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ABSTRACT

COMPRESSIVE SENSING AND WIRELESS NETWORK CAPACITY WITH

PERFORMANCE ANALYSIS

DAVIS KIRACHAIWANICH, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Qilian Liang

This dissertation contains five reseach topics. In chapter 1, the performances

of a noncoherent slow frequency-hopping system with M -ary frequency-shift-keyed

modulation (NC-FH/MFSK) under various hostile jamming strategies are studied.

Then, the knowledge obtained is used in developping a new ”combined-jamming”

interference model. The model can be used in analyzing the performance of NC-

FH/MFSK networks, where transmissions from each network node can interfere with

one another. An example application of the proposed model is the channel assignment

in a multiradio FH/MFSK wireless mesh network (MR-FH/MFSK WMN).

In chapter 2, the multiradio frequency-hopping wireless mesh networks (MR-

WMN) is still being considered. However, the scope of the study is wider. Instead

of having each node using NC-FH/MFSK modulation only, this chapter considers

the a wider variety of modulation choices, such as M -PSK or M -QAM. To improve

the throughput of MR-WMN, the space-time block coding (STBC) technique is in-

troduced in the physical layer and a MAC-layer channel management is also used

to combat against two major sources of deteriorations in wireless communications,
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the fading channel and cochannel interferences. With the STBC technique, both

temporal and spatial diversities can be deployed; hence, the link performance can be

improved in the presence of a fading channel. Then, to protect the link from cochan-

nel interferences, an interference-aware algorithm is used to carefully bind the radio

interfaces of the nodes to the frequency channels. Within the study, an additional

adaptive transmission scheme is also proposed to aids in deciding an optimal number

of antennas and selecting the best antenna set for the pending transmission.

In chapter 3, the capacity of wireless hybrid networks, in which a wired network

of base stations is used to support very long-range communications between wireless

nodes, is investigated. By allowing more than one source node to transmit simul-

taneously and utilizing successive interference cancellation to decode information at

the destination node, a multiple access technique is being introduced to the network.

The results show that, for a hybrid network containing n wireless nodes and a wired

infrastructure of b = o( n
log n

) base stations, with the multiple access concept, the des-

tination or the nearest base stations can receive information from the source nodes

at the rate of O( b
n

log n
b
). But when data is delivered to a node, because the base

station is the only transmitter in the cell, it can forward the message to each node

only at rate Θ( b
n
). This can be further improved by deploying an antenna array or

increasing the transmission power of the base stations.

In the last two parts of the dissertation, the compressive sensing (CS) is con-

sidered. Compressive sensing can be considered as method to capture and represent

compressible signals at a rate significantly below the Nyquist rate. In chapter 4, the

compressive sensing scheme is considered from the information theory point of view

and derive the lower bound of the probability of error for CS when length N of the

information vector is large. The result has been shown that, for an i.i.d. (independent

and identical) Gaussian distributed signal vector with unit variance, if the measure-
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ment matrix is chosen such that the ratio of the minimum and maximum eigenvalues

of the covariance matrices is greater or equal to 4
(M

K
+1)

, then the probability of error

is lower bounded by a non-positive value; which implies that the information can

be perfectly recovered from the CS scheme. On the other hand, if the measurement

matrix is chosen such that the minimum and maximum eigenvalues of the covariance

matrices are equal, then the error is unavoidable and the perfect recovery can never

be achieved.

One of the major challenges in the CS technique is how to design a reconstruc-

tion algorithm that can perfectly recover the compressed information. It is known

that a family of algorithms using the Orthogonal Matching Pursuit (OMP) tech-

nique can offer fast reconstruction and simple geometry interpretation. However,

when the compressed observation contains a great amount of noise, the performance

of the OMP-based algorithms drops substantially. In chapter 5, a fuzzy forecasting

reconstruction algorithm, which can help improving the OMP-based reconstruction

algorithm, is proposed. Relying on a collection of the less noisy past information,

the algorithm extracts the knowledge in the values of the current compressed infor-

mation. Using such knowledge together with the noisy observation received, it can

better extract both the values and the locations of the sparse coefficients in the in-

formation vector. The simulation results have shown that, compared to a standard

OMP algorithm performance, an improvement in the ratio of signal to reconstruction

error of up to 2 dB, at SNR=15 dB, can be achieved using the proposed approach.
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CHAPTER 1

THE COMBINED-JAMMING MODEL FOR IEEE 802.11 FH/MFSK

NETWORKS

1.1 Introduction

The performances of noncoherent slow frequency-hopping receiver with M -ary

frequency-shift-keyed modulation (NC-FH/MFSK) under various hostile jamming

have been widely studied in several publications in the past decades (see for exam-

ple [1, 2]). The term, independent multitone jamming (IMTJ), refers to a jamming

strategy in which the communication bandwidth is jammed by a pre-specified num-

ber of randomly distributed jamming tone: thus a jammed FH (frequency-hopping)

band may be jammed with as few as one tone to as many as M tones. In contrary,

partial-band jamming (PBJ) is the term use to represent the jamming strategy where

the total jamming power is spread evenly over a portion of the bandwidth. Thus, the

jamming signal is of a similar characteristic as the AWGN (additive white Gaussian

noise), except that it will cover only a fraction of the communication bandwidth.

In this chapter, the exact expressions for determining the BER performance

of a NC-FH/MFSK receiver in the presence of the IMTJ and the PBJ is derived.

Especially with the IMTJ, a new expression, which is developed from the analysis

in [1, 3], for calculating the performance of the receiver, is also proposed. This new

BER expression is considered as an alternative to that presented in [4]. It predicts the

same BER performance as reported in [4], but with the advantage of one numerical

integration less.
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Nevertheless, the main contribution in this chapter is from the different percep-

tion of the jamming signals taken when applying the expressions obtained from the

previous derivations. Specifically, let us consider a data network with nodes commu-

nicating via IEEE 802.11 NC-FH/MFSK interfaces. A transmission of one node may

cause interference to that of another node in its neighborhood if they occur simulta-

neously on the same frequency channel, so-called cochannel interference. Thus, to the

receiver, the cochannel interferences from these source nodes are equivalent to several

jamming tones in the IMTJ. Furthermore, when considering the interference from

external networks, it is found that major source of such interferences is generally the

signal from co-located IEEE 802.11 b/g networks. Interestingly, the characteristic of

this external interferences are somewhat similar to that of jamming signals in the PBJ

strategy. To determine the error of a given signal in the network, the two expressions

for the IMTJ and the PBJ are combined to obtain a new combined-jamming formula

that takes into account both the cochannel and the external interferences.

As an example application for the combined-jamming formula, consider the

channel assignment problem in multiradio NC-FH/MFSK wireless mesh networks

where each router node being equipped with multiple IEEE 802.11 NC-FH/MFSK

interfaces. Using multiple radio interfaces in wireless mesh networks has been widely

recognized as a solution for improving its throughput. However, as the number of

radio interfaces increases, router nodes in the network tend to interfere more with

each other. Unless the channels are carefully assigned to each interface, increasing

number of interfaces could, on the other hand, reduce the mesh throughput.

Several publications have proposed different CA algorithms to manage how each

interface should access to the shared medium (see for example [5, 6]). One of the most

important design issues for these algorithms is how to evaluate the current amount

of interferences on each frequency channel, in order to assign the most appropriate

2



channel to the interface being considered. To stay within the scope of the study, in

this chapter, the interference-aware algorithm in [5] is modified and incorporated with

the new combined-jamming formula to allow the algorithm to evaluate the amount

of interferences on the frequency channels.

This chapter is organized as follows: In Section 1.2 and Section 1.3, the expres-

sion for estimating the BER performance of an NC-FH/MFSK receiver in presence

of the IMTJ and PBJ is derived. In Section 1.4, the combined-jamming formula for

IEEE 802.11 NC-FH/MFSK networks is developed. In Section 2.4 a MR-FH WMN

is formulated as an example application for the combined-jamming formula in the

channel assignment problem. Section 5.5 concludes the chapter.

1.2 NC-FH/MFSK System Under IMTJ

From Figure 1.1, let assume there are N non-overlapping FH bands, each con-

taining M = 2K frequency bins, where K is the number of bits per transmitted

symbol of the M -ary FSK modulation. Hence, there are NM possible frequency

bins for a signal tone to be transmitted. If all FH bands are contiguous, the total

communication bandwidth thus equals to BT = NBh, where Bh is the bandwidth of

an FH band. The transmission bit rate of the system is Rb = KRs = K/Ts, where

Rs = 1/Ts denotes the symbol rate. The FH system is assumed to be slow hopping,

which means the hop period Th is a multiple of symbol period. The average received

power for a symbol, irrespective of the channels effect, is assumed to be Ps = Es/Ts,

where Es is the average symbol energy. The transmitted signal and jamming tones

are assumed to encounter an independent fading channel before arriving at the re-

ceiver, which uses a noncoherent detection scheme. All fading channels in this study

3



TN FH bands in total bandwidth B fsignal tone…..M = 4 frequency bins in FH band
Figure 1.1. FH band setup.

are modeled as slow fading, frequency non-selective Rician processes, whose PDFs

(probability density functions) are of the form

fX(x) =
x

ς2
exp

(
−x2 + α2

2ς2

)
I0

(
αx

ς2

)
u(x) (1.1)

where I0(·) denotes the zeroth order modified Bessel function and u(·) is the unit step

function. The symbols α2 and 2ς2 are the average power of the LOS (Line-Of-Sight)

ray and the average power of the scattering ray of the fading channel, respectively.

The total number of q ∈ [1, NM ] jamming tones is assumed to be transmitted

from the jamming source. These interference tones are assumed to be uniformly

distributed over the entire bandwidth BT , and share equally the total power of PjT .

Thus, the received power for each jamming tone is Pj = PjT /q.

At the receiver, the received signal will be de-hopped and noncoherently de-

tected. The receive signal after de-hopped can be represented as

r(u, t) = x
√

2P cos(ωmt + φ) + n(u, t) (1.2)

where x is a Rician random variable representing the envelope of the fading channel

and its PDF can be represented as (1.1). P is the average received power of the tone,

ωm is the angular frequency for an MFSK (M-ary FSK) symbol, φ is unknown phase,

and n(u, t) is AWGN with a variance (or power) σ2
n = N0/Ts.
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Because there can be zero or up to min(q,M) jamming tones in a jammed

FH band, hence the probability of symbol error (or symbol error rate, SER) of the

NC-FH/MFSK system can be calculated by

Ps(e) = P0 · Ps0(e) +

min(q,M)∑
n=1

Pn · Psn(e) (1.3)

where P0 and Pn are the probabilities that an FH band is jammed by zero and

n jamming tones, where 1 ≤ n ≤ min(q, M). Ps0(e) and Psn(e) are the SER’s

corresponding to the specified number of jamming tones. Finally, the probability of

bit error (Bit Error Rate, BER) can be calculated as

Pb(e) =
M/2

M − 1
Ps(e) (1.4)

1.2.1 The SER When No Jamming Tone is in the FH Band

The probability that a chosen FH band does not contain a jamming tone can

be given by

P0 =
M−1∏

k=0

(1− q

NM − k
) (1.5)

The SER given there is no jamming tone (the FH band is not jammed) can be obtained

from [1], [7], and [8] as

Ps0(e) =
M−1∑
v=1

(−1)v+1

1 + v(1 + 2ς2s
σ2

n
)

(
M − 1

v

)
exp


 −v α2

s

σ2
n

1 + v(1 + 2ς2s
σ2

n
)


 (1.6)

where α2
s and 2ς2

s are the average LOS power and the average scattering power of the

signal symbol.
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1.2.2 The SER When n Jamming Tones are in the FH Band

The probability that an FH band will be jammed by 1 ≤ n ≤ min(q,M)

jamming tones is given by

Pn =
n−1∏

k=0

(
q − k

NM − k
)

M−1∏
j=n

(1− q − n

NM − j
) (1.7)

There are two cases, in which an error can occur. The first is the case when the signal

tone is jammed by one of n jamming tones in the FH band, and the probability that

one of n jamming tones jam the signal tone is n/M . The second is when no jamming

tones is located in the same frequency bin as the signal, i.e. the signal tone is not

jammed. The probability of the second case is (M − n)/M . Hence, the SER when

the FH band is interfered by n jamming tones can be expressed as

Psn(e|n jamming tones) = (
n

M
)Psn(e|signal is jammed)

+ (
M − n

M
)Psn(e|signal is not jammed) (1.8)

1.2.2.1 The Signal Tone is Jammed

When the signal tone is jammed, the average power at the detector output, in

the branch where the signal is present, can be expressed as

α2
sj = α2

s + α2
j + 2αsαj cos ϕ (1.9)

where αj is the average LOS power of the jamming tone, and ϕ ∈[0,2π] is the random

phase difference between the signal tone and the jamming tone. To evaluate the SER

when the signal tone is jammed, [3] has provided a computational-efficient method

based on the use of phasor representations and noncentral chi-squared PDF’s. It can
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be shown that, for any two Rician random variables, say R1 and R2, P (R1 > R2) =

P (R2
1 > R2

2). In (3) of [3], the probability is given as

P (R1 > R2) = P (R2
1 > R2

2)

= Q

(√
2K1

b + 1
,

√
2K2b

b + 1

)

−
(

b

b + 1

)
exp

(
−K1 + K2b

b + 1

)
I0

(√
4K1K2b

b + 1

)
(1.10)

where K = α2/2ς2 is the Rician factor for the random variables, b=ς2
2/ς2

1 , and Q(x,y)

is the Marcum’s Q function. Without loss of generality, let assume that the signal

tone and one of the n jamming tones that jam the signal tone are present in the first

output branch of the detector and the rest of the n-1 jamming tones are in the next

consecutive branches. Therefore, the first to the nth output branches of the envelope

detector will have the PDF of the Rician distribution and the output of the rest of

the M − n branches will follow the Rayleigh distribution. The SER when there are

1 ≤ n ≤ min(q,M) jamming tones in the FH band and the signal tone is jammed

can be calculated as

Psn(e|signal is jammed) = 1− P{(R1 > R2) ∩ (R1 > R3) ∩ (R1 > R4)...}

= 1− P (R1 > R2)
n−1 · P (R1 > RM)M−n (1.11)

The second equality in (1.11) is based on each output of the detector branches being

independent of each other. Now, consider the first product term on RHS of the second

equality in (1.11). The conditional probability P (R1 > R2|ϕ) can be evaluated by

substituting the following parameters into (1.10)

K1 =
α2

sj

2ς2
s + 2ς2

j + σ2
n

, K2 =
α2

j

2ς2
j + σ2

n

, b =
2ς2

j + σ2
n

2ς2
s + 2ς2

j + σ2
n

(1.12)
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where ς2
j is the scattering power of the jamming tones. Similarly, by treating a

Rayleigh random variable as a special case for Rician random variable, the probability

for the second product term with a condition on ϕ can be obtained as

P (R1 > RM |ϕ) = 1− σ2
n

2(ς2
s + ς2

j + σ2
n)

exp

[ −α2
sj

2(ς2
s + ς2

j + σ2
n)

]
(1.13)

By substituting (1.12) in (1.10) to obtain the probability of the first product term

with a condition on ϕ, using (1.13) for the probability of the second product term

with a condition on the same variable, and integrating (1.11) over ϕ, the complete

expression for the SER for the casecan then be obtained.

Psn(e|signal is jammed)

= 1− 1

2π

∫ 2π

0

{
Q

(√
α2

sj

ς2
T + ς2

j

,

√
α2

j

ς2
T + ς2

j

)
− 2ς2

j + σ2
n

2(ς2
T + ς2

j )
exp

[
− α2

sj + α2
j

2(ς2
T + ς2

j )

]

×I0

(
2αsjαj

ς2
T + ς2

j

) }n−1 {
1− σ2

n

2ς2
T

exp

(
−α2

sj

2ς2
T

)}M−n

dϕ (1.14)

where

ς2
T = ς2

s + ς2
j + σ2

n (1.15)

1.2.2.2 The Signal Tone is not Jammed

If none of the jamming tones in the FH band are in signal branch, n+1 output

branches of the envelope detector will follow the Rician distribution and the rest of

the M −n− 1 branches will follow the Rayleigh distribution. Again, assume that the

signal tone is present in the first output branch and each of the n jamming tones is

in the next consecutive branches. In this case, the SER can be expressed as

Psn(e|signal is not jammed) = 1− P{(R1 > R2) ∩ (R1 > R3) ∩ (R1 > R4)...}

= 1− P (R1 > R2)
n · P (R1 > RM)M−n−1 (1.16)
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Figure 1.2. The BER performances for NC-FH/4FSK with Rician fading channels
against the tone jamming ratio,γ = q/N , at various SJR values.

The probability P (R1 > R2) can be calculated by substituting the following parame-

ters into (1.10)

K1 =
α2

s

2ς2
s + σ2

n

, K2 =
α2

j

2ς2
j + σ2

n

, b =
2ς2

j + σ2
n

2ς2
s + σ2

n

(1.17)

By the same means, the conditional probability for the second product term is found

to be

P (R1 > RM) = 1− σ2
n

2(ς2
s + σ2

n)
exp

[ −α2
s

2(ς2
s + σ2

n)

]
(1.18)

Finally, the total SER of the NC-FH/MFSK system under the IMTJ can be com-

puted by substituting the corresponding terms into (1.3). Compared to Figure 6 of

[4], Figure 1.2 illustrates the same BER performances by using the analysis provided

in this section. Nevertheless, it should be noted that the probability of symbol er-

ror given that the FH band is jammed by n jamming tones in the signal branch is

calculated in (19) of [4] using a numerical approach on the double-integral equation

while, in (1.14), the same probability can be evaluated more efficiently using single

numerical integration.
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1.3 NC-FH/MFSK System Under PBJ

With the PBJ strategy, it is assumed the total jamming power, PjT , is being

spread evenly over a continuous bandwidth Bj. Hence, the jamming signal will have

a very similar characteristic to the AWGN: thus, from this point forward, is referred

to as the jamming noise.

If BT denotes the communication bandwidth, the jamming ratio can then be

represented as ρ = Bj/BT ≤ 1. This jamming ratio represents the fraction of band-

width that is jammed by the jamming noise. Further, the power spectral density

(PSD) of the jamming noise can be represented as

Nj =
PjT

Bj

=
PjT

BT

· BT

Bj

=
NjT

ρ
(1.19)

where NjT = PjT /BT is the equivalent PSD level of the jamming noise when spread

over the bandwidth BT .

For simplicity, it is assumed that, if an FH band is jammed, the entire M

frequency bins of the FH band will be jammed. Based on this assumption, an FH

band can be jammed with the probability of ρ and not jammed with the probability

of 1 − ρ. When jammed, the total noise power σ2
T in the FH band can be expressed

as

σ2
T = σ2

j + σ2
n =

NjT

ρTs

+
N0

Ts

(1.20)

The total SER of an NC-FH/MFSK receiver under PBJ can thus be expressed as

Ps(e) = P (FH jammed) · Ps(e|FH jammed)

+P (FH not jammed) · Ps(e|FH not jammed)

= ρ · Ps(e|FH jammed) + (1− ρ) · Ps(e|FH not jammed) (1.21)
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1.3.1 The SER When the FH Band is Jammed

If an FH band is jammed, the jamming noise will superimpose the AWGN and

the total noise power, σ2
T , can be found using (1.20). The SER given that the chosen

FH band is jammed can be calculated from

Ps(e|FH jammed) =
M−1∑
v=1

(−1)v+1

1 + v(1 + 2σ2
s

σ2
T

)

(
M − 1

v

)
exp


 −v α2

s

σ2
T

1 + v(1 + 2σ2
s

σ2
T

)


(1.22)

1.3.2 The SER When the FH Band is not Jammed

When an FH band is not jammed, AWGN will be the only noise source cor-

rupting the transmitted signal tone. The SER given that the FH band is not jammed

can be found by replacing σ2
T in (1.22) with σ2

n.

1.4 The Combined-Jamming Formula

The questions to be raised at this point are how to make use of the expressions

obtained from these jamming models? Are there non-military applications to which

these expressions can be applied? To answer to these questions, let us first consider

a network of nodes with IEEE 802.11 NC-FH/MFSK radio as shown in Figure 1.3.

If some neighbors of a receiving node are transmitting data to their engaged partners

but they happen to use the same FH band occupied by the signal transmitted to it,

in this case, the receiver receives not only the signal tones from the expected source,

but also the unexpected cochannel interference tones from these neighbors. Except

for the fact that they come from different origins (rather than a single jammer), these

cochannel interference tones have, in fact, a similar characteristic to the jamming

tones in the IMTJ strategy. In the presence of the cochannel interferences, it is thus

possible to calculate the error rate as if the receiving node is being jammed by the

IMTJ.
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ABC D
EF Co-locatedNetwork

Figure 1.3. An illustration of interferences in an NC-FH/MFSK network. The signal
tone from node A to node B is corrupted by the cochannel interference tones from
node C and node E and by the external interference from co-located network.

Besides the interferences between nodes in the network, in most deployments,

there also are external interferences from the co-located wireless networks. For the

IEEE 802.11 NC-FH/MFSK network, which operates on the 2.4 GHz frequency spec-

trum, the most prominent interferer is, undoubtedly, the IEEE 802.11 b/g (WiFi)

wireless network, which has increasingly gained its popularity over the past decade.

Since WiFi devices use only one of the three non-overlapping frequency channels

defined by the standard, the WiFi signals are usually spread over a fraction of the

bandwidth by the direct sequence spread spectrum (DSSS) technique. When com-

pared together, the similarity between the WiFi signal and the PBJ noise can be

seen clearly. Suppose that the WiFi signal is the only interference from outside. This

allows modeling the external interference for the FH network as the jamming noise

in the PBJ strategy.

