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ABSTRACT

INCREMENTAL RETRIEVAL AND RANKING OF COMPLEX PATTERNS FROM

TEXT REPOSITIORIES

Publication No.

JAYAKRISHNA THATHIREDDY, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Sharma Chakravarthy

As the volume of information accessible via the electronic medium (such as the

Internet) is staggeringly large and growing rapidly, users have to sift through vast reser-

voirs of information to retrieve relevant data of their choice. It has been estimated that,

the Internet consists of 2.5 billion unique, publicly accessible web-pages and this figure

is growing at an alarming rate of 7.3 million pages per day1. Currently, the only way to

wade through such colossal information is by using search engines (such as Google, Live,

Yahoo, etc.). Although the popularity of search engines has increased manifold due to

– simplicity of usage, speed of retrieval and amount of results generated, their ability to

intelligently retrieve relevant information is significantly hampered due to over-reliance

on Boolean operators for data retrieval.

Consider searching for complex patterns involving pattern frequency, proximity,

sequence, structural patterns and synonyms. Consider the following examples:

(at least 5 occurrences of the phrase “research experiences”),

(“metal” near “traders”, in any order, within 10 words of each other),

(“soya” followed by “plantings”, within 5 words of each other),

1These statistics are obtained from [1]
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all occurrences of the word (“contract” and its synonyms), and

(“France” within the occurrence of “sunflower plantings” and “harvest”)

The above search patterns are not supported by currently available search engines.

Researchers looking for information in domains such as security, biology, legal research

etc. need focused, objective and precise semantics to specify such patterns. In order

to deal with such complex requirements of specific domain users, the design of a docu-

ment retrieval system – that consists of a pattern specification language and an efficient

detection engine that allows specification of such expressive patterns – is needed.

To address these issues, we have designed a framework (made up of two interde-

pendent yet distinct systems – InfoFilter and InfoSearch) based on an expressive pattern

specification language and a set of novel detection algorithms that handle streaming as

well as static data. InfoFilter handles pattern detection for streaming data (news feeds,

IP packets, etc.) where freshness of search results is paramount. However, in the case of

data that resides in the form of large yet static repositories, and when the freshness of

data is not critical, the InfoSearch system handles pattern detection using a pre-computed

index.

The initial design of InfoSearch, for complex pattern detection, focused on fetching

all matching occurrences of the pattern in the data repositories. It further processed all

the tuples of the operands that constituted the pattern. In this approach, all answers

are generated even if the user is interested in a small number of answers. Generating all

answers when the request is only for “k” answers is inefficient in terms of processing time,

memory utilization and number of computations. Moreover, the results are generated in

the order in which they are detected, thus ignoring the relevancy of results with respect

to user preferences. The user may be interested in ranked results which can indicate their

quality. In order to address these problems, an incremental approach for complex pattern

detection is needed. Moreover, in order to generate results based on the relevancy rather

than the order of detection, ranking mechanisms for appropriately filtering the results

also needs to be addressed.
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In this thesis, we investigate several approaches for incremental detection of com-

plex patterns, retrieval, and ranking of results. We also investigate the need for novel

data structures as well as the types of structural meta-data to be associated with the

data stored in the index for ranking the fetched results. We propose a novel ranking

algorithm that utilizes the structural boundaries of the data to rank results based on

the location and occurrence of a complex pattern in a document. We also present algo-

rithms for each operator encountered in a pattern, that are based on ensuring optimal

utilization of computational and memory resources in the least possible time. Extensive

experiments have been performed to evaluate the scalability, performance, and memory

usage of these algorithms on a number of patterns.
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CHAPTER 1

INTRODUCTION

Information retrieval is defined as the process of identification and fetching of mean-

ingful information from large collections of documents or data. Before the proliferation

of electronic data on the World Wide Web (WWW), information retrieval was an activ-

ity that was important to people in specific domains (such as librarians, legal experts,

researchers, ...). However, as the volume of accessible data on the Web has grown at an

exponential rate, users with minimal knowledge about the structure and/or semantics

of the data are interested in querying and retrieving interesting portions of this data.

Hence, the problem of retrieving context-relevant information has gained prominence

and received considerable attention from the research community.

1.1 Information Access Methods

The simplest and easiest form of information retrieval is to scan and retrieve those

documents that match the patterns. The pattern can be either a simple word or can

be a complex regular expression, specified using wild card expressions such as men*r,

m[a-z]n. This can be done by using grep, awk, AND sed commands in Unix, Shell and

Perl scripting, respectively. Although these approaches work with considerable success

for small data sets, they do not scale in the real world due to the enormous size of the

data to be searched for.

Another approach to retrieve structured data (E.g., Database Systems or DBMSs,

Data Warehouses, etc.) is in the form of queries. However, these systems, require their

users to learn query languages (such as SQL) for data retrieval. In addition to these rigid

querying mechanisms, the ability to retrieve only structured data in a controlled access

manner makes it impossible for users to use these machanisms on other forms of data.
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In recent years, the information retrieval paradigm has changed considerably to

incorporate the need for accessing increasing amounts of data on the Web. Since, most

of the data on the Web is in an unstructured format (documents such as text files, HTML

files etc.), Information Retrieval (IR) has evolved as an important mechanism to search

these collection of documents based on simple user queries. The Information Retrieval

Query Languages (IRQLs) are simpler to use than DBMS query languages. They are

used to translate queries into database, where the semantics of the query are defined by

an interpretation of the most suitable results of the query instead of a precise rendering of

a formal syntax. Additionally, they allow users to specify queries using natural keywords

and Boolean operators, thus making it easier to specify the required search pattern. An

example of an IRQL is the Common Query Language (CQL), a formal language for

representing queries to Information Retrieval systems such as web indexes, bibliographic

catalogs and museum collection information. Internet search engines have adapted IR

techniques to satisfy information need on the Web, and are discussed below.

1.2 Search Engines

Search Engines for the Web do not search for actual data on the Web in real time [2].

Instead, they search an index of a database of the full text of web pages retrieved from

web-servers using crawlers. When the web is searched using a search engine, it is NOT

looking at the current copy of the original document. Instead, it is using a document

that is indexed and stored in the search engine database. When the link provided in a

search engine’s search results is accessed, the current version of the page is retrieved from

the server where it resides.

Search engine databases are built by computer robot programs called spiders. They

access the pages for potential inclusion in the database by following the links in the pages

that have already been stored in their database. If a web page is never linked to any other

page, spiders cannot find it. The only way a brand new page - one that no other page

has ever linked to - can get into a search engine is for its URL to be entered manually
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for search. After the spiders find the pages, they pass them on to another computer

program for indexing. This program identifies the text, links, and other content in the

page, and the documents are then parsed to extract tokens (keywords). The tokens

generated from each document are used to populate an inverted index. An inverted

index essentially stores a mapping from a keyword occurrence to a list of documents that

contain that keyword. Billions of documents are indexed by search engines, and hence

the efficiency of the index is crucial. It has to make efficient use of disk space, and also

provide quick lookups for millions of queries per day. User queries, specified mostly in

the form of keywords, are evaluated against this index using some variation of the vector

similarity model [3]. The results are usually sorted in descending order of relevance,

based on sophisticated ranking algorithms. The Boolean operators AND, OR, and NOT,

as well as exact phrase matching are allowed in some cases. Search engines have been

instrumental in enabling users to quickly find the information they need on the web from

billions of documents.

1.3 Complex patterns

Current search engines are convenient for performing keyword searches; however, in

specific domains such as federal intelligence, legal databases and searching full-text patent

information, there is a need to detect more complex patterns. Users in these domains

may have more precise requirements in terms of the information they are searching.

These patterns may involve term frequency (e.g., at least 5 occurrences of the phrase

“research experiences“), proximity with sub-patterns (e.g., “metal“ near “traders“, in

any order, within 10 words of each other), sequence of sub-patterns (e.g., “soya“ followed

by “plantings“, within 5 words of each other), all occurrences of the word “contract“ and

its synonyms, or structural patterns (e.g “France“ within the occurrence of “sunflower

plantings“ and “harvest“) and so on. Additionally, the patterns that need to be detected

may be arbitrarily complex; that is, they may need to be specified in terms of other

patterns (e.g., (“tax“ followed by (“petrol“ or “oil“)) near “retail stations“, separated



4

by 5 positions or less). Current IR systems and search engines do NOT provide a

means to specify and detect such complex patterns. In other words, the expressiveness of

query specification provided by current search engines, although satisfactory for general

searches, is not quite adequate for several specific applications or domains.

1.4 Data sources

Data sources over which these complex patterns need to be detected can be classified

into two basic categories based on the frequency of the change in data: dynamic and static

data sources.

1.4.1 Dynamic Data Sources

In dynamic data sources, the data may be updated very frequently (E.g., news page)

or may be sent as streams (E.g., news feeds, data feeds etc.). Monitoring a dynamic source

entails streaming in the raw data at the time of pattern detection to detect the required

patterns[4]. In other words, to detect a pattern, the entire data source must be read

every time. This is expensive, but unavoidable, because of the fast changing nature of

the data source. Further more, if freshness of the search results are important, it becomes

necessary to read the data source every time while processing a query. Examples include

RSS feeds, news feeds, real time stock information etc..

1.4.2 Static Data Sources

These data sources contain relatively static set of documents that are not updated

on a frequent basis [5]. For example, many web and text repositories fall under this

category. Since the data source is relatively static, it is redundant and inefficient to read

the entire source each time a pattern is to be detected. A better approach is to build and

leverage some kind of meta-data on the source. Specifically, the data source could be

indexed, as is done by search engines, and the information in the index is then used for

answering queries. Since the index would be computed off-line, this approach may result
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in an occasional out of date search result. However, considering that the data source is

not frequently updated, it is assumed to be acceptable to the user. For such relatively

static data sources, the gains in terms of efficiency of retrieval that leveraging an index

will bring outweigh the slight disadvantage of an occasional out of date result. The index

is updated periodically to reflect any changes in the data source.

1.5 Problem statement

Searching for complex patterns (that have well-defined semantics) in dynamic

streams of data[4] and over static data sources [5] has been investigated and proved

to be possible. A suite of complex operators and algorithms have been developed to

detect complex patterns in dynamic and static sources of data. During the detection

of complex patterns over static data sources using a pre-computed inverted-index, the

system detects all the occurrences of the pattern in a repository or a database. Addition-

ally, all tuples are processed at each operand of the complex pattern, even if the user is

not interested in all occurrences of the pattern resulting, in unnecessary wastage of time,

computational and memory resources.

A better approach would be to fetch and process certain number of tuples at each

operand of the complex pattern. If the processing of tuples results in the detection of

patterns that satisfies the users request in the number of patterns detected, then further

detection is halted. By adopting such an incremental approach, we could retrieve the

patterns in the shortest possible time in addition to saving memory and computational

resources.

In InfoSearch [5], the detected patterns are delivered to the user in the order of

detection, with no information regarding the relevance of one pattern over another. The

user need to sift through all the detected patterns to find the useful information. Hence,

there is a need to rank the detected patterns.

In this thesis we investigate various approaches for incremental detection and re-

trieval of results based on user requirements from text repositories followed by ranking
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of these search results. Additionally, we investigate the need for novel data structures to

incrementally retrieve the tuples, and additional structural information to be stored in

the index for ranking of the retrieved patterns. Furthermore, we present a ranking algo-

rithm to rank the search results and algorithms for each operator to incrementally detect

and retrieve complex patterns from the index with optimal utilization of computational

and memory resources in the least possible time. The ranking approach involves filtering

results based on the position of occurrence of the complex pattern in a document, and

utilizing the structural boundaries of the data.

1.6 Contributions

The primary goal of this work is to prove that it is possible to detect complex

patterns by incrementally retrieving data from large text repositories. Additionally, we

present a ranking algorithm to rank the detected patterns, based on proximity and struc-

tural information of the data. The existing work [5] has been enhanced to incrementally

retrieve and rank the complex patterns from the text data repositories. The complete

set of operators, such as frequency, proximity, containment, non-containment, sequence

and synonyms, have been redesigned to detect and retrieve complex patterns incremen-

tally. These operators are redesigned to extract appropriate results from the index, and

incrementally detect the required number of complex patterns as specified by the user,

based on the semantics defined for that operator. Since the information about the occur-

rence of the patterns is not sufficient to rank the retrieved complex patterns, additional

structural information about the pattern is stored in the index. Furthermore, a new

GUI interface has been developed to interact with the system by the user. Extensive

performance evaluation of algorithms over different data sizes and patterns have been

performed to determine scalability, response-time, and memory usage of the proposed

algorithms. Furthermore, the proposed algorithms are compared with earlier algorithms

as well.
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The rest of the thesis is organized as follows: Chapter 2 reviews the related work.

Chapter 3 discusses the design and architecture of the system. Chapter 4 describes the

working of InfoSearch operators with elaborate examples. Implementation aspects are

discussed in Chapter 5. In Chapter 6 time and memory usage of the system are discussed

and compared with the InfoSearch system. Chapter 7 concludes the thesis and identifies

some potential future directions.



CHAPTER 2

RELATED WORK

The goal of an information retrieval (IR) system is to provide users with the req-

uisite documents that satisfy their information needs. Users need to formulate their

information requirements, in a format that can be understood by the retrieval mecha-

nism. To achieve this, the contents of large document collections need to be presented or

stored in a format that facilitates the retrieval system to extract the relevant documents

quickly and present it to the user. The information may be lost, while transforming

the information, and while specifying the information need of the user in a format that

the computer understands. Furthermore, the emergence of web as a popular medium

of expression since the 1990’s has created new challenges for information retrieval. The

amount of information on the web is significantly large and is growing as compared to

a traditional information system. The problem is further compounded by the increasing

number of inexperienced users in the art of information retrieval compared to the do-

main expert users well-versed with the nature, content and the structure of data in the

traditional informational system. To solve this, we need an efficient and scalable index

to store the contents of a document, and a retrieval mechanism making efficient use of

storage, memory and computational resources. In the following section we will discuss

the concept of inverted index and some of the popular IR models.

2.1 Inverted Index

To generate a comprehensive index, the Web needs to be traversed systematically

to locate all documents. The traversing of the Web is done by starting with a seed

“URLS” to initiate the exploration. After parsing and indexing of the seed document,

8
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all the URL’s in the seed document are extracted and then are traversed recursively and

indexed.

An inverted index [6] is an index structure for storing a mapping from words to

their occurrences in a document or a set of documents, thus, facilitating full text search.

It is one of the most popular data structures used in IR systems. It maintains a sequence

of (key, pointer) pairs where each pointer points to a document in the database which

contains the key value. The index is then sorted on the key values to allow rapid searching

for a particular key value (e.g., binary search). The index is called inverted because the

key value is used to find a document rather than the other way round.

2.1.1 IR Models

In this section, we give a brief overview of some of the popular IR Models.

2.1.1.1 Boolean model

This model allow users to specify queries using a composition of boolean operators

(AND, OR and NOT). Its simplicity and ease of implementation has made it popular

amongst many commercial systems [3, 7]. It is based on set theory and hence every

document is represented by a set of index terms, each of which is considered as a Boolean

variable and is evaluated as True if the term is present in a document. If a document

contains exactly the pattern specified by the query, then the document is selected as being

relevant. The AND operator essentially performs set intersection, OR does set union, and

NOT does set difference. The disadvantage of the boolean model is that it is inherently

precise and hence there is no room for partial matches to a query. For example, if there

is a query that includes several terms that are linked by the logical operator AND, any

document that does not contain all the terms in the query are ignored, even though some

of them might contain partial information that the user needs. The Boolean model’s

retrieval strategy is based on a binary decision criterion. A document is either predicted

to be relevant or non-relevant, without any notion of relevance.
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2.1.1.2 Vector Space models

The vector space model represents the documents and queries as vectors in a multi-

dimensional space, whose dimensions are the terms used to build the index that represents

these documents [8, 9, 7]. If the vector space is spanned by n normalized term vectors,

then each document will be represented by an n-dimensional vector. If a term belongs

to a document, it gets a non-zero value along the dimension corresponding to the term.

