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ABSTRACT 

 

ADAPTIVE HIGH LEVEL CONTEXT REASONING 

IN PERVASIVE ENVIRONMENTS 

 

 

Bridget B. Beamon, PhD 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Mohan Kumar 

It is hard to believe that the Internet is now in its adolescent stage. This information age is replete 

with communication capable, intelligent, sensor equipped devices. Social networks, web services, 

and global information repositories make a wealth of information available instantly. There exist 

endless possibilities for creating useable knowledge. Much of what is considered useable 

knowledge is not directly observable from low level sensory devices.  Abstract situations, 

relationships and activities must be inferred using a variety of techniques that fuse information 

from multivariate data sources. We refer to this useable knowledge as high level context. Social, 

physiological, environmental, computational, activity, location and situation are but a few 
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categories of high level context used today. In a general sense, context is any domain specific 

knowledge relevant to decision making. Low level contexts can be inferred after minimal 

manipulation and preprocessing of sensor data.  High level context is intrinsically more complex. 

High level context involves many levels of data fusion for inferring high level concepts. The 

increased dimensionality of representing and reasoning on relationships among contextual 

components, factoring uncertainty and ignorance, makes it difficult to effectively reason. 

A research problem in the area of context-aware computing is adaptive and effective 

high-level context reasoning. Effectiveness refers to the suitability of reasoning methodology for 

efficiently reasoning and representing the heterogeneous characteristics of context. Adaptive 

reasoning aides in maintaining context content and  quality in the face of dynamic resource 

availability, degrading reasoning performance and evolving requirements.  Context architects are 

at times challenged; constrained by the limited reasoning provided in the available platforms. 

Incorporating a generalized hierarchical hybrid reasoning engine, offering variety and optimization 

for reasoning across heterogeneous complex contexts would provide an effective alternative. 

Such architecture integrates a variety of configurable reasoning techniques, supporting the 

modularity of complex high level context. Ultimately, it promotes context reasoning framework 

reuse, knowledge sharing, and improved context aware application performance. 

This research proposes novel enabling solutions for adaptive and effective reasoning in 

pervasive environments. The focus is on middleware solutions for deriving and sustaining high 

level context, with support for reasoning adaptation and quality maintenance in dynamic 

pervasive environments. These solutions provided can be used for initiating context inference 

applications or extending existing architectures for greater reusability. Reuse leads to rapid and 

innovative context aware application development, a necessary evolution for achieving the vision 

of ubiquitous computing and beyond. 
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CHAPTER 1  

INTRODUCTION 

 

Context is a general term for any information in an application domain that is necessary 

for decision making. It is the role of the information that distinguishes it as context. In many 

cases, high level context is a by-product of multiple stages of reasoning and data transformation 

algorithms.  Inferred high level context is the focus of this work. The complexity and heterogeneity 

of context is mirrored by consuming applications making context-aware decisions. This research 

was initiated with the purpose of deriving a thorough definition of context along with justifications 

and methods for context aware adaptation in pervasive environments.  Context aware computing 

includes some elements of several traditional computer science areas of research including: data 

modeling and representation, data management, information fusion, middleware architecture, 

artificial intelligence, machine learning, and sensor networking.  Research articles on context 

awareness have appeared in seemingly unrelated conference proceedings.  However, this 

dissertation focuses on middleware solutions for deriving high level context, sustaining reasoning 

and maintaining quality in dynamic pervasive environments. 

1.1 Pervasive Computing Evolution 

The field of pervasive computing research was ignited by the vision of ubiquitous 

computing described in Mark Weiser’s seminal  article, “The Computer for the 21st Century” in 

1991 [76]. He described a future where invisible computing components ubiquitously operate in 

almost every domain of human living; quietly, seamlessly and intelligently improving our quality of 

existence. Prototypes (proof concepts) involving context awareness proliferated in the early years 

of 2000-2005 [6],[12],[18],[20],[23],[24],[29],[35],[38],[44],[65],[79].  Context Toolkit is one of the 

first works to holistically capture the needs of context aware applications [28], [29]. In the early 
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research, there was a great need for models and representations capable of sufficiently capturing 

heterogeneous context characteristics and complex domain relationships. Numerous efforts have 

been made in this regard. Notably, these include works based on Object Role Modeling (ORM) 

and Semantic Web Ontologies [15],[19],[21],[38],[43],[63].  As a result, today we have sufficient 

models and tools to represent complex contextual concepts in a way that affords semantic 

understanding, supporting information sharing. 

Early context reasoning and representations were largely monolithic.  There was a tight 

coupling with the targeted application. So we observe that in the not so distant past, context 

middleware solutions offered little reuse in data modeling or framework functionality.  Additionally, 

effective context reasoning was subjugated below other more traditional middleware concerns 

(i.e. data modeling, discovery and communication, event notification, knowledge management).  

Often, where a generalized context reasoning framework existed, acceptable performance did not 

scale beyond small contextual proof of concepts used to validate those architectures. 

Today’s context middleware frameworks are more pluggable, agile and scalable. There is 

a trend toward generalized and integrated reasoning methods. No doubt, this trend is in part due 

to the increasing ubiquity of multi-sensory smart devices.  The information age is replete with 

communication capable, intelligent, sensor equipped devices. Social networks, web services, and 

global information repositories make a wealth of information available instantly. There exist 

endless possibilities for creating useable knowledge. 

Much of what is considered useable knowledge is not directly observable from low level 

sensory devices.  Abstract situations, relationships and activities must be inferred using a variety 

of techniques. Truly usable knowledge can only be derived from incoming heterogeneous data 

from disparate sources using an integration of reasoning methods. This knowledge is high level 

context. 

Varied high level context reasoning approaches are used across a variety of applications 

in the pervasive computing domain including: health monitoring, intrusion detection, airport 

security and military target tracking. The same types of context are being inferred in diverse ways 
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across a number of platforms. For example, human activity has been inferred using a number of 

statistical, ontological, and logical approaches. A survey of context uses in existing literature 

makes it clear that varied reasoning approaches are needed to capture the heterogeneous high 

level contexts we find in pervasive applications along with the varying application performance 

and quality requirements.  Social, physiological, environmental, computational, activity, location 

and situation are but a few categories of context used today. Within these categories we find 

varying complexity. Some contexts can be inferred after minimal manipulation and preprocessing 

of sensor data. High level context involves many levels of data fusion for inferring high level 

concepts. 

Whether the ubiquitous vision was a virtual inevitability or pervasive computing 

community efforts created a self-fulfilling prophecy, we are now in the age of context aware 

computing. But, have we really realized the full vision of ubiquitous computing? Is there more 

needed? 

1.1.1 More Context Research Is Needed 

Inferring high level context adds complexity due to the increased dimensionality of 

relationships among contextual components. Also, when context spans categories, involves 

uncertainty and ignorance, it can be more difficult to effectively reason.  To be sufficiently useful, 

context middleware must support diverse context and inference techniques. Though there is a 

progressive trend towards improving the scalability and extensibility of middleware, there exists 

no general purpose context aware reasoning framework that supports knowledge reuse. 

Stagnation of context middleware reuse results from the lack of effective, adaptive, generalized 

context reasoning and representation. Developers are challenged to find a comprehensive 

context framework solution. 

Effectiveness refers to the suitability of reasoning methodology for efficiently reasoning 

and representing the heterogeneous characteristics of context. Adaptive reasoning aides 

maintaining context content in the face of dynamic resource availability, degrading reasoning 

performance and evolving requirements.  Context aware adaptation was an early goal in context 
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aware computing and has been demonstrated by a number of works.  In the past, context aware 

adaptation has been employed in i) adapting application behavior; ii) privacy preservation; and iii) 

conservation of resources (i.e. power, communication).  We have not seen many works adapting 

interchangeable sources of context to support context quality preservation. Such adaptation is 

critical for reasoning in dynamic environments. Utilizing generalized reusable components for 

application development is another fundamental barrier to framework reuse. It is important to 

break the often applied monolithic relationship between reasoning and applications. Decoupling 

this relationship facilitates reasoning reuse, leading to rapid context aware application 

development. 

The importance of information quality becomes more urgent as information quantity 

increases. Integrity of knowledge directly affects its value and usefulness. Imagine the deleterious 

effects of actions taken by a national figurehead based on quality poor information.  The 

consuming public would be at the very least disappointed, but the most probable pervasive 

sentiment would be outrage. The same issue of quality exists with consumer commodities like 

wine, cheese, shoes and clothing. Inferior products often visually appear to offer the same value 

as those of much higher quality and constitution.  We can only ascertain the true integrity by 

revealing the source and process of construction. In a computing sense, we find a parallel need 

for true information integrity perception. Deciphering integrity can be difficult without the 

appropriate middleware quality measures in place.  So, another area in need of more extensive 

research is the derivation of quality of context. In this discussion, Quality of Context (QoC) can be 

defined as a collection of measures (indicators) reflecting the integrity and discriminative 

characteristics of information that is used as context.  There can be many factors affecting 

context reasoning suitability. QoC is one means by which a context middleware accesses the 

suitability of context and its associated reasoning process for an application. Establishing context 

quality is not as simple as selecting the device with the best accuracy or other quality indicator. 

Increasingly, context-aware applications are interested in information that must be combined from 

multiple sources, using heterogeneous transformation and reasoning processes.  Establishing 



5 

 

true context quality in such environments requires an integrated approach to acquiring 

heterogeneous quality measures and propagating them through reasoning and transformational 

processes to produce a composite high level context quality. Accurately reflecting the context 

construction process in the composite quality is a step towards improving information integrity or 

quality of context. 

1.2 Dissertation Contributions 

The focus on middleware solutions for deriving high level context, with support for 

maintaining quality in dynamic pervasive environments is a result of evaluating context needs in 

many existing context-aware applications and middleware frameworks.  Specifically, in existing 

context modeling works, context is often obscured with concerns unrelated to inferencing (see 

section 2.5 for more details on related modeling works). We offer a clear identification of context 

as a by-product of reasoning; independent of other domain ontological elements. There is also 

the challenge of expressing heterogeneous context sufficiently.  The HyCoRE model supports 

heterogeneous/complex context representations, quality of context and context provenance. 

There are numerous middleware frameworks for context reasoning (see section 2.2 ).  However, 

none of them support all of the following features collectively:   i) heterogeneous, adaptable 

context reasoning with extensibility; ii) integrated high level context quality measurement; and iii) 

consumer quality maintenance.  HyCoRE provides these capabilities and more.  Our architecture 

design and data-models could be realized in many ways. This work includes a prototypical java-

based implementation with application demonstrations. We feel that the solutions provided here-

in can be used independently or as an extension to existing middleware architectures. 

Contributions are summarized as follows: 

1. Context Modeling 

a. HyCoRE context data models are a refreshingly clear and generalized approach 

to modeling context, quality and cost. 

2. Adaptive Context Reasoning 
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a. Quality based middleware performance measures 

b. Quality integration and validation scheme 

c. Adaptive reasoning scheme called context flows 

3. Context Reasoning Middleware Architecture Implementation 

a. HyCoRE architecture design, prototypical implementation and application 

demonstrations for evaluating HyCoRE 

Additionally, the reasoning suitability research in this dissertation may serve as a guide for 

reasoning planning in future context aware application design. The next section discusses 

dissertation contribution in greater detail. Each of the contributions mentioned offer unique 

contributions as discussed in the following sections. 

1.2.1 Generalized Hierarchical Hybrid Reasoning Engine: HyCoRE 

Existing context frameworks and toolkits offer limited reasoner re-usability and lack support for 

semantically decipherable data models necessary for context sharing. Also, we find that complex 

context reasoning is encumbered by immature functionality as well as limited vertical context 

applicability. Examples where these issues arise include: i) frameworks supporting only a single 

category of context(i.e. activity); ii) frameworks offering low level information fusion algorithms but 

lacking mechanisms for integrating these reasoning approaches; iii) frameworks lacking sufficient 

and semantically decipherable data models and iii) frameworks supporting knowledge sharing but 

only offering non-scalable and computationally inefficient reasoning techniques. 

