

ADAPTIVE HIGH LEVEL CONTEXT REASONING

IN PERVASIVE ENVIRONMENTS

by

 BRIDGET B. BEAMON

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2011

Copyright © by Bridget Beamon 2011

All Rights Reserved

iii

To my parents Lynda and Earl, my husband Johnnell, and my daughter Havalynn.

iv

ACKNOWLEDGEMENTS

This completed work is dedicated to my family. Their unwavering support and commitment to my

success has made this possible. Life did not permit my sister Opal to see me complete my Ph. D.

Still, she will forever be my biggest fan; one who believed in me more that I believed in myself.

Knowing that completing this work forges path for my daughter to follow makes the sacrifices

worthwhile. My husband, Johnnell, has supported every endeavor or mine without reservation. I

am truly blessed to have the gift of such loving and supportive family. So, my success is not only

for myself, but also for those I love.

I would never have been able to complete this work without the direction, patience and positive

direction of my advisor Mohan Kumar. As a non-traditional PHD student, to say that finishing this

work has been a challenge is an understatement. On several occasions, circumstances almost

caused me to quit, but his words and practical suggestions kept me moving forward. Thanks to all

of my committee members for taking the time to serve on my committee and provide valuable

feedback: Vassallis Athitsos, Hao Cheand Yonghe Liu. Finally, I would like thank the CSE

department and the National Science Foundation for providing me financial support. The work

presented in this paper was partially supported under US National Science Foundation Grant

ECCS-0824120.

-with sincerest gratitude to all of you

July 13, 2011

v

ABSTRACT

ADAPTIVE HIGH LEVEL CONTEXT REASONING

IN PERVASIVE ENVIRONMENTS

Bridget B. Beamon, PhD

The University of Texas at Arlington, 2011

Supervising Professor: Mohan Kumar

It is hard to believe that the Internet is now in its adolescent stage. This information age is replete

with communication capable, intelligent, sensor equipped devices. Social networks, web services,

and global information repositories make a wealth of information available instantly. There exist

endless possibilities for creating useable knowledge. Much of what is considered useable

knowledge is not directly observable from low level sensory devices. Abstract situations,

relationships and activities must be inferred using a variety of techniques that fuse information

from multivariate data sources. We refer to this useable knowledge as high level context. Social,

physiological, environmental, computational, activity, location and situation are but a few

vi

categories of high level context used today. In a general sense, context is any domain specific

knowledge relevant to decision making. Low level contexts can be inferred after minimal

manipulation and preprocessing of sensor data. High level context is intrinsically more complex.

High level context involves many levels of data fusion for inferring high level concepts. The

increased dimensionality of representing and reasoning on relationships among contextual

components, factoring uncertainty and ignorance, makes it difficult to effectively reason.

A research problem in the area of context-aware computing is adaptive and effective

high-level context reasoning. Effectiveness refers to the suitability of reasoning methodology for

efficiently reasoning and representing the heterogeneous characteristics of context. Adaptive

reasoning aides in maintaining context content and quality in the face of dynamic resource

availability, degrading reasoning performance and evolving requirements. Context architects are

at times challenged; constrained by the limited reasoning provided in the available platforms.

Incorporating a generalized hierarchical hybrid reasoning engine, offering variety and optimization

for reasoning across heterogeneous complex contexts would provide an effective alternative.

Such architecture integrates a variety of configurable reasoning techniques, supporting the

modularity of complex high level context. Ultimately, it promotes context reasoning framework

reuse, knowledge sharing, and improved context aware application performance.

This research proposes novel enabling solutions for adaptive and effective reasoning in

pervasive environments. The focus is on middleware solutions for deriving and sustaining high

level context, with support for reasoning adaptation and quality maintenance in dynamic

pervasive environments. These solutions provided can be used for initiating context inference

applications or extending existing architectures for greater reusability. Reuse leads to rapid and

innovative context aware application development, a necessary evolution for achieving the vision

of ubiquitous computing and beyond.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF ILLUSTRATIONS ... x

LIST OF TABLES .. xiii

Chapter Page

1. INTRODUCTION ... 1

1.1 Pervasive Computing Evolution ... 1

1.2 Dissertation Contributions ... 5

1.3 Organization of the Dissertation .. 12

2. BACKGROUND ... 13

2.1 Context .. 13

2.2 Context Toolkit, Middleware and Architecture Related Work .. 17

2.3 Quality of Context Related Work ... 28

2.4 Deriving High Level Context Using Integrated Reasoning Related Work 33

2.5 Context Modeling and Representation Related Work ... 39

2.6 Survey of Knowledge Representations used for Context Modeling and Reasoning 42

2.7 Background Summary ... 48

3. HYCORE DESIGN AND DATA MODEL ... 49

3.1 Requirements Analysis .. 49

viii

3.2 HyCoRE Architecture... 52

3.3 HyCoRE Context Data Model .. 55

3.4 HyCoRE Context IO Model .. 62

4. QUALITY OF CONTEXT ... 73

4.1 Quality Definitions .. 75

4.2 High Level Context Quality Quantification ... 81

4.3 Quality Integration .. 82

4.4 Context Middleware Quality Quantification (QoCS) .. 87

5. ADAPTABLE CONTEXT REASONING WITH HYCORE .. 95

5.1 Template Manager Functions .. 96

5.2 Context Builder Functions ... 99

5.3 Context Provider Registration and Context Update Processing 101

5.4 Context Consumer Registration with Context Mailbox .. 101

5.5 Context Flow Reasoning with Quality Integration and Provenance 102

5.6 Quality Verification ... 107

5.7 Quality Aware Reasoning Adaptation .. 110

5.8 HyCoRE Reasoning Summary .. 117

6. HYCORE EVALUATION ... 122

6.1 Law Enforcement Search Evaluation .. 122

6.2 Hybrid Reasoning using Mobile Device Contexts ... 140

7. CONCLUSIONS .. 142

REFERENCES .. 144

ix

BIOGRAPHICAL INFORMATION ... 155

x

LIST OF ILLUSTRATIONS

Figure Page

1. Hierarchical Complex Context .. 16

2. Intel Framework Gesture Recognition and Physical Activity Reasoning DAGs 23

3. INFERD – Passenger Identification .. 24

4. INFERD- Passenger Threat Template ... 24

5. CoBrA Architecture ... 28

6. Bayesian Network For Equipment Diagnostic Task ... 37

7. Recursive Mfrag ... 37

8. MEBN - Situation Specific Bayesian Network .. 38

9. SOUPA ... 41

10. Reasoning Techniques applied to context ... 43

11. Sample SWRL Rules in Protege .. 48

12. Comparison of OWL, SWRL and BNs for Knowledge Representation 48

13. HyCoRE High Level Architecture ... 52

14. HyCoRE Context Data Model ... 56

15. HyCoRE Context IO Specification .. 63

16. Example Context Consumer Requirements ... 65

17. Example Context Provider Context Meta-data ... 67

18. HyCoRE Reasoning Data Model .. 68

19. Unweighted Context Template ... 69

20. Context Flow Conceptual Specification .. 72

21. Quality Indicators .. 74

22. Quality Aggregation .. 83

xi

23. Quality Propagation .. 83

24. Quality Integration Process .. 86

25. HyCoRE Performance Criteria ... 87

26. Context Reasoning Subsystem Components ... 95

27. Template Manager Sequence Diagram ... 98

28. Consumer Registration w/mailbox Sequence Diagram .. 102

29. Serialized Complex Context Flow... 103

30. Context Reasoning Sequence Diagram ... 105

31. Context Reasoning w Quality Integration Pseudo Logic .. 106

32. Quality Verification Example ... 108

33. Inference Feedback Sequence Diagram .. 109

34. Context Reasoning Adaptation ... 111

35. HyCoRE Implementation Architecture .. 117

36. HyCoRE Implementation Components .. 118

37. Law Enforcement Scenario .. 124

38. HyCoRE Providers (Law Enforcement Scenario)... 125

39. HyCoRE Consumers (Law Enforcement Scenario... 125

40. Context Flows (Law Enforcement Scenario) .. 126

41. Snapshot 1 – Operational Efficiency .. 131

42. Snapshot 1 – Meantime Before Context Failure .. 131

43. Snapshot 1 – Integrated Energy Cost .. 132

44. Snapshot 1- Integrated Bandwidth Cost ... 132

45. Snapshot 2- Operational Efficiency .. 133

46. Snapshot 2- Meantime Before Context Failure .. 133

47. Snapshot 2- Integrated Energy Cost .. 133

48. Snapshot 2- Integrated Bandwidth Cost ... 134

49. Snapshot 3- Operational Efficiency .. 134

xii

50. Snapshot 3- Meantime Before Context Failure .. 135

51. Snapshot 3- Integrated Energy Cost .. 135

52. Snapshot 3- Integrated Bandwidth Cost ... 135

53. Snapshot 4- Operational Efficiency .. 136

54. Snapshot 4- Meantime Before Context Failure .. 137

55. Snapshot 4- Integrated Energy Cost .. 137

56. Snapshot 4 Integrated Bandwidth Cost .. 137

57. Snapshot 5- Operational Efficiency .. 138

58. Snapshot 5- Meantime Before Context Failure .. 138

59. Snapshot 5- Integrated Energy Cost .. 139

60. Snapshot 5 Integrated Bandwidth Cost .. 139

61. Mobile Device Context Illustration .. 140

xiii

LIST OF TABLES

Table Page

1. CONTEXT CATEGORIES ... 15

2. APPROACHES TO REASONING .. 15

3. CONSUMER QUALITY REQUIREMENT SPECIFICATION .. 64

4. QUALITY INTEGRATION STRATEGIES .. 85

5. MIDDLEWARE QUALITY OF CONTEXT MEASURES (QOCS) ... 94

6. TEMPLATE MANAGER PROVIDER MAPPING EXAMPLE .. 97

7. DETAILED ADAPTATION EVENT DESCRIPTIONS ... 116

8. INITIAL PERFORMANCE SNAPSHOTS ... 128

1

CHAPTER 1

INTRODUCTION

Context is a general term for any information in an application domain that is necessary

for decision making. It is the role of the information that distinguishes it as context. In many

cases, high level context is a by-product of multiple stages of reasoning and data transformation

algorithms. Inferred high level context is the focus of this work. The complexity and heterogeneity

of context is mirrored by consuming applications making context-aware decisions. This research

was initiated with the purpose of deriving a thorough definition of context along with justifications

and methods for context aware adaptation in pervasive environments. Context aware computing

includes some elements of several traditional computer science areas of research including: data

modeling and representation, data management, information fusion, middleware architecture,

artificial intelligence, machine learning, and sensor networking. Research articles on context

awareness have appeared in seemingly unrelated conference proceedings. However, this

dissertation focuses on middleware solutions for deriving high level context, sustaining reasoning

and maintaining quality in dynamic pervasive environments.

1.1 Pervasive Computing Evolution

The field of pervasive computing research was ignited by the vision of ubiquitous

computing described in Mark Weiser’s seminal article, “The Computer for the 21st Century” in

1991 [76]. He described a future where invisible computing components ubiquitously operate in

almost every domain of human living; quietly, seamlessly and intelligently improving our quality of

existence. Prototypes (proof concepts) involving context awareness proliferated in the early years

of 2000-2005 [6],[12],[18],[20],[23],[24],[29],[35],[38],[44],[65],[79]. Context Toolkit is one of the

first works to holistically capture the needs of context aware applications [28], [29]. In the early

2

research, there was a great need for models and representations capable of sufficiently capturing

heterogeneous context characteristics and complex domain relationships. Numerous efforts have

been made in this regard. Notably, these include works based on Object Role Modeling (ORM)

and Semantic Web Ontologies [15],[19],[21],[38],[43],[63]. As a result, today we have sufficient

models and tools to represent complex contextual concepts in a way that affords semantic

understanding, supporting information sharing.

Early context reasoning and representations were largely monolithic. There was a tight

coupling with the targeted application. So we observe that in the not so distant past, context

middleware solutions offered little reuse in data modeling or framework functionality. Additionally,

effective context reasoning was subjugated below other more traditional middleware concerns

(i.e. data modeling, discovery and communication, event notification, knowledge management).

Often, where a generalized context reasoning framework existed, acceptable performance did not

scale beyond small contextual proof of concepts used to validate those architectures.

Today’s context middleware frameworks are more pluggable, agile and scalable. There is

a trend toward generalized and integrated reasoning methods. No doubt, this trend is in part due

to the increasing ubiquity of multi-sensory smart devices. The information age is replete with

communication capable, intelligent, sensor equipped devices. Social networks, web services, and

global information repositories make a wealth of information available instantly. There exist

endless possibilities for creating useable knowledge.

Much of what is considered useable knowledge is not directly observable from low level

sensory devices. Abstract situations, relationships and activities must be inferred using a variety

of techniques. Truly usable knowledge can only be derived from incoming heterogeneous data

from disparate sources using an integration of reasoning methods. This knowledge is high level

context.

Varied high level context reasoning approaches are used across a variety of applications

in the pervasive computing domain including: health monitoring, intrusion detection, airport

security and military target tracking. The same types of context are being inferred in diverse ways

3

across a number of platforms. For example, human activity has been inferred using a number of

statistical, ontological, and logical approaches. A survey of context uses in existing literature

makes it clear that varied reasoning approaches are needed to capture the heterogeneous high

level contexts we find in pervasive applications along with the varying application performance

and quality requirements. Social, physiological, environmental, computational, activity, location

and situation are but a few categories of context used today. Within these categories we find

varying complexity. Some contexts can be inferred after minimal manipulation and preprocessing

of sensor data. High level context involves many levels of data fusion for inferring high level

concepts.

Whether the ubiquitous vision was a virtual inevitability or pervasive computing

community efforts created a self-fulfilling prophecy, we are now in the age of context aware

computing. But, have we really realized the full vision of ubiquitous computing? Is there more

needed?

1.1.1 More Context Research Is Needed

Inferring high level context adds complexity due to the increased dimensionality of

relationships among contextual components. Also, when context spans categories, involves

uncertainty and ignorance, it can be more difficult to effectively reason. To be sufficiently useful,

context middleware must support diverse context and inference techniques. Though there is a

progressive trend towards improving the scalability and extensibility of middleware, there exists

no general purpose context aware reasoning framework that supports knowledge reuse.

Stagnation of context middleware reuse results from the lack of effective, adaptive, generalized

context reasoning and representation. Developers are challenged to find a comprehensive

context framework solution.

Effectiveness refers to the suitability of reasoning methodology for efficiently reasoning

and representing the heterogeneous characteristics of context. Adaptive reasoning aides

maintaining context content in the face of dynamic resource availability, degrading reasoning

performance and evolving requirements. Context aware adaptation was an early goal in context

4

aware computing and has been demonstrated by a number of works. In the past, context aware

adaptation has been employed in i) adapting application behavior; ii) privacy preservation; and iii)

conservation of resources (i.e. power, communication). We have not seen many works adapting

interchangeable sources of context to support context quality preservation. Such adaptation is

critical for reasoning in dynamic environments. Utilizing generalized reusable components for

application development is another fundamental barrier to framework reuse. It is important to

break the often applied monolithic relationship between reasoning and applications. Decoupling

this relationship facilitates reasoning reuse, leading to rapid context aware application

development.

The importance of information quality becomes more urgent as information quantity

increases. Integrity of knowledge directly affects its value and usefulness. Imagine the deleterious

effects of actions taken by a national figurehead based on quality poor information. The

consuming public would be at the very least disappointed, but the most probable pervasive

sentiment would be outrage. The same issue of quality exists with consumer commodities like

wine, cheese, shoes and clothing. Inferior products often visually appear to offer the same value

as those of much higher quality and constitution. We can only ascertain the true integrity by

revealing the source and process of construction. In a computing sense, we find a parallel need

for true information integrity perception. Deciphering integrity can be difficult without the

appropriate middleware quality measures in place. So, another area in need of more extensive

research is the derivation of quality of context. In this discussion, Quality of Context (QoC) can be

defined as a collection of measures (indicators) reflecting the integrity and discriminative

characteristics of information that is used as context. There can be many factors affecting

context reasoning suitability. QoC is one means by which a context middleware accesses the

suitability of context and its associated reasoning process for an application. Establishing context

quality is not as simple as selecting the device with the best accuracy or other quality indicator.

Increasingly, context-aware applications are interested in information that must be combined from

multiple sources, using heterogeneous transformation and reasoning processes. Establishing

5

true context quality in such environments requires an integrated approach to acquiring

heterogeneous quality measures and propagating them through reasoning and transformational

processes to produce a composite high level context quality. Accurately reflecting the context

construction process in the composite quality is a step towards improving information integrity or

quality of context.

1.2 Dissertation Contributions

The focus on middleware solutions for deriving high level context, with support for

maintaining quality in dynamic pervasive environments is a result of evaluating context needs in

many existing context-aware applications and middleware frameworks. Specifically, in existing

context modeling works, context is often obscured with concerns unrelated to inferencing (see

section 2.5 for more details on related modeling works). We offer a clear identification of context

as a by-product of reasoning; independent of other domain ontological elements. There is also

the challenge of expressing heterogeneous context sufficiently. The HyCoRE model supports

heterogeneous/complex context representations, quality of context and context provenance.

There are numerous middleware frameworks for context reasoning (see section 2.2). However,

none of them support all of the following features collectively: i) heterogeneous, adaptable

context reasoning with extensibility; ii) integrated high level context quality measurement; and iii)

consumer quality maintenance. HyCoRE provides these capabilities and more. Our architecture

design and data-models could be realized in many ways. This work includes a prototypical java-

based implementation with application demonstrations. We feel that the solutions provided here-

in can be used independently or as an extension to existing middleware architectures.

Contributions are summarized as follows:

1. Context Modeling

a. HyCoRE context data models are a refreshingly clear and generalized approach

to modeling context, quality and cost.

2. Adaptive Context Reasoning

6

a. Quality based middleware performance measures

b. Quality integration and validation scheme

c. Adaptive reasoning scheme called context flows

3. Context Reasoning Middleware Architecture Implementation

a. HyCoRE architecture design, prototypical implementation and application

demonstrations for evaluating HyCoRE

Additionally, the reasoning suitability research in this dissertation may serve as a guide for

reasoning planning in future context aware application design. The next section discusses

dissertation contribution in greater detail. Each of the contributions mentioned offer unique

contributions as discussed in the following sections.

1.2.1 Generalized Hierarchical Hybrid Reasoning Engine: HyCoRE

Existing context frameworks and toolkits offer limited reasoner re-usability and lack support for

semantically decipherable data models necessary for context sharing. Also, we find that complex

context reasoning is encumbered by immature functionality as well as limited vertical context

applicability. Examples where these issues arise include: i) frameworks supporting only a single

category of context(i.e. activity); ii) frameworks offering low level information fusion algorithms but

lacking mechanisms for integrating these reasoning approaches; iii) frameworks lacking sufficient

and semantically decipherable data models and iii) frameworks supporting knowledge sharing but

only offering non-scalable and computationally inefficient reasoning techniques.

We have designed a generalized hierarchical hybrid reasoning engine (HyCoRE); a

middleware for generalized context reasoning in pervasive environments. HyCoRE focuses on

issues most neglected by existing frameworks and can be extended to use a number of

reasoning techniques to infer diverse contexts from heterogeneous sources. The flexible design

of HyCoRE reasoning components support quality aware reasoning adaptation. Context is the

payload on context flows and the element of exchange between HyCoRE and its consumers and

providers.

7

The context that a particular HyCoRE instance reasons about and publishes is driven by

administrative configuration and application extensions of the HyCoRE data model. So, HyCoRE

is not intrinsically limited to a particular type of context, but may be limited by available context

providers. Multiple data models of context may exist in a single instance of HyCoRE.

1.2.1.1 Context Reasoning Application Demonstrations

HyCoRE is general purpose context reasoning engine, supporting a variety of applications. It is

difficult to find a single application that requires everything HyCoRE supports. For this reason,

we demonstrate two applications of HyCoRE reasoning to highlight the various features of its

architecture. Refer to Chapter 7 for details on evaluation of HyCoRE in specific applications.

1.2.2 HyCoRE Context Data Models

There are many correct approaches to the modeling context [15],[19],[21],[43],[63]. What is most

important with any approach is to sufficiently capture the targeted context characteristics, support

efficient query, retrieval and maintenance. Characteristics include: attribute heterogeneity,

dynamism, availability, temporality, constitution, source derivation, credibility, and uncertainty. A

model that is coupled to a specific type of application may have inherent performance

improvements over a general purpose model as shown here. We use this general context model

approach since context is the basis of information exchange between HyCoRE internal and

external high level reasoning components. So, we must capture heterogeneous low level data as

well as complex inferred context. We have chosen to model concepts using UML to avoid any

implementation specific association. Our context data model is distinct from other works in the

following aspects:

• Multi-Centricity- Centricity is the target domain to which context information applies. Often,

the centricity reflected in the data model and reasoning is singular and tightly coupled with a

specific application. Our versatile model is distinct in supporting many centricities of context,

including user, device and location centric contexts; thereby supporting varied application

types.

8

• Multi-Dimensional Quality Representation- In the HyCoRE architecture, every component that

has affected context derivation is associated with a quality model. Sensors, reasoners,

general context providers, transformation functions all have quality indicators that affect

resulting context. The quality model includes both declared and observed quality indicators

appropriate for the type of component.

• Machine Knowledge Representations- Context elements have an explicitly declared meta-

data model which affords semantic interpretation. This model is structured with both physical

and semantic descriptions which implicitly identify relevant context providers. Context

providers using different internal knowledge representations may infer the same class of

context resulting in the same external meta-data modeled values. Context meta-data with

physical and semantic representation models enable generalization and reuse.

• Context Provenance- Context provenance identifies the sources, process of derivation and

change history of context data values. The HyCoRE data model has attributes that reveal

limited provenance. Refer to Section 3.3.5 for more details on provenance related attributes.

We use other data models to support quality maintenance and adaptation.

• ContextIOSpecification- In HyCoRE, the consumer service contract is an agreement between

HyCoRE and a consumer application regarding context and quality. We allow the consuming

application to specify context desired and quality required. It is only the application which can

provide information that distinguishes what is relevant and valuable. To accomplish effective

reasoning, consumer request for context is matched on weighted context attributes,

categories, locations and targets irrespective of the knowledge models used for derivation.

Context providers also publish their capability to share context using a service contract. It is

this agreement along with periodic quality verification that gives HyCoRE knowledge of type

and quality of context provided.

• Context Flows- HyCoRE reasoning is accomplished through the execution of instantiated

reasoning plans. A Context Flow is a specific instance of a context reasoning plan. A

9

reasoning plan is a directed graph of components. The messages that travel along the edges

contain context. Nodes are the work processes for context reasoning. Nodes are an

abstraction of context providers and provide an I/O specification, describing input context

requirements and context inferred. Edges imply a dependency of a destination node on

contextual outputs of source node. In dynamic environments, HyCoRE is capable of

adapting reasoning; replacing nodes with others that have comparable meta-data

descriptions.

1.2.3 Adaptive Context Reasoning

The HyCoRE context reasoning framework adapts to sustain high level context inference in the

face of dynamic device quality and availability. A derived composite measure of high level context

quality is used as a basis for adaptation. Reasoning plans are flexible in that components may be

replaced with current or future context providers with match generalized information description

called context meta-data. Context consumers specify context and quality requirement using

context meta-data. The middleware operation measures reflect success inferring high level

context while meeting consumer requirements.

1.2.3.1 Quality Definitions and Measures

Herein, the term Quality of context middleware service (QoCS) is distinct from Quality of context

(QoC) in that the former measures the performance and informational integrity of the system

rather than the context data itself. A wealth of quality factors representing QoC have been

studied, modeled and measured including: ‘precision, probability of correctness, trust-worthiness,

accuracy, completeness, representation consistency, and access security, sensitivity, freshness,

and temporal-spatial resolution’ [9],[13],[15],[48]. This work presents additional QoC and QoCS

measures that reflect the success of the context middleware in meeting application requirements

while minimizing system cost.

10

1.2.3.2 Quality Integration and Verification

High level context is derived from a combination of sources including: individual sensory devices,

sensor networks, data repositories, and reasoning and transformation algorithms. When

consuming high level context derived from heterogeneous sources, quality aggregation and

propagation ensures that middleware & applications maintain a more accurate perception of the

composite information integrity. Thus they are enabled to discriminate effectively. Behavior

based on quality information improves application correctness and ultimately, value. The term

quality aggregation refers to combining quality indicators from these sources to form a composite

measure of data integrity. The term quality propagation refers to aggregation from raw data

acquisition though all stages of reasoning. Both are used to produce composite quality indicators.

These composite quality indicators provide a more realistic measure of high level context data

integrity and serve as a basis for middleware context reasoning adaptation. Verification involves

using feedback in converging reported provider quality to actual quality.

Since, context middleware separates applications from the concerns of quality enhanced context-

sensing data and reasoning, it also bears responsibility for maintaining expected information

quality. To accomplish this, the context middleware must aggregate quality factors as it senses

raw data from heterogeneous sources and reasons to infer new knowledge. Additionally,

middleware must periodically monitor its quality performance and adapt to meet requirements.

Several challenges exist with respect to integrating quality. Heterogeneous contexts are

combined to form complex high level context inference. The challenge is to reflect the relative

significance of each contribution to the resulting inferred context quality indicators. In dynamic

environments, sources of context may be unavailable, stale or too costly to infer at an instant in

time. The challenge is to deal with missing quality indicators. When aggregating homogeneous

context, we must accurately represent the additive/diminutive value of additional evidences. Also,

accurately reflecting the reasoning transformation process in resulting inferred context quality

indicators can also be problematic. In this work we represent aggregation and propagation

11

functions as middleware policy dependent strategies. So to compute the integrated quality

model, the problem we need to solve is finding useful functions/strategies for aggregation and

propagation. We propose concrete strategies that HyCoRE uses to solve these. Our pluggable

architecture facilitates dynamic configuration of these strategies.

We present results showing the effectiveness of our quality measures for middleware adaptation.

1.2.3.3 Adaptive Context Reasoning Based on Quality of Context

HyCoRE abstracts applications, sensors, reasoning and services as generalized context sources

or providers. These are dynamic and are able to register in a uniform way. Context reasoning is

accomplished by composing a hierarchical plan of context sources. These are called context

flows. A context flow defines the low level and intermediate contexts as well as transformation

and reasoning processes needed to produce high level contexts. Application quality preferences

are considered in choosing context sources. HyCoRE supports context sustainability, which

refers to the system’s ability to continue to infer despite dynamic provider availability as well as

maintaining the required quality of context. Reasoning adaptation helps the system run longer,

sustaining context and quality over time. The context reasoning framework of HyCoRE interjects

into the composition of the context and identifies the best adaptation for maintaining high level

inferencing. As an example, to repair a reasoning plan, one or more participating providers might

be replaced to mitigate flux. This best effort strategy for sustaining context is adaptive to

underlying provider and resource limiting requirements. A second goal is resource efficiency.

Every stage and component involved with high level context inference incurs cost. Devices use

energy while sensing, platforms require memory and CPU cycles for processing context, and

communication bandwidth is required for communicating with distributed reasoning components.

Cost associated with inferring context increase with reasoning complexity. Reusing context

inference for the benefit of multiple consumers saves on costs associated with context

processing, communication and sensor actuation. In HyCoRE, only the minimal set of sensors is

actively used to meet consumer or system requirements.

12

In summary, the sources used in context flows are adapted to: i) optimize quality; ii) reduce cost

and iii) mask mobility or other environment conditions affecting context availability.

1.3 Organization of the Dissertation

This dissertation is organized into seven chapters. Chapter one provides an introduction with

motivations for this work.. Chapter two presents background and work related to HyCoRE.

Chapter three details the design and data model of the reasoning engine presented herein.

Chapter four discusses quality definitions and quantification used as a basis for adaptation.

Chapter five provides details on the reasoning adaptation process. Chapter six presents an

evalutation of HyCoRE using a prototypical Java implementation. Chapter seven summarizes

and concludes this dissertation.

