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ABSTRACT 

 

SPATIALLY RESOLVING SPECTROMETER FOR  

CHARACTERISATION OF BROAD-AREA  

LASER DIODES 

 

Publication No. ______ 

 

Sheldon Victor Fernandes, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Nikolai Stelmakh  

The mode pattern of the BALD (Broad-Area Laser Diode) is characterized and 

measured using a 1-GHz resolution double-pass spectrometer. The design of 

spectrometer allowed also a spatial discrimination with 1μm resolution. The 

construction and design of the double-pass grating is analyzed and discussed. A matrix 

approach is developed for the double-pass measurement arrangement. The developed 

procedure of analysis of spatially resolved spectra provides unique information about 

broad-area laser diode active medium and cavity geometry and potentially will help to 

predict the reliability of the laser diode.  The developed model is based on paraxial 

approximation.



 v 

The laser diode modes are measured in the near-field & far-field. Measurements 

of spatially & spectrally resolved spectra of the laser radiation as a function of pumping 

current and observed polarization are conducted for laser diodes of different geometries. 

Obtained data suggests that a careful choice between the length and width of 

BA laser diode cavity will help to avoid the coherence kink phenomenon and, therefore, 

will significantly improve the overall reliability of BALDs. 



 vi 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS ................................................................................... iii 
 
ABSTRACT .......................................................................................................... iv 
 
LIST OF ILLUSTRATIONS ................................................................................. x 
 
LIST OF TABLES................................................................................................. xiii 
 
 
Chapter 
 
 1. INTRODUCTION...................................................................................... 1 
 
  1.1 Motivation of this thesis........................................................................ 1 
 
  1.2 Thesis Structure.................................................................................... 2 
  
 2.  MODES OF LASER DIODE ..................................................................... 4 
 
  2.1 Introduction .......................................................................................... 4 
  
  2.2 Broad-area laser diodes......................................................................... 4 
 
  2.3 Cavity modes of a laser diode ............................................................... 5 
 
    2.3.1 Longitudinal mode separation ................................................ 5 
 
  2.4 Standing wave condition inside the BALD cavity ................................. 8 
 
  2.5 Mode pattern of the spectra in the far-field............................................ 11 
 
 3.  DOUBLE-PASS SPECTROMETER SYSTEM.......................................... 15 
 
  3.1 Introduction .......................................................................................... 15 
 
  3.2 Principle of the Double-pass spectrometer ............................................ 15



 vii 

  3.3 System Setup of the double-pass grating spectrometer .......................... 17 
 
    3.3.1 Photograph of the double-pass grating system 
      with the light path.................................................................. 18 
 
  3.4 Double-pass grating system elements.................................................... 19 
 
    3.4.1 Laser diode mount LDM ........................................................ 19 
 
    3.4.2 Lenses L1 & L2 & Input slit SLIT.......................................... 19 
 
    3.4.3 Polarizer PL & half waveplate WP ......................................... 20 
 
    3.4.4 The double-pass grating arrangement ..................................... 21 
 
    3.4.5 The NFFFOS (Near-Field Far-Field Optical Setup) ................ 22 
 
    3.4.6 Support Equipment................................................................. 23 
 
    3.4.7 Computer Software ................................................................ 24 
 
  3.5 Double-pass grating equation................................................................ 24 
 
d 4.  RAY TRANSFER MATRIX MODEL OF DOUBLE-PASS GRATING ... 29 
    
  4.1 Introduction .......................................................................................... 29 
 
  4.2 Modeling the double-pass grating system.............................................. 29 
 
    4.2.1 Sectioning of the double-pass grating system ......................... 30 
 
    4.2.2 Initial setting of the mirror angle ............................................ 31 
 
    4.2.3 Rotation of the grating............................................................ 31 
 
    4.2.4 Input Ray Matrix.................................................................... 32 
 
    4.2.5 Free space section, L1 ............................................................ 32 
 
    4.2.6 Grating G1 ............................................................................. 33 
 
    4.2.7 Free space section L2 ............................................................. 34 
 



 viii 

    4.2.8 Mirror section M1 .................................................................. 34 
 
    4.2.9 Free space section L3 ............................................................. 35 
 
    4.2.10 Grating Section G2............................................................... 36 
 
    4.2.11 Free space section L4 ........................................................... 36 
 
  4.3 Putting it all together ............................................................................ 37 
 
 5. MEASUREMENT SETUP & PROCEDURE  ............................................ 39 
    
  5.1 Introduction .......................................................................................... 39 
   
  5.2 Initial adjustments ................................................................................ 39 
 
    5.2.1 Laser diode mounting............................................................. 39 
 
    5.2.2 Adjustments of the optical setup............................................. 40 
   
  5.3 Measurement procedure........................................................................ 41 
 
    5.3.1 LabVIEW Calibration ............................................................ 41 
 
    5.3.2 Main spectrum scan................................................................ 43 
 
    5.3.3 Power measurement of the BALD .......................................... 44 
 
 6. RESULTS AND DISCUSSION  ................................................................ 47 
 
  6.1 Results.................................................................................................. 47 
 
  6.2 Conclusion ........................................................................................... 52 
 
 7. FUTURE WORK  ...................................................................................... 53 
 
Appendix 
 
 A. REVIEW OF MATRIX OPTICS   ............................................................. 55 
 
 B.  MATRIX REPRESENTATION OF DIFFRACTION GRATING   ........... 65 
 
REFERENCES ...................................................................................................... 72 



 ix 

 
BIOGRAPHICAL INFORMATION...................................................................... 74 



 

 x 

LIST OF ILLUSTRATIONS 

Figure Page 
 
 2.1 Illustration of a typical BALD device & its intensity profile as a function of  
   position along the emitter.............................................................................  5 
 
 2.2 Laser Diode as a Fabry-Perot cavity which forms standing wave modes.......  8 
 
 2.3 k Wave-vector & the standing wave condition .............................................  10 
 
 2.4 Near-field (left image) & far-field (right image) intensity spectra of two 
         longitudinal mode intervals. For illustration purpose the intensity axis is 
  logarithmic...................................................................................................  12 
 
 2.5 Spectral positions of modes as a function of mode number p.  
  Data plotted for longitudinal mode number m=7700, phase index of  
  refraction of the active medium n(λ0 ) = 3.8, cavity length L=1000µm,  
  stripe width w=100 µm ................................................................................ 13 
 
 2.6 Angular separation between modes as a function of mode number p.  
  Data plotted for longitudinal mode number λ0 =0.95 µm, phase index of  
  refraction of the active medium n(λ0 ) = 3.8, cavity length L=1000µm,  
  stripe width w=100 µm s..............................................................................  13 
 
 2.7 The spatial distribution of the spectrally resolved modes in the far-field.  
  The position of the peaks in the far-field corresponding to the observed  
  intensity spectra in Fig: 2.4. The mode number keeps increasing from  
  top to bottom of the graph ............................................................................ 14 
 
 3.1 System level diagram of the double-pass grating spectrometer setup ............  17 
 
 3.2 Photograph of the system showing the path of light rays entering  
  and exiting the system..................................................................................  18 
 
 3.3 Water-cooled laser diode mount system attached to translation stage ...........  19 
 
 3.4 Polarizer (PL) is used to make the beam linearly polarized to get  
  maximum intensity & this can be rotated using a motor controlled  
  by the computer ...........................................................................................  20



 

 xi 

 3.5 Half waveplate (WP) used to adjust the orientation of the  
  linearly polarized beam. ...............................................................................  20 
  
 3.6 To maintain the focus of the beam, distance from LDM to L2 is equal to 
  distance from L2 to slit and is the focal length of lens L2 .............................  21 
 
 3.7 To maintain the focus of the beam, distance from SLIT to L3 is equal to 
  distance from L3 through GR, M3 and back to L3 and is the focal length 
   of lens L3....................................................................................................  22 
 
 3.8 The NFFFOS is used to transform the resolved beam to get the far-field.  
  L4 & L6 act as the collimating lenses. L5 is the cylindrical lens. ..................  23 
 
 3.9 Double-pass grating system support equipment includes  
  LD power supply, a TV monitor, rotation stage controller  
  and a power meter........................................................................................  24 
 
 3.10  Side-view of the double-pass grating...........................................................  25 
 
 3.11  The variation of the double-pass grating input angle with output angle  
  for λ0=950nm, d=500nm & 2ξ=16.5 deg ......................................................  27 
 
