ N, ξ ∈ Ξ, (4.14)

∑

p∈P (n)

dξ
τpnXpn +

τ∑
t=1

Gξ
tτn =

k∑
i=1

Aξ
τni ∀τ ∈ T, n ∈ N, ξ ∈ Ξ, (4.15)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (4.16)

Gξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, ξ ∈ Ξ, (4.17)

mτn(i+1) −mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N, ξ ∈ Ξ. (4.18)

Objective function (4.1) is to minimize expected excess workload on nurses. Con-

straint (4.2) is the budget constraint, which ensures that the cost of hiring and canceling

nurses does not exceed the budget. For each scheduled nurse n ∈ N , the cancelation

constraints in set (4.3) indicate that either she is assigned to work or her shift is can-

celed. Constraints (4.4)-(4.7) are linking constraints between staffing and assignment

decision variables. If a nurse is assigned to a patient, then she must be scheduled to work

for a shift. Constraints (4.8)-(4.12) require the staffing variables be binary. The nurse

assignment constraints in set (4.13) ensure that every patient is assigned to a nurse. For

each nurse n ∈ N, the indirect care constraints in set (4.14) determine the total indirect

care performed from the beginning of time period t until the end of the shift. For each

time period τ ∈ T , the total workload constraints in set (4.15) define the total workload

of nurse n ∈ N containing both direct care and indirect care. Constraint set (4.16)

is the binary constraints for the assignment variables. The nonnegativity constraints

in set (4.17) require the indirect care variables be nonnegative. The upper and lower

bounds on the marginal workload variables are provided by constraints (4.18). For each

τ ∈ T, n ∈ N, ξ ∈ Ξ, the total workload variable Aξ
τnk has no upper bound because

mτn(k+1) = ∞. For constraints (4.13)-(4.18) related to nurse assignment, the unit index

j can be neglected because the unit is embedded in the patient information.
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The deterministic equivalent model for integrated nurse staffing and assignment

can be written as follows:

min Q(X) (4.19)

subject to

∑
j∈J

∑

n∈N(j)

cs
njYnj +

∑
n∈N

cc
nY

c
n+

∑
j∈J

∑

n∈R(j)

cr
njY

r
nj +

∑
j∈J

∑

n∈O(j)

co
njY

o
nj+

∑
j∈J

∑

n∈A(j)

ca
njY

a
nj ≤ B, (4.20)

∑

j∈J(n)

Ynj + Y c
n = 1 ∀n ∈ N, (4.21)

Ynj ≥ Xpn ∀n ∈ N(p), p ∈ P (j), j ∈ J, (4.22)

Y r
nj ≥ Xpn ∀n ∈ R(p), p ∈ P (j), j ∈ J, (4.23)

Y o
nj ≥ Xpn ∀n ∈ O(p), p ∈ P (j), j ∈ J, (4.24)

Y a
nj ≥ Xpn ∀n ∈ A(p), p ∈ P (j), j ∈ J, (4.25)

Ynj ∈ {0, 1} ∀n ∈ N(j), j ∈ J, (4.26)

Y c
n ∈ {0, 1} ∀n ∈ N, (4.27)

Y r
nj ∈ {0, 1} ∀n ∈ R(j), j ∈ J, (4.28)

Y o
nj ∈ {0, 1} ∀n ∈ O(j), j ∈ J, (4.29)

Y a
nj ∈ {0, 1} ∀n ∈ A(j), j ∈ J, (4.30)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (4.31)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (4.32)
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where Q(X) is the expected second-stage recourse function defined as:

Q(X) = EξQ(X, ξ), (4.33)

and Q(X, ξ) = min
∑
n∈N

∑
τ∈T

k∑
i=1

ατniA
ξ
τni (4.34)

subject to

∑

p∈P (n)

gξ
tpnXpn =

|T |∑
τ=t

Gξ
tτn ∀t ∈ T, n ∈ N, (4.35)

∑

p∈P (n)

dξ
τpnXpn +

τ∑
t=1

Gξ
tτn =

k∑
i=1

Aξ
τni ∀τ ∈ T, n ∈ N, (4.36)

Gξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, (4.37)

mτn(i+1) −mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N. (4.38)

4.2 Algorithmic Approaches

In this section, we present decomposition approaches for solving SINSA, which

are Benders’ decomposition, Lagrangian relaxation with Benders’ decomposition, and

nested Benders’ decomposition. SINSA is viewed as a two-stage stochastic programming

problem for the first two approaches. We solve SINSA with Benders’ decomposition,

which is a common method to solve two-stage stochastic programming problems. In

the second approach, we apply the Lagrangian relaxation with Benders’ decomposition

to solve SINSA, in which we relax a budget constraint (4.2). We describe how the

Lagrangian relaxation with Benders’ decomposition can be applied as a search method

for bicriteria programming problems. Lastly, SINSA is alternatively considered as a

multistage stochastic programming problem for which its nested Benders’ decomposition

is demonstrated.

4.2.1 Benders’ Decomposition

In this section, we consider SINSA as a two-stage stochastic integer programming

problem. We solve SINSA using the L-shaped method based on Benders’ decomposition
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with integer first-stage variables [17, 22]. The Benders’ decomposition separates the orig-

inal problem given by (4.1)-(4.18) into the master problem and the subproblems. The

master problem determines scheduled nurses, PRN nurses, over-time nurses, and agency

nurses working for a shift and it assigns those nurses to patients with an objective of

minimizing excess workload on nurses. Given the nurse schedule and their assignments,

the recourse problems penalize the excess workload from the assignment. The subprob-

lems decompose by the number of nurses and the number of scenarios into |N|×|ξ| linear

programming subproblems.

Let (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj) be a given nurse schedule and let X be a given as-

signment. For each t ∈ T , let gξ
tn =

∑
p∈P (n) gξ

tpnXpn, and let d
ξ

tn =
∑

p∈P (n) dξ
tpnXpn.

Our recourse subproblems are reduced to ones similar to those primal subproblems and

dual subproblems of SPA. For each nurse n ∈ N and each scenario ξ ∈ Ξ, the primal

subproblem is the following linear program (PS ξ
n):

min
∑
τ∈T

k∑
i=1

ατniA
ξ
τni (4.39)

|T |∑
τ=t

Gξ
tτn = gξ

tn ∀t ∈ T, (4.40)

k∑
i=1

Aξ
τni −

τ∑
t=1

Gξ
tτn = d

ξ

τn ∀τ ∈ T, (4.41)

(Aξ
n, Gξ

n) satisfy (4.17), and (4.18).

GAPS determines the total workload variables Aξ
τni and total indirect care variables

Gξ
tτn performed by nurse n from the beginning of time period t until the end of the shift.

This problem always has a feasible solution (Ã, G̃) that is G̃ξ
ttn = gξ

tn and Ãξ
tnk = G̃ξ

ttn+d
ξ

tn
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for all t ∈ T , and all other variables are zero. For each nurse n ∈ N and each scenario

ξ ∈ Ξ, the dual subproblem (DS ξ
n) is given by:

max
∑
t∈T

[
k∑

i=1

(mti −mt(i+1))ρ
ξ
tni

]
+ gtπ

ξ
t + dtY

ξ
tn (4.42)

Y ξ
τn − ρξ

τni ≤ ατi ∀τ ∈ T, 1 ≤ i ≤ k, (4.43)

πξ
tn ≤ Y ξ

τn ∀t, τ ∈ T, t ≤ τ, (4.44)

ρξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, (4.45)

πξ
tn, Y

ξ
τn free ∀t, τ ∈ T. (4.46)

The dual subproblem has a feasible solution given by all variables are zero. Con-

sequently, the primal and dual subproblems have optimal solutions. Let DS denote the

combination of all dual subproblems DSξ
n over all nurses and scenarios. Let ∆ denote

set of extreme points for the dual subproblem DS. The SINSA reformulation problem

(SINSAR) can be written as follows:

min η (4.47)

subject to

η ≥
∑
n∈N

∑

ξ∈Ξ

∑
t∈T

φξ


 ∑

p∈P (n)

(
π̃ξ

tngtpn + Ỹ ξ
tndtpn

)
Xpn +

k∑
i=1

(mtni −mtn(i+1))ρ̃
ξ
tni


 (4.48)

∀(π̃, Ỹ , ρ̃) ∈ ∆,

where (Ynj, Y
c
n , Y r

nj, Y
o
nj, Y

a
nj) satisfy (4.2)-(4.12),

Xpn satisfy (4.13) and (4.16).

Constraints in set (4.48) associated with the extreme points of the optimal dual

solutions are termed optimality cuts.

The L-shaped method is described as Algorithm 7. Let (Ỹnj, Ỹ
c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj) and

X̃ be the best nurse staffing schedule and the best assignment found, respectively. Let

Z̃UB be the objective value of the best staffing and assignment, which is an upper
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bound on the optimal solution. On each iteration, we consider a subset of dual ex-

treme points ∆ ⊆ ∆, and let constraint set (4.48’) be the subset of (4.48) over ∆.

We solve a restricted master problem (4.2)-(4.13), (4.16), (4.47), and (4.48’) to find

a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj), an assignment X, and an anticipated ob-

jective value η. Using the assignment X, we solve the dual subproblems over all of

the nurses and scenarios to obtain (π̃, Ỹ , ρ̃). If the current excess workload for nurses

∑
ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni is smaller than Z̃UB, then we update the best nurse

schedule (Ỹnj, Ỹ
c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj), the best assignment X̃, and the upper bound Z̃UB. If the

anticipated objective value η is less than the objective value of the dual solution (π̃, Ỹ , ρ̃),

then we add a Benders’ optimality cut to (4.48’). Otherwise, the algorithm terminates

and a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj) and the assignment X are optimal.

4.2.2 Lagrangian Relaxation with Benders’ Decomposition

In this section, we describe the Lagrangian relaxation with Benders’ decomposition

for solving SINSA, and follow by the subgradient method to determine the value of the

Lagrange multiplier. Then, we describe how the Lagrangian relaxation with Benders’

decomposition can be viewed as a search method for bicriteria programming problems.