13

CHAPTER 2

BACKGROUND

This chapter presents an overview of existing literature on context modeling, middleware

architecture and reasoning techniques. Research contributions by contemporary researchers in

the broad area of ‘context-aware pervasive computing’, are summarized and compared with the

contribution of this dissertation.

2.1 Context

In this document, context refers to any information in the application domain that is necessary for

decision making at a specific point in time. It is the role of that information that distinguishes it as

context. Context is dynamic in structure and content; often exhibits multiplicity; and is distributed

throughout the components of an application. In most cases, high level context is a by-product of

multiple stages of reasoning and data transformation algorithms. We make this clarification, since

context has been defined in many ways:

Schilit et al. observe, “Context encompasses more than just the user’s location, because other
things of interest are also mobile and changing. Context includes lighting, noise level, network
connectivity, communication costs, communication bandwidth, and even the social situation; e.g.,
whether you are with your manager or with a co-worker.” [66]

Context is any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves [28]

Dourish argues that context relevance depends on setting, activity and players involved. The
scope of contextual features is defined dynamically as context arises from activity. [30]

As can be seen from the definitions given, context is broad. No single definition will do. It depends

on the application at hand. Thus, we refer to context in a broad sense in relation to reasoning.

14

Complex context is inherently modular and hierarchical. Some context can be used with little

preprocessing of sensor data (i.e. low level context). Other contexts require one or two levels of

reasoning and/or manipulation with other contexts (i.e. intermediate context). Complex high level

context (See Figure 1) may involve many more levels of data fusion due to the increased

dimensionality of relationships among contextual components. Often, context is dynamic in

structure and content, exhibits multiplicity, and is distributed throughout the components of an

application. Completely cataloging all types of context is difficult, since information availability and

application capabilities are increasing. Table I summarizes some contexts and related sources as

used across a wide variety of pervasive applications.

We use this table to highlight the effect of context category on reasoner suitability. The same

inference techniques are often applied to derive contexts of the same category due to their

sufficiency in capturing categorical characteristics. Performance affecting parameters may vary

with implementations. There are instances where a single approach, such as rule based

reasoning, may be sufficient for capturing all contexts of a domain. However, more than likely,

this one-size-fits-all approach is ill suited for other reasons. Heterogeneous context source

characteristics, system goals and limitations also affect the choice of context framework with

associated modeling formalism and reasoners. Consider the following examples of system goals,

limitations and context characteristics below:

• System goals: Inference accuracy, inference speed, data maintainability, scalability,

extensible data models and reasoning, resource (CPU, RAM, energy, and bandwidth)

limitations, and platform.

• Context & Source Characteristics: Size, Dynamism, Availability (varies with source and

mobility concerns), Temporality/ Durability (TTL, Expiration), Constitution/Complexity,

Derivation/Source (derived, sensed, profiled), Independence /Interdependence (affected by

history or other contexts), Heterogeneity, Precision, Credibility, and Uncertainty.

•

15

Table 1 Context Categories

Table 2 Approaches to Reasoning

16

Figure 1 Hierarchical Complex Context

Cognizance of many heterogeneous contexts and hence situation-awareness is critical to

composing appropriate services for deployment of collaborative applications in pervasive

information environments. Sensors are the main sources of information in the environment.

Context information gathered from sensors are processed, analyzed and inferred to determine

high level situations and to facilitate application level services. Pervasive information

environments face several challenges: i) dynamic availability due to failing or mobile sensors; ii)

degradation in the quality of sensed context; and iii) selecting optimal sensors among

homogeneous types. In such environments, subjected to constantly changing networks and

content, the context middleware should be geared to acquire context information and execute

support algorithms for context processing and reasoning and context adaptations. To this end,

one trend in today’s context middleware is the integration of reasoning approaches. Also, there is

increasing work on defining and calculating context quality in support of application requirements.

In this work, we demonstrate a way to derive composite high level context quality and show how

middleware performance measures that are based on application context quality requirements

may be used as the basis to context reasoning adaption enabling context sustainability and

energy efficiency.

17

The following sections survey works related to context aware computing. As mentioned in the

introduction, it is difficult to classify context aware computing, so related works that make

comparative contributions to context middleware, reasoning and modeling, irrespective of their

traditional computer science categorization have been selected. Many works make contributions

to multiple context related categories (i.e. middleware, quality, reasoning and modeling). So, the

following section titles are merely an organizational guide for reading.

2.2 Context Toolkit, Middleware and Architecture Related Work

Pervasive application framework developers have many functional concerns to address in their

architecture. Functional concerns include: data modeling, sensing, component discovery and

communication, event notification, knowledge management and context reasoning. Of these,

reasoning is one of the most neglected concerns. In many instances, context reasoning is either

insufficient or inefficient for all but a few types of contexts. Also, we seldom find frameworks

supporting hybrid or integrated compositions of reasoning techniques. Yet rarer, are frameworks

supporting reasoner optimizations that can be tailored to best suit targeted context characteristics

or application goals. Several works make reference to hybrid context [1], [2], [18], [27], [38], [45],

[53], [63]. Most of these are concerned with hybrid modeling and/or limited hybrid reasoning that

combines the efficiency of rules with the expressiveness of ontologies. Though our approach is

distinct, the concept is similar to the integration of shallow context representation and reasoning

with ontological approaches, as detailed in the multilayer framework outlined by Bettini et al [7].

HyCoRE offers more reasoning options and greater flexibility in the way reasoning is applied.

Similarly, to the notion of data flows in the Context Recognition Network Toolbox [3], HyCoRE

context (i.e. inference) flows may be constructed by integrating parameterizable reasoning

components in a hierarchical fashion. Both tiers of CoBrA’s [18] centralized reasoning can be

accomplished in HyCoRE. However, HyCoRE reasoning is distributed and is similar to the

implementation of reasoning as a value added service in the federation layer of NEXUS [59].

NEXUS, UIF [11] and other frameworks supporting interoperability between context aware

18

systems provide a needed means for service, component and context sharing. HyCoRE also

supports context sharing by its distributed design and semantically decipherable data model.

However, the most important contributions of HyCoRE to a single context aware system are: i)

optimizable, interchangeable, reusable reasoning; and ii) hierarchical integration of reasoning for

complex context inference. These features support the natural modularity of complex context and

improve reasoning usability and applicability across context types. Existing applications and

frameworks may use HyCoRE to enhance core reasoning capabilities. Many other hybrid

architectures & applications [22],[24], [31], [33], [34], [38], [44], [47], [52], [72], [80] are discussed

in existing pervasive context literature. These demonstrate a variety of reasoning techniques,

including: Hidden Markov Models (HMMs), Shannon Entropy, Artificial Neural Networks (ANN),

Decision Trees, KNearest Neighbor, Naïve Bayesian Classification, Dynamic Bayesian Networks

(DBNs), Dempster Shaefer Evidence Theory (DSET), rules, and custom/proprietary algorithms.

Few of these architectures focus on modularizing reasoning, tuning performance or generalizing

to promote reuse. Further, these are limited by the type of contexts inferred, the types of

reasoning applied, openness and extensibility of the reasoning architecture.

Following is an additional survey of related context frameworks.

2.2.1 “A Scalable and Energy-Efficient Context Monitoring Framework for Mobile Personal
Sensor Networks”

SeeMon [41] is a context middleware framework that offers scalability and energy efficiency when

continuously monitoring numerous sensors in personal area networks (PANS/BANS). In a

manner similar to HyCoRE, reasoning is accomplished through a pipeline of processing. This

processing involves sensor actuation, feature extraction and potentially several stages of

computationally intensive reasoning algorithms. SeeMon is able to save on processing costs by

circumventing parts of processing when context features do not change. A process whereby high

level context queries are translated into low level sensor feature queries along with bidirectional

sensor communication is used to identify feature changes before reasoning algorithms are

initiated. Arriving context queries are sorted into feature queries that are used to determine if

19

reasoning is necessary. As sensor updates arrive, only those necessary to serve active queries

are selected for reasoning. Their approach for essential sensor set selection and context query

handling provides 4 times better throughput and reduces wireless data transmission 50 to 90

percent when compared with the traditional unidirectional context reasoning approach. SeeMon

is a novel work and shares similar concerns about efficiency. However, the issues of context

quality and sustainability are not addressed in SeeMon. HyCoRE supports sustaining context in

dynamic environments along with efficient processing of context. HyCoRE only actuates the

minimal set of sensors necessary to support current consumer queries, but additionally offers

reuse of that same sensor set by multiple applications.

2.2.2 “Rapid Prototyping of Activity Recognition Applications”

A context recognition toolkit (CRN) for the construction of activity reasoning plans is presented in

[3]. Reasoning plans are called data flows and are constructed as chain reusable

components/tasks. Each task is an encapsulation of reasoning algorithms and or data

transformations. Tasks parameters control its operation. The specific IO requirements are

declared by the task for generalized reuse. Optimization may also be provided as inputs. Tasks

available in the toolkit include: Average Signal Energy, FFT, Distance2Poisiton, Hexomite2D,

HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, and Simple

HexSensClassification. The toolbox is extensible and provides APIs for further task development.

This work illustrates that heterogeneous activity recognition can be accomplished using a small

set of parameterizible algorithms. HyCoRE shares the goal of rapid development, but for

heterogeneous context. We do not discount the significance of this work, but we must point out its

limited applicability to the user-centric activity context. It is a solid prototyping framework for user

contexts. HyCoRE uses a similar chain of reusable reasoning components (i.e. context flows)

which may contain more than one processing chain. It is possible that the tasks of CRN can be

exposed as context providers to HyCoRE. HyCoRE’s physical and semantic modelsfor high

20

level context along with quantification and representation of integrated quality measure have no

parallel in this work.

2.2.3 “Orchestrator: An active resource orchestration framework for mobile context monitoring
in sensor-rich mobile environments”

Middleware mediated context management for dynamic environments is espoused by the authors

of the Orchestrator framework [42]. Orchestrator performs active context mediation. Applications

do not make decisions regarding resource allocation. Rather, the middleware proactively keeps

context plans mapped to the best set of dynamic resources. Their solution advocates a

separation of logical context processing needs from physical resource allocation. This separation

is realized as logical and physical context processing plans. Logical plans can be defined and

added to the system administratively. Since sensors and associated resources change

continuously, the translation of logical plan to physical plan occurs at run time. The efficacy of a

physical plan is determined by several factors, including: required resource availability and cost

of executing plan. This work illustrates how a single high level context can be derived in variety

of ways. For example many logical plans could be declared for deriving activity context from

accelerometer readings. However, several varying factors realized by different physical plans

could offer different performance: i) varying the part of body on which the accelerometer is worn;

ii) varying the features (frequency vs. statistical) extracted and transformations performed; and iii)

varying inference model (Decision tree or Naive Bayes). The notion of both logical and physical

reasoning plans is very similar to our thoughts on context templates and flows. Orchestrator plan

adaptation is triggered as sensors join and leave, resources status changes or context requests

change. This results in reconfiguration of processing plan set. The adaptation triggers are similar

in HyCoRE. However, HyCoRE is able to adapt a single plan by removing and replacing nodes

or by reconstructing a new plan, as opposed to reconfiguring the entire context flow set. Our

approach is also distinct in offering application specified quality requirements along with context

requests. Orchestrator does not consider quality of context as an integrated measure of integrity;

21

whereas HyCoRE is focused on measuring the middleware performance in adapting to meet

multiple application quality requirements while minimizing system cost.

2.2.4 “Toolkit to support intelligibility in context-aware applications”

An extension to the “Context Toolkit”[29] which adds inference explanations to the end user is

presented in [47]. This extension work addresses the challenge of making context aware

applications intelligible by providing explanations of reasoning behaviors that are independent of

the decision model. Namely the following explanations regarding an inference are provided:

inputs, outputs, what, what if, why, why not, how to, and certainty. Context research has shown

that these explanations add value to the context consumer. We observe that it is important to the

context consumer to understand how an inference is made. Our approach tracks all participants

of context inference and provides a serialized inference trail for provenance support. As certainty

is provided as a type of explanation in this toolkit extension, HyCoRE supports certainty as a

quality indicator. For probabilistic inferences certainty may be in the range 0 to 1, or may simply

be 1 or 0 for rule based inferences. We also go further in computing a high level context quality

vector which is a composite quality indication, reflecting the quality of all participating providers.

To sustain context effectively we have developed an adaptable context reasoning framework

along with measures for discriminating context providers.

2.2.5 “An Extensible Sensor based Inference Framework for Context Aware Applications”

This work [14] highlights the importance of breaking the often applied monolithic relationship

between reasoning and applications. Decoupling these relationships facilitates reasoning reuse,

leading to rapid context aware application development. This work is a realization and extension

of an earlier Intel context framework design. The primary goal of this work and its demonstration

is to achieve rapid context aware application development by removing the burden of sensing and

reasoning as an application developer concern. To this end, Intel has created C++ based

generalized context reasoning framework which performs inference based on XML DAG

reasoning plans. Context providers of the systems are sensors or traditional pervasive devices

22

such as accelerometer, gyroscope, microphone etc. So then, the low level input is raw data with

varied formats and sampling rates. Mills are generalized reasoning work components. The

inputs, associated training models and algorithmic details are abstracted into a generalized API.

Using generalized APIs, context application developers compose reusable DAG nodes, called

mills to describe the high level context to be inferred. The context framework performs necessary

sensing, buffering, normalization, feature extraction, transformation and reasoning algorithms.

Additionally, the reasoning may be easily extended by creating new mills, which extend a

common parent type. Multiple client applications are enabled to use the framework. Approaches

to using the framework for three horizontal applications: gesture recognition, audio classification

and physical activity reasoning are described.

Rapid context aware application development is also a primary motivation of HyCoRE. The

concepts used for reasoning is very similar. Context reasoning is accomplished using DAGS,

which we refer to as context flows. There are a few differences that make HyCoRE reasoning

distinct. Since HyCoRE is designed with the added goal of context source tracing, participatory

reasoning and adaptation. To this end, context source tracing and quality integration is

performed in-line with reasoning to maintain an accurate view of context derivation and integrity.

Context flows are associated with abstract reasoning plans or patterns. These abstract patterns

support reasoning adaptation. In a dynamic system where multiple choices of context providers

exist, a flow may be repaired by replacing a failed or sub-optimal reasoning node. Also, an

alternate flow deriving the same context may be constructed using an alternate pattern. The Intel

framework can be classified as a context toolkit. HyCoRE has considerations for middleware

performance, and application quality requirements.

23

Figure 2 Intel Framework Gesture Recognition and Ph ysical Activity Reasoning DAGs

2.2.6 “INFERD and Entropy for Situational Awareness”

INFERD [71] is an information fusion engine created as an aide to decision making in cyber

security applications. However, this probabilistic graphical framework is flexible and can be used

to model and reason across diverse applications. Airport Security, Cyber Network Attack alerting

are two applications specifically mentioned. The implementation presented addresses levels 0, 1

and 2 of the US Joint Directors of Laboratories (JDL) 5-level data fusion model.

One of the examples is a simple airport security scenario. This is only used to explain the

concepts of INFERD. The objective is to determine if a passenger is a threat to other passengers.

Details of the example are as follows:

1. The probabilistic value of a passenger’s identity being valid is some algorithmic

combination of Risk Assessment, Photo ID Verification, and Biometric scans.

See below:

24

Figure 3 INFERD – Passenger Identification

• Risk is accessed by booking agents based on answers to questions

• The attendant at the airport verifies that information on ID matches that in

system

• The CAPPS II (Computer Assisted Passenger Prescreening System)

available at most airports is used verify biometrics.

• In all cases 0 indicates no problem and 1 indicates a security concern

2. Other interrelated context models are used: suspicious behavior, prior history,

forbidden words

Figure 4 INFERD- Passenger Threat Template

3. All of the above mentioned contextual elements form a high level template graph

that models passenger threat

4. Gibbs Boltzman and Shannon Entropy functions are demonstrated for

determining template graph credibility (probability of the overall event

occurrence).

25

5. The result from each approach was vastly different. The Gibbs Boltzmann

parametric approach yielded 54% based on the given probabilities.

The Shannon Entropy approach yielded a 26% probability.

IO is separated from fusion in this architecture. Application contexts are modeled in as in

interconnected hierarchy {low level (0) to higher level situation reasoning (level 2 and above)}

Multiple approaches to reasoning on the credibility of a situation are applied based the fusion

level: i)At level 0, constraints and rules/thresholds are used at a low level to extract applications

features from raw sensor data; ii) At level 1, various functions/rules can be used to aggregate

features into composite events (called template nodes). Max/Min, and Yager’s Generalized

Ordered Weighted Average are discussed as some sample functions for an Airport Security

Scenario and iii) at level 2, Shannon Entropy and Gibbs-Boltzmann equations are demonstrated

as techniques for fusing probabilistic values of composite events into composition

situations(called template graphs). Gibbs-Boltzmann parametric approach is compared with

Shannon Entropy.

Accuracy and speed of inference are two characteristics that vary depending on the approach.

This paper demonstrated a 54 % probability of passenger threat using Gibbs-Boltzmann, but only

26% using Shannon Entropy. In another application, the authors noted the ability to process and

generate hypothesis about 86.4 million alerts in a 24 hour period. Further, the paper

demonstrates that context can be viewed as a multiplicity of graphs (hierarchies of data). In a

single context graph, multiple algorithms may be used to combine that information (i.e. different

approaches to low and high level data fusion). There are a few additional considerations that

HyCoRE addresses which could be used to improve the INFERD architecture: i) Context may

begin and end any level of the JDL model. A reasoning engine must provide as little or as much

as needed for the application and ii) Sensors are only one kind of contextual source. Feature

extraction needs to be performed when receiving context from other sources. As we move

towards distributed context awareness and reasoning, context may originate from sensors, users

26

and applications. Though data that is queried (pulled) is inherently streamlined for a particular

aspect of reasoning, heterogeneous data that may be pushed onto a system must be filtered for

applicability and value to the reasoning task at hand. Thus, feature extraction/data transformation

functions must be considered for the range of contextual sources.

2.2.7 “AI Techniques in a Context-Aware Ubiquitous Environment”

Mobile being [26] is a generalized inferential framework concept for mobile devices. The

adaptation use case is: automatically loading and unloading applications to a mobile device

based on user and device context. Like a chameleon, the mobile device assumes the role mostly

useful to the user. Similar to HyCoRE, it proposes AI approaches to reasoning on physical data to

infer higher level abstract data. HyCoRE is a more general purpose framework that automatically

adapts the middleware reasoning rather than the application.

2.2.8 “Context-aware adaptation in an ecology of applications”

A context middleware framework that enables structural application adaptation is presented in

[59]. Application behavior is defined in a description of self-organizing components. Their

approach couples application and middleware context reasoning. The HyCoRE concept of

context flows offers a similar notion of service composition. However, reasoning adaptation in the

middle is separated from application adaptation. The middleware of HyCoRE adapts to meet

quality goals of many applications. It is not concerned with specific application behavior

adaptation.

2.2.9 “LoCa: Towards a context-aware infrastructure for e-health applications”

LoCa [33] is a generic software infrastructure for adapting work flow based applications to user

context. Functionally, its goal is to gather, process, analyze, visualize and store physiological data

in an electronic health record. Workflows and visualization are adapted based on context

{i.e.procedures may change dynamically depending on age of patient, the Doctor. may be sent an

SMS if biometrics reach a critical threshold} As with most frameworks we’ve noted, reasoning is a

secondary concern and is discussed only lightly. Using rules and logical connectors is mentioned,

27

but reasoning is not the focus of this work. However, the brief discussion on reasoning does

make this point: ‘Raw data has to be coarsened and analyzed in relation to one another.’

Automating this process through reasoning saves time, money and ultimately lives. A

telemedicine scenario is presented where a doctor can remotely monitor a 65 year old heart

patient. Instead of sending a nurse, to record the daily ECG data and other measurements,

sensors and the LoCa framework are used to automatically interpret the raw sensor data in a

particular order, comparing values with the patient’s medical history.

The primary focus of LoCa is application infrastructure. Our focus is a reasoning engine. LoCa is

an example of a context framework that could be improved with an reasoning engine like

HyCoRE. LoCa also offers a base data model. We agree that some foundation data model

should be used along with reasoning to capture context. We offer our context data models with

the unique features that described herein.

2.2.10 “Context Broker Architecture: CorBrA”

CoBrA [18] is broker-centric architecture for supporting context awareness. An intelligent agent

collects contexts from varied sources into a centralized location. OWL1 is used to model and

reason on context. OWL is based on P-SHIN, so it is essentially FOL reasoning. OWL does not

support uncertainty or ignorance. OWL description logic reasoners are used for inference and

consistency checking of knowledge model. The known tractability issues with reasoning using

OWL apply with CoBrA. OWL reasoning does not scale well for applications with dynamic

context models due to the overhead of re-classification. HyCoRE is more than a broker or central

repository. It is an orchestrator of interchangeable reasoning elements and context source which

dynamically adapts based on quality indications.

1 SOUPA Ontologies are used

28

Figure 5 CoBrA Architecture

2.3 Quality of Context Related Work

There exist many examples of solutions for quality aware adaptation [9], [13], [15], [48]. The

authors in [48] show how quality can be used to support adaptation that: i) alters application

behavior; ii) improves middleware efficiency and iii) enforces privacy policy. In [15], the authors

have observed that adaptation is expensive. They offer a quality measure (i.e. ‘probability of

correctness’) which aids in increasing the utility of the decision to change/adapt context source.

Several other examples are established on the domain model where multiple sensors collect

similar information. These works adapt to minimize communication and power consumption costs

associated with sensing and retrieving low level context data. The following sections review some

works related to context quality.

2.3.1 “Modeling and Measuring Quality of Context Information in Pervasive Environments”

Our work shares many ideas found in [13]. We both recognize the importance of: i) a semantically

decipherable context model ; ii) a flexible approach to context reasoning; iii) identifying the quality

of inferred information though quality aggregation; understanding that QoC is composed of many

indicators and iv) allowing applications to declare the relative importance of quality indicators. In

support of context representation, this work presents a user centric data and QoC model. We

recognize that there are many correct ways to model context and have chosen a representation

29

that is not centric to user, device, location or other context category. Rather, we present a

general model sufficient to capture heterogeneous context types, support quality integration,

source tracing, and the types of queries and adaptable reasoning intended with HyCoRE. The

context reasoner of the architecture [13] supports description logic/semantic web rule language

(DL/SWRL) reasoning. Also, there are abstract context reasoning components (CRC) serving as

black box brokers of context. Abstract HyCoRE context providers are similar to CRCs. In

HyCoRE a context provider is abstraction for algorithms, services or devices providing context. A

context provider may support any type of reasoning as long as the resulting context and

associated quality can be clearly described. Our distinction is in the way providers are integrated

into a reasoning plan for deriving high level context. HyCoRE middleware understands how to

construct reasoning plans in part based on the context metadata included in context provider

service contracts. HyCoRE offers similar semantic definitions for quality indicators as those in

[13]. The definition of informational resolution provided herein (see Chapter 4) has relevance to

disclosure level, sensitiveness and resolution in [13]. Informational resolution applies to many

types of context and simply reflects the amount information a context value reveals relative to

some maximum. Completeness also has semantic similarity to HyCoRE’s interpretation;

reflecting the totality of the information used for deriving a specific context value. Missing and

expired information reduces completeness. Additionally, HyCoRE offers other quality indicators

and middleware performance measures that are unique. As research on context quality grow, so

too does identification of useful measures. In this dissertation only a few select quality measures

are highlighted. Our selection of quality measures serves to build support for a reasoning engine

that adapts based on environmental context provider availability and quality along with application

context quality requirements. Finally, though there are some differences in the way HyCoRE

integrates quality indicators through reasoning plans, both [13] and HyCoRE employ a pluggable

approach in aggregation algorithms applied to each quality measure. In [13], algorithms for quality

aggregation (i.e. pessimistic, optimistic, and average) are system specified and may be distinct

30

for each quality measure. HyCoRE proposes a similar approach to quality integration (see

Section 4.3).

2.3.2 “A letter soup for the quality of information in sensor networks”

The authors of [9] make a compelling argument for maintaining QoI in wireless sensor networks

(WSNs). The approach to information sharing is similar to HyCoRE in that: i) Applications

advertise needs; ii) Context providers advertise information available, and iii) applications are

bound to selected providers. However in HyCoRE, the context middleware performs negotiations

with providers; adapting for improved performance; shielding applications from environmental

changes. The authors suggest a similar modification to the Sentire framework [12]. Novelty can

be seen in the use of six common primitives (5WH: why, when, where, what, who, how) to

capture application needs and information provider capabilities. The HyCoRE data models

support describing and determining 4WH. Currently, we cannot see how the application’s

motivation (i.e. ‘why?’) is relevant to the middleware. HyCoRE simply performs to consumer

specification. A distinct feature of HyCoRE is projecting integrated quality calculation onto the

context reasoning process. This is referred to as quality aggregation and propagation (see

Section 4.3).

2.3.3 “QoI-Aware Wireless Sensor Network Management for Dynamic Multi-Task Operations”

A WSN framework supporting multiple prioritized tasks with heterogeneous QoI requirements is

presented in [48]. . QoI is represented as a vector of attributes that may be extended over time.

Also, each task specifies its own requirements on the values of attributes in the QoI vector. A

satisfaction index or measure of the WSN's ability to meet task quality requirements is presented.

Also, the authors derive a measure of the network's ability to accommodate new tasks, called

network capacity. Network capacity is based on a composite satisfaction index function. A task

admission control scheme is implemented using network capacity as a threshold. When

attempting to admit a new task, if network capacity isn't sufficient, an attempt at quality re-

negotiation of existing tasks is made. Also, as tasks complete, WSNs resources are reallocated

31

for optimal use. It is demonstrated by simulation that such an approach meets task requirements

while reducing resource consumption when compared with traditional WSN task execution

strategies. There is a parallel with our approach to quality based context reasoning. HyCoRE

middleware receiving a consumer context request containing a prioritized context list with

prioritized qualities indicators is similar to multiple tasks arriving at a WSN sink. Each task would

correspond to a single context item requested. QoI and HyCoRE QoC vectors are practically

synonymous concepts. The middleware context providers available at a time instant would

correspond to the fixed WSN. The goal of HyCoRE is to distribute context reasoning functions in

a way that meets consumer requirements while minimizing system cost. The satisfaction index is

similar in meaning to our application effectiveness measure. One difference in our work is that

QoC measurement involves the integrating quality from all components involved in the context

reasoning process. This is referred to as aggregation and propagation. Further, HyCoRE

employs a feedback mechanism as a check and balance to declared quality. Consumer

requirements are mapped to system performance measures which are used as a basis for

adaptable reasoning. HyCoRE method for measuring the middleware reasoning performance is

distinct from [48] and supports the goals of its architecture as discussed in Section 3.1.

2.3.4 “Middleware support for quality of context in pervasive context-aware systems”

This work makes an argument for context-aware middleware which decouples applications from

heterogeneous sensors and supports rapid application development [69]. The motivating reasons

presented for Quality of Context are: i)QoC based application adaptations, ii)Middleware

Efficiency, iii)User’s Privacy Enforcement (The middleware must therefore provide users with the

means to limit the QoC information provided to different requesters). They identify and define five

Quality of Context QoC indicators:

• Precision - ‘granularity with which context information describes a real world situation’.

• Freshness - ‘the time that elapses between the determination of context information and

its delivery to a requester’.

32

• Spatial resolution - ‘the precision with which the physical area, to which an instance of

context information is applicable, is expressed’.

• Temporal resolution - ‘the period of time to which a single instance of context

information is applicable

• Probability of correctness - ‘the probability that an instance of context accurately

represents the corresponding real world situation, as assessed by the context source, at

the time it was determined’.

Other QoC from other works not included in their list are : trustworthiness, coverage, resolution,

accuracy, repeatability, frequency and timeliness. The authors give examples and justifications

for these 5 quality indicators. They believe they are the first to offer some quantification for

Quality of Context. This work leaves ample room for defining many more quality indicators.