We have designed a generalized hierarchical hybrid reasoning engine (HyCoRE); a 

middleware for generalized context reasoning in pervasive environments.  HyCoRE focuses on 

issues most neglected by existing frameworks and can be extended to use a number of 

reasoning techniques to infer diverse contexts from heterogeneous sources. The flexible design 

of HyCoRE reasoning components support quality aware reasoning adaptation.  Context is the 

payload on context flows and the element of exchange between HyCoRE and its consumers and 

providers. 
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The context that a particular HyCoRE instance reasons about and publishes is driven by 

administrative configuration and application extensions of the HyCoRE data model.  So, HyCoRE 

is not intrinsically limited to a particular type of context, but may be limited by available context 

providers. Multiple data models of context may exist in a single instance of HyCoRE. 

1.2.1.1 Context Reasoning Application Demonstrations 

HyCoRE is general purpose  context reasoning engine, supporting a variety of applications. It is 

difficult to find a single application that requires everything HyCoRE supports.  For this reason, 

we demonstrate two applications of HyCoRE reasoning to highlight the various features of its 

architecture. Refer to Chapter 7 for details on evaluation of HyCoRE in specific applications. 

1.2.2 HyCoRE Context Data Models 

There are many correct approaches to the modeling context [15],[19],[21],[43],[63].  What is most 

important with any approach is to sufficiently capture the targeted context characteristics, support 

efficient query, retrieval and maintenance.  Characteristics include: attribute heterogeneity, 

dynamism, availability, temporality, constitution, source derivation, credibility, and uncertainty.  A 

model that is coupled to a specific type of application may have inherent performance 

improvements over a general purpose model as shown here.  We use this general context model 

approach since context is the basis of information exchange between HyCoRE internal and 

external high level reasoning components.  So, we must capture heterogeneous low level data as 

well as complex inferred context. We have chosen to model concepts using UML to avoid any 

implementation specific association.  Our context data model is distinct from other works in the 

following aspects: 

• Multi-Centricity- Centricity is the target domain to which context information applies. Often, 

the centricity reflected in the data model and reasoning is singular and tightly coupled with a 

specific application. Our versatile model is distinct in supporting many centricities of context, 

including user, device and location centric contexts; thereby supporting varied application 

types. 
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• Multi-Dimensional Quality Representation- In the HyCoRE architecture, every component that 

has affected context derivation is associated with a quality model. Sensors, reasoners, 

general context providers, transformation functions all have quality indicators that affect 

resulting context. The quality model includes both declared and observed quality indicators 

appropriate for the type of component. 

• Machine Knowledge Representations- Context elements have an explicitly declared meta-

data model which affords semantic interpretation. This model is structured with both physical 

and semantic descriptions which implicitly identify relevant context providers. Context 

providers using different internal knowledge representations may infer the same class of 

context resulting in the same external meta-data modeled values. Context meta-data with 

physical and semantic representation models enable generalization and reuse.   

• Context Provenance- Context provenance identifies the sources, process of derivation and 

change history of context data values.  The HyCoRE data model has attributes that reveal 

limited provenance. Refer to Section 3.3.5 for more details on provenance related attributes. 

We use other data models to support quality maintenance and adaptation. 

• ContextIOSpecification- In HyCoRE, the consumer service contract is an agreement between 

HyCoRE and a consumer application regarding context and quality. We allow the consuming 

application to specify context desired and quality required. It is only the application which can 

provide information that distinguishes what is relevant and valuable. To accomplish effective 

reasoning, consumer request for context is matched on weighted context attributes, 

categories, locations and targets irrespective of the knowledge models used for derivation. 

Context providers also publish their capability to share context using a service contract. It is 

this agreement along with periodic quality verification that gives HyCoRE knowledge of type 

and quality of context provided.  

• Context Flows- HyCoRE reasoning is accomplished through the execution of instantiated 

reasoning plans. A Context Flow is a specific instance of a context reasoning plan.  A 



9 

 

reasoning plan is a directed graph of components. The messages that travel along the edges 

contain context.  Nodes are the work processes for context reasoning.  Nodes are an 

abstraction of context providers and provide an I/O specification, describing input context 

requirements and context inferred. Edges imply a dependency of a destination node on 

contextual outputs of source node.  In dynamic environments, HyCoRE is capable of 

adapting reasoning; replacing nodes with others that have comparable meta-data 

descriptions.   

1.2.3 Adaptive Context Reasoning 

The HyCoRE context reasoning framework adapts to sustain high level context inference in the 

face of dynamic device quality and availability. A derived composite measure of high level context 

quality is used as a basis for adaptation.  Reasoning plans are flexible in that components may be 

replaced with current or future context providers with match generalized information description 

called context meta-data. Context consumers specify context and quality requirement using 

context meta-data. The middleware operation measures reflect success inferring high level 

context while meeting consumer requirements. 

1.2.3.1 Quality Definitions and Measures 

Herein, the term Quality of context middleware service (QoCS) is distinct from Quality of context 

(QoC) in that the former measures the performance and informational integrity of the system 

rather than the context data itself.  A wealth of quality factors representing QoC have been 

studied, modeled and measured including: ‘precision, probability of correctness, trust-worthiness, 

accuracy, completeness, representation consistency, and access security, sensitivity, freshness, 

and temporal-spatial resolution’ [9],[13],[15],[48].  This work presents additional QoC and QoCS 

measures that reflect the success of the context middleware in meeting application requirements 

while minimizing system cost. 
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1.2.3.2 Quality Integration and Verification 

High level context is derived from a combination of sources including: individual sensory devices, 

sensor networks, data repositories, and reasoning and transformation algorithms.  When 

consuming high level context derived from heterogeneous sources, quality aggregation and 

propagation ensures that middleware & applications maintain a more accurate perception of the 

composite information integrity. Thus they are enabled to discriminate effectively.  Behavior 

based on quality information improves application correctness and ultimately, value.  The term 

quality aggregation refers to combining quality indicators from these sources to form a composite 

measure of data integrity.  The term quality propagation refers to aggregation from raw data 

acquisition though all stages of reasoning. Both are used to produce composite quality indicators.  

These composite quality indicators provide a more realistic measure of high level context data 

integrity and serve as a basis for middleware context reasoning adaptation. Verification involves 

using feedback in converging reported provider quality to actual quality. 

Since, context middleware separates applications from the concerns of quality enhanced context-

sensing data and reasoning, it also bears responsibility for maintaining expected information 

quality. To accomplish this, the context middleware must aggregate quality factors as it senses 

raw data from heterogeneous sources and reasons to infer new knowledge. Additionally, 

middleware must periodically monitor its quality performance and adapt to meet requirements. 

Several challenges exist with respect to integrating quality.  Heterogeneous contexts are 

combined to form complex high level context inference. The challenge is to reflect the relative 

significance of each contribution to the resulting inferred context quality indicators.  In dynamic 

environments, sources of context may be unavailable, stale or too costly to infer at an instant in 

time.  The challenge is to deal with missing quality indicators. When aggregating homogeneous 

context, we must accurately represent the additive/diminutive value of additional evidences. Also, 

accurately reflecting the reasoning transformation process in resulting inferred context quality 

indicators can also be problematic. In this work we represent aggregation and propagation 
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functions as middleware policy dependent strategies.  So to compute the integrated quality 

model, the problem we need to solve is finding useful functions/strategies for aggregation and 

propagation. We propose concrete strategies that HyCoRE uses to solve these. Our pluggable 

architecture facilitates dynamic configuration of these strategies. 

We present results showing the effectiveness of our quality measures for middleware adaptation. 

1.2.3.3 Adaptive Context Reasoning Based on Quality of Context 

HyCoRE abstracts applications, sensors, reasoning and services as generalized context sources 

or providers.  These are dynamic and are able to register in a uniform way.  Context reasoning is 

accomplished by composing a hierarchical plan of context sources. These are called context 

flows. A context flow defines the low level and intermediate contexts as well as transformation 

and reasoning processes needed to produce high level contexts. Application quality preferences 

are considered in choosing context sources. HyCoRE supports context sustainability, which 

refers to the system’s ability to continue to infer despite dynamic provider availability as well as 

maintaining the required quality of context. Reasoning adaptation helps the system run longer, 

sustaining context and quality over time. The context reasoning framework of HyCoRE interjects 

into the composition of the context and identifies the best adaptation for maintaining high level 

inferencing. As an example, to repair a reasoning plan, one or more participating providers might 

be replaced to mitigate flux. This best effort strategy for sustaining context is adaptive to 

underlying provider and resource limiting requirements. A second goal is resource efficiency. 

Every stage and component involved with high level context inference incurs cost.  Devices use 

energy while sensing, platforms require memory and CPU cycles for processing context, and 

communication bandwidth is required for communicating with distributed reasoning components.  

Cost associated with inferring context increase with reasoning complexity. Reusing context 

inference for the benefit of multiple consumers saves on costs associated with context 

processing, communication and sensor actuation. In HyCoRE, only the minimal set of sensors is 

actively used to meet consumer or system requirements. 



12 

 

In summary, the sources used in context flows are adapted to:  i) optimize quality; ii) reduce cost 

and iii) mask mobility or other environment conditions affecting context availability. 

1.3 Organization of the Dissertation 

This dissertation is organized into seven chapters. Chapter one provides an introduction with 

motivations for this work.. Chapter two presents background and work related to HyCoRE.  

Chapter three details the design and data model of the reasoning engine presented herein. 

Chapter four discusses quality definitions and quantification used as a basis for adaptation. 

Chapter five provides details on the reasoning adaptation process. Chapter six presents an 

evalutation of HyCoRE using a prototypical Java implementation.  Chapter seven summarizes 

and  concludes this dissertation. 
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CHAPTER 2  

BACKGROUND 

 

This chapter presents an overview of existing literature on context modeling, middleware 

architecture and reasoning techniques. Research contributions by contemporary researchers in 

the broad area of ‘context-aware pervasive computing’, are summarized and compared with the 

contribution of this dissertation.  

 

2.1 Context 

In this document, context refers to any information in the application domain that is necessary for 

decision making at a specific point in time. It is the role of that information that distinguishes it as 

context. Context is dynamic in structure and content; often exhibits multiplicity; and is distributed 

throughout the components of an application.  In most cases, high level context is a by-product of 

multiple stages of reasoning and data transformation algorithms. We make this clarification, since 

context has been defined in many ways: 

Schilit et al. observe, “Context encompasses more than just the user’s location, because other 
things of interest are also mobile and changing. Context includes lighting, noise level, network 
connectivity, communication costs, communication bandwidth, and even the social situation; e.g., 
whether you are with your manager or with a co-worker.” [66] 

 

Context is any information that can be used to characterize the situation of an entity. An entity is a 
person, place, or object that is considered relevant to the interaction between a user and an 
application, including the user and applications themselves [28] 

 

Dourish argues that context relevance depends on setting, activity and players involved. The 
scope of contextual features is defined dynamically as context arises from activity. [30] 

As can be seen from the definitions given, context is broad. No single definition will do. It depends 

on the application at hand.  Thus, we refer to context in a broad sense in relation to reasoning. 
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Complex context is inherently modular and hierarchical. Some context can be used with little 

preprocessing of sensor data (i.e. low level context). Other contexts require one or two levels of 

reasoning and/or manipulation with other contexts (i.e. intermediate context). Complex high level 

context (See Figure 1) may involve many more levels of data fusion due to the increased 

dimensionality of relationships among contextual components. Often, context is dynamic in 

structure and content, exhibits multiplicity, and is distributed throughout the components of an 

application. Completely cataloging all types of context is difficult, since information availability and 

application capabilities are increasing. Table I summarizes some contexts and related sources as 

used across a wide variety of pervasive applications. 