Lagrangian relaxation methods have been widely used to solve integer programming

problems that contain sets of hard constraints and easy constraints. By dualizing hard

constraints, we construct a Lagrangian problem that is relative easy to solve compared

to the original problem. An optimal value of the Lagrangian problem is a lower bound on

the optimal value of the original problem. Lagrangian relaxation efficiently solves integer

programming problems since it provides better lower bounds than those from linear

programming relaxation in a branch and bound algorithm. A review paper for Lagrangian

relaxation for solving integer programming problems can be found in Fisher [43]. The

subgradient method is a common technique to solve the dual of Lagrangian problem, and

it usually provides promising results. More information about subgradient method is

included in Bertsekas [19] and Nemhauser and Wolsey [72]. Held et al. [50] described
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Algorithm 7 Stochastic Integrated Nurse Staffing and Assignment Benders’ Decompo-

sition Algorithm (SINSA-BD).

∆ ← ∅, the best nurse schedule (Ỹnj, Ỹ
c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj) ← ∅, the best assignment X̃ ← ∅,

objective value of the best staffing and assignment Z̃UB ←∞, STOP ← FALSE .

while STOP = FALSE do

Solve the restricted master problem (4.2)-(4.13), (4.16), (4.47), and (4.48’) to obtain

a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj), an assignment X and an anticipated ob-

jective value η. (On the first iteration, let η ← −∞, and let (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj)

be a feasible nurse schedule, X be a feasible assignment.)

for all n ∈ N, ξ ∈ Ξ do

Solve the dual subproblem (DSξ
n) to obtain extreme point (π̃ξ

n, Ỹ ξ
n , ρ̃ξ

n).

end for

if
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni < Z̃UB then

X̃ ← X.

(Ỹnj, Ỹ
c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj) ← (Y nj, Y

c

n, Y
r

nj, Y
o

nj, Y
a

nj).

Z̃UB ←
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni.

end if

if η <
∑

p∈P

∑
n∈N(p)

∑
ξ∈Ξ

∑
t∈T φξ[

(
π̃ξ

tngtpn + Ỹ ξ
tndtpn

)
Xpn+

∑k
i=1(mtni −mtn(i+1))ρ̃

ξ
tni] then

∆ ← ∆∪
{

(π̃, Ỹ , ρ̃)
}

, where (π̃, Ỹ , ρ̃) is the combination of the vectors (π̃ξ
n, Ỹ

ξ
n , ρ̃ξ

n).

else

STOP ← TRUE .

end if

end while

return the best nurse schedule (Ỹnj, Ỹ
c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj), and assignment X̃.
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theoretical convergence properties and computational performance of the subgradient

optimization.

We propose to solve the SINSA by using Benders’ decomposition, in which La-

grangian relaxation is employed to relax the budget constraint. We dualize the budget

constraint (4.2) to the objective function and obtain the following Lagrangian problem:

L(λ) = min
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

k∑
i=1

φξατniA
ξ
τni + λ(

∑
j∈J

∑

n∈N(j)

cs
njYnj+

∑
n∈N

cc
nY c

n +
∑
j∈J

∑

n∈R(j)

cr
njY

r
nj +

∑
j∈J

∑

n∈O(j)

co
njY

o
nj+

∑
j∈J

∑

n∈A(j)

ca
njY

a
nj −B) (4.49)

subject to (4.3)− (4.18),

where λ is a Lagrange multiplier. L(λ) is a piecewise linear function. For any λ ≥ 0,

L(λ) forms a lower bound on SINSA problem, as λ(
∑

j∈J

∑
n∈N(j) cs

njYnj +
∑

n∈N cc
nY

c
n +

∑
j∈J

∑
n∈R(j) cr

njY
r
nj +

∑
j∈J

∑
n∈O(j) co

njY
o
nj+

∑
j∈J

∑
n∈A(j) ca

njY
a
nj − B) < 0. The La-

grangian problem (4.49),(4.3)-(4.18) can be alternatively viewed as a bicriteria stochastic

integer programming problem with objectives that minimize average excess workload on

nurses and total nurse staffing cost. Given a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj) and

an assignment X, the subproblems is separated by the total number of nurses and the

total number of scenarios into |N |× |ξ| linear programming subproblems. With the same

fashion as the Benders’ decomposition approach, for each nurse n ∈ N and each scenario

ξ ∈ Ξ, the primal subproblem (PS ξ
n) can be written by (4.17), (4.18), and (4.39)-(4.41),

and the dual subproblem (DS ξ
n) is given by (4.42)-(4.46).

We use the subgradient method to determine the Lagrange multiplier λ. The

subgradient method for SINSA is described as Algorithm 8. Let r and α denote an

iteration number and a step-size, respectively. For each iteration r, let θr be a parameter

for the subgradient algorithm. On each iteration, we solve the Lagrangian problem

by (4.3)-(4.18), (4.49) using the Benders’ decomposition described in Algorithm 7 to
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obtain the nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj), the assignment X. According to a

given schedule and assignment, we update the step-size α and the Lagrange multiplier

λ. If an absolute difference between the previous and current Lagrange multipliers are

less than a positively small number ε, then we terminate the algorithm and obtain an

optimal solution. Otherwise, we update the parameter θ if the objective value does not

improve. The iteration number is also updated. We repeat this iterative procedure until

the termination criteria is met.

Typically, scheduling problems are difficult because of large solution search spaces.

Many search methods have been developed for nurse scheduling problems, for instance,

Tabu search, simulated annealing, genetic algorithm, etc. In this dissertation, we pro-

vided a novel search approach for a bicriteria stochastic integer program by using La-

grangian relaxation as a framework. A Lagrange multiplier plays a role as a penalty

for violating the second objective and Benders’ decomposition handles stochasticity in

the model. According to our model, we penalize a schedule that violates the budget for

a shift. We find the nurse staff and assignment which minimize both excess workload

on nurses and budget violation in the Lagrangian problem. During the searching pro-

cess, the Lagrangian relaxation with Benders’ decomposition searches for solutions with

different weights between average excess workload on nurses and budget violation.

4.2.3 Nested Benders’ Decomposition

The nested Benders’ decomposition method is one of the common solution methods

for multistage stochastic programming problems [22]. It is appropriate to use when

the subproblems have block angular structure and involve further decomposition. In

addition to multistage stochastic programs, the decomposition has been used successfully

to solve the multistage convex programs [76]. More details about the nested Benders’

decomposition can be found at Birge [20], and Birge and Louveaux [22].

We develop a solution approach based on the nested Benders’ decomposition of

SINSA. SINSA can be considered as a three-stage stochastic programming problem. The
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first stage problem proposes a nurse schedule that determines nurses who work for the

shift. Given a nurse staff, the second stage subproblem assigns nurses to a set of patients.

Based upon an assignment, the third stage problems are decomposed into subproblems

associated with each nurse at each scenario, and they evaluate assignments.

Given a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj) and assignment X, the subproblems

can be reduced to ones similar to those from the two-stage stochastic program with

Benders’ decomposition. For each nurse n ∈ N and each scenario ξ ∈ Ξ, the third stage

primal subproblem (PN3ξ
n ) is given by (4.17), (4.18), (4.39)-(4.41) and the third stage dual

subproblem (DN3ξ
n ) is given by (4.42)-(4.46). Let (DN 3 ) be the combination of all dual

subproblems (DN 3ξ
n ) over all nurses and scenarios. Let Λ be the set of extreme points

for the dual subproblem (DN 3 ). Given a schedule of nurses, the second stage restricted

master problem (RMP 2) can be formulated as

min η2 (4.50)

subject to

η2 ≥
∑
n∈N

∑

ξ∈Ξ

∑
t∈T

φξ{
∑

p∈P (n)

(π̃ξ
tngtpn+

Ỹ ξ
tndtpn)Xpn +

k∑
i=1

(mtni −mtn(i+1))ρ̃
ξ
tni} ∀(π̃, Ỹ , ρ̃) ∈ Λ, (4.51)

Xpn ≤ Y nj ∀n ∈ N(p), p ∈ P (j), j ∈ J, (4.52)

Xpn ≤ Y
r

nj ∀n ∈ R(p), p ∈ P (j), j ∈ J, (4.53)

Xpn ≤ Y
o

nj ∀n ∈ O(p), p ∈ P (j), j ∈ J, (4.54)

Xpn ≤ Y
a

nj ∀n ∈ A(p), p ∈ P (j), j ∈ J, (4.55)

0 ≤ Xpn ≤ 1 ∀p ∈ P, n ∈ N(p), (4.56)

where Xpn satisfy (4.13).

Constraints (4.51) are optimality cuts, which represent a successive linear approxi-

mation of the third stage problem. Note that the binary constraint (4.16) can be relaxed
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to the upper bound constraint (4.56). Let (ψ(π̃,Ỹ ,ρ̃), σnpj, βnpj, γnpj, νnpj, χpn, ωp) be the

dual variables associating with constraints (4.51), (4.52), (4.53), (4.54), (4.55), (4.56),

and (4.13) respectively. Let (ψr
(π̃,Ỹ ,ρ̃)

, σr
npj, β

r
npj, γ

r
npj, ν

r
npj, χ

r
pn, ω

r
p) be extreme rays of dual

polyhedron. The second stage dual problem (DRMP 2) can be written as the following:

max
∑

(π̃,Ỹ ,ρ̃)∈Λ

(
∑
n∈N

∑

ξ∈Ξ

∑
t∈T

φξ

k∑
i=1

(mtni −mtn(i+1))ρ̃
ξ
tni)ψ(π̃,Ỹ ,ρ̃)

−
∑
j∈J

∑

p∈P (j)

{
∑

n∈N(p)

Y njσnpj +
∑

n∈R(p)

Y
r

njβnpj

+
∑

n∈O(p)

Y
o

njγnpj +
∑

n∈A(p)

Y
a

njνnpj} −
∑
p∈P

∑

n∈N(p)

χpn +
∑
p∈P

ωp (4.57)
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subject to

−
∑

(π̃,Ỹ ,ρ̃)∈Λ

∑

ξ∈Ξ

∑
t∈T

φξ(π̃ξ
tngtpn + Ỹ ξ

tndtpn)ψ(π̃,Ỹ ,ρ̃) − σnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ N(p), (4.58)