Every document is represented as a vector of keywords, each with associated weights

representing the importance of the keyword in the document. The weight of a term in a

document vector is determined using the tf × idfmethod, in which the weight of a term

is determined by two factors: how often the term j occurs in the document i (the term

frequency tfi,j) and how often it occurs in the whole document collection (the document

frequency dfj). Precisely, the weight of a term j in document i is calculated using the

formula 2.1

wi,j = tfi,j × idfj = tfi,j × logN/dfj (2.1)

where N is the number of documents in the document collection and idf stands for

the inverse document frequency. This method assigns high weights to terms that appear

frequently in a small number of documents in the document set. The strength of this

model lies in its simplicity, but the expressiveness of query specification inherent in the

Boolean model is sacrificed. The drawback of the vector-space model is that it assumes

the term vectors spanning the space to be orthogonal, and existing term relationships

are IGNORED.

2.1.1.3 Probabilistic models

Probabilistic methods generates complex index terms based on term-dependence

information and relationships. It is based on the observation that, the relevance of a

document to a query is related to the probability of the query terms occurring in the doc-
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ument. Generation of term-dependence involves consideration of an exponential number

of term combinations and, for each combination, estimating the probabilities of coinci-

dences in relevant and irrelevant documents involves considerable effort and work; hence,

only certain dependent-term pairs are considered in reality. The probability estimation

technique is the key part of the model, and different techniques have been proposed in

the literature [10, 11, 7]. Only the basis of the models is described here.

The probability of relevance of a document D can be represented by P (R|D).

Documents are ranked based on logP (R|D)

logP (R|D)
, where P (R|D) represents the probability of

document being non-relevant. When Bayes’ transform is applied to this ratio, P (D|R).P (R)

P (D|R).P (R)

is obtained. P (R) and P (R) can be canceled out, if we assume that P (R) is independent

of the document under consideration resulting in P (D|R)

P (D|R)
as the score formula. After this,

different systems diverge based on the assumption behind the estimation of P (D|R).

2.1.1.4 Linguistic and Knowledge model

In text retrieval, users typically enter a string of keywords that represents the

users information needs which are then used to lookup the inverted indexes. AS this

approach retrieves documents based solely on the presence of exact keywords as specified

by the user, it often fails to find the information the user actually desires since the words

used by the user might be different from the ones used in the relevant documents. To

address this problem, linguistic and knowledge-based approaches have been developed by

performing a morphological, syntactic and semantic analysis to retrieve documents more

effectively [7]. In the morphological analysis, roots and affixes are analyzed to determine

the part of speech (noun, verb, adjective etc.) of the words. In the next phase complete

phrases ARE parsed using some form of syntactic analysis. Finally, the linguistic methods

have been used to resolve word ambiguities and to generate relevant synonyms based on

the semantic relationships between words. The development of a sophisticated system

is difficult and complex and requires intricate knowledge of semantic information and

retrieval heuristics.
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2.1.2 Search Engines: Applying IR techniques to the Web

The data available on the web is extremely large, heterogeneous, and IS in the

form of uncontrolled collection of documents as opposed to the more controlled, smaller

document repositories for which standard IR techniques were originally designed. Search

Engines have adapted and extended the existing standard IR models to retrieve the

information efficiently and effectively. The ability to search and retrieve information

that meets the user’s information needs from the Web, is an enabling technology for

realizing the full potential of the Web. Standard IR techniques are designed to retrieve

documents that closely match the query, given that both the query and the document are

represented by their word occurrences. Hence, creating a scalable search engine presents

many challenges. Efficient and faster crawling technology is required to retrieve the web

documents and keep them up to date. Storage space needs to be utilized efficiently

to store indexes and the documents if necessary. The indexing system must be able to

process Tera bytes of data efficiently and additionally the queries must be handled quickly,

at the rate of millions per second. Search Engines typically searches repositories of full

text of web pages selected from the billions of web pages available on the web. When the

web is searched using a search engine, it is searching a somewhat stale copy of the real

data available on the web. Once the user clicks on the link provided in the search engine’s

search results, the current version of the page is retrieved from the server and returned to

the user. If a web page is never linked to in any other web page, search engine won’t be

able to find it. The only way a brand new page, one that no other page has ever linked

to, can get into a search engine is to request the search engine companies to include the

new web page. Search Engines try’s to add other factors to rank the retrieved documents

including external (meta) information about the documents, references to documents

from other documents, etc. Retrieval strategies of some of the Search Engines are further

discussed in this section.
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2.1.2.1 Google

Google [12] is one of the most popular and successful commercial Web Search

Engines. It uses highly optimized data structures to crawl, index, and search the web. It

stores the full HTML of every web pages fetched by the crawler in a repository. Each page

is compressed using zlib (RFC1950). In the repository, the documents are stored one after

the other and are prefixed by doc ID, length, and URL. The document index is a fixed

width ISAM (Index sequential access mode) index ordered by doc ID that maintains

information about each document. The information stored in each entry includes the

current document status, a pointer into the repository, a document checksum, and various

statistics. It also makes use of lexicon, hit lists, forward index and an inverted index for

fast access of the document lists. Google uses the link structure of the Web to calculate

a quality ranking for each web page that is indexed. It maintains much more information

about web documents compared to other search engines. Every hitlist includes position,

font, and capitalization information. Additionally, it also utilizes information regarding

the hits from anchor text and the PageRank [13] of the document. The ranking function

is designed such that no particular factor has significant influence. Google supports

Keyword queries and also boolean compositions of queries and phrases. However, complex

queries based on pattern frequency, proximity, non-occurrence of a pattern within two

patterns are currently not supported.

2.1.2.2 Yahoo

Since its inception in 1994, Yahoo manually generated catalogs of the web. It

used crawler-based results from its partners only when there were no human-powered

matches [14]. This gave Yahoo an edge over other competitors in the initial years until

Google used crawlers to generate and retrieve both comprehensive and highly relevant

information. Human-maintained lists cover popular topics effectively but are subjective,

expensive to build and maintain, slow to improve, and cannot cover all topics. In 2002,
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it dropped manually generated catalogs in favor of the crawler generated data. The

manually generated catalogs, “Yahoo Directory” still exist and are leveraged by the

company. Yahoo supports Boolean operators and nested searching with the operators

AND, OR, NOT and Phrase searching. Though it does not support proximity based

queries, the Wild Card Word in Phrase technique can be combined with OR’s to create a

proximity search. For example, to find “addictive semiconscious vice of biblioscopy” when

you are not sure of the second word, search “addictive * vice of biblioscopy”. Results are

sorted by a relevance algorithm. All the pages in a site are clustered and only one page

per site is displayed. Other clustered pages can be accessed using the “More pages from

this site” link at the end of the record.

2.1.2.3 Lycos

Lycos operated one of the web’s earliest crawler-based search engines [15]. It uses a

breadth-first-search based on the popularity heuristic. Lycos minimizes the ability of au-

thors to manipulate popularity data by only counting one link per server. This approach

tends to find home pages rather than subsidiary pages, so the Lycos catalog is biased

toward more popular and useful web-pages. Once a document is located and retrieved,

an “abstract” of the document is generated and stored. Using standard information-

retrieval statistical methods, Lycos identifies the 100 most “weighty” terms. Along with

these weighty terms, the titles, header text, and an excerpt of the first 20 lines, an “ab-

stract” is created that is about one-fourth the size of the original document. It then

displays the abstracts along with the list of links during the retrieval process, allowing

users to quickly determine which of the matched documents they wish to examine. Ly-

cos does not return results that are as relevant as one might expect from other search

engines, but better results are obtained for more specific and concise queries. Ranking of

the results is based on number of query terms contained in the document, frequency of

occurrence of these terms, proximity of query terms, position of occurrence of the query
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terms, etc. It supports queries based on keywords and boolean compositions of keywords;

however, complex queries including proximity, containment, etc. are not supported.

2.1.2.4 Ask

The idea behind Ask is its ability to answer questions posed in natural language [16,

17]. It is the first commercial question-answering search engine for the World Wide

Web. It supports a variety of user queries in plain English (natural language), as well as

traditional keyword searching and strives to be more intuitive and user-friendly than other

search engines. It uses subject-specific link popularity to compute “authoritativeness”

of a search result. Initially it used editors to monitor what people searched for, then

manually select sites that seemed to best answer those queries. This approach worked well

for the most popular queries but did not help when users wanted unusual information.

In 2002, it shifted over to relying on Teoma search technology, also known as Expert

Rank algorithm, for nearly all of its matches. The Expert Rank algorithm searches

results by identifying authoritative websites in addition to link popularity, subject-specific

popularity. The search engine supports boolean search and limited phrase searching.

2.1.3 Adjacency and Proximity searching

Detection of patterns involving adjacency and proximity in the science citation

index (SCI) and google has been explored in [18]. The SCI algorithm uses intercalating

stop words in a query phrase, which acts as a placeholder. Such a phrase serves effectively

as a fixed adjacency condition determined by the number n of adjacent stop words (i.e.,

retrieve all records where word A and word B are separated by n words in at least

one location). The algorithm integrates over search phrases with different numbers of

adjacent stop words to provide a flexible adjacency or proximity capability (i.e., retrieve

all records where word A and word B are separated by n or less words in at least one

location, where n is the maximum separation desired between A and B in at least one

location). To detect the pattern “nutrient” followed by “uptake” separated by a distance
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of 3 words, the search algorithm specifies the query as “nutrient” of of of “uptake”,

where “of” is a SCI stop word. In general, the search algorithm to find records A and

B, separated by a distance of n word is

(A[nS]B) OR (B[nS]A) NOT (AB OR BA OR (ASB) OR (BSA) OR (ASSB) OR (BSSA)

...... OR (A[(n-1)S]B) OR (B[(n-1)S]A))

where “S” is a SCI stop word, and “n” specifies the distance between the two words A

and B.

The Google algorithm exploits the fact that asterisks (in Google) separating words

in a phrase function act like word wildcards. The difference between two such phrases

(the first phrase containing one less asterisk than the second phrase) serves effectively as

a fixed adjacency or proximity condition, with the number of separating words equal to

the number of asterisks in the first phrase. The algorithm integrates over these phrase dif-

ferentials to provide a flexible adjacency or proximity capability (i.e., retrieve all records

where word A and word B are separated by n or less words in at least one location, where

n is the maximum separation desired between A and B in at least one location). If A

and B are two words in the Google query, then the conditions specified in the table 2.1

holds

Table 2.1 Fixed spacing adjacency conditions

1 Zero word spacing (coherent phrase) “AB′′ − “A ∗ B′′

2 One word spacing “A ∗ B′′ − “A ∗ ∗B′′

2 Two word spacing “A ∗ ∗B′′ − “A ∗ ∗ ∗ B′′

3 Three word spacing “A ∗ ∗ ∗ B′′ − “A ∗ ∗ ∗ ∗B′′

For example, if the query information * * technology” information * * * technology”

is used to search the titles in Google, it will retrieve only those records that contain

”information” preceding, and separated by two words from, “technology”.
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2.1.4 InfoSearch

InfoSearch [5], developed at The University of Texas at Arlington, enables complex

pattern detection over static data sources. It supports all the operators supported by the

earlier system InfoFilter [4], which can detect patterns on streamed data. InfoSearch uses

a pre-computed index over large data repositories to efficiently detect and retrieve such

complex patterns. It used an inverted index to store the document id and position of

occurrence for each keyword in a document. The user specifies a pattern using an expres-

sive Pattern Specification Language (PSL). The user pattern is validated and passed to

the graph generator, which represents the pattern as a Pattern Detection Graph (PDG).

Similar to the InfoFilter system, the leaf nodes of the PDG represent the simple patterns

such as keywords, phrases and system defined patterns such as structural boundaries.

The internal nodes in the PDG represent the operators. It extracts the keywords and

phrases and inserts them into a keyword buffer. The index interface then extracts the

keyword from the keyword buffer and fetches all the tuples of the keyword from the index.

Once the tuples has been fetched, the corresponding lead node in the PDG is triggered.

Once an operator receives tuples from all its child nodes, it then process them based

on the operator semantics. The resulting tuples from the operator is then propagated

up the tree for further processing. The tuples available at the root node corresponds to

the detected pattern. Once the resulting tuples becomes available, a rule defined on the

root node gets triggered. The rule performs the role of notifying the user of the detected

patterns.

2.2 Ranking

2.2.1 Google PageRank

Google uses the link structure of the web to calculate quality ranking for each web

page that is indexed. It maintains position, font, and capitalization information for each

keyword that is stored in the index. Additionally, it also utilizes information regarding the

hits from anchor text and the PageRank [13] of the document. To rank a document with
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a single keyword query, Google looks at that documents hit list for that word. Google

considers each hit for the word to be one of several different types like title, anchor, URL,

plain text large font, plain text small font, etc., each of which has its type-weight. It

counts the number of hits for each type in the hit list and then every count is converted

into a count-weight. Count-weights increases linearly with counts initially but quickly

taper off, so that more than a certain count will not have significant influence. It then

uses the dot product of the vector of count-weights with the vector of type-weights to

compute an IR score for the document. Finally, the IR score is combined with PageRank

to give a final rank to the document. Hits [19] and TrustRank [20] algorithms also use

the information extracted from link structures to evaluate and rank the retrieved web

pages. Most of the popular search ranking algorithms depends on the link structure and

anchor text to rank the documents.

2.2.2 Ranking in IR

In Probabilistic IR models, the documents are ranked based on the probability

of the document being useful to the user, which is calculated based on the Bayesian

decision rule. In Vector space model, selection of a document is done by assigning a

score or rank for the document against the query. This score is computed by measuring

the similarity of the query with the document. The cosine of the angle between the

query vector and the document vector is taken as a measure of similarity, 1.0 implies

a perfect match, and 0.0 implies orthogonality. Based on the importance of the terms

in the query and the documents, weights are assigned to every term in the query and

document. Typically, the term frequency or tf (number of times the term occurs in

the document) and the inverse document frequency or idf (in how many documents

does the term occur?) are used. The more the number of documents the term occurs in,

the lesser is its discriminating power in identifying a document. A high ranking score is

assigned to a document that contains only a few of the query terms if these terms occur

infrequently in the collection but frequently in the document.
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2.2.3 Ranking in DBMS

RankSQL [21] provides a systematic and principled framework to support efficient

evaluations of ranking (top-k) queries in relational database systems(RDBMS) by ex-

tending relational algebra and query optimization. In normal relational query models,

to fetch top-k results for queries, the following steps are performed to produce ranked

results. First, all the records of the inputs are consumed. Second, the inputs are joined

to materialize the join results. Third, the predicates are evaluated for each of the valid

join results. Finally, the fourth step involves sorting of the join results on the predicate.

From the sorted result, only top-k results are presented to the user. This approach of

materialize-then-sort is inefficient and involves scanning large base tables, joining of large

intermediate results, evaluate ranking on every tuple and then sorting on all tuples. To

avoid this short coming, the author proposes a split-and-interleave approach, in which

the ranking function is split and interleaved with the boolean operations. The inputs are

first ranked based on the predicates and then projected and joined. This results in the

reduction of the number of intermediate results, and hence reduction in processing costs.

2.2.4 Ranking using proximity

In [22], the ranking of documents or of documents using the properties of the

language is explored. Here, the text is treated as a continuous sequence of terms, or

tokens each corresponding to a word or number in the text, and an integral position is

assigned in sequence to each term. The resulting patterns for the query are ranked based

on the assumption “The smaller the span across which the pattern is detected, the more

likely that the corresponding text is relevant”. In PADRE [23], the usage of proximity

relationships to estimate document relevance instead of depending solely on the summing

up tf × idf weights is explored. Here, the ranking scheme is based on the premise “The

closer together a set of interesting terms, the more likely they are to indicate relevance”
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2.3 Summary

Most of the available systems, both traditional IR and Web search engines sup-

port keyword queries and boolean composition over keywords and in some cases queries.