We use this table to highlight the effect of context category on reasoner suitability. The same 

inference techniques are often applied to derive contexts of the same category due to their 

sufficiency in capturing categorical characteristics. Performance affecting parameters may vary 

with implementations. There are instances where a single approach, such as rule based 

reasoning, may be sufficient for capturing all contexts of a domain. However, more than likely, 

this one-size-fits-all approach is ill suited for other reasons. Heterogeneous context source 

characteristics, system goals and limitations also affect the choice of context framework with 

associated modeling formalism and reasoners. Consider the following examples of system goals, 

limitations and context characteristics below: 

• System goals: Inference accuracy, inference speed, data maintainability, scalability, 

extensible data models and reasoning, resource (CPU, RAM, energy, and bandwidth) 

limitations, and platform.  

• Context & Source Characteristics: Size, Dynamism, Availability (varies with source and 

mobility concerns), Temporality/ Durability (TTL, Expiration), Constitution/Complexity, 

Derivation/Source (derived, sensed, profiled), Independence /Interdependence (affected by 

history or other contexts), Heterogeneity, Precision, Credibility, and Uncertainty. 

•  



15 

 

 
Table 1 Context Categories 

Table 2 Approaches to Reasoning 
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Figure 1 Hierarchical Complex Context 

 

Cognizance of many heterogeneous contexts and hence situation-awareness is critical to 

composing appropriate services for deployment of collaborative applications in pervasive 

information environments.  Sensors are the main sources of information in the environment. 

Context information gathered from sensors are processed, analyzed and inferred to determine 

high level situations and to facilitate application level services. Pervasive information 

environments face several challenges: i) dynamic availability due to failing or mobile sensors; ii) 

degradation in the quality of sensed context; and iii) selecting optimal sensors among 

homogeneous types. In such environments, subjected to constantly changing networks and 

content, the context middleware should be geared to acquire context information and execute 

support algorithms for context processing and reasoning and context adaptations.   To this end, 

one trend in today’s context middleware is the integration of reasoning approaches. Also, there is 

increasing work on defining and calculating context quality in support of application requirements.  

In this work, we demonstrate a way to derive composite high level context quality and show how 

middleware performance measures that are based on application context quality requirements 

may be used as the basis to context reasoning adaption enabling context sustainability and 

energy efficiency. 



17 

 

The following sections survey works related to context aware computing. As mentioned in the 

introduction, it is difficult to classify context aware computing, so related works that make 

comparative contributions to context middleware, reasoning and modeling, irrespective of their 

traditional computer science categorization have been selected. Many works make contributions 

to multiple context related categories (i.e. middleware, quality, reasoning and modeling). So, the 

following section titles are merely an organizational guide for reading. 

 
2.2 Context Toolkit, Middleware and Architecture Related Work 

Pervasive application framework developers have many functional concerns to address in their 

architecture. Functional concerns include: data modeling, sensing, component discovery and 

communication, event notification, knowledge management and context reasoning. Of these, 

reasoning is one of the most neglected concerns. In many instances, context reasoning is either 

insufficient or inefficient for all but a few types of contexts. Also, we seldom find frameworks 

supporting hybrid or integrated compositions of reasoning techniques. Yet rarer, are frameworks 

supporting reasoner optimizations that can be tailored to best suit targeted context characteristics 

or application goals. Several works make reference to hybrid context [1], [2], [18], [27], [38], [45], 

[53], [63]. Most of these are concerned with hybrid modeling and/or limited hybrid reasoning that 

combines the efficiency of rules with the expressiveness of ontologies. Though our approach is 

distinct, the concept is similar to the integration of shallow context representation and reasoning 

with ontological approaches, as detailed in the multilayer framework outlined by Bettini et al [7]. 

HyCoRE offers more reasoning options and greater flexibility in the way reasoning is applied. 

Similarly, to the notion of data flows in the Context Recognition Network Toolbox [3], HyCoRE 

context (i.e. inference) flows may be constructed by integrating parameterizable reasoning 

components in a hierarchical fashion. Both tiers of CoBrA’s [18] centralized reasoning can be 

accomplished in HyCoRE. However, HyCoRE reasoning is distributed and is similar to the 

implementation of reasoning as a value added service in the federation layer of NEXUS [59]. 

NEXUS, UIF [11] and other frameworks supporting interoperability between context aware 
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systems provide a needed means for service, component and context sharing. HyCoRE also 

supports context sharing by its distributed design and semantically decipherable data model. 

However, the most important contributions of HyCoRE to a single context aware system are: i) 

optimizable, interchangeable, reusable reasoning; and ii) hierarchical integration of reasoning for 

complex context inference. These features support the natural modularity of complex context and 

improve reasoning usability and applicability across context types. Existing applications and 

frameworks may use HyCoRE to enhance core reasoning capabilities. Many other hybrid 

architectures & applications [22],[24], [31], [33], [34], [38], [44], [47], [52], [72], [80] are discussed 

in existing pervasive context literature. These demonstrate a variety of reasoning techniques, 

including: Hidden Markov Models (HMMs), Shannon Entropy, Artificial Neural Networks (ANN), 

Decision Trees, KNearest Neighbor, Naïve Bayesian Classification, Dynamic Bayesian Networks 

(DBNs), Dempster Shaefer Evidence Theory (DSET), rules, and custom/proprietary algorithms. 

Few of these architectures focus on modularizing reasoning, tuning performance or generalizing 

to promote reuse. Further, these are limited by the type of contexts inferred, the types of 

reasoning applied, openness and extensibility of the reasoning architecture.  

Following is an additional survey of related context frameworks. 

2.2.1 “A Scalable and Energy-Efficient Context Monitoring Framework for Mobile Personal 
Sensor Networks” 
 

SeeMon [41] is a context middleware framework that offers scalability and energy efficiency when 

continuously monitoring numerous sensors in personal area networks (PANS/BANS).  In a 

manner similar to HyCoRE, reasoning is accomplished through a pipeline of processing.  This 

processing involves sensor actuation, feature extraction and potentially several stages of 

computationally intensive reasoning algorithms. SeeMon is able to save on processing costs by 

circumventing parts of processing when context features do not change. A process whereby high 

level context queries are translated into low level sensor feature queries along with bidirectional 

sensor communication is used to identify feature changes before reasoning algorithms are 

initiated.  Arriving context queries are sorted into feature queries that are used to determine if 
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reasoning is necessary.  As sensor updates arrive, only those necessary to serve active queries 

are selected for reasoning.  Their approach for essential sensor set selection and context query 

handling provides 4 times better throughput and reduces wireless data transmission 50 to 90 

percent when compared with the traditional unidirectional context reasoning approach.  SeeMon 

is a novel work and shares similar concerns about efficiency.  However, the issues of context 

quality and sustainability are not addressed in SeeMon.  HyCoRE supports sustaining context in 

dynamic environments along with efficient processing of context. HyCoRE only actuates the 

minimal set of sensors necessary to support current consumer queries, but additionally offers 

reuse of that same sensor set by multiple applications. 

2.2.2 “Rapid Prototyping of Activity Recognition Applications” 

A context recognition toolkit (CRN) for the construction of activity reasoning plans is presented in 

[3]. Reasoning plans are called data flows and are constructed as chain reusable 

components/tasks.  Each task is an encapsulation of reasoning algorithms and or data 

transformations.  Tasks parameters control its operation. The specific IO requirements are 

declared by the task for generalized reuse.  Optimization may also be provided as inputs. Tasks 

available in the toolkit include: Average Signal Energy, FFT, Distance2Poisiton, Hexomite2D, 

HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, and Simple 

HexSensClassification. The toolbox is extensible and provides APIs for further task development. 

This work illustrates that heterogeneous activity recognition can be accomplished using a small 

set of parameterizible algorithms. HyCoRE shares the goal of rapid development, but for 

heterogeneous context. We do not discount the significance of this work, but we must point out its 

limited applicability to the user-centric activity context. It is a solid prototyping framework for user 

contexts. HyCoRE uses a similar chain of reusable reasoning components (i.e. context flows) 

which may contain more than one processing chain. It is possible that the tasks of CRN can be 

exposed as context providers to HyCoRE.  HyCoRE’s  physical and semantic modelsfor high 
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level context along with quantification and representation of  integrated quality measure have no 

parallel in this work.  

2.2.3 “Orchestrator: An active resource orchestration framework for mobile context monitoring 
in sensor-rich mobile environments” 
 

Middleware mediated context management for dynamic environments is espoused by the authors 

of the Orchestrator framework [42].  Orchestrator performs active context mediation.  Applications 

do not make decisions regarding resource allocation. Rather, the middleware proactively keeps 

context plans mapped to the best set of dynamic resources. Their solution advocates a 

separation of logical context processing needs from physical resource allocation.  This separation 

is realized as logical and physical context processing plans. Logical plans can be defined and 

added to the system administratively. Since sensors and associated resources change 

continuously, the translation of logical plan to physical plan occurs at run time. The efficacy of a 

physical plan is determined by several factors, including:  required resource availability and cost 

of executing plan.  This work illustrates how a single high level context can be derived in variety 

of ways.  For example many logical plans could be declared for deriving activity context from 

accelerometer readings.  However, several varying factors realized by different physical plans 

could offer different performance: i) varying the part of body on which the accelerometer is worn; 

ii) varying the features (frequency vs. statistical) extracted and transformations performed; and iii) 

varying inference model (Decision tree or Naive Bayes). The notion of both logical and physical 

reasoning plans is very similar to our thoughts on context templates and flows.  Orchestrator plan 

adaptation is triggered as sensors join and leave, resources status changes or context requests 

change.  This results in reconfiguration of processing plan set. The adaptation triggers are similar 

in HyCoRE.  However, HyCoRE is able to adapt a single plan by removing and replacing nodes 

or by reconstructing a new plan, as opposed to reconfiguring the entire context flow set. Our 

approach is also distinct in offering application specified quality requirements along with context 

requests.  Orchestrator does not consider quality of context as an integrated measure of integrity; 
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whereas HyCoRE is focused on measuring the middleware performance in adapting to meet 

multiple application quality requirements while minimizing system cost. 

2.2.4  “Toolkit to support intelligibility in context-aware applications” 

An extension to the “Context Toolkit”[29] which adds inference explanations to the end user is 

presented in [47].  This extension work addresses the challenge of making context aware 

applications intelligible by providing explanations of reasoning behaviors that are independent of 

the decision model.  Namely the following explanations regarding an inference are provided: 

inputs, outputs, what, what if, why, why not, how to, and certainty. Context research has shown 

that these explanations add value to the context consumer. We observe that it is important to the 

context consumer to understand how an inference is made.  Our approach tracks all participants 

of context inference and provides a serialized inference trail for provenance support.  As certainty 

is provided as a type of explanation in this toolkit extension, HyCoRE supports certainty as a 

quality indicator.  For probabilistic inferences certainty may be in the range 0 to 1, or may simply 

be 1 or 0 for rule based inferences.   We also go further in computing a high level context quality 

vector which is a composite quality indication, reflecting the quality of all participating providers. 

To sustain context effectively we have developed an adaptable context reasoning framework 

along with measures for discriminating context providers. 

2.2.5 “An Extensible Sensor based Inference Framework for Context Aware Applications” 

This work [14] highlights the importance of breaking the often applied monolithic relationship 

between reasoning and applications. Decoupling these relationships facilitates reasoning reuse, 

leading to rapid context aware application development. This work is a realization and extension 

of an earlier Intel context framework design. The primary goal of this work and its demonstration 

is to achieve rapid context aware application development by removing the burden of sensing and 

reasoning as an application developer concern. To this end, Intel has created C++ based 

generalized context reasoning framework which performs inference based on XML DAG 

reasoning plans. Context providers of the systems are sensors or traditional pervasive devices 
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such as accelerometer, gyroscope, microphone etc.  So then, the low level input is raw data with 

varied formats and sampling rates.  Mills are generalized reasoning work components. The 

inputs, associated training models and algorithmic details are abstracted into a generalized API.  

Using generalized APIs, context application developers compose reusable DAG nodes, called 

mills to describe the high level context to be inferred.  The context framework performs necessary 

sensing, buffering, normalization, feature extraction, transformation and reasoning algorithms. 