Additionally, techniques for integrating QoC when inferring high level Context is needed.

2.3.5 “An Effective Quality Measure for Prediction of Context Information”

A technique for comparative selection of high-level context inference algorithms is presented in

[73]. It defines a metric, C, by which to discriminate high-level context inference algorithms. The

metric C measures the certainty for each value inferred. C is then used in a weighted error rate

computation for the learning algorithm. C is also used in a formula correlating it to the probability

of correctness. C is only appropriate for probabilistic classification algorithms. The correctness

of learning algorithms has been measured in various works, however this work quantifies the

probability of correctness. Since, pervasive devices are resource constrained and adaptation

can be costly, they propose selecting a reasoning algorithm based on the greatest probability of

correctness. In a similar vein, our work allows various inference algorithms to be compared

using multiple quality indicators that may be observed and learned through verification. In

HyCoRE, reasoning plans are selected based on ability to meet application requirements

expressed as a context vector with associated quality indicators. Another observation is that this

33

work does not deal with the interaction of context elements, reasoning, transformation and the

corresponding effect on composite Quality of Context as we do herein.

2.3.6 “Building Principles for a Quality of Information Specification for Sensor Information”

An application agnostic Quality of Information Specification is presented in [8]. There are many

works deriving quality measures. Varied device types use specific models to describe quality.

Often a different name is given in one approach to describe a semantically equivalent concept in

another. The calculations used to compute the quality measures are as disparate as the

implementing applications. This work is an effort at providing a common description

representation for QoI measures. Common for all sensor/data source types.

2.3.7 “Quality of context: What it is and why we need it?”

Rationale for context aware middleware which decouples applications from heterogeneous

sensors and supports rapid application development is provided in [15]. The motivating reasons

presented for Quality of Context are: i) QoC based application adaptations; ii) Middleware

Efficiency; and iii) User’s Privacy Enforcement. The authors focus on five QoC indicators. They

believe they are the first to offer some quantification for Quality of Context. This work leaves

ample room for defining many more quality indicators. Additionally, techniques for integrating

QoC when inferring high level Context is not discussed. HyCoRE offers additional quality

measures and an approach to quality integration.

2.4 Deriving High Level Context Using Integrated Reasoning Related Work

Increasingly, context aware applications require information derived from heterogeneous sources.

To this end, one trend in today’s context middleware is the integration of reasoning approaches.

In this work, we demonstrate a way to derive composite high level context using a hybrid

approach. In this section we review a few related works and discuss their relation to our work

herein.

2.4.1 “Detection of Daily Activities and Sports with Wearable Sensor in Controlled and
Uncontrolled Conditions”

34

This work [31] makes comparison of supervised and unsupervised learning approaches to

context reasoning. Artificial neural networks(ANN) and decision trees(DT) are used to identify the

physical activities including: lying down, sitting, standing, general walking, Nordic walking,

running, cycling on stationary bike, cycling on moving bike rowing, playing football. Identifying

‘playing football’ is an example of a complex high level context that reasons on lower level

context: walking, running, standing, kicking the ball. They compare the inference accuracy of

several context classification approaches: custom decision tree (supervised data), automatic

decision tree(unsupervised data), artificial neural networks and a hybrid approach with both ANN

and DT. Similar to HyCoRE, high level context is derived by a process of hierarchical reasoning

on lower level context. However, this is an application of context where reasoning is coupled

with the application. There is no framework module or data model that can be shared with

HyCoRE. HyCoRE decouples the application from the reasoning engine, supporting reusability.

2.4.2 “Context-aware activity recognition through a combination of ontological and statistical
reasoning”

 [59] provides a demonstration of improving statistical activity recognition performance by

considering context. A hybrid of statistical and ontological reasoning is used. A voting algorithm

for resolving activity context inconsistencies is shown. The algorithm filters user activity by

ensure it is consistent both statistically and ontologically for a given time window. The ontological

modeled (TBox) is setup such that only limited activities are possible at described locations. If an

activity inference is made that is inconsistent with the model, it is removed. The authors have a

similar thought on generalized reasoning. We feel it is possible that many algorithms and

associated training sets may be generalized. Consider these examples: sound can be generically

classified as human voice or music; activity as sitting, standing, walking, or running; and weather

as cold, wet, dry, or damp. The authors herein make the statement: ‘Ideally, an out-of-box activity

recognition system should be able to recognize one person’s activities without the need of being

trained on that person.’

35

2.4.3 “MEBN: A Logic for Open-World Probabilistic Reasoning”

Multi Entity Bayesian Networks is a logic for probabilistic reasoning [46]. It augments Bayesian

Network Theory with First Order Logic Model Theory2. This is one of many approaches to

probabilistic logics. FOL is the primary approach to reasoning in logical systems as Propositional

Logic(PL) lacks the expressive power to define models with many items concisely. PL is very

context dependent{ car1 is blue, car2 is red}. First Order Knowledge allows us to model objects

and relations in a context independent way{ car(color)}. It is possible to express facts about

some or all object in the universe (i.e. Exists (car (color =blue)?,For All ((car (color =blue),

Owner=female)). FOL can determine a query to be T,F or indeterminate. It does not support

reasoning under uncertainty as is found in many real world applications such as knowledge

interchange. Probability is the most well understood approach to reasoning under uncertainty. It

provides a coherent calculus for combining prior knowledge with observed data. Bayesian

networks are an efficient probabilistic inference approach. However, the following issues have

hindered Bayesian approaches to probabilistic reasoning: i) Lack of modularity; ii) Intractability of

worst-case inference; iii) Difficulty in verifying unique and well-defined probability distributions and

iv) Complexity of specifying local distributions{exponential to number of parents}. MEBN resolves

these issues. It is modular and compositional. Like Bayesian networks uncertain hypothesis are

represented as nodes (random variables) of a directed acyclic graph. The arcs represent

probabilistic dependencies. Related random variables are logically separated into collections

called MFrags. MFrags are partial Bayesian graphs used to derive posterior probabilities of their

resident random variables (generative knowledge). MFrags also contain a general knowledge

referred to “findings” that may be added based on observations. Findings are similar to T-Box

assertions in ontological reasoning. Generative knowledge resembles ABox assertions. Both

contribute to inference.

2 Also commonly referred to as First Order Predicate Calculus

36

Traditional Bayesian networks are generally context specific and insufficiently expressive.

MEBN provides a framework for generalized reasoning with Bayesian networks in the same way

the FOL extends propositional logic with Universal and Existential semantics. Random variables

in MFrags take arguments that refer to instances of entities in the domain application. Sets of

MFrags are organized into collections referred to as MTheories. MTheories imply a joint

probability distribution that can be used to answer application complex queries. Sequences of

MTheories are created as new axioms(knowledge sentences) are added that do not contradict

previous assertions. MEBN supports recursive MFrags. An instance of a random variable may

depend directly or indirectly on other instance of the same random variable. This is similar to that

offered in dynamic Bayesian networks. Additionally, MEBN logic comes equipped with a set of

built-in MFrags representing logical operations, function composition, and quantification. An

inference algorithm called Situation Specific Bayesian Network(SSBN) construction is provided.

An SSBN is the minimal Bayesian network sufficient to compute the response to a query The

SSBN can be approximated by pruning random variables and arcs that are irrelevant to the

query. Also, specialized reasoners may be used for parts of the SSBN. These may include: i)

Constraint satisfaction systems; ii) Deductive theorem provers; iii) Differential equation solvers; iv)

Heuristic Search and optimization algorithms; v) Markov chain Monte Carlo algorithms and vi)

Particle filters. Such approximation is part of hypothesis management which follows from

execution management where accuracy is balanced against computational resources constraints.

Interestingly, MEBN may be used to reason about which approximation to apply. The authors

make the following observations which support representing knowledge a probabilistic FOL

format: i) FOL is the de facto standard logic for formalizing both individual assertions and

knowledge structures and ii) Probability theory provides a principled approach to knowledge

interchange among different reasoning. The following diagrams show how a sample diagnostic

task can be modeled from BN to MEBN.

37

Figure 6 Bayesian Network For Equipment Diagnostic Task

Figure 7 Recursive Mfrag

38

Figure 8 MEBN - Situation Specific Bayesian Network

MEBN is not a competing idea, but provides the basis for tools that may complement hybrid

modeling and reasoning. The information presented underscores the need for open world

reasoning under uncertainty. Approaches that do not inherently support uncertainty or those

constrained to specific domain instances are of limited usefulness. The expressiveness &

theoretical soundness of combining First Order Logic model semantics with probability theory was

explained. The idea of execution management is also discussed. Reasoning may be adjusted to

39

balance accuracy against computational resource constraints. Further there may exist system

polices or other justifications for selecting one algorithm over another. This execution

management idea is similar to my approach of hybrid reasoning by context flow construction and

adaptation.

2.4.4 “Towards the adaptive integration of multiple context reasoners in pervasive computing
environments”

The effectiveness of integrating multiple context reasoners is demonstrated in [61]. A middleware

solution for handling dynamic sensor environments is proposed. There is a demonstration of

aggregation where the same context is multiply provided, by averaging confidence vectors after

parallel execution of classification reasoners. The focus of HyCoRE is different. HyCoRE reflects

a composite quality though many aggregation and propagation of quality indicators. Adaptable

context reasoning, including the process and techniques for integrating quality, is one of

HyCoRE’s chief contributions.

2.5 Context Modeling and Representation Related Work

2.5.1 “Evaluation and Analysis of a Common Model for Ubiquitous Systems Interoperability”

One barrier to context sharing between pervasive systems is lack of a common semantic

representation. Middleware frameworks tend to use proprietary data model. The authors of this

work evaluate UIF/UCM used in the NEXUS framework [11]. UIF/UCM has the single purpose of

providing a unifying model for context data. The UIF is a composite knowledge store, containing

inputs from applications, reasoners or any context supplier that uses the Ubicomp system

adaptor. The reasoning engine is based on Jena and supports SWRL rules. The context model

used in HyCoRE can to support interoperability. UIF/UCM does not support quality

measurements, source tracing and generalized reasoning as our model. HyCoRE is not limited

rule based knowledge representations. While rules are expressive, large rule sets are

cumbersome and inefficient when compared to statistical approaches.

40

2.5.2 “Standard Ontology for Ubiquitous and Pervasive Architecture SOUPA”

This work attempts to define generic OWL vocabularies that can be shared by all pervasive

computing applications [21]. SOUPA also provides an extension to define additional vocabularies

for supporting specific types of applications. The authors have recognized that existing pervasive

systems were weak in supporting knowledge sharing and reasoning and lacked adequate

mechanisms to control how information about individuals is used and shared with others. SOUPA

provides historical perspective on modeling efforts. SOUPA consists of several sub ontologies:

� Friend-Of-A-Friend ontology (FOAF)- Allows the expression of personal information and

relationships

� DAMLTime- Designed for expressing temporal concepts

� OpenCyc Spatial Ontology- Define a comprehensive set of vocabularies for symbolic

representation of space

� Regional Connection Calculus (RCC)- Consists of vocabularies for expressing spatial

relations for qualitative spatial reasoning;Describing and reasoning about location

� COBRA-ONT- Focuses on modeling contexts in smart meeting rooms

� MoGATU BDI ontology- Focuses on modeling the belief, desire, and intention of human

users and software agents

� Rei policy ontology- Defines a set of concepts for specifying and reasoning about security

access control rule

41

Figure 9 SOUPA

42

2.6 Survey of Knowledge Representations used for Context Modeling and Reasoning

The most widely used techniques for inferencing high level context are rule-based and decision

tree algorithms, naïve Bayesian and hidden Markov models [47]. Applying these techniques to

low level context data often requires a combination of inputs and layers of transformation.

Choosing appropriate reasoning methodologies for context is critical to application performance

as well as utilization of resources. Context architects must address the many suitability factors

before choosing a methodology for inference. In the following, a sampling of considerations for

choosing reasoning methodologies is discussed. The considerations are mainly based on: nature

of context data & their sources; inferencing mechanism characteristics; and resource

considerations. Description Logics (DL) reasoning on ontologies is a natural way to guarantee

such requirements as rules, constraints or consistency levied across the entire context/knowledge

set. However, the expected size of the context data at maturity and the sampling frequency must

be considered since DL reasoning does not scale well in terms of meeting interference timelines

for large knowledge sets [7],[43],[53],[74]. Uncertainty in context data acquisition determines the

usage of probabilistic approaches requiring network structures and prior probability distributions.

Bayesian networks [55] are mathematically well founded and efficient, but as noted by Liu and

Zhang [48] suffer from the following weaknesses: i)mutual exclusivity required by the computing

hypotheses; and ii) inability to account for the general uncertainty. Dempster Shaefer Evidence

Theory(DSET)allows accountability for epistemic uncertainty in the data model and may prove

better for reasoning on information when independent heterogeneous sources are reporting the

same context [27],[57],[64]. Fuzzy Membership functions can be used to map low level feature

values into application specific concepts. DBNs and HMMs can capture the effect of prior context

values on current context probabilities if the context in question is affected by historical values

[27],[64] Most context aware applications require constitution of higher level contexts by

combining other lower level contexts. The challenge here is to determine how to combine low

level contexts. Researchers have employed Bayesian Networks, Decision Trees, First Order

Logic, and Rules [10],[47],[64] to perform similar tasks. In cases where future maintainability is a

43

concern, the use of rules should be limited and an unsupervised learning approach can be used

for automatic adaptation. Artificial Neural Network or Genetic Algorithms [64] may be considered

when the application involves predicting contexts over numerous possibilities. These are

particularly good for context models exhibiting a high degree of interconnectivity; where there is

sufficient time and training data for developing an accurate inference model. On the other hand, if

the context can be reduced to some function of its inputs (such as recognizing human voice from

a sound sample), a discriminant analysis [10], [52] approach may be appropriate.

Many, many approaches have been to model and reason about context. There are approaches

that are clearly best suited for low level information fusion, while other approaches are better for

high level context. This illustrated in Figure 10 below.

Figure 10 Reasoning Techniques applied to context

The following sections review some benefits and disadvantages of a few reasoning techniques

used in existing context aware applications.

44

2.6.1 Bayesian Networks

Bayesian Networks (BN) as well as ontological reasoning has been applied to pervasive context

inference [7],[64],[70],[77]. BNs provide a solid theoretical foundation for representing uncertainty.

Hindrances to the use of BNs for inference in pervasive domains include: i) lack of

expressiveness; ii) inflexible instance specific models; iii) inability to represent objects and

relationships that cannot be specified in advance; iv) inability to express generalized recursions of

objects; and v) intractable worst case inference.

2.6.1.1 First Order Bayesian Networks

Multi-Entity Bayesian Networks (MEBN) resolves many limitations of traditional Bayesian

networks and offers great potential for pervasive context inference.

MEBN [46] is a knowledge representation formalism that augments the expressiveness of First

Order Logic (FOL) with the sound theoretical foundations of Bayesian Networks (BN). Application

domain concepts are segmented into groups of BN fragments called MFrags. Groups of MFrags

collectively represent a joint probability distribution, referred to as an MTheory. Nodes in MFrags

can be parameterized. Thus, with MEBN, classes/types of random variables can be defined.

Generalized recursion is also possible within Mfrags. An instance of a random variable may

depend directly or indirectly on another instance of the same random variable. As queries are

posed to the MEBN system, Situation Specific Bayesian networks (SSBNs) are dynamically

constructed to answer those queries. SSBNs are minimal BNs needed to compute posterior

probabilities on targeted random variables in light of provided evidences. MEBN claims to be the

first language having all the following properties: i) the ability to express a globally consistent joint

distribution over models of any consistent FOL theory; ii) a “proof theory capable of identifying

inconsistent theories in finitely many steps and converging to correct responses to probabilistic

queries”; and iii) a built-in mechanism for extending and refining theories in the light of

observations [46]. Additionally, MEBN provides representations for quantifiers, function

composition, and logical connectives. It should be possible to translate any knowledge

represented in FOL to a set of MEBN theories.

45

2.6.2 OWL Ontologies and Descriptive Logic Reasoning

Ontologies offer the expressiveness of first order logic and a formal specification of data

semantics. They are a desirable representation of knowledge since semantics are implicit in the

representation. Objects with their attributes, relationships and constraints can be defined. This

makes ontologies suitable for representing complex relationships and knowledge sharing.

OWL reasoning can be used to reason about:

� Knowledge Consistency (discovers if the models or knowledge is contradictory)

� Existence of data instances, property values

� Subsumption relations

� Derive implicit relationships

� Knowledge Equivalency

Ontologies are good for answering queries that involve: search on attributes, search for

class/types instances, inheritance/subsets, relationships derived indirectly. Some examples of

information that can be derived with ontologies include:

• Implicit knowledge/relationships -Tweety is a bird, however tweety is not a flighted bird.

So, Tweety cannot fly

• Knowledge base consistency - a person cannot be present in two locations

• Find all people at location

• Is Sheryl at location

• Is X attribute of Object X equal to Y

• Is Lynda an ancestor of John?

• Which printers are available? However, availability may be better modeled with a belief

network, fuzzy logic or rules

When we refer to ontological reasoning we are primarily making reference to Description

Logics (DL). Description Logic reasoning is the decidable subset of first order logic. SROIQ,

46

SHION and SHIF are examples of DL languages. Today, there are probabilistic variances to

support inference with uncertainty: P-SHIQ and/or P-SHION. Several DL implementations exist

{Pellet, Racer, Fact++, HerMit}3. These support inference from ontological languages.

Though the differences in underlying DL languages implemented by DL reasoners affects

performance characteristics of inferencing, in general DL reasoning can be used to: In general

inference with existing ontological languages is computationally expensive, does not scale well

and offers no direct way to represent uncertainty or logically combine concepts to model complex

high level contexts.

Ontologies are used extensively in the semantic web for many domains {medical,

automotive, education, earth & space } There are current efforts to convert existing knowledge

bases to ontologies4 for reasons including those above. OWL5 2 is the most recent version of the

Web Ontology language recommended by W3C. It offers three dialects that constrain the

language to improve inference performance, interoperability with databases and rule languagues.

In order or decreasing representation power there exists: OWL Full, DL, EL and Lite. Reasoning

based on OWL-DL is decidable. This is accomplished by constraining OWL full concepts that

make reasoning unwieldy. DL reasoning has exponential time complexity. OWL-EL Limits OWL to

expressions that can be decided in Polynomial Time. One existing EL reasoner is Pellet EL.

Wide acceptance of OWL has led to stable tools, apis, platforms and multiple concrete

syntaxes for development. Reading the Use Cases that have guided the OWL 2 standard helps in

understanding how useful it can be for knowledge representation.

The tradeoff between the cumbersome; verbose OWL representation and its beneficial occurs

when when the knowledge base(KB) is sufficiently large; where consistency maintenance and

3 See http://www.cs.manchester.ac.uk/~sattler/reasoners.html for a list
4 Stanford University is currently converting its Immune Epitope Relational Database to OWL
5 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

47

inferencing would be too unwieldy using other techniques. For small KB and those that involve

little relationship inferencing, other representation and reasoning techniques might apply. The

paradox for pervasive environments is that fact the even DL reasoning performance is often

unacceptable for small KBs. In one work, Pellet took 11 minutes to classify a relative small

ontology. This is yet another reason for offline classification of large ontologies. In highly

dynamic environments, DL reasoning must be used with care.

2.6.2.1 SWRL

SWRL is a proposal for a Semantic Web Rules Language, combining (OWL DL and Lite) with the

Rule Markup Language. SWRL has the full power of OWL DL, but at the price of decidability and

practical implementations. Rules are of the form of an implication between an antecedent (body)

and consequent (head). The intended meaning can be read as: whenever the conditions

specified in the antecedent hold, then the conditions specified in the consequent must also hold.

Figure 11 shows two SWRL rules. They specify i) whenever a building has an intrusion status of

‘ALARM’, the threat potential must be ‘HIGH’ and ii) If a device that is located in an area of the

building has an intrusion status of ‘ALARM’, then the status of that area as well as the building

must also ‘ALARM’.

48

Figure 11 Sample SWRL Rules in Protege

SWRL and OWL can to be verbose, cumbersome and error prone. While rules are expressive,

large rules sets are cumbersome and inefficient when compared to statistical approaches. The

mature tools available for OWL mitigates some of this challenge.

2.7 Background Summary

The following figures and tables summarize our observations regarding the suitability of OWL,

SWRL and traditional BNs for context modeling. Rules offer more espressiveness while tradtional

BNs offer greater inference speed and scalability.

Figure 12 Comparison of OWL, SWRL and BNs for Knowl edge Representation

49

CHAPTER 3

HYCORE DESIGN AND DATA MODEL

This research proposes enabling solutions for adaptive and effective reasoning in pervasive

environments. Considerations include: shareable context data models, integrated reasoning,

deriving integrated quality of context, and adaptive generalized context reasoning.

3.1 Requirements Analysis

Ideal requirements for a reasoning engine were derived after surveying many context aware

applications and frameworks (see Chapter 2). These ideas have been selectively borrowed and

combined from existing frameworks and software engineering concepts. The following

subsections discuss these requirements.

3.1.1 Requirement: Modular Components for Reasoning

As can be seen across contemporary applications, many approaches are needed to meet the

requirements of a complex context aware application. Variety in reasoning, modularization and

optimization equips a reasoning framework to support a variety of reasoning techniques across

heterogeneous context sources. This results in greater reuse, as application designers are able to

map context elements to appropriate reasoning modules. Decoupling data, reasoning and

knowledge management promotes context sharing among applications.

Such architecture also supports maintainability, extensibility and evolution of reasoning.

Reasoning algorithms as well as derived contexts (i.e. knowledge) may be reused among

applications. APIs for abstraction add greater flexibility in the types and sources of context that

can be supported. Mechanisms for reasoner optimizations provide application designers with an

additional tool for meeting system goals. Optimization can be accomplished by exposing

algorithm parameters tuned using domain experience along with experimentation. Where there is

50

variety, interchangeable algorithms can be used in parallel to improve accuracy. Experimentation

will ultimately validate the suitability of chosen reasoners for a given application.

3.1.2 Requirement: Consistent and Dynamic Context Data model

Greater context sharing among applications can be achieved with a consistent representation of

data. At times, reasoning requires a unique set of models and formatting. Also, modeling

formalisms evolve with time. Utilities for model translation reduce the burden on application

developers; removing another obstacle to framework reuse. A dynamic model strengthens

context maintainability. Along with modularization, it also supports incremental development of

applications and reasoning techniques. Reasoning data models should reflect the current reality.

As applications mature, new concepts may be augmented to the data model, while redundant and

obsolete elements are pruned.

3.1.3 Requirement: Mechanisms for Context Maintenance

• Anomaly Reporting and Conflict Resolution: There are times when two sources of context

report conflicting observations. The same could be true of independent algorithms making

parallel inferences. The resulting inferences could conflict. Additionally, an observation or

derived context could violate the data model. When issues cannot be automatically resolved,

a sufficient context reasoning architecture has a means to handle anomalies (log, service

call, JMS notification, email, etc.).

• Context integrity: Context integrity includes considerations for context expiration,

provenance/traceability of context, and retention of pertinent context information at every

level of the data model. To maintain an accurate view of current reality, every element of

context should have an associated expiration. Expired context should be stored for reasoning

based on history, but never used where reasoning requires fresh data. Context derivation

includes information regarding time, quality, source and method of deriving context. Every

contextual element can be traced back to its source. This is useful in evaluating credibility,

quality or mitigating conflict. Where storage is not an issue, retaining pertinent levels of

51

context information may be useful in offline analysis, supporting future applications and error

handling. Other context integrity issues to consider include: context purging and

synchronization with other knowledge stores.

• Consistent Storage and Retrieval of Context: The usability of a reasoning framework is

improved when knowledge can be stored and retrieved in a consistent manner. Besides

supporting direct application queries, case-based reasoning techniques rely on past

instances of events. Specifically, HMMs and DBNs use histories to infer current events. To

support a wide variety of reasoning approaches as well as offline data analysis, storage of

context history is needed.

3.1.4 Requirement: Distributed Context Reasoning and Collection

A centralized approach to context reasoning and collection is limiting. Pervasive devices are

limited in resources, so it is wise to make use of backend or offline reasoning where possible.

Also, if a complex application is to compute multiple heterogeneous pieces of context using

disparate approaches, parallel execution in the distributed system could improve performance.

Existing toolkits may already offer the best suited implementation of a reasoner. APIs for

interfacing external reasoners assists in rapid development and innovation. Though many

applications do not require or support remote communication, a sufficient reasoning framework

would minimally offer the option of distributed reasoning.

3.1.5 Requirement: Quality of Context (QoC) Support

Along with variety in reasoning choice and parameterization, QoC based context reasoning

further helps application developers to meet system requirements. Maintaining QoC requires

retention of associated data and statistics through many components of the architecture.

Feedback techniques are useful in validating and grading performance. A consumer of context

may be concerned with the following QoC factors: accuracy, speed, trustworthiness, data

freshness, resolution and class. Class refers to data type with associated semantics and

representation. It is reasonable to expect classifiers and other types of reasoners to offer varying

classes and granularities on the same categories of context. To illustrate: there could

multiple reasoners inferring ’activity’ for a single sensor

inputs, each Reasoner applies

applications. Also, reasoners inferring contexts

with corresponding performance cost.

The architecture of HyCoRE shown

previous requirements section.

context frameworks, namely: i) context acquisit

context consumption; iii) context reasoning; and iv) knowledge storage and retrieval.

Figure

This design decouples context sensing and consumption from high level reasoning. Context

providers are abstractions of devices, services, applications or reasoning algorithms providing

context. The context consumer component generalizes subscribers of cont

contracts contain descriptions of capabilities/contexts available, as well as acquisition

52

on the same categories of context. To illustrate: there could

multiple reasoners inferring ’activity’ for a single sensor subsystem. Using the same sensory

applies distinct algorithms producing distinct classes for use

applications. Also, reasoners inferring contexts like location and time may offer greater resolution

corresponding performance cost.

3.2 HyCoRE Architecture

shown Figure 13 conceptually meets the ideal goals discussed in the

requirements section. The logical layers of processing are those found in existing

context frameworks, namely: i) context acquisition (including sensing and preprocessing

context consumption; iii) context reasoning; and iv) knowledge storage and retrieval.

Figure 13 HyCoRE High Level Architecture

This design decouples context sensing and consumption from high level reasoning. Context

providers are abstractions of devices, services, applications or reasoning algorithms providing

context. The context consumer component generalizes subscribers of context. Provider service

contracts contain descriptions of capabilities/contexts available, as well as acquisition

on the same categories of context. To illustrate: there could exist

ng the same sensory

distinct algorithms producing distinct classes for use by different

like location and time may offer greater resolution

conceptually meets the ideal goals discussed in the

found in existing

ion (including sensing and preprocessing); ii)

context consumption; iii) context reasoning; and iv) knowledge storage and retrieval.

This design decouples context sensing and consumption from high level reasoning. Context

providers are abstractions of devices, services, applications or reasoning algorithms providing

ext. Provider service

contracts contain descriptions of capabilities/contexts available, as well as acquisition

53

procedures. Consumer service contracts specify consumer context and quality requirements.

Both consumer and provider components include actuation specific to their participating entity.

At the context acquisition layer, context providers offer quality annotated context data/ services to

HyCoRE. Context sources are abstracted internally as ReUsable Reasoning Components. RUCs

are generalized parameterizable modules which are used to abstract reasoning algorithms

(including statistical, ontological, logic and rule based approaches), data transformers, and

utilities for sensory data acquisition, knowledge query and maintenance. Low level concepts can

be fused into complex high level concepts by linking RUCs in an application specific order. As

needed, the context reasoning subsystem selects appropriate RUCs for participation in

orchestrated reasoning plans to produce high level context. Provider actuators separate the

context source from context reasoning using utilities and APIs to map source data into HyCoRE

domain concepts. Actuators act as data collectors and may employ any buffering, preprocessing

and feature extraction techniques as long as each conforms to HyCoRE actuator interface.