−
∑

(π̃,Ỹ ,ρ̃)∈Λ

∑

ξ∈Ξ

∑
t∈T

φξ(π̃ξ
tngtpn + Ỹ ξ

tndtpn)ψ(π̃,Ỹ ,ρ̃) − βnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ R(p), (4.59)

−
∑

(π̃,Ỹ ,ρ̃)∈Λ

∑

ξ∈Ξ

∑
t∈T

φξ(π̃ξ
tngtpn + Ỹ ξ

tndtpn)ψ(π̃,Ỹ ,ρ̃) − γnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ O(p), (4.60)

−
∑

(π̃,Ỹ ,ρ̃)∈Λ

∑

ξ∈Ξ

∑
t∈T

φξ(π̃ξ
tngtpn + Ỹ ξ

tndtpn)ψ(π̃,Ỹ ,ρ̃) − νnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ A(p), (4.61)

∑

(π̃,Ỹ ,ρ̃)∈Λ

ψ(π̃,Ỹ ,ρ̃) = 1, (4.62)

ψ(π̃,Ỹ ,ρ̃) ≥ 0 ∀(π̃, Ỹ , ρ̃) ∈ Λ, (4.63)

σnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ N(p), (4.64)

βnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ R(p), (4.65)

γnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ O(p), (4.66)

νnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ A(p), (4.67)

χpn ≥ 0 ∀p ∈ P, n ∈ N(p), (4.68)

ωp free ∀p ∈ P. (4.69)
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Let Ψ (Γ) be the set of extreme points (extreme rays) of the second stage dual

problem (4.57)-(4.69). The restricted master problem (RMP 1) for the nested Benders’

decomposition is reformulated as follows:

min η1 (4.70)

subject to

η1 ≥ −
∑
j∈J

∑

p∈P (j)

{
∑

n∈N(p)

σ̃npjYnj +
∑

n∈R(p)

β̃npjY
r
nj

+
∑

n∈O(p)

γ̃npjY
o
nj +

∑

n∈A(p)

ν̃npjY
a
nj}+ ψ − χ + ω ∀(ψ̃, σ̃, β̃, γ̃, ν̃, χ̃, ω̃) ∈ Ψ, (4.71)

−
∑
j∈J

∑

p∈P (j)

{
∑

n∈N(p)

σ̃r
npjYnj +

∑

n∈R(p)

β̃r
npjY

r
nj

+
∑

n∈O(p)

γ̃r
npjY

o
nj +

∑

n∈A(p)

ν̃r
npjY

a
nj}+ ψ

r − χr + ωr ≤ 0 ∀(ψ̃r, σ̃r, β̃r, γ̃r, ν̃r, χ̃r, ω̃r) ∈ Γ,

(4.72)

where (Ynj, Y
c
n , Y r

nj, Y
o
nj, Y

a
nj) satisfy (4.2), (4.3), (4.8)-(4.12).

Where ψ =
∑

(π̃,Ỹ ,ρ̃)∈Λ

(
∑
n∈N

∑

ξ∈Ξ

∑
t∈T

φξ

k∑
i=1

(mtni −mtn(i+1))ρ̃
ξ
tni)ψ̃(π̃,Ỹ ,ρ̃),

ω =
∑
p∈P

ω̃p,

χ =
∑
p∈P

∑

n∈N(p)

χ̃pn,

ψ
r

=
∑

(π̃,Ỹ ,ρ̃)∈Λ

(
∑
n∈N

∑

ξ∈Ξ

∑
t∈T

φξ

k∑
i=1

(mtni −mtn(i+1))ρ̃
ξ
tni)ψ̃

r
(π̃,Ỹ ,ρ̃)

,

ωr =
∑
p∈P

ω̃r
p,

χr =
∑
p∈P

∑

n∈N(p)

χ̃r
pn

Constraints (4.71) are the optimality cuts passing information from the second

stage dual problem (DRMP 2) to the restricted master problem (RMP 1). When the
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second stage problem (RMP 2) is infeasible, the feasibility cuts in constraints (4.72) are

added to the restricted master problem (RMP 1) to induce a feasible solution.

Figure 4.1 illustrates the flow chart of nested Benders’ decomposition method for

SINSA. Note that our third stage subproblems (PN3ξ
n ) for all of the nurses and scenarios

are always feasible. The nested Benders’ decomposition algorithm for the three-stage in-

tegrated nurse staffing and assignment problem (SINSA-NBD) is described as Algorithm

9.

The nested L-shaped method proceeds as follows. Let SolveRMP1 denote a

boolean variable which is true when we need to solve the restricted master problem

(RMP 1). Let CheckRMP1 and CheckRMP2 be boolean variables. If CheckRMP1 is

true, then the current restricted master problem (RMP 1) is checked whether it is optimal

with respect to the first stage optimality cut. If CheckRMP2 is true, then the current

second stage restricted master problem (RMP 2) is checked whether it is optimal with

respect to the second stage optimality cut. Let (Ỹnj, Ỹ
c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj) and X̃ be the best

nurse staffing schedule and the best assignment found, respectively. Let Z̃1
UB and Z̃2

UB

be the objective value of the best staffing and best assignment, respectively. On each

iteration, we consider a subset of dual extreme points of (DS3) Λ ⊆ Λ, and let constraint

set (4.51’) be the subset of (4.51) over Λ. We consider a subsets of dual extreme points of

(DRMP 2) Ψ ⊆ Ψ, and let constraint set (4.71’) be the subset of (4.71) over Ψ. We also

consider a subsets of dual extreme rays of (DRMP 2) Γ ⊆ Γ, and let constraint set (4.72’)

be the subset of (4.72) over Γ. We solve a restricted master problem (4.2), (4.3), (4.8)-

(4.12), (4.70), (4.71’), and (4.72’) to find a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj). Give a

nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj), we solve the second stage restricted master prob-

lem (4.13), (4.50), (4.51’), (4.52)-(4.56) and obtain a nurse assignment X and anticipated

penalty η2. If a current assignment is infeasible, then we add a feasibility cut to (4.72’)

and update the variable solveRMP1 to resolve the restricted master problem (RMP 1)

until a feasible assignment is obtained. Otherwise, we update the variables CheckRMP1

and CheckRMP2 to check whether the restricted master problem (RMP 1) and the sec-



77

ond stage restricted master problem (RMP 2) are optimal with respect to optimality

cuts. If the variable CheckRMP2 is true, we solve the dual subproblems (DS3) over all

of the nurses n ∈ N and scenarios ξ ∈ Ξ to obtain the optimal dual solutions (π̃, Ỹ , ρ̃).

If the current excess workload for nurses
∑

ξ∈Ξ

∑
n∈N

∑
τ∈T

∑k
i=1 φξατniA

ξ
τni is smaller

than Z̃2
UB, then we update the best assignment X̃, and the upper bound Z̃2

UB. If the con-

straints (4.51) with these dual solutions (π̃, Ỹ , ρ̃) are violated by the current assignment

(X) and anticipated objective value η2, then we add a Benders’ optimality cut to (4.51’)

and update the variable CheckRMP2 to resolve and check the second stage restricted

master problem (RMP 2). Otherwise, we adjust the variable CheckRMP1 to check an

optimality cut for the restricted master problem (RMP 1). If the CheckRMP1 is true,

then we examine the following condition. If the anticipated objective value η2 is less than

the best upper bound Z̃1
UB, then we update the nurse schedule (Ỹnj, Ỹ

c
n , Ỹ r

nj, Ỹ
o
nj, Ỹ

a
nj) and

the best upper bound Z̃1
UB. If the anticipated objective value η1 is less than the objective

value of the dual solution (ψ̃(π̃,Ỹ ,ρ̃), σ̃npj, β̃npj, γ̃npj, ν̃npj, χ̃pn, ω̃p), then we add a Benders’

optimality cut to (4.71’) and all boolean variables are adjusted to resolve and check both

restricted master problem (RMP 1) and second stage restricted master problem (RMP 2).

Then, another iteration is performed. Otherwise, the algorithm terminates and a nurse

schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj) and the assignment X are optimal.
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Figure 4.1. The nested Benders’ decomposition algorithm for the three-stage integrated
nurse scheduling and assignment problem flow chart.
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Algorithm 8 Stochastic Integrated Nurse Staffing and Assignment Subgradient Algo-

rithm (SINSA-SA).

Let r be an iteration number, α be step size, θ0 ← 2, initial Lagrange multiplier λ0 ≥ 0,

STOP ← FALSE .

while STOP = FALSE do

Solve the Lagrangian problem (4.3)-(4.18),(4.49) by the SINSA-BD described in

Algorithm 7 to obtain the lower bound Z̃LB.

α ← θ(Z̃UB − Z̃LB)/ (
∑

j∈J

∑
n∈N(j) cs

njYnj +
∑

n∈N cc
nY c

n +
∑

j∈J

∑
n∈R(j) cr

njY
r
nj +

∑
j∈J

∑
n∈O(j) co

njY
o
nj +

∑
j∈J

∑
n∈A(j) ca

njY
a
nj −B)2.