Though this works in most of the cases, in certain domains like federal intelligence, legal

databases and while searching full-text patent information, there is a need to detect more

complex patterns in data sources. Users in these domains may have more precise require-

ments in terms of what they are searching for. Current IR systems and search engines

do not provide a means to specify and detect complex patterns that are based on term

frequency, proximity, sequence and containment. This problem has been addressed for

stream data (InfoFilter), and on static data InfoSearch in the previous work on extend-

ing the expressiveness of patterns. The index based system developed for static data,

processES all the occurrences of the terms that makes the complex query for detection

of the pattern. This approach is inefficient and results in wastage of precious computa-

tional and memory resources in addition to delayed response it. Hence, there is a need

for a better system that can detect the complex patterns in the least possible time with

efficient usage of computational resources.



CHAPTER 3

SYSTEM DESIGN

The system allows the user to specify complex queries and returns all occurrences

of the pattern. The user can specify whether he would like to incrementally retrieve

the patterns, by specifying the number of results required to satisfy his requirements.

Additionally, he could also specify whether he want the detected patterns to be ranked.

If the user does not enable the ranking of the results, then the patterns are delivered in

the order of detection. The process of detection of the pattern is divided into four distinct

steps. First, the user specifies the pattern to be detected using the Pattern Specification

Language (PSL), through the interface provided by the system. Second, the user query

is parsed and validated to ensure that it conforms to the PSL syntax. The parsed

pattern is used as input by the graph generator module. The graph generator extracts

the tokens from the input and builds two data structures termed Pattern Detection

Graph (PDG) and pattern table. Third, the index interface module uses the information

provided in the pattern table to look up the index and feed the PDG with data to detect

patterns. Algorithms used in InfoSearch have been modified to deal with incremental

flow of data. Fourth, the detected patterns are delivered to the user by the notification

module. Additionally, if the user has enabled the ranking of the results, a ranking

algorithm is run on the detected patterns before notifying the user. In this chapter, we

describe the above steps in detail, and the underlying architecture of different modules.

3.1 System Architecture

The system architecture is shown in Figure 3.1. The system has adopted most

of the modules from the InfoSearch system [5], after enhancing some of the modules to

incrementally retrieve the data. Additionally, the operators were modified extensively to

21
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handle the input sets of data available in increments. The modules of the system include

the user interface, the pattern parser and validator, pattern processor, graph generator,

the pattern detection engine, the index interface and the notifier. External modules such

as the WordNet synonym database and the inverted index are also shown in the figure.

The pattern parser and validator modules have been adopted completely from the current

InfoSearch system. The graph generator has been modified in order to create the pattern

table data structure. The pattern table data structure stores information required by

the index interface module to look up the index and retrieve the required number of

tuples. The pattern detection engine, that includes the operator functionality, has been

modified extensively to process inputs tuple sets incrementally. The number of tuples to

be fetched at a time can either be fixed or determined dynamically, depending on the

number of the patterns left to be detected. In the following sections, we will describe the

underlying architecture of the different modules of the system.

3.1.1 Inverted Index

The index of a document collection is organized by mapping each document to

all the words contained inside it. A keyword is searched by scanning and checking the

word-lists associated with each document. This is an inefficient process as it requires a

sequential scan of the database for each keyword to be searched. Moreover, as the size of

the document collections increase, the inefficiency increases further. An alternative for

this problem is to use inverted indexes.

Inverted indexes used in search algorithms by search engines, maintain a mapping

from a keyword to the set of documents that contain the keyword. Document IDs are

assigned to each document in the document collection to uniquely identify them. For

each keyword in the document, a keyword - document ID mapping is stored in the in-

verted index. For example, a sample set of documents is shown in Table 3.1 and the

corresponding inverted index is shown in Table 3.2. This information in the index is ade-

quate to answer keyword queries and queries involving composition of Boolean operators.
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Figure 3.1 InfoSearch architecture

For example, in the above example, if the user is searching for “sales” AND “petrol”,

the intersection of the document IDs corresponding to the keywords “sales” and “petrol”

gives us the desired result (documents 1 and 3 in this case).

However, this information is not adequate to answer queries involving proximity,

sequence, frequency, and containment. Additionally, it is difficult to rank these detected

patterns with the available information. The above indexing scheme stores information

about the presence or absence of a term in a document but not about every occurrence

of a keyword and its position in the document. For example, a query such as “sales”

NEAR/5 “petrol” cannot be answered using information from such an index, because

the distance between occurrences of “sales” and “petrol” within a given document needs
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Table 3.1 A sample set of documents

Document ID Document Contents
1 Sales tax on petrol
2 Petrol or Oil
3 Increase in petrol sales

Table 3.2 Inverted Index on Documents in Table 3.1

Keyword Documents
sales 1,3
tax 1
on 1

petrol 1,2,3
or 2
oil 2

increase 3
in 3

to be computed. To support these queries, information regarding the position of every

occurrence of the keyword needs to be stored [24]. Additionally, to rank the patterns using

proximity and positional information, we need to store the sentence and the paragraph

in which the keyword occurs. Each keyword is represented in the index as a Tuple

documentid<position information, sentence information, paragraph information>. Table

3.3 shows an inverted index generated on the documents in Table 3.1 that contains

additional information for ranking and proximity determination.

Therefore, the document ID and the positional information of a given keyword

from the index is needed to detect and rank these complex patterns. In this thesis, we

investigate if this information is adequate to incrementally retrieve and rank the detected

patterns.

3.1.2 User Interface

The current InfoSearch user interface was developed using java applets and takes

user E-mail ID, query from the user. The rest of the information such as data input
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Table 3.3 Inverted index with position information

Keyword Documents with position
sales 1<1,1,1>,3<4,1,1>
tax 1<2,1,1>
on 1<3,1,1>

petrol 1<4,1,1>,2<1,1,1>,3<3,1,1>
or 2<2,1,1>
oil 2<3,1,1>

increase 3<1,1,1>
in 3<2,1,1>

mode, database index are read from a file as configuration parameters. Additionally, the

user interface can be used only once to enter a query. If the user wants to enter a second

query, he needs to restart the interface. Furthermore, the interface does not have the

ability to present the user with the detected patterns. Due to the above shortcomings,

we have developed a new interface called InfoClient using java swing technology.

InfoClient runs in either of the two modes demo mode or interactive mode. The

demo mode is designed to help the novice users of the system and hence provides a set

of pre-determined input patterns to test the system capabilities. The interactive mode

designed for advanced users, allows users to formulate their own queries for detection.

The system processes the query and delivers the detected patterns to the user. The user

interface supports the following features:

• Please Enter your EMail Address : Users email address, the system uses it to

uniquely identify the user.

• Data Input Mode : The system can be used for detection of the patterns from static

data [5] or dynamic data [4]. For detection of patterns from dynamic data, select

Stream or else select Index.

• Return K Results: If the user likes to enable retrieval of patterns incrementally,

then select true or else false.
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• Type of Data Stream: If the user choose to detect the patterns from dynamic data,

the user has to specify the nature of the dynamic data. The available options are

Text stream, Email stream.

• Input Stream: Dynamic data stream source, which needs to be parsed for detection

of the pattern.

• Database Index: Path of the static data source index.

• Pattern: Pattern that needs to be detected.

• Enter Email Address / Addresses for Notification: The system sends notification

once the pattern is detected, to all the specified email addresses (separated by

comma).

• Required Number of Query Results: Here the user can specify how many patterns

he would like to retrieve. This option is available only when the user has chosen

Index as data input mode and Return K Results is enabled.

• Rank Results: Enables or Disables ranking of the detected patterns.

• Input Stream/Output: Displays the detected patterns to the user. Additionally, it

also displays the selected input stream, if the user has chosen Stream as Data Input

Mode.

3.1.3 Pattern Parser and Validator

This module takes a user query as its input, and checks if the query is in the proper

syntax, as dictated by PSL BNF. Please refer to [4] for psl bnf. If the query does not

conform to the PSL syntax, a parser error is returned. After validating the query for

syntax, it is decomposed into tokens. The tokens in a query can be keywords, phrases,

system defined patterns, operators and other delimiters allowed by the language. The

extracted tokens are sent to the pattern processor.
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3.1.4 Pattern Processor

This module receives a set of tokens, in infix notation, as its input. It converts the

input into a postfix expression, which is easier to evaluate and to generate a graph. The

postfix expression is passed on to the graph generator, for further processing.

3.1.5 Graph Generator

To facilitate detection of complex patterns, a data structure called Pattern Detec-

tion Graph (PDG) is used. The graph generator takes a stack of tokens, which represents

the user query in the postfix notation from the pattern processor and generates the PDG

from it. The PDG is constructed in a bottom-up fashion. The leaf nodes are created

first, which represents simple patterns such as keywords, system defined patterns etc..

Internal nodes of the graph correspond to complex patterns and encapsulate the logic of

the corresponding operator. When a parent node is created, a reference of the parent

is passed to the children, so that data can be passed from a child to its parent. Hence,

every node in the PDG has a subscriber list containing references to each of its par-

ents, except for the root node. As an example, the PDG corresponding to the pattern

(“metal” FOLLOWED BY ‘traders”) is shown in Figure 3.2. For this example, the leaf

nodes in the PDG correspond to the keywords in the query, “metal” AND “traders”, and

they have references to their parent nodes. The number in the subscriber list indicates

the distance with which the parent has subscribed. User can specify distance for opera-

tors such as “NEAR” and “FOLLOWED BY”, which indicates the maximum separation

between the operands. For example, consider the query (“metal” NEAR/3 “traders”)

WITHIN(“copper”, “scrap”). The PDG corresponding to this query is shown in Figure

3.3. In this example, distance “3” is stored in the subscriber list, the WITHIN node

subscribes to the NEAR node with a distance of 3. Here, the NEAR node sends only

those tuples that are separated by a maximum distance of “3” words to the parent node

WITHIN.
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Figure 3.2 PDG corresponding to (“metal” FOLLOWED BY ‘traders”)

Figure 3.3 PDG with subscriber list containing distance

The input to a leaf node is a set of tuples corresponding to the index lookup for

the term represented by the leaf node. This set consists of <doc id, start offset, end

offset, start sentence, end sentence, start paragraph, end paragraph> tuples.

For example, the set of tuples for the keyword “petrol” from the index shown in Table 3.3

is shown in Table 3.4. Every node in a PDG has one or more parent nodes also known

as subscriber nodes, except for the root node. Leaf nodes propagate their input sets

to their parent nodes. A parent node, which corresponds to one of the operators such

as OR, NEAR, FOLLOWED BY, SYN, FREQUENCY, WITHIN or NOT, gets one or

more sets of tuples as its input. The operator then merges its input tuples sets according

to its semantics to create a merged result set. The merged result, is propagated to the

parent node of the operator. This process of propagating merged sets continues all the

way up to the root. The merged output of the root operator corresponds to the detected

patterns for the query.
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Table 3.4 Set of tuples corresponding to occurrences of “petrol”

1<6,6,1,1,1,1>
2<1,1,1,1,1,1>
3<6,6,1,1,1,1>

A tuple corresponding to word occurrences in a document termed a point tuple,

that is, the start and end values of offset, sentence and paragraph of that tuple are

same, because a word occurs at a single position within a document. However tuples

corresponding to a more complex pattern are interval tuples, that is, their start offset

is smaller than its end offset, start sentence is smaller than or equal to its end sentence

and start paragraph is smaller than or equal to its end paragraph. This is because

a complex pattern such as (“metal” FOLLOWED BY ‘traders”) occurs in an interval

within the document. For example, in Figure 3.2, the tuples corresponding to “metal”,

“traders” are point tuples, but the tuples corresponding to the combined pattern “metal”

FOLLOWED BY “traders” are interval tuples. Thus, the operators may get either point

tuples or interval tuples as their input, and their output depending on the semantics of

the operator will be point or interval tuples.

Additionally, every node in the PDG has an unique identifier known as node name.

For leaf nodes, the node name is same as the operand. Whereas, for internal nodes, the

name is composed from the operands node names and the operator. FOR the above

example shown in Figure 3.3, the node name for the nodes are as shown in the table

Table 3.5

3.1.5.1 Sharing of PDG nodes

To optimize the detection of the pattern, the graph generator shares PDG nodes

wherever possible. It is achieved by reusing common PDG or sub-PDG for a common

expression or sub-expression. This avoids creation of a duplicate PDG, when a PDG has

already been created for a previous expression or sub-expression for the same user. Each
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Table 3.5 Node Names for nodes for the PDG of the pattern “metal” NEAR “traders”

Node Node Name
metal metal
traders traders
copper copper
scrap scrap
NEAR metal near traders

WITHIN copper within metal near traders scrap

user has a separate memory space in which the the PDG is created. For example, consider

that another query “iron” FOLLOWED BY (“metal” NEAR/5 “traders”) is specified

along with the query shown in Figure 3.3. The graph generator knows that a sub-PDG for

the sub-expression “metal” NEAR/3 “traders” already exists. Hence, instead of creating

a new sub-PDG, the sub-PDG is reused, by having the new FOLLOWED BY node

subscribe to it. This results in reduction of time and memory requirements when several

queries having common sub-expressions are processed together. More importantly, the

sub-pattern is computed once, for all the distances and the corresponding output is

generated.

In the “InfoSearch” system, the sharing of the PDG nodes did not happen correctly.

When the second query “iron” FOLLOWED BY (“metal” NEAR/5 “traders”) arrives,

the system checks, whether the leaf nodes “metal” and “traders” already exists. Since

the leaf nodes already exists, it uses the references to these nodes and attempts to create

the internal node NEAR with a distance of “5”. Before creation of the internal node, the

system checks if a node with the node name “metal near traders” exists. As the node ex-

ists, the system reuses the node. The system does not check if the distance “5” is present

in the subscribed list. The distance information is lost and the “FOLLOWED BY” node

subscribes to the child node “metal near traders” with no distance and is shown in Figure

3.4. This results in the detection of patterns that would not have been detected if the dis-

tance has been added in the subscriber list. Additionally, consider the two queries (FRE-

QUENCY/2 (“Iraq” NEAR/10 “Baghdad”) FOLLOWED BY “Missile”) and ((FRE-
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Figure 3.4 PDG with a shared node in InfoSearch system

QUENCY/2 (“Iraq”) NEAR/10 “Baghdad”) FOLLOWED BY “Missile”). Even though

the two queries are different, the node names generated in the InfoSearch system for both

the queries is “FREQUENCY[2]:iraq NEAR baghdad FOLLOWED BY missile”. Hence,

when the system attempts to build the PDG for the second query, it finds a PDG with

the same name. So it does not create a PDG for the seconds query. To avoid this

shortcoming, the node names for the nodes are modified to include the distance and con-

tainment information. The node names for the nodes in the PDG for the queries (“metal”

NEAR/3 “traders”) WITHIN(“copper”, “scrap”), “iron” FOLLOWED BY (“metal”

NEAR/5 “traders”) and (FREQUENCY/2 (“Iraq” NEAR/10 “Baghdad”) FOLLOWED

BY “Missile”) and ((FREQUENCY/2 (“Iraq”) NEAR/10 “Baghdad”) FOLLOWED BY

“Missile”)are as shown in Figure 3.5, Figure 3.6, Figure 3.7 respectively.

In InfoSearch system, the simple patterns (or leaf nodes) are stored in a list, during

the pattern detection graph generation phase. This simple patterns stored are later used

to query the index interface for retrieving the appropriate “hits” from the index for

detecting the pattern.

3.1.6 Index Interface

The index interface module accepts simple patterns from the graph generator and

queries the inverted index. It wraps the set of results from the index into a set of
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Figure 3.5 PDG with a shared node

Figure 3.6 PDG for Query (FREQUENCY/2 (“Iraq” NEAR/10 “Baghdad”) FOL-
LOWED BY “Missile”)

Figure 3.7 PDG for Query ((FREQUENCY/2 (“Iraq”) NEAR/10 “Baghdad”) FOL-
LOWED BY “Missile”)
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<docID, start offset, end offset, start sentence, end sentence, start paragraph, end para-

graph>tuples and notifies the leaf node, that corresponds to the simple pattern. The

inverted index is built using the Berkeley DB java edition free ware [25].