To determine the BER performance of an NC-FH/MFSK receiver in the pres-

ence of the cochannel interference tones and the external interference noise, a new

formula that combines the effect of the IMTJ and the PBJ needs to be developed.

The jamming-based expressions are, apparently, useful components to begin with.
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Now, assume an external interference noise from a WiFi network is detected and

spread over a bandwidth Bj of the entire bandwidth BT . For ease of presentation, A
is defined as the event that a chosen FH band is interfered by the interference noise

from a co-located WiFi network and A′ denotes the event that a chosen FH band is

not interfered by the interference noise. Clearly, P (A) is equal to the jamming ratio

ρ = Bj/BT and P (A′) is (1 − ρ). Based on (1.21), the probability of symbol error

can be calculated by

Ps(e) = P (A) · Ps(e | A) + P (A′) · Ps(e | A′) (1.23)

Provided that there are q cochannel interference tones from the other nodes, if a

chosen FH band is interfered, there can be as few as one and as many as min(q,M)

in the FH band. Let B0 denote the event that there is no interference tone in the FH

band (that is, the FH band does not experience the cochannel interference) and Bn

denotes the event that the FH band is experiencing 1 ≤ n ≤ min(q, M) interference

tones. If N is the total number of FH bands in the entire bandwidth P (B0) and

P (Bn) can be calculated from (1.5) and (1.7).

Hence, to include the effect of the cochannel interferences, (1.23) can be rewrit-

ten as

Ps(e) = P (A ∩ B0) · Ps(e | A ∩ B0) + P (A′ ∩ B0) · Ps(e | A′ ∩ B0)

+

min(q,M)∑
n=1

[
P (A ∩ Bn) · Ps(e | A ∩ Bn) + P (A′ ∩ Bn) · Ps(e | A′ ∩ Bn)

]

= P (A) ·
[
P (B0) · Ps(e | A ∩ B0) +

min(q,M)∑
n=1

P (Bn) · Ps(e | A ∩ Bn)
]

+P (A′) ·
[
P (B0) · Ps(e | A′ ∩ B0) +

min(q,M)∑
n=1

P (Bn) · Ps(e | A′ ∩ Bn)
]

(1.24)
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The second equality in the equation is derived based on the independency of the

interference tones and the interference noise, i.e.A is independent from event B0 and

Bn.

Consider the conditional probabilities in (1.24). Under event A′, AWGN is the

only noise corrupting the signal tone: thus, the total noise power σ2
T is equal to σ2

n.

Ps(e | A′ ∩ B0) and Ps(e | A′ ∩ Bn) can then be evaluated using (1.6) and (1.8). In

contrary, if the interference noise exists in the FH band, the total noise power now

becomes σ2
T = σ2

n+σ2
j . To calculate Ps(e | A ∩ B0) and Ps(e | A ∩ Bn), (1.6) and (1.8)

are used by replacing σ2
n with σ2

T .

With all these terms being substituted, the combined-jamming formula in (1.24)

can then be calculated. Nevertheless, there is certain restrictions that should be

pointed out in the combined-jamming formula. Recall that, in the IMTJ strategy,

each jamming tone is transmitted from the same jammer and received with an equal

average power because their propagation distances are the same. However, in the

IEEE 802.11 NC-FH/MFSK network, the cochannel interference tones may come

from different nodes; thus, their received powers may not equal, unless the interferers

are equally distant from the receiver. To obtain an accurate estimation using the

formula, it is required that the network of interest must contain nodes that are equally

spaced. An example of such a network is the honey-grid network where nodes are

placed on the hexagonal lattice.

Also, when the BER expression is derived for the IMTJ model, it was assumed

no two jamming tones are transmitted on the same frequency bin. Obviously, for

a single jammer, this assumption can easily be satisfied because the jammer has

a complete control on every tone it transmits. However, in the FH network, the

interference tones are received from different interferers, and there is no guarantee

that a frequency bin used by one interferer will not be used again by another. It
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is possible that more than one interference tones are located in the same frequency

bin: thus, the assumption is violated. To make the IMTJ expression valid for the

FH network, the FH system should be designed with a large number of FH bands so

that there are several frequency bins for each interferer to choose and the probability

that more than one interference tones are transmitted on the same frequency bin is

negligibly small.

1.5 Channel Assignment in Multiradio NC-FH/MFSK Wireless Mesh Networks

A multiradio wireless mesh network (MR-WMN) usually refers to an infrastruc-

ture network formed by a set of wireless routers, each with multiple radio interfaces,

to provide a backbone network access for the mesh clients, [9]. Due to the num-

bers of radio interfaces on each router node, the data received at a given node can

be forwarded through several destinations simultaneously. This increases the mesh

throughput. The most challenging question in MR-WMN is, however, the channel as-

signment, i.e., how to bind each radio interface to a radio channel so that a reasonable

gain in throughput can be achieved.

In general, the channel assignment (CA) is performed at the beginning phase

of the network by a CA algorithm, then the procedure is repeated periodically to

take into account dynamic changes in the network. To be able to determine ap-

propriate channels, a crucial task for the CA algorithm is to assess the condition of

each frequency channel or estimate the amount of interferences on each channels, [5]-

[10]. In [5], an interference-aware channel assignment algorithm has been proposed

for multiradio IEEE 802.11 a/b/g WMN. This centralized algorithm is designed by

taking into account both the cochannel interferences and the external interference

from co-located networks. To estimate and model the cochannel interferences, the

authors have developed the Multiradio Conflict Graph (MCG) while, for the exter-
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nal interference, the inherited IEEE 802.11 radio-sensing mechanism was adopted to

periodically monitor for unrecognized radios.

In this section, the interference-aware algorithm in [5] is reconsidered. The

combined-jamming formula is incorporated to the algorithm and allows it to assign the

frequency channels (later known as hopping patterns) to radio interfaces in multiradio

NC-FH/MFSK wireless mesh networks (MR-FH WMNs).

1.5.1 Network Model

The following assumptions and definitions are provided for modeling the mesh

network

(i) A backbone MR-FH WMN is constructed with nodes that are equipped with

at least two IEEE 802.11 NC-FH/MFSK radio interfaces used for sending and

receiving information and an additional control interface, which operates on a

different spectrum than the first interface and is used for control and signalling

purposes.

(ii) The network is deployed in a rural area and the operational spectrum is conta-

minated by only one co-located WiFi network. To acquire the optimal coverage,

every node is equally spaced from each other and they are perfectly aware of

their own locations.

(iii) The MR-FH WMN is assumed to be centralized. There is only one gateway

node at the center of the mesh, which is connected to the internet network. The

location and ID of the gateway node are known to every other node.

(iv) Transmission range is defined as the circular distance around the source node,

within which reliable communication can be achieved, assuming that there is no

interferences from other radios. Assume every node has the same transmission
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range, which approximately equals the distance from a node to its first-tier

neighbors, so-called one-hop distance.

(v) Interference range is the circular distance around the transmitting node, beyond

which the power received at the receiving node is negligible. The interference

range for each node is assumed homogeneous and equal to the distance from a

node to its second-tier neighbors, so-called two-hop distance.

According to the standard, the IEEE 802.11 NC-FH/MFSK interface is oper-

ated in the ISM 2.4 GHz band. A bandwidth of 83.5 MHz is divided into 79 FH

bands to support the FH technique. To allow multiple access, three hopping patterns

(or patterns, for short) are further established with 26 FH bands per pattern [11].

Because the FH bands of these patterns are interleaving and non-colliding, simulta-

neous transmissions can be enabled. Notice that these hopping patterns is, in fact,

the counterpart of the frequency channels in the WiFi standard. With proper modi-

fication, the CA algorithms used for the WiFi network can thus be applied to the FH

one.

Irrespective of the standard values mentioned, to generalize this study, para-

meters are used, instead, to denote these values. That is the entire bandwidth BT

Hz is divided into N FH bands, which are further grouped into p interleaving and

non-colliding hopping patterns. Each hopping pattern contains Np = N/p FH bands.

Therefore, the total of frequency bins is equal to NpM . Because these patterns are

interleaving and non-colliding, each node can support concurrent data links, if the

links are performed on different patterns.

1.5.2 The CA Procedure and Algorithm

Algorithm 1.1 illustrates the CA algorithm, which is a modified version of that

in [5], for assigning hopping patterns in the MR-FH WMN. At the setup of the

17



network, each router node must instantly forward its information, e.g. node IDs,

locations, noise floor level, and number of interfaces, to the gateway node, using the

control radio. After the information is received, the gateway creates the map and the

Multi-radio Conflict Graph (MCG) of the network. The MCG is defined as a graph

G with vertices and edges. A vertex V in the MCG denotes a possible link between

any two nodes in the network that are within the distance of one hop from each other,

according to the transmission range previously defined. Also, an edge E between two

vertices of the MCG exists if the links represented by the two vertices are within the

two-hop interfering distance from each other (see [5] for more detail).

Once the MCG is available, the gateway starts the algorithm by listing all

vertices in the MCG into list V (Line 1). It will visit and assign patterns to vertices

in MCG by starting from the links that are fanning out from the gateway (Line 3-4).

The smallest hop count in the MCG is determined first in line 3 and, in line 4, all

vertices with distance from the gateway equal to smallest hop count are listed into

the waiting list L. In line 5, the vertices in list L are then sort according to their

distance to give priority to link closer to the gateway.

Next, the algorithm visits each vertex in L (Line 7-11). It searches all the

vertices that interfere with the current vertex vc and places them into the list Vn

(Line 12). Then, for each pattern, the algorithm finds the number of vertices using

the pattern and calculates the cost (BER) for the pattern (Line 15-17). In line 18,

the algorithm then compares the costs and assign the pattern k with minimum cost

to the current vertex.

In line 16, all vertices containing either radio from current vertex are placed

into a list R and being removed from the MCG in line 17 to assure that only one

pattern is assigned to each link. The radios in the list of vertices that do not belong

to the current vertex are temporarily assigned to next pattern number in Line 18.
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Algorithm 1.1: The CA algorithm for MR-FH WMN
Parameters: p = Total number of hopping patterns

Np = Total number of sequences per pattern
1: V = {v | v ∈ MCG}
2: while NotAllVerticesVisited (V ) do
3: h = SmallestHopCount(V )
4: L = {vl | vl ∈ V & NotVisited(vl) & HopCnt(vl) = h}
5: Sort(L)
6: while Size(L) > 0 do
7: vc = RemoveHead(L)
8: Visit(vc)
9: Vn = {vn | vn ∈ MCG & EdgeInMCG(vn,vc)=True}
10: for m =1 to p

11: V m
n = {vm

n | vm
n ∈ Vn & Pattern(vn)=m}

12: qm =Cardinality (V m
n )

13: Costm = f(qm, V m
n )

14: end for
15: Choose pattern k with min. cost for vc

16: R = {vr | vr ∈ MCG & has either radio from vc}
17: RemoveVerticesInListFromMCG(R)
18: Temporarily assign pattern k ′ to radios in R that are not of vc

19: Let rf be router node with interface in vc that is farthest away from the gateway
20: Let Tail be list of all active v ∈ MCG such that v contains an interface from rf

21: Sort(Tail)
22: AddToList(L, Tail)
23: end while
24: Permanently assign patterns to radios yet assigned with permanent patterns
25: end while

Then, in line 19-22, the vertices in the next level are attached to the waiting list L and

the algorithm continues until all vertices in MCG are visited. In line 24, the radios

that have not been assigned by the algorithm because the vertices containing it were

deleted in line 17 are permanently assigned to the patterns temporarily assigned to

them in line 18.
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1.5.3 Example Assignment

An example of the MR-FH WMN that satisfies the previous assumption is

shown in Figure 1.4. Here, six router nodes are used to form a simple mesh network

with node A as the gateway node. Each node is labeled corresponding to name and

number of FH interfaces. For example, A-2 means node A is equipped with two NC-

FH/MFSK interfaces. Also, the total of N = 78 FH bands are divided just p = 2

hopping patterns, as seen in Figure 1.5, so that there are Np = 39 FH bands in each

pattern.

The power of jamming noise received at each node depends on how far the node

is from the co-located WiFi network. The parameter σ2
jk is defined as the power of

the jamming noise being received at router node k. Because two hopping patterns

are formed by interlacing FH bands, NJ jammed FH bands are equally partitioned to

each pattern. Consequently, the jamming ratio in hopping pattern i, ρi, is the same

as the entire-bandwidth jamming ratio, ρ. It is assumed that σ2
jk at any node k and

ρi are known to the gateway after a pre-install site survey.

Assume the gateway node A has run the algorithm for a period of time and

some of the links have already been assigned with hopping patterns; A↔B (the link

between node A and node B) and C↔E are assigned to pattern 1 while A↔C and

B↔D are allocated to pattern 2. For the time being, both node C and node F have

one radio interface available and it will be used to create a link C↔F. The algorithm

is now considering an appropriate pattern for the link. Figure 1.6 shows the current

MCG of the network.

Because, in this centralized network, the priority should be given to the nodes

that are closest to the gateway, when consider an appropriate hopping pattern for

C↔F, the algorithm must choose one that minimizes the interferences received at

node C. Hence, node C should be considered as a reference receiver and every link
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Figure 1.4. An MR-FH WMN for the example assignment.Pattern1Pattern21 2 3 4 5 787776

Figure 1.5. By interlacing N = 78 FH bands, hopping pattern 1 and 2 are formed by
39 odd-number FH bands and 39 even-number FH bands, respectively.

within its two-hop radius is considered a conflict/interfering link to C↔F; namely

A↔B, A↔C, and C↔E.

From the loop in line 10-14, the algorithm must consider both pattern 1 and 2

when determining an appropriate for C↔F. However, to make this chapter concise, let

us consider only the case when pattern 1 is being considered and note that the same

logic is applied for the other pattern. If C↔F is to be assigned to pattern 1, A↔C,

which is already assigned to pattern 2, is no longer considered as its interference:

hence, the cost or BER calculation at node C should take into account only A↔B

and C↔E. Also, to consider the extreme case, the algorithm assumes q1 = 2 cochannel

interference tones are sent from node A and node E, which are closer to node C. The

received powers of the signal from node F and the interference tones from node A

and node E can be found using the free-space pathloss model, [12],

Pkl = K
PT

d2
(1.25)
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A1, B1A2, C1C2, E1C3, F1 B2, D1
Figure 1.6. The current MCG of the network with some vertices already been removed
by the algorithm in line 16-17. The grey vertex representing C↔F is being considered
in the algorithm.

where d is the distance between transmitting and receiving node, Pkl is the received

power of the signal from node k to node l, and PT is the transmitted power. The

constant K can be determined by the transmitting and receiving antenna gains. Since

the nodes are assumed to be equally spaced, PAC and PEC are almost equal. The

average of these powers can be used as the power of each interference tone received

at node C (PjC).

Table 1.1 illustrates the values for some important parameters used in (1.24)

to calculate the SER when C↔F is to be assigned with pattern 1. Note that, in

the table, the scattering ray powers for signal and interference tones are set to zero

because no fading channel is assumed in this example. In general, the parameters can

be set accordingly to reflect the actual characteristic of the fading channel.

1.5.4 Simulation Results

In this subsection, SIR (signal-to-interference-noise ratio) is defined as the ratio

of signal power to interference noise power from the co-located network and SNR

(signal-to-noise ratio) as the ratio of signal power to AWGN power. Mathematically,

these ratios can be expressed as

SIR =
Ps

σ2
jklog2M

, SNR =
Ps

σ2
nlog2M

(1.26)
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Table 1.1. Parameters for calculating SER when C↔F is assigned to the pattern 1

Variable Definition Value
N Total FH bands Np = 78/2
Ps Received power of signal tone PFC

Pj Received power of int. tone PAC+PEC
2

q Total number of int. tones q1 = 2
α2

s, α2
j LOS signal/int. power Ps, Pj

ς2
s , ς2

j Scattering signal/int. power 0
ρ Jamming ratio in the pattern ρ1

σ2
j Int. noise power at node C σ2

jC

For the scenario in Figure 1.4 with NC-FH/4FSK modulation, SIR equals

PFC/2σ2
jC and SNR equals PFC/2σ2

n. In the simulation, it is assumed that the

router node F is the closest node to node C, then node A, and node E, respectively.

But, because these nodes are spaced equally. Thus, their distances from node C are

not so different, and, consequently, the powers of the tones received at node C are set

to PFC = 1.1PAC = 1.2PEC . Furthermore, it is assumed that the co-located IEEE

802.11 b network is operating on one of the three non-overlapping channels in 2.4

GHz band. So, ρ is set to approximately 0.3 and ρ1 = ρ2 = ρ = 0.3 because the

hopping patterns are interlacing.

From Figure 1.7, it can be observed that, regardless of the SIR value, the

BER obtained when C↔F is assigned to the hopping pattern 1 always larger than

that when assigned to the hopping pattern 2. Thus, the CA algorithm assigns the

hopping pattern 2 to C↔F. It can be observed that the interference noise contributes

a very little effect on the selection for the most appropriate pattern. This is because

it was assumed that the hopping patterns are interlacing. Hence, the effect of the

interference noise appears as a constant offset on every pattern and get cancelled

when the BER’s for each pattern are compared.
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Figure 1.7. The BER performances of C↔F with interlacing hopping patterns.
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Figure 1.8. The BER performances of C↔F with non-interlacing hopping patterns.

Now, if the FH bands are randomly partitioned then the hopping patterns will

no longer be interlacing. Each pattern is corrupted differently by the interference

noise. In this case, the selection can be made more accurately if the interference

noise is, as well, considered. Figure 1.8 illustrates the BER performances for the same

example, but with non-interlacing hopping patterns. In the simulation, it is assumed

there are NJ = ρN = 0.3 × 78 ≈ 23 total jammed FH bands; 4 of 23 jammed FH

bands are in pattern 1 and the rest 19 are in pattern 2. It can be observed that the

choice of the appropriate pattern is now depending not only on the interference tones
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Figure 1.9. The comparison between the performances obtained from the combined-
jamming model and the ITMJ model with non-interlacing hopping patterns.

but also on the external jamming noise received at node C. Unless the SIR is lower

than 8 dB, pattern 2 will be the most appropriate choice for C↔F. Comparing with

the result from Figure 1.7, it can seen clearly the influence of the external jamming

noise on the choice of the appropriate pattern when non-interlacing patterns are used.

Next, to emphasize the advantage of the proposed formula, Figure 1.9 illustrates

the comparison between the BER performances estimated by the new model and the

conventional IMTJ model for non-interlacing hopping patterns. Because the IMTJ

formula only considers the cochannel interferences, thus the hopping pattern 2, which

has only one cochannel interference tone, is appraised as the most appropriate pattern

for C↔F. However, with the effect of the coexisting network being considered, the

combined-jamming model could provide more accurate estimation and suggests, in

contradict, that hopping pattern 1 is, in fact, the more suitable pattern for C↔F.

Clearly, if the combined-jamming formula is not used, the CA algorithm would have

assigned C↔F to pattern 2 –though pattern 1 is the more proper choice– and the

capacity of C↔F would have been lost unnecessarily.
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1.6 Conclusions

In this chapter, the BER expressions for determining the performance of an NC-

FH/MFSK receiver under the IMTJ and the PBJ strategy have been derived. Then,

by viewing the jamming as interferences in IEEE 802.11 NC-FH/MFSK network,

these expressions are combined to create a combined-jamming formula, which can be

used for determining the performance of a node in the NC-FH/MFSK network, in

the presence of the cochannel interference and the external interference from a co-

located WiFi network. However, to obtain an accurate estimation from the combined-

jamming formula, it is required that each node in the network be equally spaced

and the number of FH bands in the system must be large enough. As an example,

the usefulness of the combined-jamming formula have been illustrated through the

channel assignment problem in multiradio IEEE 802.11 MR-FH/MFSK WMNs. Since

the developed formula has taken into account the most common interferences for such

FH network, it can be incorporated in a CA algorithm to evaluate the amount of

interferences in each frequency channel and assists the algorithm in determining the

most appropriate channel for each link.
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CHAPTER 2

IMPROVING PERFORMANCE OF MULTI-RADIO FREQUENCY-HOPPING

WIRELESS MESH NETWORKS

2.1 Introduction

Multi-radio wireless mesh network (MR-WMN) usually refers to an infrastruc-

ture network formed by a set of wireless routers, each with multiple radio interfaces,

to provide backbone network access for the mesh clients. Due to the numbers of radio

interfaces on each router node, the data received at a given node can be forwarded

through several destinations simultaneously: hence, increases in the mesh throughput.

The most challenging question in MR-WMN is, however, the channel assignment, i.e.,

how to bind each radio interface to a frequency channel so that a reasonable gain in

throughput can be achieved.

Several publications, see [5, 6, 13, 14, 15] for example, have proposed the algo-

rithms in the MAC-layer, which is called the channel assignment (CA) algorithms,

to carefully manage how each radio should access the shared medium. In [5], an

interference-aware channel assignment algorithm has been proposed for multi-radio

IEEE 802.11 a/b/g WMNs. This centralized algorithm is designed by taking into ac-

count both the cochannel interferences and the external interference from co-located

networks. To estimate and model the cochannel interferences, the authors have devel-

oped the Multi-radio Conflict Graph (MCG) while, for the external interference, the

inherited IEEE 802.11 radio-sensing mechanism was adopted to periodically monitor

for unrecognized radios.
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Pattern 2 = {2, 4, 6, 8, 10}

Figure 2.1. An example of the frequency spectrum BT with NT = 10 frequency slots
and two hopping patterns (p = 2).