At the consumption layer context consumers request context information, providing

quality requirements and response actuation details in the consumer service contract. As context

requests are received, appropriate reasoning plans for inference are activated.

The knowledge layer contains stored context data. Selective elements of context (direct

and inferred) are maintained along with pertinent derivation information. It is useful to maintain

much of the data related to context derivation. Applications may need to verify pieces of low level

context used in context derivation data to meet QoC, security policies or to mitigate conflict. New

context is sanitized by performing data consistency checks against existing knowledge models,

as well as system polices. Knowledge storage also includes services for context conflict

resolution, synchronization, cleanup, expiration and error reporting.

The context reasoning subsystem is the heart of HyCoRE. It is responsible for context

reasoning planning, execution and adaptation. At this layer, inferencing is accomplished by

instantiating a reasoning plan best matching application requirements. Instantiated reasoning

plans are called context flows. Context flows are independent inferencing tasks that can be run

54

in parallel. These are created by composing HyCoRE reusable reasoning components (RUCs).

Context flow configuration includes considerations for asynchronous execution, periodicity and

persistence. A context flow is represented by a directed acyclic graph of nodes which include

references to selected context providers as RUCs. Reasoning quality is monitored and plans are

adapted to sustain context inferencing and quality in the face of dynamic provider quality and

availability. Context flows will be discussed at length in succeeding sections.

In summary, HyCoRE is more than a broker or central repository. A single instance of

HyCoRE may employ distributed reasoning and KM components. As will be discussed, it is the

source agnostic information descriptions that enable the orchestration of generalized information

into usable knowledge; independent of data source type or location. HyCoRE orchestrates

interchangeable reasoning elements and dynamically adapts based on quality indications.

Adaptive context reasoning based on adaptable flows contributes to efficient use of resources.

With regard to reasoning using context flows, the HyCoRE middleware manages:

� Context Flow Creation - runtime instantiation of reasoning plans based on

available providers;

� Quality Management -deriving integrated high level context quality measures;

� Reasoning Adaptation -identifying triggers and adapting reasoning flows to

support middleware policy as well as application requirements;

� Asynchronicity -supporting context push and pull both synchronously and

asynchronously;

� Provenance –tracking context sources contributing to high level inference. Also,

change history may be associated with every inference;

� Reuse - attempts minimal reasoning in support of multiple consumers, reusing

underlying resources and reasoning plans.

55

A more detailed discussion of reasoning subsystem components is deferred until after the

HyCoRE data model and context quality quantification are explained (See SectionsCHAPTER 4

3.3 and 4.2). Elements of the data model are used as internal and external components

collaborate to accomplish context reasoning. Quality quantification is central to decision points in

context reasoning, as will be discussed.

3.3 HyCoRE Context Data Model

As illustrated in Figure 14, context is the basis of information exchange between HyCoRE internal

and external reasoning components. It is a general term for information identified, modeled and

used for the purpose of context aware adaptation or higher level reasoning. Often, it is a

knowledge by-product of stages of reasoning and transformation on low level data. The context

that a particular HyCoRE instance reasons about and publishes is driven by administrative

configuration and application extensions of the HyCoRE data model. So, HyCoRE is not

intrinsically limited to a particular type of context, but may be limited by available context

providers. Multiple knowledge models, supporting varied types of context, may exist in a single

instance of HyCoRE. (Note that the terms knowledge, information and context are used

interchangeably in this document).

As mentioned previously, there are many correct approaches to modeling context

[7],[13].[19],[21],[28],[32],[36],[38],[40],[43],[63]. The important concern is for the model to

sufficiently capture the targeted context characteristics, support efficient query, retrieval and

maintenance. Context characteristics include: attribute heterogeneity, dynamism, availability,

temporality, source derivation, credibility, and uncertainty. A model that is coupled to a specific

type of application may have inherent performance improvements over a general purpose model.

Despite this possible loss of efficiency, HyCoRE employs a general context model approach

since heterogeneous low level data as well as complex inferred context characteristics must be

captured. Further, since HyCoRE is designed for effective orchestration of local and distributed

reasoning components into a reasoning plan executed to produce high level context, the essential

information necessary to support this function is also provided in the HyCoRE data model.

Figure

Not using the popular sematic web ontology language (

justified. OWL is useful if the context expected involves inference on relationships between

concepts. Many description logic (DL) languages/tools do this efficiently. The trade

the cumbersome, verbose representation of OWL and its benefits is found when the knowledge

base (KB) is sufficiently large; where consistency maintenance and inferencing would prove too

unwieldy using other techniques. For small KB and those t

inferencing, other representation and reasoning techniques are more appropriate. The paradox

for pervasive environments is the fact that DL reasoning performance is of

small KBs (see discussion in Secti

UML, avoiding any implementation specific association. However,

56

Figure 14 HyCoRE Context Data Model

popular sematic web ontology language (OWL) as a conceptual representation

. OWL is useful if the context expected involves inference on relationships between

concepts. Many description logic (DL) languages/tools do this efficiently. The trade

the cumbersome, verbose representation of OWL and its benefits is found when the knowledge

base (KB) is sufficiently large; where consistency maintenance and inferencing would prove too

unwieldy using other techniques. For small KB and those that involve little relationship

inferencing, other representation and reasoning techniques are more appropriate. The paradox

for pervasive environments is the fact that DL reasoning performance is often unacceptable for

small KBs (see discussion in Section 2.6.2). So, we have chosen to represent concepts using

implementation specific association. However, the multimodel support in

conceptual representation is

. OWL is useful if the context expected involves inference on relationships between

concepts. Many description logic (DL) languages/tools do this efficiently. The tradeoff between

the cumbersome, verbose representation of OWL and its benefits is found when the knowledge

base (KB) is sufficiently large; where consistency maintenance and inferencing would prove too

hat involve little relationship

inferencing, other representation and reasoning techniques are more appropriate. The paradox

ten unacceptable for

epresent concepts using

model support in

57

HyCoRE allows the architecture can be configured to support OWL or other XML schema based

components. This is a conceptual data model that may be implemented any number of ways

(XML, OWL, JSON, Object Serialization etc.).

The HyCoRE context data model offers value to context modeling in the following ways: i)

Context Information is modeled as source agnostic meta-data; ii) Disparate types/categories of

context are supported; iii) Multi-dimensional quality attributes are associated with all elements of

context; iv) There is support for multiple context knowledge models with separation of physical

representation and semantic interpretation concerns; and v) Finally, this model captures context

provenance. These unique features of the HyCoRE context model are discussed in the next

section.

3.3.1 Source Agnostic Context Meta-data Model

It is common practice to extract meta-data of large bodies of information to facilitate manageable

information sharing. We use context meta-data to enable reasoning generalization and reuse;

enabling machine interpretation of context. Meta-data is not specific to device, platform or

reasoning algorithm. It simply describes the information in a machine interpretable manner. For

this purpose we have identified information supplementary characteristics necessary in describing

context in pervasive application domains. These characteristics include: i) context categories ii)

quality cost indications iii) both a semantic and physical representation of data; and iv) a list of

targets to which a context applies.

The context target specification describes domain objects on which context information

applies and is considered valid. A target is a generalized description for an object of knowledge

that previously exists and is understood by both the consumer and provider(s) associated with a

particular context element. Targets of context include: person(s), location(s), device(s), time

interval, situation .etc.

58

Context categories, quality indications, semantic and physical representational specifications of

the meta-data model will be discussed in the following sections which highlight other unique

features of this model.

3.3.2 Multi-Centricity

Centricity refers to the target domain in which context information applies. Often, the centricity

reflected in the data model and reasoning is singular and tightly coupled with a specific

application (see related work in Chapter 2). The HyCoRE model is distinct in supporting many

centricities of context, including user, device and location centric contexts; thereby supporting

varied application types. In the model illustrated by Figure 14, context category is a label

describing the type of information; identifying its centricity. Since context is a general term for

information produced as a reasoning by-product, it may be classified many ways. Section 2.1

discussed the many types of context existing in literature. Context category(ies) capture the types

to which a piece of information is applicable. Examples include: activity, identity, situation social

environmental and spatial contexts. Often informal applies to multiple categories, so this model

of context supports specifying a list of applicable categories.

3.3.3 Multi-Dimensional Quality Representation

In the HyCoRE architecture, every component affecting context derivation is associated with a

quality/cost model. Sensors, reasoners, general context providers, transformation functions all

have quality indicators that affect resulting context. The quality model includes both declared and

observed quality/cost indicators appropriate for the type of component. It is impossible to foresee

all measures that could be determined to be quality related. Also, not all quality indicators are

appropriate for all sources of context. The concept of context quality will be discussed more in

Chapter 4; wherein the observations determining quality attributes/features provide application-

specific added value, thus supporting declaration of different quality indications for each

component.

59

All context providers have an associated QC indication as does the context that is

inferred by them. Context consumers specify quality requirements. The HyCoRE system has

both quality and cost policy settings. During the context reasoning process, an integrated high

level context QC indication is computed and provided to the consumer in the context report. This

high level QC indication is further used by the HyCoRE system for computing QoCS measures

and evaluating reasoning adaptation needs. More details on deriving high level QC indications,

quantifying QoCS and reasoning adaptation are discussed in later chapters. HyCoRE represents

quality/cost of context as a generalized vector of attribute values pairs with associated priority and

unit indications. For simplicity we assume common understanding of quality semantics implied by

attribute names (i.e. accuracy, latency..). Refer to Chapter 4 for quality discussion.

3.3.4 Support for Multiple Knowledge Representations

Many inferencing toolkits support only a few types of context (see Section 2.2). By using context

meta-models, HyCoRE supports heterogeneous representations of knowledge. Notice the context

data model element in Figure 14. The data model contains an objective description of context

information that is not specific to a device; also called context meta-data. Context meta-data

specifies the physical and semantic criteria for context equivalency. Context consumers are

paired with providers on this basis. Also, providers are interchangeable based on matching meta-

model information.

The physical context model describes the format for physical representation of context

values. A survey of context reasoning approaches reveals that numerous physical models are

used for the same categories of context. Physical models include: number, name/value pairs,

object, file reference, string and multi-string values. A context element’s physical data model is

one of many ways to realize that context value for a specific application. For example: A Tri axis

accelerometer sample may logically contain multiple lines of X, Y, Z axis acceleration readings.

Physically this may be represented as a string or Java object. Context provider developers

60

determine which representation is most suitable and publish the chosen model in provider service

contracts.

The semantic model elements collectively clarify the syntax and semantic intention of the

physical context model. The semantic model includes:

1. Semantic Category – specifies the logical class of data contained in the physical model

which may include: image, video clip, audio sample, accelerometer sample, feature set,

activity, location, GPS coordinate, and postal address. Note that the semantic category is

distinct from the context type. An ‘activity‘ context type can have several physical and

semantic models with associated semantic category. The semantic category is tightly

coupled with the data representation. Whereas the type of context is a broader

classification of information. For example: A low level ‘activity’ context represented by

raw data may have a semantic category of ‘accelerometer sample’. A transformation

algorithm which manipulates raw data produces ‘activity’ context with a semantic

category of ‘feature set’. A follow on reasoning algorithm may transform the feature set in

to a high level ‘activity’ context with a semantic category of ‘physical activity’.

2. Physical model constraints- impose syntax and value limitations on the physical model.

For example: a number may be constrained to the range [1-10]. A string physical model

may be constrained to a subset of values: walking, sitting or standing.

3. Knowledge model constraint- adds semantics to the physical model by specifying a

schema, ontology, java class or other semantic limitation on the context representation.

For example: an audio clip can be physically represented as a binary object with a

semantic knowledge model specifying a wave format. A target location can be

represented physically as a string, but the semantic knowledge model may be a class

with field designations for GPS latitude, longitude and direction.

Context is always associated with a meta-data model which affords semantic interpretation. This

model is structured such that possible relevant context providers are implicit. Though the context

61

provider reporting the context is a specific instance, any provider with matching input criteria

could have provided it. This means that multiple knowledge representations are also implicit,

since context providers using different internal knowledge representations may infer the same

class of context resulting in same external meta-data modeled values. Context meta-data with

physical and semantic representation models enable generalization and reuse. HyCoRE context

reasoning adaptation logic, discussed in Chapter 5, also centers on matching of meta-data.

3.3.5 Context Provenance

Context provenance identifies the sources, process of derivation and change history of context

data values. Limited provenance is revealed by context attributes shown in Figure 14. A context

providerTrail attribute provides a way to trace back through serialized context flows. This source

trail could be important in off-line provider analysis in sensitive applications (i.e. geo-political,

military, criminal forensic applications). 4WH is an acronym for the descriptors: when, where,

what, who, and how. These descriptors are used in many domains for describing information.

This data model supports declaring and determining these values for a given context. The work in

[3] uses 5WH. That work also considers why as reflection of application targeted use of context.

HyCoRE is not concerned with why context is required. It uses application requirements and

system defined policies to guide behavior. The when descriptor reflects the time domain of

context; revealed by timestamp attributes. Where is the spatial domain of context and is revealed

by location attributes. What describes the content of context and is revealed by the value and

data model elements. Who as the source of context is revealed by the providerTrail attribute.

Who as the target of information is revealed in the target list included in the context-meta data.

How reflects the method(s) of inference; revealed in both the inferenceModel and providerTrail

attributes. The inferenceModel identifies the context template. Context templates are patterns of

reasoning defined by domain experts; specifying how information is combined and transformed to

derive high level context. Templates are realized in real-time as context flows in response to

consumer request and provider update. Templates specify how information is combined and

transformed to derive high level context.

62

3.4 HyCoRE Context IO Model

In HyCoRE, consumer and providers are discovered, actuated and managed using a common

context I/O model. Figure 15 depicts the I/O model. Table 3, is a generalized consumer

requirement specification to be discussed in the next section.

Figure

63

Figure 15 HyCoRE Context IO Specification

64

Table 3 Consumer Quality Requirement Specification

The figures above are intended as conceptual syntax. Actual implementation may vary.

3.4.1 Context Consumers

A context consumer is any formal subscriber of information in HyCoRE. The consumer service

contract is an agreement between HyCoRE and a consumer application regarding context and

quality. Consuming applications are allowed to specify context desired and quality required. The

application is best placed to provide information that distinguishes what is relevant and valuable.

The application context specification is a requirement by which the middleware system measures

its success. It is a syntax that allows an application consumer to describe its quality goal as a

mathematical expression containing context identifiers and weighted quality indicator

preferences. Weights reflect application priorities of context and quality.

conceptually illustrate consumer requirements.

requests for context are matched to reasoning plans irrespective of the knowledge models or

inference algorithm used for derivation. A consumer r

data model which includes generalized physical and semantic descriptions of information desired.

Figure 16 below is a prototypical example of a context consumer request containing meta

The consumer is requesting the location of three targets,

negative priority indications in th

indicators. The expected format and context of the data to be returned in the context report is as

specified. The meta-data requirement specification contains enough information for deriving a

reasoning plan for inference.

Figure 16 Example C

65

mathematical expression containing context identifiers and weighted quality indicator

preferences. Weights reflect application priorities of context and quality. Figure 15

conceptually illustrate consumer requirements. To accomplish effective reasoning, consumer

requests for context are matched to reasoning plans irrespective of the knowledge models or

e algorithm used for derivation. A consumer request describes context using the

data model which includes generalized physical and semantic descriptions of information desired.

below is a prototypical example of a context consumer request containing meta

is requesting the location of three targets, specifying an accuracy of 92%. The

indications in the example represent the consumer’s indifference to those QC

The expected format and context of the data to be returned in the context report is as

data requirement specification contains enough information for deriving a

Example C ontext Consumer Requirements

mathematical expression containing context identifiers and weighted quality indicator

15 and Table 3

To accomplish effective reasoning, consumer

requests for context are matched to reasoning plans irrespective of the knowledge models or

equest describes context using the meta-

data model which includes generalized physical and semantic descriptions of information desired.

below is a prototypical example of a context consumer request containing meta-data.

accuracy of 92%. The

the consumer’s indifference to those QC

The expected format and context of the data to be returned in the context report is as

data requirement specification contains enough information for deriving a

66

3.4.2 Context Providers

A Context Provider is any device, repository, algorithm or service providing context. A single

provider may be the source of several types of context. Providers may use varied knowledge

representations as a basis for inference. The most popular models in pervasive computing are

rule-based, decision tree, naïve Bayesian and hidden Markov models (see Section 2.6).

However, the provider’s internal model is irrelevant for meta-data matching. It is the source

agnostic meta-data model elements that are important to HyCoRE. Providers include an

actuation component which serves as a control for local or remote communication. Context

providers publish their capability to share context using a service contract. The context provider

service contract along with periodic quality verification, give HyCoRE knowledge of types and

quality of context available. Section 3.1 discussed ideal architecture requirements and suggested

that a desirable feature of a context provider definition would include optimization parameters or

some means to control internal behavior. This design could be extended to support such

attributes. Alternatively, context provider may publish multiple services contracts; where distinct

configurations are actuated separately, resulting in different QC indications. In this case,

HyCoRE would choose between configurations the same way as it would choose between

different providers. Figure 17 below is a prototypical example of a context provider declaration

containing meta-data.

Figure 17 Example

67

Example Context Provider Context Meta-data

3.4.3 Reasoning Data Model

HyCoRE’s context reasoning begins with declaration of reasoning plans or templates. These are

dynamically realized and bound to specific context providers as context flow

reasoning stream which contains

reasoning nodes, templates and flows are given

representation of the HyCoRE’s reasoning model.

Figure

3.4.3.1 Context Templates

A context template is a generalized context inference network configuration, representing a

formal description of a single high level context. The template does not specify context providers

or reasoners. It only describes how published context specificati

level context. This generalization supports dynamic and adaptive context inference.

context reasoning is accomplished through the execution of instantiated reasoning plans (

flows). A reasoning plan or template i

as illustrated by the context template depiction in

reasoning processes with directed acyclic graphs (DAG) for

and available graph theoretical solutions.

68

HyCoRE’s context reasoning begins with declaration of reasoning plans or templates. These are

realized and bound to specific context providers as context flows. A flow contains a

stream which contains a serialized list of reasoning nodes. Details on context

reasoning nodes, templates and flows are given in the next section. Figure

representation of the HyCoRE’s reasoning model.

Figure 18 HyCoRE Reasoning Data Model

A context template is a generalized context inference network configuration, representing a

formal description of a single high level context. The template does not specify context providers

or reasoners. It only describes how published context specifications are used to derive higher

level context. This generalization supports dynamic and adaptive context inference.

context reasoning is accomplished through the execution of instantiated reasoning plans (

plan or template is represented as a directed graph of reasoning components,

as illustrated by the context template depiction in Figure 19. Many works represent

reasoning processes with directed acyclic graphs (DAG) for their parsimonious representation

graph theoretical solutions.

HyCoRE’s context reasoning begins with declaration of reasoning plans or templates. These are

s. A flow contains a

a serialized list of reasoning nodes. Details on context

Figure 18 is a UML

A context template is a generalized context inference network configuration, representing a

formal description of a single high level context. The template does not specify context providers

ons are used to derive higher

level context. This generalization supports dynamic and adaptive context inference. HyCoRE

context reasoning is accomplished through the execution of instantiated reasoning plans (context

ng components,

Many works represent context

parsimonious representation

Figure

Context templates represent domain expert knowledge

Templates may be administratively added to HyCoRE at any time. We envision a toolbox

templates made available as HyCoRE matures and allows for dynamic discovery of new

templates. The inferenceModel attribute incl

to a context template, which support provenance as discussed.

Templates are expressed as a graph

edges contains context. Edges imply dependency of a destination node on contextual outputs of

source node. Nodes are the work p

search, aggregation, reusable component

A search node represents a local context query for profiled or stored context as distinct from

initiating a reasoning process or executing a remote query. Search components have no need for

a QM, since locally stored data includes a QM associated with its original derivation sources. The

assumption is that no change in reported context quality occurs with the exception of adding edge

latency associated with search time. Context Flow designers include search

known to be available locally, and which cannot be inferred or trusted when derived from remote

69

Figure 19 Unweighted Context Template

Context templates represent domain expert knowledge of transforming raw data into knowledge.

Templates may be administratively added to HyCoRE at any time. We envision a toolbox

templates made available as HyCoRE matures and allows for dynamic discovery of new

inferenceModel attribute included in the context model of Figure 14

to a context template, which support provenance as discussed.

expressed as a graph of reasoning nodes. The message that travels along the

Edges imply dependency of a destination node on contextual outputs of

Nodes are the work processes for context reasoning. Supported nodes include

reusable component nodes.

represents a local context query for profiled or stored context as distinct from

initiating a reasoning process or executing a remote query. Search components have no need for

ly stored data includes a QM associated with its original derivation sources. The

assumption is that no change in reported context quality occurs with the exception of adding edge

latency associated with search time. Context Flow designers include search elements for context

known to be available locally, and which cannot be inferred or trusted when derived from remote

forming raw data into knowledge.

Templates may be administratively added to HyCoRE at any time. We envision a toolbox of

templates made available as HyCoRE matures and allows for dynamic discovery of new

14 is a reference

The message that travels along the

Edges imply dependency of a destination node on contextual outputs of

for context reasoning. Supported nodes include:

represents a local context query for profiled or stored context as distinct from

initiating a reasoning process or executing a remote query. Search components have no need for

ly stored data includes a QM associated with its original derivation sources. The

assumption is that no change in reported context quality occurs with the exception of adding edge

elements for context

known to be available locally, and which cannot be inferred or trusted when derived from remote

70

sources. Search elements add minimal processing overhead when compared with RUCs. An

aggregation node is used in the reasoning plan to indicate synchronization of context output and

aggregation for input to the next node. Incoming edges of an aggregation node indicate possible

parallel activity. The reusable component (RUC) node is an abstraction for generalized context

providers participating in flow reasoning. Context providers may support many types of context.

Each RUC is an abstraction for a particular type of context inferred by a reasoner, sensing

device, service, or other generalized context provider. In the case of templates, RUC nodes

contain on only meta-data and are not bound to a specific provider.

The implicit concurrency, serialization and participant context contribution weight (not depicted)

are included in the template. A node’s context contribution weight represents the percentage of

inference effect that node’s function has on the overall reasoning plan. Inference effect relates to

the correctness and quality of the resulting high level context. Since templates are not bound to

providers, the potential quality of context provided by a template depends on its realization as a

context flow; where all bound context provider quality is integrated to produce high level context

quality. Multiple context templates may exist for inferring the same high level context meta-data.

Each offers features (i.e. quality, cost, performance etc.) that are used by HyCoRE’s context

building function in selecting the most effective template for an inferencing task. Context building

will be discussed in Chapter 5. Following are definitions to clarify components used in HyCoRE

reasoning as illustrated in Figure 19:

A graph node represents any RUC, search or aggregation element. Each node is weighted by its

contribution to the resulting high level context. Aggregation nodes have 0 weight. Typically,

transformation RUC nodes have little weight. It is the reasoning and source nodes that play the

greatest role in the resulting high level context quality. Weights are defined administratively by

domain experts when context templates are registered.

A Reasoner represents algorithms for reasoning. These may use trained models and/or apply

machine learning. A Transformation Function is any function/algorithm that filters, extracts

71

features or transforms information. Both reasoners and transformation functions are abstracted

as context providers and represented as RUC nodes in a context flow.

Edges of the context flow represent the transmission of context from a source to a destination

node. These imply a serialization of inference events as well. Not seen on the context flow, are

implicit incoming edges at start nodes. All latency is initially 0. Context nodes update edge latency

values as the difference of arrival and transmission times. The latency on the edges between

aggregation nodes and other node is implicitly 0. In a diagram, an aggregation node should

never be joined to another aggregation node (it is redundant). An edge does not imply

synchronous communication, only the order of events is implied. Context result may arrive

asynchronously from local or remote sources.

3.4.3.2 Context Flows

Context flows are dynamic reasoning plans instantiated at runtime in response to consumer

requests and provider changes. A context flow follows the pattern of a specific context template.

The biggest difference between templates and flows is that flows are bound to specific context

providers whereas templates are not. The RUC nodes in flows are abstractions of context

providers which provide an I/O specification, describing input context requirements and inferred

context output. As a concept clarifying supplement to Figure 19, Figure 20 offers an alternative

conceptual specification for context templates/flows; where a specific ContextID is inferred using

a the sequence of instructions provided there.

72

Flow Specification : ContextID{ 1..*{ INSTR}}

ContextID : Unique alphanumeric identifier for a context value

INSTR: AGGREGATE, TRANSFORM, COLLECT, SEARCH, CONNECT(parameter list)

AGGREGATE : Combine information essentially a logical AND

TRANSFORM: Apply function to output

COLLECT : Use RUC to sense or infer data

SEARCH: Execute data model or context query

CONNECT: Implies a sequential processing. X CONNECT Y would be graphically represented
as two nodes with a directed arrow emanating from X towards Y. It specifies that X must occur
before Y.

Figure 20 Context Flow Conceptual Specification

Adaptation is important in maintaining the inferencing plan. No sensor has infinite energy or

availability. At some point any physical device will fail due to energy, malfunction, mobility etc.

When device failure occurs, inferencing is stalled. We mitigate this and increase the

uninterrupted running time for a context flow by repairing the flow using alternative RUC nodes.

Also, there are quality requirements associated with context flows. Context providers include

sensing devices as well as local / remote reasoning algorithms or services. Quality indications

and cost associated with these providers contribute to the integrated high level context QC

indicators. As an example, remote nodes have bandwidth-communication and latency costs often

greater than local node which may offer low latency with minimal accuracy. The system policies

and consumer requirements determine what is acceptable. Reasoning adaptation sustains

context while meeting requirements. More details on reasoning adaptation are provided in

Section 5.7. For now, this discussion turns to the importance of context quality. The next section

discussion information and middleware quality measures as it relates to HyCoRE.

73

CHAPTER 4

QUALITY OF CONTEXT

Information quality is a general measurement term for information integrity. The term remains

ambiguous until its constitution is revealed as a function of observable data measures. One work

[32] uses the term ‘quality indicator’ to refer to individual measures that affect quality evaluation.

Likewise, the terms quality indicator and quality measure will be used interchangeably throughout

this document.

Establishing high level context quality is not as simple as selecting the device with the best

accuracy or other singular quality indication. Increasingly, context-aware applications are

interested in information that must be combined from multiple sources, using heterogeneous

transformation and reasoning processes. We call this process hybrid high level context

reasoning. Establishing true context quality in such environments requires an integrated approach

to acquiring heterogeneous quality measures and propagating them through reasoning and

transformational processes to produce a composite high level context quality. Many quality

measures are only appropriate for describing low level sensor or other context sources. These

have a cross effect on resulting high level quality indicators, but many do not translate directly to

useful high level context measures. Figure 7 illustrates the dilemma.