3.1.7 Pattern Detector

The data flow in the PDG and the merging of tuples by the operators to de-

tect patterns, is similar to detection of composite events using Event Detection Graphs

(EDG) [26]. In the latter, event occurrences are propagated up the Event Detection

Graph, in which the composite nodes merges their inputs based on criteria known as

parameter contexts. A node in the graph can have an associated rule, which means that

a predefined action can be taken when that event node is triggered. Since there is sim-

ilarity in the data flow, the Event Detection Engine framework, called the Local Event

Detector (LED) [27] is used as the backbone for the Pattern Detector. When a leaf node

in the pattern detector receives a set of tuples from the index interface, a reference to

the input set is passed to all its parent nodes. Similarly, when internal nodes merge their

input sets to create a merged output set, they pass a reference to the merged set to their

parents. The root node has a rule associated with it, which handles the notification of the

detection of the pattern to the user. The operators in the system use Proximal-Unique

semantics to merge their input tuples and is explained in the section 3.1.7.1. Although

this is similar to LED in its abstraction, the whole system has been modified/extended to

deal with pattern detection including the proximal-unique semantics which is needed for

detection. Please refer to [4] for more details on the similarities and differences between

EDG and PDG as well as algorithms of operators.

3.1.7.1 Proximal-Unique semantics

Let us consider a document containing words as shown in Figure 3.8. We want

to detect occurrences of the pattern “metal” FOLLOWED BY “traders” within this

document. As seen in the figure, “metal” occurs at two positions, one occurring at
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Figure 3.8 Example document for discussion of Proximal-Unique semantics

position 2, say metal1 and the other at position 10, say metal2. The occurrences of

“traders” are at positions 20 and 30, say traders1 and traders2 respectively. Either

metal1 can be combined with traders1, or metal2 with traders1, or metal1 and metal2

can both be combined with traders1 as occurrences of the combined pattern “metal”

FOLLOWED BY “traders”. However, it makes intuitive sense to combine the closest

occurrences, because closely occurring patterns are more likely to be of interest for a

search as the correlation is measured in terms of proximity. Therefore the occurrence of

metal1 is discarded and metal2 is combined with traders1. In other words, occurrence

of a pattern in a document supersedes its previous occurrence in the document while

combining with another pattern. In the above example, metal2 acts as an initiator

because it initiates the detection of the pattern, and traders1 acts as a terminator,

because its occurrence results in the pattern being detected.

Sub-patterns once used are not considered for further detection of another instance

of the same pattern. For example, it does not make sense to combine metal2 with

traders2, because metal2 has already been used in the detection of another pattern.

Combining metal2 with traders2 will result in the detection of another instance of the

same pattern using a previously used sub-pattern. The Proximal-Unique semantics has

been defined to take this intuitive sense into consideration when detecting a pattern by

applying restrictions on the usage of sub-patterns.

As another example, suppose we want to find the occurrence of (“metal” FOL-

LOWED BY ‘traders”) NEAR (“iron” FOLLOWED BY “copper”). According to the

semantics discussed above, “metal” FOLLOWED BY ‘traders” occurs in the interval
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(10, 20) and “iron” FOLLOWED BY “copper” occurs in the interval (15, 25). The

sub-patterns satisfy the condition of being proximal, and of being the most recent un-

combined occurrence of their type. However, it does not make intuitive sense to combine

them, because the sub-patterns overlap each other. Hence, the pattern (“metal” FOL-

LOWED BY ‘traders”) NEAR (“iron” FOLLOWED BY “copper”) is not detected in

the document, because intuitively, only sub-patterns that are disjoint are combined. The

NEAR operator used here assumes non-overlapping (disjoint) semantics for detection of

composite patterns, hence the above pattern is not detected. The operators of the system

use the Proximal-Unique semantics to combine patterns to generate result sets.

3.2 Incremental Retrieval

In InfoSearch, the leaf nodes of the pattern detector receives all tuples from the

index as a single set. Hence, even if the user is not interested in all occurrences of

the pattern, all the tuples of the simple pattern are processed resulting in wastage of

computational and memory resources. To avoid this, tuples can be fed to the PDG

incrementally. If the required number of patterns have not been detected, more tuples

can be fetched and processed.

In this section, we discuss various design alternatives considered for addressing this

issue.

3.2.1 Round Robin Approach

In this approach, a fixed number of tuples of each simple pattern are fed in a

round robin fashion. If the required number of patterns has not been detected, more

tuples are fed until all patterns are detected or the input is exhausted. As an example,

let us consider the query “iron” FOLLOWED BY (“metal” NEAR/5 “traders”). The

simple patterns here are “traders”, “metal” and “iron”. Initially, “n” tuples of “traders”,

“metal”, and “iron” are fed. Once the tuples of “traders” and “metal” are available, the

internal node metal near traders can process the tuples. If the operator has exhausted
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tuples of one of the operands, say “metal”, it needs to wait till the index interface fetches

tuples for “iron” and “traders”. It is possible that availability of more tuples of “metal”

might result in the detection of the required number of patterns. In this approach, the

number of patterns that were detected were not considered before more tuples are fed. A

fixed number of tuples are fed irrespective of how many patterns were detected till all the

required patterns are detected. This results in unnecessary processing of extra tuples.

Though this approach is straightforward and good when the number of leaf nodes are

small, it is not efficient as the number of simple patterns need to be looked up increases.

The algorithm for this approach is described in 1.

Algorithm 1 Round Robin Approach
1: Input: List of leaf nodes, leafNodes

2: Input: Number of patterns to be detected, k

3: node ⇐ leafNodes(0)

4: nodeToQuery ⇐ 0

5: while true do

6: if nodeToQuery >= size of leafNodes then

7: node ⇐ leafNodes(0)

8: else

9: if node is a internal node then

10: while true do

11: nodeToQuery + +

12: node ⇐ node → next

13: if node is a leaf node then

14: break

15: fetch k tuples of node

16: propagate the tuples to the node

17: if nodeToQuery == −1 then

18: break

19: else

20: nodeToQuery + +

21: node ⇐ node → next
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3.2.2 Iterative Approach

In this approach, the number of patterns to be detected (“n”) are stored in the

root node of the PDG. The root node can start the detection of patterns by requesting

its child nodes to fetch “n” tuples. If the child node is an internal node, tuples of the left

child are fetched followed by the ones from the right child. The internal nodes request

their respective child nodes recursively till the required number of patterns are detected.

The request for tuples is percolated down the PDG, till it reaches the leaf nodes. This

is done because, only the leaf nodes can interact with the index interface module and

request it to fetch “m” number of tuples. The number “m” is computed by pushing the

“n” through the PDG and adjusting for FREQUENCY and other operator semantics.

If an internal node corresponds to a FREQUENCY operator with associated frequency

“d”, then for it to produce “n” tuples as output, it needs a minimum of “n × d” tuples

as input. Hence, the value of “m” is adjusted to be n× d. Similarly, if the internal node

corresponds to OR operator, then it requires a minimum of n/2 tuples from each of its

child nodes, to produce “n” tuples as output. Hence, the number “m” is adjusted to n/2.

For internal nodes that corresponds to other operators, the value of “m” is set to be “n”,

which is passed to the child nodes.

Let us consider as an example, the PDG described in the Figure 3.3. In the above

example, the root node can request the WITHIN operator to fetch “n” tuples. Since

WITHIN node is an internal node, it requests its left operand copper to fetch “n” tuples

first. copper is a leaf node and requests the index interface module to fetch the tuples.

The WITHIN node now has tuples from the left operator, it then requests the tuples from

the middle operand. The middle operand is not an leaf node, so it requests its leaf nodes

metal and traders to fetch the tuples. Next, it requests tuples from the right operand

scrap. Once the tuples from all the operands are available, the WITHIN node processes

the tuples and propagates the result set to the root. The root node recalculates the

required number of patterns, and then the processing of tuples continues till the required

number of patterns has been detected.



38

In the round robin approach, the number of tuples fetched is fixed and is indepen-

dent of the number of patterns to be detected and operator semantics. This shortcoming

is addressed in the iterative approach, where the number of tuples to be fetched is cal-

culated based on operator semantics and the number of patterns to be detected. Once

some patterns has been detected, the required number of tuples “n” to be detected is

recalculated. The updated “n” is propagated down the PDG as described earlier. But

in this approach, the flow of control for the detection of patterns is iterative, and does

not lend itself to the data flow model used in the pattern detector for the detection of

patterns. To address the above shortcomings, we propose a hybrid approach that imbibes

the advantages of both, round robin and iterative approaches.

3.2.3 Hybrid Approach

Here, the detection of patterns is triggered by feeding, “m” tuples, of one of the leaf

nodes. Once the PDG corresponding to the query is built, the number of patterns to be

detected “n”, is set in the root node of the PDG. The number “m” is then calculated by

pushing “n” down the PDG and adjusting it based on individual operator semantics.

The calculation of “m” is described in the algorithm 3. Once the tuples reach the

internal node, it can send a request to the index interface module indicating the tuples

of the corresponding child node that are needed to continue processing. Additionally the

internal node also specifies the number of tuples needed. When tuples for all child nodes

are available, the internal node processes them and propagates the resulting set to the

parents. If the merging of tuples does not result in any output that can be propagated

up the PDG, then the internal node requests additional tuples from its child nodes (left

to right manner). The child node can either be a leaf node or another internal node.

The index interface can fetch tuples only for the leaf nodes. Hence, it has to translate a

request for internal node by feeding tuples for one of lower most leaf nodes of the internal
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node. The output tuples of the internal node correspond to the resulting merged set

obtained by processing of tuples from the child nodes based on the operator semantics.

Once the index interface module detects that there are no more tuples available

for a leaf node, it notifies the internal node by sending a special tuple <-1,-1,-1,-1,-1,-1,-

1>. When the internal node receives this special tuple, based on the semantics of the

operator, it decides whether it has to continue further processing. For instance, the OR

and SYN operator can continue processing of tuples as long as tuples of one of the child

nodes are available. All other operators require tuples from all its child nodes to continue

processing. Hence, in this case, on receiving the special tuple from its child node, it stops

processing the input tuples, adds the special tuple to the merged result tuple set and

propagates it to the parent. A progressively decreasing set of tuples that arrives at the

root node, corresponds to the detected patterns. The root node then recomputes the

number of patterns to be detected “n”, by taking into account the number of patterns

that were already detected. The number of tuples to be fetched “m” is recalculated based

on this “n”, and this value is propagated down the PDG. This processing continues till

the required number of patterns has been detected. Once the root node detects that all

the required number of patterns has been detected, a special request is sent to the index

interface module, requesting it to stop feeding of tuples.

In contrast to the round robin approach, wherein fixed number of tuples are always

fetched and processed, in the hybrid approach tuples are fetched only when necessary.

Additionally, the data flow in the hybrid approach is bottom up and lends itself to the

detection of the patterns using the PDG, compared to the detection in the iterative

approach. The algorithm for this approach is described in 2.

Let us consider as an example, the PDG described in Figure 3.9. To detect “n”

patterns of this query, the internal node FOLLOWED BY needs to produce “n” tuples

as its output. Hence, the “m” value is set to “n” for the FOLLOWED BY node. The

left child of the FOLLOWED BY operator node is an internal node and corresponds to

the FREQUENCY operator with associated frequency value “10”. For the internal node
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Algorithm 2 Hybrid Incremental Retrieval Algorithm
1: Input: List of leaf nodes, leafNodes

2: Input: Number of patterns to be detected, k

3: node ⇐ null

4: nodeToQuery ⇐ 0

5: minNoOfTuples ⇐ readfromconfigurationfile

6: while true do

7: if node == null then

8: node ⇐ leafNodes(0)

9: else

10: if node is a internal node then

11: while true do

12: node ⇐ node → next

13: if node is a leaf node then

14: break

15: if k < minNoOfTuples then

16: k ⇐ minNoOfTuples

17: fetch k tuples of node

18: propagate the tuples to the node

19: if nodeToQuery == −1 then

20: break

21: else

22: node ⇐ leafNodes(nodeToQuery)

23: k ⇐ required number of tuples

to produce “n” tuples as its output, it needs a minimum of n × 10 tuples as input from

its child node. Hence, the “m” value corresponding to the FREQUENCY internal node

is set to n × 10. The child node of the FREQUENCY node is an OR operator. For the

OR node to produce n × 10 as output, it needs a minimum of (n × 10)/2 tuples from

each of it child nodes iron and copper. Hence the value “m” is set to (n × 10)/2 at the

OR node. The algorithm for the computation of the value of “m” is described in 3.

For the query in the above example, the detection of patterns starts by feeding

minNoOfTuples for one of the leaf nodes. This value is read from the configuration file.

Let us assume that minNoOfTuples corresponding to the leaf node traders is fed first.

The input tuples are propagated to its parent, the FOLLOWED BY node, which then
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Algorithm 3 Set required number of tuples
1: Input: Number of tuples to be fetched, k

2: Input: Node for which the tuples has to be set, node

3: leftNode ⇐ null

4: middleNode ⇐ null

5: rightNode ⇐ null

6: nodeType ⇐ node → type

7: reqdNoOfTuples ⇐ k

8: if nodeType == leafnode then

9: return

10: else

11: if ( nodeType == WITHIN) OR ( nodeType == NOT ) then

12: leftNode ⇐ node → leftChildNode

13: middleNode ⇐ node → middleChildNode

14: rightNode ⇐ node → rightChildNode

15: setRequiredNoOfTuples(leftNode, k)

16: setRequiredNoOfTuples(middleNode, k)

17: setRequiredNoOfTuples(rightNode, k)

18: if ( nodeType == OR) then

19: k ⇐ k/2

20: leftNode ⇐ node → leftChildNode

21: rightNode ⇐ node → rightChildNode

22: setRequiredNoOfTuples(leftNode, k)

23: setRequiredNoOfTuples(rightNode, k)

24: if ( nodeType == FREQUENCY ) then

25: d ⇐ cardinality of the node

26: k ⇐ k ∗ d

27: leftNode ⇐ node → childNode

28: setRequiredNoOfTuples(leftNode, k)

29: if ( nodeType == NEAR) OR ( nodeType == FOLLOWEDBY ) then

30: leftNode ⇐ node → leftChildNode

31: rightNode ⇐ node → rightChildNode

32: setRequiredNoOfTuples(leftNode, k)

33: setRequiredNoOfTuples(rightNode, k)
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Figure 3.9 PDG for Query ((FRE/10 (“iron” OR “copper”)) FOLLLOWED BY
“traders”)

checks if it has tuples from all the child node to process. It detects that tuples of the

left child node are not available, hence it sends a request to the index interface module

to feed “m” tuples of the OR node. OR is an internal node, hence the index interface

fulfills the request by feeding tuples of its leaf child node iron. To continue further

processing, it needs tuples of its right child node. Hence, it sends a request to feed “m”

tuples of the leaf node copper. When the tuples of both of child nodes are available, the

OR node processes the tuples and propagates the merged result set to the parent. The

FREQUENCY operator then processes the input tuples and sends the output set to its

parent FOLLOWED BY node. Now, the FOLLOWED BY node has tuples from both the

child nodes. Hence, it processes the input tuples and sends the resulting output tuples

to the root node. The output tuples produces by the FOLLOWED BY node, arriving at

the root node corresponds to the detected patterns. The root node then recomputes the

number of patterns left to be detected to satisfy the user requirements, and propagates

it down the the PDG. It then sends a request to the index interface module to fetch “n”

tuples of FOLLOWED BY node, which is translated to a request to the child node iron

by the index interface. The changes needed to be made to different modules of the system

for supporting incremental detection of patterns and their algorithms are described as

follows:
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3.2.4 Modification required in Graph Generator Module

In the InfoSearch system, a list of leaf nodes or simple patterns is maintained

that is used by the index interface module to query the index and feed tuples of leaf

nodes sequentially. This information is not sufficient to incrementally retrieve the tuples.

The index interface module needs to know the structure of the PDG. This is required

because the index interface needs to identify the leaf node for which are needed to be

fed, to satisfy a request for an internal node by the pattern detector. Hence, the graph

generator module needs to maintain information on the leftmost child nodes for each

and every internal node in the PDG. Once the PDG corresponding to the user query is

built, the required number of patterns to be detected is propagated down the PDG after

adjusting the value based on user semantics.