In this chapter, a multi-radio frequency-hopping wireless mesh network (MR-FH

WMN) is studied. To accommodate the FH technique, the entire bandwidth is, first,

divided into frequency slots as shown in Figure 2.1. Then, to allow multiple access to

the shared medium, the frequency slots are further grouped to form hopping patterns,

similar to those defined by the IEEE 802.11 (FH) standard [11]. At this point, it is

noted that the hopping pattern concept here closely resembles the non-overlapping

frequency channels in the WiFi standard: thus, to assign hopping patterns to the

radio interfaces, the same CA algorithms for the WiFi networks can then be applied

to the MR-FH WMN. Nevertheless, while the existing studies on WMNs have

merely focused on improving the mesh capacity by reducing cochannel interferences,

in this chapter, the improvement from the fading channel by introducing the space-

time block coding (STBC) technique to the mesh is also considered. The STBC has

long been recognized as a very practical and powerful technique to combat against

fading channels. Using the STBC physical technique along with the MAC channel

assignment, the MR-FH WMN acquires two-folded immunity against two important

sources of deteriorations.

The performance of an isolated STBC link has been investigated in several pub-

lications. In the absence of the interference from other users (cochannel interference),
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[16] and [17] have illustrated that the STBC can provide remarkable performance at

the expense of almost no extra processing. However, under the influence of cochannel

interference, the improvement provide by the STBC still remains questionable.

The chapter begins by investigating the degradation of the STBC link perfor-

mance caused by cochannel interferences in the network. In Section 2.2, the mathe-

matical model for the received signal in the STBC MIMO networks is introduced. To

provide the theoretical background for the STBC, the coding and decoding processes

for the STBC are described in Section 2.2.2. In Section 2.3, the simulation results are

presented to illustrate the BER performances of an STBC MIMO link under various

interference environments. Then, in Section 2.4, an STBC MR-FH WMN is mod-

eled and a CA algorithm is used to assign hopping patterns to links in the mesh. In

Section 2.5, an adaptive transmission scheme that allows the transmitting node (TX

node) to determine the optimal number of antennas and choose the best antenna set

for the pending transmission is proposed. Section 5.5 concludes the chapter.

2.2 Signal Modeling and Space-Time Block Coding

2.2.1 MIMO Signal and Interference Modeling

Consider a wireless link between two nodes in a MIMO network. Assume that

the TX (transmitter) node and the RX (receiver) node use n antennas and m anten-

nas, respectively, to establish the communication. Also, the TX power is assumed to

be constant and equally allocated to each TX antenna used. During the transmission,

it is further assumed there are Q other nodes accessing the channel simultaneously

–hence cochannel interference is introduced– and each of these nodes uses nq TX an-

tennas, where q ∈ 1, 2, .., Q, for transmission. Hence, at the RX node, the total of Q

interferences are being received.
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Each antenna is assumed to undergo independent fading channel. Every channel

is assumed to be slow frequency-nonselective fading complex channel, whose envelope

is a Rayleigh random variable (rv). The complex channel gain for the path between

TX antenna i and RX antenna j is represented as hi,j, where i ∈ 1, 2, .., n and

j ∈ 1, 2, .., m, and the gain in each dimension of hi,j is modeled as independently and

identically distributed (IID) Gaussian rv with zero mean and the variance of 0.5 per

dimension. During the frame of length l, the channel gain is assumed to be constant,

but it varies from one frame to another (quasi-static channel).

At the time slot t, the desired signal ci
t is transmitted from antenna i=1,2,..,n

and the received complex baseband samples at a receive antenna j of the receiver can

be represented as

rj
t =

n∑
i=1

hi,j ci
t +

Q∑
q=1

nq∑

k=1

√
n

nqγq

gq,k,j zq,k
t + nj

t

=
n∑

i=1

hi,j ci
t + Ij

t + nj
t (2.1)

where gq,k,j represents the complex channel gain of the path between TX antenna k of

node q and the receive antenna j and zq,k
t is the TX symbol at time t from TX antenna

k of interfering node q. Because gq,k,j and zq,k
t are unknown to the receiver, Ij

t is thus

the rv denoting the sum of all interferences received at time t in antenna j. γq denotes

the ratio between the average received power of the desired signal and the average

received power of signal from an interfering node q. The symbol nj
t represents the

noise at the received antenna j at time t and can be modeled as a complex Gaussian

rv with zero mean and variance n
γ0

, where γ0 is the signal-to-noise ratio (SNR) or the

ratio between the average received signal power and the total noise power.
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2.2.2 Space-Time Block Code Encoding

In the STBC, the generator matrix (Gnkp) is defined as a matrix of size p× n,

where n is the number of TX antennas used in the transmission, k is the number of

symbols transmitted per block code, and p is the time slots required in transmitting

the coding block. For a given number of TX antenna, there are so many block code

designs that one can choose. In this chapter, the following generator matrices G222,

G348, and G448 proposed in [16] and [17] are used for transmitting with two, three, or

four TX antennas, respectively;

G222 =




s1 s2

s∗2 −s∗1


 (2.2)

G348 =




s1 s2 s3

−s2 s1 −s4

−s3 s4 s1

−s4 −s3 s2

s∗1 s∗2 s∗3

−s∗2 s∗1 −s∗4

−s∗3 s∗4 s∗1

−s∗4 −s∗3 s∗2




(2.3)
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G448 =




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 s∗4 s∗1 −s∗2

−s∗4 −s∗3 s∗2 s∗1




(2.4)

2.2.3 Space-Time Block Code Decoding

As an example of the STBC decoding/detection process, let us consider the

receiver for the Alamouti’s STBC shown in Figure 2.2, where only two RX antennas

are assumed at the receiver.
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Figure 2.2. Alamouti’s space-time block code decoder with two receiving antenna.

At time slot 1, the transmitting node simultaneously transmits s1 from antenna

1 and s2 from antenna 2 and rj
1 has been received at the received antenna j. Then, at

time slot 2, s∗2 and −s∗1 are simultaneously transmitted from antenna 1 and antenna

32



2 and the received signal at antenna j is rj
2. With cochannel interference being

considered, rj
1 and rj

2 can be expressed using (2.1) as

r1
1 = h1,1 s1 + h1,2 s2 + I1

1 + n1
1

r1
2 = −h1,1 s∗2 + h1,2 s∗1 + I1

2 + n1
2

r2
1 = h2,1 s1 + h2,2 s2 + I2

1 + n2
1

r2
2 = −h2,1 s∗2 + h2,2 s∗1 + I2

2 + n2
2 (2.5)

To detect the transmitted symbols, the receive signals can be passed to the

linear combiner to construct the following two combined signals for a soft decision

s̃1 = h∗1,1 r1
1 + h1,2 (r1

2)
∗ + h∗2,1r

2
1 + h2,2 (r2

2)
∗

s̃2 = h∗1,2 r1
1 − h1,1 (r1

2)
∗ + h∗2,2r

2
1 − h2,1 (r2

2)
∗ (2.6)

By using (2.5) in (2.6), it can be shown that

s̃1 = (
2∑

j=1

2∑
i=1

|hi,j|2)s1 + h∗1,1 I1
1 + h1,2 (I1

2 )∗ + h∗2,1I
2
1 + h2,2 (I2

2 )∗

+ h∗1,1 n1
1 + h1,2 (n1

2)
∗ + h∗2,1n

2
1 + h2,2 (n2

2)
∗

s̃2 = (
2∑

j=1

2∑
i=1

|hi,j|2)s2 + h∗1,2 I1
1 − h1,1 (I1

2 )∗ + h∗2,2I
2
1 − h2,1 (I2

2 )∗

+ h∗1,2 n1
1 − h1,1 (n1

2)
∗ + h∗2,2n

2
1 − h2,1 (n2

2)
∗ (2.7)

Then the soft decision s̃1 and s̃2 are sent to two separate ML (maximum like-

lihood) detections, which will select any symbol sk ∈ S, where S is the set of all

possible symbols in the constellation, as the estimated symbol ŝ1 if sk minimizes the

following decision metric

|s̃1 − sk|2 + (−1 +
2∑

j=1

2∑
i=1

|hi,j|2) |sk|2 (2.8)
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Figure 2.3. Gray Mapping for QPSK and 16QAM.

and select sl ∈ S as the estimated symbol ŝ2 if sl minimizes

|s̃2 − sl|2 + (−1 +
2∑

j=1

2∑
i=1

|hi,j|2) |sl|2 (2.9)

For some other STBC designs, the detection scheme will be very similar to

that described here. The ML decision metrics for the STBC with three or four TX

antennas with different transmission rates are provided in [17].

2.3 Performance Simulations

In this section, the BER performances of MIMO communication are investi-

gated. Throughout the section, the BER performances with different TX antennas

will be presented, based on a given transmission bit rate at 2 bit/sec/Hz and assum-

ing that there are four receiving antennas used. Table 2.1 describes the transmission

scheme used for achieving the data rate required. For transmission with one antenna,

the STBC technique is applicable, hence the detection is performed using MRC and

ML scheme.
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Table 2.1. Investigated transmission schemes

Rate 1 TX ant. 2 TX ant. 3 TX ant. 4 TX ant.

2 bit/s/Hz QPSK QPSK 16QAM 16QAM
&G222 &G348 &G448
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Figure 2.4. Performance of an STBC MIMO link at rate 2 bit/sec/Hz without cochan-
nel interference (four RX antennas).

2.3.1 Transmission without Cochannel Interference

Figure 2.4 illustrates a benchmark performance for an STBC link without

cochannel interference. It can be seen that, at a SNR lower than 10 dB, the trans-

missions with QPSK with one and two antennas outperform the transmissions with

16QAM with three or four antennas, which have higher degree of diversity. This is

because the QPSK modulation is less vulnerable to noise than 16QAM modulation.

The improvement achieved via spatial and temporal diversities can be easily observed

when the transmission schemes that use the same constellation is considered. For ex-

ample, in the transmissions with three or four antennas, 16QAM is used, but with

different generator matrices, to achieve the transmission rate at 2 bit/sec/Hz. It
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is observed that the performance with four TX antennas always outperforms that

of three antennas because more diversity gain is achieved. The same is true when

comparing the transmissions with one and two antennas.

2.3.2 Transmission with Cochannel Interference

To take into account interference, a signal-to-interference ratio (SIR) is defined

as the ratio between the average received signal power and the average of aggregated

received power from every interfering node;

SIR =
1∑Q

q=1
1
γq

(2.10)

where γq is the ratio between the average received power of the desired signal and the

average received power of signal from interfering node q.

2.3.2.1 One interferer

First consider when Q = 1 and assume that the interferer is using G222 and

QPSK for transmission. Figure 2.5 illustrates the BER performance of a 2x4 link

(two TX antennas and four RX antennas) with the rate of 2 bit/sec/Hz at different

SIR levels.

Compared to the BER for AWGN channel, Figure 2.5 clearly illustrates how

cochannel interferences degrade the performance of the link. At the same SNR level,

the BER values at SIR = 5 and 15 dB are higher that of the AWGN channel due to

the effect of the interference introduced. Besides, it can be observed that, high SNR

values, both curves become horizontal lines and the BER values appear constant,

despite the change in SNR. This is because, at high SNR, the interference becomes

the dominating source of error and, since interference power is fixed in each curve,

the BER remains unchanged.
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Figure 2.5. Performance of an STBC 2x4 link at rate 2 bit/sec/Hz with different SIR
levels, assuming Q = 1.

Figures 2.6 and Figures 2.7 illustrate the BER performances for transmission

rate 2 bit/sec/Hz with different number of TX antennas at SIR = 5 and 15 dB, re-

spectively. For SIR = 5 dB in Figures 2.6, the effect of the cochannel interference can

be seen clearly in high SNR region as the BER curves get flattened irrespective of the

SNR change. Also, it can be observed that the transmission with one TX antenna

always outperform the transmission with three TX antennas because the QPSK mod-

ulation is less vulnerable to noise and interference than 16QAM modulation. Thus,

no further benefit can be achieved by increasing number of TX antennas from two to

three when the interference is high.

Besides the G222 with QPSK, in the study, extensive simulations are performed

and different type of transmission scheme listed in Table 2.1 is assigned to the inter-

ferer. Apparently, this would generally change the distribution of the interference.

However, the numerical results have indicated that, irrespective of the transmission

scheme used by the interferer, the BER performance obtained is quite similar to that

when G222 with QPSK is being assigned to the interferer. This implies that the type
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Figure 2.6. Performance of an STBC MIMO link at rate 2 bit/sec/Hz with Q = 1
and SNR=5dB.
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Figure 2.7. Performance of an STBC MIMO link at rate 2 bit/sec/Hz with Q = 1
and SNR=15dB.

of transmission scheme used by the interferer is probably not an important factor in

determining the BER performance.
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2.3.2.2 Five equal-power interferers

In the study, the cases when there are more than one interferer are also consid-

ered. First, assume there are five interferers and the interference from each interferer

reaches the RX node with the same power. The total sum of the interference power

is defined by SIR. The simulations have been performed for the case when all inter-

ferers are assigned with a fixed transmission, G222 with QPSK, and the case when

each interferer is assigned with a transmission scheme randomly chosen from those

listed in Table 2.1. From the results obtained, it can be observed that, with the total

interference power being fixed by SIR, the BER values obtained for both cases are

nearly the same and very similar to that of the previous case when Q = 1.

For example, the BER performances obtained at a transmission rate of 2 bit/sec/Hz

for 1x4, 2x4, 3x4, and 4x4 MIMO links with five interfering nodes (Q = 5) are listed

in Table 2.2, Table 2.3, Table 2.4, and Table 2.5, respectively. The results in these

tables were obtained by assuming that interferences are received with equal powers

and the transmission scheme used by each interferer is randomly chosen; hence, the

characteristics of the total interference received is random.

Observe that the BER performances obtained when more than one equal-power

interferers (Q = 5) are introduced are nearly the same as those obtained with the

same number of TX antennas used when there is only one interferer.

2.3.2.3 Five interferers with dominant interferers

Instead of having each equal-power interferences, a case when the power received

from D interferers are larger than the others is also considered, i.e. the SIR measured

is dominated by D interferers. Every dominant interferer is assigned with a power

which is twice as large as that of a regular interferer but the sum of all interferer’s
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Table 2.2. The BER values for the STBC links at rate 2 bit/sec/Hz using 1x4 MISO
with five equal-power interferers

SNR SIR = 5dB SIR = 15dB
Q = 1 Q = 5 Q = 1 Q = 5

5 dB 0.0353 0.0331 0.0124 0.0105
10 dB 0.0220 0.0195 0.0025 0.0011
15 dB 0.0164 0.0139 1.3e-4 1.5e-4
20 dB 0.0150 0.0124 1.1e-4 1.3e-4

Table 2.3. The BER values for the STBC links at rate 2 bit/sec/Hz using 2x4 MIMO
with five equal-power interferers

SNR SIR = 5dB SIR = 15dB
Q = 1 Q = 5 Q = 1 Q = 5

5 dB 0.0210 0.0251 0.0055 0.0058
10 dB 0.0125 0.0130 1.22e-4 2.23e-4
15 dB 0.0078 0.0068 7e-6 6.5e-6
20 dB 0.0062 0.0069 5e-6 2.81e-6

Table 2.4. The BER values for the STBC links at rate 2 bit/sec/Hz using 3x4 MIMO
with five equal-power interferers

SNR SIR = 5dB SIR = 15dB
Q = 1 Q = 5 Q = 1 Q = 5

5 dB 0.0541 0.0602 0.0192 0.0191
10 dB 0.0336 0.0354 0.0027 0.0028
15 dB 0.0321 0.0330 4e-4 3.6e-4
20 dB 0.0303 0.0311 1.6e-4 2.2e-4

Table 2.5. The BER values for the STBC links at rate 2 bit/sec/Hz using 4x4 MIMO
with five equal-power interferers

SNR SIR = 5dB SIR = 15dB
Q = 1 Q = 5 Q = 1 Q = 5

5 dB 0.0454 0.0505 0.0172 0.0177
10 dB 0.0295 0.0303 0.0022 0.0028
15 dB 0.0280 0.0295 2.4e-4 3.17e-4
20 dB 0.0267 0.0250 1.2e-4 1.6e-4
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powers is still restricted by the total interference power defined by the SIR. In the

simulations, the cases when D = 1 and D = 3 are considered. Based on previous

observations, the case when each interferer is assigned with a transmission scheme

randomly chosen from those listed in Table 2.1 is considered here.

The BER performances obtained at a transmission rate of 2 bit/sec/Hz for

1x4, 2x4, 3x4, and 4x4 MIMO links with a different number of dominant interferers,

i.e.,D = 1 and D = 3, are listed in Table 2.6, Table 2.7, Table 2.8, and Table 2.9,

respectively. From the results obtained, it can be observed that, with the total

interference power fixed by SIR, the BER values obtained for both when D = 1

and D = 3 are nearly the same and they are also close to those values obtained in

the previous case when five interferers are of equal power (D = 0).

In summary, it can be observed from the results in this section that, even

with interferences, the temporal and spatial diversities deployed in the STBC can

still help improving the performance against fading channel. As previously observed,

the transmissions with one or two TX antennas both require QPSK modulation to

achieve the given rate of 2 bit/sec/Hz. But, with two TX antennas, G222 is deployed

and higher diversity gain is obtained, the performance with two TX antennas is thus

always better than that with one antenna. Similarly for the transmissions with three

or four TX antennas, both require 16QAM modulation and the performance with

four antennas is always better.

However, because the transmissions with three or four TX antennas require

more aggressive modulation scheme to achieve the given data rate, the performances

achieved by the transmissions with three or four TX antennas can be worse than

those with one or two TX antennas, especially when the interference power is high.

This means using the STBC technique with multiple antennas can improves the link

performance but, depending on the operating SIR and SNR levels, one must carefully
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Table 2.6. The BER values for the STBC links at rate 2 bit/sec/Hz using 1x4 MISO
with different number of dominant interferers

SNR SIR = 5dB SIR = 15dB
D = 0 D = 1 D = 3 D = 0 D = 1 D = 3

5 dB 0.0331 0.0345 0.0360 0.0105 0.0098 0.0111
10 dB 0.0195 0.0212 0.0267 0.0011 0.0017 0.0020
15 dB 0.0139 0.0155 0.0169 1.5e-4 1.39e-4 1.22e-4
20 dB 0.0124 0.0138 0.0124 1.3e-4 9.6e-5 1.6e-4

Table 2.7. The BER values for the STBC links at rate 2 bit/sec/Hz using 2x4 MIMO
with different number of dominant interferers

SNR SIR = 5dB SIR = 15dB
D = 0 D = 1 D = 3 D = 0 D = 1 D = 3

5 dB 0.0251 0.0250 0.0254 0.0058 0.0062 0.0068
10 dB 0.0130 0.0148 0.0150 2.23e-4 2.81e-4 1.82e-4
15 dB 0.0068 0.0069 0.0080 6.5e-6 1.2e-5 4.13e-6
20 dB 0.0069 0.0055 0.0078 2.81e-6 4.13e-6 3.2e-6

Table 2.8. The BER values for the STBC links at rate 2 bit/sec/Hz using 3x4 MIMO
with different number of dominant interferers

SNR SIR = 5dB SIR = 15dB
D = 0 D = 1 D = 3 D = 0 D = 1 D = 3

5 dB 0.0602 0.0610 0.0630 0.0191 0.0191 0.0194
10 dB 0.0354 0.0375 0.0380 0.0028 0.0035 0.0037
15 dB 0.0330 0.0342 0.0356 3.6e-4 1.81e-4 2.2e-4
20 dB 0.0311 0.0316 0.0328 2.2e-4 1.6e-4 1.13e-4

Table 2.9. The BER values for the STBC links at rate 2 bit/sec/Hz using 4x4 MIMO
with different number of dominant interferers

SNR SIR = 5dB SIR = 15dB
D = 0 D = 1 D = 3 D = 0 D = 1 D = 3

5 dB 0.0505 0.0532 0.541 0.0177 0.0180 0.0192
10 dB 0.0303 0.0354 0.0385 0.0028 0.0032 0.0035
15 dB 0.0295 0.0310 0.0330 3.17e-4 4.81e-4 4e-4
20 dB 0.0250 0.0285 0.0310 1.6e-4 1.81e-4 2.17e-4
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consider not to use too many TX antennas, which could result in a worse performance

than a simple transmission with one antenna. Yet, when SIR is high or when there is

no cochannel interferences, it is observed that the transmission with the STBC tech-

nique via multiple TX antennas always provide better or nearly the same performance

as when transmitting with one antenna without the STBC. Hence, to always achieve

the benefit of the STBC technique, one must, again, try to avoid having cochannel

interferences on the link.

With further investigation on the effect of interference characteristic on the

link performance, it has been observed that, for a given sum of interference power or

for a given SIR, the factors like what type of the transmission schemes used by the

interferers, how many interferers, or whether there are dominant interferers are not

exactly significant factors in determining the link performance.

2.4 Multi-Radio Frequency-Hopping Wireless Mesh Network with the STBC

2.4.1 Network Model

The following assumptions and definitions are provided for modeling the mesh

network

(i) A backbone MR-FH WMN is constructed with nodes that are equipped with at

least two FH radio interfaces designated for sending and receiving information

and an additional control interface, which operates on a different bandwidth

than that of the FH interface and is used for controlling and signalling purposes.

(ii) Every FH interface uses an array of four antennas and has the same RF pa-

rameters, e.g., transmission power and antenna gain. Every node knows and

keeps monitoring its own noise floor level.
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(iii) The network is deployed such that every node is equally spaced from each other

and they are perfectly aware of their own location.