 3.12  The variation of the double-pass grating output angle with wavelength  
  of the beam for αin=82 deg, d=500nm & 2ξ=16.5 deg. .................................  28 
 
 4.1 Comparison of the input beam & output beam from the 
  double-pass grating .....................................................................................  29 
 
 4.2 Section-wise diagram of the double-pass grating..........................................  30 
 
 4.3 The back-reflection angle condition at which the reflected beam  
  passes back along the normal to the mirror...................................................  31 
 
 4.4 Side-view of the double-pass grating............................................................  32 
 
 4.5 Deviated path of the ray from the mirror normal ..........................................  34 
 
 4.6 Angle of deviation of the ray from the mirror...............................................  35 
 
 5.1 Interface of LABVIEW program to control the rotational stage....................  41 
 
 5.2 The near-field & far-field of the laser beam during calibration process.........  42 



 

 xii 

 
 5.3 The interface of the grating setup calibration process ...................................  42 
 
 5.4 The interface of the main program which scans the spectrum and 
  converts to it to individual images................................................................  44 
 
 5.5 Power meter is used to calculate the output power of the BALD for  
  different values of current. ...........................................................................  45 
 
 5.6 Power measurement graph of the BALD@20 deg ........................................  46 
 
 6.1 Near-field/far-field output spectra of BALD@ 20 deg /400mA/  
  Strip width: ~100µm with increasing wavelength from top to bottom  
  and left to right............................................................................................. 47 
  
 6.2 Near-field/far-field output spectra of BALD@ 20 deg /400mA/  
  Strip width: ~100µm with increasing wavelength from top to bottom  
  and left to right............................................................................................. 48 
  
 6.3 Near-field/far-field output spectra of BALD@ 20 deg /1000mA/  
  Strip width: ~100µm with increasing wavelength from top to bottom  
  and left to right............................................................................................. 49 
  
 6.4 Near-field/far-field output spectra of BALD@ 20 deg /2000mA/  
  Strip width: ~100µm with increasing wavelength from top to bottom  
  and left to right............................................................................................. 50 
 
 6.5 Near-field/far-field output spectra of BALD@ 20 deg /4000mA/  
  Strip width: ~100µm with increasing wavelength from top to bottom  
  and left to right............................................................................................. 51 
 
 6.6 Near-field/far-field output spectra of BALD@ 20 deg /4000mA/  
  Strip width: ~100µm with increasing wavelength from top to bottom  
  and left to right............................................................................................. 52 
 
 
  



 

 xiii 

LIST OF TABLES 

 
Table  Page 
 
 5.1 The power measurement values of the BALD ..............................................  46



 

 1 

CHAPTER 1 

INTRODUCTION 

1.1 Motivation of this thesis 

Spatially resolved spectroscopy of BALD cavity modes is the central point of 

the thesis. Using the double-pass grating spectrometer, the mode spectra in the near-

field & far-field are displayed simultaneously side by side on the same output image. 

Two aspects of the mode pattern structure of the BALD, which can be studied 

from this thesis work, are under consideration. Firstly, the efficiency of light delivery 

from the BALD, to the external devices, strongly depends on the distribution of the light 

energy between several lateral modes. A control of mode energy distribution is very 

important task to optimize the coupling efficiency. In a (BALD), a cavity structure 

whose output mode pattern allows maximum coupling efficiency of power transmission 

to other devices is desired.  

The second aspect is in BALD reliability improvements. From the mode pattern 

of the BALD, its cavity structure & reliability can be analyzed. Some information about 

possible defect of the laser active medium can be recovered from the measured mode 

pattern.
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1.2 Thesis Structure 

This thesis is structured in the following manner.  

In Chapter 2, a brief description of broad-area laser diodes is given. The cavity 

modes of the laser diodes are introduced. Using the rectangular cavity model, we find 

the wavelength separation & angular separation between the modes of the laser diode. 

The spectral & spatial distribution is related with the mode numbers.  

In Chapter 3, the modes of the laser diode need to resolved & identified with a 

high accuracy. In order to develop an instrumentation system to do such a measurement, 

we need to find an arrangement to that will give a high resolution. The idea of the 

double-pass structure is analyzed. The setup of the double-pass grating spectrometer is 

shown. The various optical elements that make up the system are explained. The 

double-pass grating equation is derived. 

In Chapter 4, the theory of matrix optics is introduced in Appendix A. The 

theory of the ray matrix of the diffraction grating is explained in Appendix B. A model 

of the double-pass grating system is derived & built up using the ray transfer matrix 

optics approach.  

In Chapter 5, this section shows the procedure to measure the modes of the laser 

diode. The initial adjustments of the elements are explained. The procedure of 

performing the measurement & acquisition of the modes of the laser diodes using the 

computer is explained.  The optical power measurement is also explained. 

In Chapter 6, the output spectra for a BALD at various current values are 

shown. 
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In Chapter 7, various improvements that could be done on the double-pass 

spectrometer are suggested. These are mainly to streamline and automate the operation 

of this instrumentation system. 
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CHAPTER 2 

MODES OF LASER DIODE 

2.1 Introduction 

A brief description of broad-area laser diodes is given. The cavity modes of the 

laser diodes are introduced. Using the rectangular cavity model, we find the wavelength 

separation & angular separation between the modes of the laser diode. The spectral & 

spatial distribution is related with the mode numbers. 

2.2 Broad-area laser diodes 

Broad-area laser diodes (BALDs) are edge-emitting devices [5] where the 

emitting region (the active medium) at the front facet has the shape of a broad line i.e. 

the width of the laser diode active medium is much larger in dimensions compared with 

its height. It is in this emitting region that the injection current is confined & the 

recombination of carriers takes place. Typically a laser diode emitter width is normally 

in the range of 50µm - 200µm and length in the order of 1-5 mm. A BALD is normally 

used in applications that require high power. 

The geometry of high-power laser diodes varies from single ~10 µm narrow 

stripe emitting several hundred milliwatts to 100-200µm wide broad-area lasers 

emitting a few watts. Also there are more complex geometries involving multiple diode 

lasers such as laser diode bars and matrices emitting several watts.  
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For single element emitter, the simplest way to increase the emitted power is to 

increase the size of the emitting aperture, but the beam quality is adversely affected. 

Instead of Gaussian distribution (single mode) of amplitude and uniform phase 

distribution across the whole facet, the output of a broad area device is usually divided 

into many incoherent regions (multi-mode) which don’t have a constant phase 

relationship. The laser output therefore becomes a sum of individual intensities of these 

incoherent regions, and loses its diffraction limited virtue. This is illustrated in Fig. 2.1 

below. The yellow emitter region is the active medium which is sandwiched between 

the p & n regions. 

 
Figure 2.1: Illustration of a typical BALD device & its intensity profile as a 

function of position along the emitter. [6] 
 

2.3 Cavity modes of a laser diode  

  A waveguide mode is an electromagnetic wave that propagates along a 

waveguide with well-defined characteristics like phase velocity, group velocity, cross-

sectional intensity distribution, and polarization [2.4]. These characteristics depend on 

the shape & composition of the waveguide. The modes are referred to as “characteristic 

waves” of the waveguide because their field vectors satisfy the homogeneous wave 

Cavity length (L) 

Emitter 
Width (w) 

Thickness (d) 

Position 

Intensity 

x 
y 

z 
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equation in all the media that make up the guide, as well as the boundary conditions at 

the interfaces. 

In the laser diode, the active medium is in the form of a rectangular cavity. This 

region acts as a waveguide to the laser radiation generated within the medium. The 

structure and composition of this waveguide cavity determines the characteristics of the 

laser radiation emitted by the laser diode and hence the nature of the modes.  

Typically the cavity is in the form of a Fabry-Perot cavity. Now, because the 

index of the active region varies with the wavelength, the longitudinal modes produced 

due to the Fabry-Perot cavity are not equally spaced. As seen in Fig 2.1, the cavity 

length L determines the modal spacing between the longitudinal modes. The emitter 

width w determines the transverse modes that are produced. The height d along with the 

cavity structure determines the optical confinement factor & is constructed such that 

only the fundamental mode exists [2.2]. 

The output spectra of the laser diode consist of groups of transverse modes 

separated by the longitudinal mode period. 