To fetch information corresponding to a node, the index interface module has to

traverse the entire list to retrieve the required information. This process is time consum-

ing and inefficient since every time a request for tuples of a node arrives, the list has to

be scanned. To reduce these scans, every node that is created in the PDG is assigned a

unique identifier known as node number, in addition to the node name. The node num-

ber refers to the position in the list created by the graph generator, where information

corresponding to that node is stored. Once the index interface knows the node number,

it directly access the information for that node, thus avoiding the traversal through the

entire list. The list created by the graph generator module and used by the index in-

terface is termed as pattern table. It contains node number, node name, left most child,

index position and end of index information for each node in the PDG and is described

in Section 3.2.4.1.

Before processing, the internal nodes needs to check if tuples are available for all

the child nodes. If they are available then a merging algorithm corresponding to the

semantics of the internal node is called to process them. If tuples of a child node are

not available, a request is sent to the index interface module. The request contains the

node number for which tuples are required and the number of tuples need to be fetched.
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Table 3.6 Pattern Table data structure

NodeNumber NodeName LeftMostNode IndexPos EndofIndex

If the node is a root node, it checks if all the required number of patterns has been

detected. If the detected patterns is less than the required number of patterns to be

detected, then it recalculates the additional number of patterns needed to be detected.

It propagates this information through the PDG. If the required number of patterns has

been detected, then it sends a message to the index interface module to stop feeding

tuples. The corresponding algorithm is explained in 4

3.2.4.1 Pattern Table

The structure of the pattern table data structure is as shown in Table 3.6. When

ever a leaf node or a internal operator node is created by the graph generator, an entry

is added in the pattern table. Every node created in the PDG has associated unique

identifiers NodeNumber and NodeName. For leaf nodes, which are simple patterns, as

they do not have any child nodes, the value of Left Most Child is zero. For internal

nodes, the value of the left most child in the graph, is stored. Initially, the index position

is null , the index interface updates the index position for leaf nodes after querying the

index. This information helps to avoid fetching of duplicate tuples, by starting the search

for the tuples from the position where it has let off in the earlier run. Once the index

interface discovers that there are no more occurrences in the index, it adds an entry “-1”

in the pattern table for the corresponding leaf node. The index interface looks at this

entry before accessing the index for retrieving tuples, if the entry is equal to “-1”, then

it creates a dummy tuple with document ID “-1” and notifies the leaf node to indicate

that there are no more tuples in the index.
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Algorithm 4 Process Tuples
1: Input: tuples of the left node, leftSet

2: Input: tuples of the middle node, middleSet

3: Input: tuples of the right node, rightSet

4: k ⇐ number of patterns to be detected

5: detectedPatterns ⇐ 0

6: node ⇐ currentNode

7: nodeType ⇐ node → type

8: leftNode ⇐ node → leftChildNode, middleNode ⇐ node → middleChildNode, rightNode ⇐ node →

rightChildNode

9: if nodeType == rootnode then

10: detectedPatterns ⇐ size of middleSet

11: if ( detectedPatterns > k) then

12: return

13: else

14: k ⇐ k − detectedPatterns, setRequiredNoOfTuples(middleNode, k)

15: else

16: if size of leftSet > 0 then

17: if nodeType neq FREQUENCY then

18: if size of rightSet > 0 then

19: if (nodeType eq WITHIN) OR (nodeType eq NOT ) then

20: if size of middleSet > 0 then

21: if (nodeType eq WITHIN) then

22: process tuples using WITHIN operator semantics

23: if (nodeType eq NOT ) then

24: process tuples using NOT operator semantics

25: else

26: send middleNode , k to index interface

27: else

28: if (nodeType eq FOLLOWEDBY ) then

29: process tuples using FOLLOWEDBY operator semantics

30: if (nodeType eq NEAR) then

31: process tuples using NEAR operator semantics

32: if (nodeType eq OR) then

33: process tuples using OR operator semantics

34: else

35: send rightNode , k to index interface

36: else

37: process tuples using FREQUENCY operator semantics

38: else

39: send leftNode , k to index interface
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3.3 Ranking

In “InfoSearch” system, the detected patterns were delivered to the user, in the

order of detection. The results delivered to the user, does not offer any information,

regarding how “relevant” the detected pattern is, to the user query. Hence, the user

needs to go through all the detected patterns. Therefore, there is a need to rank the

detected patterns.

In our system, we cannot use any ranking algorithms that relies on link structures,

as the input to the system is raw text data and does not contain any link information.

Additionally, “term frequency × “inverse document frequency′′ used in vector space

models of IR, cannot be used for ranking, because our intention is to find, relevancy of

the detected patterns to the user query, rather than the document relevancy. Hence,

we have come up with a simple ranking algorithm based on the intuitive relevance of

patterns which is consistent with the proximal-unique semantics of the language. Hence

the span across which the pattern is detected, which extends up on the work done in

this area [23, 28, 22, 29, 30, 31], is used in our approach. Since the patterns are detected

incrementally, the patterns are ranked locally as-and-when they are available. The ranked

patterns are combined with the newly detected patterns, and are sorted again to produce

combined ranked results.

Semantically and intuitive, a pattern detected in a single sentence is more likely

to be relevant to the user query than a pattern detected across multiple sentences in

the same paragraph. Similarly, pattern detected in a single paragraph is more relevant

when compared to a pattern detected across the paragraphs in the same document.

This intuitive reasoning is used to rank the detected patterns because closely occurring

patterns are more likely to be of interest to the user. The detected patterns are first sorted

based on the paragraph span “end paragraph - start paragraph”, across which the pattern

is detected. Patterns containing the same paragraph span are further sorted, starting

with the lowest value, on sentence span “end sentence - start sentence”, in ascending

order. The sorted patterns with same sentence span, are sorted again based on the offset
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span “end offset - start offset”. The resulting patterns, sorted based on the decreasing

order of relevancy, are then presented to the user. The corresponding ranking algorithm

is described in 5.

Algorithm 5 Ranking algorithm
1: Input: Set of patterns, S

2: S ⇐ sort tuples based on paragraph span

3: S ⇐ sort tuples based on sentence span

4: S ⇐ sort tuples based on offset span

3.4 Summary

In this chapter, we described the architecture of the system and explained each

of its modules. Pattern parser and validator, pattern processor modules were re-used

from the InfoSearch system. We discussed the process of PDG construction by the graph

generator, and how the distance information is handled. Additionally, we also explained

how the sub-PDGs were shared between common sub-expressions. Furthermore, we also

discussed the need for a new naming convention for the nodes in the PDG. The new nam-

ing convention which includes distance and containment information were described in

detail. The pattern detector and index interface module were briefly described. We also

described various approaches for incremental detection of patterns. Round robin ap-

proach, does not consider the number of patterns already detected while feeding tuples

and the same number of tuples are fed at each leaf node in each round, resulting in unnec-

essary processing of extra tuples. Though the iterative approach, takes into account

already detected patterns, before requesting more tuples from the index. But, the flow of

control for the detection of patterns is iterative, and does not lend itself to the data flow

model used in the pattern detector for the detection of patterns. Hence, an alternative

approach, namely hybrid approach, is proposed that addresses the shortcomings of

the previous approaches. In the hybrid approach, pattern detection is triggered by the
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feeding tuples of one of the leaf nodes. Once tuples are available at the internal nodes

that corresponds to the operators, a request containing the tuples of which node to feed

and the number of tuples to be fetched, is sent to the index interface module. We pre-

sented algorithms for each of the considered approached. An algorithm for calculating

the number of tuples to be fetched for each leaf node based on the operator semantics

and required number of patterns to be detected is explained. We also described an al-

gorithm that interacts with the index interface module, in addition to the processing of

tuples in detail. The modifications to be made for the pattern detector module to support

incremental detection of patterns are described. Additionally, we presented the pattern

table data structure, needed to enable fetching of tuples incrementally. We explained the

ranking algorithm and also discussed why existing ranking algorithms cannot be utilized

to rank the detected patterns. The operators that constitute the internal nodes of the

PDG, are discussed next in Chapter 4.



CHAPTER 4

PATTERN SPECIFICATION LANGUAGE (PSL) OPERATORS

In this chapter, we present incremental algorithms for the following operators: OR,

FREQUENCY, NEAR, FOLLOWED BY, SYN, WITHIN and NOT, supported by the

system to allow users to specify more expressive queries. The semantics of these operators

is as described in InfoSearch [5]. However, the working of operators is different from that

of InfoSearch operators. In InfoSearch the entire result set corresponding to a pattern is

propagated at once. However, here the input tuples are processed incrementally until the

required number of tuples has been retrieved to detect user-specified number of patterns.

Once the required number of PATTERNS have been detected the system stops retrieving

and processing additional tuples.

The input to the operators are sets of tuples containing the document ID, start

offset, end offset, start sentence, end sentence, start paragraph and end paragraph of the

corresponding pattern. Each tuple represents occurrences of the corresponding pattern

in the document collection. The input tuple sets are assumed to be sorted in ascending

order of document ID. The operators processes the input tuple sets, tuple by tuple.

Furthermore, the operators ensures that the tuples are merged based on proximal-unique

semantics as discussed earlier. Tuples satisfying the semantics of the operator are merged

and added to a result set which is then propagated to its parents or subscribers.

4.1 The OR operator

The input to the OR operator is two sets of tuples, sorted by document ID, cor-

responding to the left and the right operand. According to the semantics of the OR

operator, a pattern is detected whenever either of the operands are detected. Therefore,

the output of the OR operator is a union of its input sets. The output sets are sorted in

49
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ascending order of the document ID. In cases where the document ID is the same, the

output is sorted in ascending order of the end offset. The position, where the pattern is

detected within a document, is critical for the operators using the Proximal-Unique se-

mantics. If there are no more input tuples available at one of the operands, the operator

stops processing the tuples, and propagates the available result set to the parents. This

is done because once the input set for an operand has been exhausted, there is no way

for the operator to know if there is any other tuple of that operand that occurs before

the tuple in the other operand. It is necessary for the operator to stop processing of

tuples until the tuples are available at both the operands, to produce result sets that

are sorted. Once the operator receives another set of input tuples, and when tuples are

available at both the operands, it continues processing the tuples along with the ones

that were not processed earlier. If the operator encounters a tuple with document ID

“-1”, then it indicates that there are no more tuples available for that operand. Hence,

it appends the tuples from the other operand, that are yet to be processed to the result

set and is propagated up to the parent. Essentially, the OR operator generates a sorted

union of its input sets and produces a result set sorted on document ID and end offset

of the tuples. The algorithm of the OR operator is in 6.

As an example, Figure 4.1 demonstrates the working of the OR algorithm. The

operator merges these input tuples to generate an output set corresponding to “iron”

OR “copper”, in which the tuples are the union of the input sets, sorted on docu-

ment ID and end offset. The inputs are sets of tuples corresponding to the keyword

“iron” and “copper”. The tuple D1<2,2,2,2,1,1>occurs before D1<3,3,4,4,2,2>, hence

D1<2,2,2,2,1,1>is added to the result set,. Next D1<3,3,4,4,2,2>is compared with

D1<5,5,6,6,2,2>, since D1<3,3,4,4,2,2>occurs before D1<5,5,6,6,2,2>, it is selected.

Similarly D1<5,5,6,6,2,2>, D2<10,10,3,3,1,1>,, D2<11,11,4,4,1,1>are added to the re-

sult set. Now there are no more tuples left in the right operand “copper” but there is one

more tuples D2<15,15,7,7,2,2>in the left operand “copper”. The OR operator cannot

proceed with the processing of the tuples of “iron” operand because there might be tuples
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Figure 4.1 An example of the working of the OR operator

of “copper” that might occur before D2<15,15,7,7,2,2>. Therefore, it need to fetch more

tuples of “copper” before processing more tuples. Once it gets another set input tuples

for “copper”, the operator continues processing of the tuples. Tuple D2<13,13,5,5,1,1>of

operand copper occurs before D2<15,15,7,7,2,2>, so it is selected. The next tuple -1<-

1,-1,-1,-1,-1,-1>, of the right operand copper, has document ID “-1”, which indicates that

there are no more tuples of the operand copper. So the remaining tuples of operand iron

are added to the result set and propagated to the subscribers.

4.2 The FREQUENCY operator

The FREQUENCY operator is an unary operator, it has a single set of tuples

as its input. It is represented as FREQUENCY/n(P), which means that all documents

containing more than n occurrences of pattern P should be retrieved. The operator keeps

a count of the number of occurrences of P in a given document in the input set. For every

n occurrences of P in a given document, it adds a tuple to its result set. If the tuples

at the operand are exhausted, the operator propagates the result set to its parent, and

then requests the tuple feeder to fetch more tuples. If the operator encounters a tuple
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with document ID “-1”, then it indicates that there are no more tuples available for the

operand. So it appends a dummy tuple <-1,-1,-1,-1,-1,-1>to the result set and propagates

up to the parent. Using this operator, one can retrieve all documents containing equal

to or more than n occurrences of the pattern P. The pseudocode for the merging done

in the FREQUENCY operator is shown in 7.

Figure 4.2 shows an example of the working of the FREQUENCY operator. In the

example, there is only one tuple for D1, so the tuple is discarded. When the counter

for D2 becomes 3, the operator generates an output tuple, having the start offset, start

sentence, start paragraph of the first of the three tuples, and end offset, end sentence, end

paragraph of the last of the three tuples. After the counter for D3 reaches 2, the operator

has exhausted all the tuples. So it propagates the outputSet to the parent and waits for

another set of input tuples to arrive. In the new input set, tuple D3<27,27,4,4,3,3>exists,

hence the counter for D2 is incremented to 3, and an output tuple is generated. After

processing tuple D4<1,1,1,1,1,1>, it encounters a tuple with document ID “-1”, so it

stops further processing of tuples and propagates the output set to the parent, after

adding a dummy tuple <-1,-1,-1,-1,-1,-1>indicating that there are no more tuples of the

pattern P to be retrieved.

4.3 The NEAR operator

The NEAR operator is a binary operator and it takes two input sets. It is specified

as P1 NEAR[/d] P2. It retrieves documents containing occurrences of the complex

pattern P1 and P2 within the same document, separated by a distance not greater than

d words. The distance d is optional, and if it is not specified, the NEAR pattern is

considered to be detected, if P1 and P2 occur anywhere within the same document. The

relative order of occurrence of P1 and P2 is not important, P1 may either follow or

precede P2, but P1 and P2 may not overlap each other. Hence, either operand one can

be the initiator or terminator. While processing the input tuples, the NEAR operator
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Figure 4.2 An example of the working of the FREQUENCY operator

has to decide whether the tuples are eligible for combination, and if not, decide which

tuple to keep and which one to discard.

If the number of tuples available at the left or right operand is 1, and if the document

ID of the tuples is not equal to “-1”, the operator stops processing of the tuples, and waits

till more tuples are available at both operands to continue processing. This is necessary,

if the operator is to follow Proximal-Unique semantics. If the operator encounters a

tuple with document ID -1, then the operator understands that, there are no more

tuples available for that operand. Hence, the operator stops processing of the tuples.

Furthermore, it adds a dummy tuple <-1,-1,-1,-1,-1,-1>to the output set and propagates

it to the parent. The NEAR operator pseudocode is shown in NEAR:3. It shows how

processing of the input sets is done as per the above discussion.

Figure 4.3 shows an example of the working of the NEAR operator. To begin,

initiator points to D1 <10, 18,1,1,1,1> in the left set, and terminator points to D1

<28, 40, 3, 3, 1, 1> in the right set. Since the next tuple in the initiator set occurs

completely before terminator, it is assigned as the new initiator (initiator is advanced).