(iv) The MR-FH WMN is assumed to be centralized. There is only one gateway

node at the center of the mesh, which is connected to the internet network. The

location and ID of the gateway node are known to every other node.

(v) Transmission range is defined as the circular distance around the source node,

within which reliable communication can be achieved, assuming that there is no

interferences from other radios. Assume every node has the same transmission

range, which approximately equals the distance from a node to its first-tier

neighbors. This is called one-hop distance.

(vi) Interference range is the circular distance around the transmitting node, beyond

which the power received at the receiving node is negligible. The interference

range for each node is assumed homogeneous and equal to the distance from a

node to its second-tier neighbors, so-called two-hop distance.

2.4.2 Frequency Hopping Parameters

Within the entire frequency bandwidth BT designated for data, let assume there

are NT FH bands with bandwidth Bh = BT

NT
= 1

Ts
per FH band (Bh is determined

by the coherent bandwidth of the channel, i.e. channel bandwidth). To achieve

the greatest benefit with a node having multiple data interfaces, NT FH bands are

then partitioned into p interleaving and non-colliding hopping patterns, as shown in

Figure 2.1, to enable concurrent transmissions. Thus, each hopping pattern equally

contains Np = NT

p
FH bands. The order of the Np slots in each pattern forms a

hopping sequence (or sequence for short) for the the carrier frequency of the FH

interface to hop through. Assume that the frequency carrier is hopping slowly and

the hopping period Th is an integer multiple of the time required to transmit one
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Figure 2.8. The Latin square with Np = 5 and a = 2 and the output hopping
sequences obtained after mapping frequency slots in hopping pattern 1.

frame of data. That is, within one data frame, which is composed of several channel

estimation symbols and many STBC data coding blocks, the signals will remain in

the same frequency slot, hence the channel estimation performed at the beginning

of the data frame is still valid throughout the entire data frame and the frequency

hopping is blind to the coding and decoding scheme.

Since only one frequency slot in the pattern will be occupied by the modulated

signal, more than one node can be allowed to share the same pattern if their hopping

sequence are different during each hopping period. In other words, this means the

number of frequency channels can be increased by forming different sequences in each

pattern. Now, let consider the Latin square in Figure 2.8 with Np = 5 and a = 2.

The (i, j) element of the NpxNp Latin square matrix Ra is defined as, [18],

Ra
i,j = (a · i + j) mod Np (2.11)

where a ∈ 1, 2, ..., Np − 1 is an arbitrary number. To create Np non-overlapping

sequences, the slots in each pattern can be mapped to the rows of the square and let
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the columns represent the hopping periods. For example, in Figure 2.1, the pattern 1

is assigned with slots number 1, 4, 7, 10, 13 and the lower left illustration of Figure 2.8

shows the mapping of these slots to the rows of the Latin square matrix. After the

mapping process, Np = 5 different subpatterns can then be obtained for the first

pattern.

2.4.3 The Channel Assignment Procedure and Algorithm

For wireless mesh networks with multiple radio interfaces, it is widely known

that, as the number of interfaces increases, router nodes also tend to interfere more

with each other. Unless the channels are carefully assigned to each interface, increas-

ing the number of interfaces could, on the other hand, reduce the mesh throughput.

To mitigate the problem, in this subsection, an interference-aware CA algorithm is

proposed to assign hopping patterns to links in the STBC MR-FH WMN.

Algorithm 2.1 illustrates the CA algorithm, which is a modified version of that

in [5]. At the setup of the network, each router node must forward its information, e.g.

node IDs, locations, noise floor level, and number of interfaces, to the gateway node,

using the control radio. After the information is received, the gateway creates the

map and the Multi-radio Conflict Graph (MCG) of the network. The MCG is defined

as a graph G with vertices and edges. A vertex V in the MCG denotes a possible link

between any two nodes in the network that are within the distance of one hop from

each other, according to the transmission range previously defined. Also, an edge E

between two vertices of the MCG exists if the links represented by the two vertices

are within the two-hop interfering distance from each other (see [5] for more detail).

Once the MCG is available, the gateway starts the algorithm by listing all

vertices in the MCG into list V (Line 1). It will visit and assign patterns to vertices

in MCG by starting from the links that are fanning out from the gateway (Line 3-4).
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Algorithm 2.1: The CA Algorithm for the STBC MR-FH WMN
Parameters: p = Total number of hopping patterns

Np = Total number of FH bands per pattern
1: V = {v | v ∈ MCG}
2: while NotAllVerticesVisited (V ) do
3: h=SmallestHopCount(V )
4: L={vl | vl ∈ V and NotVisited(vl) and HopCount(vl) = h}
5: Sort(L)
6: while Size(L)> 0 do
7: vc=RemoveHead(L)
8: if Visited(vc) then
9: continue
10: end if
11: Visit(vc)
12: Vn = {vn | vn ∈ MCG and EdgeInMCG(vn,vc)=TRUE}
13: for m =1 to p
14: Vn,m = {vn,m | vn,m ∈ Vn and Pattern(vn)=m}
15: Qm=Size(Vn,m)
16: Costm = f(Qm, Vn,m)
17: end for
18: Choose hopping pattern k with the minimum cost and assign to vc

19: for h =1 to Np

20: Vn,k,h = {vn,k,h | vn,k,h ∈ Vn & Pattern(vn)=k & Subpattern(vn,k)=h}
21: Qh=Size(Vn,k,h)
22: Costh = f(Qh, Vn,k,h)
23: end for
24: Choose subpattern j in pattern k with the minimum cost and assign to vc

25: R = {vr | vr ∈ MCG and vr has either radio from vc)}
26: RemoveVerticesInListFromMCG(R)
27: Temporarily assign pattern k ′ and subpattern j ′ to radios in R
28: Let rf be router node with interface in vc that is farthest away from PAC
29: Let Tail be list of v ∈ MCG such that v contains an interface from rf

30: Sort(Tail)
31: AddToList(L, Tail)
32: end while
33: Permanently assign pattern to radios that are yet assigned
34: end while
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The smallest hop count in MCG is determined first in line 3 and, in line 4, all vertices

with distance from the gateway equal to smallest hop count are listed into the waiting

list L. In line 5, the vertices in list L are then sort according to their distance to give

priority to link closer to the gateway.

Next, the algorithm visits each vertex in L (Line 7-11). It searches all the

vertices that interfere with the current vertex and places them into the list Vn (Line

12). Then, for each hopping pattern, the algorithm finds the number of vertices

that uses the same hopping pattern and calculates the costs associated with the

hopping pattern (Line 15-17). In line 18, the algorithm then compares the costs for

each pattern and assigns the pattern k with minimum cost to the current vertex.

Similarly, in line 19-24, the algorithm finds subpatern j in the chosen pattern k that

gives minimum cost and assigns it to the current vertex.

In line 25, all vertices containing either radio from current vertex are placed in

to a list R and removed from the MCG in line 26 to assure that only one hopping

pattern is assigned to each radio. The radios in the list of vertices that do not belong

to the current vertex are temporarily assigned to the next pattern and subpattern

number (Line 27). Then, in line 28-31, the vertices in the next level are attached to

the waiting list L and the algorithm continues until all vertices in MCG are visited. In

line 33, the radios that have not been assigned by the algorithm because the vertices

containing it were deleted in line 26 are permanently assigned to the hopping patterns

and subpatterns temporarily assigned to them in line 27.

2.4.4 SER-Based Cost Function

It is noted that, to determine the most appropriate pattern for a link, the CA al-

gorithm must first evaluate and then compare the cost, or the amount of interference,

associated with each hopping pattern (Line 13-24). One of the most prominent can-
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didates for the cost function is undoubtedly one related with the link BER. However,

since nodes are free to use any transmission scheme that is proper to their operating

conditions, the characteristic of the interference from each node is diverse and it is

nearly impossible to capture such dynamic factors mathematically.

Fortunately, because the estimated costs are eventually compared together to

provide a binary decision as to which pattern provides better BER, as long as the

differences between patterns can be identified, whether an individual cost is correctly

estimated or not is obviously not at the highest concern. The results from the previous

chapter have shown that the error rate is most likely determined by large-scale para-

meters like the interference power, rather than its characteristic. Hence, to derive an

appropriate cost function, it is better to ignore how each interference is characterized

and try just to capture its large-scale behavior instead.

In this chapter, the cost function developed from the SER (symbol error rate) of

a link with two TX antennas is used. To derive such a cost function, let first consider

the soft decision outputs from the linear combiner in the STBC decoding like those

in (2.7). With the STBC, a MIMO link can be transformed to several SISO (single-

input single-output) links and the decisions for each transmitted symbol can be made

independently from these soft decision outputs. It can be shown that instantaneous

SNR for each of the soft decision outputs will be equal to 1
n

n∑
i=1

m∑
j=1

|hi,j|2 γ0. Variables

n and m are number of TX antennas and RX antennas used in the link. γ0 represents

the average SNR of received signal.

It can be observed that the same instantaneous SNR value can be obtained by

transmitting one symbol with a SNR equal to γ0/n over n ×m channels and using

MRC for detection. Therefore, the performance over each of these transformed SISO

channels will be the same as the performance of a system transmitting one symbol over

n×m channels and using MRC (maximum ratio combiner) for detection. In general,
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the average symbol error rate (SER) can be calculated using the instantaneous SNR

and then the result is averaged over the channel distribution.

For Rayleigh fading channel. The average SER for M -PSK with SNR equal γ0

n

can be obtained as, [19] and [20],

Ps(e) =
M − 1

M
−

(
1

π

√
1
n
γ0 sin2 π

M

1 + 1
n
γ0 sin2 π

M

) {(π

2
+ tan−1 α

) d−1∑

k=0

(
2i
i

)
[
4
(
1 + 1

n
γ0 sin2 π

M

)]i

+ sin(tan−1 α)
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Tuv

(1 + 1
n
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M
)u

[
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}

(2.12)

where

α =

√
1
n
γ0 sin2 π

M

1 + 1
n
γ0 sin2 π

M

cot
( π

M

)

Tuv =

(
2i
i

)
(
2(u−v)

u−v

)
4v[2(u− v) + 1]

and d = n × m is the number of independent channel paths between transmitting

and receiving nodes or the number of MRC branches. Then, by assuming that every

node is using G222 with BPSK modulation (M = 2), the SER for a link with one RX

antenna (m = 1) can be obtained from (2.12) as

Ps(e) =
1

2

{
1−

√
γ0

2 + γ0

(
1 +

1

2 + γ0

)}
(2.13)

This BER expression considers only the effect of AWGN on a particular trans-

mission with G222 and BPSK. Yet, because it depends only on the SNR, this expres-

sion is useful in determining appropriate pattern when the transmission scheme is

different. The next task is just to introduce the effect of interference into the expres-

sion. Now, consider a special case when all Q interfering nodes transmit using one
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TX antenna with QPSK modulation. Recalled from (2.1), the sum of all interferences

received at time t in antenna j, defined as Ij
t , can be expressed as

Ij
t =

Q∑
q=1

[√
n

nq · SIRq

·
nq∑

k=1

gq,k,j zq,k
t

]

It =

Q∑
q=1

√
2

SIRq

· gq zq
t (2.14)

where the second equality is due to the fact that there is only one antenna at the RX

node and all interfering nodes using one antenna to transmit. Consider the product

gq zq
t for certain interfering node q at time t. The rv gq represents the complex channel

gain between the TX antenna of node q and the RX antenna and can be modeled as

IID Gaussian rv with zero mean and the variance of 0.5 per dimension, i.e. N (µ=0,

σ2=0.5). The rv zq
t is the transmitted symbol from node q at time t and can be

modeled as a complex discrete rv. Therefore, if X = <{gq} and Y = <{zq
t }, and

Z = XY then, for a certain node q and time t, the conditional PDF of Z given Y

can be shown as,[21],

fZ(z | y) =
1

|y| fX(
z

y
| y) = N (µz = 0, σ2

z = y2σ2
x) (2.15)

Thus, fZ(z) can be calculated by summing over the set of Y . For any QPSK symbol,

the real part of the symbol is chosen from {
√

Pq

2
,−

√
Pq

2
}, where Pq is the average

power for node q;

fZ(z) =
∑
yi∈Y

fZ(z | yi)P (yi)

=
1

2

[
1

σx

√
Pqπ

· exp

( −z2

Pqσ2
x

)
+

1

σx

√
Pqπ

· exp

( −z2

Pqσ2
x

)]

=
1

σx

√
Pqπ

· exp

( −z2

Pqσ2
x

)
(2.16)

Obviously, these PDF’s are Gaussian distributions. This means the product between

<{gq} and <{zq
t } for QPSK modulation is a Gaussian rv. Similarly, it can be shown
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that the product between the complex numbers gq and zq
t is just the summation of

these Gaussian rvs, it is hence a complex Gaussian rv with zero mean and variance

equal to Pqσ
2
x = Pq

2
per dimension. Therefore, the signal received from all Q interfering

nodes at time t or It is also a zero-mean complex Gaussian rv.

Furthermore, since only one antenna is used on each interfering node, I1, I2,...,

It or the total sum of interferences at each time t are IID and their joint PDF is a

zero-mean multivariate Gaussian PDF, similar to that of the AWGN. Hence, from

(2.13), the cost function for the algorithm can be easily obtained by replacing the

average SNR (γ0) with the average signal-to-interference and noise ratio (SINR). The

required cost function can then be expressed as

f(SINR) =
1

2

{
1−

√
SINR

2 + SINR

(
1 +

1

2 + SINR

)}
(2.17)

where

SINR =
Ps

Q∑
q=1

Pq + N0

=
1

Q∑
q=1

1
γq

+ 1
γ

(2.18)

Ps is the average power of signal from the TX node and N0 is the one-sided power

spectral density of AWGN. If the TX powers and locations of nodes are known, 1
γq

can then be easily estimated by the free-space propagation model.

2.4.5 Example of Channel Assignment in the STBC MR-FH WMN

An example of the STBC MR-FH WMN that satisfies the previous assumptions

is shown in Figure 2.9. Here, six router nodes are used to setup a simple backbone

mesh network with node A as the gateway node. Each node is labeled corresponding

to its name and number of its information interfaces, for example A-2 means node

A is equipped with two FH interfaces. Assume that the entire bandwidth is divided

into p = 2 hopping patterns, each with Np = 5 FH bands. The Latin square in (2.11)
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B-2C-3E-1 A-2 D-11-01-1 2-0 GW 2-1F-1
Figure 2.9. An MR-FH WMN for the example assignment.A1, B1A2, C1C2, E1C3, F1 B2, D1

Figure 2.10. The current MCG of the network with some vertices being removed by
the algorithm in line 26 to assure only pattern is assigned to each link. The grey
vertex denoting C↔F is being considered by the algorithm.

with a = 2 was used to create five subpatterns for each hopping pattern as shown in

Figure 2.8.

Suppose the gateway node A has run the algorithm for a period of time and

some of the links have already been assigned with hopping patterns; A↔B (the link

between node A and node B) and C↔E are assigned to pattern 1-0 (subpattern0 of

hopping pattern1) and pattern 1-1 while A↔C and B↔D are allocated to pattern

2-0 and pattern 2-1. At the time being, both node C and node F have one radio

interface available and going to be used to create a link C↔F. The algorithm is now

considering an appropriate pattern for the link. Figure 2.10 shows the current MCG

of the network.

Because, in this centralized network, the priority should be given to the nodes

that are closest to the gateway, when consider an appropriate hopping pattern for

C↔F, the algorithm must choose one that minimizes the interferences received at
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node C. Hence, node C should be considered as a reference receiver and every link

within its two-hop radius is considered a conflict/interfering link to C↔F; namely

A↔B, A↔C, and C↔E.

From the loop in line 13-23, when determining an appropriate pattern for C↔F,

the algorithm must consider both pattern 1 and pattern 2, as well as their associat-

ing subpatterns. However, to make this chapter concise, let consider only the case

when pattern 1 is being considered and note that the same logic is applied for the

other pattern. If C↔F is to be assigned to pattern 1, A↔C, which already assigned

to pattern 2, will no longer interfere with it; hence, the cost function should take

into account only A↔B and C↔E. Note that, regardless of the subpattern number

assigned to them, the algorithm always consider two links interfering with each other

if they use the same hopping pattern.

Then, to consider the extreme case, the algorithm assumes Q1 = 2 cochannel

interferences are sent from node A and node E, which are closer to node C. The

received powers of the signal from node F and the interference tones from node A

and node E can be found using the free-space pathloss model;

Pkl = K
PT

d2
(2.19)

where Pkl is the received power of the signal transmitted from node k and received at

node l, PT is the TX power, and d is the distance between the nodes. The constant

K can be determined by the TX and RX antenna gains and the wavelength of the

transmitted signal.

Since all these RF parameters are already known, the received signal power

from node F can easily be calculated, PFC , and the received interference powers from

node A, PAC , and node E, PEC . Subsequently, γ1 = PFC

PAC
and γ2 = PFC

PEC
can be

computed. Furthermore, because the noise floor level at node C is already known
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to the gateway, the SNR level γ0 at node C can be easily calculated. Once, all the

parameters obtained, the SINR and the cost associated with pattern 1 can be found

by using (2.18) and (2.17).

Once a pattern is chosen, the algorithm then repeat the entire over to search

for an appropriate subpattern that provide the minimum cost. Finally, by using the

CA algorithm, patterns and subpatterns can be assigned to links in the network.

In practice, there are numbers of literatures proposing to improve the perfor-

mance of MIMO systems by introducing an additional filter process to suppress the

cochannel interferences in the received signal, before passing it to the decoding block.

For example, in [22], an additional MMSE (minimum mean square error) filter is pro-

posed and the authors have shown that the proposed method can effectively suppress

cochannel interference while preserving the space-time structure, thereby significantly

improving the systems interference suppression ability without significant bit error

rate performance degradation.

However, when being applied to the STBC, such pre-filtering processes would

inevitably damage the symmetry inherited in the received signals, making it impossi-

ble for the transmitted symbols to be detected independently; hence, discouraging the

use of the STBC technique. With the CA algorithm and the multi-radio frequency

hopping technique used in this chapter, the cochannel interference can be avoided by

assigning different channels to different links in the network. Because no additional

process is introduced for suppressing interference in the detection scheme, the sym-

metry in the received STBC signal is preserved. Compared to the MMSE filtering

technique, the channel assignment technique can be considered as another solution

for mitigating cochannel interference in the STBC MIMO networks while maintaining

the complete advantage of deploying the STBC technique.
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2.5 Adaptive Transmission Scheme with Channel Set Selection

From the results obtained in Section 2.3, it can be observed that using more

transmitting antennas does not always guarantee better BER performance. To decide

the best transmission scheme one must consider also the parameters such as SNR and,

especially, SIR levels at the RX node. Since the errors occurred in a transmission

depend mostly on the total interference power, a pre-estimated performance curve

can thus be used to determine the transmission scheme that provides the best perfor-

mance. Such pre-estimated BER curves can be obtained accurately by a test under

control environment at various SNR and SIR values.

In practice, it can be seen that the BER performance, though important, is

not the only goal to achieve in a data transmission. The amount of system resources

that are consumed within the processing of the transmitted symbols is also of equally

important consideration. Instead of achieving the best performance, when possible,

can more errors be tolerated by using a scheme with less TX antennas to make

data processing less complex and cut down the processing power and time? So, the

challenging question is whether or not the link performance can be compromised to

spare the processing resources.

In most wireless equipments, the BER threshold is usually defined in specifying

the effective data rate of the system. If base on the threshold value and select a

transmission scheme that provides the best trade-off between the error rate and the

number of TX antennas required, then the optimal point where the target data rate

can be achieved and system resources can be efficiently deployed is thus reached.

Figure 2.11 illustrates the adaptive transmission. Once a node (TX node) has data

designated for transmission to another node (RX node), it sends a service message to

notify the designated RX node. This service message is considered equivalent to the

RTS (request-to-send) message used in IEEE 802.11. Assume every node is well aware
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-  Detect and calculate error

ACK
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Case1:   no error

Case2:   error

Figure 2.11. The adaptive transmission protocol for optimizing number of transmit-
ting antennas.

of its own noise floor energy. Thus, when the RX node received the notify message,

it will calculate the current SNR level and start measuring the current amount of

cochannel interference to evaluate the SIR level. It is noted that, after the channel

assignment is performed, every radio interface of a node will communicate only to its

specific link partner (another interface of a neighbor node) assigned by the algorithm.

Therefore, to measure the interference amount, the receiving interface must measure

the power of every package received, but not originated from its designated partner.

Once the SNR and SIR are known, the RX node then uses these parameters

and the BER threshold for the current preset data rate, to look-up a pre-estimated

performance table. Next, it chooses the optimal transmission scheme that satisfies the

BER criteria, and reply to the TX node with an ACK service message to acknowledge

the transmission and to inform the TX node of the proper choice of transmission
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scheme. Hence, the data transmission can be executed accordingly. It can be observed

that, in the described protocol, the RX node will be the one choosing the transmission

scheme that is matched with its own settings and environments. In fact, the decision

can also be made at the TX node itself, but more signaling overheads may be required.

Furthermore, it is noted that the service messages must be transmitted using a default

transmission scheme to provide a way for both ends of the link to communicate

during the association stage when the exact choice of transmission scheme has yet

been finalized. Though relatively short, these messages are quite important to the

protocol. Hence, the default transmission that is used to transmit these messages

must be the transmission scheme that can achieve the best performance.