2.3.1. Longitudinal mode separation 

The mode frequency is given by 

 
2 ( ) cosm

ph

cf m
n Lλ θ

=  (0.1) 

where m is the mode number, c is the velocity of light in free space, nph(λ) is the 

phase index of refraction in the active medium. L is the cavity length & θ is the angle 

between the two ends of the cavity [2.1]. (For parallel ended cavity we have θ = 0 ) 
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The frequency separation between two consecutive mode frequencies is given 

by 

 
02 ( )m

ph

cf
n Lλ

∆ =  (0.2) 

Expressing (0.2) in terms of wavelength difference, we have 

 
0

1 1
2 ( )phn Lλ λ

=
∆

 (0.3) 

The wavenumber N is defined as 

 0( )phn
N

λ

λ
=  (0.4) 

If ∆N is the difference in wave number between two adjacent longitudinal 

modes, then from (0.3) & (0.4) 

 1
2

N
L

∆ =  (0.5) 

But since the active medium is dispersive, the relation between N & λ is 

obtained from (0.4)  

 0 0
2

( ) ( )1 ph phdn ndN
d d

λ λ

λ λ λ λ
= −  (0.6) 

 

Rearranging (0.6) & substituting (0.5) 

 
2

02 *( )n L
λ

λ
λ

∆ =  (0.7) 
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where 0
0 0

( )
* ( ) ( ) ph

ph

dn
n n

d
λ

λ λ λ
λ

= −  is the group index of refraction of the 

active medium. 

Typical longitudinal mode separation for a laser diode is around 1.256 

Angstrom [3.1]  

As seen from (0.7) the longitudinal mode separation depends on the cavity 

length, the refractive index & the dispersion in the active medium. 

2.4 Standing wave condition inside the BALD cavity 

Consider a laser cavity in the form of a two-dimensional dielectric slab 

waveguide. The graphical representation of slab is shown in Fig. 2.2. The L is the laser 

cavity length, w is the stripe width, n(λ0) is the phase refraction index at wavelength λ .  

 
Figure 2.2: Laser Diode as a Fabry-Perot cavity which forms standing wave 

modes. 
 

To satisfy the standing wave condition in the z-direction, an integral number of 

half-wavelengths must exist through the length L. Here m is referred to as the mode 

number. 

 
2

m Lλ
=  (0.8) 

z 

x y 

w 

L 
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Rewriting (0.8) we have 

 

2

2

m
L

m
L

λ
π π

λ

=

=
 (0.9) 

Therefore the wave vector component in the z-direction can have only discrete 

values multiple of m 

 z
mk
L

π→

=  (0.10) 

Similarly in the x-direction we have, 

 
2

p wλ
=  (0.11) 

Rewriting (0.11) we have 

 

2

2

p
w

p
w

λ
π π

λ

=

=
 (0.12) 

Therefore the wave vector component in the x-direction is 

 x
pk

w
π→

=  (0.13) 



 

 10 

 
Figure 2.3: k Wave-vector & the standing wave condition 

 

The k
→

vector of the 2D cavity is given by 

 
2 2 2

z zk k k
→ → →

= +  (0.14) 

This is illustrated in Fig 2.3 where the wave vector k
→

 of the cavity is given by 

 ( )0
0

2k nπ λ
λ

→

=  (0.15) 

Substituting (0.10), (0.13) and (0.15) into (0.14)  we get, 

 
2 2 2

02 ( )n m p
L w

π λ π π
λ

     = +         
 (0.16) 

 
2 2 2

0
2 2 2

4 ( )n m p
L w

λ
λ

= +  (0.17) 

 0

2 2

2 2

2 ( )n

m p
L w

λ
λ =

+

 (0.18) 

Since p/w << m/d for a BALD, the above equation can be written as 

 

 

zk
→

 

xk
→

k
→

 

L 

2

mλ

 

2

pλ  w 
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 0
, 2

2 ( )

1
m p

n

m pL
L wm

λ
λ =

 +  
 

 (0.19) 

Using Taylor Series, we can express the above equation as 

 
2

0
,

2 ( ) 11
2m p

n L pL
m wm
λ

λ
  = ⋅ −     

 (0.20) 

2.5 Mode pattern of the spectra in the far-field 

Consider a laser cavity in the form of a two-dimensional As seen from (0.20), 

the spectral position of the modes is determined by m & p. For a particular mode group 

m we can calculate the spectral position of a particular mode p. 

Once the modes are resolved, they are distributed spatially distributed in the far-

field. For a particular longitudinal mode group number m, the transverse mode numbers 

p are spread angularly across the far-field. This is shown in Fig 2.3. The near-field 

spectra on the left & far-field spectra on the right are shown for a BALD. In the far-field 

spectra, the variation of the modes of mode number p both spectrally in terms of 

wavelength & spatially in terms of its angular position across the space is observed. The 

variation of the mode pattern is parabolic in nature. This particular pattern of 

distribution of the intensities can be explained as follows. 
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Figure 2.4: Near-field (left image) & far-field (right image) intensity spectra of 

two longitudinal mode intervals. For illustration purpose the intensity axis is 
logarithmic [3.1] 

 
The angular separation between the modes of a particular mode number p is 

given by [3.2] 

 202
1p p

w
λ

θ∆ = −  (0.21) 

 From (0.19), we can calculate the spectral position of the modes, for mode 

number p from 1 to 5. This is shown in Fig 2.4. 
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Figure 2.5: Spectral positions of modes as a function of mode number p. Data 
plotted for longitudinal mode number m=7700, phase index of refraction of the 
active medium n(λ0 ) = 3.8, cavity length L=1000µm, stripe width w=100 µm 

 
Using (0.21) we can calculate the angular separation between the intensity peaks 

for each mode number p. This is shown in Fig 2.5. 
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Figure 2.6: Angular separation between modes as a function of mode number p. 

Data plotted for longitudinal mode number λ0 =0.95 µm, phase index of refraction 
of the active medium n(λ0 ) = 3.8, cavity length L=1000µm, stripe width w=100 

µm 
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  By combining the graphs Fig 2.5 & Fig 2.6, we can find the spatial position of 

the spectrally resolved modes for each of the mode numbers p. This is shown in Fig 2.7 

-0.075 -0.05 -0.025 0 0.025 0.05 0.075
angular separation ,rad

0.986995

0.987

0.987005

0.98701

htgnelevaw

,
m

 
Figure 2.7: The spatial distribution of the spectrally resolved modes in the far-
field. The position of the peaks in the far-field corresponding to the observed 
intensity spectra in Fig: 2.4. The mode number keeps increasing from top to 

bottom of the graph. 
 

The wavelength separation between two modes for a BALD described in Fig 2.4 

can be calculated using (0.20) and is of the order of 0.025 Angstrom.  

To resolve and identify each mode in the output spectra we need an 

instrumentation system that is capable of resolving modes spectrally in the order of 

Angstroms.
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CHAPTER 3 

DOUBLE-PASS SPECTROMETER SYSTEM 

3.1 Introduction 

The modes of the laser diode need to resolved & identified with a high 

accuracy. In order to develop an instrumentation system to do such a measurement, an 

arrangement is needed that will give a high resolution. The idea of the double-pass 

structure is analyzed. The setup of the double-pass grating spectrometer is shown. The 

various optical elements that make up the system are explained. The double-pass 

grating equation is derived.  

3.2 Principle of the Double-pass spectrometer 

To study & observe the mode structure of the laser diode, a diffraction grating is 

used to resolve the modes of the laser diode. The beam is spatially resolved in the 

lateral direction. Since high-resolution is preferred to resolve & distinguish each mode 

of the laser diode, a double-pass approach of the grating is used. The idea is that if the 

beam is passed through the grating twice, the effective number of grooves is doubled & 

hence the resolution is also doubled according to the Rayleigh criterion [3.1]. The laser 

beam is passed twice into the grating using a mirror to reflect the beam back to the 

grating the second time. According to the Rayleigh criterion, we have the optical 

diffraction limit between two wavelengths given by 

 0

N
λ

λ∆ =  (3.1) 
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0λ is the central wavelength of the beam & N is the effective number of 

grooves.  