Additionally, the reasoning may be easily extended by creating new mills, which extend a 

common parent type. Multiple client applications are enabled to use the framework. Approaches 

to using the framework for three horizontal applications: gesture recognition, audio classification 

and physical activity reasoning are described. 

Rapid context aware application development is also a primary motivation of HyCoRE. The 

concepts used for reasoning is very similar. Context reasoning is accomplished using DAGS, 

which we refer to as context flows. There are a few differences that make HyCoRE reasoning 

distinct. Since HyCoRE is designed with the added goal of context source tracing, participatory 

reasoning and adaptation.  To this end, context source tracing and quality integration is 

performed in-line with reasoning to maintain an accurate view of context derivation and  integrity.  

Context flows are associated with abstract reasoning plans or patterns.  These abstract patterns 

support reasoning adaptation.  In a dynamic system where multiple choices of context providers 

exist, a flow may be repaired by replacing a failed or sub-optimal reasoning node. Also, an 

alternate flow deriving the same context may be constructed using an alternate pattern. The Intel 

framework can be classified as a context toolkit. HyCoRE has considerations for middleware 

performance, and application quality requirements. 
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Figure 2 Intel Framework Gesture Recognition and Ph ysical Activity Reasoning DAGs 

 

2.2.6  “INFERD and Entropy for Situational Awareness” 

INFERD [71]  is an information fusion engine created as an aide to decision making in cyber 

security applications.  However, this probabilistic graphical framework is flexible and can be used 

to model and reason across diverse applications. Airport Security, Cyber Network Attack alerting 

are two applications specifically mentioned. The implementation presented addresses levels 0, 1 

and 2 of the US Joint Directors of Laboratories (JDL) 5-level data fusion model. 

One of the examples is a simple airport security scenario. This is only used to explain the 

concepts of INFERD. The objective is to determine if a passenger is a threat to other passengers. 

Details of the example are as follows: 

1. The probabilistic value of a passenger’s identity being valid is some algorithmic 

combination of Risk Assessment, Photo ID Verification, and Biometric scans. 

See below: 
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Figure 3 INFERD – Passenger Identification 

 

• Risk is accessed by booking agents based on answers to questions 

• The attendant at the airport verifies that information on ID matches that in 

system 

• The CAPPS II (Computer Assisted Passenger Prescreening System) 

available at most airports is used verify biometrics. 

• In all cases 0 indicates no problem and 1 indicates a security concern 

2. Other interrelated context models are used: suspicious behavior, prior history, 

forbidden words 

 
Figure 4 INFERD- Passenger Threat Template 

 

3. All of the above mentioned contextual elements form a high level template graph 

that models passenger threat 

4. Gibbs Boltzman and Shannon Entropy functions are demonstrated for 

determining template graph credibility (probability of the overall event 

occurrence). 
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5. The result from each approach was vastly different.  The Gibbs Boltzmann 

parametric approach yielded 54% based on the given probabilities. 

The Shannon Entropy approach yielded a 26% probability. 

 

IO is separated from fusion in this architecture. Application contexts are modeled in as in 

interconnected hierarchy {low level (0) to higher level situation reasoning (level 2 and above)} 

Multiple approaches to reasoning on the credibility of a situation are applied based the fusion 

level: i)At level 0, constraints and rules/thresholds are used at a low level to extract applications 

features from raw sensor data; ii) At level 1, various functions/rules can be used to aggregate 

features into composite events (called template nodes). Max/Min, and Yager’s Generalized 

Ordered Weighted Average are discussed as some sample functions for an Airport Security 

Scenario and iii) at level 2, Shannon Entropy and Gibbs-Boltzmann equations are demonstrated 

as techniques for fusing probabilistic values of composite events into composition 

situations(called template graphs). Gibbs-Boltzmann parametric approach is compared with 

Shannon Entropy. 

Accuracy and speed of inference are two characteristics that vary depending on the approach.  

This paper demonstrated a 54 % probability of passenger threat using Gibbs-Boltzmann, but only 

26% using Shannon Entropy.   In another application, the authors noted the ability to process and 

generate hypothesis about 86.4 million alerts in a 24 hour period.  Further, the paper 

demonstrates that context can be viewed as a multiplicity of graphs (hierarchies of data). In a 

single context graph, multiple algorithms may be used to combine that information (i.e. different 

approaches to low and high level data fusion). There are a few additional considerations that 

HyCoRE addresses which could be used to improve the INFERD architecture: i) Context may 

begin and end any level of the JDL model. A reasoning engine must provide as little or as much 

as needed for the application and ii) Sensors are only one kind of contextual source.  Feature 

extraction needs to be performed when receiving context from other sources.  As we move 

towards distributed context awareness and reasoning, context may originate from sensors, users 
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and applications.  Though data that is queried (pulled) is inherently streamlined for a particular 

aspect of reasoning, heterogeneous data that may be pushed onto a system must be filtered for 

applicability and value to the reasoning task at hand. Thus, feature extraction/data transformation 

functions must be considered for the range of contextual sources.  

2.2.7 “AI Techniques in a Context-Aware Ubiquitous Environment” 

Mobile being [26] is a generalized inferential framework concept for mobile devices. The 

adaptation use case is: automatically loading and unloading applications to a mobile device 

based on user and device context. Like a chameleon, the mobile device assumes the role mostly 

useful to the user. Similar to HyCoRE, it proposes AI approaches to reasoning on physical data to 

infer higher level abstract data. HyCoRE is a more general purpose framework that automatically 

adapts the middleware reasoning rather than the application. 

2.2.8 “Context-aware adaptation in an ecology of applications” 

A context middleware framework that enables structural application adaptation is presented in 

[59]. Application behavior is defined in a description of self-organizing components. Their 

approach couples application and middleware context reasoning. The HyCoRE concept of 

context flows offers a similar notion of service composition. However, reasoning adaptation in the 

middle is separated from application adaptation. The middleware of HyCoRE adapts to meet 

quality goals of many applications. It is not concerned with specific application behavior 

adaptation. 

2.2.9 “LoCa: Towards a context-aware infrastructure for e-health applications” 

LoCa [33] is a generic software infrastructure for adapting work flow based applications to user 

context. Functionally, its goal is to gather, process, analyze, visualize and store physiological data 

in an electronic health record. Workflows and visualization are adapted based on context 

{i.e.procedures may change dynamically depending on age of patient, the Doctor. may be sent an 

SMS if biometrics reach a critical threshold} As with most frameworks we’ve noted, reasoning is a 

secondary concern and is discussed only lightly. Using rules and logical connectors is mentioned, 
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but reasoning is not the focus of this work. However, the brief discussion on reasoning does 

make this point: ‘Raw data has to be coarsened and analyzed in relation to one another.’ 

Automating this process through reasoning saves time, money and ultimately lives. A 

telemedicine scenario is presented where a doctor can remotely monitor a 65 year old heart 

patient. Instead of sending a nurse, to record the daily ECG data and other measurements, 

sensors and the LoCa framework are used to automatically interpret the raw sensor data in a 

particular order, comparing values with the patient’s medical history. 

The primary focus of LoCa is application infrastructure. Our focus is a reasoning engine.  LoCa is 

an example of a context framework that could be improved with an reasoning engine like 

HyCoRE.  LoCa also offers a base data model. We agree that some foundation data model 

should be used along with reasoning to capture context.   We offer our context data models with 

the unique features that described herein. 

2.2.10  “Context Broker Architecture: CorBrA” 

CoBrA [18] is broker-centric architecture for supporting context awareness.  An intelligent agent 

collects contexts from varied sources into a centralized location. OWL1 is used to model and 

reason on context.  OWL is based on P-SHIN, so it is essentially FOL reasoning.  OWL does not 

support uncertainty or ignorance. OWL description logic reasoners are used for inference and 

consistency checking of knowledge model.  The known tractability issues with reasoning using 

OWL apply with CoBrA.  OWL reasoning does not scale well for applications with dynamic 

context models due to the overhead of re-classification. HyCoRE is more than a broker or central 

repository.  It is an orchestrator of interchangeable reasoning elements and context source which 

dynamically adapts based on quality indications. 

                                                      
1 SOUPA Ontologies are used 
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Figure 5 CoBrA Architecture 

 

2.3 Quality of Context Related Work 

There exist many examples of solutions for quality aware adaptation [9], [13], [15], [48].  The 

authors in [48] show how quality can be used to support adaptation that:  i) alters application 

behavior; ii) improves middleware efficiency and iii) enforces privacy policy. In [15], the authors 

have observed that adaptation is expensive. They offer a quality measure (i.e. ‘probability of 

correctness’) which aids in increasing the utility of the decision to change/adapt context source.  

Several other examples are established on the domain model where multiple sensors collect 

similar information. These works adapt to minimize communication and power consumption costs 

associated with sensing and retrieving low level context data. The following sections review some 

works related to context quality. 

2.3.1 “Modeling and Measuring Quality of Context Information in Pervasive Environments” 

Our work shares many ideas found in [13]. We both recognize the importance of: i) a semantically 

decipherable context model ; ii) a flexible approach to context reasoning; iii) identifying the quality 

of inferred information though quality aggregation; understanding that QoC is composed of many 

indicators and iv)  allowing applications to declare the relative importance of quality indicators. In 

support of context representation, this work presents a user centric data and QoC model. We 

recognize that there are many correct ways to model context and have chosen a representation 
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that is not centric to user, device, location or other context category.  Rather, we present a 

general model sufficient to capture heterogeneous context types, support quality integration, 

source tracing, and the types of queries and adaptable reasoning intended with HyCoRE.  The 

context reasoner of the architecture [13] supports description logic/semantic web rule language 

(DL/SWRL) reasoning.  Also, there are abstract context reasoning components (CRC) serving as 

black box brokers of context.  Abstract HyCoRE context providers are similar to CRCs.  In 

HyCoRE a context provider is abstraction for algorithms, services or devices providing context. A 

context provider may support any type of reasoning as long as the resulting context and 

associated quality can be clearly described.  Our distinction is in the way providers are integrated 

into a reasoning plan for deriving high level context. HyCoRE middleware understands how to 

construct reasoning plans in part based on the context metadata included in context provider 

service contracts.   HyCoRE offers similar semantic definitions for quality indicators as those in 

[13].  The definition of informational resolution provided herein (see Chapter 4) has relevance to 

disclosure level, sensitiveness and resolution in [13].  Informational resolution applies to many 

types of context and simply reflects the amount information a context value reveals relative to 

some maximum.  Completeness also has semantic similarity to HyCoRE’s interpretation; 

reflecting the totality of the information used for deriving a specific context value.  Missing and 

expired information reduces completeness. Additionally, HyCoRE offers other quality indicators 

and middleware performance measures that are unique.  As research on context quality grow, so 

too does identification of useful measures.  In this dissertation only a few select quality measures 

are highlighted. Our selection of quality measures serves to build support for a reasoning engine 

that adapts based on environmental context provider availability and quality along with application 

context quality requirements. Finally, though there are some differences in the way HyCoRE 

integrates quality indicators through reasoning plans, both [13] and HyCoRE employ a pluggable 

approach in aggregation algorithms applied to each quality measure. In [13], algorithms for quality 

aggregation (i.e. pessimistic, optimistic, and average) are system specified and may be distinct 
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for each quality measure. HyCoRE proposes a similar approach to quality integration (see 

Section 4.3). 

2.3.2 “A letter soup for the quality of information in sensor networks” 

The authors of [9] make a compelling argument for maintaining QoI in wireless sensor networks 

(WSNs).  The approach to information sharing is similar to HyCoRE in that: i) Applications 

advertise needs; ii) Context providers advertise information available, and iii) applications are 

bound to selected providers. However in HyCoRE, the context middleware performs negotiations 

with providers; adapting for improved performance; shielding applications from environmental 

changes. The authors suggest a similar modification to the Sentire framework [12].  Novelty can 

be seen in the use of six common primitives (5WH: why, when, where, what, who, how) to 

capture application needs and information provider capabilities. The HyCoRE data models 

support describing and determining 4WH.  Currently, we cannot see how the application’s 

motivation (i.e. ‘why?’) is relevant to the middleware. HyCoRE simply performs to consumer 

specification.  A distinct feature of HyCoRE is projecting integrated quality calculation onto the 

context reasoning process. This is referred to as quality aggregation and propagation (see 

Section 4.3). 