Now, initiator and terminator point to a proximal pair of tuples, and hence they are
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merged and added to the output set as the tuple D1 <21, 40, 2, 3, 1, 1>. When initiator

and terminator point to D2 <12, 18, 2, 2, 2, 2> and D2 <15, 20, 2, 2, 2, 2> respectively,

an overlap is detected, and hence a lookahead is done in both sets. The lookahead

determines that the next tuple from the right set D2 <21, 24, 2, 2, 2, 2>ends before the

next tuple from the left set D2 <30, 35, 3, 3, 2, 2>. Hence, D2 <21, 24, 2, 2, 2, 2> is

made the new terminator and D2 <12, 18, 2, 2, 2, 2> is retained as the initiator. They

are combined to form the output tuple D2 <12, 24, 2, 2, 2, 2>. Now, initiator points

to a D2 tuple while terminator points to a D3 tuple. Hence, initiator is advanced. In

this case, the initiator is the last tuple at the left operand. Hence, the operator stops

merging of the tuples and propagates the output set to the parent. This is done, because

the operator can’t decide if there are any more tuples of left set that might occur after

initiator. Merging the initiator-terminator pair without looking at more tuples from the

input sets will result in incorrect results. Hence, the operator waits till further tuples

are available. Once the new input set are available at left operand, the operator finds

that the, initiator D3 <40, 47, 3, 3, 3, 3>lies completely after terminator D3 <12, 19,

1, 1, 1 ,1>. Hence, initiator and terminator are swapped. This makes initiator point to

D3 <12, 19, 1, 1, 1 ,1> and terminator point to D3 <40, 47, 3, 3, 3, 3>, which form a

proximal pair and are merged to give D3 <12, 47, 1, 3, 1, 3> in the output set. Finally,

initiator points to D4 <12, 20, 2, 2, 2, 2>, and terminator points to D4 <30, 35, 4, 4,

2, 2>. Since the initiator is the last tuple at the operand, the operator waits for more

tuples to arrive. Once the new input set is available, it finds that the terminator occurs

completely before the next tuple D4 <60, 63, 5, 5, 2, 2>in the right set. Hence, the

initiator and terminator are swapped to form the new proximal pair, and are combined

to form the output tuple D4 <30, 63, 4, 5, 2, 2>. The initiator and terminator are

advanced, and now points to the tuples D7 <1, 1, 1, 1, 1, 1 >and D5 <40, 70, 7, 7, 2,

2>respectively. Since the document ID of the terminator is less than that of the initiator,

it is advanced. The next tuple in the right set has document ID “-1”, indicating that

there are no more tuples of the right operand. So the NEAR operator stops processing
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Figure 4.3 Example of the working of the NEAR operator

of the tuples and propagates the output set to its parent after adding a dummy tuple

<-1, -1, -1, -1, -1, ,-1, -1 >.

4.4 The FOLLOWED BY operator

The FOLLOWED BY operator is a binary operator, specified as P1 FOLLOWED

BY[/d] P2. This means that documents containing both P1 and P2, should be retrieved,

with the restriction that P1 should occur before that of pattern P2. The occurrences of

P1 and P2 should not be separated by more than d words. The distance d is optional, and

in its absence, any occurrence of P1 followed by P2 in a document should be retrieved,

irrespective of the distance separating them. The inputs to the FOLLOWED BY operator

are two sets of tuples corresponding to the left and the right operand. The occurrences of

pattern P1 acts as initiator and occurrences of P2 acts as the terminator of the pattern

P1 and P2. According to the semantics of the operator, the left sub-pattern should occur

before the occurrence of the right one, for the pattern to be detected. If the number of

tuples available at the left operand is 1, the operator stops processing of the tuples,

and waits till more tuples are available at the operand to continue processing. This
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is necessary, if the operators are to follow Proximal-Unique semantics. If the operator

encounters a tuple with document ID -1, then the operator stops processing of the tuples.

Furthermore, it adds a dummy tuple <-1,-1,-1,-1,-1,-1>to the output set and propagates

the output set to the parent. The algorithm for the FOLLOWED BY operator is given

in 9.

Figure 4.4 gives a simple example the input sets of operands “metal” and “traders”.

To begin with, the left tuple D1<2,2,2,2,1,1>acts as an initiator and D1<10,10,4,4,2,2>from

the right input set acts as a terminator. Since the next tuple in the initiator set,

D1<7,7,3,3,2,2>occurs before the terminator, it is assigned as the new initiator. Now,

initiator and terminator point to a proximal pair of tuples, and hence they are merged

and added to the output set, as tuple D1<7,10,3,4,2,2>. Now D2<1,1,1,1,1,1>and

D3<25,25,10,10,4,4>are the new initiator and terminator. The initiator document ID is

less than that of the terminator, so D3<5,5,3,3,2,2>from the initiator set is made the

new initiator. The next tuple in the initiator set occurs before the terminator, so that

initiator is advanced to D3<10,10,8,8,3,3>. It is the last tuple in the initiator set, hence

the operator can’t decide, if there is any other tuple in the initiator set, that occurs before

the terminator. Therefore, it stops processing of the tuples and propagates the output

set to the parent. Once the operator receives, another input set for the operand “metal”,

it again starts the processing of the tuples. There exists a tuple D3<15,15,9,9,4,4>in the

initiator set, which occurs before the terminator, so it is made the new initiator. The

tuples D3<15,15,9,9,4,4>and D3<25,25,10,10,4,4>are the new initiator-terminator prox-

imal pair of tuples, and are combined to produce the output tuple D3<15,25,9,10,4,4>.

The next tuple in the terminator set has document ID “-1”, hence there are no more tu-

ples of operand “traders” are available. So the operator stops processing and propagates

the result set to the parents.
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Figure 4.4 Example of the working of the FOLLOWED BY operator

4.5 The WITHIN operator

The WITHIN operator is a ternary operator, specified as P2 WITHIN/[d](P1 ,

P3). This means that all documents containing P1 followed by P3, with P2 occurring

at least d times in between should be selected. The frequency d is optional, and if it

is not specified, the system assumes a default value of 1. The operator gets three sets

of tuples as its inputs, corresponding to the left, middle and right operands. Similar to

the FOLLOWED BY operator, only a tuple from the left set can acts as an initiator of

the pattern. Furthermore, only tuples from the right set can act as a terminator. The

operator has to check if there are any tuples from the middle set occurring between a

tuple from the left set and right set, all having the same document IDs. The operator

takes a left and right tuple from each document, and checks whether the left tuple occurs

before the right tuple. If so, it checks, if there are at least d, non-overlapping occurrences

of tuples from the middle set occurring in between. If d middle occurrences are found, it

combines the left and right tuple and adds it to the output set. If the number of tuples

available at the left operand is 1, the operator stops processing of the tuples, and waits

till more tuples of left set are available to continue processing. This is necessary, for the
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detection of patterns in Proximal-Unique semantics. If the operator encounters a tuple

with document ID “-1”, then the operator stops processing of the tuples. Furthermore,

it adds a dummy tuple <-1,-1,-1,-1,-1,-1>to the output set and propagates the output

set to the parent. The pseudocode is shown in 10.

An example of the working of the WITHIN operator can be seen in Figure 4.5.

Let us assume that the required frequency of the pattern P2 be 2. To begin with,

the left tuple D1<3,3,1,1,1,1>acts as an initiator and D1<10,10,7,7,2,2>from the right

input set acts as a terminator. Since the next tuple D1<5,5,2,2,1,1>in the initiator set

occurs before the terminator, it is assigned as the new initiator. Now, initiator and

terminator point to a proximal pair of tuples. Now the operator checks the middle input

set. There is only one tuple with document ID 1, so the tuple is discarded, and the

initiator and terminator are advanced. The tuple D2<1,1,1,1,1,1>is new initiator and

D2<13,13,4,4,1,1>is the new terminator. Since there is no tuple in the initiator set that

occurs before the terminator, the tuples D2<1,1,1,1,1,1>and D2<13,13,4,4,1,1>combine

to form a proximal pair of tuples. Now the operator looks at the middle set, to check

if there are any occurrences of the pattern between the initiator and terminator. The

operator founds two non-overlapping tuples D2<4,4,2,2,1,1>, D2<8,8,3,3,1,1>with the

same document ID, hence the initiator and terminator are combined to form the output

tuple D2<1,13,1,4,1,1>. The tuples D2<25,25,8,8,3,3>and D2<40,40,10,10,5,5>are the

new initiator and terminator. They combine to form a proximal pair. The operator then

finds a tuple in the middle set with document ID -1, indicating that there are no more

tuples of the middle operand. Hence, the operator stops the processing of the tuples and

propagates the output set to the parent.

4.6 The NOT operator

The NOT operator is a ternary operator, specified as NOT[/d](P2)(P1, P3). It is

used to specify a sequence of two patterns with the condition that a certain pattern does

not occur between them. It receives three sets as inputs, corresponding to occurrences of
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Figure 4.5 Example of the working of the WITHIN operator

the left pattern, the right pattern and the middle pattern. In addition, it also receives an

integer denoting the minimum allowable occurrences of the middle pattern. Documents

containing pattern P1 followed by P3, with at most d occurrences of P2 in between,

should be selected. d is optional, and specifies the maximum number of occurrences of

P2 that can be allowed for NOT to be true. The system assumes a value of zero for d, if

not specified (default). The operator first tries to find closest, non-overlapping left-right

pairs, and then counts the number of occurrences of the middle pattern in between the

left-right pair. If there are no middle patterns in between, or if the number of middle

patterns are less than the specified number, the left and right pattern are merged and

added to the output set. If the number of middle occurrences is equal to or exceeds

the specified number, the left and right patterns cannot be merged. In other words, the

pattern is not detected. The pseudocode is shown in 11.

An example of the working of the NOT operator can be seen in Figure 4.6. Let

us assume that the required frequency of the pattern P2 be 2. To begin with, the tu-

ples D1<3,3,1,1,1,1>and D1<10,10,7,7,2,2>acts as an initiator-terminator pair. Since

the next tuple D1<5,5,2,2,1,1>in the initiator set, occurs before the terminator, it is
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assigned as the new initiator. Now, initiator and terminator point to a proximal pair

of tuples. Now the operator checks if there are 2 or more tuples in the middle input set

having the same document ID, that occurs between initiator and terminator pair. Since

there is only one tuple in the middle set, the initiator-terminator pair D1<5,5,2,2,1,1>and

D1<10,10,7,7,2,2>are combined to form the output tuple D1<5,10,2,7,1,2>. The initia-

tor and terminator are advanced, and the tuples D2<1,1,1,1,1,1>, D2<13,13,4,4,1,1>are

the new initiator-terminator pair. Since the operator finds two tuples in the middle set oc-

curring between the initiator-terminator pair, NOT becomes false for this pair. Hence the

tuples are discarded and the pointers are advanced. The operator then finds another prox-

imal pairs D2<25,25,8,8,3,3>and D2<40,40,10,10,5,5>. But the next tuple in the middle

set has document ID -1 indicating that there are no more tuples of the middle operand.

Hence, the operator produces another output tuple D2<25,40,8,10,3,5>. There is only

one tuple D3<40,40,9,9,4,4>in the left set. The operator can’t decide if there are any

more tuples in the left set, that occur before the new terminator D3<60,60,11,11,4,4>.

Hence, the operator stops processing of the tuples, and propagates the output set to

the parent. Once the operator gets more tuples at the left set, it founds that the tuple

D3<45,45,10,10,4,4>occurs before the terminator. Hence they are combined to form the

output tuple. The next tuple in the left set has document ID -1, so the operator stops

processing of the tuples.

4.7 The SYN operator

The SYN operator lets the user to search for synonyms of a keyword, in addition to

the original word itself. It is specified by appending “[Syn]” at the end of the keyword,

whose synonyms needs to be searched for. The graph generator creates leaf nodes for

the keyword and for each of its synonyms during parse time, and a SYN node is created,

which subscribes to these leaf nodes. The number of synonyms to be considered is a

configurable parameter and currently only single word synonyms are supported. The

system takes n input sets, and generates an output set, which is an union of input
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Figure 4.6 Example of the working of the NOT operator

sets, sorted by document ID and position. If the tuples are exhausted at any of the

operands, the system stops processing of the tuples till next tuple set are available for

that operand. This is done, because the subscribers of the SYN operator, expects the

output set to be sorted, and the operator is not sure if there are any tuples of that

operand, that occurs before other tuples. If the tuples available at all the operands has

document ID “-1”, it indicates that there are no more input tuples available. Hence, the

operator adds a dummy tuple <-1,-1,-1,-1,-1,-1,-1>to the output set, and propagates it

to the parent. The query “CONTRACT”[Syn] NEAR (“BRITAIN” FOLLOWED BY

“ADMINISTRATION” ) ) is shown in Figure 4.7. The algorithm for the SYN operator

is described in 12.

4.8 Summary

In this chapter, we discussed the merging semantics of the operators. The operators

OR, FREQUENCY, NEAR, FOLLOWED BY, WITHIN, NOT and SYN were presented

along with their algorithms and examples. The operators take sets of tuples (not a

complete set) as inputs from their children, where a tuple represents a single occurrence
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Figure 4.7 Synonym operator with 3 children

of the child pattern in the document collection. The operators merge the input sets

according to the Proximal-Unique semantics, and generate a sorted set of tuples as their

output, which is then propagated up to the parent for further processing. This process

continues till the tuples reach the root node. The tuples available at the root node

represents the detected patterns.

The key difference from the previous work is that the size of the sets of tuples

given to leaf nodes (and propagated to intermediate nodes) can be arbitrary. The value

is also determined by the system to minimize the total amount of tuples retrieved from

the index and processed by the system.
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Algorithm 6 OR Algorithm
1: OR (leftSet, rightSet)

2: left ⇐ firsttupleinleftSet, right ⇐ firsttupleinrightSet, resultSet ⇐ {}

3: while exists(left) OR exists(right) do

4: if left.docid == − 1 AND right.docid == − 1 then

5: Add dummy tuple to resultSet, stop processing of Tuples

6: if left.docid == − 1 then

7: resultSet ⇐ resultSet + rightSet, stop processing of Tuples

8: if right.docid == − 1 then

9: resultSet ⇐ resultSet + leftSet, stop processing of Tuples

10: while left.docid < right.docid do

11: resultSet ⇐ resultSet + left, left ⇐ left → next

12: if left.docid == − 1 then

13: resultSet ⇐ resultSet + rightSet, stop processing of Tuples

14: while left.docid > right.docid do

15: resultSet ⇐ resultSet + right, right ⇐ right → next

16: if right.docid == − 1 then

17: resultSet ⇐ resultSet + leftSet, stop processing of Tuples

18: while left.docid == right.docid do

19: if left.docid == − 1 AND right.docid == − 1 then

20: Add dummy tuple to resultSet, stop processing of Tuples

21: if (left.endOffset < right.endOffset) then

22: resultSet ⇐ resultSet + left, left ⇐ left → next

23: if left.docid == − 1 then

24: resultSet ⇐ resultSet + rightSet, stop processing of Tuples

25: else

26: resultSet ⇐ resultSet + right, right ⇐ right → next

27: if right.docid == − 1 then

28: resultSet ⇐ resultSet + leftSet, stop processing of Tuples

29: if left == null OR right == null then

30: stop processing of Tuples
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Algorithm 7 FREQUENCY Algorithm
1: FREQUENCY (inputSet, n)

2: current ⇐ first tuple in inputSet

3: previous ⇐ null

4: Integer startV alue ⇐ − 1

5: Integer startSentence ⇐ − 1

6: Integer startParagraph ⇐ − 1

7: outputSet ⇐ {}

8: Tuple outputTuple ⇐ null

9: while exists(current) do

10: if (current.docid == −1) then

11: Add dummy tuple to outputSet, stop processing of Tuples

12: if current.docid 6= previous.docid then

13: count ⇐ 0

14: startV alue ⇐ − 1

15: startSentence ⇐ − 1

16: startParagraph ⇐ − 1

17: if startV alue == − 1 then

18: startV alue ⇐ current.startOffset

19: startSentence ⇐ current.startSentence

20: startParagraph ⇐ current.startParagraph

21: count + +

22: if count == n then

23: outputTuple.docid ⇐ current.docid

24: outputTuple.startOffset ⇐ startV alue

25: outputTuple.startSentence ⇐ startSentence

26: outputTuple.startParagraph ⇐ startParagraph

27: outputTuple.endOffset ⇐ current.endOffset

28: outputTuple.endSentence ⇐ current.endSentence

29: outputTuple.endParagraph ⇐ current.endParagraph

30: outputSet ⇐ outputSet + outputTuple

31: count ⇐ 0

32: startV alue ⇐ − 1

33: startSentence ⇐ − 1

34: startParagraph ⇐ − 1

35: previous ⇐ current

36: current ⇐ current → next
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Algorithm 8 NEAR Algorithm
1: NEAR(L, R, d)