λr+1 ← max{0, λr + α(
∑

j∈J

∑
n∈N(j) cs

njYnj +
∑

n∈N cc
nY

c
n +

∑
j∈J

∑
n∈R(j) cr

njY
r
nj +

∑
j∈J

∑
n∈O(j) co

njY
o
nj +

∑
j∈J

∑
n∈A(j) ca

njY
a
nj −B).

if |λr+1 − λr| < ε then

STOP ← TRUE

end if

if |Z̃r+1
LB − Z̃r

LB| < ε then

θr+1 ← θr/2

else

θr+1 ← θr

end if

r ← r + 1

end while
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Algorithm 9 Nested Benders’ Decomposition Algorithm for the Three-Stage Integrated

Nurse Staffing and Assignment Problem (SINSA-NBD)
Initialization: Θ ← ∅, Λ ← ∅, Ψ ← ∅, Γ ← ∅, the best nurse schedule (Ỹnj , Ỹ c

n , Ỹ r
nj , Ỹ o

nj , Ỹ a
nj) ← ∅, the best assignment X̃ ← ∅,

objective value of best scheduling Z̃1
UB ←∞, objective value of best assignment Z̃2

UB ←∞, solveRMP1 ← TRUE , CheckRMP1 ← TRUE ,

CheckRMP2 ← TRUE .

while solveRMP1 = TRUE||CheckRMP1 = TRUE||CheckRMP2 = TRUE do

if solveRMP1 = TRUE then

Solve the restricted master problem (RMP1) to obtain a nurse schedule (Y nj , Y
c
n, Y

r
nj , Y

o
nj , Y

a
nj) and an anticipated objective

value η1. (On the first iteration, let η1 ← −∞).

end if

Solve the second stage restricted master problem (RMP2) to obtain a nurse assignment X and an anticipated objective value η2. (On

the first iteration, let η2 ← −∞).

if the second stage restricted master problem (RMP2) is infeasible then

Γ ← Γ ∪
{
(ψ̃r, σ̃r, β̃r, γ̃r, ν̃r, χ̃r, ω̃r)

}
, where (ψ̃r, σ̃r, β̃r, γ̃r, ν̃r, χ̃r, ω̃r) is the combination of the extreme rays

(ψ̃r
(π̃,Ỹ ,ρ̃)

, σ̃r
npj , β̃r

npj , γ̃r
npj , ν̃r

npj , χ̃r
pn, ω̃r

p).

solveRMP1 ← TRUE , CheckRMP1 ← FALSE , and CheckRMP2 ← FALSE .

else

solveRMP1 ← FALSE , CheckRMP1 ← TRUE , and CheckRMP2 ← TRUE .

end if

if CheckRMP2 = TRUE then

for all n ∈ N, ξ ∈ Ξ do

Solve the third stage dual subproblem (DN3ξ
n ) to obtain the extreme points (π̃ξ

n, Ỹ ξ
n , ρ̃ξ

n).

end for

if
∑

ξ∈Ξ
∑

n∈N

∑
τ∈T

∑k
i=1 φξατniÃ

ξ
τni < Z̃2

UB then

X̃ ← X.

Z̃2
UB ← ∑

ξ∈Ξ
∑

n∈N

∑
τ∈T

∑k
i=1 φξατniÃ

ξ
τni.

end if

if η2 <
∑

p∈P

∑
n∈N(p)

∑
ξ∈Ξ

∑
t∈T φξ

[(
π̃

ξ
tngtpn + Ỹ

ξ
tndtpn

)
Xpn +

∑k
i=1(mtni −mtn(i+1))ρ̃

ξ
tni

]
then

Λ ← Λ ∪
{
(π̃, Ỹ , ρ̃)

}
, where (π̃, Ỹ , ρ̃) is the combination of the vectors (π̃ξ

n, Ỹ ξ
n , ρ̃ξ

n).

solveRMP1 ← FALSE , CheckRMP1 ← FALSE , and CheckRMP2 ← TRUE .

else

solveRMP1 ← TRUE , CheckRMP1 ← TRUE , and CheckRMP2 ← FALSE .

end if

end if

if CheckRMP1 = TRUE then

if η2 < Z̃1
UB then

(Ỹnj , Ỹ c
n , Ỹ r

nj , Ỹ o
nj , Ỹ a

nj) ← (Y nj , Y
c
n, Y

r
nj , Y

o
nj , Y

a
nj).

Z̃1
UB ← η2.

end if

if η1 <
∑

(π̃,Ỹ ,ρ̃)∈Λ(
∑

n∈N

∑
ξ∈Ξ

∑
t∈T φξ ∑k

i=1(mtni − mtn(i+1))ρ̃
ξ
tni)ψ̃(π̃,Ỹ ,ρ̃) −

∑
j∈J

∑
p∈P (j)

{∑
n∈N(p) Y nj σ̃npj +

∑
n∈R(p) Y

r
nj β̃npj +

∑
n∈O(p) Y

o
nj γ̃npj +

∑
n∈A(p) Y

a
nj ν̃npj

}
+

∑
p∈P ω̃p −

∑
p∈P

∑
n∈N(p) χ̃pn then

Ψ ← Ψ ∪
{
(ψ̃, σ̃, β̃, γ̃, ν̃, χ̃, ω̃)

}
, where (ψ̃, σ̃, β̃, γ̃, ν̃, χ̃, ω̃) is the combination of the vectors

(ψ̃(π̃,Ỹ ,ρ̃), σ̃npj , β̃npj , γ̃npj , ν̃npj , χ̃pn, ω̃p).

solveRMP1 ← TRUE , CheckRMP1 ← TRUE , and CheckRMP2 ← TRUE .

else

solveRMP1 ← FALSE , CheckRMP1 ← FALSE , and CheckRMP2 ← FALSE .

end if

end if

end while

return the best nurse schedule (Ỹnj , Ỹ c
n , Ỹ r

nj , Ỹ o
nj , Ỹ a

nj), and assignment X̃.



CHAPTER 5

INTEGRATED NURSE STAFFING AND ASSIGNMENT
COMPUTATIONAL RESULTS

We report a computational study on integrated nurse staffing and assignment in this

section. We tested three solution approaches on four problem instances generated from

data from a Northeast Texas hospital. The problem instances are described in Section

5.1. Because of the complexity of the model, these problem instances cannot be solved

optimally within 30 minutes. However, finding the optimal solutions may be meaningless

since the nurse supervisor wants to quickly obtain high quality schedule and assignment

that satisfy all requirements. Accordingly, the focus of the computational study is to find

good solutions within a 30-minute time limit. In Section 5.2, we select the appropriate

parameters for the solution approaches, and then the algorithmic efficiencies of three

approaches are compared. In Section 5.2.3, we study the effects of imposing nurses to

work on their primary work units versus allowing nurses to float to other units. Results

are stated in the same section.

5.1 Problem Instances

The Northeast Texas hospital provided us encrypted data from two medical-surgical

units, namely, Med-Surg1 and Med-Surg2, for this study, and the data was from March

2004-December 2004. We obtained encrypted patient data including patient’s primary

diagnosis, room location, admission date, discharge date, units a patient stayed. In

addition to patient data, the Northeast Texas hospital gave nurses data as well. Each

nurse at the hospital wears a badge that locates nurses in the hospital unit, so that a

charge nurse can reach a nurse immediately when her patient calls the nurses’ station.

Given that the Northeast Texas hospital has a nurse locator device with RFID technology,

81
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Table 5.1. Instances generated from the Northeast Texas hospital data

Med-Surg1 unit Med-Surg2 unit
Instance Shift No. of patients No. of nurses No. of patients No. of nurses

1 Day 23 2-1 23 2-1
2 Day 18 4-0 18 4-0
3 Evening 18 2-1 18 2-1
4 Night 13 1-1 13 1-1

they can track nurses’ location from her badge and collect location data for nurses over

months.

Problem instances were generated based upon encrypted patient data and nurse

data. We used the Med-Surg1 unit instances described in Section 3.1. The Med-Surg2

unit instances were generated in the same fashion as those from Med-Surg1. We randomly

generated 500 and 5000 scenarios for Ξ. The probability of each scenario is equally likely.

We estimated patient admission and discharge to a unit as Poisson processes with mean

equal to the number of patients in a shift divided by the average length of stay. Our data

indicates that the average length of stay of patient in Med-Surg1 and Med-Surg2 unit were

2.725 and 1.936 days per patient, respectively. Besides patient information, individual

nurse skills were also taken into consideration. Table 5.1 represents characteristics of the

four problem instances from two medical-surgical units. The column labeled “Instance”

is the random instance, “Shift” is the time of the shift, and “No. of Pat” is the number

of patients in the instance. The column labeled “No. of Nurses” is in the format of a-b,

where a and b represent the number of registered nurses and licensed vocational nurses

on duty, respectively. Table 5.2 displays salary for each type of nurses. The column

labeled “Nurse Type” represents types of nurses. The column labeled “$/shift” displays

the salary of a nurse per shift, and “Total No. of Nurses” shows the total number of

nurses. The row labeled “Regular Nurse” is in the format of c-d-e-f, where c, d, e, and

f represent the number of regular nurses in Instances 1-4, respectively. The last row

labeled “Budget” is the total budget for both units for a shift.



83

Table 5.2. Salary of different types of nurses

Nurse Type $/Shift Total no. of nurses
Regular Nurse 160 6-8-6-4
Overtime Nurse 240 4

PRN Nurse 256 4
Agency Nurse 320 4

Budget $2000

5.2 Computational Results

In this section, we present computational results based upon instances created

from real data from the Northeast Texas hospital described in Section 5.1. We begin

with determining appropriate parameters for the Lagrangian relaxation with Benders’

decomposition and the nested Benders’ decomposition methods in Section 5.2.1. In

Section 5.2.2, we compare expected excess workload and staffing cost from three different

solution methods. The tradeoff between average excess workload and staffing cost are

shown. Finally, we perform a computational comparison between two policies, which are

with and without a reasonable assumption that nurses should be restricted to work on

their primary work units in Section 5.2.3.

We implemented three different solution approaches in the C programming lan-

guage on a Dell Precision Workstation with dual 3.06-Gz Intel Xeon processors using

CPLEX 9.1 callable library. We solved SINSA with Benders’ decomposition, Lagrangian

relaxation with Benders’ decomposition, and nested Benders’ decomposition approaches,

denoted as SINSA-BD, SINSA-LRBD, SINSA-NBD, respectively. We solved the mean

value problem, which is a deterministic integer programming replaced direct care and

indirect care random variables with their mean, for less than one minutes to find an ini-

tial solution for all methods. Then, the problem was solved by each solution method for

the remaining time. We optimized SINSA-BD, SINSA-LRBD, and SINSA-NBD with 500

scenarios and evaluated the recourse subproblems by using the greedy algorithm (GAPS)

with 5000 scenarios to obtain the excess workload of each schedule and assignment.
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According to the staffing policy from the Northeast Texas hospital, the staffing hap-

pens per unit with different managers. Med-Surg1 and Med-Surg2 nurses are assigned

to their primary work units. Nevertheless, two medical-surgical units use the same nurse

pool of PRN nurses, overtime nurses, and agency nurses. Therefore, we apply the follow-

ing assumption:

Assumption 4: Scheduled nurses must be assigned to their primary work units. PRN

nurse, overtime nurse, and agency nurses can be scheduled to any units needing help.