2.3.3 “QoI-Aware Wireless Sensor Network Management for Dynamic Multi-Task Operations” 

A WSN framework supporting multiple prioritized tasks with heterogeneous QoI requirements is 

presented in [48].  . QoI is represented as a vector of attributes that may be extended over time.  

Also, each task specifies its own requirements on the values of attributes in the QoI vector. A 

satisfaction index or measure of the WSN's ability to meet task quality requirements is presented. 

Also, the authors derive a measure of the network's ability to accommodate new tasks, called 

network capacity.  Network capacity is based on a composite satisfaction index function.  A task 

admission control scheme is implemented using network capacity as a threshold.  When 

attempting to admit a new task,  if network capacity isn't sufficient, an attempt at quality re-

negotiation of existing tasks  is made. Also, as tasks complete, WSNs resources are reallocated 
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for optimal use.  It is demonstrated by simulation that such an approach meets task requirements 

while reducing resource consumption when compared with traditional WSN task execution 

strategies. There is a parallel with our approach to quality based context reasoning.  HyCoRE 

middleware receiving a consumer context request containing a prioritized context list with 

prioritized qualities indicators is similar to multiple tasks arriving at a WSN sink. Each task would 

correspond to a single context item requested. QoI and HyCoRE QoC vectors are practically 

synonymous concepts.  The middleware context providers available at a time instant would 

correspond to the fixed WSN.  The goal of HyCoRE is to distribute context reasoning functions in 

a way that meets consumer requirements while minimizing system cost.  The satisfaction index is 

similar in meaning to our application effectiveness measure. One difference in our work is that 

QoC measurement involves the integrating quality from all components involved in the context 

reasoning process. This is referred to as aggregation and propagation.  Further, HyCoRE 

employs a feedback mechanism as a check and balance to declared quality.  Consumer 

requirements are mapped to system performance measures which are used as a basis for 

adaptable reasoning. HyCoRE method for measuring the middleware reasoning performance is 

distinct from [48] and supports the goals of its architecture as discussed in Section 3.1. 

2.3.4 “Middleware support for quality of context in pervasive context-aware systems” 

This work makes an argument for context-aware middleware which decouples applications from 

heterogeneous sensors and supports rapid application development [69]. The motivating reasons 

presented for Quality of Context are: i)QoC based application adaptations, ii)Middleware 

Efficiency,  iii)User’s Privacy Enforcement (The middleware must therefore provide users with the 

means to limit the QoC information provided to different requesters). They identify and define five 

Quality of Context QoC indicators: 

• Precision - ‘granularity with which context information describes a real world situation’. 

• Freshness - ‘the time that elapses between the determination of context information and 

its delivery to a requester’. 



32 

 

• Spatial resolution - ‘the precision with which the physical area, to which an instance of 

context information is applicable, is expressed’. 

• Temporal resolution - ‘the period of time to which a single instance of context 

information is applicable 

• Probability of correctness - ‘the probability that an instance of context accurately 

represents the corresponding real world situation, as assessed by the context source, at 

the time it was determined’. 

Other QoC from other works not included in their list are : trustworthiness,  coverage, resolution, 

accuracy, repeatability, frequency and timeliness. The authors give examples and justifications 

for these 5 quality indicators. They believe they are the first to offer some quantification for 

Quality of Context. This work leaves ample  room for defining many more quality indicators.  

Additionally, techniques for integrating QoC when inferring high level Context is needed. 

2.3.5 “An Effective Quality Measure for Prediction of Context Information” 

A technique for comparative selection of high-level context inference algorithms is presented in 

[73].  It defines a metric, C, by which to discriminate high-level context inference algorithms. The 

metric C measures the certainty for each value inferred.  C is then used in a weighted error rate 

computation for the learning algorithm.  C is also used in a formula correlating it to the probability 

of correctness.  C is only appropriate for probabilistic classification algorithms.  The correctness 

of learning algorithms has been measured in various works, however this work quantifies the 

probability of correctness.   Since, pervasive devices are resource constrained and adaptation 

can be costly, they propose selecting a reasoning algorithm based on the greatest probability of 

correctness.   In a similar vein, our work allows various inference algorithms to be compared 

using multiple quality indicators that may be observed and learned through verification.  In 

HyCoRE, reasoning plans are selected based on ability to meet application requirements 

expressed as a context vector with associated quality indicators.  Another observation is that this 
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work does not deal with the interaction of context elements, reasoning, transformation and the 

corresponding effect on composite Quality of Context as we do herein. 

2.3.6  “Building Principles for a Quality of Information Specification for Sensor Information” 

An application agnostic Quality of Information Specification is presented in [8].  There are many 

works deriving quality measures.  Varied device types use specific models to describe quality. 

Often a different name is given in one approach to describe a semantically equivalent concept in 

another.   The calculations used to compute the quality measures are as disparate as the 

implementing applications.  This work is an effort at providing a common description 

representation for QoI measures. Common for all sensor/data source types. 

2.3.7  “Quality of context: What it is and why we need it?” 

Rationale for context aware middleware which decouples applications from heterogeneous 

sensors and supports rapid application development is provided in [15]. The motivating reasons 

presented for Quality of Context are: i) QoC based application adaptations; ii) Middleware 

Efficiency; and iii) User’s Privacy Enforcement. The authors focus on five QoC indicators.  They 

believe they are the first to offer some quantification for Quality of Context. This work leaves 

ample room for defining many more quality indicators.  Additionally, techniques for integrating 

QoC when inferring high level Context is not discussed. HyCoRE offers additional quality 

measures and an approach to quality integration. 

2.4 Deriving High Level Context Using Integrated Reasoning Related Work 

Increasingly, context aware applications require information derived from heterogeneous sources.  

To this end, one trend in today’s context middleware is the integration of reasoning approaches.  

In this work, we demonstrate a way to derive composite high level context using a hybrid 

approach. In this section we review a few related works and discuss their relation to our work 

herein. 

2.4.1 “Detection of Daily Activities and Sports with Wearable Sensor in Controlled and 
Uncontrolled Conditions” 
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This work [31] makes comparison of supervised and unsupervised learning approaches to 

context reasoning. Artificial neural networks(ANN) and decision trees(DT) are used to identify the 

physical activities including: lying down, sitting, standing, general walking, Nordic walking, 

running, cycling on stationary bike, cycling on moving bike rowing, playing football.   Identifying 

‘playing football’ is an example of a complex high level context that reasons on lower level 

context: walking, running, standing, kicking the ball.  They compare the inference accuracy of 

several context classification approaches: custom decision tree (supervised data), automatic 

decision tree(unsupervised data), artificial neural networks and a hybrid approach with both ANN 

and DT. Similar to HyCoRE, high level context is derived by a process of hierarchical reasoning 

on lower level context.   However, this is an application of context where reasoning is coupled 

with the application.  There is no framework module or data model that can be shared with 

HyCoRE. HyCoRE decouples the application from the reasoning engine, supporting reusability. 

2.4.2 “Context-aware activity recognition through a combination of ontological and statistical 
reasoning” 
 

 [59] provides a demonstration of improving statistical activity recognition performance by 

considering context.  A hybrid of statistical and ontological reasoning is used. A voting algorithm 

for resolving activity context inconsistencies is shown.  The algorithm filters user activity by 

ensure it is consistent both statistically and ontologically for a given time window. The ontological 

modeled (TBox) is setup such that only limited activities are possible at described locations. If an 

activity inference is made that is inconsistent with the model, it is removed. The authors have a 

similar thought on generalized reasoning.  We feel it is possible that many algorithms and 

associated training sets may be generalized. Consider these examples: sound can be generically 

classified as human voice or music; activity as sitting, standing, walking, or running; and weather 

as cold, wet, dry, or damp. The authors herein make the statement: ‘Ideally, an out-of-box activity 

recognition system should be able to recognize one person’s activities without the need of being 

trained on that person.’ 
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2.4.3 “MEBN: A Logic for Open-World Probabilistic Reasoning” 

Multi Entity Bayesian Networks is a logic for probabilistic reasoning [46].  It augments Bayesian 

Network Theory with First Order Logic Model Theory2.  This is one of many approaches to 

probabilistic logics. FOL is the primary approach to reasoning in logical systems as Propositional 

Logic(PL) lacks the expressive power to define models with many items concisely.  PL is very 

context dependent{ car1 is blue, car2 is red}.  First Order Knowledge allows us to model objects 

and relations in a context independent way{ car(color)}.  It is possible to express facts about 

some or all object in the universe (i.e. Exists (car (color =blue)?,For All ((car (color =blue ), 

Owner=female)). FOL can determine a query to be T,F or indeterminate.  It does not support 

reasoning under uncertainty as is found in many real world applications such as knowledge 

interchange. Probability is the most well understood approach to reasoning under uncertainty.  It 

provides a coherent calculus for combining prior knowledge with observed data. Bayesian 

networks are an efficient probabilistic inference approach. However, the following issues have 

hindered Bayesian approaches to probabilistic reasoning: i) Lack of modularity; ii) Intractability of 

worst-case inference; iii) Difficulty in verifying unique and well-defined probability distributions and 

iv) Complexity of specifying local distributions{exponential to number of parents}. MEBN resolves 

these issues.  It is modular and compositional. Like Bayesian networks uncertain hypothesis are 

represented as nodes (random variables) of a directed acyclic graph.  The arcs represent 

probabilistic dependencies.  Related random variables are logically separated into collections 

called MFrags.  MFrags are  partial Bayesian graphs used to derive posterior probabilities of their 

resident random variables (generative knowledge).  MFrags also contain a general knowledge 

referred to “findings” that may be added based on observations.  Findings are similar to T-Box 

assertions in ontological reasoning.  Generative knowledge resembles ABox assertions. Both 

contribute to inference. 

                                                      
2 Also commonly referred to as First Order Predicate Calculus 
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Traditional Bayesian networks are generally context specific and insufficiently expressive.   

MEBN provides a framework for generalized reasoning with Bayesian networks in the same way 

the FOL extends propositional logic with Universal and Existential semantics. Random variables 

in MFrags take arguments that refer to instances of entities in the domain application. Sets of 

MFrags are organized into collections referred to as MTheories. MTheories imply a joint 

probability distribution that can be used to answer application complex queries. Sequences of 

MTheories are created as new axioms(knowledge sentences) are added that do not contradict 

previous assertions.   MEBN supports recursive MFrags.  An instance of a random variable may 

depend directly or indirectly on other instance of the same random variable. This is similar to that 

offered in dynamic Bayesian networks.  Additionally, MEBN logic comes equipped with a set of 

built-in MFrags representing logical operations, function composition, and quantification.  An 

inference algorithm called Situation Specific Bayesian Network(SSBN) construction is provided. 

An SSBN is the minimal Bayesian network sufficient to compute the response to a query  The 

SSBN can be approximated by pruning random variables and arcs that are irrelevant to the 

query.  Also, specialized reasoners may be used for parts of the SSBN. These may include: i) 

Constraint satisfaction systems; ii) Deductive theorem provers; iii) Differential equation solvers; iv) 

Heuristic Search and optimization algorithms; v) Markov chain Monte Carlo algorithms and vi) 

Particle filters. Such approximation is part of hypothesis management which follows from 

execution management where accuracy is balanced against computational resources constraints.   