Quality of Context (QoC) has been defined as

information that is used as context

(QoI) as “the collective effect of information characteristics (or attributes) that determine the

degree by which the information is (or perceived to be) fit

discussion, Quality of Context (QoC)

reflecting the integrity and discriminative characteristics of information that is used as context

QoC is one means by which a context middleware accesses the

associated reasoning process for an application. When serving several heterogeneous

applications, it is beneficial for the middleware to allow each application to specify quality

requirements. An ideal middleware maintains

environmental changes. At the same time, the middleware may make the most efficient use of

available resources. We identified the need for m

redefine Quality of Context Middleware (QoCS)

reflect the informational integrity and efficacy of a middleware system in meeting the collective

context quality requirements of client applications

74

Figure 21 Quality Indicators

has been defined as “any information describing the quality of

information that is used as context.”[15]. A related definition is provided for quality of information

the collective effect of information characteristics (or attributes) that determine the

degree by which the information is (or perceived to be) fit-to-use for a purpose.” [9

Quality of Context (QoC) can be defined as a collection of measures (indicators)

reflecting the integrity and discriminative characteristics of information that is used as context

QoC is one means by which a context middleware accesses the suitability of context and its

associated reasoning process for an application. When serving several heterogeneous

applications, it is beneficial for the middleware to allow each application to specify quality

requirements. An ideal middleware maintains application quality requirements by adapting to

environmental changes. At the same time, the middleware may make the most efficient use of

We identified the need for middleware quality measures in [4

ext Middleware (QoCS) as a collection of measures (indicators) which

reflect the informational integrity and efficacy of a middleware system in meeting the collective

context quality requirements of client applications.

any information describing the quality of

quality of information

the collective effect of information characteristics (or attributes) that determine the

.” [9] For this

collection of measures (indicators)

reflecting the integrity and discriminative characteristics of information that is used as context.

suitability of context and its

associated reasoning process for an application. When serving several heterogeneous

applications, it is beneficial for the middleware to allow each application to specify quality

application quality requirements by adapting to

environmental changes. At the same time, the middleware may make the most efficient use of

iddleware quality measures in [4] and here

collection of measures (indicators) which

reflect the informational integrity and efficacy of a middleware system in meeting the collective

75

One goal of the HyCoRE framework is adaptation to meet application and system context quality

requirements. Which quality measures may be controlled through middleware adaptation

depends on the constitution of the context. For example, individual low level context source

credibility cannot be controlled. However, given multiple sources, the high level context’s

credibility can be controlled by adapting the participating sources. For the remainder of the

document the term QC indicator will refer to both context quality and cost measures. The

identification of a specific measure as a quality indication is subjective and domain dependent. In

this work, we focus on objective indicators of high level context data integrity or value.

The following subsections clarify this work’s use of existing quality labels and define new quality

indicators. We later offer insight for solving quality integration challenges. The terms for

semantically equivalent concepts vary, so we offer our perspective. To the best of our knowledge

the following quality indicator concepts are first identified in this work. These are: i) information

semantic equivalency; ii) context fluidity; iii) inferencing resource efficiency; iv) middleware

context effectiveness and v) context middleware operational efficiency. All of the indicators we

have chosen can be represented by a numerical value for ease of computation in mathematical

equations. Concrete individual representations of indicator values are implementation specific.

These reflect the semantics of their associated applications. So herein, we discuss indicators at

a conceptual level; only offering concrete examples for illustration. This is not an attempt to

identify all quality indicators. No one can anticipate which factors will be important to every

application. Any taxonomy of quality indicators, including that given herein, must be extensible.

4.1 Quality Definitions

4.1.1 Intrinsic Context Data Quality Indicators

Intrinsic quality indicators reflect the nature of the data. These characteristics are irrespective of

the source device and transformation applied to achieve them.

76

Information Freshness - a relative measure of the recency of information. Creation and update

timestamps along with expiration polices may be used in computing this value. Middleware may

use this value as criteria for data maintenance, identification and removal of stale values.

Information Fidelity - measures the level of information detail. Similar to the way that numerical

units (i.e. feet vs. centimeter, seconds vs. minutes) imply resolution, context fidelity measures the

detail exposed by a given value relative to all possible values. In meeting consumer requests,

context providers comply with security polices for sharing data. Such security policies may be

expressed using context fidelity.

Information Fluidity - measures the rate at which a context value changes with time. Low level

facts such as a person’s age have low fluidity. Values for high level contexts like activity and

location are much higher.

Information Semantic Relevancy/Equivalency - measures the closeness in meaning or

semantic distance between two concepts. Disparate context providers use distinct terms for

semantically equivalent concepts. This gives an indication of context exchangeability. Semantic

equivalency can be used by applications to discriminate available context. Middleware context

processing may use these values in adapting reasoning for high level context. In HyCoRE, a

consumer request for context is matched on weighted context attributes, categories, locations

and targets irrespective of the knowledge models used for derivation. We can infer semantic

relevancy by a weighted ratio of matching identifiers values to those requested. If a semantic

relevancy policy were configured, it could be used as an optimization, short circuiting exact

context matching.

Informational Resolution is a measure of how much information is revealed by a value. This

metric can subsume precision, sensitivity, and disclosure level as described in other quality

works. The value gives an application insight into the details of the information provided. Also,

informational resolution may be used for privacy protection. A middleware may define a system

policy threshold on information resolution. Only context information with resolution lower than

77

that threshold may be shared with consumers. Context providers many further specify a per

context informational threshold to limit information sharing.

4.1.2 Context Source Quality Indicators

Context sources include: i) devices providing raw data or ii) services that transform data and

reason to infer context. Hardware, platform, and environmental fluctuations contribute to the

integrity with which context is provided. Useful context source quality indicators include:

availability, error rate, refresh rate and credibility. We do not redefine these measures, since our

interpretation is consistent with existing uses [15],[32],[51],[73]

4.1.3 Quality of Inference

The expressiveness and complexity of reasoning techniques vary greatly

[1],[2],[7],[26],[27],[31],[38],[53],[57],[63]. Such differences are part of the reason HyCoRE

recommends integrating a variety of reasoning techniques to accomplish effective high level

context reasoning. Quality of inference indicators are QoC measures reflecting the cost of

inferring context. These may be used to discriminate between comparable inferencing

methods/algorithms.

Inferencing Latency- a quality measure of timeliness in reasoning for context. Reflects the

complexity of algorithms used.

Inferencing Accuracy- a quality measure of how correctly the reasoning process captures

situational truth. It reflects the completeness of algorithms used as well as quality of data models

(including statistical training data, rules, and ontology specifications)

Inferencing Resource Utilization(power, CPU, memory, network)- measures the resource

usage of an inferencing technique. This measure reflects the ratio of resources used to resources

available on the platform where the reasoning task is deployed. A middleware system may adapt

by contracting reasoning from a resource rich remote source when the technique has high

resource utilization locally but low utilization remotely. Note that network utilization reflects

bandwidth usage in acquiring contributing data from remote stores or other sources.

78

Inferencing Resource Efficiency(power, CPU, memory, network)- relative measure of reasoner

ability to minimize resource utilization.

4.1.4 High Level Context Quality Indicators

High level context quality indicators are the result of quality aggregation and propagation. These

are of concern to context consumers and can be used to express context requirements.

Context Accuracy- a quality measure of how correctly a context value reflects the situational

truth at a moment in time. It is affected by error rate of the raw sensing device, as well as the

error potential of the inference process.

Context Certainty - a quality measure of confidence in inferred value.

Context Latency - a quality measure of the time required to retrieve and return context

information to the requestor. Context latency may include times for sensing, transformation and

reasoning, data store access and end- to-end communication.

Context Completeness- measures the totality of the information set used in deriving a specific

context value. Missing and expired information would reduce completeness. It reaches

maximum value when all relevant context contributory data is available with the required

freshness. Direct information from profiles or sensors have an implicit completeness of 1. This

value is not related to the number of queries satisfied for an application. See Section 4.2 for

quantification discussion.

Context Freshness- same as previous definition given in 4.1.1. When data is used directly from

the sensing source this value is the same as that defined for intrinsic data characteristics.

Context Credibility- a measure of trust in the correctness of information; a measure of belief as

distinct from accuracy. High level context credibility can be affected by data freshness as well as

contributing context source credibility. A context consumer may interpret this value as an

indication of trust.

Context Proximity- an indicator of spatial relation to a specified location. This value is affected

by location of data sources.

79

Context Cost- a multidimensional indicator of context liability. In general, it reflects inferencing

resource utilization and end-to-end communication costs. CPU, memory, energy, and currency

are all dimensions of cost. It is necessary to measure integrated cost since the middleware

platform has physical limitations. To illustrate: Context flows using local sensors could incur

significant energy costs (i.e. camera, mic, gps, accel, light etc.); ontological reasoning on large

knowledge base would significantly impact CPU and memory cost; in a dynamic environment

where providers offer context for a price, currency is a context cost consideration. See Section

4.2 for quantification discussion.

Context Fluidity- rate of information change over time with respect to all contributing factors.

Fluidity provides an indication of data temporality, a measure of information stability over time.

Low fluidity indicates a value that is not subject to change beyond set time and value ranges.

Fluidity may drive how often a consumer needs to acquire new context values prior to decision

making. Alternatively, different knowledge representations of the same context are distinguished

by fluidity, so then middleware and applications may discriminate among choices base this

indicator. Context provider quality measures such as refresh rate, sampling rate have a direct

effect on fluidity. See Section 4.2 for quantification discussion.

Context Fidelity- similar to previous definition given for information fidelity in 4.1.1.

Context Informational Resolution - is measure of how much information is revealed by a value.

This metric subsumes precision, sensitivity, and disclosure level as described in other quality

works. The value gives insight into the detail of the information provided. Also, informational

resolution may be used for privacy protection. For example, only context information with

resolution lower than a specified threshold may be shared with consumers. Context providers

many further specify a per context informational threshold to limit information sharing. See

Section 4.2 for quantification discussion.

Context Semantic Equivalency- is the measure of the semantic distance between two

concepts. See Section 4.2 for quantification discussion.

80

These indicators also apply to low level contexts. There are instances where context consumers

use low level contexts direct from the sensing source. Examples are: user profile values or

simple environment measurements such as temperature. Quantification for some of the high level

context measures above is discussed Section 4.2.

4.1.5 Context Middleware Quality Indicators (QoCS)

We offer the following middleware quality indicators. A later section discusses how these can be

quantified.

Middleware Context Effectiveness - a cumulative measure of the system’s performance in

meeting context requirements for all applications at an instant in time.

Middleware Context Cost - a measure of liability associated with context acquisition. Cost

reflects the cumulative effect of processing, reasoning, and communication cost indicators. The

concept of middleware context cost may directly correlate to resource utilization.

Middleware Cost Effectiveness- measures the platform’s ability to stay within policy defined

cost bounds for all cost indicators.

Middleware Quality Effectiveness- measures the system’s performance in remaining within

policy defined quality thresholds

Middleware Operational Efficiency - a measure of efficient context recognition. It reflects the

ability of the middleware system to adapt in a way that meets requirements while minimizing cost.

Meantime Before Context Failure -- an average running time before failure or adaptation for all

flows that have been running since system startup.

Reasoning Stability Measure- a cumulative measure of uninterrupted context reasoning.

Quantification for QoCS middleware measures given above is discussed in 4.4.

81

4.2 High Level Context Quality Quantification

The previous section offered definitions for context quality measures. We offer quantification

details for some of those measures in this section.

Cost of Context as defined in HyCoRE is given by:

������ � �	
���	 ����� ��
���

(1)

where i ∈(Context Indicators(cpu,memory,energy,bandwidth,currency..) and j ∈(context

reasoning node list of flow representing context i).

Context Completeness is given by:

������������ � �	�������������
�����, ������� ���������

������������!""#$% � &'����������(��)������*�+��*���������(��)������

(2)

Context Freshness measure of information age. Unexpired old and new information has value.

It is up to the consumer to specify its preference of age.

,-#./0�.// �������1���������2���3�'�

(3)

Context Fluidity -Suppose that the context update rate (ur) forms a continuous curve over

time(t). Let, function (f) be determined by interpolation , then fluidity is given by:

�*	�� � �	��, (������4 � �5	��

Alternatively fluidity can be approximated simply as the information update rate.

(������4 	'��*��� � ���6�* �7��'���	���

(4)

Again, we must presume there exists a function that would map fluidity to the range [0,1].

82

Context Informational Resolution is given by:

����*�'���� 8��������� � ��**�������*�'����9'����'�����*�'����9'���

(5)

Context Semantic Relevancy (Equivalency) is given by:

3��'���� 8���&'��4 � ����*������:�������;'��<������*������:�������8�+��*��

(6)

The succeeding sections will discuss techniques for deriving integrated QC indicators, linking QC

indications to middleware performance, and adaptation based on evaluation of QC indications

against requirements.

4.3 Quality Integration

Quality aggregation occurs when the quality indicators of multiple context inputs must be

combined to produce composite indicators of data integrity. A search component may yield

multiple evidences that need to be aggregated. Also, the nodes of a context flow may require

several inputs. Aggregation of these inputs must be performed to achieve a combined qualitative

effect. With reference to Figure 19, aggregation is a vertical integration of inputs at any node.

Quality propagation refers to the process of creation and transformation of quality indicators from

raw data acquisition though all stages of reasoning. Propagation produces composite quality

indicators appropriate for measuring high level context data integrity. With reference to Figure 19,

propagation is a horizontal integration of inputs at any node. Aggregation or propagation of

context may increase or reduce resulting high level context quality. As the middleware system

infers context, it incurs quality aggregation and propagation challenges. This is especially true for

hybrid high level context reasoning.

Figure 22 Quality Aggregation

We have identified the following propagation challenges:

• Accurately reflecting the reasoning transformation process

quality indicator-In the HyCoRE extension presented later, we partially address the issue by

offering a way to declaratively reveal the inferencing transformational pattern. We refer to

the patterns as context flows. Context flows are inference specificat

context. However, context flows only partially expose reasoning. Reusable reasoning

components (RUC) in the context flow serve as black boxes for reasoning. Runtime

computation of composite quality indicators does not present a problem

RUCs bear the responsibility for computation. Accurate prediction of resulting quality is what

proves difficult. In order to fully capture the transformation process, heuristic functions of

quality indicators would need to be express

containing context flows with quality indicator transformation heuristics can be used to

predict context quality. Such predictions are useful to reasoning adaptation.

• Combining heterogeneous context contributio

form complex high level context inference. The challenge is to reflect the relative

significance of each contribution to the resulting inferred context quality indicators. One

solution is to declaratively specify

flow RUCs mentioned previously.

Context aggregation issues [51][69][73

for meeting these challenges:

• Coping with missing context or quality

context may be unavailable, stale or too costly to infer at an instant in time. In some cases,

83

Quality Aggregation Figure 23 Quality Propagation

We have identified the following propagation challenges:

Accurately reflecting the reasoning transformation process in resulting inferred context

In the HyCoRE extension presented later, we partially address the issue by

offering a way to declaratively reveal the inferencing transformational pattern. We refer to

the patterns as context flows. Context flows are inference specifications of high level

context. However, context flows only partially expose reasoning. Reusable reasoning

components (RUC) in the context flow serve as black boxes for reasoning. Runtime

computation of composite quality indicators does not present a problem in this design, since

RUCs bear the responsibility for computation. Accurate prediction of resulting quality is what

proves difficult. In order to fully capture the transformation process, heuristic functions of

quality indicators would need to be expressed for every RUC. An inference specification

containing context flows with quality indicator transformation heuristics can be used to

predict context quality. Such predictions are useful to reasoning adaptation.

Combining heterogeneous context contributions- Heterogeneous contexts are combined to

form complex high level context inference. The challenge is to reflect the relative

significance of each contribution to the resulting inferred context quality indicators. One

solution is to declaratively specify this significance by weighting the contributions of context

flow RUCs mentioned previously.

Context aggregation issues [51][69][73] have previously been identified. We offer suggestions

Coping with missing context or quality indicators- In dynamic environments, sources of

context may be unavailable, stale or too costly to infer at an instant in time. In some cases,

Quality Propagation

in resulting inferred context

In the HyCoRE extension presented later, we partially address the issue by

offering a way to declaratively reveal the inferencing transformational pattern. We refer to

ions of high level

context. However, context flows only partially expose reasoning. Reusable reasoning

components (RUC) in the context flow serve as black boxes for reasoning. Runtime

in this design, since

RUCs bear the responsibility for computation. Accurate prediction of resulting quality is what

proves difficult. In order to fully capture the transformation process, heuristic functions of

ed for every RUC. An inference specification

containing context flows with quality indicator transformation heuristics can be used to

Heterogeneous contexts are combined to

form complex high level context inference. The challenge is to reflect the relative

significance of each contribution to the resulting inferred context quality indicators. One

this significance by weighting the contributions of context

] have previously been identified. We offer suggestions

In dynamic environments, sources of

context may be unavailable, stale or too costly to infer at an instant in time. In some cases,

84

it is appropriate to bypass unavailable values, using some representation interpreted as

unknown. Otherwise missing values can be approximated using quality history or default

policies. The context completeness quality indicator can be used as a measure of missing

data.

• Handling redundant context- some works have applied simple approaches to data

aggregation from homogenous sources. Examples include min, max, and average functions

applied to the context set. Dempster Shaefer Evidence Theory (DSET)[57] could be applied

for deriving composite quality indication. In this case, the resulting composite quality

indicators would be potentially greater than any individual contribution. The important issue

is to accurately represent the added value of additional evidences.

• Mitigating Conflicting data- in [51] the authors use quality indicators such as accuracy,

credibility and freshness to prioritize data importance. Alternatively, DSET also allows for

representing contradictory evidences in a manner consistent with the significance of the

evidence.

4.3.1 Aggregation and Propagation Strategies

To compute an integrated quality model, the problem we need to solve is identifying the

appropriate functions for aggregation and propagation. The correct aggregation and propagation

function can be a matter of debate. The quality indicator in question, application and middleware

goals all contribute to the appropriateness of an approach. Also, the technique used for

aggregation may necessarily differ from propagation. For example, a SUM function is appropriate

for propagating latency, but MAX is better for aggregation. AVERAGE function might be used for

aggregating accuracy, but a PRODUCT function when propagating. In HyCoRE, these QC

integration functions are implemented as middleware policy dependent interchangeable

strategies. Several approaches to quality data integration have been used in other works. These

are described below:

85

Product- computes the quality product of participating sources;

Sum- computes the quality sum of participating sources;

Average- computes the quality average of participating sources; and

Maximum, Minimum – determine the maximum or minimum quality from participating

sources.

This pluggable architecture facilitates dynamic configuration of integration strategies. The

reasoning process considers current system policy when calculating the integrated context quality

model (AWM). For the aforementioned evaluation scenario, the QC indicator strategies shown in

Table 4 are applied:

Table 4 Quality Integration Strategies

QC Indicator Aggregation Propagation
Accuracy Average Product
Certainty Minimum Product
Credibility Average Average
Freshness Minimum Minimum

Informational
Resolution

Maximum Maximum

Latency Maximum Sum
CPU Cost Sum Sum

Memory Cost Sum Sum
Energy Cost Sum Sum

Bandwidth Cost Sum Sum
Currency Cost Sum Sum

Figure 10 illustrates the quality integration process beginning with outputs from two

transformation functions. In the first step, the QC indicators for inputs must be combined to form

an aggregated quality model (aqm). Next, the learned or acquired QC indicators of a context

provider used for reasoning must be integrated with the aqm, resulting in a propagated quality

model (pqm). Only, the QC indicators that are directly affected by the quality of intermediate

inferencing nodes participate in the pqm step. Of the indicators mentioned in table 1, only

accuracy, credibility, and certainty are affected. Latency is measured in real-time. Finally, the

runtime actuator inference QC indicators are combined with the

level context quality. When the strategies specified in table 1 are used, the resulting high level

context QC indicator vector is: [

labels are [Latency (ms), Accuracy, Credibility, Certainty

RemainingEnergy, CpuCost, MemoryCost

CurrencyCost].

Figure

86

runtime actuator inference QC indicators are combined with the pqm to yield the composite high

level context quality. When the strategies specified in table 1 are used, the resulting high level

context QC indicator vector is: [240, .88, .95,.78, .94,1, .1, .45, 40 , 1,7, 23.8 ,0

Accuracy, Credibility, Certainty, Freshness, InformationalResolu

RemainingEnergy, CpuCost, MemoryCost(bytes), EnergyCost, BandwidthCost(bytes)

Figure 24 Quality Integration Process

to yield the composite high

level context quality. When the strategies specified in table 1 are used, the resulting high level

, .95,.78, .94,1, .1, .45, 40 , 1,7, 23.8 ,0], where QC

Freshness, InformationalResolution,

andwidthCost(bytes), and

4.4 Context Middleware Quality Quantification

Context middleware should rate itself primarily on its ability to meet consumer context

requirements.

Context middleware effectiveness is ach

(especially reasoning) to maximize the cumulative context effectiveness for all applications while

minimizing system cost. Here, we propose context middleware system quality measures that

appropriately aggregate application context requirements, reasoning performance and system

cost. Of course our pre-supposition is that middleware has its own admission control policy and

only rates itself relative to admitted consumers. Additionally, the middleware platform h

soft and hard resource limitations. Efficient usage of platform resources while remaining below

hard resource limits is important. Another issue involves efficient use of available providers of

context. Depending on the application domain in whic

and context cost limits define what is considered efficient for the system domain. In summary,

platform resource limitations, middleware context cost and quality policies can be used to

efficiently adapt context reasoning.

Figure

87

Context Middleware Quality Quantification (QoCS)

ontext middleware should rate itself primarily on its ability to meet consumer context

Context middleware effectiveness is achieved by adapting the use of context resources

(especially reasoning) to maximize the cumulative context effectiveness for all applications while

Here, we propose context middleware system quality measures that

te application context requirements, reasoning performance and system

supposition is that middleware has its own admission control policy and

only rates itself relative to admitted consumers. Additionally, the middleware platform h

soft and hard resource limitations. Efficient usage of platform resources while remaining below

hard resource limits is important. Another issue involves efficient use of available providers of

context. Depending on the application domain in which HyCoRE is deployed, quality indicator

and context cost limits define what is considered efficient for the system domain. In summary,

platform resource limitations, middleware context cost and quality policies can be used to

oning.

Figure 25 HyCoRE Performance Criteria

ontext middleware should rate itself primarily on its ability to meet consumer context

ieved by adapting the use of context resources

(especially reasoning) to maximize the cumulative context effectiveness for all applications while

Here, we propose context middleware system quality measures that

te application context requirements, reasoning performance and system

supposition is that middleware has its own admission control policy and

only rates itself relative to admitted consumers. Additionally, the middleware platform has both

soft and hard resource limitations. Efficient usage of platform resources while remaining below

hard resource limits is important. Another issue involves efficient use of available providers of

is deployed, quality indicator

and context cost limits define what is considered efficient for the system domain. In summary,

platform resource limitations, middleware context cost and quality policies can be used to

88

We offer the following methods to quantify for middleware quality indicators previously discussed.

4.4.1 Middleware Context Effectiveness

Context effectiveness (Ceff) is a cumulative measure of the system’s performance in meeting

context requirements for all applications at an instant in time. To derive Ceff, we must define a

few intermediate measures.

Quality quotient (Qq) refers to the system’s ability to meet individual context quality goals of an

application. It is a measure of quality with regards to single context required by a consumer at an

instant in time. Quality quotient is given by:

,+�	�� � 1���'� ,�'���4 9'����,�'���4 9'��� =�'��
(7)

,+�	�� � ,�'���4 9'��� =�'��1���'� ,�'���4 9'���� (7.1)

The actual context quality value is measured in real-time, while the quality goal is given as part of

the consumer requirement specification6. Some quality indicator ratios such as latency should be

interpreted differently from others like accuracy. For example: the resulting value of .885 /.96 for

accuracy appropriately reflects good performance with a higher value. However, 3ms/10ms for

latency would cause one to believe that the quality is too low. A small ratio is good for latency,

but this is not the case with accuracy. So that the relative meaning of all ratios in the system is

the same, we recommend equation 2.1 for certain measures, especially those with time units. A

higher ratio indicates that the system is performing well, relative to 100%. So, in the case of

latency, 10ms/3ms appropriately indicates good performance.

The individual context effectiveness (Ice(t)) for a given application/consumer represents the

system performance in reasoning for a single context within the required quality thresholds. It is

measured as a function of Qq for all QC indicators specified. We express this as:

6 The consumer requirement specification allows the consumer to specify a weighted list of

context requirements. Additionally, for each context, consumer specify QC indicator thresholds
and priorities.

89

���	�� � � >+����
��� ? min 	1, ,+�	���

(8)

Where 0 ≤ ICe(t) ≤ 1 , i represents a QC indicator index, and >+� is the weight/priority given to

that QC indicator(i) in the consumer requirement specification for a particular context.

Application context effectiveness is a measure of the middleware ability to meet all of an

application’s context needs. We express the context effectiveness with respect to a single

application/consumer as:

1��	�� � � >�����
��� ? ����	��

(9)

Where 0 ≤ ACe(t) ≤ 1 and >�� is context weight as specified in the consumer requirement

specification.

Now that we have all the intermediate measures, we express cumulative context effectiveness

(Ceff) as:

�:��	�� � ∑ 1��	�������� � (10)

Where 0 ≤ CEff(t) ≤ 1, and n represents the number of context consumers currently being served.

In the ideal case context effectiveness remains 1 to indicate that all consumer requirements are

met.

4.4.2 Middleware Quality Requirement Policy (Middleware Quality Priorities and Middleware
Quality Effectiveness)

The middleware quality policy specifies a weighted list of QC indicator concerns. The system

adapts according to these priorities. As an example: If the energyCost QC indicator is specified

as the only system quality concern; the system will always select the most energy efficient of

qualified providers for inferencing, rather than the first available.

The middleware quality policy also specifies the minimum quality indicator value that a provider

must meet to participate in inferencing. The middleware quality effectiveness (MQe) measures

90

the system’s performance in remaining within policy defined quality thresholds. MQe policy is

specified as a weighted list of quality indicator thresholds. MQe is given as a function of quality

indicator effectiveness (QIE). QIE measures the systems performance in remaining within a

quality indicator policy thresholds. MQe and QIE are given by:

,�:�	��
� >�*�� 1���'� ,�'���4 �����'��* 9'����;�����)'*� ,�'���4 �����'��* E<*��<����

(11)

 ,�:�	��� >�*�� 1���'� ,�'���4 �����'��* 9'����;�����)'*� ,�'���4 �����'��* E<*��<����
(11.1)

;,�	�� � � >,����
��� ? min	1, ,�:�	���

(12)

Where 0 ≤ >,� ≤ 1, represents the relative priority of the QC indicator to the overall middleware

quality effectiveness as set in current middleware policy. Similar to the way the quality quotient

(Qqi) is defined, equation 6.1 is given as alternative representation of the QIE ratio. See the

quality quotient discussion in section 3.8.1 for rationale. Also,

;����� ,�'���4 �����'��* E<*��<��� is a system policy setting.

If any provider is below the quality threshold for a given indicator that has been identified as a

concern for the system, middleware quality effectiveness is reduced. Continued use of such

providers failing to meet middleware quality thresholds, degrades the overall middleware quality,

which further degrades middleware operational efficiency discussed in section 4.4.4. If there are

no quality priories set, the MQe will always be 1.

4.4.3 Middleware Context Cost

Middleware system context cost is a measure of liability associated with context acquisition. At

any instant of time, cost represents the cumulative effect of processing, reasoning, and

communication cost indicators. The concept of middleware context cost may directly correlate to

resource utilization. Middleware context cost is more efficient when context is shared. Notice in

91

the equation that the cost of context from a single provider is only counted once, even if many

consumer flows are using it. Logically, middleware cost is calculated as follows:

;����	��, �� � F �	(��)G
���H	����� �I��
J��

K

���
L M � 	N*�&���*�	��������	 ����� �#O�

K��

"

P��? ��������	���8�'������
���8����,
(13)

where m represents the number of active context flows, n represent the number of nodes in a

flow; p represent the number of active providers; r represents the number of contexts each

provider has; Ci ∈(cpu,memory,energy,bandwidth,currency…) and numReasoningNodeRefs

reflect the number of nodes sharing nodek(contexti). Refer Section 4.4.3 for discussion on

deriving CCosti.

Operationally, the bulk of middle context cost calculation is performed at run time in-line with

context flow inferencing.

4.4.4 Middleware Cost Effectiveness

Middleware cost effectiveness (MCe) measures the platform’s ability to stay within policy defined

cost bounds for all cost indicators. The middleware cost policy is a weighted list of cost indicator

thresholds. These reflect the hard or soft limitations imposed on the reasoning middleware. Cost

Indicator effectiveness (CIE) is a sub-measure of MCe. It reflects the system’s platform’s ability

to stay within policy defined cost bounds for a single cost indicator. CIE and MCe are given by:

 ��:�	��
� ;�����;�����)'*� ���� �����'��* E<*��<����

(14)

��:�	��� ;�����)'*� ���� �����'��* E<*��<����;�����

 (14.1)

92

;��	�� � � >�����
��� ? min	1, ��:�	���

(15)

Where ;����� ���� �����'��* E<*��<��� is a system policy setting.