We refer to nondominated solutions as nurse schedules and assignments that are not

dominated by any other schedules and assignments found, either they require less excess

workload or less staffing cost than the other solutions found. Algorithm 10 describes the

algorithm for the nondominated solutions. Let L be a list of nondominated solutions.

Every iteration, we solve SINSA by one of three proposed approaches to obtain a solution,

we compare the current solution with those in the list L. If the current solution produces

higher staffing cost or more excess workload than those in the list L, we discard the current

solution. Otherwise, we add the current solution into the list L. Then, we update the

list of nondominated solutions by deleting solutions dominated by the current solution.

Each solution represents schedules and assignments for nurses in an upcoming shift. We

refer to the efficient frontier as a tradeoff curve between excess workload and staffing

cost of the set of nondominated solutions found within 30 minutes. The focus of this

dissertation is to find many nondominated solutions to form the efficient frontier.

5.2.1 Parameter Tuning

In this section, we determine appropriate parameters for solving SINSA-LRBD and

SINSA-NBD.

5.2.1.1 Parameters for SINSA-LRBD

We find proper parameters for the SINSA-LRBD approach in this section. We

solve SINSA-LRBD by employing the subgradient algorithm for stochastic integrated
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Algorithm 10 Nondominated Solution Algorithm

Let L be a list of nondominated solutions.

Solve the SINSA to obtain a nurse schedule (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj), an assignment

X, and their objective function Z(Y nj ,Y
c
n,Y

r
nj ,Y

o
nj ,Y

a
nj ,X).

if ∃(Ynj, Y
c
n , Y r

nj, Y
o
nj, Y

a
nj, X) ∈ L in which Z(Ynj ,Y c

n ,Y r
nj ,Y o

nj ,Y a
nj ,X) < Z(Y nj ,Y

c
n,Y

r
nj ,Y

o
nj ,Y

a
nj ,X)

then

Delete the current solution (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj, X).

else

Add the current solution (Y nj, Y
c

n, Y
r

nj, Y
o

nj, Y
a

nj, X) to a list L, L ← L ∪
(Y nj, Y

c

n, Y
r

nj, Y
o

nj, Y
a

nj, X).

for all (Ynj, Y
c
n , Y r

nj, Y
o
nj, Y

a
nj, X) ∈ L do

if Z(Y nj ,Y
c
n,Y

r
nj ,Y

o
nj ,Y

a
nj ,X) < Z(Ynj ,Y c

n ,Y r
nj ,Y o

nj ,Y a
nj ,X) then

Delete a solution (Ynj, Y
c
n , Y r

nj, Y
o
nj, Y

a
nj, X) in a list L, L ←

L\(Ynj, Y
c
n , Y r

nj, Y
o
nj, Y

a
nj, X).

end if

end for

end if

nurse staffing and assignment (SINSA-SA) in Algorithm 8. Table 5.3 depicts parameters

for SINSA-SA, which are initial step-size α, initial Lagrange multiplier λ, parameter for

algorithm θ, small positive number ε, and number of iteration limit. The values of initial

parameters are selected because they are common for the subgradient algorithm.

The termination criteria for SINSA-SA algorithm are the following:

1. The Lagrange multiplier converges within the small positive number ε. The different

between the previous and the current Lagrange multiplier is less than the small

positive number ε.

2. The time limit is met. We use 30 minutes time limit in our computational results.
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Table 5.3. Parameters for the SINSA-LRBD approach

Parameter Value
Initial step size α 2.0
Initial Lagrange multiplier λ 0.0
Initial LRBD parameter θ 2
ε 0.00005
Iteration number 2000

3. The iteration number limit is reached. The limitation for solving SINSA-SA is 2000

iterations.

SINSA-SA terminates when one of the above termination criteria is satisfied.

According to SINSA-SA, we solve SINSA-BD described in Algorithm 7 and update

the Lagrange multiplier and the step-size. Then, we perform another iteration until the

termination criteria is met. One problem with SINSA-SA is that we cannot optimally

solve SINSA-BD within 30 minutes, therefore not enough solutions are generated to form

the efficient frontier. One way to overcome this problem is to set time limit for solving

SINSA-BD. Accordingly, we examined time duration for solving SINSA-BD embedded

in SINSA-SA that yields the best results. We solved SINSA-BD for 30, 60, 120, and 300

seconds, and then updated the step-size, Lagrange multiplier, and parameter θ. Tables

5.4-5.7 show excess workload and staffing cost of solving SINSA-BD with different time

limits embedded in SINSA-SA for all four instances, respectively. Figure 5.1 displays the

efficient frontiers of solving SINSA-BD with different time limits embedded in SINSA-SA,

and they indicated that solving SINSA-BD with 300 seconds within SINSA-SA provided

the best results. Thus, we solved SINSA-BD for 300 seconds before updating the sub-

gradient parameters in SINSA-SA in the remainder of this computational study.

5.2.1.2 SINSA-NBD Algorithm Enhancement

SINSA-NBD confronted the similar situation as SINSA-LRBD that not many so-

lutions were produced when we tried to solve the restricted master problem (RMP 1)
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Table 5.4. Instance 1: solving SINSA-BD with different time limits within the SINSA-
LRBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

58.90 3152 14 49.17 3168 14
102.11 3088 14 67.66 2032 9
185.30 2768 13 93.05 1440 7
309.24 928 4 104.78 1392 7
311.24 800 4 117.56 1360 6
545.67 720 4 126.23 1200 6
659.46 656 3 195.67 1120 6
688.15 560 3 221.31 1072 5
890.41 480 3 308.52 912 4
1094.86 400 2 336.74 816 4
1273.56 320 2 375.79 720 4

761.68 560 3
1127.59 400 2
1273.56 320 2

120 sec. 300 sec.
37.05 3904 17 32.83 3968 17
38.94 3728 16 35.48 3728 16
39.99 3648 16 42.12 3648 16
42.41 3232 14 45.09 3328 15
75.96 3088 14 54.60 2912 13
117.67 1200 6 125.21 2768 13
133.87 1120 6 168.12 2576 12
218.26 1056 6 172.93 1152 6
255.22 976 5 311.06 976 5
326.56 896 4 337.68 880 4
359.56 720 4 366.12 736 4
1048.90 560 3 372.15 720 4
1094.86 400 2 701.54 640 4
1273.56 320 2 1065.57 560 3

1127.59 400 2
1273.56 320 2
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Table 5.5. Instance 2: solving SINSA-BD with different time limits within the SINSA-
LRBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

234.34 2400 12 18.40 480 3
607.06 2240 11 105.81 320 2
730.01 1520 9

120 sec. 300 sec.
34.12 3536 16 16.51 1040 5
44.77 3216 15 24.35 720 4
50.16 2976 14 26.92 576 3
59.06 2656 13 42.25 560 3
71.59 2640 13 90.17 480 3
91.40 2480 12 481.57 320 2
107.13 320 2

optimally within 30 minutes. Hence, we enforced a different time limit and solved the

restricted master problem (RMP 1) in SINSA-NBD described in Algorithm 4.1. Only one

nondominated solution was obtained leading us to incorporate the following minimum

nurses constraint to the restricted master problem (RMP 1) along with time limit to

enhance the algorithmic performance.

∑
j∈J





∑

n∈N(j)

Ynj +
∑

n∈R(j)

Y r
nj +

∑

n∈O(j)

Y o
nj +

∑

n∈A(j)

Y a
nj



 ≥ lb + brand ∗ (ub− lb + 1)c .

(5.1)

where

rand = random number, (5.2)

lb = 1, (5.3)

ub =

⌊ |N|
|J |

⌋
− {|R|+ |O|+ |A|} /|J |. (5.4)
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Table 5.6. Instance 3: solving SINSA-BD with different time limits within the SINSA-
LRBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

39.79 3152 14 28.46 3168 14
73.98 896 5 44.80 2272 10
94.04 880 5 56.13 1952 9
152.28 720 4 60.97 1472 7
259.58 576 3 76.47 1456 7
310.57 560 3 79.55 1280 7
335.70 480 3 86.05 1200 6
818.26 416 2 117.92 1136 6
941.84 400 2 146.25 720 4

251.79 560 3
391.33 480 3
818.26 400 2
1886.86 320 2

120 sec. 300 sec.
33.54 2912 13 20.42 3984 17
54.22 2608 12 22.57 3968 17
57.53 2592 12 25.22 3648 16
85.76 2336 11 27.07 3488 15
286.35 2096 10 28.19 3472 15
366.15 1696 9 30.81 3408 15
941.84 416 2 32.82 3392 15

33.54 2912 13
34.25 2848 13
38.23 2832 13
38.72 1216 6
58.43 1136 6
59.73 992 5
61.97 960 5
77.76 880 5
132.52 800 4
133.69 720 4
242.50 640 4
577.38 560 3
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Table 5.7. Instance 4: solving SINSA-BD with different time limits within the SINSA-
LRBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

19.82 2128 10 17.39 2096 9
32.77 1136 6 19.80 1936 9
74.81 960 5 32.77 1136 6
134.09 896 5 74.81 960 5
159.01 880 5 134.09 896 5

159.01 880 5
120 sec. 300 sec.

11.63 3072 13 8.82 3664 15
13.12 1712 8 8.93 3648 15
21.34 1632 8 9.26 3584 15
32.77 1136 6 9.45 3072 13
74.81 960 5 9.89 1552 7
134.09 896 5 14.02 1056 5
159.01 880 5 19.04 816 4

28.46 560 3
56.79 480 3
159.01 400 2

The minimum nurses constraint (5.1) randomly changes the number of nurses re-

quired to be staffed for a shift. As the algorithm was forced to explore many nurse staffs

with different numbers of nurses, more quality nondominated solutions were generated.

With constraint (5.1), we investigated the time limit for solving the restricted

master problem (RMP 1) within SINSA-NBD that gave the best staffing and assignments.

We solved the restricted master problem (RMP 1) with 30, 60, 120, and 300 seconds.