2: initiator ⇐ first tuple in L

3: terminator ⇐ first tuple in R

4: while exists(initiator) AND exists(terminator) do

5: if initiator.docid == −1 OR terminator.docid == −1 then

6: Add dummy Tuple to resultSet, stop processing of Tuples

7: if sizeof(left) == 1 OR sizeof(right) == 1 then

8: stop processing of Tuples

9: while initiator.docid < terminator.docid do

10: initiator ⇐ initiator → next

11: while initiator.docid > terminator.docid do

12: terminator ⇐ terminator → next

13: if initiator.docid 6= terminator.docid then

14: if initiator.docid < terminator.docid then

15: initiator ⇐ initiator → next

16: else

17: terminator ⇐ terminator → next

18: continue

19: if initiator.endOffset ≤ terminator.endOffset then

20: if overlap(initiator, terminator) then

21: lookAhead(initiator, terminator)1

22: continue

23: if initiator → next.endOffset ≤ terminator.endOffset then

24: initiator ⇐ initiator → next

25: else

26: if (terminator.startOffset − initiator.endOffset) ≤ d then

27: combine(initiator, terminator)

28: initiator ⇐ initiator → next

29: terminator ⇐ terminator → next

30: else

31: lookAhead(initiator, terminator)

32: else

33: swap(initiator, terminator)
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Algorithm 9 FOLLOWED BY Algorithm
1: FOLLOWED BY(L, R, d)

2: left ⇐ first tuple in L

3: right ⇐ first tuple in R

4: while exists(left) AND exists(right) do

5: if ((left.docid == −1) OR (right.docid == −1)) then

6: Add dummy tuple to resultSet, stop processing of Tuples

7: else

8: if (sizeof(L) == 1) then

9: stop processing of Tuples

10: while left.docid < right.doc id do

11: left ⇐ left → next

12: if (sizeof(L) == 1) then

13: stop processing of Tuples

14: while left.docid > right.doc id do

15: right ⇐ right → next

16: if left.docid 6= right.docid then

17: left ⇐ left → next

18: right ⇐ right → next

19: if (sizeof(L) == 1) then

20: stop processing of Tuples

21: continue

22: else

23: if overlap(left, right) then

24: right ⇐ right → next

25: continue

26: if left.endOffset < right.endOffset then

27: if (left → next).endOffset < right.endOffset then

28: left ⇐ left → next

29: else

30: if satisfiesDistance(left, right) then

31: combine(left, right)

32: left ⇐ left → next

33: right ⇐ right → next

34: else

35: right ⇐ right → next
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Algorithm 10 WITHIN Algorithm
1: WITHIN(L, R, M)

2: left ⇐ first tuple in L, right ⇐ first tuple in R, middle ⇐ first tuple in M

3: while exists(left) AND exists(right) AND exists(middle) do

4: if ((left.docid == −1) OR (right.docid == −1) OR (middle.docid == −1) ) then

5: Add dummy tuple to resultSet, stop processing of Tuples

6: else

7: if sizeof(L) == 1 then

8: stop processing of Tuples

9: while left.docid < middle.docid OR left.docid < right.docid do

10: left ⇐ left → next

11: if sizeof(L) == 1 then

12: stop processing of Tuples

13: while left.docid > middle.docid do

14: middle ⇐ middle → next

15: while left.docid > right.docid do

16: right ⇐ right → next

17: if overlap(left, right) then

18: right ⇐ right → next, continue

19: if left.endOffset < right.endOffset then

20: if (left → next).endOffset < right.endOffset then

21: left ⇐ left → next

22: if sizeof(L) == 1 then

23: stop processing of Tuples

24: else

25: count ⇐ 0

26: while middle.docid == left.docid do

27: if middle.docid == −1 then

28: Add dummy tuple to resultSet, stop processing of Tuples

29: if middle.liesBetween(left, right) then

30: count + +

31: if count == d then

32: combine(left, right), middle ⇐ middle → next, break

33: middle ⇐ middle → next

34: if middle.liesAfter(right) then

35: middle ⇐ middle → next, break

36: else

37: middle ⇐ middle → next

38: left ⇐ left → next, right ⇐ right → next

39: else

40: right ⇐ right → next
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Algorithm 11 NOT Algorithm
1: NOT(L, R, M)

2: left ⇐ first tuple in L, right ⇐ first tuple in R

3: while exists(left) AND exists(right) do

4: if ((left.docid == −1) OR (right.docid == −1)) then

5: Add dummy tuple to resultSet, stop processing of Tuples

6: else

7: if sizeof(L) == 1 then

8: stop processing of Tuples

9: advance left, right till they point to tuples with same doc id

10: if overlap(left, right) then

11: right ⇐ right → next, continue

12: if left.endOffset < right.endOffset then

13: if (left → next).endOffset < right.endOffset then

14: left ⇐ left → next

15: else

16: if sizeof(L) == 1 then

17: stop processing of Tuples

18: else

19: middle ⇐ first tuple in M

20: noMiddleTuples = false

21: while middle.docid 6= left.docid do

22: if middle.docid > left.docid then

23: noMiddleTuples = true, break

24: middle ⇐ middle → next

25: if noMiddleTuples then

26: combine(left, right)

27: left ⇐ left → next, right ⇐ right → next, continue

28: occurrenceCnt = 0

29: while middle.docid == left.docid do

30: if middle.liesBetween(left, right) then

31: occurrenceCnt + +

32: if (occurrenceCnt > d) OR (middle.liesAfter(right)) then

33: break

34: middle ⇐ middle → next

35: if occurrenceCnt ≤ d then

36: combine(left, right)

37: left ⇐ left → next, right ⇐ right → next, continue

38: else

39: right ⇐ right → next
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Algorithm 12 SYN Algorithm
1: Input: n sets corresponding to base keyword and n − 1 synonyms

2: for each set S do

3: currentTuple(S) ⇐ first Tuple in S

4: minTuple ⇐ currentTuple(0)

5: min ⇐ 0

6: while exists(minTuple) do

7: for (i = 0 ; i < n, i 6= min ; i + +) do

8: if currentTuple(i).docid == − 1 then

9: tuples exhausted ⇐ true

10: else

11: tuples exhausted ⇐ false

12: if minTuple.docID < currentTuple(i).docID then

13: continue

14: if minTuple.docID == currentTuple(i).docID then

15: if minTuple.endOffset < currentTuple(i).endOffset then

16: continue

17: else

18: minTuple ⇐ currentTuple(i)

19: min ⇐ i

20: if minTuple.docID > currentTuple(i).docID then

21: minTuple ⇐ currentTuple(i)

22: min ⇐ i

23: resultSet ⇐ resultSet + minTuple

24: if set min has more tuples then

25: minTuple ⇐ next Tuple in min

26: else

27: arbitrarily assign current tuple of some unexhausted set to minTuple

28: assign that set number to min

29: if tuples exhausted == true then

30: stop processing of Tuples



CHAPTER 5

IMPLEMENTATION OF INFOSEARCH

This chapter describes the implementation aspects of various system modules in

InfoSearch namely, graph generator, index interface, pattern detection engine and the

notifier module. The additional data structures needed for incremental detection of the

patterns has been described in detail. In addition we also discuss data structures that are

used to pass information up the Pattern Detection Graphs (PDGs) and the corresponding

changes made to the operators.

The implementation of InfoSearch system is integrated with InfoFilter, and the two

systems share some common modules. Pattern input client, and pattern validator and

processor modules are same in both systems. Since the current system is an extension

of InfoSearch, it should be able to run in “InfoFilter”, “InfoSearch” mode, in addition to

the mode to incrementally detect and retrieve the patterns. The user inputs determine

the mode for the system to run. A snap shot of the user interface is shown in the Figure

5.1.

5.1 User Input

In the previous work, the mode in which the server runs is specified in the configu-

ration file and is decided during system startup. Once the system is started in one mode,

it can’t be changed to detect patterns in another mode. The only way to change it, is

by changing the parameter in the configuration file and restarting the server. In the cur-

rent system, this shortcoming has been fixed. The user can detect patterns from static or

dynamic data sources or choose to incrementally retrieve the patterns by choosing appro-

priate inputs in the user interface. The user can specify to the system, to incrementally

detect and retrieve the patterns by selecting “Index” as Data Input mode,“true” for Re-

70
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Figure 5.1 User Interface

turn K Results in addition to Database Index, pattern and email for notification. The

user also needs to specify how many patterns needs to be detected by entering a value

for Required Number of Query Results field. If ‘false” is selected for Return K Results,

then the system runs in the “InfoSearch” mode. In this mode, the server returns the

detected patterns to the user at once. If the user wants to detect patterns from dynamic

data sources, he can choose “Stream” for Data Input mode. The user also needs to spec-

ify Type of Data Stream, Input Stream in addition to pattern and email for notification

information. Additionally, the user needs to enter his “mail id” in Please enter your

EMail Address field. This information is used by the system to create a named ECA

Agent [27]. Once all the required inputs has been entered, the query is sent to the server

for detection.
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5.2 Pattern Parser, Validator, and Processor

Once the server receives user input, it unwraps the input, and initializes vari-

ous systems configuration parameters based on the values of Data Input mode and Re-

turn K Results. The user query is then passed to the pattern parser module. The pattern

parser implemented using JavaCC parser [32], extracts the tokens from the user query.

The tokens include simple patterns (words, system defined patterns), operators and other

delimiters allowed by the language. If the query does not conform to the specifications

of the Pattern Specification Language (PSL), a Java Exception called parse exception is

thrown. The extracted tokens are passed to the pattern validator module, it enqueues

the tokens in infix notation and passes it to the pattern processor as input. The server

also initializes the notifier module and passes the user input information. Let us consider

as an example, the query ( “STUDENT” NEAR/3 (FREQUENCY/2 (“GRADUATE”

FOLLOWED BY “ADMISSIONS” ))) and lets assume the user wants “10” patterns to

be detected.

The pattern processor takes the input in infix notation and converts it into postfix

notation preserving the precedence of tokens and operators as specified in the user query.

The postfix notation allows for easier processing of operands. Additionally, generation of

a graph from postfix notation is easier than from the infix notation. The pattern processor

sends the stack of tokens in postfix notation to the graph generator for further process-

ing. The postfix notation for the above example is [“STUDENT”, [[“GRADUATE”,

“ADMISSIONS”, FOLLOWED BY], 2, FREQUENCY], 3, NEAR].

5.3 Graph Generator

The Event Specification and Detection framework called the Local Event Detector

(LED), that has been used in InfoSearch system, was adopted with some modifications.

The graph generator uses the Event Specification API of the LED [27] to generate the

PDGs. The API provides methods for the creation of leaf nodes, which correspond to

leaf nodes in a PDG. It also provides methods for creation of internal nodes, which
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correspond to internal or parent nodes in a PDG. The graph generator pops a token from

the top of its input stack, and depending on the type of token, calls the appropriate LED

API to create that particular node. If the token is a simple pattern or keyword or a

system defined pattern, a leaf node is created for the token. The node is named after the

keyword or a system defined pattern that it corresponds to. If the token is an operator,

a internal node is created by the the graph generator, which subscribes to the children of

the operator. The children of a internal node can either be a leaf node or other internal

nodes. The internal node is named uniquely, and is derived from the operator name,

distance with which it subscribed to its children and the names of the children. The

names of these nodes are stored in a hash table, with a reference to the node.

In addition to the node name, a node number is assigned to each node. Whenever

a node is created, an entry is added into the pattern table. The information stored in the

pattern table includes node name, node number and the left most node. For leaf nodes,

a value of “0” is stored for “left most node ” field, as they do not have any child nodes.

For a internal node, the node number of the left most leaf node of the sub-PDG is stored

is stored in “left most node ” field. The node name of the leaf nodes are same as the

simple patterns, hence they are used by the index interface module to look up for the

“hits” in the index. For internal nodes, the node name is big and complex and there is no

use for it. Hence, a string “NULL” is stored, for internal nodes as “node name”. Further

more, the “required number of patterns” to be detected, specified by the user, is stored

for each node in the pattern table. If the nodes being created were to be subscribed by

internal node FRE, then “required number of patterns” is multiplied by the frequency

and used.

The graph generator checks the node names hash table to see if a node with the

same name already exists. If the node exists, then a reference is obtained and is used to

represent the node. If the node does not exist in the hash table, a new node is created and

an entry is made into the hash table. This allows for sharing of the sub-PDGs resulting

in efficient utilization of resources and has been explained in detail in Chapter 3.
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When the graph generator receives the stack as input, it pops the token at the top

of the stack and examines it. In the example, the popped token “NEAR”, is a system

operator, so it knows the next tokens are either distance followed by the operands or

operands if no distance information is specified. The token “3” is popped and finds that

token represents the distance. The next token is a right operand of “NEAR” operator.

On examination, the graph generator finds the token is a stack and hence represents a

sub-PDG. The token on top of the stack is popped, and it finds the system operator

“FREQUENCY”. The unary operator “FREQUENCY” has one operand or child and

has a frequency information associated with it. So the graph generator expects the next

token to be frequency information and the next token to be its operand. It finds the

frequency information to be “2”. The required no of tuples is multiplied by frequency

“10”, hence becomes “20”. The next token corresponding to the operator is a stack,

hence represents a sub-PDG. The token at the top of the stack is popped, and on ex-

amination founds the token to be a system operator “FOLLOWED BY”. It knows that

the operator can have a distance information associated with it, if there is no distance

associated then the next two tokens represents the child nodes. The next token in the

stack “admissions” is popped and is found to be a simple pattern. Since the token

“admissions” is a simple pattern, the graph generator tries to create a primitive event

representing the leaf node of the PDG using the APIs provided by the LED framework.

Before creating the node, the node name hash table is checked if a node with the same

name already exists. Since it does not exist, a primitive node with the name admissions

is created representing the simple pattern “admissions”. A entry is added to the pattern

table for this node. Since this is the first node to be created the node number of the

node is “1”. The node admissions is a leaf node, and does not have any child nodes,

hence a value of “0” is stored for “left most node” entry. The value “20” is stored as

the required no of tuples in the pattern table for the node admissions. Next token grad-

uate is a simple pattern, hence a leaf node is created. Now both the operands of the

system operator are created, so a internal node representing the “FOLLOWED BY” is
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Table 5.1 Pattern Table for the Query “student” NEAR/3 (FREQUENCY/2 (“graduate”
FOLLOWED BY “admissions”))

Node Number NodeName LeftMostNode IndexPos EndofIndex
1 admissions 0
2 graduate 0
3 NULL 2
4 NULL 2
5 student 0
6 NULL 5

created with the name graduate followed by admissions next. It subscribes to the leaf

nodes admissions and graduate. The node created is a internal node, hence has a child

node. The left most node of the internal node is graduate with node number “2”. So

“2” is stored as the entry in the left most node. There is no distance information asso-

ciated with the “FOLLOWED BY” node, so a value of “-1” is stored in the subscriber

list. The node has an node number “3” associated with it. For leaf nodes, the node

name is same as simple pattern and hence used by index interface module to lookup the

tokens. Since the node graduate followed by admissions is a internal node, the index in-

terface does not need this information and hence “NULL” is stored as node name. Next

a internal node corresponding to “FREQUENCY” operator is created, with node name

FREQUENCY[2]:graduate FOLLOWED BY admissions. It subscribes to its child, inter-

nal node graduate followed by admissions. The node number corresponding to the node

FREQUENCY[2]:graduate FOLLOWED BY admissions is “4”. The left most node for

the internal node, is the left mode node of its child, graduate followed by admissions.

Hence, the graph generator looks up the pattern table and finds that node “2” is the left

most node for graduate followed by admissions, and is stored as “left mode node” for the

internal node FREQUENCY[2]:graduate FOLLOWED BY admissions. The node corre-

sponding to node name “6” has node name student NEAR (FREQUENCY[2]:(graduate FOLLOWED

The information stored in the node table for each node, is shown in Table 5.1
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The pattern table data structure is created only when server is running in the mode

to incrementally retrieve patterns. If the server is running in InfoSearch mode, then a

keyword list consisting of simple patterns is created as described in [5]. Also, every PDG

constructed in the system is encapsulated under a WITHIN(BeginIndex, EndIndex) as

described in [5].