With the adaptive scheme, it is possible that some antennas may not be used for

the transmission. If, by some means, the TX node can acquire the knowledge about

the channels prior to the transmission, another degree of freedom is then acquired to

select the antenna set that best benefits the transmission. From Figure 2.11, it can

be observed that, before the actual data transmission, the RX node must send ACK

message to the TX node to acknowledge the data transmission request and inform

the optimal transmission scheme. Thus, if some known symbols are attached at the

end of every service message, including the ACK message, the TX node can then use

these symbols to estimate the most-updated channel gains.

Figure 2.12 illustrates an example structure of service message with the known

symbols at the end of service packets, so-called tail words. Though the default trans-

mission is chosen to be two TX antennas with the rate of 2 bit/sec/Hz, G222, and

QPSK modulation, but, in the tail word, four TX antennas will be used for channel

estimation purpose. The symbol S in the tail words represents a symbol in QPSK

constellation. At each time slot of the tail words, only one antenna of RX node will
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Figure 2.12. The service message structure with tail words for channel estimation.

transmit a known symbol S so that the TX node can estimate the channel gains on

the paths between each antenna pair.

By using the tail words, it is assumed that the most-updated channel gains can

be known to the transmitting node prior to the data transmission. Now, to select the

appropriate antennas, let consider the soft decision in (2.7) for a transmission with

two TX and two RX antennas using Alamouti’s G222. Due to the symmetry in s̃1 and

s̃2, just the soft decision s̃1 is considered, which can be expressed as;

s̃1 = (
2∑

j=1

2∑
i=1

|hi,j|2)s1 + h∗1,1 I1
1 + h1,2 (I1

2 )∗

+h∗2,1I
2
1 + h2,2 (I2

2 )∗ + h∗1,1 n1
1 + h1,2 (n1

2)
∗

+h∗2,1n
2
1 + h2,2 (n2

2)
∗ (2.20)

In this equation, |hi,j| is the envelope of channel between TX antenna i and RX

antenna j. The parameter Ij
t and nj

t are the interferences and noises received at time

slot t and RX antenna j. At different time t or different RX antenna j, The rvs

nj
t are IID zero-mean complex Gaussian and the rvs Ij

t are zero mean and variance

σ2
I =

Q∑
q=1

Pq. By nature, the rvs Ij
t and nj

t are independent. Suppose the rvs Ij
t for
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different time t or RX antenna j are all independent, the average power of s̃ can be

expressed from (2.20) as

σ2
s̃1

= α2 |s1|2 + α σ2
I + α σ2

n (2.21)

where α =
2∑

j=1

2∑
i=1

|hi,j|2. It can be observed that the instantaneous SIR and SNR in s̃1

are both equal to α, assuming Ij
t for different time t or antenna j are independent. If

α is maximized, then the performance of the ML detection in which the soft decision

is used is also maximized or, in other word, the
2∑

j=1

2∑
i=1

|hi,j|2 shall be maximized to

improve the link BER.

Obviously, the maximization can be performed just by choosing the first two

TX antennas that have the largest envelope sum over all RX antennas. This means,

among n TX antennas of the TX nodes, the antenna u and v that maximize the goal

must be chosen such that
2∑

j=1

|hu,j|2 ,
2∑

j=1

|hv,j|2 ≥
2∑

j=1

|hi,j|2 for i=1,2,..n and i 6= u, v.

Similar conclusion can also be drawn for more than two RX antennas or for the cases

of three TX antennas with G348 and four TX antennas with G448.

Note that, in (2.21), Ij
t for different time t or antenna j were assumed to be

independent. In practice, with the STBC technique, these rvs are usually correlated

(highly correlated) and this will make the SIR of the soft decision be somewhat

different from α. However, because the SNR remains unchanged, the error rate can

still be improved by the antenna selection criteria.

Figure 2.13 illustrates the performance improvement obtained by selecting the

best antenna set at SIR= 10 dB. It was assumed that there are four antennas at

the TX node but only two are used for the transmission at rate 2 bit/sec/Hz, QPSK,

G222. Also, it is assumed that there is only one interfering node, which uses the same

transmission scheme as the TX node. It is obvious that transmission with the best

antenna set (in this case, the best antenna set is the first two antennas with the
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Figure 2.13. Comparison between transmissions with and without the best antenna
set at SIR=10dB.

largest channel envelope sum over four RX antennas) can provide at least 5 dB gain

in SNR when compared to that without.

2.6 Conclusions

In this chapter, the performances of the STBC MIMO link under the influence

of cochannel interference have been investigated. Since there are various kinds of

generator matrices for the STBC, in this chapter, only the G222, G348, and G448

matrices are considered with widely used modulations, like QPSK, and 16QAM. The

simulation results have shown that, once the SIR is known, the factors such as the

number of interfering nodes, whether or not there are dominating interference sources,

or what transmission schemes are used in the interfering nodes are not important

factors in determining the error rate. Based on this observation, if the SIR and SNR

levels are given, the pre-estimated BER curves can then be plotted and used for

predicting the performance of the STBC link in practical situations.
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To further improve the STBC performance, an interference-aware CA algorithm,

similar to those used for IEEE 802.11 a/b/g networks, has been applied to properly

manage how radio interfaces in the STBC MR-FH WMN should access to the shared

media. This CA algorithm can be considered as a MAC-layer approach, which is used

to enhance the performances of the STBC links , while still achieving the full benefits

of the space-time code.

Based on the previous simulation results, it have been found that using more

antennas does not always guarantee a better performance; thus, to decide the optimal

number of antennas required and select the best antenna set, an adaptive transmission

scheme is proposed. The simulation results have illustrated that, for transmission with

G222 selecting the best antenna set can be improved the link performance by at least

5 dB, compared to that with arbitrarily chosen antennas.
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CHAPTER 3

CAPACITY OF WIRELESS HYBRID NETWORKS WITH SUCCESSIVE

INTERFERENCE CANCELLATION

3.1 Introduction

In wireless networks, nodes are allowed to exchange information with each other

over a common wireless channel. Under different traffic scenarios and different con-

straints (bandwidth, and power, for example), the amount of data that are exchanged

between the wireless nodes may vary. A key question that arises in such systems is

how the throughput capacity changes with a different network setup and how it grows

with the number of nodes in the network.

Wireless networks without support from fixed infrastructure is commonly known

as ad-hoc networks. Due to the lack of an infrastructure, data needs to be forwarded

to the destination via a multi-hop fashion. A well-known study in [23] has illustrated

that, when nodes are placed optimally, the per-node capacity decreases at Θ(1/
√

n)

as n tends to infinity. On the other hand, if nodes are randomly located, the per-

node capacity will decay faster at Θ(1/
√

n log n). Nevertheless, with a more general

information theoretic setting, the authors of [24] have proved that the rate higher

than Θ(1/
√

n log n) is achievable. Subsequently, in [25], the authors have applied the

percolation theory and provided a lower bound of 1/
√

n for the per-node capacity

of a network with randomly placed nodes; hence closing the gap in the capacity of

wireless networks.

Notice that the mentioned literature is focused mostly on static (immobile)

wireless nodes with typical communication scenarios. In fact, there are numbers of
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references that pay special attention to different aspects of the networks. In [26], the

authors have shown that the mobility of nodes can increase network capacity and the

per-node throughput of mobile ad-hoc networks is bounded by a constant, even as the

number of nodes (n) increases. Nevertheless, in [27], it has later been illustrated that

the use of more intelligent node cooperation and distributed MIMO communication

on static nodes can also achieve the same per-node throughput. Other than that,

there are also a large number of studies that considers different types of data traffic,

such as multicast. Examples can be seen in [28, 29].

In some scenarios, a set of base stations may be connected together by wired

links and placed within the ad-hoc network to form a wired infrastructure for en-

hancing the throughput performance of the ad-hoc network. The resulting network

is usually referred to as a hybrid wireless network. The capacity of the hybrid net-

works has also been studied widely in the literature, for example [30, 31]. In [30],

the benefit of the infrastructure is shown to be dependent on the number of base

stations in relation to the number of wireless nodes, and, for two-dimensional hybrid

network with b base stations, the maximum per-node capacity scales as Θ(b/n) if

base stations are added at a speed asymptotically faster than
√

n, i.e. b = Ω(
√

n).

Similarly, in [31], it has been shown that, if b = ω(
√

n), the maximum per-node

capacity of Ω(min(b/n, 1/ log b)) is achievable by delivering data through the wired

infrastructure. Otherwise, the percolation highway as in [25] must be used instead,

in order to achieve the maximum capacity.

In this chapter, the per-node throughput capacity that can be achieved in the

hybrid wireless networks of n wireless nodes and b base stations is investigated. Two

different transmission strategies, the infrastructure mode and inter-cell mode, are

considered. To determine which mode is proper, a scheduled source node will decide

on the location of the destination it selected. If the chosen destination is outside the
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coverage of the base station in which it is located, the infrastructure mode will be

selected. The scheduled source node will, first, send data to the base station in its

cell. The data is then transport through the infrastructure link to the base station

grid in which the destination is located and forwarded to the destination by the base

station. On the other hand, if the chosen destination is under the same cell as the

source, inter-cell mode will be activated and the data will be transmitted directly

(point-to-point) to the destination.

Unlike the previous studies in [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37], the study in this chapter will also apply an information theoretic technique for

multiple access channel to increase the throughput capacity of the network. Specifi-

cally, within each routing strategy, a set of nodes in the same cells as the scheduled

source node is allowed to simultaneously transmit to the destination if such transmis-

sions do not impair the achievable transmission rate of the scheduled source. These

nodes are referred to in this chapter as the ( opportunistic) sources. At the reception,

the destination deploys a successive interference cancellation (SIC) technique, as de-

tailed in [18] and [38]. That is, the signals from the opportunistic sources are decoded

in the order of their signal powers received, and then subtracted from the received

signal to obtain only the signal of the scheduled source plus noise. Because the in-

terference from the opportunistic sources is eliminated, the data from the scheduled

source can then be decoded perfectly as in the case when it was the only transmitting

source.

Similar to [27], the key idea behind the decoding scheme chosen is the believe

that the physical model used by many references, for example [23] and [30], is some-

what strict. In particular, the model assumes that the signals received from nodes

other than the designated transmitter are interference to be regard as noise. Based

on this assumption, long range point-to-point communication between nodes is not
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preferable. The optimal strategy is to resort to the multi-hop scheme to confine the

communications to nearest neighbors and rely on a spatial reuse to maximize the

number of simultaneous transmissions. In this chapter, however, a slightly looser

restriction is taken by allowing nodes to transmit data directly to their destinations.

By doing so, a set of nodes is allowed to transmit simultaneously, and, using the

SIC decoding technique, the interference from these nodes can then become valuable

information, rather than just noise. Hence, the spatial multiplexing gain can then

be achieved. Furthermore, to inherit the benefit of the spatial reuse, very long range

communications are confined by letting such traffics being transported via the wired

infrastructure network.

Because the main focus of this chapter mostly concerns with the asymptotic

behavior of the wireless hybrid network, then will adopt the asymptotic notations as

discussed in [39], i.e. O(g(n)), Ω(g(n)), Θ(g(n)), o(g(n)), and ω(g(n)).

3.2 Network Modeling

3.2.1 Network Model

The following assumptions are made for the random wireless network model

1. The random extended network model is constructed by placing n wireless nodes

uniformly over a square area of [0,
√

n] × [0,
√

n] with unit density (λ = 1).

Nodes are assumed static and let assume every node knows its own location Xi,

1 ≤ i ≤ n.

2. By regularly placing a total number of b base stations as a grid in Figure 3.1,

the network is then partitioned into square cells of side length c =
√

n/b. Each

cell contains one base station and base stations are linked together by a wired

network to form an infrastructure. Assume the bandwidth of the wired network

66



(0,0)
(    ,     )n nc

Figure 3.1. The square network of size
√

n × √
n is partitioned into b cells of size√

n
b
×√

n
b
.

is large enough so that there is no bandwidth constraint on the infrastructure. In

contrast to the nodes, base stations neither generate nor consume data. They

serve purely as relays for the traffic between nodes. The number b tends to

infinity as n →∞, but at a much slower rate.

3. Each node i transmits signals with the same power P , and the signal is re-

ceived at node j with power Pl(|Xi −Xj|). Here, l(|Xi −Xj|) = min(1, |Xi −
Xj|−αe−γ|Xi−Xj |) is the large-scale radio attenuation function, and |Xi − Xj|
indicates the Euclidean distance between the two nodes. The parameter α > 2

denotes the path loss exponent and γ > 0, unless transmission is over a vacuum,

represents the channel absorbtion.

4. The wireless channel is a Gaussian channel model with bandwidth W Hz and

additive white Gaussian noise with power spectral density N0/2.

3.2.2 Transmission Strategies

Assume each node has data to be sent to every other node in the network and

these data are readily stored in a node’s memory. In a particular cell, nodes will be

scheduled to transmit in a round robin fashion so that, every fixed amount of time,

each node will be scheduled for transmission once (timesharing). In this chapter, the
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scheduled node is referred to as the scheduled source node or source for short. When

being slotted for transmission, the source will randomly choose a destination, which

can be any particular node in the network. Then, it retrieve the corresponding data

from the memory and begins to transport the data to the chosen destination.

There are two types of transmission modes used in a hybrid network: intra-

cell mode and infrastructure mode. When the source node chooses a destination

located in the same cell, the intra-cell transmission mode will be in effect. Data are

sent directly from the source to the destination through a single hop and without

using any infrastructure. On the other hand, if the two nodes are located in different

cells, the infrastructure mode will be used instead, and the transmission protocol is

divided into three separate phases. The first uplink phase occurs when the data enters

the infrastructure by having the source directly transmit to the base station in the

cell. Subsequently, the data is transported via the wired infrastructure network in

transport phase and reaches to the base station, in which the destination is located.

Finally, the data is downlinked from the base station to the destination.

The channel bandwidth of W Hz is split into two orthogonal sub-channels with

W1 and W2 Hz, respectively. The W1 sub-channel will be assigned for the data

transmitted from the source to the destination, which can either be the destination

(intra-cell mode) or to the base station (uplink phase), and the bandwidth W2 will be

assigned to base stations for delivering the data to the destinations (downlink phase).

From the perspective of nodes, it can be said that W1 is allocated to the outgoing

traffics of nodes while W2 to the incoming traffics.

3.3 Main Results

In this chapter, the upper bounds and lower bounds for the throughput capacity

of a hybrid network with the SIC technique are derived, based on the two transmission
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modes. Before proceeding, it is noted that, in many references, the throughput ca-

pacity is usually specified via the transmitter perspective as the average rate at which

every node can transmit data to its destination. In this chapter, since the scheduled

and opportunistic sources are allowed to transmit simultaneously to a common desti-

nation, at any time slot in a cell, there will be more than one transmitter, but only one

receiver. Further, from (3.3), the achievable rate of individual opportunistic source is

always lower than that of the scheduled one. If the similar definition of throughput

was adopted, the rate achieved by the scheduled source may decrease when being

averaged over every transmitter. Hence, the benefit of having multiple transmitters

is obscured. To clearly illustrate the advantage of the multiple access technique, the

feasible throughput of the hybrid network model is defined as:

Definition 1: For a hybrid network of n nodes and b base stations, a throughput

of T (n, b) bit/sec for each node is feasible if there is a spatial and temporal scheme for

scheduling transmissions such that every node can receive T (n, b) bit/sec on average.

Note that if only the scheduled source is allowed to transmit at any time slot,

the number of bits transmitted from the source will be equal to the number of bits the

destination received. The throughput measured at the destination will be the same

as that measured at the source. However, when opportunistic sources are allowed,

their benefit is better illustrated through the measurement specified in Definition 1.

Now, the results for the hybrid network model mentioned are provided. It can

be shown that, for a hybrid network with n wireless nodes and b = o(n/ log n) base

stations under the intra-cell transmission mode, the per-node throughput capacity is

Tintra(n, b) = O

(
b

n
log

n

b
W1

)

When the infrastructure mode is used, the base station of the cell in which the

destination locates will be the only transmitter downlinking data to the destination:
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hence, the SIC technique is not applied. Therefore, a bottleneck occurs and the

per-node throughput capacity is

Tinfra(n, b) = Θ

(
b

n
W2

)

Compared to the well-known result of Θ(1/
√

n) from Gupta and Kumar work, it

is not surprising that the capacity bounds of this chapter predict a higher throughput

per node, especially when b = o(n/ log n). This is because a portion of the inter-

cell traffics in this chapter is transported through the wired infrastructure network.

Therefore, the burden of long multi-hop relay can be avoided. Consequently, more

bandwidth resources are left available for some other nodes to communicate. Fur-

thermore, this chapter also encourages the spatial multiplexing by allowing multiple

nodes to transmit simultaneously (using SIC technique), so the capacity is improved

even more.

To make the comparison much fairer, the definition of network transport capacity

in [23] should be adopted. It is clear that, for a hybrid network, when b increases, the

cell size decreases and, consequently, the distance over which the information bits are

transported decreases. Hence, to make up with the use of the infrastructure network,

the throughput capacity in this chapter should be scaled down by the square root

of cell area, instead of the square root of network area. Therefore, the transport

capacities of O(
√

b
n

log n
b
) and Θ(

√
b/n) are obtained for the intra-cell mode and the

infrastructure mode, respectively. Compare with the transport capacity of Θ( 1√
n
×

√
n) = Θ(1) obtained by the result from [23], the transport capacities found, which

decreases as n increases, are now much lower because the average distance over which

information is carried is much shorter.

Note also that when b = o(
√

n), the per-node capacities presented drop and

the rates obtained are much less than that of Gupta and Kumar. The reason is that
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the transmission strategies in this chapter depend largely on point-to-point commu-

nication between a source and a destination. Consider, for example, the throughput

capacity of the intra-cell mode. When base stations are scarcely deployed, the cell

size increases and the average distance between any source-destination pair increases.

Because the transmission power P of these nodes is fixed, the average rates at which

they transmit drop dramatically, so as the overall throughput. Therefore, it is clear

that the benefit of adding base stations and adopting the SIC technique becomes

significant when the investment in the wired infrastructure is high enough.

The rest of this chapter is organized as follows. In Section 3.4.4 and Section 3.5,

related lemmas are discussed then the proofs for the proposed asymptotic capacity

bounds is provided. In Section 4.3, the results are analyzed and compared with related

literatures. Finally, Section 4.4 concludes the chapter.

3.4 Capacity of the Intra-cell Mode

3.4.1 The Number of Nodes Per Cell

Since nodes are placed randomly within the network, it is not necessary that

every cell contains a wireless node. However, based on the following lemma, it can be

shown that every cell in the network is not empty and there are Θ(n/b) nodes within

each cell.

Lemma 1: For b = o(n/ log n) and n → ∞, there is at least one wireless node

contained within the square cell of side length c =
√

n/b. Furthermore, the number

of nodes, nc, in each cell is bounded by Θ(n/b).

Proof: The proof is similar to that of Lemma 5.7 in [40]. Let event A denote

a Bernoulli event that a particular node i, 1 ≤ i ≤ n, will fall into a particular

cell of area c2. Because nodes are placed uniformly on the network, it is clear that
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probability of event A is PA = (n/b)/n = 1/b. Therefore, the probability that a cell

is empty is (1− PA)n. The probability that at least one cell in the network is empty

is upper-bounded by

b(1− PA)n = b(1− 1

b
)n ≤ b exp(−n

b
)

where the last inequality is obtained from the fact that 1 − x ≤ exp(−x). If b =

o(n/ log n), b exp(−n/b) → 0 as n →∞ because the exponential term drops at faster

rate. Therefore, the first part of the lemma is proved.

Next, consider the upper bound for the number of nodes, nc, in a particular cell.

The number of nodes has a binomial distribution with parameters (PA, n). Using the

Chernoff bound, it can be shown that

Pr(nc > k1
n

b
) ≤ E{exp(nc)}

exp(k1n/b)
(3.1)

where k1 is a constant. Since E{exp(nc)} = (1 + (e − 1)PA)n ≤ exp[(e − 1)n/b]

(because 1 + x ≤ exp(x)), it can be shown that

Pr(nc > k1
n

b
) ≤ exp

{
− n

b
[k1 − (e− 1)]

}

As long as k1 > e − 1, it can be shown by the union bound that Pr(some cells have

more than k1n/b nodes) ≤ b exp{−[k1 − (e − 1)]n/b}. The probability converges to

zero as n tends to infinity and b = o(n/ log n).

Next, using the Chernoff bound, it can be shown that

Pr(nc < k2
n

b
) ≤ E{exp(−nc)}

exp(−k2n
b

)
(3.2)

where k2 is another constant. Since E{exp(−nc)} = (1 + (e−1− 1)PA)n ≤ exp[(e−1−
1)n/b], it can be shown that

Pr(nc < k2
n

b
) ≤ exp

{
− n

b
[(1− e−1)− k2]

}
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As long as k2 < 1−e−1, it is known by the union bound that Pr(some cells have

less than k2n/b nodes) converges to zero as n tends to infinity and b = o(n/ log n).

Hence, it is concluded that each cell, in fact, contains Θ(n/b) nodes and the proof is

completed.

3.4.2 Multiple-Access Channel with SIC

In a particular cell, nodes are time-sharing and transmit in a round robin fash-

ion. When being slotted, the scheduled source node i at Xi will receive a bandwidth

W1/nc Hz for the transmission. If the chosen destination node j is at Xj, from the

information theoretic point of view, node i can transmit to node j at the achievable

rate R determined by

R = log

[
1 +

Pl(|Xi −Xj|)
µW1N0

]
bit/sec/Hz

where µ represents the fraction of bandwidth W1 that are assigned to the source

and will be described in the sequel. Note that the rate R is achieved by assuming a

single source transmits to the destination. Can one do better?