4.4.5 Middleware Operational Efficiency

Operational efficiency(OEff) is a measure of efficient, effective context recognition. It reflects the

ability of the middleware system to adapt in a way that meets both consumer and system

quality/cost requirements. OEff is given by:

 :��	�� � ����	�� ? ;��	�� ? ;,�	�� (16)

4.4.6 Mean Time before Context Failure

The meantime before context failure is an average running time before failure or adaptation for all

flows that have been running since system startup. We use this statistic to compare the effects of

reasoning adaptation in different HyCoRE system configurations. MTBCF is given by:

;EQ�(�� � R 	;EQ�(�	���-��� �
(17)

;EQ�(� ∑ 	;EQ�(S�S��� �

(17.1)

Where f represents the number of context flows and t represents the number of instantaneous

MTBCF calculations. So, then MTBCF reflects the uninterrupted context flow inference time

average over the system running time.

93

4.4.7 Reasoning Stability Measure

Reason stability is an average of uninterrupted context reasoning times for all contexts being

actively inferred. The reasoning stability measure reflects the percentage of time inferencing is

uninterrupted. Context flows (reasoning plans) are active when all components are ready, but

temporarily set as inactive when a failure occurs. Periods of time between a flow becoming

inactive and being repaired and reactivated reduce the reasoning stability. Context flow stability

measure(FSM) reflects the percentage of uninterrupted reasoning for specific reasoning plan.

(3;	�� � ��� T1, E��'���'���&�E���(��)2���E��� U
(18)

83;	�� � R VFSM�	t�[���� �
(19)

If there are no flows in the system but there are active consumers, the reasoning stability

measures is 0. If there are no flows in the system and there are no active consumers, the

reasoning stability measure is 1.

4.4.8 Summary System Measures and Symbols

The QoCS measures that have been presented assume independent context provider behavior.

Collaborative failure of context providers would cause operational efficiency to drop precipitously.

The system would continuously attempt to adapt. Unfortunately in the case of collaborative

value, the alternative devices have also failed, so that HyCoRE will not adapt successfully until

after this anomalous failure period is over.

With regard to middleware cost effectiveness, we envision deriving a measure that truly reflects

the cost efficiency of inferencing. However, we must first derive a way to estimate minimum cost

for a context given the available providers. This minimum possible cost can be compared to

current system cost as an indication of how well the system is keeping costs low. For now, the

cost effectiveness calculation uses middleware cost indicator threshold policies.

Table 1 summarizes the QoCS performance measures defined previously.

94

Table 5 Middleware Quality of Context Measures (QoC S)

Equation
Number

QoCs Measure Name Definition

7 Qqi(t) Quality Quotient Measures system’s ability to meet
individual context quality goals of an

application.

8 ICe(t) Individual Context
Effectiveness

Measures the system performance in
reasoning for a single context within the

required quality thresholds.

9 ACei(t) Application Context
Effectiveness

Measure of the middleware ability to
meet all of an application’s context

needs.

10 Ceff(t) Middleware Context
Effectiveness

Cumulative measure of the system’s
performance in meeting context

requirements for all applications at an
instant in time.

11 QIEi(t) Quality Indicator
Effectiveness

QIE measures the systems performance
in remaining within quality indicator policy

threshold.

12 MQe(t) Middleware Quality
Effectiveness

Measures the system’s performance in
remaining within policy defined quality

thresholds.

13 MCost(Ci, t) Middleware Context Cost Measures liability associated with context
acquisition. Cost represents the
cumulative effect of processing,

reasoning, and communication cost
indicators.

14 CIEi(t) Cost Indicator
Effectiveness

Measures the platform’s ability to stay
within policy defined cost bounds for a

single cost indicators.

15 MCe(t) Middleware Cost
Effectiveness

Measures the platform’s ability to stay
within policy defined cost bounds for all

cost indicators.

16 OEff(t) Middleware Operational
Efficiency

Operational efficiency is a measure of
efficient, effective context recognition

17 MTBCF Mean Time Before Context
Failure

An average running time before failure or
adaptation for all flows that have been

running since system startup.

18 FSMi(t) Flow Stability Measure Reflects the percentage of uninterrupted
reasoning for specific reasoning plan.

19 RSM(t) Middleware Reasoning
Stability Measure

Average of uninterrupted context
reasoning time for all contexts being

actively inferred.

ADAPTABLE

The context reasoning data model was introduced in

context reasoning as the process of inferring knowledge.

heart of HyCoRE’s adaptable context

occurs several times in HyCoRE processing.

criteria: i) context category, ii) targets, iii)semantic model, iv) physical model; and v)QC

indications. Figure 26 highlights the collaborations of reasoning subsystem components.

The follow sections define each component and their interactions in details.

Figure 26 Context Reasoning Subsystem Components

95

CHAPTER 5

ADAPTABLE CONTEXT REASONING WITH HYCORE

The context reasoning data model was introduced in section 3.4.3. In this section we describe

context reasoning as the process of inferring knowledge. The reasoning subsystem is at the

adaptable context reasoning engine. Meta data matching is a

occurs several times in HyCoRE processing. It involves matching on the five potential meta data

criteria: i) context category, ii) targets, iii)semantic model, iv) physical model; and v)QC

highlights the collaborations of reasoning subsystem components.

The follow sections define each component and their interactions in details.

Context Reasoning Subsystem Components

In this section we describe

The reasoning subsystem is at the

Meta data matching is a function that

It involves matching on the five potential meta data

criteria: i) context category, ii) targets, iii)semantic model, iv) physical model; and v)QC

highlights the collaborations of reasoning subsystem components.

96

5.1 Template Manager Functions

To initiate even the simplest reasoning, there must exist a patterns for inferring context. Domain

knowledge of inferring context is capture in the form of context templates. As introduced in

section 3.4.3, the context template is a generalized reasoning plan, not bound to a specific

context provider. The context template manager component handles context template

registrations and well as events that affect potential realizations of those patterns. A context

template can have a number of possible instantiations. Each possible instantiation is a context

projection. A context projection is a specific instance of a reasoning plan, using selected context

providers; reflecting the composite quality of participating providers. The template manager

configures and maintains projections of potential context flows. Projection finding is triggered by

provider or template changes including: i) New Template Registration; ii) New provider

registration and iii) Provider availability change or failure. Since the template manager maintains

dynamic context projections, HyCoRE has alternative reasoning plans readily available for

instantiation. When new projections are identified by the template manager, a context adaption

trigger is created. The new projection trigger handler adapt reasoning by: i) attempting to initiate

context reasoning for consumers not assigned to a context flow. Perhaps because there were no

providers or projections existing at the time; and ii) Attempting to replace suspended flows

experiencing temporary failure with an alternative projection. Note that a separate context quality

manager component performs periodic optimization of existing context flows. Also, reasoning

adaptation due to failure to meet requirements is handled at runtime. Run-time adaptation events

are captured by the Adaptation Trigger Manager which is discussed later.

The process for deriving the possible projections of a template is as follows:

1. Receive new template

2. Create an array mapping of providers’→ references rences for each RUC node context

meta-data description given in the template. Below is a sample provider mapping for a

97

template (c1→c2→c3→High Level Context A) that calls for 3 RUCs producing 3 distinct

contexts :

Table 6 Template Manager Provider Mapping Example

Context1 Context 2 Context 3

Provider 4 Provider 1 Provider 2

Provider 5 Provider 3

a. In the above illustrations context providers are matched to the meta-data described in the

template such that the possible template projections (omitting search and aggregation

nodes) are:

b. RUC Node(provider 4) → RUC Node(provider 1) → RUC Node (Provider 2) → High

Level Context A

c. RUC Node(provider 5) →RUC Node(provider 1) → RUC Node (Provider 2) → High

Level Context A

d. RUC Node(provider 4) →RUC Node(provider 1) → RUC Node (Provider 3) → High

Level Context A

e. RUC Node(provider 5) →RUC Node(provider 1) →RUC Node (Provider 3) → High Level

Context A

So, there are four possible ways to realize the template in this example. The template manager is

only responsible for maintaining the projections. The context builder, discussed in the next

section, is responsible for projection selection.

98

Figure 27 Template Manager Sequence Diagram

99

5.2 Context Builder Functions

The context builder instantiates context templates as context flows to serve consumer requests

based on available template projections. The context builder picks the best fit available projection

for current context inferencing tasks. Projections are selected based on their closeness to

matching consumer requirements. By selecting a projection, the collective effect of all

participating providers is considered. The logic for metadata matching is the domain of the

context builder. So, in other situations where a flow needs be repaired by replacing a single

node, context builder utilities are called upon. These run-time adaptation events are captured by

the Adaptation Trigger Manager which is discussed later. The context building process is as

follows:

1. Query Template Manager for templates with meta-data matching the consumer request.

2. Select set of projections based on consumer meta-data match and builder selection

policy. Builder selection policies are provided as a way to optimize system performance.

Policies include:

a. Best of first X available projections policy, where X is a limited number of

projections to consider. This can be beneficial where many projections are

anticipated and real-time analysis of each would be unreasonable;

b. Shortest projection policy causes the builder to select the meta-matched

projection with the least number of nodes;

c. Maximum of X nodes policy causes the builder to select meta-matched

projections with no more than X nodes; and

d. All projections policy causes the builder to select all meta-matched projections for

consideration.

3. Score selected projections: If more than one meta-matched projection was selected, the

best match is determined by computing a context effectiveness score. The projection

with the highest effectiveness score is selected for instantiation. Scoring is based on

100

consumer requirements, projected provider QoC, and system requirements. Where

projection scores are equal, a discrimination factor is used to distinguish them. The

projection with the smaller DF has lower cost and is a more efficient choice.

4. Instantiate best projection. Even if none of the selected projections meet requirements, it

is used since HyCoRE makes a best effort in meeting requirements. Run-time adaptation

will fix the situation should new providers become available and /or provide QC

indications improve. In HyCoRE, context flows represent the process of knowledge

inference for a single context element with regard to a specific consumer. Consumers

don’t not share context flows, but they may share providers through the use of RUC

reasoning node abstractions.

5. Register context flow with Flow Manager.

6. Start context flow for active inferencing.

In the cases where there are no available projections or where the context builder projection

selection policy is configured to quickly instantiate a potentially sub-optimal reasoning plan,

periodic quality evaluation will cause the reasoning to adapt to the best available.

In summary, the context builder is primarily invoked when a consumer request arrives and new

context flow needs to be instantiated. Other uses include repairing a flow when a participant

node fails or falls below quality thresholds and needs to be replaced and replacing a context flow

when it falls below consumer or system quality requirements.

101

5.3 Context Provider Registration and Context Update Processing

As previously discussed, context providers are abstraction for any source of information. The

context provider service contract details provider actuation. This design supports synchronous

and asynchronous pull receipt of provider information. HyCoRE maintains a context buffer which

allows for data staging at context updates are received.

5.4 Context Consumer Registration with Context Mailbox

When registering with HyCoRE, context consumers specify how context is to be returned. Mobile

users are challenged to maintain server connections or listening ports for receiving context. So,

HyCoRE offers the context mailbox as a server-side storage of context reports. Consumers are

able to check their context mail at earliest availability. Context consumer specify context mail in

their service contract at the method by which context is to be returned. Below we illustrate the

consumer registration process along with context mailbox:

102

Figure 28 Consumer Registration w/mailbox Sequence Diagram

5.5 Context Flow Reasoning with Quality Integration and Provenance

Reasoning plan projections are realized and executed as context flows. The projections

instantiated by the context builder represented as reasoning stream of serialized nodes (refer

back to Figure 18). To illustrate, the context flow depicted in Figure 29 represents a context flow

for inferencing a person’s high level activity from the low level inputs of calendar information,

accelerometer readings and GPS positioning.

Figure

The label s7 represents the entire reasoning st

where the nodes represent RUC nodes (‘

points (‘a’), or other reasoning streams

the concept or HyCoRE reasoning. The labels used in the diagram are as follows: S7 infers a

high level activity such as (‘in transit’, ‘shopping’, ‘in a meeting’, ‘working out’) and is composed of

several sub-streams (s1-s6). R1 could be any geo location service that tra

to the nearest postal address. R2 represents an application specific mapping of a user’s GPS

position to a logical locations (i.e. school, work, gym).

103

Figure 29 Serialized Complex Context Flow

The label s7 represents the entire reasoning stream serialized as a linked list of nodes

RUC nodes (‘t’ for transformations, ‘r’ for reasoners),

’), or other reasoning streams. This illustration is left abstract purposefully to highlight

HyCoRE reasoning. The labels used in the diagram are as follows: S7 infers a

high level activity such as (‘in transit’, ‘shopping’, ‘in a meeting’, ‘working out’) and is composed of

s6). R1 could be any geo location service that translates a GPS position

to the nearest postal address. R2 represents an application specific mapping of a user’s GPS

ns (i.e. school, work, gym). T1 represents a generalized utility for

ream serialized as a linked list of nodes

’ for reasoners), aggregation

This illustration is left abstract purposefully to highlight

HyCoRE reasoning. The labels used in the diagram are as follows: S7 infers a

high level activity such as (‘in transit’, ‘shopping’, ‘in a meeting’, ‘working out’) and is composed of

nslates a GPS position

to the nearest postal address. R2 represents an application specific mapping of a user’s GPS

T1 represents a generalized utility for

104

extracting features from accelerometer readings (i.e. XY, XZ, ZY correlation, standard deviation,

mean … etc.). The context of each node is published in their corresponding service contract.

There a two aggregation nodes in the figures (a1 and a2). Aggregation nodes combine stream

outputs for form aggregated input for the next node. The rest of the figure is self-explanatory.

Following are a few rules regarding HyCoRE reasoning: The reasoning w/quality

integration algorithm assumes the context flow has been serialized as a linked list of reasoning

stream nodes, and the following rules apply: i) A context flow may have several context input

items. However a reasoning stream has only one input and represents a single threaded

reasoning path; ii) Streams may terminate with an aggregation node, but may not contain any

intermediate aggregation nodes; iii) several streams may terminate with the same aggregation

node reference. For streams terminating the with same aggregation node, the order of execution

is inconsequential. In fact they can be made concurrent; iv) All potential starting nodes of

concurrent processing must be identifiable as such. In a HyCoRE reasoning stream it is assumed

that for every node after the first non-start node, normal quality integration rules apply and v) The

first aggregation node in the serialized flow sequence represents the end of start node

processing.

Figure 30 illustrates the sequence and components participating in context flow

reasoning. Context flows will ideally be executed in a thread independent of other context flows.

The periodicity of flow execution is established by the context builder and based on refresh rate

provided in the service contract. On execution of the reasoning stream (sequence item #1), fresh

context for each node is retrieved successively. If there is no fresh/buffered context, the node’s

actuator is called upon for reasoning. The knowledge manager and context reporter are notified

of new context inferences and are able to activate consumer actuators for reporting or knowledge

repositories for storage. Figure 31 contains baseline pseudo logic for reasoning based on

configured quality integration strategies.

105

Figure 30 Context Reasoning Sequence Diagram

Context flows are suspended whenever a provider service contract is cancelled of if fresh

context cannot be retrieved for an extended period of time. System events affecting the

constitution of reasoning flows include new provider registrations, provider availability/quality

changes, and template registrations. Through processing by the Adaptation Trigger Manager,

suspended flows are reconfigured or replaced with alternative reasoning plans.

106

Figure 31 Context Reasoning w Quality Integration P seudo Logic

Context [] streamReason(ReasoningStream stream){
 parallelExecution= stream->parallellExecution;

for all stream->nodes {
 if node

i
 is a ReasoningStream{

 contextOut = streamReason(node
i
)

}
 else if node

i
 is a SearchNode{

 contextOut = searchReason (node
i
)

}
 else if node

i
 is a ContextFlow{

 contextOut = flowReason (node
i
)

}
 else if node

i
 is a AggregationNode{

 contextOut = aggregationReason (node
i
)

parallelExecution=false
}
else{

contextOut = rucReason (node
i
)

}
//only chain output in serialize mode
if ((node

i+1
exists)(!parallelExecution)){

node
i+1

->addInput(contextOut)

}
}
return contextOut;

}
Context[] flowReason(ContextFlow flow){

 contextOut= streamReason(flow)
 contextOut->addProvider(flow)
 flow->averageQualityIndicator(latency, currtime-starttime)
 flow->copyQualityIndicators(contextOut->getQuality)
 return contextOut

}
Context [] RUCReason(IRUCNode node){

for all context
i
 node->getInput{

 context
i
->setQualityIndicator(latency, currlatency+(receipttime-transmissiontime)

}
aqm = aggregateQ(node->getInput)
contextOut = node->reason()
node-> averageQualityIndicator(latency, currtime-starttime)
aqm = propagateQ(aqm,node->getQuality)
contextOut->setQuality(propagateQ(aqm, contextOut>getQuality)
contextOut->addProvider(node);

 return contextOut
}
QualityMeasure[] aggregateQ(Context[] context){
//Let vector QV

i
vertically represent quality indicator I

or a all context

for all QV
i
{

aqm[i] = AST[i](QV
i
); //AST contains vector of aggregation functions

}
return aqm;

}
QualityMeasure[] propagateQ(QualityMeasures[] effector, QualityMeasures[] affected){

for all Qmi {
pqm[i] = PST[i](effector[i], affected[i];

}
return pqm;

}

107

5.6 Quality Verification

Quality perception requires knowledge and observation, but there is also need to verify quality.

Otherwise we would have to trust the quality declared by a provider. This could cause our initial

perception to be too high or low. Quality verification aides in forming a realistic view of true

provider quality. It is also useful to maintain historical provider quality details. In this way, as the

system encounters past context providers, this time to form realistic perception of their provided

quality achieved is minimized. Using a quality feedback loop HyCoRE establishes the success or

failure of context flow reasoning. When an inference is wrong, the context flow QIs are reduced.

Conversely they are increased when correct. We define a positive reinforcement factor λ as the

policy specified rate of quality increase. The negative reinforcement factor θ is the rate of quality

decrease. The reinforcement factors are distributed through the context flow such that the total

effect on the integrated context flow quality model corresponds to the factor. λ is implicitly

positive, θ is implicitly negative. Setting λ or θ to 0 effectively disables the effects of quality

feedback. Figure 32 illustrates negative quality feedback. This illustration highlights the fact that

the node with the greatest impact on the high level context is also impacted the most by negative

feedback. Of course there must be bounds on the positive or negative effects of this quality

reinforcement. Figure 33 shows general quality feedback processing using HyCoRE components.

The Quality feedback manager is responsible for identifying the correct flow and updating node

quality. Once feedback had been performed, context flows are verified against system and

consumer requirements. An adaptation trigger is generated if a flow fails to meet requirements.

Figure

108

Figure 32 Quality Verification Example

Figure 33

109

33 Inference Feedback Sequence Diagram

110

5.7 Quality Aware Reasoning Adaptation

This discussion begins with the assumption of existing providers, consumers and executing

context flows. Consumer and system context requirements drive adaptation. To this end

continuous monitoring to evaluate provider quality against requirements is required. Note that

establishing context quality and cost is not as simple as selecting the device with the best

accuracy or other singular quality indication. As can be seen by our component approach to

reasoning, establishing true context quality requires an integrated approach to acquiring

heterogeneous quality measures and propagating them through reasoning and transformational

processes to produce a composite high level context quality (refer back to Section 4.3 for details).

Context reasoning adaptation is based on the adaptation action that is determined after

evaluating integrated QC indication against context requirements during adaptation trigger

processing. An adaptation trigger is a system event which affects the constitution of reasoning.

These system events include: i) new context provider registration; ii) provider failure or quality

update notifications; iii) consumer context requests; iv) and quality feed-back notifications.

HyCoRE has established QC attestation points and associated adaptation triggers for

evaluating integrated context QC indicators. The design of the Adaptation Trigger manager is

such that adaptation actions can be traced back to associated attestation points and trigger

handlers. Figure 34 illustrates considerations of the context adaptation process.

Figure

The quality evaluation/attestation processing points in HyCoRE are as follows:

Context Declaration Processing Point (DPP

registers with middleware, declaring its context

Context Update Processing Point (UPP)

quality indicators. This also includes service cancellation events. A provider cancellation reduces

the availability of context. A consumer ca

inferring context.

Context Query Processing Point (QPP)

processing point is associated with the search component of a context flow.

Context Inference Processing Point (IPP)

implies observation, propagation and aggregation of QC indicators.

Context Verification Processing Point (VPP

positively or negatively.

111

Figure 34 Context Reasoning Adaptation

The quality evaluation/attestation processing points in HyCoRE are as follows:

Context Declaration Processing Point (DPP) occurs when a context provider or consumer initially

registers with middleware, declaring its context and QC indicators.

Context Update Processing Point (UPP) occurs when a context provider or consumer updates its

quality indicators. This also includes service cancellation events. A provider cancellation reduces

the availability of context. A consumer cancellation reduces the middleware requirement for

Context Query Processing Point (QPP) occurs when context is found in a knowledge base. This

processing point is associated with the search component of a context flow.

rocessing Point (IPP) occurs on every execution of a context flow. This

implies observation, propagation and aggregation of QC indicators.

Context Verification Processing Point (VPP) occurs when feedback is used to update QoC

) occurs when a context provider or consumer initially

occurs when a context provider or consumer updates its

quality indicators. This also includes service cancellation events. A provider cancellation reduces

ncellation reduces the middleware requirement for

occurs when context is found in a knowledge base. This

occurs on every execution of a context flow. This

) occurs when feedback is used to update QoC

112

Performance Monitoring Processing Point (PPP) in addition to event driven quality attestation,

HyCoRE monitors for adaptation triggering events.

Adaptation triggers may be produced at quality attestation processing points. A quality

failure trigger (QFT) occurs when a context flow node’s quality degrades unacceptably, no longer

meeting combined application and middleware goals. A provider failure trigger (PFT) occurs

when context flow node is unresponsive or for any reason is no longer providing context.

Optimization Triggers (OPT) occur when action that would result increased middleware

performance can be taken (i.e. higher quality providers available).

Trigger processing results in one of six categories of adaptation actions. These are: i)

replace a context reasoning flow provider; ii) continue inferencing with degraded quality; iii) derive

an alternative reasoning plan; iv) suspend reasoning for a specific context; v) cancel ineffective

context providers; and vi) cancel irrecoverably failed consumers. We detail our approach in the

sections to follow.

5.7.1 Adaptation Triggered by Dynamic Provider Availability

There are a number of specific triggers associated with provider availability. However, the

processing can be summarized as follows: When any provider becomes unavailable, we must

attempt to find a suitable replacement in the context flow. The system checks for either an

alternative node or an alternative context template which may be instantiated for continued

inference. If no replacement node can be found, inferencing plans associated with the failed

provider are halted (i.e. context flows become inactive). A flow may be inactive for a configured

amount of time. During this time it may be reactivated if any previously unavailable nodes

become available or if a new provider, suitable for replacement, becomes available. Any provider

or flow that has been inactive longer than a configured period is removed from the system.

On events where context providers become reactivated after a period of inactivity, a

search for a suitable use case begins. The first use is to reactivate any flow still associated with

113

the provider. If the provider is not associated with any flow, we check to see if it can be used to

repair any other inactive flow. The next use would be to complete requirements of an existing

consumer contract. In some cases, the system may not be inferring all of the contexts required by

a consumer. The last use would be for optimizing any existing flows.

5.7.2 Adaptation Triggered by Dynamic Provider Quality

Provider quality is evaluated against consumer and system requirements during context

inferencing, on receipt of provider quality update or new provider context declaration. A number of

triggers are associated with quality changes at these verification points. A provider quality update

causes the systems to re-evaluate any inferencing flows associated with the provider. If any

participating provider quality causes the overall high level context to fall below requirements, a

search for the best alternative is begun. An alternative context provider will match on context-

meta data information. A context meta-model specifies the physical and semantic criteria for

context equivalency. Context providers are interchangeable based on matching meta-model

information. In addition to matching meta-data, a chosen provider alternative must have sufficient

quality to yield an integrated quality minimum.

If no alternative is found, context inferencing associated with the provider is halted in the

same manner as mentioned in the availability discussion. The system will wait on the first of the

following events to occur: i) context provider quality improvement resulting to restoration of

inferencing; ii) new context provider alternatives enter the system leading to restoration of

inferencing; iii) context flow inactivity timeout which causes context flow and associated consumer

contracts to be removed from the system. Cancelling a consumer contract ensures that the

system operation efficiency is not indefinitely penalized. A context provider is only removed if its

quality falls below system requirement, remaining energy is zero, or remains unavailable for an

extended period. Though a provider may no longer satisfy current consumer requirements, new

consumers could arrive for which lower QC indicators are sufficient.

114

5.7.3 Adaptation for Reuse and Optimization

Receiving new consumer requests and provider offers affords opportunity to improve system

performance. Existing flow quality may be improved by replacing a participant. In addition to

event driven optimization, periodic performance monitoring identifies when middleware is falling

below established thresholds. The system only supports a configured number of providers at any

given time, so ineffectual provider contracts are also cancelled after a configured period of

inactivity. Though not actively used for inferencing, inactive context flows consume limited

system resources and are also discarded. Middleware operational efficiency is directly affected by

existing consumer contracts, so HyCoRE will eventually cancel consumers for whom context

inferencing is irrecoverably failing. Cancelling failed consumer contracts causes the middleware

operational efficiency to rise.

5.7.4 Quality Monitor

The quality monitor component of Figure 26 is a suggested background task for verifying the

integrity of reasoning, producing adaptation triggers as needed. HyCoRE has many events that

trigger adaptation, but as with any system, race conditions and anomalies lead to unexpected

states. The quality monitor catches what adaptation trigger handlers miss. Also, the context

builder can be configured to quickly instantiate the first available flow rather than the most

optimal. The quality monitor identifies optimizations of flows, triggering run-time reasoning

adaptation for improved performance.

5.7.5 Platform Performance Manager

In Section 4.4, several QoCS measures were introduced. It is the Platform performance manager

which maintains the current state of these measures and evaluates them against requirements.

Adaptation Triggers are generated as reasoning deficiencies are identified.

115

5.7.6 Adaption Trigger Manager

An adaptation trigger is a system event which affects the constitution of reasoning. Though,

adaptation trigger handlers may be distributed and executed in independent threads, the

adaptation trigger manager provides a central point in the system to which reasoning adaptation

can be traced. The events show in

116

Table 7 are identified and handled in HyCoRE. Each event occurs at an identifiable quality

attestation point originating from one to the components shown in Figure 26.

117

Table 7 Detailed Adaptation Event Descriptions

Event Explanation Trigger QVP

Template Manager has
identified new template

projections

NewProjectionAvailable DPP

More optimal projection
for existing flow exists

OptimizedProjectionAvailable PPP

New context provider is
available

ProviderAvailable DPP

Existing provider
availability has changed

ProviderAvailabiltyChange UPP

Consumer has update
quality requirements

ConsumerQualityChange UPP

Provider’s quality had
changed

ProviderQualityChange UPP,VPP

Context flows is failing
to meet consumer or
system requirements

FlowQualityFailure PPP

Provider is not
responding

Provider Failure PPP

Provider is failing to
meet system quality

minimums

ProviderQualityFailure PPP, IPP,VPP

Provider had been
unavailable longer than

the allowable time

Provider Availabilty
Expiration

PPP

Flow has been inactive
due to failed or inactice
providers longer than

allowable time

Flow Inactivity PPP

Middleware QoCS
Context Effectiveness

measure is low

Low Context Effectiveness PPP

Middleware QoCS
Operational Efficiency

measure is low

Low Operational Efficiency PPP

System has been
unable to meet

consumer context
request for longer than

the allowable time

Consumer Not Assigned
Flow Expiration

PPP

5.8

The HyCoRE architecture and data models were implemented in Java

The choice of Java with the associated threading and serialized object representation are

prototypical design choices. Figure

HyCoRE implementation architecture from two perspectives.

to orchestrate adaptive high level c

and scoring; ii) meta-data matching; iii) reasoning with integrated quality and provenance; and iv)

periodic QoCS measurement.

functionality. Since, these are the largest potential performance bottlenecks in HyCoRE; they

should be implemented in pluggable fashion. In future iterations of HyCoRE, baseline reasoning

algorithms may be replaced with more efficie

Figure 35

118

5.8 HyCoRE Reasoning Summary

The HyCoRE architecture and data models were implemented in Java for concept validation.