5.4 Index Interface

The index interface of InfoSearch system was adopted after modifying it to feed

the tuples incrementally. It receives the data structure pattern table from the graph

generator module as input. The index interface looks at the pattern table, and retrieves

the node corresponding to the node number “1”. Since the node with node number “1”

is the first node to be created in the PDG, it corresponds to a leaf node, hence simple

pattern. The index interface also retrieves the “node name” and “required number of

tuples” that corresponds to node “1” information from the pattern table. It checks if the

value in the “required number of tuples” is greater than “minNoOfTuples” configuration

parameter. If true, then then number of tuples to be fetched is equivalent to the value

of “required number of tuples”, else “minNoOfTuples” will be fetched. It then looks

up the index for the occurrences of the node admissions, the node with node number

“1”, starting at the beginning of the index. Every time a “hit” is detected, the entry is

fetched from the index. The hit contains document ID, offset, sentence and paragraph

information. It wraps the information in the form of tuple <document ID, start offset,

end offset, start sentence, end sentence, start paragraph, end paragraph >. Since the

node corresponds to a leaf node the start offset is same as end offset, start sentence is

same as end sentence and start paragraph has same value as that of end paragraph. The

tuple is then added to a vector. Every time, it detects a hit, it increments the counter

and checks if the required number of tuples has been fetched. If the required number

of tuples has not been fetched, it continues with the retrieval. Else, the index interface

stops fetching the tuples, copies a reference to the index position and stores in the pattern



77

table. This is done, so that the next time, the index interface need not fetch the tuples

from the beginning of the index, and hence avoid fetching of duplicate tuples.

Once the index interface module fetches the required number of tuples, it notifies

the leaf node, corresponding to that leaf pattern. Once the tuples reaches the internal

node “FOLLOWED BY”, it finds that it does not have the tuples of the lead node.

Hence, it calls setNodeInfo method in the index interface module with the node number

of the left child and the required number of tuples. The index interface module, looks

up the pattern table corresponding the node number. It finds that the node corresponds

to a child node, and also there is no index information available. Hence, it starts looking

for the occurrence of the pattern from the beginning of the index. Once the required

number of tuples has been fetched the leaf node is notified. Additionally, it also stores

the index position for that node in the index table.

As the tuples for both the child nodes are available, the internal node starts pro-

cessing the tuples as per the semantics explained in previous chapter 4. The resulting

tuples if any are added to result vector. Once the processing is done, it checks the size

of the vector. If the size of the vector is greater than “0”, the result vector is propa-

gated up to the parent node “FREQUENCY”, else the “FOLLOWED BY” node calls

the setNodeInfo method requesting it to feed tuples of its left child graduate with node

number “2”. Once the result vector reaches the “FREQUENCY” node, it process them,

and sends the resulting tuples if any to the parent. If there are no tuples to propagate, it

calls setNodeInfo of the index interface to send tuples of it child with node number “3”.

The index interface on receiving request to fetch tuples of node number “3”, looks

up the node table for more information. It finds that node with node number “3”

corresponds to a internal node. Hence, it looks up the value in the “left most node” and

finds that node “2” is the left most node. The information pertaining to node “2” is

fetched from the pattern table. The index interface finds that index position is available,

it retrieves the reference, and starts searching from the referred position, instead of from

the beginning of the index.
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If the index interface reaches the end of the index while searching for tuples, it

stores “-1” in the pattern table for that node, to indicate that there are no more tuples

to be found for that node. When the index interface receives a request to fetch more

tuples for an node, it first checks if there is “-1”, stored in the pattern table. If it finds a

“-1”, then the index interface creates a dummy tuple <-1,-1,-1,-1,-1,-1>and notifies the

leaf node.

Once the required number of patterns has been detected, the root nodes requests

the index interface module to send tuples of node with node number “-1”. Once it

receives such a request, the module understands that required number of patterns has

been detected, and hence stops fetching tuples and returns the control to the graph

generator module.

5.5 Pattern Detection Engine

The pattern detection engine process the tuple sets received from the index. It

is done over the PDG, every leaf node corresponds to a simple pattern. The internal

nodes of the PDG corresponds to one OR, NEAR, FOLLOWED BY, WITHIN, NOT,

FREQUENCY or SYN operators, hence incorporates their logic for processing the tuples.

The leaf node receives a reference, to a vector of tuples corresponding to the simple

pattern. The leaf node copies the tuples in the vector, into another vector and passes the

reference to the parent. Once the internal node, receives the references from the child

nodes, it process the tuples from the received vector. Once a tuple has been processed,

it is removed from the vector. Once the leaf node receives more tuples, it appends the

received tuples, to the tuples that were not processed earlier and the reference is passed

to the parents. Once the root nodes receives the tuples, it checks if the required number

of tuples has been detected, if it does, then it send a request to the index interface to feed

tuples of node with node number “-1”, indicating to stop feeding of tuples. If the required

number of tuples has not been found, it deducts, the number of detected patterns from

the required no patterns, and propagates it to the child nodes recursively. Additionally,
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it also instructs the index interface to feed tuples of its child node. When the root node

receives tuples, it executes a rule, which passes the vector of the detected tuples to the

notifier module along with the node name of the root node.

5.6 Notifier

The notifier looks up its data structure, and extracts information corresponding to

the root node. The information includes the query entered by the user, e-mail IDs to

which notification has to be sent regarding the detection of patterns. The notifier extracts

the tuples from the vector, and access the inverted index, to fetch the document name

corresponding to each document ID. It translates the document IDs to the corresponding

document names. If the user has requested the detected patterns to be ranked, then

a ranking algorithm is run on the detected patterns, and the ranked patterns is then

delivered to the user.

5.7 Ranking

The ranking algorithm receives tuples as a input vector. It extracts tuples from the

vector, and calculates the paragraph span, end paragraph - start paragraph, across which

the pattern is detected. It then inserts it in map object with the paragraph span as key

and tuple as the corresponding value. Once the sorting of tuples by paragraph span is

done, it sorts them based on sentence span, end sentence - start sentence. It extracts

values corresponding to each key, and calculates the sentence span for each tuples. The

tuples are then inserted in a map object, with sentence span as key, and tuples as value.

When all tuples are processed, the map objected is again sorted based on offset, end

offset-start offset. The processed tuples are inserted in a map object, with offset span as

the key and the tuples as the value. This map object contains tuples that are ranked.

The notifier extracts the tuples from each object and delivers them to the user in order.
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5.8 The Inverted Index

To create the inverted index, the Java program DocumentIndexer from InfoS-

earch [5] was used with modifications. It takes a directory as input, reads directories

and documents, and builds an inverted index over those documents. From every doc-

ument, it creates a document ID – a numeric integer, and stores a mapping from the

document ID to document path in a separate database. The document ID is used for

all processing, because the computations done with numbers is computationally cheaper

then comparisons with strings. It maintains a paragraph counter, sentence counter and

offset counter to keep track of the positional information.

It reads a paragraph of data from a document at a time. The read data is then

passed as input to the getSentenceInstance() method of the “BreakIterator” class, which

creates an iterator with sentence-breaks. The iterator is used to extract individual sen-

tences from the paragraph. The sentence counter is incremented after processing every

sentence. Each sentence is then passed to the getWordInstance() method, and a iterator

for word-breaks is created. Each word is extracted from the iterator and converted into

text. The extracted word is stored as a “hit” in the inverted index. The offset counter is

incremented after every word is extracted and stored. Each hit stored in the index, con-

tains document ID, offset, sentence and paragraph information. Once all the paragraph

has been processed, the counters paragraph, sentence and offset counters are reset. How

the tuples are stored in the index, and how they are retrieved from the index given a

simple pattern, is explained in detail in [5].

5.9 Summary

In this chapter, we discussed the implementation details of various modules of the

system. Modules like pattern validator and pattern processor were adopted completely

from the previous system InfoSearch. A new user interface has been developed using

Java Swing technology, to overcome the shortcomings of the previous system. The graph

generator module was modified extensively, and a new naming convention for internal
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nodes has been developed to handle sharing of sub-pdg corresponding to sub-patterns.

Additionally, it was also modified to create a data structure pattern table for every node

that is created. The index interface module was modified to take, an pattern table as

input, and feed tuples incrementally to the PDG. The ranking algorithm was incorporated

into the notifier module, which sorts the detected patterns based paragraph span of the

detected pattern, then sentence span followed by the offset span.



CHAPTER 6

EXPERIMENTAL EVALUATION

The design and implementation of the system were discussed in earlier chapters.

In this chapter we explain the experiments, data sets and analyze the results that were

obtained. The experiments were conducted on a machine running Redhat Enterprise

Linux Application Server 4 with four dual core AMD Opteron 2GHz processors and

4GB of RAM per processor using data sets of sizes 10MB, 25MB, 50MB, 100MB, 150M,

200MB and 250 MB.. The maximum allowed heap for Java runtime was kept at 3.5GB.

The Java version used is 1.5, update 11. In the following sections, we will explain the

nature of the data sets and the complex queries used.

6.1 Data Set

The data used for the experiments are taken from Reuters-21578 [33] and NSF

Research Awards [34] text collections. Since the size of the Reuters data set is 27MB,

we incorporated the text collections from NSF research awards to show the scalability of

the system. We could have used just the NSF data, since its size is 650 MB, but the data

content does not generate enough number of patterns to show clear performance gains

of incremental search over InfoSearch.

6.2 Experiments

The experiments were run using few complex queries containing different operators

and varying number of operands. The patterns were selected in a way, such that the num-

ber of detected patterns does not vary significantly between data sets of different sizes.

To achieve this, initially we have selected 7MB of data from Reuters and 3 MB from NSF

to form the 10MB data set. To this data, we have added more data incrementally, such

82
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Figure 6.1 Time Analysis for query ( “METAL” FOLLOWED BY/10 “TRADERS” )
NEAR/50 ( “IRON” OR “COPPER”)

that the addition of the new data does not result in the detection of large number of new

patterns. The experiments were run using complex queries involving a combination of op-

erators, (( “metal” FOLLOWED BY/10 “traders” ) NEAR/50 ( “iron” OR “copper”)),

(( “damping” ) NOT/2 ( (“spring” FOLLOWED BY “stiffnesses”) , “coefficients”)), and

(“tax” FOLLOWED BY (“petrol” OR “oil”)) NEAR (“retail” FOLLOWED BY “sta-

tions”). The experimental results for the first two queries are discussed in the following

sections.

6.2.1 Query1

The experiments were run with the query ( “metal” FOLLOWED BY/10 “traders”

) NEAR/50 ( “iron” OR “copper”). There are 156 occurrences of the pattern in the data

set. The time taken to process all the tuples, to detect 156 patterns using the InfoSearch

were calculated. Additionally, we also measured the total memory consumed by tuples

of the operand that constitute the complex pattern, during the detection of patterns is

also calculated. We compared those results, with the those taken to detect 10, 50, 100,

156 and 200 patterns using our system.

From Figure 6.1, we can see that the time taken to detect 10, 50, 100 and 156

patterns were significantly less than the time taken by the InfoSearch system. We would

have expected the time taken to detect 156 patterns will be same or more than that of
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Figure 6.2 Memory Analysis for query ( “METAL” FOLLOWED BY/10 “TRADERS”
) NEAR/50 ( “IRON” OR “COPPER”)

Table 6.1 Tuples required for detection of the pattern ( “metal” FOLLOWED BY/10
“traders” ) NEAR/50 ( “iron” OR “copper”)

NoOfPatterns/Operands 10 50 100 156 200
traders 100 200 500 624 1900
metal 300 400 700 780 1095
copper 100 200 500 624 1163
iron 100 200 473 473 473

the time taken by the InfoSearch system. The response time significantly better than

InfoSearch, because once the 156 patterns were detected, the system stops processing

of further tuples. In the case of InfoSearch, it process all the tuples irrespective of the

number of patterns to be detected, resulting in increase response time. As an example,

from the Table 6.1, we can see that to detect 156 patterns from data set of size 200MB,

the system needs 624 tuples of “traders” out of 1900, 780 tuples of “metal” out of the

total 1095, 624 tuples of “copper” of 1163 and finally “473” tuples of “iron” out of 473.

To detect 200 patterns of the query, the system needs to process all the tuples of

the operand or till the tuples of one of the operands that is necessary for the detection of

the pattern are exhausted. The response time taken to detect all the patterns is greater

than that of the InfoSearch system, because of the overhead in terms of maintaining extra

data structures, and propagating control information from up and down the PDG, and

extra index access calls.
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Figure 6.3 Time Analysis for query ( “DAMPING” ) NOT/2 ( (“SPRING” FOL-
LOWED BY “STIFFNESSES”) , “COEFFICIENTS”)

The analysis of memory consumption is shown in Figure 6.2. We can see from

the plot that the memory consumed by the system is 20-30% from that required by the

InfoSearch system. This is because, in InfoSearch system, all the tuples are fetched from

the index, at a time leading to the consumption of large amount of memory at the nodes.

Whereas, in our system, the tuples are fetched in incrementally, on a need basis, resulting

in huge savings in memory.

6.2.2 Query2

Here, we tried with the complex query (( “damping” ) NOT/2 ( (“spring” FOL-

LOWED BY “stiffnesses”) , “coefficients”)), involving two operators NOT and FOL-

LOWED BY. We have detected that there are 811 occurrences of the patterns. We have

measured the time and memory resources consumed for the detection of 100, 250, 500,

750 and 811 patterns.

In Figure 6.4, we see that the time taken to detect 100, 250 and 500 tuples is

significantly lower than the time taken to detect the patterns using the InfoSearch system.

Whereas, for the detection of 750 patterns, the time taken is slightly less than that of

InfoSearch system. The time to detect 811 patterns is higher compared to InfoSearch

system, most of the tuples of the operands that constitute the complex query are involved

in the detection in the pattern. In the Figure 6.3, the time taken to detect 900 patterns,
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Figure 6.4 Memory Analysis for query ( “DAMPING” ) NOT/2 ( (“SPRING” FOL-
LOWED BY “STIFFNESSES”) , “COEFFICIENTS”)

which is 10-16% higher than response time of InfoSearch system is shown. The memory

analysis for the query is shown in the Figure 6.4. From the Figure, we see that the

memory requirements for incremental approach is significantly lesser than that of the

InfoSearch system.

6.3 Summary

The experiments were performed using complex queries, composed of a combination

of different operators and the results were analyzed. For each of the queries, we have

measured the time taken, and memory consumed for the detection of various number

of patterns, using data sets of sizes 10, 25, 50, 100, 150, 200, 250 MB. The memory

consumed by incremental approach is 25-30% compared to the InfoSearch system, and

does not increase with the size of the data sets, enabling the system to scale. We have

also seen that the time taken to detect all the patterns is higher by a factor of 10-35%

depending on the queries, because of the overheads.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we discussed the incremental approach for detection of pattern over

text repositories. Currently available retrieval tools are restricted in their expressiveness

of the query, and there is a need for a system that could handle queries involving proxim-

ity, sequence, frequency and containment operators. We described the disadvantages of

processing all the occurrences of the operands, that constitute a complex query, in terms

of memory and response time. Furthermore, we presented various design approaches for

the incremental detection of patterns, and the advantages of one over other. Additionally,

we also a described a ranking algorithm, to sort the detected patterns.

To achieve the incremental approach for detection of patterns, we investigated

the need for new data structures, and additional information to be stored. Algorithms,

developed for the detection of patterns over static data in InfoSearch system [5] were

modified to process tuples arriving incrementally. Since this work extends, previous work

[5], some of the modules were incorporated completely. Few modules of the system, has

been changed extensively, for detection of patterns incrementally.

7.2 Future Work

The detected patterns were ranked by the system based on the “interval span”,

across which the pattern has been detected, and the position of occurrence in the docu-

ment. If there is a better approach to rank the detected patterns, by any other criteria

can be researched upon. Furthermore, to improve performance, caching strategies can be

developed. The merging of tuples at the nodes is being done sequentially, strategies based
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on distributed and parallel computing can be developed to enhance the performance of

the system.
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