Tables (5.8)-(5.11) display excess workload and staffing cost for solving the restricted

master problem (RMP 1) with different time limits in SINSA-NBD for all four instances,

respectively, and Figure 5.2 displays their efficient frontiers. Results illustrated that

solving the restricted master problem (RMP 1) with 300 seconds gave minimum excess

workload and staffing cost, therefore we included the minimum nurses constraint (5.1)
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Figure 5.1. Selecting time limit (in seconds) for the SINSA-LRBD approach.

and solved the restricted master problem (RMP 1) with 300 seconds in SINSA-NBD in

the remainder of this computational study.

5.2.2 Algorithmic Approaches Comparison

In this section, we evaluated the algorithmic performance of three solution methods,

which were SINSA-BD, SINSA-LRBD, and SINSA-NBD. Tables 5.12-5.15 summarize the

average excess workload in minutes, the staffing costs, and the total number of nurses

scheduled for a shift with different solution methods for all four instances, respectively.

The breakdown to the number of each type of nurses, i.e., PRN nurses, overtime nurses,

and agency nurses, scheduled to work for a shift is displayed in Table B.1-B.4 in the Ap-

pendix. Figure 5.3 shows the efficient frontiers comparing average excess workload and
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Table 5.8. Instance 1: solving the restricted master problem (RMP 1) with different time
limits within the SINSA-NBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

81.18 1936 9 81.18 1936 9
824.20 480 3 781.85 720 4

815.98 480 3
120 sec. 300 sec.

81.18 1936 9 49.10 1936 9
628.29 896 4 618.68 896 4
679.76 640 3 675.97 640 3

Table 5.9. Instance 2: solving the restricted master problem (RMP 1) with different time
limits within the SINSA-NBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

12.40 1968 10 12.40 1968 10
70.05 1376 6 33.62 1136 6

1195.89 960 4 1195.82 816 4
120 sec. 300 sec.

6.81 1136 6 12.40 1968 10
474.17 736 4 45.41 1392 7

Table 5.10. Instance 3: solving the restricted master problem (RMP 1) with different
time limits within the SINSA-NBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

57.40 1952 9 37.34 1952 9
526.90 800 4 530.81 800 4
606.33 560 3 599.26 560 3

120 sec. 300 sec.
37.34 1952 9 22.60 1952 9
624.84 896 4 505.59 800 4
969.65 656 3 586.56 560 3
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Table 5.11. Instance 4: solving the restricted master problem (RMP 1) with different
time limits within the SINSA-NBD approach

Excess Staffing No. of Excess Staffing No. of
workload cost nurses workload cost nurses

(min) ($) (min) ($)
30 sec. 60 sec.

19.19 1936 8 11.50 1936 8
128.82 640 3 128.76 640 3

120 sec. 300 sec.
5.52 1936 8 3.34 1936 8

128.88 720 3 128.81 640 3
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Figure 5.2. Selecting time limit (in seconds) for the SINSA-NBD approach.
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Table 5.12. Instance 1 results comparing average excess workload and staffing cost from
solving SINSA with three different approaches

SINSA-BD SINSA-LRBD SINSA-NBD
Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses
(min) ($) (min) ($) (min) ($)
59.19 1856 8 32.83 3968 17 49.10 1936 9
294.79 1792 7 35.48 3728 16 618.68 896 4
302.61 1712 7 42.12 3648 16 675.97 640 3
470.36 1472 6 45.09 3328 15
1291.76 1056 4 54.60 2912 13
1339.31 896 3 125.21 2768 13

168.12 2576 12
172.93 1152 6
311.06 976 5
337.68 880 4
366.12 736 4
372.15 720 4
701.54 640 4
1065.57 560 3
1127.59 400 2
1273.56 320 2

staffing cost from solving SINSA with three different approaches. In general, SINSA-

LRBD generated more and better nondominated solutions than SINSA-BD and SINSA-

NBD. The explanation is that SINSA-LRBD takes both excess workload on nurses and

staffing cost into consideration resulting in favorable solutions. Results also suggested

that simultaneously staffing and assigning nurses (as in two-stage) provided better so-

lutions than sequentially considering them (as in three-stage). In addition, the nurse

schedule and assignments found by these methods can be used in a nurse staffing deci-

sion supporting system for a nurse supervisor. Not only can the nurse supervisor make a

revised nurse schedule based on the tradeoff between staffing cost and excess workload on

nurses, but she also obtains assignments of nurses to patients. Table 5.16 lists the average

CPU time in seconds that each method used to solve SINSA. The Lagrange multipliers

converged in two instances causing less CPU time.
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Table 5.13. Instance 2 results comparing average excess workload and staffing cost from
solving SINSA with three different approaches

SINSA-BD SINSA-LRBD SINSA-NBD
Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses
(min) ($) (min) ($) (min) ($)
19.18 1936 9 16.51 1040 5 12.40 1968 10
19.54 1872 8 24.35 720 4 45.41 1392 7
23.06 1856 8 26.92 576 3
28.18 1152 6 42.25 560 3
151.36 1072 5 90.17 480 3
726.81 480 2 481.57 320 2
751.49 400 2

Table 5.14. Instance 3 results comparing average excess workload and staffing cost from
solving SINSA with three different approaches

SINSA-BD SINSA-LRBD SINSA-NBD
Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses
(min) ($) (min) ($) (min) ($)
25.68 1952 9 20.42 3984 17 22.60 1952 9
50.46 1936 9 22.57 3968 17 505.59 800 4
55.02 1920 9 25.22 3648 16 586.56 560 3
68.32 1856 8 27.07 3488 15
92.18 1776 8 28.19 3472 15
117.20 1632 7 30.81 3408 15
431.96 1616 7 32.82 3392 15
941.84 416 2 33.54 2912 13

34.25 2848 13
38.23 2832 13
38.72 1216 6
58.43 1136 6
59.73 992 5
61.97 960 5
77.76 880 5
132.52 800 4
133.69 720 4
242.50 640 4
577.38 560 3



96

Table 5.15. Instance 4 results comparing average excess workload and staffing cost from
solving SINSA with three different approaches

SINSA-BD SINSA-LRBD SINSA-NBD
Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses
(min) ($) (min) ($) (min) ($)
8.44 1872 8 8.82 3664 15 3.34 1936 8
9.14 1808 8 8.93 3648 15 128.81 640 3
10.03 1792 8 9.26 3584 15
10.25 1776 7 9.45 3072 13
10.75 1696 7 9.89 1552 7
12.87 1680 7 14.02 1056 5
14.49 1616 7 19.04 816 4
15.68 1600 7 28.46 560 3
18.78 1552 7 56.79 480 3
19.88 1440 6 159.01 400 2
31.67 672 3
162.13 640 3

Table 5.16. Comparison of CPU time (seconds)

CPU time (seconds)
Instance SINSA-BD SINSA-LRBD SINSA-NBD

1 1839.75 1831.86 938.72
2 1807.14 585.24 613.20
3 1816.30 1821.62 916.93
4 1805.43 541.13 351.63

5.2.3 Working in Primary Work Units Only vs. Floating to Other Units

In this section, we performed a computational experiment to evaluate two float

assignment policies:

Policy 1: Regular nurses are restricted to work in their primary work units only.

Policy 2: Regular nurses are allowed to float to other units in which they are qualified.

In both policies, PRN nurses, overtime nurses, and agency nurses can be staffed to

any units in which they are qualified to work. Given that SINSA-LRBD provided the

best results among three approaches, we employed SINSA-LRBD to compare these two

policies. In the Policy 1, we imposed regular nurses to work in their originally scheduled
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Figure 5.3. Efficient frontiers comparing average excess workload and staffing cost from
solving SINSA with three different approaches for all four instances.

units (or their primary work units) only where PRN nurses, overtime nurses, and agency

nurses were allowed to be staffed in Med-Surg1 and MedSurg2 units. In the Policy

2, all nurses including regular nurses, PRN nurses, overtime nurses, and agency nurses

were free to float to both units. Tables 5.17-5.20 show the average excess workload and

staffing cost of the nondominated schedules and assignments from two policies for all four

instances. Figure 5.4 illustrates the efficient frontiers between average excess workload

on nurses and staffing cost from two policies. Results indicated that working only in

primary work units provided less excess workload with less staffing cost in Instances 2

and 3. The explanation is that regular nurses are more familiar with facilities and other

procedure in their primary work units causing smaller excess workload for nurses. These
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Table 5.17. Instance 1 comparison of Policy 1 vs. Policy 2

Policy 1 Policy 2
Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses
32.83 3968 17 31.45 3008 13
35.48 3728 16 68.22 2656 11
42.12 3648 16 105.65 1696 8
45.09 3328 15 123.73 1296 6
54.60 2912 13 136.78 1216 6
125.21 2768 13 176.14 1136 6
168.12 2576 12 245.37 736 4
172.93 1152 6 253.15 320 2
311.06 976 5
337.68 880 4
366.12 736 4
372.15 720 4
701.54 640 4
1065.57 560 3
1127.59 400 2
1273.56 320 2

results are consistent with academic literature [86]; nurses spend more time working

in non-originally assigned units since they spend much time performing unit routines,

searching for medical supplies, and caring for patients with unfamiliar diagnosis. A unit

orientation, including unit routine introduction, patient care documentation overview,

and assistants’ phone numbers, can help float nurses to reduce nervous tension, time,

and workload as well as increase quality of patient care [73, 86]. Moreover, the solution

space was reduced by enforcing regular nurses to work in the primary units, resulting in

finding quality solutions quicker. Instances 1 and 4 revealed the opposite results, floating

regular nurses became helpful. The nurse supervisor can use this model along with her

judgment to evaluate a float assignment policy based upon nurses’ workload and staffing

cost. As hospital administrations follow the right policy, they would reduce workload for

nurses, increase care for patients, and reduce hospital budget.