The choice of Java with the associated threading and serialized object representation are

Figure 35 and Figure 36 provide a detailed view of the prototypical

HyCoRE implementation architecture from two perspectives. There are several algorithms used

orchestrate adaptive high level context reasoning. These include: i) reasoning plan projections

data matching; iii) reasoning with integrated quality and provenance; and iv)

periodic QoCS measurement. Baseline algorithms have been provided to capture the

functionality. Since, these are the largest potential performance bottlenecks in HyCoRE; they

should be implemented in pluggable fashion. In future iterations of HyCoRE, baseline reasoning

algorithms may be replaced with more efficient ones

35 HyCoRE Implementation Architecture

or concept validation.

The choice of Java with the associated threading and serialized object representation are

a detailed view of the prototypical

There are several algorithms used

ontext reasoning. These include: i) reasoning plan projections

data matching; iii) reasoning with integrated quality and provenance; and iv)

ovided to capture the

functionality. Since, these are the largest potential performance bottlenecks in HyCoRE; they

should be implemented in pluggable fashion. In future iterations of HyCoRE, baseline reasoning

119

Figure 36 HyCoRE Implementation Components

The following section briefly describes each component’s role in high level context reasoning.

120

5.8.1 Components and Threading

This reference implementation of HyCoRE is designed with a mixture of persistent and transient

threads, timers and container components. Following is an explanation of each component.

Message Handler - HyCoRE listens for message on a configurable port. A transient thread is

spawned to handle each message.

Consumer Manager - Registration messages, cancellation and general management of context

consumers are handled by the Consumer Manager. In this design, the Consumer manager is a

singleton container component.

Context Reporter - threaded component which distributes inferred context to its destination.

Context Builder - threaded component which build contexts flows to meet consumer requests.

Refer to Section 5.2 for design discussion.

Context Flow Manager - Container component which holds references to all context flows

Template Manager – multi-threaded component which handles context template registration

messages and others that affect the configuration of templates. This manager is responsible for

dynamic creation and updating of context template projection. A separate transient thread is

used for processing messages since the function of finding projection can be time consuming.

Context Flow (executor thread w/ timer)- Context Flows are instantiated reasoning plans

bound to specific providers. Each flow executes in a separate transient thread so the timing of

each inference is independent. Refer to Section 5.1 for design discussion.

121

Provider Manager - Registration messages, updates, cancellation and general management of

context providers are handled by the Provider Manager. As with the consumer manager, this is a

singleton container component.

Quality Feedback Manager - thread component which adjusts the QoC of context flow

components based on positive or negative feedback.

Quality Policy Manager - singleton container component which holds all configured system

policies.

Quality Monitor - periodic timer component which looks for unhandled failure situation and ways

to optimize existing context flows. Refer to Section 5.7.4 for design discussion.

Platform Performance Manager - periodic timer component which measures QoCS. Failures

result in adaptation triggers passed to the Adaptation Trigger Manager. Refer to Section 5.7.5 for

design discussion.

Adaptation Trigger Manager - threaded component which handles adaptation trigger events.

Refer to Section 5.7.6 for design discussion.

Knowledge Manager - component which handles knowledge persistence and retrieval. For this

implement KM is a marker component which is not fully functional, though easily extendable to

meet design function.

122

Knowledge Store - provides an interface where interested stores may be registered with the

knowledge manager.

.

123

CHAPTER 6

HYCORE EVALUATION

The HyCoRE context reasoning framework adapts to sustain high level context inference in the

face of dynamic device quality and availability. A derived composite measure of high level context

quality is used as a basis for adaptation. Reasoning plans are flexible in that components may be

replaced with current or future context providers with match generalized information description

called context meta-data. Context consumers specify context and quality requirement using

context meta-data. The middleware operation measures reflect success inferring high level

context while meeting consumer requirements. It is difficult to find a single application that

requires everything HyCoRE supports. HyCoRE is general purpose framework, supporting a

variety of applications. For this reason, we demonstrate two applications of HyCoRE reasoning

to highlight the various features of the architecture.

6.1 Law Enforcement Search Evaluation

An interesting use case for middleware mediated context is sustaining an application’s context

needs in the face of fluctuating cost or quality indicators and efficiently managing the resource

constrained devices serving as context providers. Our solution for this use case employs a

reusable component based approach to context reasoning; interjecting into the composition of

context to facilitate adaptation. All adaptation is based on integrated quality and cost indicators.

Integrated indicators are evaluated against consumer and middleware system requirements. This

approach to reasoning can prove useful in several context reasoning situations where diverse

context providers participate in producing high level context. Through a real world scenario, we

124

demonstrate a middleware approach that provides i) efficient actuation of devices for context

sensing; ii) participatory context processing/inference; and iii) sustained context dissemination.

In the HyCoRE framework, application and middleware system quality requirements drive

adaptation. The system adapts to meet consumer requirements according to middleware QC

priorities. We illustrate the HyCoRE process of quality integration and corresponding effects on

QoC and QoCS measures while adapting for context sustainability with the following simulated

scenario: Law enforcement is conducting a search for suspected criminals. The investigation has

lasted for some time and manual techniques have yielded no leads. It is certain that the suspects

are hiding in one of three geographic areas. Rogue law enforcement officers may be withholding

vital information, or maybe the answers are just outside human perceptive faculties. A recent

study on inattentional blindness [17] verifies that humans cognitively miss events occurring right

before their eyes. Automated visual and audio data collection bridges the void. For a brief period,

pervasive cameras, video, microphones are deployed in the designated areas using plain clothes

enforcement agents and unmarked vehicles. The sensors are positioned inside and outside of

each agent’s field of view as criminal elements will likely remain outside of view or be disguised.

HyCoRE can be deployed on devices in such a pervasive environment to aid in context inference,

energy efficient device actuation and context sustenance.

In this evaluation, HyCoRE is deployed in each area for assistance with inferring

intelligence and actuation of deployed sensors. Each geographic area is divided into cells for

which a single set of sensor is sufficient for coverage. Agents and vehicles move between the

geographic areas, each time registering with the local HyCoRE instance as a context provider for

the targeted cell. Within a sensor period, activated sensors collect data for a period and transmit

batches to HyCoRE for intelligence processing. Inferred location changes for designated

suspects are reported to interested law enforcement agencies, each having distinct qualitative

context requirements.

Figure

HyCoRE function is simulated for a single geographic cell where sensor availability fluctuates due

to mobility of agents and vehicles. Also, device quality indicators degrade as the sensors are

used over time. Sensors located in

power than the invisible low powered sensors the agents are wearing. HyCoRE has been

configured with reasoning plans, feature extraction and reasoning algorithms to identify persons

and vehicles of interest. The only pieces of inference that do not reside within HyCoRE are the

low level video and audio context sources. HyCoRE makes a best effort sustaining context

inferencing through the dynamic situation. Energy levels of low

quality/cost indicator as well as

requirements in this evaluation. Energy conservation during reasoning is the primary system

concern for this middleware evaluation, so

125

Figure 37 Law Enforcement Scenario

HyCoRE function is simulated for a single geographic cell where sensor availability fluctuates due

to mobility of agents and vehicles. Also, device quality indicators degrade as the sensors are

used over time. Sensors located in the unmarked vehicles have significantly higher quality and

power than the invisible low powered sensors the agents are wearing. HyCoRE has been

configured with reasoning plans, feature extraction and reasoning algorithms to identify persons

of interest. The only pieces of inference that do not reside within HyCoRE are the

low level video and audio context sources. HyCoRE makes a best effort sustaining context

inferencing through the dynamic situation. Energy levels of low-level sources among

quality/cost indicator as well as device availability are dynamic. There are no consumer

requirements in this evaluation. Energy conservation during reasoning is the primary system

concern for this middleware evaluation, so energyCost is configured as a middleware QC priority.

HyCoRE function is simulated for a single geographic cell where sensor availability fluctuates due

to mobility of agents and vehicles. Also, device quality indicators degrade as the sensors are

the unmarked vehicles have significantly higher quality and

power than the invisible low powered sensors the agents are wearing. HyCoRE has been

configured with reasoning plans, feature extraction and reasoning algorithms to identify persons

of interest. The only pieces of inference that do not reside within HyCoRE are the

low level video and audio context sources. HyCoRE makes a best effort sustaining context

level sources among other

There are no consumer

requirements in this evaluation. Energy conservation during reasoning is the primary system

as a middleware QC priority.

Of course, this is a fictitious scenario and there are numerous details not discussed. This work

illustrates how pervasive middleware can be used for inferencing beyond personal monitoring.

More specifically, the evaluation he

sustaining context with resource efficiency. Middleware performance

applied, is compared to those obtained using adaption. As we show, the mean time before

context reasoning failure and overall operational efficiency increase where adaptation is applied.

In summary, the middleware features demonstrated by this law enforcement scenario are

� Quality Integration

� Middleware Operational Efficiency

� Reasoning plan using synchronous conte

� Adaptation to Low Level Context Provider Availability

6.1.1 Consumer and Providers

For our law enforcement evaluation scenario, the participating context providers and consumers

are illustrated in Figure 38 and Figure

Figure 38 HyCoRE Providers (Law Enforcement Scenario)

Figure 39 HyCoRE Consumers (Law Enforcement Scenario

The consumers (App1 and App

law enforcement agency applications monitoring the location of suspect. For simplicity, t

interested agencies have requested the same context and qualitative

126

Of course, this is a fictitious scenario and there are numerous details not discussed. This work

illustrates how pervasive middleware can be used for inferencing beyond personal monitoring.

More specifically, the evaluation herein demonstrates how the HyCoRE framework supports

sustaining context with resource efficiency. Middleware performance, where no adaptation is

compared to those obtained using adaption. As we show, the mean time before

ure and overall operational efficiency increase where adaptation is applied.

middleware features demonstrated by this law enforcement scenario are

Middleware Operational Efficiency

Reasoning plan using synchronous context pull from providers

Adaptation to Low Level Context Provider Availability

Consumer and Providers

For our law enforcement evaluation scenario, the participating context providers and consumers

Figure 39.

HyCoRE Providers (Law Enforcement Scenario)

HyCoRE Consumers (Law Enforcement Scenario

The consumers (App1 and App2 of Figure 25) of our evaluation scenario are two distinct

law enforcement agency applications monitoring the location of suspect. For simplicity, t

interested agencies have requested the same context and qualitative criteria. We illustrate such

Of course, this is a fictitious scenario and there are numerous details not discussed. This work

illustrates how pervasive middleware can be used for inferencing beyond personal monitoring.

rein demonstrates how the HyCoRE framework supports

where no adaptation is

compared to those obtained using adaption. As we show, the mean time before

ure and overall operational efficiency increase where adaptation is applied.

middleware features demonstrated by this law enforcement scenario are:

For our law enforcement evaluation scenario, the participating context providers and consumers

) of our evaluation scenario are two distinct

law enforcement agency applications monitoring the location of suspect. For simplicity, the

criteria. We illustrate such

consumer requirement in the context meta

Requirements. The eight providers of our evaluation include image and sound recorders

deployed in the targeted cells. Many context reasoning devices are multisensory, but for

illustrative purposes we show each capability as a distinct provider. Also, we initialize the system

with algorithmic providers for reasoning.

audio recording device. Provider 2 (

1) is an audio Mel-frequency cepstral coefficient

is a generalized Hidden Markov Model based aud

Provider 5 (Reasoner 3) is an image recognition reasoner.

distribution based suspect location reasoner. Provider 7 (

locater reasoning plan based on prov

suspect locater reasoning plan based on providers 2, 5 and 6.

6.1.2 Context Flows

Both context flows are illustrated in

types: devices, reasoners and flows.

Figure 40 Context Flows (Law Enforcement Scenario)

127

consumer requirement in the context meta-data shown in Figure 16 Example Context Consumer

. The eight providers of our evaluation include image and sound recorders

deployed in the targeted cells. Many context reasoning devices are multisensory, but for

w each capability as a distinct provider. Also, we initialize the system

with algorithmic providers for reasoning. With regard to Figure 38: Provider 1 (Device 1

audio recording device. Provider 2 (Device 2) is an image capture device. Provider 3 (

frequency cepstral coefficient (MFCC) Transformer. Provider 4 (

is a generalized Hidden Markov Model based audio reasoner that requires MFCC inputs.

) is an image recognition reasoner. Provider 6 (Reasoner 4

distribution based suspect location reasoner. Provider 7 (Flow 1) is an audio based suspect

locater reasoning plan based on providers 1, 3, 4 and 6. Provider 8 (Flow 2) is an image based

suspect locater reasoning plan based on providers 2, 5 and 6.

Both context flows are illustrated in Figure 40. Notice that context providers may be of several

types: devices, reasoners and flows.

Context Flows (Law Enforcement Scenario)

ontext Consumer

. The eight providers of our evaluation include image and sound recorders

deployed in the targeted cells. Many context reasoning devices are multisensory, but for

w each capability as a distinct provider. Also, we initialize the system

Device 1) is an

is an image capture device. Provider 3 (Reasoner

MFCC) Transformer. Provider 4 (Reasoner 2)

io reasoner that requires MFCC inputs.

Reasoner 4) is a

) is an audio based suspect

) is an image based

. Notice that context providers may be of several

128

.

6.1.3 Setup and Operation

The middleware periodically executes context flows, reporting context and associated QC

indicators. Context flow configuration is fixed and device costs are constant. The consumers of

the evaluation have a subscription for context for a period of time. The system endeavors to

sustain context and quality over the period using adaptation. As the low level sensors (also

referred to as context providers) vary in quality, so does the resulting high-level context.

Additionally, the middleware quality of context service measures appropriately reflect quality

changes. These indications are the basis for reasoning adaptation. In the following evaluation

scenario, middleware operational efficiency7, meantime before context failure8, integrated energy

and bandwidth cost9 indicators are observed. The simulated lifespans of source devices is scaled

down to five minutes for illustrative purposes. Initial system configuration is a follows:

A device energy decline pattern is configured for uniform decline of .05 every 15

seconds, so that device energy is exhausted after 5 minutes. The system is set to clean up

inactive providers after two minutes and flows after three minutes. Consumers who can no longer

be served are also cancelled after two minutes of being detached from a reasoning plan. The

effect of consumer contract cancellation can be seen in the OPEFF snapshots, where operational

efficiency returns to 100%. Essential system behavior highlighted in this evaluation is: i) context

reasoning failure; ii) reasoning adaptation, integrated cost indications; iii) cancellation of

ineffective providers and consumers that can no longer be served. Each scenario ends when

there are no more consumers and system operational efficiency has returned to 100%. To

capture essential system behavior, system performance measurements are taken at progressive

time intervals described in Table 8.

7 See Section 4.4.5
8 See section 4.4.6
9 See section 4.4.3

129

Table 8 Initial Performance Snapshots

Snapshot System Performance Snapshot

Times

Description

Snapshot 1 T0+312000ms Devices of scenario 1 have depleted
energy and context reasoning cannot be
sustained. Other scenarios are
continuing to sustain context.

Snapshot 2 T0+624000ms Following system clean-up of inactive
providers< including flows> and
cancellation of consumer contracts
which can no longer be served in
scenario 1. The middleware operational
efficiency increases back to 1 for
scenario 1.

Snapshot 3 T0+936000ms Following system cancelling consumer
contracts which can no longer be
served in scenario 3. The middleware
operational efficiency increases back to
1 for scenario 3.

Snapshot 4 T0+1900000ms Energy for devices of scenarios 2 and 4
are depleted. Context reasoning failure
occurs.

Snapshot 5 T0+2050000ms

Following system clean-up of inactive
providers< including flows> and
cancellation of consumer contracts
which can no longer be served in
scenario 2. The middleware operational
efficiency increases back to 1 for
scenario 3.

The following sections describe each scenario. Results are presented in section 6.1.8.

6.1.4 Scenario 1: No Adaptation – Declining Energy

In scenario 1, HyCoRE is initialized with only a single instance of each type of provider shown in

Figure 37. The energy of the image capture and audio recording devices declines uniformly.

When device power is exhausted, the devices are no longer available for use as context

providers. HyCoRE adaptation is triggered; either replacing the provider or suspending reasoning

until an alternative provider is available. There are no alternative providers in this scenario, thus

130

adaptation fails and operation efficiency declines to 0%. In this scenario, operational efficiency

does not return to 100% until consumer contracts are cancelled.

6.1.5 Scenario 2: Reasoning Adaptation – Declining Energy

Scenario 2 is the same as scenario 1 with added alternative audio and image context providers.

Scenario 2 employs simulated self-replicating audio and image providers, where the number of

replications is five. The bandwidth and energy cost of each replication successively increases by

15% and 30%. This is an improvement over the non-adapting scenario 1. When the system

detects a failed provider, it immediately replaces it with the best alternative provider. Inferencing

is minimally interrupted as reflected in the OPEFF and MTBCF graphs. Device energy decline

pattern is configured so that each device can actively collect for five minutes before energy is

exhausted. Device actuation which initiates energy decline does not begin until HyCoRE

identifies and adds provider to a context flow and the context flow is started. So, HyCoRE may

sustain context based on these providers for up to 25 minutes. The operational efficiency

remains at 100% while there are alternative providers available for adaption. Middleware cost

fluctuations reflect the changing cost of inferencing as source providers are replaced. It is difficult

to discern that the system is adapting for to the provider with least energy cost. This is due to the

fact that the providers are continuously moving in and out of range. However, scenario 2 does

show that each adaptation selects with increasing cost.

6.1.6 Scenario 3: No Adaptation – Energy Decline w/Dynamic Availability

Scenario 3 makes use of the same singular instances of image capture and audio devices from

scenario 1. No device replication is applied. In addition to energy decline, the devices move in

and out of HyCoRE range as simulated through the application of an availability pattern. For this

case we use an on/off pattern with 1 minute durations. Availability pattern is applied for eleven

minutes. When a device becomes unavailable the middleware attempts to find another provider to

sustain context inference. However, since there are no other devices available, inferencing will be

suspended until the device comes back into HyCoRE range. Energy only declines when a

131

provider is being actively used for inferencing, so simulated energy decline suspends when the

device becomes unavailable. Device energy is exhausted after being used for a total of five

minutes; at which time HyCoRE can no longer adapt. Accounting for off periods, context

inference should fail permanently after nine minutes. Thereafter, we observe provider and

consumer cancellation. Adaptation initiated by availability changes can be observed in all of the

graphs. Fluctuations in middleware cost, MTBCF and OPEFF are all indicative of flows being

suspended and restarted. As with the other scenarios, observe that operational efficiency returns

to 100% when consumer contracts are cancelled.

6.1.7 Scenario 4: Reasoning Adaptation – Energy Decline w/Dynamic Availability

Scenario 4 functions the same as scenario 2 with the added dynamic availability of scenario 3.

Alternative providers are available for adaptation, so HyCoRE is able to successfully sustain

context inferencing despite changing availability. Unlike the drastic performance drop shown for

scenario 3, successful context sustenance is shown in that the operational efficiency remains at

100% until after either all image or audio device energy is exhausted. Also, the MTBCF is more

normalized around 60s, which is consistent with the availability interval simulation setting.

6.1.8 Law Enforcement Search Evaluation Results

As discussed previously, we capture progressive system snapshots are progressive time

intervals. This allows us to observe system measures as i) quality is integrated; ii) reasoning fails

and iii) adaptation is handled. The first measure on each X axis represents the indicated number

of milliseconds since system start. Each subsequent measure is 11 seconds later. System

collection is set for every 11 seconds with a history size of 40, so that each graph reflects 7.3

minutes of performance. Refer to the preceding evaluation scenario descriptions for a discussion

on the results presented below.

6.1.9 Snapshot 1- System Startup + 312000ms

Snapshot 1 graphs begin 2ms after system startup, covering 30, 11 second time intervals. As

mentioned previously, the source device energy is configured to be depleted after five minutes of

132

total use. This snapshot covers the period where devices of scenario 1 have depleted energy and

context reasoning cannot be sustained. Other scenarios are continuing to sustain context. The

OPEFF graph shows that scenario 1 experiences permanent context failure around 300ms.

Since, scenarios 2-4 include intervals of unavailability, where devices are not actively used, the

lifetime of each device is extended. However, we do see cyclic OPEFF, MTBF and Cost in

scenario 2 that mirror periods of unavailability where there are no alternative devices. The trend

in the MTBCF is also indicative of system behavior. Scenario 1 and 2 MTBCF continue to rise for

five minutes, indicating uninterrupted context reasoning for this period. In the case of scenario 1

the MTBCF remain constant afterwards since reasoning is suspended and never restarted. In

scenario 2, reasoning is suspended, adapted and restarted. Thus, the average running time is

reduced. Integrated middleware costs graphs are indicative of the cost using actives devices at

that specific time instant. Scenarios 1 and 3 do not adapt, so the cost is either fixed or 0.

Scenarios 2 and 4 reflect adaptation using the most energy efficient devices available at the time.

Figure 41 Snapshot 1 – Operational Efficiency

Figure 42 Snapshot 1 – Meantime Before Context Fail ure

0%

100%

O
P

E
F

F

S1-Middleware Operational Efficiency

Scenario1

Scenario2

0

100

200

300

M
T

B
C

F

S1-Mean Time Before Context Failure

(seconds)

Scenario1

Scenario2

Scenario3

Scenario4

133

Figure 43 Snapshot 1 – Integrated Energy Cost

Figure 44 Snapshot 1- Integrated Bandwidth Cost

6.1.10 Snapshot 2- System Startup + 624000ms

Snapshot 2 graphs begin 1870788ms after system startup, covering 40, 11000ms time intervals.

This snapshot covers the period where scenario1 fails and includes the cancellation of consumer

contracts. After five minutes, scenario 1 fails irrecoverably since device energy is depleted.

Inferencing costs drop go to 0 and OPEFF returns to 100% since the system is no longer

inferencing. In contrast, scenarios 2and 4 are continuing to sustain context using alternative

providers. There are no alternative providers in scenario 3, so intermittent context failure can be

observed in all graphs.

0.00

0.50

1.00

E
n

e
rg

y

S1-Integrated Energy Cost

Scenario1

Scenario2

Scenario3

Scenario4

0

2

4

6

8

10

B
a

n
d

w
id

th

S1-Integrated Bandwidth Cost

Scenario1

Scenario2

Scenario3

Scenario4

134

Figure 45 Snapshot 2- Operational Efficiency

Figure 46 Snapshot 2- Meantime Before Context Failu re

Figure 47 Snapshot 2- Integrated Energy Cost

0%

100%

O
P

E
F

F
S2-Middleware Operational Efficiency

Scenario1

Scenario2

Scenario3

0

50

100

150

200

250

300

M
T

B
C

F

S2-Meantime Before Context Failure

(seconds)

Scenario1

Scenario2

Scenario3

Scenario4

0

2

E
n

e
rg

y

S2-Integrated Energy Cost

Scenario1

Scenario2

Scenario3

0

5

10

15

B
a

n
d

w
id

th

S2-Integrated Bandwidth Cost

Scenario1

Scenario2

Scenario3

Scenario4

135

Figure 48 Snapshot 2- Integrated Bandwidth Cost

6.1.11 Snapshot 3- System Startup + 936000ms

Snapshot 3 graphs begin 506078ms after system startup, covering 40, 11 second time intervals.

This snapshot covers the period following system cancellation of consumer contracts which can

no longer be served in scenario 3. Note that fluctuations in MTBCF and cost indicate points of

adaptation while a consistent 100% value for OPEFF is indicative of successfully sustaining

context. The OPEFF of Scenario 3 returns to 100% when its consumer contracts are deleted after

12.5 min. Scenarios 2and 4 are continuing to sustain context using alternative providers. It can be

seen in scenario 2 costs, that the more energy efficient alternative is being selected for

adaptation. This fact is obscured in scenario 4 since it includes dynamic availability. The MTCF of

scenario 4 destabilizes and begins to rise since the availability simulation expires after 11 min.

Thereafter, the devices are always available. Scenario 3 has already failed permanently and the

MTBCF remains fixed to the last reasoning values.

Figure 49 Snapshot 3- Operational Efficiency

0%

50%

100%

O
P

E
F

F

S3-Middleware Operational Efficiency

Scenario2

Scenario3

Scenario4

136

Figure 50 Snapshot 3- Meantime Before Context Failu re

Figure 51 Snapshot 3- Integrated Energy Cost

Figure 52 Snapshot 3- Integrated Bandwidth Cost

0

50

100

150

200

250

300

M
T

B
C

F
S3-Meantime Before Context Failure

(seconds)

Scenario2

Scenario3

Scenario4

0

0.2

0.4

0.6

0.8

1

1.2

E
n

e
rg

y

S3-Integrated Energy Cost

Scenario2

Scenario3

Scenario4

0

2

4

6

8

10

12

B
a

n
d

w
id

th

S3-Integrated Bandwidth Cost

Scenario2

Scenario3

Scenario4

137

6.1.12 Snapshot 4- System Startup + 190000ms

Snapshot 4 graphs begin 1463078ms after system startup, covering 40, 11 second time intervals.

This snapshot cover the period where context reasoning failure occurs for scenarios 2 and 4.

Scenarios 1 and 3 have already failed. Scenarios 2 and 4 continue to sustain context using

alternative providers for almost 30 minutes. Eventually, all device energy is depleted and context

reasoning failure occurs. The MTBCF of scenario 2 is consistent with the energy lifespan of

simulated devices which is 300 seconds. In scenario 4, the availability changed every 60 seconds

for the first eleven minutes, so the MTBF could not grow far beyond that even after availability

simulation expired. Please refer to the following section for more discussion on system behavior

in scenarios 2 and 4.

Figure 53 Snapshot 4- Operational Efficiency

0%

20%

40%

60%

80%

100%

O
P

E
F

F

S4-Middleware Operational Efficiency

Scenario2

Scenario4

138

Figure 54 Snapshot 4- Meantime Before Context Failu re

Figure 55 Snapshot 4- Integrated Energy Cost

Figure 56 Snapshot 4 Integrated Bandwidth Cost

6.1.13 Snapshot 5- System Startup + 205000ms

Snapshot 5 graphs begin 1617079ms after system startup, covering 40, 11 second time intervals.

This snapshot cover the period following system clean-up of inactive providers and cancellation of

0

100

200

300

M
T

B
C

F

S4-Meantime Before Context Failure

(seconds)

Scenario2

Scenario4

0

0.5

1

1.5

E
n

e
rg

y

S4-Integrated Energy Cost

Scenario2

Scenario4

0

5

10

15

B
a

n
d

w
id

th

S4-Integrated Bandwidth Cost

Scenario2

Scenario4

139

consumer contracts which can no longer be served in scenarios 2 and 4. Context reasoning is

sustained for nearly 30 minutes, adapting to use one the six alternative devices. When energy for

all devices is depleted, OPEFF temporarily drops to 0, but returns to 100% after consumer

obligation are cancelled. Also, all costs related to inferencing return to 0. The MTBCF remains at

the levels obtained prior to permanent inferencing failure.