Let assume, for any scheduled source, there are a set of κ nodes in the same

cell, whose Euclidean distance away from Xj is greater than dij = |Xi−Xj|. If the set

of nodes is allowed to be opportunistic sources and transmit data simultaneously to

the destination node j, the channel thus becomes a Gaussian multiple-access channel

and there exists a sequence of codes, with which these sources can transmit data to

the common destination with arbitrarily low probability of error. Therefore, the total

number of bits transported to the receiver could be increased, in proportion to growth

rate of κ.
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Let Xi,q, where q = 0, 1, ..., κ, denote the locations of these sources. Xi,0 = Xi

is the location of the scheduled source node i and Xi,q for q 6= 0 is the location of

the opportunistic source q of the scheduled source node i. Without loss of generality,

assume |Xi,1 − Xj| < |Xi,2 − Xj| < ... < |Xi,κ − Xj| and, by the previous criteria,

|Xi,q −Xj| > d if q 6= 0.

Chapter 14.3 of [38] and Chapter 6.1 of [18] show that, if every destination uses

the SIC technique to decode the received data, the individual rate, Rq, that each node

can achieve and the total sum rate are

Rq < log

[
1 +

Pl(|Xi,q −Xj|)
µW1N0 +

q∑
v=0

Pl(|Xi,v −Xj|)

]

κ∑
q=0

Rq < log

[
1 +

∑κ
q=0 Pl(|Xi,q −Xj|)

µW1N0

]
(3.3)

It can be observed from (3.3) that the achievable rate R0 of the scheduled

source is log(1 +
Pl(|Xi−Xj |

µW1N0
), as before. Thus, the data traffic from the scheduled

source remains intact but the total number of transmitted bits is growing with the

number of opportunistic sources.

For simplicity, it was assumed in the previous statement that, in a cell, there

are κ nodes that are at a distance farther away from the node j than node i. In the

following lemma, it is proved that κ is linearly proportional to the number of nodes

per cell.

Lemma 2: For a given source and destination pair in any cell, there are κ =

Θ(n/b) nodes in the same cell that have greater distances from the destination than

the source node.

Proof: For the intra-cell mode to be selected, the source must have chosen a

particular node in the same cell as its destination. The Euclidean distance between
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a source-destination pair is determined only by the locations of the nodes and is

independent of n.

Now, assume a source node i chooses a particular node j in its cell as a destina-

tion and the Euclidean distance between these two nodes is equal to dij = |Xi −Xj|.
If a disk of radius dij around the destination j is constructed as shown in Figure 3.2,

certainly, any random point located inside the disk must be closer to node j than

node i. Thus, the opportunistic sources of node i must be located outside the disk.

The goal is to estimate the remaining cell area that are outside the disk and provide

the bounds for the number of nodes in this area.

Depending on the locations of node i and j, sometimes a portion of the disk

may fall outside the cell boundary, so they should not be taken into account when

considering the events that occur to nodes in the cell. If Ad denotes the area of the

disk of radius dij that is inside the cell domain, then Ad can always be represented

as υc2, where υ ∈ (0, 1] as shown in Figure 3.2. Also, it is noted that υ is determined

only by the distance dij and, thus, independent of n.

Given that there are nc nodes in the cell where node i and node j are located,

let node q, 1 ≤ q ≤ nc − 2, be another node in the cell, excluding node i and j, and

Zq be a random variable that represents whether node q is located outside Ad. The

random variable Zq can be expressed as

Zq =





1 , node q is outside the area Ad

0 , otherwise

(3.4)

Since the probability that the a random node q is located outside in Ad is 1 − υ,

therefore E[Zq] = 1 − υ. Clearly, κ =
∑nc−2

q=1 Zq is the total number of nodes in the
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c
3cdij =
9π=υ

2cdij =
16π=υ

2cdij =
4π=υ

2cdij =
1=υAd Ad Ad Addij dij dij dijiji j ij i j

Figure 3.2. For a given source node i with distance dij away from its destination j,
the opportunistic sources should be located outside (white area) the disk of radius
dij centered at the destination.

cell, excluding node i and the receiver j, that are located outside Ad. By the Strong

Law of Large Numbers, with probability equal to 1,

κ

nc − 2
=

1

nc − 2

nc−2∑
q=1

Zq → 1− υ (3.5)

Since υ ∈ (0, 1] is independent of n and nc = Θ(n/b), then κ = Θ(n/b). The proof is

completed.

It have been shown that, when a source and its destination are located within

the same cell, there exist κ = Θ(n/b) eligible nodes for serving as the opportunistic

sources. However, because the destination for a scheduled source is chosen randomly

every time, the set of these eligible nodes changes for a different source and destination

pair. It is not so obvious how these κ eligible nodes can be aware of their roles as

the opportunistic sources. Thus, it is important that the source has to inform every

node about the chosen destination.

Note that, in the intra-cell mode, the source should be able to transmit to any

chosen destination in the same cell. When it transmits, every node in the cell will

always hear. Thus, if τ denotes a transmission time allocated to a source, then it

can be further partitioned into two sections. The first section consumes a fraction

θ ∈ [0, 1] of τ and is used for the source to inform every node about its chosen

76



destination. The second section of (1 − θ)τ is for the source and the opportunistic

sources to transmit data to the common destination. Assume θ, (0 < θ < 1), remains

constant, irrespective to the transmission rate.

3.4.3 Frequency Reuse

Because the outgoing and the incoming traffics of node is assigned to different

different orthogonal sub-channels, there is no interference between the two types of

traffic. However, within the same sub-channel, interference still exists between the

same type of traffic in different cells. Fortunately, the effect of such interference can

be minimized by applying the frequency reuse concept as in [31] and [25]. Specifi-

cally, the cells are first grouped together to form a certain number of clusters. Then,

different frequency bands are assigned to cells in the same cluster. However, over

different clusters, the same set of these frequency bands is reused. Hence, the trans-

missions in the cells (in different clusters) with the same frequency can be carried

out simultaneously without causing excessive interference only if there is sufficient

distance between these cells.

Lemma 3: For an integer a > 0 representing the distance of a cells within

which transmissions in an arbitrary cell can be successfully received, there exists a

reuse policy with M2 frequency bands, where M = 2(a + 1), such that every cell in

the network can transmit concurrently with a bounded interference.

Proof: The proof of this lemma is similar to that of Theorem 4 in [25]. When

transmissions in an arbitrary cell can be received also by a node at a distance of a cells

away, cells can be grouped into square clusters of side length M = 2(a + 1) cells, as

depicted in Figure 3.3. Then, a reuse set of M2 frequency bands, {f1, f2, ..., fM2}, can

be assigned to the M2 cells of each cluster. Now, let consider a given cell o as marked

in Figure 3.3. Notice that, for a given cell o, there will always be one cell in every
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a=1oM = 4
Figure 3.3. The frequency reuse scheme for the case a = 1. The shaded squares are
cells that use the same frequency and may interfere with each other when transmitting
simultaneously.

cluster that uses the same frequency. Any transmissions within these cells will cause

interferences to the traffic within cell o. The maximum interference can be considered

by observing in Figure 3.3 that the first-tier (i = 1) interferers are the transmitters

in eight closest cells located at the distance of at least [2(a + 1)− 1]c away from the

receiver in cell o. Then, the second-tier (i = 2) interferers are the transmitters in the

next 16 closest cells located at the distance of at least [4(a + 1)− 1]c.

Note each interfering cell in the i-th tier also has κj + 1 nodes, where j =

{1, 2, ..., 8i}, that are transmitting simultaneously. Among every cell in the network,

if a set of opportunistic sources in cell k has the maximum number of opportunistic

nodes at a particular transmission round then κmax = κk and κmax ≥ κl, where

l = {1, 2, ..., b}. Similarly, among every cell in the network, if a set of opportunistic

sources in cell m has the minimum number of opportunistic sources then κmin = κm

and κmin ≤ κl, where l = {1, 2, ..., b}. The κmax and κmax is Θ(n/b) because they

are sets of opportunistic sources in two different cells. Thus, it is clear that the

total numbers of simultaneous transmitters in the entire i-th interfering tier is in the

interval of [8i(κmin + 1), 8i(κmax + 1)].
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By extending the sum of interferences to the entire plane transmitters in each

cell, the upper bound of this sum is

I(c, d) ≤
∞∑
i=1

8i(κmax + 1)P [2ci(a + 1)− c]−αe−γ(2ci(a+1)−c)

(a)

≤ 8(κmax + 1)P
∞∑
i=1

i

[
2ci

(
a +

1

2

)]−α

e−2γci(a+ 1
2
)

= 8(κmax + 1)P

[
2c

(
a +

1

2

)]−α ∞∑
i=1

i−α+1e−2γci(a+ 1
2
) (3.6)

where (a) is due to the fact that 2ci(a + 1) − c ≥ 2ci(a + 1/2). Next, to consider

the minimum interference, it is observed that the first-tier and second-tier interferers

are at the distance of at most [2(a + 1) + 1]
√

2c and [4(a + 1) + 1]
√

2c cells away,

respectively. The lower bound of the interference sum can be expressed as

I(c, d) ≥
∞∑
i=1

8i(κmin + 1)P (2
√

2ci(a + 1) +
√

2c)−αe−γ(2
√

2ci(a+1)+
√

2c)

(b)

≥ 8(κmin + 1)P

[
2
√

2c

(
a +

3

2

)]−α ∞∑
i=1

i−α+1e−2
√

2γci(a+ 3
2
) (3.7)

where (b) results from 2
√

2ci(a + 1) +
√

2c ≤ 2
√

2ci(a + 3/2). Evidently, if α > 2

and γ > 0, the summation terms in (3.6) and (3.7) converge and the values of the

bounds are defined by κmaxc
−α or κminc

−α. Therefore, the interference decreases at

the rate of Θ
(
(n/b)1−α

2

)
.

3.4.4 Throughput Capacity of the Intra-cell Mode

Use is made of every spatial and temporal schemes described, to find that

the bandwidth allocated to a schedule source as µW1 = [(1− θ)/(M2nc)]W1. Conse-

quently, the throughput per node T (n, b) can be determined from the product between

the bandwidth allocated to the scheduled source and the sum of the transmission rates

for the scheduled and opportunistic sources, i.e. µW1

∑κ
q=0 Rq.
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Lemma 4: For source node i and destination node j in an arbitrary cell with

distance dij apart, as n →∞, the sum of the transmission rate of the scheduled and

opportunistic sources in the cell is O(log(n/b)).

Proof: Certainly, the sum rate is always greater than or equal to the rate at

which the source (alone) transmits to the destination. Thus, when there is no oppor-

tunistic node for the source or if the opportunistic sources are sending at relatively

small rates, compared to the source, the sum rate can be lower bounded as

κ∑
q=0

Rq ≥ log

[
1 +

Pl(|Xi −Xj|)
µW1N0 + I

]

(c)

≥ log

[
1 +

P min(1, d−α
ij e−γdij)

W1N0 + Imax

]
(3.8)

where (c) is obtained by assuming the maximum interference and the maximum

Gaussian noise power. The maximum interference is the upper bound of the in-

terference sum in (3.6): as n → ∞, the interference converges to zero. Thus, the

minimum sum rate varies with the distance, which is independent of n. Therefore,

the sum rate is lower bounded by a constant as n →∞.

By the selection criteria, the opportunistic sources must be located outside or

on the disk of radius dij around the destination j. Thus, the sum rate is maximized

if each opportunistic source has minimum distance away from the destination node j:

that is, the opportunistic sources are located at the disk around node j. Under this

circumstance, the maximum sum rate can be expressed as

κ∑
q=0

Rq ≤ log

[
1 +

∑κ
q=0 Pl(|Xi,q −Xj|)

µW1N0 + I

]

(d)

≤ log

[
1 +

∑κ
q=0 P min(1, d−α

ij e−γdij)

µW1N0 + Imin

]

= log

[
1 +

(κ + 1)P min(1, d−α
ij e−γdij)

µW1N0 + Imin

]

(3.9)
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where (d) is obtained by applying the minimum interference sum in (3.7). Because

µ = (1 − θ)/M2nc = Θ(b/n) and Imin = Θ((n/b)1−α
2 ), it is easy to show that, with

κ = Θ(n/b), the maximum sum rate is Θ(log(n/b)). Compared to the minimum rate

previously obtained, the maximum sum rate increases by a factor of log(n/b), due to

the contribution of the opportunistic sources. Lastly, by taking in account the max

and min values of the sum rate, it is concluded that the sum rate is O(log(n/b)).

Now, it is time to consider the per-node capacity Tintra for the intra-cell mode.

Theorem 1: For a hybrid network with n nodes and b base stations under the

intra-cell transmission mode, if b = o(n/ log n), the per-node throughput capacity is

Tintra(n, b) = O

(
b

n
log

n

b
W1

)

Proof The proof is quite straightforward. By multiplying µW1 = Θ((b/n)W1)

to the sum rate in Lemma 4, the per-node capacity for the intra-cell mode can be

obtained directly. It is also noted that, by multiplying µ to the lower bound of the

sum rate, the lower bound of Tintra is obtained as Ω((b/n)W1).

3.5 Capacity of the Infrastructure Mode

If available, the opportunistic sources can also be allowed to simultaneously

transmit the data to the common destination via the infrastructure mode. Specifi-

cally, in the uplink phase, the source and the opportunistic sources must, first, relay

all of their traffics to the base station in the cell. Then, in the transport phase, the

base station decodes the transmitted data from each source, using the SIC decoding

technique, and send them through the wired network to the base station in the desti-

nation cell. Subsequently, the data is transported to the common destination in the

downlink phase.
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Theorem 2: For a hybrid network with n nodes and b base stations under

the infrastructure transmission mode, if b = o(n/ log n), the per-node throughput

capacity is

Tinfra(n, b) = Θ

(
b

n
W2

)
(3.10)

Proof The proof is from the fact that the throughput of the uplink and downlink

when transmitted in the infrastructure mode are equal. Apparently, the uplink traffic

is very similar to the traffic in the intra-cell mode. The only difference between the two

types of traffic is that the receiver of the uplink transmissions is the base station in the

middle of the cell, while, for the intra-cell mode, the receiver is the destination itself.

Hence, the per-node throughput TUL
infra for the uplink phase is O((b/n) log(n/b) W1),

which is obtained by extending the results for the intra-cell mode.

For the downlink traffic, based on the same frequency reuse technique in Lemma

3, every base station receives a bandwidth share of W2/M
2 to simultaneously transmit

to the destination in the cell. However, because there is only one base station in a cell,

the multiple access technique is not applicable and each base station should equally

divide its own bandwidth share for servicing every node within the cell. Therefore,

the base stations before the destinations must transmit data through a bandwidth of

W2/M
2nc, and this becomes the bottleneck of the throughput.

Based on a similar proof of the minimum sum rate in Lemma 3, it can easily

be shown that the rate at which the base station transmits to the destination is a

constant rate k3, which is determined by the distance between the base station and

the destination: these are independent of n. Consequently, the per-node throughput

TDL
infra for the downlink phase can be obtained as k3W2/M

2nc = Θ((b/n) W2). Never-

theless, due to the downlink bottleneck, it is concluded the per-node throughput of

the infrastructure mode is Θ((b/n) W2).
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3.6 Analysis

3.6.1 Implication from the Results

It can be observed that, regardless of how many base stations are placed in the

network, Tinfra is always lower than Tintra by a factor of log n
b
, due to nonexistence

of the opportunistic transmitters in the downlink phase. Consequently, the per-node

capacity of the network is optimized if nodes are encouraged to communicate only

with the nodes in the same cell by letting W1 = W . Surprisingly, this implication

makes a fairly good correspondence with the ”smart home” scenario of [23], in which

the achievable throughput is maximized by having nearby sensors and actuators in

each home communicate together. The difference is that the intra-cell communication

is encouraged to avoid passing data through the bottleneck, but the smart-home

network is used to restrain the distances between source-destination pairs.

3.6.2 Comparison to Related Works

For a square network of size
√

n×√n, it was shown in [31] that the per-node

throughput capacity of the infrastructure mode is

T ′
infra(n, b) =





Ω(W2√
n
) if b = O(

√
n)

Ω(min( b
n
, 1

log b
)W2) if b = ω(

√
n)

(3.11)

where the capacity of Ω(W2/
√

n) is achieved by using the percolation highway to

deliver the data from source to destination, instead.

In comparison, the per-node capacity Tinfra of the infrastructure mode is given

by Theorem 2 as Θ((b/n) W2), when b = O(
√

n). The capacity becomes O(W2/
√

n),

which is somewhat smaller than Ω(W2/
√

n) obtained from (3.11). Also, for b = ω(
√

n)

and b = o(n/ log n), Theorem 2 provides Tinfra = ω(W2/
√

n), which is slightly weaker

83



than that obtained from (3.11). Clearly, this is because no percolation highway is

formed in this study.

Because the intra-cell mode transmission is not available in [31], to perform a

similar comparison for the intra-cell capacity, let consider the results from another

related work. The study on a circular wireless hybrid network of a unit area in [30]

has shown that the per-node capacity of the intra-cell mode is

T ′
intra(n, b) =





Θ(
W ′

1√
Nklog Nk

) if b = o(
√

n)

O(
W ′

1√
Nk

) if b = Ω(
√

n)

(3.12)

where Nk = n/b2. Note that W ′
1 is used to denote the bandwidth assigned for the

intra-cell mode, instead of W1, because the entire bandwidth W is differently parti-

tioned in [30]. To be able to provide a fair comparison, a few changes are made to

this study.

Instead of having a bandwidth of W1 being used for both the intra-cell and the

uplink traffics, it is now divided into two sperate bands. The first W ′
1 is assigned

for intra-cell transmission and the rest W ′′
1 is for the uplink traffic. Now, following

the proof for Theorem 1 of [30], it can be shown that the number of source and

destination pairs within any cell k that are communicating using the intra-cell mode

is Nk. Therefore, the bandwidth W ′
1 is shared among these Nk nodes only, rather

than being shared by every node in the cell. Then, by using µ = 1/M2Nk in the

proof of Lemma 4, the sum rate is upper bounded with O
(
log(bN2

k )
)
. Consequently,

by multiplying the upper bounded sum rate with the bandwidth W ′
1/M

2Nk allocated

to the scheduled source, a new upper bound for Tintra can be obtained as

Tintra(n, b) = O

(
log(bN2

k )

Nk

W ′
1

)
(3.13)

Yet, it is not so obvious how large this capacity is when compared to one in

(3.12). So, let consider the region where Tintra and T ′
intra are both upper bounded,
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specifically when b = Ω(
√

n) and b = o(n/ log n). For example, if assume b =

Θ(
√

n log n), the upper bounds of T ′
intra and Tintra can be obtained from (3.12) and

(3.13) as O(log nW1) and O
(
(log n)2 log(

√
n

(log n)3
)W1

)
, respectively. Because

√
n/(log n)3 >

1, for the given region of b, the per-node capacity Tintra is larger than T ′
intra of [30]

by at least a factor of log n, due to the contribution of the opportunistic sources.

3.6.3 Base Stations with Antenna Array

To improve the throughput capacity of the infrastructure mode, the capacity

bottleneck can be eliminated by deploying an array of antennas on every base station.

Specifically, let m be the number of antennas on each base station. During the down-

link phase. these antennas will cooperate and transmit data to a common destination.

This is equivalent to having m transmitters situated at the same location and transmit

data to a receiver; thus the channel becomes a MISO (multiple-input, single-output)

channel. Furthermore, by allowing each antenna to transmit at the same power P as

in the single antenna case, the interference range of the base stations remains intact,

the frequency reuse scheme is still applicable, though the interference power is m

times larger. By using an information-theoretic formula,the rate at which data from

base station i are delivered to the destination node j can be calculated by

RMISO = log

[
1 +

mPl(|Xi −Xj|)
µW2N0 + I

]

It can be shown that, with m = Θ(n
b
) and µ = 1/M2nc, RMISO = k3 log n

b
. Hence,

TDL
infra(n, b) = µW2 ·RMISO = Θ

(
b

n
log

n

b
W2

)
(3.14)

It is observed that, if the number of antennas on each base station increases at the rate

of Θ(n/b), the downlink capacity becomes Θ((b/n) log(n/b) W2). The uplink traffic is

now the bottleneck of the infrastructure mode, Tinfra equals to the uplink capacity,
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e.g. O((b/n) log(n/b) W1), which is exactly the same as Tintra. Therefore, the opti-

mal scenario is to allow nodes to communicate via both intra-cell and infrastructure

modes but, because of the uncertain availability of the opportunistic sources, more

bandwidth should be allocated to nodes, i.e. W1 > W2.

3.6.4 Base Stations with Increased Power

Although using multiple antennas helps achieving the multiplxing gain and

increase the downlink capacity, having the number of antennas at the base station

scaling with the number of nodes in the network is, however, not feasible in practice,

due to the limitation in the form factor of the base station.

Nevertheless, because the base stations are line-powered and, unlike the wireless

nodes, they are not power-constrained, one can also resort to an alternative solution

by increasing the transmission power of the base station from P to κP . Having the

base station power scales κ = Θ(n/b), it is easy to show that the downlink capacity

will be raised to Θ((b/n) log(n/b) W2), similar to that of the multiple-antenna case.

Hence, the bottleneck can be resolved. Furthermore, because κ nodes will transmit

simultaneously to the base station in the uplink phase and the maximum sum of

interference power is κP , by increasing the downlink transmission power to κP , the

same frequency reuse scheme can be adopted in both uplink and downlink phases.