The effective number of grooves for a grating of length grooveL  = 50mm & a 

grooves/mm as grooven  = 2000 is given by 

 *grooves grooveN n L=  (3.2) 

Thus N is given by 10000. For a double-pass configuration, the effective 

number of grooves is doubled. Thus we have N = 2*10000 = 20000 grooves. For a 

wavelength of 970 nm, we have the theoretical resolution given by 

 
9

0
5

970*10 0.00485
2*10

nm
N
λ

λ
−

∆ = = =  (3.3) 

This corresponds to a frequency resolution of 

 
( )0 0

1.546c cf GHz
λ λ λ

∆ = − =
+ ∆

 (3.4) 

Due to high signal-to-noise ratio of the acquired images, the resolution limit in 

resulting images is about 1GHz. 

After the double-pass, an optical setup is used to project the near-field & far-

field output of the resolved beam simultaneously onto the camera. This enables us to 

compare the near-field & far-field on the same output image. The entire setup is 

controlled using a computer. The rotation of the grating & the capture of the output 

images are done in an automated manner through a computer.  
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3.3 System Setup of the double-pass grating spectrometer 

The system setup is shown & the block diagrams of the various optical elements are 

illustrated.  The path of the laser beam is shown  as it passes through the setup. 

 
Figure 3.1: System level diagram of the double-pass grating spectrometer setup. 
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The overview of the double-pass grating along with the various optical elements 

& the path of the beam are shown in Fig 3.1.  

3.3.1 Photograph of the double-pass grating system with the light path. 

Fig 3.2 shows the photograph of the double-pass grating spectrometer system. 

The laser beam path through the system is color coded for easier identification. The 

entire setup is on an optical table and in room temperature conditions. 

 

Figure 3.2: Photograph of the system showing the path of light rays entering and 
exiting the system. 
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3.4 Double-pass grating system elements 

The various elements of the double-pass spectrometer are shown & explained. 

The path of the laser beam through the various elements is shown to give more clarity 

3.4.1 Laser diode mount LDM 

The laser diode mount consists of water cooled mount where the laser diode can 

be securely placed. The mount is then placed on a translation stage with adjustments in 

three dimensions & angular adjustments as shown in Fig 3.3 

 
Figure 3.3: Water cooled laser diode mount system attached to translation stage. 

 
3.4.2 Lenses L1 & L2 & Input slit SLIT 

Lenses L1 & L2 are used to collimate & focus the beam so that it is properly 

focused when it passes through the slit. The input slit is used to prevent back reflection 

& limit the power carried by the beam. The lenses L1 & L2 are positioned in such a 

BALD is secured to   
mount & soldered to the 
power supply Laser Diode Mount 
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way that distance from the laser to L2 is equal to the distance from L2 to the SLIT and 

is the focal length of the lens L2. The input slit is used to prevent back reflection & 

limit the power carried by the beam.   

3.4.3 Polarizer PL & half waveplate WP 

The polarizer PL is used to linearly polarize the laser beam in the orientation of 

maximum intensity. After the beam is linearly polarized, it is passed through a half-

waveplate WP to make adjustments to the orientation of the beam. 

 
Figure 3.4: Polarizer (PL) is used to make the beam linearly polarized to get 

maximum intensity & this can be rotated using a motor controlled by the 
computer. 
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Figure 3.5: Half waveplate (WP) used to adjust the orientation of the linearly 
polarized beam. 

 
Putting all these elements together we have the following arrangement as shown 

in Fig 3.6 

 
Figure 3.6: To maintain the focus of the beam, distance from LDM to L2 is equal 

to distance from L2 to slit and is the focal length of lens L2 
 

3.4.4 The double-pass grating arrangement 

This consists of the collimating lens L3, the rotating stage RS, the grating GR & 

the double pass mirror M3. The lens L3 is positioned in such a way that distance from 

SLIT to L3 is equal to distance from L3 through GR, M3 and back to L3 and is the focal 

length of lens L3.  
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The beam passes through L3 when entering the grating system & leaving it. 

From L3 the beam passes into the NFFOS [3.1]. To ensure that the beam is in focus, the 

distance from L3 to the beam-splitter is equal to the focal length of lens L3. 

The rotating stage RS is holds the grating and is controlled using a controller, it 

is also controlled using the computer through software. The grating GR has a groove 

density of 2000 per mm. The input beam is aligned at the center of rotation of the 

grating. The mirror M3 is aligned at the double-pass position to the input beam with 

respect to the grating. The distance between the grating and the mirror is fine tuned 

during calibration.  This arrangement is shown in Fig 3.7 

 

 
Figure 3.7: To maintain the focus of the beam, distance from SLIT to L3 is equal 

to distance from L3 through GR, M3 and back to L3 and is the focal length of lens 
L3 

 
3.4.5 The NFFFOS (Near-Field Far-Field Optical Setup) 

This consists of a beam-splitter BS1, which splits the beam into two 

components. One component forms the near-field spectra of the output beam & the 

other component goes in the NFFFOS where it is transformed into the far-field spectra. 
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Lenses L4 & L6 are collimating lens while L5 is the cylindrical lens [3.1]. This is 

illustrated in Fig 3.8  

The optical system has total spatial dispersion of 2.0 µm/pixel and horizontal 

angular (in far-field measurement area) dispersion of 4.0 mrad/pixel [3.1].  

During the acquisition of the spectrum, the linear CCD Si camera captures 

images for several angular positions of the grating. The images are then resampled and 

stitched together using the dispersion formula of the spectrometer. 

  
Figure 3.8: The NFFFOS is used to transform the resolved beam to get the far-

field. L4 & L6 act as the collimating lenses. L5 is the cylindrical lens. 
  

3.4.6 Support Equipment 

The support equipment for the double-pass grating spectrometer consists of the 

laser diode power supply, the rotating stage controller, the output TV monitor, the 

power meter. 
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Figure 3.9: Double-pass grating system support equipment includes LD power 

supply, a TV monitor, rotation stage controller and a power meter. 
 

3.4.7 Computer software 

The experiment is performed and controlled using LabVIEW software. This 

includes the calibration, control, acquisition, image processing and output data. 

Several VI modules are developed to perform different parts of the experiment. 

 
3.5 Double-pass grating equation 

The side view of the double-pass grating system is shown below, the relation 

between the input angle and the output angle is derived. 
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Figure 3.10: Side-view of the double-pass grating. 

 

From Figure 3.10, at point A, the input beam falls on the grating with angle 

1iθ w.r.t the grating normal. The diffracted beam has angle 1rθ  w.r.t the grating normal. 

 0
1 1sin sini r d

λ
θ θ+ =  (3.5) 

where 0λ is the center wavelength & d is the groove distance. 

At point C, the input beam falls on the grating with angle 2iθ w.r.t the grating 

normal. The diffracted beam has angle 2rθ  w.r.t the grating normal. 

 0
2 2sin sini r d

λ
θ θ+ =  (3.6) 

The mirror is placed with its normal at an angle 2ξ  w.r.t the input beam. ξ  is 

the half inclination angle of the double-pass mirror. It is the angle of the grating 
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corresponding to the back reflection from the double-pass mirror. i.e. the input angle & 

the output angle are the same. 

 1 12 i rξ θ θ ϕ= − +  (3.7) 

In BCD∆ , 

 
( )2 1

1 2

2
2

i r

r i

ϕ θ π θ π

ϕ θ θ

+ + − =

= −
 (3.8) 

Expressing equation in terms of ϕ & substituting in equation we get 

 ( )
( )

1 1

1 1 1 2

1 2 1

2
2 2

2 2

i r

i r r i

r i i

ϕ ξ θ θ

ξ θ θ θ θ

θ θ θ ξ

= − +

− + = −

+ = −

 (3.9) 

Expressing 1rθ  in terms of 1iθ & 2iθ in terms of 2rθ using equations, 

 ( )1 10 0
1 2 1sin sin sin sin 2 2i r id d

λ λ
θ θ θ ξ− −   − + − = −   

   
 (3.10) 

The above equation is the double-pass grating equation which connects the 

input beam angle & the output beam angle.  

Ifγ is the rotational angle of the grating in the plane parallel to the grating 

grooves. The double-pass grating equation can be rewritten as [3.1] 

 ( )1 10 0
1 2 1

cos cos
sin sin sin sin 2 2i r id d

λ γ λ γ
θ θ θ ξ− −   − + − = −   

   
 (3.11) 

γ  varies for different lateral spatial components of laser emission. 