Figure 57 Snapshot 5- Operational Efficiency

Figure 58 Snapshot 5- Meantime Before Context Failu re

0%

50%

100%

O
P

E
F

F

S5- Middleware Operational Efficiency

Scenario2

Scenario4

0

100

200

300

M
T

B
C

F

S5-Meantime Before Context Failure

(seconds)

Scenario2

Scenario4

140

Figure 59 Snapshot 5- Integrated Energy Cost

Figure 60 Snapshot 5 Integrated Bandwidth Cost

0

0.5

1

1.5
E

n
e

rg
y

S5-Integrated Energy Cost

Scenario2

Scenario4

0

5

10

15

B
a

n
d

w
id

th

S5-Integrated Bandwidth Cost

Scenario2

Scenario4

6.2 Hybrid Reasoning using Mobile Device Contexts

HyCoRE supports efficient context processing as it endeavors to sustain context by adapting

reasoning components and employing context reuse where possible. There are elements

architecture that are only used in specific scenarios. So we use several simple examples in our

evaluation to show the generality of the framework for heterogeneous context and applications.

In this evaluation we stress the heterogeneou

for physical activity. The previous law enforcement evaluation tested the architecture in cases

where the low level devices drive the high level quality

android evaluation, it is the intermediate reasoner quality that drives behavior.

Device Context Illustration illustrates the scenario.

Figure

One mobile device subscribes as an ‘activity’ context provider for a specific user target. Two

other mobile users subscribe as consumers of ‘activity’ for the same target. T

classifiers (naïve bayes and J48 decision tree)

from a mobile device accelerometer samples.

inferring ‘activity’ from accelerometer readings. The appropriate template is inst

141

Hybrid Reasoning using Mobile Device Contexts

HyCoRE supports efficient context processing as it endeavors to sustain context by adapting

reasoning components and employing context reuse where possible. There are elements

architecture that are only used in specific scenarios. So we use several simple examples in our

evaluation to show the generality of the framework for heterogeneous context and applications.

In this evaluation we stress the heterogeneous support in the architecture. We illustrate reasoning

for physical activity. The previous law enforcement evaluation tested the architecture in cases

where the low level devices drive the high level quality and system adaptation behavior.

evaluation, it is the intermediate reasoner quality that drives behavior. Figure

illustrates the scenario.

Figure 61 Mobile Device Context Illustration

One mobile device subscribes as an ‘activity’ context provider for a specific user target. Two

subscribe as consumers of ‘activity’ for the same target. T

ve bayes and J48 decision tree) are available as reasoners for inferring

from a mobile device accelerometer samples. HyCoRE has an existing reasoning template for

inferring ‘activity’ from accelerometer readings. The appropriate template is instantiated into a

HyCoRE supports efficient context processing as it endeavors to sustain context by adapting

reasoning components and employing context reuse where possible. There are elements of the

architecture that are only used in specific scenarios. So we use several simple examples in our

evaluation to show the generality of the framework for heterogeneous context and applications.

We illustrate reasoning

for physical activity. The previous law enforcement evaluation tested the architecture in cases

and system adaptation behavior. In this

Figure 61 Mobile

One mobile device subscribes as an ‘activity’ context provider for a specific user target. Two

subscribe as consumers of ‘activity’ for the same target. Two trained

are available as reasoners for inferring activity

existing reasoning template for

antiated into a

142

context flow upon receiving a consumer request. The two consuming mobiles receive context

notifications at their respective context mailboxes. Later, manual context feedback is used to

degrade the quality of one classifier so that adaptation is triggered. HyCoRE adapts by replacing

the failing classifier with its alternative; thereby sustaining context and maintaining quality. In

summary, the middleware features demonstrated by this mobile device scenario are:

� Quality Integration

� Middleware Operational Efficiency

� Reasoning plan using asynchronous context push and synchronous context pull from

providers

� Quality Feedback

� Adaptation to Mid- Level Context Provider Quality

� Context Sharing

� Context Mailbox Actuation

6.2.1 Hybrid Reasoning using Mobile Device Contexts Demo Results

This demonstration is in being completed at the time of this writing. Results will be presented in a

separate work or as a supplement.

143

CHAPTER 7

CONCLUSIONS

This dissertation presents middleware solutions for efficient, effective and adaptable high level

context reasoning. Architecture design and context reasoning solutions were evaluated through a

prototypical implementation of HyCoRE: Hybrid Hierarchical Context Reasoning Engine. The

novelty of HyCoRE begins with its data model and architecture design. It is specifically designed

to bridge gaps in existing frameworks that hinder reusability. There exists many existing

frameworks for deriving context in pervasive domains. However, there is still a need in the area of

quality awareness and data generalization. Often, existing frameworks specialized in specific

classes of context. Others, which are more general, include little consideration for quality.

Solutions unique to HyCoRE include: i)integrated high level context quality derivation; ii)context

provenance, reusable/adaptive reasoning plans; iii) quality of context middleware service

measurements. Further, HyCoRE offers: i) context data models which are a refreshingly clear,

generalized approach to modeling context, quality and cost; ii) (QoCS) Quality Based Middleware

Performance Measures which serve as a basis for adaptive reasoning; iii) high level context

quality integration and validation scheme; and iv) an adaptive reasoning scheme called context

flows .This collective concentration of features supporting heterogeneous high level context

derivation makes HyCoRE unique.

The current implementation is a fully functional prototype implemented in Java; and was

used in evaluation of the aforementioned context middleware features. This is a extensible,

generalized architecture that can be use to infer a variety of contexts. Our evaluation illustrates

activity and location context inference. The QoCS measures demonstrated show that integrated

quality metrics are a valuable way to measure framework reasoning performance; Also, that

144

quality is a sound basis for reasoning adaptation. The architecture can be extended to support

more context types using pluggable context providers. It is the infrastructure that supports

adapting components and measuring integrated quality that is the value of this architecture.

HyCoRE may be used in environments lacking sufficient reasoning infrastructure. By

adapting existing devices to HyCoRE interfaces, a fully functional reasoning system can be

achieved in diverse application scenarios, including: i) health/biometric situation monitoring

ii)smart homes; iii) environmental monitoring; and iv) dynamic situation detection in mobile device

field deployments. We envision future independent development of reasoning templates and

generalized reasoners. The types of context that can be inferred with HyCoRE depends on these

pluggable components. Pervasive domains are typically characterized by CPU, power and

memory limitations. Lightweight reasoning components can be developed and used with HyCoRE

in support of mobile and pervasive environments. The current prototype implements baseline

processing for the core functions of reasoning plan projection, meta-data matching, adaptive

context inference ,and quality feedback. These core algorithms can be improved to make

HyCoRE more efficient. It would be a worthwhile effort to build HyCoRE to full scale with the

robustness and versatility envisioned in the design. Also, the development of a repository of

generalized reusable reasoning components for used in building context templates and flows

could be a critical enabler for rapid context aware application development; a necessary step in

achieving the vision of pervasive computing.

145

REFERENCES

1. Agostini, A; C. Bettini; D. Riboni, “A performance evaluation of ontology-based context

reasoning,” In PERCOMW ’07: Proceedings of the Fifth IEEE International Conference

on Pervasive Computing and Communications Workshops, (Washington, DC, USA), pp.

3–8, IEEE Computer Society, 2007.

2. Agostini,A.; C. Bettini; D. Riboni, “Loosely coupling ontological reasoning with an efficient

middleware for context-awareness,” In MOBIQUITOUS’05: Proceedings of the The

Second Annual International Conference on Mobile and Ubiquitous Systems: Networking

and Services,(Washington, DC, USA), pp. 175–182, IEEE Computer Society, 2005.

3. Bannach, D; O. Amft; P. Lukowicz, “Rapid prototyping of activity recognition applications,”

IEEE Pervasive Computing, vol. 7, no. 2,pp. 22–31, 2008.

4. Beamon, Bridget, B.; Mohan, Kumar, J., “Adaptive Context Reasoning in Pervasive

Systems”, 9th Workshop on Adaptive and Reflexive Middleware (ARM 2010), ACM

Middleware 2010, November 30-December 2, 2010, Bangalore, India.

5. Beamon, Bridget, B.; Mohan, Kumar, J., “HyCoRE: Towards a Generalized Hierarchical

Hybrid Context Reasoning Engine”, In Proceedings of the 8th Annual IEEE International

Conference on Pervasive Computing and Communications Workshops (PERCOM

Workshops), 2010

6. Becker, C.; Schiele, G.; Gubbels, H.; Rothermel, K.; , "BASE - a micro-broker-based

middleware for pervasive computing," Pervasive Computing and Communications, 2003.

(PerCom 2003). Proceedings of the First IEEE International Conference on , vol., no., pp.

443- 451, 23-26 March 2003

146

7. Bettini, C. ; O. Brdiczka; K. Henricksen; J. Indulska; D. Nicklas; A. Ranganathan; D.

Riboni, “A survey of context modelling and reasoning techniques,” Pervasive and Mobile

Computing, June 2009.

8. Bisdikian, C.; Kaplan, L.M.; Srivastava, M.B.; Thornley, D.J.; Verma, D.; Young, R.I.; ,

"Building principles for a quality of information specification for sensor information,"

Information Fusion, 2009. FUSION '09. 12th International Conference on , vol., no.,

pp.1370-1377, 6-9 July 2009

9. Bisdikian, Chatschik; Joel Branch; Kin K. Leung; and Robert I. Young. 2009. A letter soup

for the quality of information in sensor networks. In Proceedings of the 2009 IEEE

International Conference on Pervasive Computing and Communications (PERCOM '09).

IEEE Computer Society, Washington, DC, USA, 1-6.

10. Bishop C. M., Pattern Recognition and Machine Learning (Information Science and

Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

11. Blackstock, M.; R. Lea; and C. Krasic, “Evaluation and analysis of a common model for

ubiquitous systems interoperability,” In Pervasive ‟08: Proceedings of the 6th

International Conference on Pervasive Computing, (Berlin, Heidelberg), pp. 180–196,

Springer-Verlag, 2008

12. Branch, Joel W. ;John S. Davis II; Daby M. Sow; Chatschik Bisdikian, "Sentire: A

Framework for Building Middleware for Sensor and Actuator Networks," Pervasive

Computing and Communications Workshops, IEEE International Conference on, pp. 396-

400, Third IEEE International Conference on Pervasive Computing and Communications

Workshops (PERCOMW'05), 2005

13. Bringel, Jose; Filho, Alina; Dia Miron; Ichiro Satoh; Jerome Gensel; Herve Martin,

"Modeling and Measuring Quality of Context Information in Pervasive Environments,"

Advanced Information Networking and Applications, International Conference on, pp.

147

690-697, 2010 24th IEEE International Conference on Advanced Information Networking

and Applications, 2010

14. Bruce, Henry; Giuseppe Raffa; Louis LeGrand; Jonathan Huang; Bernie Keany; Rick

Edgecombe, "An Extensible Sensor based Inferencing Framework for Context Aware

Applications, 10th IEEE International Conference on Computer and Information

Technology, 2010

15. Buchholz, Qua T.; A. Küpper; M. Schiffers, “Quality of context: What it is and why we

need it?”, In Proceedings of the Workshop of the HP OpenView University Association

2003 (HPOVUA 2003), 2003.

16. Campbell, A.T.; Eisenman, S.B.; Lane, N.D.; Miluzzo, E.; Peterson, R.A.; Hong Lu; Xiao

Zheng; Musolesi, M.; Fodor, K.; Gahng-Seop Ahn; , "The Rise of People-Centric

Sensing," Internet Computing, IEEE , vol.12, no.4, pp.12-21, July-Aug. 2008

17. Chabris C F, Weinberger A, Fontaine M, Simons D J, 2011, "You do not talk about Fight

Club if you do not notice Fight Club: Inattentional blindness for a simulated real-world

assault" I-Perception 2(2) 150–153

18. Chen H., “An intelligent broker for context-aware systems,” In Adjunct Proceedings of

Ubicomp, pp. 183–184, 2003.

19. Chen, H.; F. Perich; T.W. Finin; A. Joshi., SOUPA: Standard Ontology for Ubiquitous and

Pervasive Applications, In Proceedings of the 1st Annual International Conference on

Mobile and Ubiquitous Systems (MobiQuitous 2004) Networking and Services, pages

258–267. IEEE ComputerSociety, 2004.

20. Chen, H.; T. Finin; A. Joshi., Semantic Web in the Context Broker Architecture. In

Proceedings of the Second IEEE International Conference on Pervasive Computing and

Communications (PerCom 2004), pages 277–286.

21. Chen, H; T. Finin; A. Joshi, “The SOUPA Ontology for Pervasive Computing,” In

Ontologies for Agents: Theory and Experiences, pp. 233–258, BirkHauser, 2005.

148

22. Chen, Z.; W. Zhe; Y. Liu; Y. Piao, “Intelligent home-hospital system based on context-

aware technology,” in IIS ’09: Proceedings of the 2009 International Conference on

Industrial and Information Systems, (Washington, DC, USA), pp. 23–26, IEEE Computer

Society, 2009.

23. Cheng, Shang-Wen; David Garlan; Bradley R. Schmerl; Pedro Sousa; Bridget

Spitznagel; Peter Steenkiste; Ningning Hu. ;, “Software Architecture-Based Adaptation for

Pervasive Systems”, In Proceedings of the International Conference on Architecture of

Computing Systems: Trends in Network and Pervasive Computing (ARCS '02). Springer-

Verlag, London, UK, UK, 67-82.

24. Chetan, S.; Al-Muhtadi, J.; Campbell, R.; Mickunas, M.D.; , "Mobile Gaia: a middleware

for ad-hoc pervasive computing," Consumer Communications and Networking

Conference, 2005. CCNC. 2005 Second IEEE , vol., no., pp. 223- 228, 3-6 Jan. 2005

25. Clarke, M.;Blair G.S.;Coulson, G,;Parlavantzas, N.: “An efficient component model for the

construction of adaptive middleware”, In Middleware '01, Proceedings of the IFIP/ACM

International Conference on Distributed Systems Platforms , pp.160–178

26. Coppola, P.; Della Mea, V.; Di Gaspero, L.; Lomuscio, R.; Mischis, D.; Mizzaro, S.; Nazzi,

E.; Scagnetto, I. & Vassena, L., “AI Techniques in a Context-Aware Ubiquitous

Environment”. Pervasive Computing: Innovations in Intelligent Multimedia and

Applications , pp. 157-180, 2009

27. Dargie, W. “The role of probabilistic schemes in multisensor context awareness, In

PERCOMW ’07: Proceedings of the Fifth IEEE International Conference on Pervasive

Computing and Communications Workshops, (Washington, DC, USA), pp. 27–32, IEEE

Computer Society, 2007.

28. Dey A. K., “Understanding and using context,” Personal Ubiquitous Computing, vol. 5, no.

1, pp. 4–7, 2001.

149

29. Dey, A.; Abowd, G. ; Salber, D., “A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications,” Human-Computer Interaction, vol. 16,

no. 2, pp. 97–166, 2001.

30. Dourish,P.; “What we talk about when we talk about context,” Personal Ubiquitous

Computing, vol. 8, no. 1, pp. 19–30, 2004.

31. Ermes, M.; J. Parkka; J. Mantyjarvi; I. Korhonen, “Detection of daily activities and sports

with wearable sensors in controlled and uncontrolled conditions,” IEEE Transactions on

Information Technology in Biomedicine, vol. 12, pp. 20–26, Jan. 2008.

32. Filho, J. ; Miron, A.; Satoh, I.; Gensel, J, and Martin H., “Modeling and Measuring

Quality of Context Information in Pervasive Environments”, In Proceedings of the 24th

IEEE International Conference on Advanced Information Networking and Applications,

IEEE, 2010.

33. Fröhlich, N.; A. Meier; T. Möller; M. Savini; H. Schuldt; J. Vogt, “Loca: Towards a context-

aware infrastructure for ehealth applications,” Proceedings of fifteenth International

Conference on Distributed Multimedia Systems, 2009.

34. Garlan, D.; Cheng, S.-W.; Huang, A.-C.; Schmerl, B.; Steenkiste, P.; , "Rainbow:

architecture-based self-adaptation with reusable infrastructure," Computer , vol.37, no.10,

pp. 46- 54, Oct. 2004

35. Garlan, D.; Siewiorek, D.P.; Smailagic, A.; Steenkiste, P.; , "Project Aura: toward

distraction-free pervasive computing," Pervasive Computing, IEEE , vol.1, no.2, pp. 22-

31, Apr-Jun 2002

36. Haghighi, P.D.; Burstein, F.; Al Taiar, H.; Arbon, P.; Krishnaswamy, S.; , "Ontology-based

service-oriented architecture for emergency management in mass gatherings," IEEE

International Conference on Service-Oriented Computing and Applications (SOCA),

2010, vol., no., pp.1-7, 13-15 Dec. 2010

150

37. Hemmati , Hadi ; Jalili, Rasool;, “ Self-reconfiguration in Highly Available Pervasive

Computing Systems” , In Proceedings of the 5th international conference on Autonomic

and Trusted Computing (ATC '08), Chunming Rong, Martin Gilje Jaatun, Frode Eika

Sandnes, Laurence T. Yang, and Jianhua Ma (Eds.). Springer-Verlag, Berlin, Heidelberg,

289-301.

38. Henricksen, K.; S. Livingstone; and J. Indulska., Towards a hybrid approach to context

modelling, reasoning and interoperation, In UbiComp 1st International Workshop on

Advanced Context Modelling, Reasoning and Management, pages 54-61, Nottingham,

September 2004.

39. Hyun Jung La and Soo Dong Kim. 2010. A Conceptual Framework for Provisioning

Context-aware Mobile Cloud Services. In Proceedings of the 2010 IEEE 3rd International

Conference on Cloud Computing (CLOUD '10). IEEE Computer Society, Washington,

DC, USA, 466-473.

40. Indulska J.; Robinson R., “Modelling Weiser’s "Sal" scenario with CML,” In PERCOM ’09:

Proceedings of the 2009 IEEE International Conference on Pervasive Computing and

Communications, (Washington,DC, USA), pp. 1–6, IEEE Computer Society, 2009.

41. Kang, Seungwoo; Jinwon Lee; Hyukjae Jang; Youngki Lee; Souneil Park; Junehwa

Song; , "A Scalable and Energy-Efficient Context Monitoring Framework for Mobile

Personal Sensor Networks," Mobile Computing, IEEE Transactions on , vol.9, no.5,

pp.686-702, May 2010

42. Kang, Seungwoo; Youngki Lee; Chulhong Min; Younghyun Ju; Taiwoo Park; Jinwon Lee;

Yunseok Rhee; Junehwa Song, “Orchestrator: An active resource orchestration

framework for mobile context monitoring in sensor-rich mobile environments”, In

Proceeding of 2010 IEEE International Conference on Pervasive Computing and

Communications (PerCom), 2010

151

43. Krummenacher, R; T. Strang, “Ontology-based context modeling,” In Workshop on

Context-Aware Proactive Systems, 2007.

44. Kumar, M.; Shirazi, B.A.; Das, S.K.; Sung, B.Y.; Levine, D.; Singhal, M.; , "PICO: a

middleware framework for pervasive computing," Pervasive Computing, IEEE , vol.2,

no.3, pp. 72- 79, July-Sept. 2003

45. Lange, R.; N. Cipriani; L. Geiger; M. Grossmann; H. Weinschrott; A. Brodt; M. Wieland;

S. Rizou; K. Rothermel, “Making the world wide space happen: New challenges for the

nexus context platform,” In PERCOM ’09: Proceedings of the 2009 IEEE International

Conference on Pervasive Computing and Communications, (Washington, DC, USA), pp.

1–4, IEEE Computer Society, 2009.

46. Laskey, K. B. (2005) MEBN: A Logic for Open-World Probabilistic Reasoning. The

Volnegau School of Information Technology and Engineering. George Mason University,

Fairfax, VA, USA.

47. Lim, Brian Y. and Anind K. Dey. 2010. Toolkit to support intelligibility in context-aware

applications. In Proceedings of the 12th ACM international conference on Ubiquitous

computing (Ubicomp '10)

48. Liu, C.H.; Bisdikian, C.; Branch, J.W.; Leung, K.K.; , "QoI-Aware Wireless Sensor

Network Management for Dynamic Multi-Task Operations," Sensor Mesh and Ad Hoc

Communications and Networks (SECON), 2010 7th Annual IEEE Communications

Society Conference on , vol., no., pp.1-9, 21-25 June 2010

49. Lu, H; W. Pan; N. D. Lane; T. Choudhury; A. T. Campbell, “Soundsense: scalable sound

sensing for people-centric applications on mobile phones,” In MobiSys ’09: Proceedings

of the 7th international conference on Mobile systems, applications, and services, (New

York, NY, USA), pp. 165–178, ACM, 2009.

152

50. MacLarty, Ian; Ludovic Langevine; Michel Vanden Bossche; and Peter Ross, “Using

SWRL for Rule Driven Applications”, 2009 http://www.missioncriticalit.com/pdfs/rules-

challenge-2009.pdf

51. Manzoor, Atif; Hong-Linh Truong; Schahram Dustdar, “Quality Aware Context Information

Aggregation System for Pervasive Environments”, In Proceedings of the 23th IEEE

International Conference on Advanced Information Networking and Application

Workshops, IEEE, 2009.

52. Miluzzo, E.; N. D. Lane; K. Fodor; R. Peterson; H. Lu; M. Musolesi; S. B. Eisenman, X.

Zheng; A. T. Campbell, “Sensing meets mobile social networks: the design,

implementation and evaluation of the cenceme application,” In SenSys ’08: Proceedings

of the 6th ACM conference on Embedded network sensor systems, (New York, NY,

USA), pp. 337–350, ACM, 2008.

53. Nicklas, D.; M. Grossmann; J. Mínguez; M. Wieland, “Adding highlevel reasoning to

efficient low-level context management: A hybrid approach,” In PERCOM ’08:

Proceedings of the 2008 Sixth Annual IEEE International Conference on Pervasive

Computing and Communications, (Washington, DC, USA), pp. 447–452, IEEE Computer

Society, 2008.

54. Olsen, Dan R. Jr.. 2007. Evaluating user interface systems research. In Proceedings of

the 20th annual ACM symposium on User interface software and technology (UIST '07).

ACM, New York, NY, USA, 251-258.

55. Open Geospatial Consortium, “Sensor Model language,”

http://www.opengeospatial.org/standards/sensorml.

56. Patkos, T.; A. Bikakis; G. Antoniou; M. Papadopouli; D. Plexousakis, “A semantics-based

framework for context-aware services: Lessons learned and challenges,” In: Proceedings

of 4th International Conference on Ubiquitous Intelligence and Computing, pp. 839–848,

2007.

153

57. Peizhi, L and Jian, Z., “A context-aware application infrastructure with reasoning

mechanism based on dempster-shafer evidence theory,” In VTC Spring, pp. 2834–2838,

2008.

58. Pham, H.; J Mazzola Paluska; U. Saif C. Stawarz; C. Terman; and S. Ward, " A Dynamic

Platform for Runtime Adaptation," Proc. Of PerCom, 2009

59. Preuveneers, Davy; Victor, Koen; Vanrompay, Yves; Rigole, Peter; Kirsch-Pinheiro,

Manuele; Berbers, Yolande, “Context-aware adaptation in an ecology of applications”,

Context-aware Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive

Technologies and Applications. Stojanovic, Dragan (ed.), pages 1-25, IGI Global, 2009

60. Rabiner, L., “Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition”, Feb. 1989

61. Riboni, D. and C. Bettini, “Context-aware activity recognition through a combination of

ontological and statistical reasoning,” In UIC ‟09: Proceedings of the 6th International

Conference on Ubiquitous Intelligence and Computing, (Berlin, Heidelberg), pp. 39–53,

Springer-Verlag, 2009.

62. Riboni, D.; Pareschi, L.; Bettini, C. , "Towards the adaptive integration of multiple context

reasoners in pervasive computing environments," Pervasive Computing and

Communications Workshops (PERCOM Workshops), 2010 8th IEEE International

Conference on , vol., no., pp.25-29

63. Roussaki,I.; M. Strimpakou; N. Kalatzis; M. Anagnostou; C. Pils, “Hybrid context

modeling: A location-based scheme using ontologies,” In PERCOMW ’06: Proceedings of

the 4th annual IEEE international conference on Pervasive Computing and

Communications Workshops,(Washington, DC, USA), p. 2, IEEE Computer Society,

2006.

64. Russell S. J.; Norvig, P, Artificial Intelligence: A Modern Approach. Pearson Education,

2003.

154

65. Salber,Daniel; Anind K. Dey; Gregory D. Abowd. 1999. The context toolkit: aiding the

development of context-enabled applications. In Proceedings of the SIGCHI conference

on Human factors in computing systems: the CHI is the limit (CHI '99). ACM, New York,

NY, USA, 434-441.

66. Schilit,B; N. Adams; R. Want;, Context-Aware Computing Applications. In Proceedings of

the 1994 First Workshop on Mobile Computing Systems and Applications (WMCSA '94).

IEEE Computer Society, Washington, DC, USA, 85-90.

67. Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/

68. Seungwoo Kang; Jinwon Lee; Hyukjae Jang; Youngki Lee; Souneil Park; Junehwa Song;

, "A Scalable and Energy-Efficient Context Monitoring Framework for Mobile Personal

Sensor Networks," Mobile Computing, IEEE Transactions on , vol.9, no.5, pp.686-702,

May 2010

69. Sheikh, K. ; M. Wegdam and M. van Sinderen, “Middleware support for quality of context

in pervasive context-aware systems”, In Proceedings of the Fifth Annual IEEE

International Conference on Pervasive Computing and Communications

Workshops(PerComW‟07), 2007

70. Staab ,Steffen; Studer, Rudi;, Handbook on Ontologies,International Handbooks on

Information Systems. Springer, 2004.

71. Sudit, M.; M. Holender; A. Stotz; T. Rickard; R. Yager, “INFERD and Entropy for

Situational Awareness”, Journal of Advances In Information Fusion Vol. 2, No. 1 June

2007, available at http://www.isif.org/4075D01.pdf

72. Suganuma, T; K. Yamanaka; Y. Tokairin; H. Takahashi;N. Shiratori, “A ubiquitous

supervisory system based on social context awareness,” In AINA ’08: Proceedings of the

22nd International Conference on Advanced Information Networking and Applications,

(Washington, DC, USA), pp. 370–377, IEEE Computer Society, 2008.

155

73. Vanrompay, Yves; Stephan Mehlhase; Yolande Berbers, “An effective quality measure

for prediction of context information”, In Proceedings of the 8th Annual IEEE International

Conference on Pervasive Computing and Communications Workshops (PERCOM

Workshops), ,2010

74. W3C OWL Working Group, www.w3.org

75. Web Ontology Language. W3C OWL Working Group. http://www.w3.org

76. Weiser, Mark;, “The Computer for the 21st Century”, Palo Alto Research Center (PARC).

Scientific American, September 1991, pgs. 94-104

77. Xiang.,Yang; ,Probabilistic Reasoning in Multiagent Sysems. Cambridge University

Press, New York, NY USA, 2002.

78. XML Schema. http://www.w3.org/XML/Schema

79. Yau, Stephen S. ; Karim, Fariaz;, “An Adaptive Middleware for Context-Sensitive

Communications for Real-Time Applications in Ubiquitous Computing Environments”,

Real-Time Syst. 26, 1 (January 2004), 29-61.

80. Zhou, Jiehan; Ekaterina Gilman; Juha Palola; Jukka Riekki; Mika Ylianttila; Junzhao

Sun;, “Context-aware pervasive service composition and its implementation”, Personal

Ubiquitous Computing 15, 3 (March 2011), pp. 291-303.

156

BIOGRAPHICAL INFORMATION

Bridget Beamon graduated from the University of Texas at Arlington (UTA) with her Ph.D

Degree in Computer Science and Engineering in August 2011. Her research interests include

software systems architecture, context reasoning, knowledge management and machine

learning. Before and during her Ph. D tenure at The University of Texas at Arlington she worked

for Raytheon Intelligence and Information Systems in Garland Texas (2003-2009). She received

a Master’s degree in 2003 in Computer Science from the University of Texas at Dallas.

Previously, she worked for Nortel Networks in Richardson, TX as a Member of the Scientific Staff

(1995-2001). Bridget first received her B.S. degree in 1995 from UTA.