3.7 Conclusions

In this chapter, the per-node throughput capacity of the hybrid wireless net-

works is investigated. By allowing opportunistic sources to transmit concurrently

with the source, the destination with SIC decoder can receive the data at the rate of

O((b/n) log(n/b) W1) via the intra-cell transmission mode. Similarly, with the base

stations serving as the common destination, the uplink traffics of the infrastructure
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mode can also benefit from the same multiple access technique, as a result, the uplink

capacity is thus bounded to the same order as the intra-cell one. However, because the

base station is the only transmitter in the cell during the downlink phase, data must

be delivered to the destination in a round robin fashion, the infrastructure traffics are

thus bottlenecked at the rate of Θ((b/n)W2).

By increasing the base station power to κP , the downlink capacity can be im-

proved by a factor of log(n/b) and the bottleneck occurs during the uplink phase,

which remains at O((b/n) log(n/b)W1), instead. Therefore, the throughput capac-

ity of the infrastructure mode defined by the uplink traffic is on the same order as

the capacity of the intra-cell mode and becomes significant to the overall network

throughput.

Note that, according to Shannon theory on channel capacity, there should al-

ways be a rate at which data can be sent with arbitrarily low probability of error,

regardless of the the SINR (signal-to-interference-and-noise ratio). But, in practice,

the SINR level is usually required at some certain level for the nodes to maintain

their connectivity (see the physical model in [23]). Hence, the transmission range is

somewhat confined in practice. In the SIC technique, a point-to-point communication

between nodes over a certain range may not be possible because the nodes are power

constrained and the interference is changing with n. Fortunately, if the node power P

is chosen carefully so that the asymptotic connectivity of the network is guaranteed

[41], the fraction of nodes whose connectivity is lost due to the varying amount of

interference can then be reduced and ignored.
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CHAPTER 4

COMPRESSIVE SENSING: TO COMPRESS OR NOT TO COMPRESS

4.1 Introduction

Compressive sensing (CS) is a recently emerged method to capture and repre-

sent compressible signals at a rate significantly below the Nyquist rate. CS can be

viewed as a scheme for simultaneously sensing and compression whose data acquisi-

tion rate need only be proportional to the sparsity of the signal. Mathematically, the

process of compression in CS can be described by the following equation;

y = Φ ·Ψ · x (4.1)

where x denotes a K-sparse information vector of length N , i.e. there are K non-zero

entries in the vector, Ψ represents the basis matrix of size N×N , y is the observation

vector of length M , and Φ is the measurement matrix of size M × N . In general,

the length of y is far less than that of x, i.e., M << N . CS can potentially provide

substantial saving on data acquisition and storage.

The non-linear processing to reconstruct the signal from the measurement also

plays an important role in CS. The goal of the reconstruction process is to be able

to perfectly reconstruct x from the compressed observation y by solving the linear

programming below

min ‖x̂‖l1
subject to Φ ·Ψ · x̂ = y (4.2)

However, as the number of measurements is below the Nyquist rate, significant am-

biguity in reconstruction can occur. One of the most common problems in the re-
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construction is that the estimator x̂ may not exactly equal to x; thus the estimation

error occurs.

In the last few years, the development of CS has stirred quite an amount of

excitement in the signal processing community, leading to extensive research, see

[42, 43]. For example, in [42], the authors discussed some interesting phenomena

on the recovery of sparse signals, i.e. signals which have a few nonzero terms, from

limited measurements. In[44], the authors shows that it is possible to accurately

reconstruct a sparse signal from various types of random measurement ensembles,

e.g. binary, Gaussian, and Fourier ensembles.

• Binary ensemble: the entries of Φ are identically and independently sampled

from a symmetric Bernoulli distribution. That is, if Xmn is i.i.d. (independently

and identically distributed) with Pr (Xmn = ±1) = 0.5, then

φm,n = Xmn, Pr (Xmn = ±1) = 0.5 (4.3)

• Gaussian ensemble: the entries of Φ are identically and independently sam-

pled from a normal distribution distribution.

φm,n = Xmn, Xmn is N(0, 1) (4.4)

• Fourier ensemble: the entries of Φ are obtained by randomly sampling rows

m and column n of the orthonormal N by N Fourier matrix

φm,n = e(−i2πmn/N) (4.5)

In this chapter, the CS scheme is considered from the information theory point of

view. The study will focus on the CS scheme whose measurement matrix is randomly

sampled from a set of real numbers, i.e. the binary ensemble and the Gaussian ensem-

ble1. The bound of the probability of error in the reconstruction process, Pr (x̂ 6= x),

1In most CS literature the entries of Φ are drawn with variance 1/N . The choice of the unit

variance is to simplify further notation
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of the CS scheme is provided, based on the Fano’s inequality. This derived error bound

can be used to determine if it is worth performing the compression and whether a

choice of a measurement matrix Φ is proper for the certain set of input.

The remainder of this chapter is presented as follows. In Section 4.2, the Fano’s

inequality, which provides an information theoretic lower bound of probability of error

in an estimation process, is discussed. Then, based on the inequality, the lower bound

error for the CS scheme is derived. In Section 4.3, the result obtained is analyzed.

Finally, the chapter is concluded in Section 4.4.

Notations Upper (lower) bold face letters denote matrices (vectors); (·)T denotes

transpose; ai,j denotes the entry at the i-th row and j-th column of matrix A; zn

denotes the n-th entry of vector z; h(·) denotes the entropy; log denotes the base-2

logarithm.

4.2 Information Theoretic Lower Bound of the Probability of Error

4.2.1 Fano’s Inequality

Consider the flow of the entire CS scheme. The information x is first com-

pressed, corresponding to (5.1), and the observation y is obtained. Then, from the

observation, the algorithm of the similar form to (4.2) is executed to obtain the esti-

mator x̂. It is observed that x → y → x̂ = g(y) forms a Markov chain.

Define the probability of error Pr(e) as Pr (x̂ 6= x) and an error random variable

E as

E =





1 , if x̂ 6= x

0 , otherwise

(4.6)
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Then, by using the chain’s rule for entropies, it is shown that

h(E,x|y) = h(x|y) + h(E|x,y) (4.7)

= h(E|y) + h(x|E,y) (4.8)

Since given E = 0, x = g(y) and given E = 1, the conditional entropy h(x|y, E = 1)

can be upper bounded by h(x). Subsequently, h(x|E,y) can be bounded as follows:

h(x|E,y) = Pr (E = 0) h(x|y, E = 0) + Pr (E = 1) h(x|y, E = 1)

≤ [1− Pr(e)] · 0 + Pr(e) · h(x) (4.9)

Because E is a function of x and the estimator x̂ is a function of y, i.e., x̂ = g(y),

h(E|x,y) = 0. Next, because conditioning reduces entropy, h(E|y) ≤ h(E). Also,

because E is binary-valued random variable, h(E) = h[Pr(e)]. Thus, by combining

these results into (4.7) and (4.8), it can be shown that

h(x|y) + h(E|x,y) = h(E|y) + h(x|E,y)

h(x|y) ≤ h[Pr(e)] + Pr(e) h(x)

h(x|y) ≤ 1 + Pr(e) h(x) (4.10)

Finally, the Fano’s inequality, which provides the lower bound of the probability of

error, can be obtained as

Pr(e) ≥ h(x|y)− 1

h(x)
(4.11)

4.2.2 Underlying Assumptions

To calculate the lower bound, the following assumptions are made;
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• The information vector x ∈ <N is K-sparse. There are K non-zero coefficients

in x and each of them is an i.i.d Gaussian random value2 with mean µx and

variance σ2
x.

• The basis matrix Ψ is IN . Thus, the projected image Θ of x on the basis is

equal to the information vector x itself.

• The measurement matrix Φ is randomly generated with a binary ensemble,

i.e.,φm,n = ±1 with equal probability.

• The compression and reconstruction processes know the measurement Φ.

4.2.3 Entropies

Observe that, for the sparse information x with length N , its K nonzero co-

efficients may locate at any random entries of the vector. Therefore, each entry xn,

n ∈ {1, .., N}, of x either has a value that is randomly chosen from a Gaussian dis-

tribution with mean µx and variance σ2
x or does not have a value at all. Specifically,

x can be expressed as a Bernoulli-Gaussian random vector in the form of

x = bT · z (4.12)

Equivalently,

xn = bn · zn (4.13)

The random vector b is a Bernoulli random location vector of length N ; each

entry bn can be either 0 or 1 with Pr(bn = 1) = K/N , to indicate whether the

corresponding xn has a value or not. The random vector z is a Gaussian random

2Because the information vector is specified as a Gaussian random vector, this study is not

confined to a certain values of information. As long as the distribution of information vector is

Gaussian, the theory developed is applied
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vector of length N ; each entry zn is associating with the parameter µz = µx and

σ2
z = σ2

x and is used to denote the random value of the corresponding non-zero xn.

Now, consider the entries in y. It is observed that each entry ym of y can be

obtained by multiplying the m-th row of matrix Φ with the information x. That is,

ym =
N∑

n=1

φm,n xn =
K∑

n=1

φm,n zn

= Z+ + Z− (4.14)

where Z+ is the random variable representing the summation of the terms in which

φm,n equals +1 and Z− denotes the summation of the terms in which φm,n equals −1.

The second equality on the first line comes from the fact that xn is the multiplication

of bn and zn and there are K non-zero entries in b.

Because Pr (φm,n = ±1) = 1
2
, if the length N of x is sufficiently large, there the

Strong Law of Large Number suggests that, with high probability (w.h.p.), both Z+

and Z− will be the summation of K
2

multiplication terms of φm,n zn.

Since the measurement Φ is known to the compression process; therefore, it is

easy to show that Z+ and Z− are also Gaussian with mean ±K
2
µx and variance K

2
σ2

x.

Then, because ym is the sum of Z+ and Z−, it is also a Gaussian random variable

with zero mean and variance σ2
xK.

It is noted that Φ is assumed to have a binary ensemble so that each entry of

y is obtained with identical variance and zero mean. Soon, it will be seen that this

assumption helps simplifying the subsequent derivations. In general, Φ can also be

Gaussian ensemble [44], and the result from this chapter still holds as long as x is a

Gaussian distributed information vector.

To calculate the Fano’s inequality, it is noted that

h(x|y) = h(x,y)− h(y) (4.15)
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Therefore, (4.11) can be rewritten as

Pr(e) ≥ h(x,y)− h(y)− 1

h(x)
(4.16)

It can be shown that, for any Gaussian random vector w of length L, its entropy

can be expressed as, [38],

h(w) =
1

2
log

[
(2πe)L|Σw|

]
(4.17)

where |Σw| denotes the determinant of the covariance matrix of w. However, because

x is an N -dimension Bernoulli-Gaussian random vector, such simple formula is no

longer valid. To calculate the lower bound of error, further simplification must be

performed to the Fano’s Inequality.

Intuitively, it is observed that the reconstruction error should be lower if the

locations of the non-zero coefficients in x are known, compared to the case when

both their locations and their values are unknown. So, the conditional probability of

reconstruction error when b is known, Pr(e |b), is always smaller than or equal to the

general probability of reconstruction error, Pr(e).

Pr(e) ≥ Pr(e |b)

≥ h(x,y |b)− h(y |b)− 1

h(x |b)
(4.18)

From (4.13), with the knowledge of b, xn is a Gaussian IID random variable, it

is easy to show that the entropy of x can then be written as;

h(x |b) =
1

2
log

[
(2πeσ2

x)
K

]
(4.19)

Also, it is clear that the knowledge of b does not change the previous conclusion

on the PDF of y; hence, the entropy of the Gaussian observation vector y can be

expressed as

h(y) = h(y |b) =
1

2
log

[
(2πe)M |Σy|

]
(4.20)
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where

Σy =




COV(y1, y1) · · · COV(y1, yM)

... · · · ...

COV(yM , y1) · · · COV(yM , yM)




(4.21)

Since each entry ym of y is previously known to have zero mean and variance σ2
xK,

the covariance COV(ym, ym′) between the m-th and the m′-th entries of y can then

be expressed as

COV(ym, ym′) =





σ2
xK , if m = m′

(σ2
x + µ2

x)
K∑

u=1

φm,uφm′,u

+ µ2
x

K∑
v=1

φm,v

K∑
w=1
w 6=v

φm′,w , if m 6= m′

(4.22)

Next, the entropy of x and y, h(x,y |b), is calculated. Because x and y are joint

(K + M)-dimensional Gaussian random variables, therefore the entropy of (x,y |b)

can be expressed as

h(x,y |b) =
1

2
log

[
(2πe)K+M |Σxy|

]
(4.23)

where

Σxy =




Σy A

AT σ2
xIK


 (4.24)

The submatrix A in Σxy denotes the matrix of the covariance COV(ym, xn) between

the m-th entry of y and the n-th entry of x, which can be calculated from

COV(ym, xn) = φm,n(σ2
x + µ2

x) + µ2
x

K∑

k=1
k 6=n

φm,k (4.25)

Obviously, to calculate h(y) and h(x,y |b), the determinant of Σy and the

determinant of Σxy need to be considered. suppose they are full rank, these covari-

ance matrices are thus positive-definite matrices. Hence, the SVD technique can be
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applied to decompose and find the eigenvalues of the matrices. In other word, the

determinants of the covariance matrices can be expressed as

|Σy| =
M∏
i=1

λi
y (4.26)

and

|Σxy| =
K+M∏
j=1

λj
xy (4.27)

4.2.4 The Lower Bound of the Probability of Error

Combining every terms together, the Fano’s Inequality can then be rewritten

as

Pr(e) ≥ 1

K log(2πeσ2
x)
·
{

log

[
(2πe)K+M(

K+M∏
j=1

λj
xy)

]
− log

[
(2πe)M(

M∏
i=1

λi
y)

]
− 2

}

(a)
=

1

K log(2πeσ2
x)
·
{

log

[
(2πe)K+M(

K+M∏
j=1

λj
xy)

]
− log

[
(2πe)M(

M∏
i=1

λi
y)

]}

(b)

≥ log(2πeλxy min)K+M − log(2πeλy max)
M

K log(2πeσ2
x)

=
log(2πe)

log(2πeσ2
x)
−

[
log(λ

M
K
y max)− log(λ

M
K

+1

xy min)

log(2πeσ2
x)

]

(c)

≥ log(2πe)

log(2πeσ2
x)
−

[
log(λ

M
K
y max)− log(λ

M
K

+1

xy min)

log(2πeσ2
x)

]
− log λy max

log(2πeσ2
x)

=
log(2πe)

log(2πeσ2
x)
−

log( λy max

λxy min
)

M
K

+1

log(2πeσ2
x)

(4.28)

where

(a) if K >> 2 and σ2
x ≥ 1, 2

K log(2πeσ2
x)
≈ 0,

(b) from
K+M∏
u=1

λxy u ≥ λK+M
xy min and

M∏
v=1

λy v ≤ λM
y max,

(c) from λy max > 1 and log(λy max) > 0 (the proof is in the last section of the chap-

ter), thus subtracting log λy max

log(2πeσ2
x)

reduces the probability.
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If the information is normalized to unit variance, i.e., σ2
x = 1, the lower bound

can be written as

Pr(e) ≥ 1− 1

4
log(

λy max

λxy min

)
M
K

+1 (4.29)

This final result can be obtained by substituting log(2πe) ≈ 4 to (4.28).

4.3 Result Analysis

The question to be asked at this point is what, in general, is the relationship

between λxy min and λy max? To answer this question, let refer to the interlacing

property in [45].

Corollary 1 If Br denotes the leading r-by-r principal submatrix of an n-by-n

symmetric matrix B, then for r = 1, 2, ..., n − 1 the following interlacing property

holds:

λr+1(Br+1) ≤ λr(Br) ≤ λr(Br+1) ≤ ... ≤ λ2(Br+1) ≤ λ1(Br) ≤ λ1(Br+1) (4.30)

In other words, the interlacing property suggests that the λmin of the smaller square

leading principal submatrix is greater than or equal to the λmin of the bigger one, but

its λmax is smaller than or equal to the λmax of the bigger one. Since the covariance

matrix Σxy in (4.24) is an N -by-N symmetric matrix and Σy is its leading M -by-M

principal submatrix. From the interlacing property, it is easy to show that

λxy min ≤ λy min ≤ λy max ≤ λxy max

The logarithm term in (4.29) is always non-negative and the lower-bound value is

always less than or equal to 1. Finally, for a given information vector x, (4.22) and

(4.25) suggest that the eigenvalues of the covariance matrices depend solely on the

entries in the measurement matrix Φ. Consequently, one should consider the following

conditions when selecting the measurement matrix Φ;
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• If Φ is generated such that λy max = λxy min, then the error is certain, i.e.,

Pr(e) = 1. This means the information can never be perfectly recovered from

the reconstruction process.

• If Φ is chosen such that λy max

λxy min
≥ 2

4
M
K

+1 , then the lower bound is non-positive;

which implies that the perfect reconstruction of information is possible.

4.4 Conclusions

In this chapter, the CS scheme is considered from the information theory point

of view and derived the lower bound of the probability of error for the CS scheme,

using the Fano’s Inequality. By assuming the information is Gaussian distributed,

the lower bound can easily be computed and provides the criteria for choosing the

measurement matrix Φ.

It has been shown that if the measurement matrix Φ is chosen such that λy max =

λxy min, then the reconstruction error is inevitable: therefore, it is unwise to perform

the data compression on the choice of the measurement matrix. However, if the

selected measurement matrix makes λy max

λxy min
≥ 2

4
M
K

+1 , the probability of error is then

lower bounded by a non-positive value; which implies that there is a potential for the

information to be perfectly recovered.

It is noted that, in the study, a binary ensemble is assumed for the measurement

matrix Φ just to simplify the subsequent expressions. However, the result from the

study also holds if the Gaussian ensemble is used to generate Φ.
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4.5 Proof for the Lower Bound of the Maximum Eigenvalue of Σy

4.5.1 Binary Ensemble

When Φ is a binary ensemble, Σy can be expressed as

Σy =




σ2
xK · · · COV(y1, yM)

... · · · ...

COV(yM , y1) · · · σ2
xK




Assume the signal variance is normalized. This implies the diagonal entries are all

equal to K. Let Σy = BM and observe that BM is an M -by-M symmetric matrix with

the leading 1-by-1 principal submatrix, say B1, equal to K. Then, from Corollary 1,

it is conclude that

λmin(BM) ≤ λmin(B1) ≤ λmax(B1) ≤ λmax(BM)

However, because B1 has only one eigenvalue, which is equal to K, then the above

inequality can be rewritten as

λmin(BM) ≤ K ≤ λmax(BM)

Therefore λmax(BM) = λy max > 1 since K >> 1. The proof is completed.

4.5.2 Gaussian Ensemble

If Φ is a Gaussian ensemble, Σy can be expressed as in (4.21) with the diagonal

entries

COV(ym, ym) = σ2
x

K∑
u=1

φm,u

K∑
v=1

φn,v

= σ2
x

[
K∑

u=1

(φu,u)
2 +

K∑
v=1

φm,v

K∑
w=1
w 6=v

φm′,w

]
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Assume the the signal variance is normalized. If the parenthesized term of the second

equality can be proved as greater than or equal to 1, i.e. COV(ym, ym′) > 1, then the

same proof for the binary ensemble can be followed to show that λy max > 1.

First, let illustrate that
K∑

u=1

(φ·,u)2 > 1 when K is sufficiently large. Define Zu

as a binary random variable representing whether φ·,u is greater than or equal to 1,

when u = 1 to K. That is, the random variable Zu is expressed as:

Zu =





1 , φ·,u ≥ 1

0 , otherwise

(4.31)

Since {φ·,u}K
1 is N(0, 1), Pr(φ·,u ≥ 1) = Q(1) and, if K is sufficiently large, E[Zu] =

Q(1) = 0.159, w.h.p.

Next, let define a random variable S =
K∑

u=1

Zu, representing the total number

of φ·,u that is greater than equal to 1. Since {Zu}K
1 is an i.i.d. sequence of random

variables with E[Zu] = Q(1). By Strong Law of Large Numbers, as K →∞,

S

K
=

1

K

K∑
u=1

Zu → 0.159 (4.32)

When K is sufficiently large, w.h.p. (with high probability), there will be S = 0.159K

terms in {φ·,u}K
1 that are greater than or equal to 1. For example, if K >> 10, there

is at least 1 term in {φ·,u}K
1 that is greater than or equal to 1. Thus, it is concluded

that
K∑

u=1

(φ·,u)2 > 1 w.h.p. if K is sufficiently large.

By similar procedures, it can be shown further that if K is sufficiently large,

then for any φ·,i = c, there exists its antipode pair φ·,j = −c so that φ·,i + φ·,j = 0.

Hence, it is straightforward that, w.h.p.,
K∑

v=1

φj,v

K∑
w=1,w 6=v

φj,w = 0.

Combining together, the results from the first and second parts of the proof, it

can be concluded that COV(yi, yi) > 1. Thus, the proof is completed.
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CHAPTER 5

FUZZY FORECASTING RECONSTRUCTION FOR CORRELATED AND

SPARSE INFORMATION

5.1 Introduction

Compressive sensing (CS) is a recently emerged method to capture and repre-

sent compressible signals at a rate significantly below the Nyquist rate. CS can be

viewed as a scheme for simultaneously sensing and compression whose data acquisi-

tion rate need only be proportional to the sparsity of the signal. Mathematically, the

process of compression in CS can be compactly described by the following equation;

v = Φ · u (5.1)

where u denotes a K-sparse information vector of length N , i.e. there are K non-

zero entries in the vector, v is the observation vector of length M , and Φ is the

measurement matrix of size M × N . In general, the length of v is far lesser than

that of u, i.e., M << N , then CS can potentially provide substantial saving on data

acquisition and storage.