Rewriting the above equation we get, 

 ( )1 10 0cos cos
sin sin sin sin 2 2in out ind d

λ γ λ γ
α α α ξ− −   − + − = −   

   
 (3.12) 
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Rearranging (3.12) we get, 

 ( )1 10 0cos cos
sin sin 2 2 sin sinout in ind d

λ γ λ γ
α α ξ α− −   = − − − −   

   
 (3.13) 

Using the above equation we can see the behavior of the grating system for 

different parameters as shown in the figures below. Figure 3.11 shows the variation of 

the output angle of the system with respect to the variation of the input angle. 
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Figure 3.11: The variation of the double-pass grating input angle with output 

angle for λ0=950nm, d=500nm & 2ξ=16.5 deg. 
 
 

Figure 3.12 shows the variation of the output angle of the system with respect to 

the variation of the wavelength of light incident on the grating. 
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Figure 3.12: The variation of the double-pass grating output angle with 

wavelength of the beam for αin=82 deg, d=500nm & 2ξ=16.5 deg.
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CHAPTER 4 

RAY TRANSFER MATRIX MODEL OF DOUBLE-PASS GRATING 

4.1 Introduction 

The theory of matrix optics is introduced in Appendix A. The theory of the ray 

matrix of the diffraction grating is explained in Appendix B. A model of the double-

pass grating system is derived & built up using the ray transfer matrix optics approach.  

4.2 Modeling the double-pass grating system 

The ray matrix approach allows us to divide the double-pass grating system into 

components & the ray matrix section for each section is developed & all the sections are 

put together to make an entire model of the system.  

 
Figure 4.1: Comparison of the input beam & output beam from the double-pass 

grating 
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4.2.1 Sectioning of the double-pass grating system 

Each optical ray path propagating through free space is considered as a section. 

Each optical element is considered as a section. Each of these sections is constructed 

using the 3X3 matrix approach.  

 
Figure 4.2: Section-wise diagram of the double-pass grating. 

 

From the above figure, the optical path taken by the beam is through sections: 

L1, G1, L2, M1, L3, G2 and L4. The ray transfer matrix will be built up for each section 

and final. Let the screen be placed at the position of the collimating lens. The screen 

acts as a reference plane. 
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4.2.2 Initial setting of the mirror angle 

To set the mirror angle position we have to calculate the back reflection 

angle 2ξ . This is calculated by adjusting the mirror and the grating angle to obtain a 

back reflection as shown in the figure below. Let ibrθ & rbrθ  be the input & reflected 

angle at which the double-pass condition occurs. 

 
Figure 4.3: The back-reflection angle condition at which the reflected beam passes 

back along the normal to the mirror 
 

From the figure, 

 2 ibr rbrξ θ θ= −  (4.1) 

4.2.3 Rotation of the grating 

Once the back reflection angles are set, the grating can be rotated to a new angle 

1iθ which gives a new reflected angle 1rθ  

2ξ
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Figure 4.4: Side-view of the double-pass grating. 

 
  From Fig 4.4, 

 1 1i rδ θ θ= −  (4.2) 

 2ϕ ξ δ= −  (4.3) 

4.2.4 Input Ray Matrix 

The input ray matrix is given by  

 
1

in

in

x
θ

 
 
 
  

 (4.4) 

Here the input elements are defined with respect to the input beam which is 

taken as the optical axis when the beam starts out.  

4.2.5 Free space section, L1 

The optical ray propagates through a distance 1L before reaching the grating. 

The ray matrix of the ray after traveling through section L1 is given by, 
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 1iθ
 

2ξ2ϕ
 

C 
A 

B 

Output beam 

Input beam 

Mirror 

Grating 

Screen 

δ
 



 

 33 

 
1 1

1

1 0
0 1 0

1 0 0 1 1

L in

L in

x L x
θ θ

     
     =     
          

 (4.5) 

4.2.6 Grating G1 

The output ray from the grating is given by (assuming no dispersion)  

 
1 1

1 1

1 0 0
0 1 0

1 0 0 1 1

G L

G L

x A x
Dθ θ

     
     =     
          

 (4.6) 

Where 1

1

cos1
cos

r

i

A θ
θ

=  & 1

1

cos1
cos

i

r

D θ
θ

= . The output vector is with respect to the 

reflected beam. It is desired to find the output slope and displacement w.r.t the normal 

of the mirror, since information will assist in finding out the deviation of the beam from 

the back-reflection condition. The ray matrix is modified by making its output angle 

relative to mirror normal, 

 
1 1

1 1 1

1 0 0
0 1

1 0 0 1 1

G L

G gr L

x A x
Dθ θ θ

     
     =     
          

 (4.7) 

Where 1grθ ϕ=  as shown in the figure below. 
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Figure 4.5: Deviated path of the ray from the mirror normal. 

 
 
4.2.7 Free space section L2 

The optical ray propagates through a distance 2L from the grating to the mirror. 

The ray matrix of the ray after traveling through section L2 is given by, 

 
2 2 1

2 1

1 0
0 1 0

1 0 0 1 1

L G

L G

x L x
θ θ

     
     =     
          

 (4.8) 

 The output vector entering the mirror is relative to the normal to the mirror from the 
point of incidence of the input beam. 
 
4.2.8 Mirror section M1 

The ray is simply reflected off the mirror & the ray transfer matrix after 

reflection is still w.r.t the mirror normal & is given by, 

 
1 2

1 2

1 0 0
0 1 0

1 0 0 1 1

M L

M L

x x
θ θ

     
     =     
          

 (4.9) 
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4.2.9 Free space section L3 

The optical ray propagates through a distance 3L from the grating to the mirror. 

The ray matrix of the ray after traveling through section L3 is given by, 

 
3 3 1

3 1

1 0
0 1 0

1 0 0 1 1

L M

L M

x L x
θ θ

     
     =     
          

 (4.10) 

The input vector from the mirror must be w.r.t the beam falling on the grating 2 

& not w.r.t. to the mirror normal. Adjustments must be made to the output vector before 

it passes through the grating 2. The displacement is offset by distance AC & slope by 

angle of BC with the mirror normal. 

 
Figure 4.6: Angle of deviation of the ray from the mirror. 

 

The ray matrix of the ray after traveling through section L3 is given by, 

 
3 3 3 1

3 3 1

1
0 1

1 0 0 1 1

L M

L M

x L E x
Fθ θ

     
     =     
          

 (4.11) 
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Where ( )3 2 3 1grE L L θ= − +  offsets the distance traveled by the input vector & 

3 1grF θ= −  offsets the angle made w.r.t. the normal of the mirror. 

4.2.10 Grating Section G2 

The output ray vector w.r.t to the output beam is given by  

 
2 3

2 3

2 0 0
0 2 0

1 0 0 1 1

G L

G L

x A x
Dθ θ

     
     =     
          

 (4.12) 

It is desirable to get the output ray vector w.r.t. the input beam, this enables us 

to compare the slope & position of the output beam w.r.t input beam. Adjustments need 

to be made. 

 
2 2 3

2 2 3

2 0
0 2

1 0 0 1 1

G gr L

G gr L

x A E x
D Fθ θ

     
     =     
          

 (4.13) 

Here 2

2

cos2
cos

r

i

A θ
θ

=  & 2

2

cos2
cos

i

r

D θ
θ

=  where 2 1 2i rθ θ ϕ= −  

2 3 12gr iE E π
θ = − − 

 
 & ( )2 1 2gr i rF θ θ= −  

4.2.11 Free space section L4 

The output ray vector w.r.t to the input beam is given by  

 
4 4 2

4 2

1 0
0 1 0

1 0 0 1 1

L G

L G

x L x
θ θ

     
     =     
          

 (4.14) 
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4.3 Putting it all together 

The total effect of all the elements on the transformation of the input beam as it 

passes through the system is given by the matrix multiplication of the input vector with 

all the matrices of the elements it encounters i.e.  