Interestingly, MEBN may be used to reason about which approximation to apply.    The authors 

make the following observations which support representing knowledge a probabilistic FOL 

format: i) FOL is the de facto standard logic for formalizing both individual assertions and 

knowledge structures and ii) Probability theory provides a principled approach to knowledge 

interchange among different reasoning. The following diagrams show how a sample diagnostic 

task can be modeled from BN to MEBN. 
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Figure 6 Bayesian Network For Equipment Diagnostic Task 

 
Figure 7 Recursive Mfrag 
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Figure 8 MEBN - Situation Specific Bayesian Network  

 

MEBN is not a competing idea, but provides the basis for tools that may complement hybrid 

modeling and reasoning. The information presented underscores the need for open world 

reasoning under uncertainty. Approaches that do not inherently support uncertainty or those 

constrained to specific domain instances are of limited usefulness. The expressiveness & 

theoretical soundness of combining First Order Logic model semantics with probability theory was 

explained.  The idea of execution management is also discussed.  Reasoning may be adjusted to 
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balance accuracy against computational resource constraints. Further there may exist system 

polices or other justifications for selecting one algorithm over another. This execution 

management idea is similar to my approach of hybrid reasoning by context flow construction and 

adaptation. 

2.4.4 “Towards the adaptive integration of multiple context reasoners in pervasive computing 
environments” 
 

The effectiveness of integrating multiple context reasoners is demonstrated in [61].  A middleware 

solution for handling  dynamic sensor environments is proposed.  There is a demonstration of 

aggregation where the same context is multiply provided, by averaging confidence vectors after 

parallel execution of classification reasoners. The focus of HyCoRE is different.  HyCoRE reflects 

a composite quality though many aggregation and propagation of quality indicators.  Adaptable 

context reasoning, including the process and techniques for integrating quality, is one of 

HyCoRE’s chief contributions.  

2.5 Context Modeling and Representation Related Work 

2.5.1 “Evaluation and Analysis of a Common Model for Ubiquitous Systems Interoperability” 

One barrier to context sharing between pervasive systems is lack of a common semantic 

representation.   Middleware frameworks tend to use proprietary data model. The authors of this 

work evaluate UIF/UCM used in the NEXUS framework [11]. UIF/UCM has the single purpose of 

providing a unifying model for context data.  The UIF is a composite knowledge store, containing 

inputs from applications, reasoners or any context supplier that uses the Ubicomp system 

adaptor.  The reasoning engine is based on Jena and supports SWRL rules. The context model 

used in HyCoRE can to support interoperability.  UIF/UCM does not support quality 

measurements, source tracing and generalized reasoning as our model. HyCoRE is not limited 

rule based knowledge representations. While rules are expressive, large rule sets are 

cumbersome and inefficient when compared to statistical approaches. 
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2.5.2  “Standard Ontology for Ubiquitous and Pervasive Architecture SOUPA” 

This work attempts to define generic OWL vocabularies that can be shared by all pervasive 

computing applications [21].  SOUPA also provides an extension to define additional vocabularies 

for supporting specific types of applications.  The authors have recognized that existing pervasive 

systems were weak in supporting knowledge sharing and reasoning and lacked adequate 

mechanisms to control how information about individuals is used and shared with others. SOUPA 

provides historical perspective on modeling efforts. SOUPA consists of several sub ontologies: 

� Friend-Of-A-Friend ontology (FOAF)- Allows the expression of personal information and 

relationships 

� DAMLTime- Designed for expressing temporal concepts 

� OpenCyc Spatial Ontology- Define a comprehensive set of vocabularies for symbolic 

representation of space 

� Regional Connection Calculus (RCC)-  Consists of vocabularies for expressing spatial 

relations for qualitative spatial reasoning;Describing and reasoning about location 

� COBRA-ONT- Focuses on modeling contexts in smart meeting rooms 

� MoGATU BDI ontology- Focuses on modeling the belief, desire, and intention of human 

users and software agents 

� Rei policy ontology- Defines a set of concepts for specifying and reasoning about security 

access control rule 
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Figure 9  SOUPA 
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2.6 Survey of Knowledge Representations used for Context Modeling and Reasoning 

The most widely used techniques for inferencing high level context are rule-based and decision 

tree algorithms, naïve Bayesian and hidden Markov models [47].  Applying these techniques to 

low level context data often requires a combination of inputs and layers of transformation.  

Choosing appropriate reasoning methodologies for context is critical to application performance 

as well as utilization of resources. Context architects must address the many suitability factors 

before choosing a methodology for inference. In the following, a sampling of considerations for 

choosing reasoning methodologies is discussed. The considerations are mainly based on: nature 

of context data & their sources; inferencing mechanism characteristics; and resource 

considerations. Description Logics (DL) reasoning on ontologies is a natural way to guarantee 

such requirements as rules, constraints or consistency levied across the entire context/knowledge 

set. However, the expected size of the context data at maturity and the sampling frequency must 

be considered since DL reasoning does not scale well in terms of meeting interference timelines 

for large knowledge sets [7],[43],[53],[74]. Uncertainty in context data acquisition determines the 

usage of probabilistic approaches requiring network structures and prior probability distributions. 

Bayesian networks [55] are mathematically well founded and efficient, but as noted by Liu and 

Zhang [48] suffer from the following weaknesses: i)mutual exclusivity required by the computing 

hypotheses; and ii) inability to account for the general uncertainty. Dempster Shaefer Evidence 

Theory(DSET)allows accountability for epistemic uncertainty in the data model and may prove 

better for reasoning on information when independent heterogeneous sources are reporting the 

same context [27],[57],[64]. Fuzzy Membership functions can be used to map low level feature 

values into application specific concepts. DBNs and HMMs can capture the effect of prior context 

values on current context probabilities if the context in question is affected by historical values 

[27],[64] Most context aware applications require constitution of higher level contexts by 

combining other lower level contexts. The challenge here is to determine how to combine low 

level contexts. Researchers have employed Bayesian Networks, Decision Trees, First Order 

Logic, and Rules [10],[47],[64] to perform similar tasks. In cases where future maintainability is a 
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concern, the use of rules should be limited and an unsupervised learning approach can be used 

for automatic adaptation. Artificial Neural Network or Genetic Algorithms [64] may be considered 

when the application involves predicting contexts over numerous possibilities. These are 

particularly good for context models exhibiting a high degree of interconnectivity; where there is 

sufficient time and training data for developing an accurate inference model. On the other hand, if 

the context can be reduced to some function of its inputs (such as recognizing human voice from 

a sound sample), a discriminant analysis [10], [52] approach may be appropriate. 

Many, many approaches have been to model and reason about context. There are approaches 

that are clearly best suited for low level information fusion, while other approaches are better for 

high level context.   This illustrated in Figure 10 below. 

 
Figure 10 Reasoning Techniques applied to context 

 

The following sections review some benefits and disadvantages of a few reasoning techniques 

used in existing context aware applications. 
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2.6.1 Bayesian Networks 

Bayesian Networks (BN) as well as ontological reasoning has been applied to pervasive context 

inference [7],[64],[70],[77]. BNs provide a solid theoretical foundation for representing uncertainty. 

Hindrances to the use of BNs for inference in pervasive domains include: i) lack of 

expressiveness; ii) inflexible instance specific models; iii) inability to represent objects and 

relationships that cannot be specified in advance; iv) inability to express generalized recursions of 

objects; and v) intractable worst case inference. 

2.6.1.1 First Order Bayesian Networks 

Multi-Entity Bayesian Networks (MEBN) resolves many limitations of traditional Bayesian 

networks and offers great potential for pervasive context inference. 

MEBN [46] is a knowledge representation formalism  that augments the expressiveness of First 

Order Logic (FOL) with the sound theoretical foundations of Bayesian Networks (BN). Application 

domain concepts are segmented into groups of BN fragments called MFrags. Groups of MFrags 

collectively represent a joint probability distribution, referred to as an MTheory. Nodes in MFrags 

can be parameterized. Thus, with MEBN, classes/types of random variables can be defined. 

Generalized recursion is also possible within Mfrags. An instance of a random variable may 

depend directly or indirectly on another instance of the same random variable. As queries are 

posed to the MEBN system, Situation Specific Bayesian networks (SSBNs) are dynamically 

constructed to answer those queries. SSBNs are minimal BNs needed to compute posterior 

probabilities on targeted random variables in light of provided evidences. MEBN claims to be the 

first language having all the following properties: i) the ability to express a globally consistent joint 

distribution over models of any consistent FOL theory; ii) a “proof theory capable of identifying 

inconsistent theories in finitely many steps and converging to correct responses to probabilistic 

queries”; and iii) a built-in mechanism for extending and refining theories in the light of 

observations [46]. Additionally, MEBN provides representations for quantifiers, function 

composition, and logical connectives. It should be possible to translate any knowledge 

represented in FOL to a set of MEBN theories. 
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2.6.2 OWL Ontologies and Descriptive Logic Reasoning 

Ontologies offer the expressiveness of first order logic and a formal specification of data 

semantics. They are a desirable representation of knowledge since semantics are implicit in the 

representation. Objects with their attributes, relationships and constraints can be defined. This 

makes ontologies suitable for representing complex relationships and knowledge sharing. 

OWL reasoning can be used to reason about: 

� Knowledge Consistency (discovers if the models or knowledge is contradictory) 

� Existence of data instances, property values 

� Subsumption relations 

� Derive implicit relationships 

� Knowledge Equivalency 

Ontologies are good for answering queries that involve: search on attributes, search for 

class/types instances, inheritance/subsets, relationships derived indirectly. Some examples of 

information that can be derived with ontologies include: 

• Implicit knowledge/relationships -Tweety is a bird, however tweety is not a flighted bird. 

So, Tweety cannot fly 

• Knowledge base consistency - a person cannot be present in two locations 

• Find all people at location 

• Is Sheryl at location 

• Is X attribute of Object X equal to Y 

• Is Lynda an ancestor of John? 

• Which printers are available?  However, availability may be better  modeled with a belief 

network, fuzzy logic or rules 

 
When we refer to ontological reasoning we are primarily making reference to Description 

Logics (DL).  Description Logic reasoning is  the decidable subset of first order logic. SROIQ, 
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SHION and SHIF are examples of DL languages.  Today, there are probabilistic variances to 

support inference with uncertainty: P-SHIQ and/or P-SHION. Several DL implementations exist 

{Pellet, Racer, Fact++, HerMit}3. These support inference from ontological languages. 

Though the differences in underlying DL languages implemented by DL reasoners affects 

performance characteristics of inferencing, in general DL reasoning can be used to:  In general 

inference with existing ontological languages is computationally expensive, does not scale well 

and offers no direct way to represent uncertainty or logically combine concepts to model complex 

high level contexts. 

Ontologies are used extensively in the semantic web for many domains {medical, 

automotive, education, earth & space } There are current efforts to convert existing knowledge 

bases to ontologies4 for reasons including those above. OWL5 2 is the most recent version of the 

Web Ontology language recommended by W3C.  It offers three dialects that constrain the 

language to improve inference performance, interoperability with databases and rule languagues. 

In order or decreasing representation power there exists: OWL Full, DL, EL and Lite. Reasoning 

based on OWL-DL is decidable.  This is accomplished by constraining OWL full concepts that 

make reasoning unwieldy. DL reasoning has exponential time complexity. OWL-EL Limits OWL to 

expressions that can be decided in Polynomial Time. One existing EL reasoner is Pellet EL. 

 

Wide acceptance of OWL has led to stable tools, apis, platforms and multiple concrete 

syntaxes for development. Reading the Use Cases that have guided the OWL 2 standard helps in 

understanding how useful it can be for knowledge representation. 

The tradeoff between the cumbersome; verbose OWL representation and its beneficial occurs 

when when the knowledge base(KB) is sufficiently large; where consistency maintenance and 

                                                      
3 See http://www.cs.manchester.ac.uk/~sattler/reasoners.html for a list 
4 Stanford University is currently converting its Immune Epitope Relational Database to OWL 
5 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group  
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inferencing would be too unwieldy using other techniques.  For small KB and those that involve 

little relationship inferencing, other representation and reasoning techniques might apply.  The 

paradox for pervasive environments is that fact the even DL reasoning performance is often 

unacceptable for small KBs. In one work, Pellet took 11 minutes to classify a relative small 

ontology.  This is yet another reason for offline classification of large ontologies.   In highly 

dynamic environments, DL reasoning must be used with care. 