The non-linear processing to reconstruct the signal from the measurement also

plays an important role in CS. The goal of the reconstruction process is to be able to

perfectly reconstruct u from the compressed observation v. In [46, 47, 48], the work by

Candés and Donoho et. al. has shown that l1 optimization using Linear Programming

(LP) techniques yields an equivalent solution as long as the measurement matrix Φ

satisfies the restricted isometry property (RIP) with a constant parameter.

Though LP techniques play an important role in CS reconstruction, their com-

plexity is still impractically high for certain applications. For faster processing time,
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several of low-complexity reconstruction algorithms, [49, 50], have been proposed as

alternatives.

In addition, there is also a family of iterative greedy techniques that offer fast

reconstruction and simple geometry interpretation. These techniques include the

Orthogonal Matching Pursuit (OMP), the Regularized OMP, the Stagewise OMP.

The complexity of these method is proven to be significantly smaller than that of the

LP, but this comes with the expense of the reconstruction quality. Examples of the

algorithms belonging in this family are the ROMP [51], CoSaMP [52], and Subspace

Pursuit [53].

Though OMP algorithms can operate in both noiseless and noisy environment,

but when the compressed observation v contains a great amount of noises, the re-

construction error increases substantially. For example, in wireless communication,

due to the nature of the airborne channel, the operating SNR level can be as low as

10-20 dB, which is typical for many wireless systems. When the original information

is reconstructed at the other end of the wireless system, a significantly high amount

of error could be resulted unless the noisy measurements is pre-processed. It is , thus,

called for an effective noise reduction method.

In many applications, however, a collection of the previous data points may

easily be acquired. Such prior knowledge can also be used in favor of the reconstruc-

tion process. It can use as the training data to construct a forecasting system. With

this concept, one can rely on the past information, usually less noisy, to predict the

subsequent data points or the unknown compressed information u and obtain the

insight of what the original information should be. This is especially the case when

each of the K nonzero entries of the information vector exhibits a certain level of

correlation; the relationship among the current data set is foretold by the past data

points.
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Forecasting is very important problem that appears in many disciplines. In

[54, 55, 56], fuzzy logic forecasting systems were used in wireless sensor networks,

wireless ad-hoc networks, and time-series forecast. And, to design a fuzzy logic system

(FLS), there are many methods provided in [56, 57].

In this chapter the performance of an OMP-based reconstruction technique in

noisy regime is investigated. In particular, the CoSaMP algorithm [52] is considered

and, to help improving its performance against the influence of noise, an FLS fore-

caster is constructed from a set of past information and the forecasted data is used in

the reconstruction process of the algorithm. Using the forecasting FLS and some mod-

ifications to the original CoSaMP algorithm, the study shows that the reconstruction

error can be further improved.

The remainder of this chapter is presented as follows. In Section 5.2, an overview

of the rule-based fuzzy logic system is given and followed by the discussion on how

to design a FLS forecaster using back propagation method. In Section 5.3, the fuzzy

forecasting reconstruction algorithm is proposed. Then, in Section 5.4, the simulation

results are provided to validate the proposed approach in comparison to a standard

OMP algorithm, CoSaMP. Finally, the chapter is concluded in Section 5.5.

5.2 Fuzzy Logic Forecasting System Design

Before proceeding, let first introduce a pruned information vector up, which

contains only the K non-zero entries in u indexed by i ∈ I, I ⊂ {1, ..., N}, and

|I| = K. In this chapter, the case when the value of each entry of up is highly

correlated to its p previous entries is studied. That is, the ith entry of up can be

determined via a function of the i − 1 th to i − p th entries. Designing a FLS can

then be viewed as approximating the relation between the ith entry of up and its p

predecessors.
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RULES DEFUZZIFIERFuzzy Input Set Fuzzy Output Set

CrispInput CrispOutput
Figure 5.1. The structure of a fuzzy logic system.

Suppose that a collection of past information vector u or, equivalently, a set of

the past up is obtainable at the reconstruction side of CS. Given these past measure-

ments, so called the input-output data training pairs, tuning is essentially equivalent

to determining a system that provides an optimal fit to the input-output pairs. The

goal is to completely specify the FLS using the training data and use it as a forecaster

to find the current up.

5.2.1 Overview of Fuzzy Logic Systems

Figure 5.1 shows the structure of a FLS. When an input is applied to a FLS, the

inference engine computes the output set corresponding to each rule. The defuzzifier

then computes a crisp output from these rule output sets [56].

Consider a FLS having p inputs x1 ∈ X1, ..., xp ∈ Xp and one output y ∈ Y .

Suppose that the FLS has L “ IF-THEN ” rules, where the lth rule has the form;

Rl : IF x1 is F l
1 and x2 is F l

2 ... and xp is F l
p

THEN y is Gl , l = 1, ..., L (5.2)
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where Fi is a fuzzy set whose membership function (MF), µFi
, is centered at xi.

Assuming singleton fuzzification, when an input x′ = {x′1, ..., x′p} is applied, the degree

of firing corresponding to the lth rule is computed as

µF l
1
(x′1) ∗ µF l

2
(x′2) ∗ ... ∗ µF l

p
(x′p) = T p

i=1µF l
i
(x′i) (5.3)

where ∗ denotes the t-norm operation. There are many kinds of defuzzifiers. In this

chapter, the height defuzzifier is used. It computes a crisp output for the FLS by first

replacing each rule fuzzy set by a singleton at the point having maximum membership

in that output set. Then, it calculates the centroid of the type-1 set comprised of

these singleton. The output of a height defuzzifier is given as

y(x′) =

∑M
l=1 ȳlµBl(ȳl)∑M
l=1 µBl(ȳl)

(5.4)

where ȳl is the point having maximum membership in the lth output set and its

membership grade in the lth output set is µBl(ȳl). For singleton fuzzification, it can

be shown that

µBl(ȳl) = µGl(ȳl) ∗
[
µF l

1
(x′1) ∗ · · · ∗ µF l

p
(x′p)

]
(5.5)

5.2.2 Designing Fuzzy Logic Systems

Because of the large numbers of possibilities for FLSs, some guidelines are nec-

essary for their practical design. There exists a multitude of design methods that

can be used to construct FLSs. In this chapter, the back-propagation (steepest de-

scent) method [56] is used to specify the FLS. The shapes of all the antecedent and

consequent MFs are fixed ahead of time and the training data is used to tune the

antecedent and consequent parameters [56]. Also, the design assumes singleton fuzzi-

fication, Gaussian membership functions (GMF), max-product composition, product
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implication and t-norm, and height defuzzification. It is to easy to show, using these

assumptions, that (5.4) can now be written as;

y(x′) = fs(x
′) =

∑M
l=1 ȳl

∏p
i=1 µF l

i
(x′i)∑M

l=1

∏p
i=1 µF l

i
(x′i)

(5.6)

To obtain (5.6), start with (5.4) and substitute for µBl(ȳl) from (5.5), i.e.,

µBl(ȳl) = µGl(ȳl)×
[ p∏

i=1

µF l
i
(x′i)

]
=

p∏
i=1

µF l
i
(x′i) (5.7)

where it have been assumed that the MFs are normalized, so that µGl(ȳl) = 1.

Given that there is a collection of T past measurements of up, e.g. up(1), . . . , up(T ),

available at the CS reconstruction side, the past information can be partitioned into

2 subsets;

• Training subset, R < T measurements from up(1) to up(R)

• Testing subset, T −R measurements from up(R + 1) to up(T )

The training subset is used in the designed FLS forecaster to establish its rules

and the testing subset is used to test the accuracy of the extracted rules. Fur-

thermore, assuming the current measurement of up is determined by its previous p

measurements, R − p input-output training pairs can be formed, (x(1) : y(1)), (x(2) :

y(2)), . . . , (x(R−p) : y(R−p)), where x is the vector input and y is the scalar output of a

FLS, as shown below.

x(1) =




up(1)

...

up(p)




, y(1) = up(p + 1)

...
...

x(R−p) =




up(R− p)

...

up(R− 1)




, y(R−p) = up(R) (5.8)
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Similarly, T −R input-output testing pairs can be formed as

x(R−p+1) =




up(R− p + 1)

...

up(R)




, y(R−p+1) = uI(R + 1)

...
...

x(T−p) =




up(T − p)

...

up(T )




, y(T−p) = up(T ) (5.9)

In the back propagation method, none of the antecedent or consequent para-

meters are fixed ahead of time. They are all tuned using a steepest decent method,

which is briefly described in this section. Notice that, with Gaussian membership

functions, (5.7) can be rewritten as

y(x(i)) = fs(x
(i)) =

∑M
l=1 ȳl

∏p
k=1 exp

[
−

(
x
(i)
k −m

Fl
k

)2

2σ2

Fl
k

]

∑M
l=1

∏p
k=1 exp

[
−

(
x
(i)
k −m

Fl
k

)2

2σ2

Fl
k

] (5.10)

where i = 1, . . . , R − p, and mF l
k

and σ2
F l

k
are the mean and the variance of the

antecedent k in the lth rule, respectively. With the given the input-output training

pair (x(i) : y(i)), the goal is to design the FLS in (5.10) such that the following error

function is minimized;

e(i) =
1

2
[fs(x

(i))− y(i)]2 (5.11)

Using a steepest decent algorithm to minimize e(i), it is straightforward to obtain the

following recursions to update all the design parameters of this FLS;

mF l
k
(i + 1) = mF l

k
(i)− αm[fs(x

(i))− y(i)][ȳl(i)− fs(x
(i))]

×

(
x

(i)
k −mF l

k
(i)

)

σ2
F l

k

(i)
φl(x

(i)) (5.12)
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ȳl(i + 1) = ȳl(i)− αȳ[fs(x
(i))− y(i)] φl(x

(i)) (5.13)

and

σF l
k
(i + 1) = σF l

k
(i)− ασ[fs(x

(i))− y(i)][ȳl(i)− fs(x
(i))]

×

(
x

(i)
k −mF l

k
(i)

)2

σ3
F l

k

(i)
φl(x

(i)) (5.14)

where φl(x
(i)) is the fuzzy basis function and is expressed as;

φl(x
(i)) =

∏p
k=1 exp

[
−

(
x
(i)
k −m

Fl
k

)2

2σ2

Fl
k

]

∑M
l=1

∏p
k=1 exp

[
−

(
x
(i)
k −m

Fl
k

)2

2σ2

Fl
k

] (5.15)

The parameters, αm, αȳ, and ασ are the learning parameters. Frequently, they are

chosen to be the same, say α. Choosing to large α can cause the algorithm not to

converge, whereas choosing too small a value of α can cause the algorithm to take a

very long time to converge. Evidently, the choices of the initial values for mF l
k
(0),ȳl(0),

and σF l
k
(0) also determine the convergence speed of the algorithm. Choosing these

parameters smartly will help the algorithm converging faster.

Note that, in the back propagation algorithm just described, each of the R− p

training pairs is used only one time and the FLS parameters are updated using an

error function that depends only on a pair of training data. If an epoch is defined as

the collection of training pairs: it is said that the tuning process occurs for only one

epoch. In fact, iterative tuning can also be performed by having several epochs (or

just one epoch and use it repeatedly) and using the updated parameters obtained from

the current epoch as the initial parameters for the next. To ensure the convergence

of the error, the updated parameters from each epoch can be tested on the set of

testing pairs associating with the training data in the epoch and the iterative tuning

will continue until the error requirement is met.
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5.3 Fuzzy Forecasting Reconstruction Algorithm

In CS reconstruction, the exact signal recovery can be guaranteed if the mea-

surement matrix Φ obeys a restricted isometry property (RIP) of order 2K, i.e. there

exists a universal constant δ2K such that for all 2K-sparse signal z

(1− δ)‖z‖2
l2
≤ ‖Φz‖2

l2
≤ (1 + δ)‖z‖2

l2
(5.16)

If Φ has small RIP constant δ2K , it approximately maintains l2 distances between K-

sparse signals. Although verifying the RIP is mathematically complex, a surprising

result is that random matrices, e.g. Gaussian random matrices [44], with sufficient

number of rows and columns can achieve small RIP constants with overwhelming

probability.

A recent emerged body of literature provides a variety of greedy techniques

and the RIP guarantees that the greedy reconstruction algorithms robustly recover

the signals. An example of these greedy techniques is the Compressive Sampling

Matching Pursuit (CoSaMP)[52], which is the heart of the algorithm presented in

this chapter.

The concept of the fuzzy forecasting reconstruction algorithm is shown in Algo-

rithm 1. Similar to most greedy algorithms, after each iteration j, the algorithm finds

an estimate ûj of the target signal and its sparse support. Each iteration refines the

estimate until the halting criterion is triggered; the algorithm then stops and yields

the final estimate of the target signal.

As input, the algorithm requires five pieces of information, which are the noisy

observation vector, the measurement matrix, the signal sparsity, the forecasted vector,

and the rough estimate. Because the first three information are the standard inputs

that are common for any CS reconstruction algorithm, there is no need for further
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elaboration. Therefore, the attention should be directed to the last two pieces of

information, which are required only in the algorithm proposed.

In details, the forecasted vector is merely the output forecasted values of the

fuzzy logic forecaster for the pruned information vector up. Even though there is

an error associating in the forecasting process, the forecasted vector still can provide

a very good intuition about the original signal without the presence of noise. The

next piece of information required is the rough estimate input, which is used in

the algorithm to provides an initial approximate of the whereabouts of the nonzero

entries in the signal. The rough estimate can be obtained from a few iterations of the

standard CS reconstruction (for example CoSaMP). Using the rough estimate, the

algorithm simply extracts a set of indices of the nonzero entries and, by substituting

the FLS forecasted values on these locations, it can then obtain a very good choice

of the initial seed for the reconstruction process.

Now, consider the flow of the Algorithm 1 as shown below. In Line 1, the

algorithm first locates the K nonzero entries by identifying the support of the rough

estimate ur. Then, in Line 2, it substitutes these entries by K forecasted values

obtained from the FLS forecaster. Line 3-5 initializes the parameters, e.g. the counter

is reset, the initial estimate û0 is set to the substitution result, and the algorithm

calculates the initial residual r0, the part of signal that has not been approximated.

To perform the reconstruction process, a loop is started in Line 6. In Line 8, the

residual is weighted by Φ∗ to form a proxy, which is used to identifies the largest

components in the residual. Then, Line 9 combines the 2K support of the current

estimate ûj−1 with the K support of the residual. Using the least-square technique,

the signal is estimated in Line 10, based on the merged support T obtained from Line

9. Here, it is noted that Φ†
T = (Φ∗Φ)−1Φ∗ is the pseudoinverse of the measurement

matrix Φ. Subsequently, in Line 11, the resulting estimate is truncated to achieve
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Algorithm 5.1: The Fuzzy forecasting Greedy Reconstruction Algorithm
Inputs: noisy observation v, measurement matrix Φ,

signal sparsity K, rough estimate ur, forecasted vector uf

1: Identify the support of the rough estimation:
S = supp(ur|K)

where supp(·) determines the support of a vector, and x|K selects
the K largest components, setting all others to 0

2: Substitute with the forecasted vector:
ur|S = uf

3: Initialize:
j = 0 {initial count}
û0 = ur

r0 = v− Φ û0

6: while not converged
7: Increase iteration count:

j ← j + 1
8: Find signal proxy:

z = Φ∗ rj−1

9: Identify and merge the support:
T = supp(z|2K) ∪ supp(ûj−1|K)

10: Perform least-square estimation:

b|T = Φ†
T v and b|T c = 0

11: Truncate and update the estimate:
ûj = b|K

12: Find residual:
rj = v− Φ ûj

Output: K-sparse estimate ûj

the support of K and is updated as the new estimate. Finally, Line 12 calculates

the new residual corresponding to the new estimate. The procedures in Line 7-12

will be repeated over and over until the error is converged or the halting criterion is

triggered.

5.4 Experimental Results

To validate the performance of the fuzzy forecasting algorithm, consider an

example of a time series data. Let assume the K nonzero data points in the pruned
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information vector up form a group of time-series data, for example daily temperatures

or stock indices. Apparently, each measurement in the time series is correlated to the

previous measurements and the FLS is used to construct a set of rules that can

emulate the relationship between each measurement and its predecessors.

The Mackey-Glass discrete equation in (5.17) is used to generate the set of time-

series data (see Chapter 4.2.2 in [56]). The Mackey-Glass time series (for τ > 17)

exhibits a chaotic behavior and has become the benchmark problem for prediction in

both the neural network and fuzzy logic fields.

up(i + 1) = up(i) +
0.2up(i− τ)

1 + [up(i− τ)]10
− 0.1up(i) (5.17)

With τ = 18 and a random value of up(0), a set of 1000 + K Mackey-Glass

time series data points was generated. The first 1000 data points are used as the

past pruned information (or the past up) that is assumed to available at the CS

reconstruction site, i.e. T = 1000, and the rest K points is used as the pruned

information to construct a K-sparse information vector u. Then, from the set of the

past information, 500 input-output training pairs and 496 testing pairs were formed.

In designing the FLS, the size of correlation window p was set to four. That

is, the current data point of the time series is presumed to be determined by its four

predecessors. In other word, the FLS forecaster was designed based on the use of

four antecedents. For each antecedent, two fuzzy sets, which can be characterized by

a Gaussian membership function (GMF), were used. Therefore, 24 = 16 rules can be

setup for the fuzzy logic forecaster. Apparently, each rule is characterized by eight

antecedent membership function parameters, which are the mean and the standard

deviation (SD) for each of the four GMFs and one consequent parameter ȳ.

The initial location of each antecedent GMFs was chosen based on the mean

mu and the SD σu of the data that is used for training the FLS. Specifically, the
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Table 5.1. The FLS Forecaster Design

No. of antecedents 4
No. of rules 16
No. of training pairs 500 pairs

(504 data points)
No. of testing pairs 496 pairs

(496 data points)
Initial means of each MF mu − σu and mu + σu

Initial SD of each MF 2σu

Center of the consequent MF random in [0, 1]
Learning parameter α = 0.2

mean of each and every antecedent’s two GMFs were initialized to m1 = mu − σu

and m2 = mu + σu and their SDs were set to 2σu. For the consequent parameter, the

center of each consequent’s membership function (ȳi, i = 1 to 16) was initialized to

a random number in the range of [0,1]. Based on these initial values, the forecaster

was then tuned using the back propagation method and the iterative tuning. Table

5.1 summarizes the FLS forecaster design.

As an illustration, a series of simulations were performed to compare the pro-

posed approach with the standard CoSaMP algorithm. The experiments use the

Gaussian IID random measurement matrices (see [44]) of varying dimensions M and

N . Each measurement matrix satisfies the RIP in (5.16). The sparse information

vector is generated by using the K time series data points and padding zeroes onto

some random indices to make a length of N . The compression process is performed

according to (5.1) and, to obtain a noisy observation vector, a zero-mean Gaussian

noise n is added to the compression result. The noise power is defined through the

SNR as

SNR = 20 log(
||Φu||l2
||n||l2 ) (5.18)
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Figure 5.2. The plot of signal-to-reconstruction-error ratio for varying observation
length M , with fixed N = 1000 and K = 30.

Two sets of experiments have been performed. In the first set, the sparsity and

the length of the information vector are fixed to K = 30 and N = 1000 then varied

the length of observation vector in four steps M = 200, , 300, 400, 500. In the second

set of experiments, the length of the information is fixed at N = 1000 and the length

of the observation is fixed at M = 300 then the information sparsity is changed in

four steps K = 20, 30, 40, 50. For each choice of M and K, a different set of Φ,u, and

n, was generated; consequently, the FLS was also tuned to each data set.

To measure the performance of each algorithm, a signal-to-reconstruction-error

ratio (SRER) is defined as

SRER = 20 log(
‖Φu‖l2

‖u− û‖l2

) (5.19)

Figure 5.2 illustrates the fuzzy forecasting reconstruction algorithm can outper-

form the standard CoSaMP algorithm. It can be seen that for SNR=15 dB, which

is typical for many of wireless communication networks, the SRER of the proposed
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Figure 5.3. The plot of signal-to-reconstruction-error ratio for varying sparsity K,
with fixed N = 1000 and M = 300.

algorithm is approximately 2 dB higher than that of the standard CoSaMP. However,

the difference is lower when SNR increases to 20 dB; this is because the CoSaMP

performs better at higher SNR. It is also noted that as M varies, the information

becomes less compressive; thus, the reconstruction error reduces and the SRER level

increases.

In contrary, Figure 5.2 displays the result when the sparsity changes. While K

increases, there is more and more information contained in the original information

vector u. However, because the number of observation M is fixed, this is why the

SRER decreases. However, it can be seen that the fuzzy forecasting reconstruction

algorithm can still outperform the standard CoSaMP algorithm, especially when the

noise power is high. Thus, from these experiments, it can be concluded that the

proposed method can help improving the reconstruction process.
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5.5 Conclusions

Compressive sensing is a potential choice of source encoding technique in wire-

less communications. However, due to small operating SNR levels of many wireless

systems, the reconstructed information may become erroneous, especially when an

OMP-based reconstruction algorithm is used. In this chapter, a fuzzy forecasting

reconstruction algorithm, which helps improving the OMP reconstruction process, is

proposed. Relying on a collection of the less noisy past information, the algorithm

extracts the knowledge about the values of the current compressed information then,

using such knowledge together with the noisy observation received, it can better ex-

tract both the values and the locations of the sparse coefficients in the information

vector. The simulation results have shown that, compared to a standard OMP algo-

rithm performance, an improvement in the ratio of signal to reconstruction error of up

to 2 dB, depending on the noise level of the system and the compression parameters,

can be achieved using the proposed approach.
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