 [OP] = [L4][G2][L3][M1][L2][G1][L1][IN]  (4.15) 

The final equations of the output matrix are 
 

 ( )( ) ( ) ( ) ( )( )
( )

1 3 2 4 3 2 3 1 2 2 1 3 2 2 1
4

4 3 2 1

1 2 2 1 1 1 2 1 1 1 1 1

0 1 2 1
1 10 0 1

gr gr gr
L in

L gr gr in

A A D A L L D L A A L A E E F A L D L F A L L D L Lx x
D D D F F

θ

θ θ θ

 + + + + + + + + + +    
    = + +    
       

 

 (4.16) 

Simplifying (4.16) and expressing it in terms of it individual vector elements we 

get, 

( )( )( )
( ) ( ) ( )( )

4

1 3 2 4

3 2 3 1 2 2 1 3 2 2 1

1 2

2 1 1 1 2

1 1 1 1 1

L in

in

gr gr gr

x A A x

D A L L D L A A L

A E E F A L D L F A L L D L L

θ

θ

= ⋅

+ + + + ⋅

+ + + + + + + +

 (4.17) 

 ( )4 3 2 11 2 1L in gr grD D D F Fθ θ θ= ⋅ + + +  (4.18) 

Assuming the input vector to have a value of [0, 0, 1] i.e. the input ray starts at 

the origin (beginning of the screen) and the optical axis is the path of the input beam 

and substituting the values of E3, F3, Egr2, Fgr2 as defined in the previous sections we get 

 ( )( )

( ) ( )( )

4 1

4 2 4 2 3 1

2 2
1 2 2 3 1 1 1 2 3 1 2

2 1
2 2 1

1
1 1 1

2

L gr

L gr

gr gr i gr i r

x A L
A L L D L L

L L L L L

θ
θ θ

πθ θ θ θ θ θ

 
 ⋅   

   = + + ⋅   
      − + + + + + −    

 (4.19) 
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Now if the grating is exactly at the double-pass position then θgr1 = 0. (4.19) 

then reduces to [0, 0, 1]. This means that the output ray is equal to the input ray i.e the 

output ray passes along the optical axis and the reference plane of the input ray. 
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CHAPTER 5 

MEASUREMENT SETUP & PROCEDURE 

5.1 Introduction 

This section shows the procedure to measure the modes of the laser diode. The 

initial adjustments of the elements are explained. The procedure of performing the 

measurement & acquisition of the modes of the laser diodes using the computer is 

explained.  The optical power measurement is also explained. 

5.2 Initial adjustments 

These are steps taken before any measurement of the spectra is started. This is 

mainly to ensure the laser is properly focused & the path is properly aligned. 

5.2.1 Laser diode mounting 

The laser diode is carefully attached to the laser diode mount using a screw 

driver. It is aligned such that the stripe facet is in the horizontal direction. This mount is 

then placed on a translation stage. The translation stage can be adjusted in 3 dimensions 

& also for angular adjustment in the horizontal direction. 

After placing it on the alignment stage, it is then soldered to the power supply 

wires & the water cooling system is turned on. 
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5.2.2 Adjustments of the optical setup 

Before attempting to switch on the laser diode, the eyes should be protected 

using appropriate laser safely goggles. This is extremely important to prevent injury to 

the eyes due to an accident or stray reflection of light falling on the eye. In order to 

prevent the effect of stray light, the experiment is performed under low-light conditions. 

The power supply is turned on & the voltage is increased until the current is just 

around the threshold value, this is indicated by a surge in the value of the current on the 

power supply reading. The laser diode is checked for light using a laser beam detection 

card. Once there is light, the focusing lens is adjusted to focus the beam on the output 

such that there it has a uniform dimension falling on the polarizer. The polarizer is 

adjusted to get a linear polarized beam which has maximum intensity.  

The beam from the polarizer goes into a collimating lens. The distance between 

the laser diode & the collimating lens is adjusted to be equal to the distance between the 

collimating lens & the slit. This distance is the focal distance of the collimating lens. 

This is done to ensure the beam is in focus. 

This beam is passed through a half-wave plate to get the desired orientation of 

the beam. This beam is then passes through a slit. The slit is used to control the intensity 

of the beam & is adjusted to obtain a narrow beam. 

The output from the slit is passed on to the grating through a collimating lens. 

The collimating lens is placed such that the distance from the slit to the lens is equal to 

the distance traveled by the beam from the lens through the double-pass grating & back 

to the lens. This ensures the beam is in proper focus when it enters & leaves the grating.  
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The rotation stage controller is now put ON. The position is of the controller is reset to 

the initial position. The grating is tilted to the double-pass angle condition using the 

computer program. As seen from Figure, the speed of the rotation stage can also be 

controlled by the computer program. 

 
 

Figure 5.1: Interface of LABVIEW program to control the rotational stage. 
 

The double-pass mirror distance from the grating is adjusted to ensure the 

focusing condition of the collimating lens is met. The diffracted beam leaving the 

grating is passed through the same collimating lens as the one it came through. It is sent 

into the Near-field/Far-field Optical System (NFFFOS). The NFFFOS elements must be 

adjust such that the two beam spots are directly focused onto the linear Si Charge 

Coupled Device (CCD) camera lens. 

 

5.3 Measurement procedure 

5.3.1 LabVIEW Calibration 

Once the initial setup is done, the TV monitor is switched on. The output of the 

laser beam is observed on the TV & the setup can be further refined to get a clear 

focused image of the beam in the middle of the CCD lens.  
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Figure 5.2: The near-field & far-field of the laser beam during calibration process 

 
Once this is done, the LabVIEW calibration program is executed. The setup of 

the calibration program interface is as shown in the figure below. Once it is complete, it 

outputs the calibration data into a text file. 

 
Figure 5.3: The interface of the grating setup calibration process 

 

 

near-field far-field 
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5.3.2 Main spectrum scan 

The main spectrum scan program is now run. This rotates the grating at various 

angles & captures the spectra. The input parameters to this program are the grating 

period & the center wavelength. The program takes the calibration results from the text 

file generated by the previous program. 

Once the program is run, it asks for the minimum spectral range cutoff. This is 

determined by manually adjusting the grating angle using the controller. We find the 

minimum angle at which the modes are visible. It then asks for the maximum spectral 

range. We similarly adjust the grating angle towards the maximum until the modes just 

about disappear. Once the minimum and maximum spectral values are obtained, the 

program asks for the light beam to be blocked. This can be done manually. This is done 

to measure the background noise of the CCD. It then asks for the block to be opened to 

conduct the measurement. 

The measurement time depends on the spectral range and takes anywhere 

between 2 minutes to 10 minutes. The images are then resampled and stitched together 

using the dispersion formula of the spectrometer i.e. parabolic interpolation [3.2]. 

As seen in Fig 5.4, the acquired spectra consists of the near-field on the left & 

the far-field on the right. The y-axis is common and is the wavelength of the light. The 

x-axis consists of the position of the near-field & angular spread for the far-field.  
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Figure 5.4: The interface of the main program which scans the spectrum and 

converts to it to individual images.  
  

5.3.3 Power Measurement of the BALD 

Power meter is used to calculate the output power of the BALD for different 

values of current. The quantum efficiency of the BALD can be calculated from the 

measurements. 
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Fig 5.5: Power meter is used to calculate the output power of the BALD for 

different values of current. 
 

The measurement results are shown in Table 5.1. I is the measured current in 

mA, The Icorrected is the corrected value of the measured current from the power meter. 

P0 is the power meter reading in mW when it is closed i.e. without any input. Popen is 

the power meter reading when it is open and the laser is incident on it. Diff is the actual 

power reading. 
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Table 5.1: The power measurement values of the BALD 

I(mA) 
Icorrected 
(mA) P0(Mw) Popen(mW) Diff(mW) 

400 406 1.7 55.5 53.8
800 806 1.7 201 199.3

1000 1006 1.5 290 288.5
1500 1506 1.1 442 440.9
2000 2006 0.3 590 589.7
2500 2506 0.8 882 881.2
3000 3006 0.3 983 982.7
3500 3506 0.5 1119 1118.5
4000 4006 0.8 1300 1299.2
4500 4506 0.5 1551 1550.5
5000 5006 0.6 1643 1642.4
5500 5506 0.6 1875 1874.4
6000 6006 0.5 1954 1953.5
7000 7006 0.9 2250 2249.1
8000 8006 0.8 2370 2369.2

 

Plotting the above values, we get the graph, 

Power vs Current Characteristics
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Fig 5.6: Power measurement graph of the BALD@20 deg.
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CHAPTER 6 

RESULTS AND CONCLUSION 

6.1 Results 

The following image sets were captured for increasing values of current. The 

output spectra is shown as the grating angle is varied at a particular value of current.  