2.6.2.1 SWRL 

SWRL is a proposal for a Semantic Web Rules Language, combining (OWL DL and Lite) with the 

Rule Markup Language. SWRL has the full power of OWL DL, but at the price of decidability and 

practical implementations. Rules are of the form of an implication between an antecedent (body) 

and consequent (head). The intended meaning can be read as: whenever the conditions 

specified in the antecedent hold, then the conditions specified in the consequent must also hold.  

Figure 11 shows two SWRL rules. They specify i) whenever a building has an intrusion status of 

‘ALARM’, the threat potential must be ‘HIGH’  and ii) If a device that is located in an area of the 

building has an intrusion status of ‘ALARM’, then the status of that area as well as the building 

must also ‘ALARM’. 
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Figure 11 Sample SWRL Rules in Protege 

 

SWRL and OWL can to be verbose, cumbersome and error prone.  While rules are expressive, 

large rules sets are cumbersome and inefficient when compared to statistical approaches. The 

mature tools available for OWL mitigates some of this challenge. 

 
2.7 Background Summary 

The following figures and tables summarize our observations regarding the suitability of OWL, 

SWRL and traditional BNs for context modeling. Rules offer more espressiveness while tradtional 

BNs offer greater inference speed and scalability. 

 
Figure 12 Comparison of OWL, SWRL and BNs for Knowl edge Representation 
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CHAPTER 3  

HYCORE DESIGN AND DATA MODEL 

 

This research proposes enabling solutions for adaptive and effective reasoning in pervasive 

environments. Considerations include: shareable context data models, integrated reasoning, 

deriving integrated quality of context, and adaptive generalized context reasoning. 

3.1 Requirements Analysis 

Ideal requirements for a reasoning engine were derived after surveying many context aware 

applications and frameworks (see Chapter 2). These ideas have been selectively borrowed and 

combined from existing frameworks and software engineering concepts. The following 

subsections discuss these requirements. 

3.1.1 Requirement: Modular Components for Reasoning 

As can be seen across contemporary applications, many approaches are needed to meet the 

requirements of a complex context aware application. Variety in reasoning, modularization and 

optimization equips a reasoning framework to support a variety of reasoning techniques across 

heterogeneous context sources. This results in greater reuse, as application designers are able to 

map context elements to appropriate reasoning modules. Decoupling data, reasoning and 

knowledge management promotes context sharing among applications. 

Such architecture also supports maintainability, extensibility and evolution of reasoning. 

Reasoning algorithms as well as derived contexts (i.e. knowledge) may be reused among 

applications. APIs for abstraction add greater flexibility in the types and sources of context that 

can be supported. Mechanisms for reasoner optimizations provide application designers with an 

additional tool for meeting system goals. Optimization can be accomplished by exposing 

algorithm parameters tuned using domain experience along with experimentation. Where there is 
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variety, interchangeable algorithms can be used in parallel to improve accuracy. Experimentation 

will ultimately validate the suitability of chosen reasoners for a given application. 

3.1.2 Requirement: Consistent and Dynamic Context Data model 

Greater context sharing among applications can be achieved with a consistent representation of 

data. At times, reasoning requires a unique set of models and formatting. Also, modeling 

formalisms evolve with time. Utilities for model translation reduce the burden on application 

developers; removing another obstacle to framework reuse. A dynamic model strengthens 

context maintainability. Along with modularization, it also supports incremental development of 

applications and reasoning techniques. Reasoning data models should reflect the current reality. 

As applications mature, new concepts may be augmented to the data model, while redundant and 

obsolete elements are pruned. 

3.1.3 Requirement: Mechanisms for Context Maintenance 

• Anomaly Reporting and Conflict Resolution: There are times when two sources of context 

report conflicting observations. The same could be true of independent algorithms making 

parallel inferences. The resulting inferences could conflict. Additionally, an observation or 

derived context could violate the data model. When issues cannot be automatically resolved, 

a sufficient context reasoning architecture has a means to handle anomalies (log, service 

call, JMS notification, email, etc.). 

• Context integrity: Context integrity includes considerations for context expiration, 

provenance/traceability of context, and retention of pertinent context information at every 

level of the data model. To maintain an accurate view of current reality, every element of 

context should have an associated expiration. Expired context should be stored for reasoning 

based on history, but never used where reasoning requires fresh data. Context derivation 

includes information regarding time, quality, source and method of deriving context. Every 

contextual element can be traced back to its source. This is useful in evaluating credibility, 

quality or mitigating conflict. Where storage is not an issue, retaining pertinent levels of 
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context information may be useful in offline analysis, supporting future applications and error 

handling. Other context integrity issues to consider include: context purging and 

synchronization with other knowledge stores. 

• Consistent Storage and Retrieval of Context: The usability of a reasoning framework is 

improved when knowledge can be stored and retrieved in a consistent manner. Besides 

supporting direct application queries, case-based reasoning techniques rely on past 

instances of events. Specifically, HMMs and DBNs use histories to infer current events. To 

support a wide variety of reasoning approaches as well as offline data analysis, storage of 

context history is needed. 

3.1.4 Requirement: Distributed Context Reasoning and Collection 

A centralized approach to context reasoning and collection is limiting. Pervasive devices are 

limited in resources, so it is wise to make use of backend or offline reasoning where possible. 

Also, if a complex application is to compute multiple heterogeneous pieces of context using 

disparate approaches, parallel execution in the distributed system could improve performance. 

Existing toolkits may already offer the best suited implementation of a reasoner. APIs for 

interfacing external reasoners assists in rapid development and innovation. Though many 

applications do not require or support remote communication, a sufficient reasoning framework 

would minimally offer the option of distributed reasoning. 

3.1.5 Requirement: Quality of Context (QoC) Support 

Along with variety in reasoning choice and parameterization, QoC based context reasoning 

further helps application developers to meet system requirements. Maintaining QoC requires 

retention of associated data and statistics through many components of the architecture. 

Feedback techniques are useful in validating and grading performance. A consumer of context 

may be concerned with the following QoC factors: accuracy, speed, trustworthiness, data 

freshness, resolution and class. Class refers to data type with associated semantics and 

representation. It is reasonable to expect classifiers and other types of reasoners to offer varying 
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contracts contain descriptions of capabilities/contexts available, as well as acquisition 
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procedures. Consumer service contracts specify consumer context and quality requirements.  

Both consumer and provider components include actuation specific to their participating entity. 

At the context acquisition layer, context providers offer quality annotated context data/ services to 

HyCoRE.  Context sources are abstracted internally as ReUsable Reasoning Components. RUCs 

are generalized parameterizable modules which are used to abstract reasoning algorithms 

(including statistical, ontological, logic and rule based approaches), data transformers, and 

utilities for sensory data acquisition, knowledge query and maintenance. Low level concepts can 

be fused into complex high level concepts by linking RUCs in an application specific order. As 

needed, the context reasoning subsystem selects appropriate RUCs for participation in 

orchestrated reasoning plans to produce high level context. Provider actuators separate the 

context source from context reasoning using utilities and APIs to map source data into HyCoRE 

domain concepts. Actuators act as data collectors and may employ any buffering, preprocessing 

and feature extraction techniques as long as each conforms to HyCoRE actuator interface. 

At the consumption layer context consumers request context information, providing 

quality requirements and response actuation details in the consumer service contract.  As context 

requests are received, appropriate reasoning plans for inference are activated. 

The knowledge layer contains stored context data. Selective elements of context (direct 

and inferred) are maintained along with pertinent derivation information. It is useful to maintain 

much of the data related to context derivation. Applications may need to verify pieces of low level 

context used in context derivation data to meet QoC, security policies or to mitigate conflict. New 

context is sanitized by performing data consistency checks against existing knowledge models, 

as well as system polices. Knowledge storage also includes services for context conflict 

resolution, synchronization, cleanup, expiration and error reporting. 

The context reasoning subsystem is the heart of HyCoRE. It is responsible for context 

reasoning planning, execution and adaptation.  At this layer, inferencing is accomplished by 

instantiating a reasoning plan best matching application requirements. Instantiated reasoning 

plans are called context flows.   Context flows are independent inferencing tasks that can be run 
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in parallel. These are created by composing HyCoRE reusable reasoning components (RUCs).  

Context flow configuration includes considerations for asynchronous execution, periodicity and 

persistence. A context flow is represented by a directed acyclic graph of nodes which include 

references to selected context providers as RUCs. Reasoning quality is monitored and plans are 

adapted to sustain context inferencing and quality in the face of dynamic provider quality and 

availability.  Context flows will be discussed at length in succeeding sections. 

In summary, HyCoRE is more than a broker or central repository.  A single instance of 

HyCoRE may employ distributed reasoning and KM components. As will be discussed, it is the 

source agnostic information descriptions that enable the orchestration of generalized information 

into usable knowledge; independent of data source type or location. HyCoRE orchestrates 

interchangeable reasoning elements and dynamically adapts based on quality indications.  

Adaptive context reasoning based on adaptable flows contributes to efficient use of resources. 

With regard to reasoning using context flows, the HyCoRE middleware manages: 

� Context Flow Creation - runtime instantiation of reasoning plans based on 

available providers; 

� Quality Management -deriving integrated high level context quality measures; 

� Reasoning Adaptation -identifying triggers and adapting reasoning flows to 

support middleware policy as well as application requirements; 

� Asynchronicity -supporting context push and pull both synchronously and 

asynchronously; 

� Provenance  –tracking context sources contributing to high level inference.  Also, 

change history may be associated with every inference; 

� Reuse - attempts minimal reasoning in support of multiple consumers, reusing 

underlying resources and reasoning plans. 
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A more detailed discussion of reasoning subsystem components is deferred until after the 

HyCoRE data model and context quality quantification are explained (See SectionsCHAPTER 4 

3.3 and 4.2).  Elements of the data model are used as internal and external components 

collaborate to accomplish context reasoning.  Quality quantification is central to decision points in 

context reasoning, as will be discussed. 

3.3 HyCoRE Context Data Model 

As illustrated in Figure 14, context is the basis of information exchange between HyCoRE internal 

and external reasoning components. It is a general term for information identified, modeled and 

used for the purpose of context aware adaptation or higher level reasoning.  Often, it is a 

knowledge by-product of stages of reasoning and transformation on low level data. The context 

that a particular HyCoRE instance reasons about and publishes is driven by administrative 

configuration and application extensions of the HyCoRE data model.  So, HyCoRE is not 

intrinsically limited to a particular type of context, but may be limited by available context 

providers. Multiple knowledge models, supporting varied types of context, may exist in a single 

instance of HyCoRE. (Note that the terms knowledge, information and context are used 

interchangeably in this document). 

As mentioned previously, there are many correct approaches to modeling context 

[7],[13].[19],[21],[28],[32],[36],[38],[40],[43],[63]. The important concern is for the model to 

sufficiently capture the targeted context characteristics, support efficient query, retrieval and 

maintenance.  Context characteristics include: attribute heterogeneity, dynamism, availability, 

temporality, source derivation, credibility, and uncertainty.  A model that is coupled to a specific 

type of application may have inherent performance improvements over a general purpose model.  

Despite this possible loss of efficiency, HyCoRE employs a general context model approach 

since heterogeneous low level data as well as complex inferred context characteristics must be 

captured. Further, since HyCoRE is designed for effective orchestration of local and distributed 

reasoning components into a reasoning plan executed to produce high level context, the essential 

information necessary to support this function is also provided in the HyCoRE data model. 