99

Table 5.18. Instance 2 comparison of Policy 1 vs. Policy 2

Policy 1 Policy 2
Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses
16.51 1040 5 9.83 2096 9
24.35 720 4 22.43 1648 8
26.92 576 3 24.78 1392 6
42.25 560 3 44.40 880 5
90.17 480 3 153.24 832 4
481.57 320 2 153.71 560 3

Table 5.19. Instance 3 comparison of Policy 1 vs. Policy 2

Policy 1 Policy 2
Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses
20.42 3984 17 23.36 2848 12
22.57 3968 17 62.77 2608 12
25.22 3648 16 71.48 2544 10
27.07 3488 15 75.52 640 4
28.19 3472 15 156.28 480 3
30.81 3408 15 452.57 320 2
32.82 3392 15
33.54 2912 13
34.25 2848 13
38.23 2832 13
38.72 1216 6
58.43 1136 6
59.73 992 5
61.97 960 5
77.76 880 5
132.52 800 4
133.69 720 4
242.50 640 4
577.38 560 3
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Table 5.20. Instance 4 comparison of Policy 1 vs. Policy 2

Policy 1 Policy 2
Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses
8.82 3664 15 6.10 2848 12
8.93 3648 15 7.51 2272 9
9.26 3584 15 10.91 1968 8
9.45 3072 13 11.54 1952 8
9.89 1552 7 11.62 1728 8
14.02 1056 5 11.95 1712 7
19.04 816 4 13.25 816 4
28.46 560 3 14.67 656 3
56.79 480 3 14.89 560 3
159.01 400 2 15.01 480 3

56.63 320 2
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Figure 5.4. Efficient frontiers comparing average excess workload and staffing cost of
Policy 1 vs. Policy 2 for all four instances.



CHAPTER 6

SUMMARY AND FURTHER RESEARCH

We developed a two-stage stochastic integer programming model for nurse assign-

ment (SPA) with a recourse penalty function to minimize excess workload for nurses.

Because of the special structure of the model, we employed the L-shaped method to

solve our problem. Furthermore, we developed an optimal greedy algorithm to evaluate

the recourse function. The computational results illustrated that our greedy algorithm

is 30 times faster than the current commercial network simplex optimizer (CPLEX 9.1).

Moreover, we discussed the symmetry issue that may arise when there are identical nurses.

Sets of valid inequalities were proposed to improve the algorithmic performance as well

as to reduce the symmetric assignments. We demonstrated that using SPA could save

up to 1588 hours of excess workload on nurses per year in each medical-surgical unit.

However, decisions made in earlier phases of nurse planning can have a dramatic effect on

nurse assignment. Solutions for early phases that anticipate their consequences on nurse

assignment would likely further reduce the burden of the nursing shortage. Observe that

low EVPI upper bounds suggested that good sets of nurses scheduled for a shift reduced

the necessity of perfect information as well as excess workload for nurses.

Consequently, we integrated nurse staffing and assignment within the same model.

We presented the stochastic integrated nurse staffing and assignment model (SINSA)

to capture patient care uncertainty with an objective to minimize an expected excess

workload on nurses. We provided three solution approaches based on the L-shaped

method, which are (1) Benders’ decomposition, (2) Lagrangian relaxation with Benders’

decomposition, and (3) nested Benders’ decomposition. We demonstrated that our model

can be considered as a two-stage stochastic program for the first two approaches and

a three-stage stochastic program for the last approach. According to the Lagrangian

101
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relaxation with Benders’ decomposition approach, the Lagrangian problem of SINSA can

be viewed as a bicriteria programming problem in which both excess workload and staffing

cost objectives are minimized. The Benders’ decomposition embedded in Lagrangian

relaxation formed a novel search approach for bicriteria stochastic integer programs where

a Lagrange multiplier acted as a penalty for the second objective. Instead of solving the

problem optimally, we presented alternative non-optimal ways to obtain good staffing

and assignment solutions. We solved our model with three solution methodologies and

we collected the nondominated solutions within 30 minutes. Results showed that the

Lagrangian relaxation with Benders’ decomposition provided the promising results among

the three approaches, meaning that taking both excess workload on nurses and staffing

cost into consideration is more beneficial. Simultaneously considering nurse staffing and

assignment (as in two-stage stochastic program) is more desirable than sequentially doing

them (as in three-stage stochastic program). We also provided efficient frontiers between

excess workload and staffing cost of three solution approaches, which allow decision

makers to play important roles in utilizing their judgments to comply the right staffing

policy. Moreover, we demonstrated that our model can be used to to evaluate a float

assignment policy based upon patients, available nurses of each type, and the budget for

a shift.

Incorporating a nurse assignment within staffing decisions would likely provide

better care for patients as well as balance workload for nurses. Hospitals also benefit from

having better budget control, providing quality care to patients, and reducing liability

cost. An integrated nurse staffing and assignment decision-support system that used our

model would reduce the burden of the nursing shortage.

There are several interesting possibilities for future research. Because of the dy-

namic nature of the shift, patients are often admitted and discharged during a shift. One

interesting topic is to consider how to assign newly admitted patients to nurses. Besides

newly admitted patients, as patients go to run tests and come back to their units, they

may not be assigned to the same nurse. A revised assignment balancing workload for
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nurses should be considered. Furthermore, our data included only primary diagnosis of

patients, nurse types, and individual nursing skills. An extension to consider the following

factors will likely to provide more accurate results.

• Multiple diagnoses. It is common for a patient to have multiple diagnoses during

his/her stay in a hospital unit.

• Dynamic acuity. As the progress of patient’s condition changes over time, the acuity

level is changed. Patients with different levels of acuity require different amounts

of required care from nurses.

• Educational level of nurses.

In addition, hiring additional nurses for a specific time (e.g. half of a shift) might be

considered to provide better care to patients. Finally, incorporating the mid-term nurse

scheduling into our model allowing feedback of a current shift for future corrections is

another challenging area of research.



APPENDIX A

AN OPTIMIZATION-BASED INFORMATION TECHNOLOGY (IT)
PROTOTYPE FOR NURSE ASSIGNMENT
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In the Appendix A, we present the use of our nurse assignment model described

in Chapter 2 in practice. We developed an optimization-based Information Technology

(IT) prototype for a hospital unit with main function to assign nurses to a set of pa-

tients at the beginning of the shift. The users include charge nurses, administrative

officer, and supervising nurses. Currently a nurse-patient assignment is done manually;

therefore a computerized assignment tool can help a charge nurse with a cumbersome

time-consuming task.

The organization in the appendix can be viewed as follows. In Section A.1, we

summarize the underlying nurse assignment model of the IT prototype. In Section A.2, we

present the structure of the IT prototype. In Section A.3, we describe an implementation

and training of our IT prototype to potential users. In Section A.4, we summarize the

results of the implementation and training. Finally, we discuss the conclusions and areas

of future research of the IT prototype for nurse assignment in Section A.5.

A.1 An Underlying Model

We model the nurse assignment as a mixed-integer programming problem. The

model uses decision variables, constraints, and input parameters based upon the nurses,

the patients, and the shift information. The underlying model is the mean value problem

described in Section 3.2. The input parameters include the amount of direct and indirect

care that a nurse must provide to a patient in a time period if an assignment occurs. We

obtained a direct care and indirect care parameter from mined encrypted data from a

Northeast Texas hospital. Details about input parameter also can be found in Section

3.1.

A.2 IT Prototype Structure

In this section, the structure of IT prototype is presented. The IT prototype

decision support system involved two software programs, Microsoft Excel and WinSCP,

in a charge nurse personal computer. WinSCP is a freeware SFTP (Secure Shell file
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transfer protocol) for Microsoft Windows [109]. The IT prototype includes three main

functions for the users:

1. Shift information entry

The interface of the IT prototype is in Microsoft Excel. At the beginning of the

shift, a user enters shift information containing nurses’ and patients’ information

to a Microsoft Excel spreadsheet as follows:

Shift information

• Shift: day, evening, night,

Patients’ information

• Number of patients,

• Patient rooms,

• Primary diagnosis,

• Specific nurse requirement, i.e., a patient requires a special care from a certain

type of nurse,

• Admission time (if known),

• Discharge time (if known),

Nurses’ information

• Number of nurses,

• Nurse type: registered nurse (RN), licensed vocational nurse (LVN), nurse aid

(NA), chemotherapy nurse, and pediatric nurse.

Figure A.1 shows the Microsoft Excel interface, which is a spreadsheet for shift

information entry. The IT prototype uses the visual basic macros to create a batch

file containing current shift information.

2. Data transferring

WinSCP is used to transfer a batch file from a user personal computer to a Dual

3.06-GHz Intel Xeon Workstation. The underlying model is solved by using CPLEX

9.1 callable library. The workstation calls an executable file and returns an optimal
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Figure A.1. The shift information entry spreadsheet in Microsoft Excel.

assignment file. WinSCP is again used to transfer an assignment file to a user

personal computer.

3. Optimal assignment display

The optimal assignment output can be displayed in the Microsoft Excel spreadsheet

with the visual basic macros. The IT prototype proposes a nurse-patient assignment

specifying an assignment for each nurse to a group of her patients with the minimal

excess workload for all nurses. Figure A.2 displays the optimal assignment output

spreadsheet for users.

The architecture of the IT prototype is presented in Figure A.3.
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A.3 Implementation and Trainings

In this section, we describe a training seminar for the IT prototype decision sup-

port system to potential users. Subjects for this seminar were nursing students at The

University of Texas at Arlington (UTA). The IT prototype was installed at the computer

lab in the School of Nursing at UTA. We provided a training course to use the system and

collect feedback from them. The training course was given to two nursing research classes

at UTA, which are required for RN-BSN students (undergraduate-level class) and MS

students (graduate-level class) in the summer 2006 semester. The training curriculum

included

• A discussion of the factors involved in assigning nurses to patients, such as patient

conditions and room locations,

• Background and motivation of the project,

• Descriptions of the collected data and mining results from the four units at the

Northeast Texas hospital,

• Overviews of the optimization models within the IT prototype,

• Demonstrations of the IT prototype on several examples,

• Feedback from the nursing students on the models, IT prototype, and training

curriculum.