The modes are spread across the spectral range. 

 
Fig 6.1: Near-field/far-field output spectra of BALD@ 20 deg /400mA/Strip 

width: ~100µm with increasing wavelength from top to bottom and left to right.
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Fig 6.2: Near-field/far-field output spectra of BALD@ 20 deg /400mA/ Strip 

width: ~100µm with increasing wavelength from top to bottom and left to right. 
 



 

 49 

 
Fig 6.3: Near-field/far-field output spectra of BALD@ 20 deg /1000mA/ Strip 

width: ~100µm with increasing wavelength from top to bottom and left to right. 
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Fig 6.4: Near-field/far-field output spectra of BALD@ 20 deg /2000mA/ Strip 

width: ~100µm with increasing wavelength from top to bottom and left to right. 
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Fig 6.5: Near-field/far-field output spectra of BALD@ 20 deg /4000mA/ Strip 

width: ~100µm with increasing wavelength from top to bottom and left to right. 
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Fig 6.6: Near-field/far-field output spectra of BALD@ 20 deg /4000mA/ Strip 

width: ~100µm with increasing wavelength from top to bottom and left to right. 
 

 

6.2 Conclusion 

The theory of the double-pass spectrometer was explained and the setup to 

record and capture the modes of the laser diode using labview software. The following 

images were captured for increasing values of current and also the power output. The 

modes of the laser diode are clearly visible. They are spread spectrally in the near & far-

field. The profile of the mode structure matches the profile of the gain guided dielectric 

slab waveguide. 
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CHAPTER 7 

FUTURE WORK 

7.1 Future work 

As with every test instrument, the aim would be have a completely automated 

double-pass spectrometer setup to increase efficiency & speed of testing.   

Many of the manual adjustments & calibrations, like noting the minimum & 

maximum position of the spectra, closing the slit, etc. can be automated to make each 

test faster. The calculation of the position and power intensity of each mode could be 

done in automated manner.  

Another improvement would be to merge the entire set of images into one full 

image to show the full variation across lateral space. Right now as the grating rotates, 

snapshots of across different lateral widths are taken. This leads to many individual 

images. 

The effect of triple-pass & quadruple-pass on the resolution of the output 

spectra can also be investigated. 

The effect of the output spectra for different values of the angle γ, the rotational 

angle of the grating in the plane parallel to the grating grooves needs to be studied in 

greater detail.   

 



 

 54 

Using advanced optical systems design, the space required by the setup can be 

reduced. This leads to a more compact & flexible setup. The positioning of several 

components could be automated i.e. control of the position of lens by mechanized stage. 

Using the matrix model to find the change in position of the beams from the 

initial condition & linking this to the software, we could have more control over the 

system. 
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APPENDIX A 
 
 

REVIEW OF MATRIX OPTICS 
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A.1 Introduction 

The theory of matrix optics is introduced. The ray transfer matrix of various 

optical elements is defined & the paraxial propagation of geometrical optical rays 

through them is described & modeled.  

A.2 Matrix methods in optics 

The optics of paraxial imaging [4.1] is often referred to as Gaussian optics. 

Gauss showed that the behavior of any lens system can be determined from knowledge 

of its six cardinal points - namely two focal points, two nodal points of unit angular 

magnification & two principal points of unit linear magnification. In formulating the 

latter, Gauss wrote down explicitly the two linear simultaneous equations whereby the 

ray height & ray angle of an output ray are linked to the corresponding quantities for an 

input ray.  

Matrices provide an alternative method for performing this type of calculation. 

It would seem that they were first used in optics by Sampson about sixty years ago, but 

it is only recently that they have been widely adopted.  

During 1965 Kogelnik published an important extension of the method whereby 

a ray-transfer matrix could be used to describe not only the geometric optics of paraxial 

rays but also the propagation of a diffraction- limited laser beam.  

A.2.1 Assumptions of matrix method 

The first is the basic assumption of all geometric optics - that the wavelength of 

light is negligibly small & that propagation of light can be described not in terms of 
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wavefronts but in terms of individual rays. The concept of a geometric ray is an 

idealization of this normal to the wavefront.  

The second approximation is that rays are assumed to be paraxial - those that 

remain close to the axis & almost parallel to it so that the first-order approximations for 

the sines or tangents of any angles that are involved. This method will therefore give no 

information about third-order effects such as spherical aberration or the oblique 

aberrations coma, astigmatism, field curvature & distortion.  

A.2.2 Optical ray definition 

Consider a ray of light [4.2] traveling approximately in the z direction. Let us 

define a reference plane 1z  that is perpendicular to the optical axis. Let the ray travel 

with a transverse displacement of r from the optical axis to the reference plane. (where r 

is a function of z ). Let this ray make a small slope of ' /r dr dz=  with the optical axis 

as shown in Fig A.1 

 
Figure A.1: The optical ray is defined in terms of the displacement r from the 

optical axis to the reference plane 1z  and the slope r’ it makes with respect to the 
optical axis. 

 
 

 

displacement,

optical ray 

 

slope, 
'r  

z 

reference 

z
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A.2.3 Optical ray transformation 

Let an optical ray propagate in free space from one plane 1z  to another plane 2z  

at a distance L from 1z  as show in Figure A.2.   

 
Figure A.2: Optical ray passing from plane 1z  to plane 2z is transformed in term 

of its displacement r  and slope 'r . 
 

The ray is now describes by these co-ordinates i.e. its displacement & slope 

with respect to the optical axis for a particular reference plane. Let the co-ordinates at 

the input plane 1z  be 1 1, 'r r  & let the co-ordinates at the output plane 2z  be 2 2, 'r r . These 

co-ordinates are related by the transformation 

 2 1 1 /r r L dr dx= +  (D.20) 

 2 1/ /dr dx dr dx=  (D.21) 

As seen from the above equations, the input & output co-ordinates are by related 

by linear transformations. The output displacement & slope of an optical ray passing 

through a wide variety of optical elements can also be represented in a similar manner. 

To simplify [4.2] the later results of the transformations, we define the ray slope 

variable to be the actual slope /dr dz  of the ray multiplied by the local index of 

refraction ( )n z  at the ray position. This quantity is known as the reduced slope given by 

L

1 1, 'r r

z 

RP

z  

RP

z

2 2, 'r r
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 ( )'( ) ( ) dr zr z n z
dz

=  (D.22) 

A.2.4 ABCD matrices 

The matrix representation of an optical element is generally referred to as 

ABCD matrix. We represent the output displacement & slope as a linear combination of 

the input.  

 
'

2 1 1
' '

2 1 1

r Ar Br
r Cr Dr

= +

= +
 (D.23) 

where the coefficients A, B, C & D characterize the paraxial focusing properties 

of this element.  

The idea is to construct a matrix M which represents an optical element through 

which the ray will pass. Figure A.3 shows a typical optical system with various optical 

elements & the path of the optical ray through it. 

 
Figure A.3: Optical ray passing through various optical elements. 

 

An optical element can be represented by a matrix M where the output of the 

ray can be determined by linear transformation of the input by several optical elements. 

This is show in Figure A.A. 

1 1, 'r r

2 2, 'r r
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Figure A.4: A matrix M can be used to represent each optical element as the ray 

propagates through the system. 
 

 Hence we can write Equation (A.4) as 

 2 1
2 1' '

2 1

r rA C
r rB D

    
≡ = × ≡    

    
r M r  (D.24) 

Since we have used the reduced slope definition of Equation (A.3), the 

determinant of the matrix M, 1AD BC− = . Otherwise it would be 1 2/AD BC n n− =  

where n1 & n2 are the refractive indices at the input & output planes. 

A.2.5 Ray matrices for cascaded optical elements 

In a typical optical system, elements are often arranged in a cascade i.e. a lens, 

free-space section, a thick lens, free-space section. Each of these can be represented by 

a matrix 1 2, ,... nM M M . The state of the input ray at the plane between two optical 

elements is shown in Figure A.5 

  
Figure A.5: The cascaded system of optical elements represented as matrices and 

the effect of the input ray through them. 

0r  
1M  2M  3M  

1r  2r  
3r  

1 1, 'r r  

2 2, 'r r  

A B
M

C D
 

=  
 
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The transformation of the input ray as it passes through the system is given by 

 
1 1 0

2 2 1 1 0 0

3 3 2 3 2 1 0

=

= =

= =

r M r
r M r M M r
r M r M M M r

 (D.25) 

In general the total effect of all the elements of the system on the input ray is 

given by 

 1 2 1 0 0[ ... ]n n n n total− −= =r M M M M r M r  (D.26) 

  

A.2.6 Ray matrices for misaligned elements 

The 2 X 2 matrix formalism is developed under the assumption that all the 

paraxial elements are properly aligned and centered with respect to the reference axis. 

In order to account for misalignment in displacement & slope of the optical axis of the 

element with respect to the reference optical axis of the system, the matrix is expanded 

into a 3 X 3 matrix. An “error vector” E is added to optical element matrix along with a 

dummy element of unity to each of the ray vectors. The error vector E consists of 

quantities E & F which represent the displacement & slope misalignment respectively. 

The final equation of the 3 X 3 formalism is given by 

 
2 1
' '

2 1

1 0 0 1 1

r A B E r
r C D F r

     
     = ×     
          

 (D.27) 

A.2.7 Elements oftion grating matrix 
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A.3 Matrix representation of optical elements 

The matrix representation of several optical elements is given below. 

A.3.1 Free space section 

Consider an optical ray propagating through free space from input plane 1z  to 

output plane 2z . If the free space section has a length L & refractive index 0n  then the 

matrix will be given by [4.1] 

 01 /
0 1

L n 
 
 

 (D.28) 

 
Figure A.6: Diagram for free space section  

 

A.3.1 Free space section 

Consider an optical ray propagating through free space from input plane 1z  to 

output plane 2z . If the free space section has a length L & refractive index 0n  then the 

matrix will be given by [4.1] 

 01 /
0 1

L n 
 
 

 (D.29) 

L
 

1 1, 'r r  

z 

1z 2z
2 2, 'r r

 
0n  
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Figure A.6: Diagram for free space section 

 
So the final equation for the case of 3X3 matrix will be of the form 

 
2 0 1
' '

2 1

1 /
0 1

1 0 0 1 1

r L n E r
r F r

     
     = ×     
          

 (D.30) 

A.3.2 Curved Mirror 

Similarly for a optical ray falling on a curved mirror, the ray matrix is given by 

[4.2] 

 
1 0

2 / 1eR
 
 
 

 (D.31) 

where coseR R θ=  in the plane of incidence (‘tangential’) & 

/ coseR R θ= perpendicular to the place of incidence (‘sagittal’). R is the angle of 

curvature of the mirror. 

 
Figure A.7: Diagram for a curved mirror 

L
 

mirror axis 

θ 

θ 

incident axis 

exit axis 
RP 

L
 

1 1, 'r r  
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1z 2z
2 2, 'r r

 
0n  
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Here the input ray vector is measured [A.1] with respect to the incident axis & 

the output ray vector is measured with respect to the exit axis. 
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APPENDIX B 
 
 

MATRIX REPRESENTATION OF DIFFRACTION GRATING
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B.1 Introduction 

The matrix representation of the diffraction grating is explained & the matrix 

representation is compared with the exact equation of the diffraction grating.  

B.2 The ray matrix of the diffraction grating 

Assume we have a curved diffraction grating [B.1] as shown in Figure 1. Let the 

radius of curvature be gR , the incident wave make an angle 1θ  with the grating normal, 

the diffracted wave make an angle 2θ with the normal. Let the groove distance by d. 

 
Figure B.1: The curved diffraction grating diagram used to develop the ray matrix. 

[B.1] 
 

The diffraction grating equation is given by 

 1 2sin sin m
d
λθ θ+ =  (D.32) 

where m is the diffraction order. 

 The ray matrix of the diffraction grating is of the form given by [B.2] 

 2 1
' '
2 1

x xA B
x xC D

    
=    

    
 (D.33) 
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From Figure B.2, A is defined to be the [B.1] transverse magnification or the 

beam width expansion along the x-z plane given by 

 A= 2

1

cos
cos

θ
θ

 (D.34) 

 
Figure B.2: The orientation of the input & output beam on the diffraction grating 

& the beam width expansion along the x-z axis. [B.3] 
 

D is defined to be angular magnification given by 

 

 1

2

cos
cos

D θ
θ

=  (D.35) 

C is dependent on the radius of curvature gR . In the transverse plane, C is given 

by 

 2

gt

C
R

= −  (D.36) 

where 1 2

1 2

2cos cos
cos cosgt gR Rθ θ

θ θ
= −

+
. In the sagittal plane, C is given by 

 2

gs

C
R

= −  (D.37) 
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Where 
1 2

2
cos cosgs gR R

θ θ
=

+
 

For the double-pass grating we assume 0gR = . Therefore the grating matrix is 

given by 

 

2

12 1
' '
2 11

2

cos 0
cos

cos0
cos

x x
x x

θ
θ

θ
θ

 
     =       
 
 

 (D.38) 

 
B.3 The diffraction grating ray matrix including the angular frequency 

dispersion 

Spectral angular dispersion can be developed & added by making use of the 

properties of the misaligned elements of the ABCD 3X3 matrix [B.2] 

 
2 1
' '
2 1

1 0 0 1 1

x A B E x
x C D F x

     
     =     
          

 (D.39) 

Here the misalignment terms E & F will be used to describe the spectral angular 

dispersion. The following assumptions are made [B.4]. A center frequency is defined & 

the propagation of a Gaussian beam at that frequency defines the optical axis. Small 

deviations around that central path caused by small frequency deviations will be 

described by the E and F terms. If F is made frequency dependent, then it will give rise 

to the angular dispersion upon refraction or diffraction. 

To obtain the value of F, we use the grating equation given by [B.4] 
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 1 2
2sin sin cn

d
πθ θ
ω

+ =  (D.40) 

Where c is the speed of light, n is the medium in which the grating is immersed, 

ω is the center frequency of the beam & d is the groove spacing of the grating. 

From equation, F is obtained to be [B.4] 

 
2

0 2
2

2
cos
cnF

d
π

ω
ω θ

= ∆  (D.41) 

 Where 0F  is the first-order term & ω∆ is the frequency shift from the center 

frequency. 

The diffraction grating matrix for angular frequency dispersion in the first order 

is given by 

 

2

1
2 12
' '1
2 12

2 2

cos 0 0
cos

cos 20
cos cos

1 1
0 0 1

x x
cnx x

d

θ
θ

θ π
ω

θ ω θ

 
 
    
    = ∆    
        
 
 

 (D.42) 

For higher order terms of dispersion, we use the following definitions 

 2
2 0

1

cos 11 sin
cos

A F
n

θ θ
θ

 = − 
 

 (D.43) 

 1
2 0

2

cos 11 tan
cos

D F
n

θ θ
θ

 = − 
 

 (D.44) 

 0 2 0
11 2 tan
2

F F Fω
θ

ω
∆ = − +  

 (D.45) 
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B.4 Plot of the diffraction grating ray matrix 

We will plot the grating equation ( )1 0
2 1sin sin

d
λ

θ θ−  = − 
 

 and use the grating 

ray matrix to compare the values with a specific region of the input angle. 
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Figure B.3: Plot of grating equation, input angle vs. output angle for the following 

parameters: 0λ =950nm,d=500nm, 1θ from 60 deg to 90 deg. 
 

Assuming no angular frequency dispersion, we use the 2X2 ABCD matrix & 

substituting the values 0λ =950nm, d=500nm, 1θ =75 deg, matrix equation will be given 

by 

 
1

12
''

2

1.37965 0
0 0.724823

xx
xx

    
=     

    
 (D.46) 

To observe the change in output angle with the change in input angle, we use 

the equation 

 
 ' '

2 10.724823x x=  (D.47) 
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We vary '
1x from -5 deg to +5 deg to get a total change of 70 deg to 80 deg in the 

input angle. i.e. '
2 2( )xθ − is plotted with respect to '

1 1( )xθ +  
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Figure B.4: The plot of the matrix for 0λ =950nm,d=500nm, for a slope variation 

of -5 deg to +5 deg from the initial angle of 1θ =75 deg 
 

The superimposed images are shown below.  
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Figure B.5: The red line indicates the linearised values of the output angle from 
the ray matrix for 0λ =950nm,d=500nm, for a tilt of -5 deg to +5 deg from the 

initial angle of 1θ =75 deg 
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