There were 20 and 13 subjects in the RN-BSN and the MS class, respectively. In

the training classes, every subject received the following materials: nurse assignment pre-

survey, nurse assignment IT-prototype post-survey, presentation materials, a prototype

instruction document, trouble shooting documentation, a census matrix, and a scenario

for assignment. We began the training course with the pre-survey queried about their

background on nurse-patient assignment, computer skills, number of patients assigned

for each shift, potential ways to improve a nurse assignment, etc. After the pre-survey, we

gave a presentation of the above curriculum, followed by the IT prototype demonstration

with an instruction documentation. Then, we simulated a nurse assignment in a medical-

surgical unit by providing subjects with a scenario of one shift in a medical-surgical
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unit and asked them to use the IT prototype program. The scenario contained patients’

information that described patients’ conditions, room location, admission time, discharge

time, and type of nurse required. Subjects were asked to choose a number and a type of

nurses from a census matrix. After having obtained shift information, subjects entered

data and used the IT prototype to make an assignment. There were three research

assistants to assist subjects if any problems occurred. One research assistant was in

charge of technical support for the IT prototype while the other two nursing research

assistants were responsible for nursing related inquiries. There was no time limit for

subjects to use the systems. However, all subjects finished the assignment within 30

minutes. Subjects made a print out and submitted their assignment. Post-surveys were

given to subjects to evaluate the IT prototype based on level of difficulty, usefulness,

features, and advantage-disadvantage. Subjects were also asked to list recommendations

to improve the IT prototype. We collected all feedback from subjects.

A.4 Summary of Results and Discussion

In this section, we present an overview for results from the pre- and post-surveys

of the IT prototype. There are two similar sets of surveys given to nursing students;

one for RN-BSN and another one for MS students. We obtained feedback from various

professions in the health care industry. Almost all of the MS students were employed

in several health care units. Seventy percent of RN-BSN students and more than half

of MS students experienced greater than or equal to four patients for a shift. Having

a high number of patients assigned, a nurse was likely to have job dissatisfactory and

burnout. One-forth of RN-BSN and more than fifteen percent of MS students were

not satisfied with the current assignment at work. We excluded one RN-BSN subject

in the post-survey result because (s)he did not participate in the post-survey. More

than forty percent of subjects reported that the IT prototypes were user friendly while

thirty percent did not agree, and the remaining did not answered. We obtained positive

feedback from 15 out of 17 RN-BSN students (88.26%) and 11 out of 13 MS students
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(84.62%) supporting the use of IT prototype at their workplace. Two RN-BSN students

were not eligible for this question because one worked in clinical setting and another

one’s hospice made an assignment by demographics. The reason that one subject did

not support the IT prototype at her work was that it was too time consuming. Another

subject did not answer this question. Subjects stated that the IT prototype benefited

users for several reasons such as unbiased assignments, better assignments, speed, and

decreased hand-written data. More details about survey results can be found at Baker

et al. [12].

A.5 Conclusions and Future Research

We presented an optimization-based prototype for assigning nurses to patients for a

nursing shift with minimal excess workload for all nurses. Instead of manually determin-

ing a nurse-patient assignment, it can now be promptly computerized by a charge nurses

personal computer. We implemented the IT prototype and provided training courses to

two groups of nursing students, RN-BSN and MS students at The University of Texas

at Arlington. Subjects were asked to complete the pre- and post-survey to identify their

background and opinion about the IT prototype. More than four-fifths of the subjects

had positive feedback supporting the use of the IT nurse-patient assignment prototype

at their workplace. One interesting topic of future research is to incorporate acuity and

continuity of care into the model. Lastly, the IT prototype with a nicer user interface

and fewer steps could potentially attract more attention from nurses.
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Figure A.2. The optimal assignment spreadsheet in the Microsoft Excel.
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Figure A.3. The IT prototype structure.
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In the Appendix B, we provide additional tables from solving SINSA with three

different approaches in Section 5.2.2.
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Table B.1. Instance 1 results from solving SINSA with three different approaches

Excess Staffing No. Med-Surg1 Med-Surg2
workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen
SINSA-BD

59.19 1856 8 2 0 0 0 1 1 2 2
294.79 1792 7 1 1 1 1 0 1 1 1
302.61 1712 7 2 0 1 1 0 2 0 1
470.36 1472 6 1 0 2 0 0 2 0 1
1291.76 1056 4 0 0 2 0 0 1 0 1
1339.31 896 3 0 1 0 1 0 0 0 1

SINSA-LRBD
32.83 3968 17 3 1 0 1 3 2 4 3
35.48 3728 16 3 1 1 1 3 2 2 3
42.12 3648 16 3 0 1 1 3 3 3 2
45.09 3328 15 3 1 2 1 3 2 2 1
54.60 2912 13 3 1 0 0 3 1 2 3
125.21 2768 13 3 0 1 0 3 3 2 1
168.12 2576 12 3 0 0 1 3 1 3 1
172.93 1152 6 2 0 0 0 2 2 0 0
311.06 976 5 2 0 0 0 1 1 1 0
337.68 880 4 1 0 0 0 1 0 1 1
366.12 736 4 1 0 0 0 2 1 0 0
372.15 720 4 1 0 0 0 2 0 1 0
701.54 640 4 1 0 0 0 3 0 0 0
1065.57 560 3 1 0 0 0 1 0 1 0
1127.59 400 2 1 0 0 0 0 0 1 0
1273.56 320 2 1 0 0 0 1 0 0 0

SINSA-NBD
49.10 1936 9 2 1 0 0 3 0 1 2
618.68 896 4 1 1 0 0 1 0 0 1
675.97 640 3 1 0 0 0 1 0 0 1
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Table B.2. Instance 2 results from solving SINSA with three different approaches

Excess Staffing No. Med-Surg1 Med-Surg2
workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen
SINSA-BD

19.18 1936 9 2 0 0 0 2 1 3 1
19.54 1872 8 1 0 0 0 2 2 1 2
23.06 1856 8 2 1 0 0 1 0 2 2
28.18 1152 6 2 1 0 0 2 1 0 0
151.36 1072 5 0 1 1 0 2 1 0 0
726.81 480 2 1 0 0 0 0 0 0 1
751.49 400 2 1 0 0 0 0 0 1 0

SINSA-LRBD
16.51 1040 5 1 0 1 0 2 0 0 1
24.35 720 4 1 0 0 0 2 0 1 0
26.92 576 3 1 0 0 0 1 1 0 0
42.25 560 3 1 0 0 0 1 0 1 0
90.17 480 3 1 0 0 0 2 0 0 0
481.57 320 2 1 0 0 0 1 0 0 0

SINSA-NBD
12.40 1968 10 2 0 0 0 4 3 1 0
45.41 1392 7 2 1 1 0 2 1 0 0
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Table B.3. Instance 3 results from solving SINSA with three different approaches

Excess Staffing No. Med-Surg1 Med-Surg2
workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen
SINSA-BD

25.68 1952 9 3 1 0 0 1 1 2 1
50.46 1936 9 3 0 1 0 2 1 0 2
55.02 1920 9 2 0 1 1 3 0 1 1
68.32 1856 8 3 0 0 1 0 1 2 1
92.18 1776 8 1 0 2 0 2 1 1 1
117.20 1632 7 0 2 1 1 2 0 1 0
431.96 1616 7 1 1 2 1 1 0 1 0
941.84 416 2 1 0 0 0 0 1 0 0

SINSA-LRBD
20.42 3984 17 3 1 1 0 3 3 2 4
22.57 3968 17 3 1 1 1 3 2 3 3
25.22 3648 16 3 1 0 2 3 2 4 1
27.07 3488 15 3 0 1 3 3 3 1 1
28.19 3472 15 3 0 1 0 3 2 2 4
30.81 3408 15 3 0 1 0 3 3 2 3
32.82 3392 15 3 2 1 1 3 0 3 2
33.54 2912 13 3 1 0 0 3 1 2 3
34.25 2848 13 3 1 1 0 3 2 1 2
38.23 2832 13 3 0 1 0 3 2 2 2
38.72 1216 6 2 0 0 0 1 1 2 0
58.43 1136 6 2 0 0 0 2 1 1 0
59.73 992 5 2 0 0 0 1 2 0 0
61.97 960 5 2 0 0 0 1 0 2 0
77.76 880 5 2 0 0 0 2 0 1 0
132.52 800 4 2 0 0 0 1 0 0 1
133.69 720 4 2 0 0 0 1 0 1 0
242.50 640 4 2 0 0 0 2 0 0 0
577.38 560 3 1 0 0 0 1 0 1 0

SINSA-NBD
22.60 1952 9 2 1 1 0 2 1 1 1
505.59 800 4 1 0 1 0 1 0 1 0
586.56 560 3 1 0 0 0 1 0 1 0
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Table B.4. Instance 4 results from solving SINSA with three different approaches

Excess Staffing No. Med-Surg1 Med-Surg2
workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen
SINSA-BD

8.44 1872 8 1 0 0 0 2 2 1 2
9.14 1808 8 2 1 0 0 1 2 1 1
10.03 1792 8 2 0 0 0 1 2 2 1
10.25 1776 7 1 0 0 0 1 1 1 3
10.75 1696 7 2 0 0 0 0 1 2 2
12.87 1680 7 1 0 0 0 2 0 1 3
14.49 1616 7 1 0 1 0 2 1 0 2
15.68 1600 7 2 0 0 1 1 0 2 1
18.78 1552 7 2 0 1 1 1 2 0 0
19.88 1440 6 1 0 0 0 2 0 0 3
31.67 672 3 1 0 0 0 0 2 0 0
162.13 640 3 1 0 1 0 0 0 1 0

SINSA-LRBD
8.82 3664 15 2 2 1 1 2 2 2 3
8.93 3648 15 2 0 0 0 2 3 4 4
9.26 3584 15 2 1 2 0 2 3 2 3
9.45 3072 13 2 1 1 2 2 1 3 1
9.89 1552 7 2 0 0 0 1 2 1 1
14.02 1056 5 1 0 0 0 1 1 2 0
19.04 816 4 1 0 0 0 1 1 1 0
28.46 560 3 1 0 0 0 1 0 1 0
56.79 480 3 1 0 0 0 2 0 0 0
159.01 400 2 1 0 0 0 0 0 1 0

SINSA-NBD
3.34 1936 8 1 0 0 1 2 1 1 2

128.81 640 3 1 0 0 1 1 0 0 0
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