 

Figure 

Not using the popular sematic web ontology language (

justified. OWL is useful if the context expected involves inference on relationships between 

concepts.  Many description logic (DL) languages/tools do this efficiently. The trade

the cumbersome, verbose representation of OWL and its benefits is found when the knowledge 

base (KB) is sufficiently large; where consistency maintenance and inferencing would prove too 

unwieldy using other techniques.  For small KB and those t

inferencing, other representation and reasoning techniques are more appropriate.  The paradox 

for pervasive environments is the fact that DL reasoning performance is of

small KBs ( see discussion in Secti

UML, avoiding any implementation specific association.  However,
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Figure 14 HyCoRE Context Data Model 
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implementation specific association.  However, the multimodel support in 

 

conceptual representation is 

. OWL is useful if the context expected involves inference on relationships between 

concepts.  Many description logic (DL) languages/tools do this efficiently. The tradeoff between 

the cumbersome, verbose representation of OWL and its benefits is found when the knowledge 

base (KB) is sufficiently large; where consistency maintenance and inferencing would prove too 

hat involve little relationship 

inferencing, other representation and reasoning techniques are more appropriate.  The paradox 

ten unacceptable for 

epresent concepts using 

model support in 



57 

 

HyCoRE allows the architecture can be configured to support OWL or other XML schema based 

components.  This is a conceptual data model that may be implemented any number of ways 

(XML, OWL, JSON, Object Serialization etc.). 

The HyCoRE context data model offers value to context modeling in the following ways: i) 

Context Information is modeled as source agnostic meta-data; ii)  Disparate types/categories of 

context are supported; iii) Multi-dimensional quality attributes are associated with all elements of 

context;  iv) There is support for multiple context knowledge models with separation of physical 

representation and semantic  interpretation concerns; and v) Finally, this model captures context 

provenance. These unique features of the HyCoRE context model are discussed in the next 

section. 

3.3.1 Source Agnostic Context Meta-data Model 

It is common practice to extract meta-data of large bodies of information to facilitate manageable 

information sharing. We use context meta-data to enable reasoning generalization and reuse; 

enabling machine interpretation of context.  Meta-data is not specific to device, platform or 

reasoning algorithm.  It simply describes the information in a machine interpretable manner. For 

this purpose we have identified information supplementary characteristics necessary in describing 

context in pervasive application domains. These characteristics include: i) context categories ii) 

quality cost indications iii) both a semantic and physical representation of data; and iv) a list of 

targets to which a context applies. 

The context target specification describes domain objects on which context information 

applies and is considered valid.  A target is a generalized description for an object of knowledge 

that previously exists and is understood by both the consumer and provider(s) associated with a 

particular context element. Targets of context include: person(s), location(s), device(s), time 

interval, situation .etc. 
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Context categories, quality indications, semantic and physical representational specifications of 

the meta-data model will be discussed in the following sections which highlight other unique 

features of this model. 

3.3.2 Multi-Centricity 

Centricity refers to the target domain in which context information applies. Often, the centricity 

reflected in the data model and reasoning is singular and tightly coupled with a specific 

application (see related work in Chapter 2 ). The HyCoRE model is distinct in supporting many 

centricities of context, including user, device and location centric contexts; thereby supporting 

varied application types. In the model illustrated by Figure 14, context category is a label 

describing the type of information; identifying its centricity. Since context is a general term for 

information produced as a reasoning by-product, it may be classified many ways.  Section 2.1 

discussed the many types of context existing in literature. Context category(ies) capture the types 

to which a piece of information is applicable. Examples include: activity, identity, situation social 

environmental and spatial contexts.  Often informal applies to multiple categories, so this model 

of context supports specifying a list of applicable categories. 

3.3.3 Multi-Dimensional Quality Representation 

In the HyCoRE architecture, every component affecting context derivation is associated with a 

quality/cost model. Sensors, reasoners, general context providers, transformation functions all 

have quality indicators that affect resulting context. The quality model includes both declared and 

observed quality/cost indicators appropriate for the type of component.  It is impossible to foresee 

all measures that could be determined to be quality related.  Also, not all quality indicators are 

appropriate for all sources of context.  The concept of context quality will be discussed more in 

Chapter 4;  wherein the observations determining quality attributes/features provide application-

specific added value, thus supporting declaration of different quality indications for each 

component. 
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All context providers have an associated QC indication as does the context that is 

inferred by them.  Context consumers specify quality requirements.  The HyCoRE system has 

both quality and cost policy settings.   During the context reasoning process, an integrated high 

level context QC indication is computed and provided to the consumer in the context report.  This 

high level QC indication is further used by the HyCoRE system for computing QoCS measures 

and evaluating reasoning adaptation needs. More details on deriving high level QC indications, 

quantifying QoCS and reasoning adaptation are discussed in later chapters. HyCoRE represents 

quality/cost of context as a generalized vector of attribute values pairs with associated priority and 

unit indications. For simplicity we assume common understanding of quality semantics implied by 

attribute names (i.e. accuracy, latency..). Refer to Chapter 4 for quality discussion. 

3.3.4 Support for Multiple Knowledge Representations 

Many inferencing toolkits support only a few types of context (see Section 2.2). By using context 

meta-models, HyCoRE supports heterogeneous representations of knowledge. Notice the context 

data model element in Figure 14. The data model contains an objective description of context 

information that is not specific to a device; also called context meta-data. Context meta-data 

specifies the physical and semantic criteria for context equivalency.  Context consumers are 

paired with providers on this basis.  Also, providers are interchangeable based on matching meta-

model information. 

The physical context model describes the format for physical representation of context 

values. A survey of context reasoning approaches reveals that numerous physical models are 

used for the same categories of context. Physical models include: number, name/value pairs, 

object, file reference, string and multi-string values.  A context element’s physical data model is 

one of many ways to realize that context value for a specific application. For example: A Tri axis 

accelerometer sample may logically contain multiple lines of X, Y, Z axis acceleration readings. 

Physically this may be represented as a string or Java object. Context provider developers 
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determine which representation is most suitable and publish the chosen model in provider service 

contracts. 

The semantic model elements collectively clarify the syntax and semantic intention of the 

physical context model.  The semantic model includes: 

1. Semantic Category – specifies the logical class of data contained in the physical model 

which may include: image, video clip, audio sample, accelerometer sample, feature set, 

activity, location, GPS coordinate, and postal address. Note that the semantic category is 

distinct from the context type. An ‘activity‘ context type can have several physical and 

semantic models with associated semantic category.  The semantic category is tightly 

coupled with the data representation.  Whereas the type of context is a broader 

classification of information. For example:  A low level ‘activity’ context represented  by 

raw data may have a semantic category of ‘accelerometer sample’.  A transformation 

algorithm which manipulates raw data produces ‘activity’ context with a semantic 

category of ‘feature set’.  A follow on reasoning algorithm may transform the feature set in 

to a high level ‘activity’ context with a semantic category of ‘physical activity’. 

2. Physical model constraints- impose syntax and value limitations on the physical model. 

For example: a number may be constrained to the range [1-10].  A string physical model 

may be constrained to a subset of values: walking, sitting or standing. 

3. Knowledge model constraint- adds semantics to the physical model by specifying a 

schema, ontology, java class or other semantic limitation on the context representation. 

For example: an audio clip can be physically represented as a binary object with a 

semantic knowledge model specifying a wave format. A target location can be 

represented physically as a string, but the semantic knowledge model may be a class 

with field designations for GPS latitude, longitude and direction. 

Context is always associated with a meta-data model which affords semantic interpretation. This 

model is structured such that possible relevant context providers are implicit. Though the context 
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provider reporting the context is  a specific instance, any provider with matching input criteria 

could have provided it.   This means that multiple knowledge representations are also implicit, 

since context providers using different internal knowledge representations may infer the same 

class of context resulting in same external meta-data modeled values. Context meta-data with 

physical and semantic representation models enable generalization and reuse.  HyCoRE context 

reasoning adaptation logic, discussed in Chapter 5, also centers on matching of meta-data. 

3.3.5 Context Provenance 

Context provenance identifies the sources, process of derivation and change history of context 

data values.  Limited provenance is revealed by context attributes shown in Figure 14.  A context 

providerTrail attribute provides a way to trace back through serialized context flows. This source 

trail could be important  in off-line provider analysis in sensitive applications (i.e. geo-political, 

military,  criminal forensic applications).  4WH is an acronym for the descriptors:  when, where, 

what, who, and how. These descriptors are used in many domains for describing information. 

This data model supports declaring and determining these values for a given context. The work in 

[3] uses 5WH. That work also considers why as reflection of application targeted use of context.  

HyCoRE is not concerned with why context is required.  It uses application requirements and 

system defined policies to guide behavior. The when descriptor reflects the time domain of 

context; revealed by timestamp attributes. Where is the spatial domain of context and is revealed 

by location attributes. What describes the content of context and is revealed by the value and 

data model elements. Who as the source of context is revealed by the providerTrail attribute. 

Who as the target of information is revealed in the target list included in the context-meta data.  

How reflects the method(s) of inference; revealed in both the inferenceModel  and providerTrail 

attributes.  The inferenceModel identifies the context template. Context templates are patterns of 

reasoning defined by domain experts; specifying how information is combined and transformed to 

derive high level context. Templates are realized in real-time as context flows in response to 

consumer request and provider update. Templates specify how information is combined and 

transformed to derive high level context. 
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3.4 HyCoRE Context IO Model 

In HyCoRE, consumer and providers are discovered, actuated and managed using a common 

context I/O model.  Figure 15 depicts the I/O model.  Table 3, is a generalized consumer 

requirement specification to be discussed in the next section. 

  



 

Figure 
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Figure 15 HyCoRE Context IO Specification 
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Table 3 Consumer Quality Requirement Specification 

 
The figures above are intended as conceptual syntax.  Actual implementation may vary. 

 

3.4.1 Context Consumers 

A context consumer is any formal subscriber of information in HyCoRE. The consumer service 

contract is an agreement between HyCoRE and a consumer application regarding context and 

quality.  Consuming applications are allowed to specify context desired and quality required. The 

application is best placed to provide information that distinguishes what is relevant and valuable. 

The application context specification is a requirement by which the middleware system measures 

its success. It is a syntax that allows an application consumer to describe its quality goal as a 



 

mathematical expression containing context identifiers and weighted quality indicator 

preferences.  Weights reflect application priorities of context and quality.  

conceptually illustrate consumer requirements. 

requests for context are matched to reasoning plans irrespective of the knowledge models or 

inference algorithm used for derivation. A consumer r

data model which includes generalized physical and semantic descriptions of information desired.

Figure 16  below is a prototypical example of a context consumer request containing meta

The consumer is requesting the location of three targets,

negative priority indications in th

indicators.  The expected format and context of the data to be returned in the context report is as 

specified. The meta-data requirement specification contains enough information for deriving a 

reasoning plan for inference. 

 

Figure 16 Example C
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mathematical expression containing context identifiers and weighted quality indicator 

preferences.  Weights reflect application priorities of context and quality.  Figure 15

conceptually illustrate consumer requirements. To accomplish effective reasoning, consumer 

requests for context are matched to reasoning plans irrespective of the knowledge models or 

e algorithm used for derivation. A consumer request describes context using the

data model which includes generalized physical and semantic descriptions of information desired.

below is a prototypical example of a context consumer request containing meta

is requesting the location of three targets, specifying an accuracy of 92%. The 

indications in the example represent the consumer’s indifference to those QC 

The expected format and context of the data to be returned in the context report is as 

data requirement specification contains enough information for deriving a 

Example C ontext Consumer Requirements 

 

mathematical expression containing context identifiers and weighted quality indicator 

15 and Table 3 

To accomplish effective reasoning, consumer 

requests for context are matched to reasoning plans irrespective of the knowledge models or 

equest describes context using the meta-

data model which includes generalized physical and semantic descriptions of information desired.   

below is a prototypical example of a context consumer request containing meta-data. 

accuracy of 92%. The 

the consumer’s indifference to those QC 

The expected format and context of the data to be returned in the context report is as 

data requirement specification contains enough information for deriving a 
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3.4.2 Context Providers 

A Context Provider is any device, repository, algorithm or service providing context. A single 

provider may be the source of several types of context.  Providers may use varied knowledge 

representations as a basis for inference. The most popular models in pervasive computing are 

rule-based, decision tree, naïve Bayesian and hidden Markov models (see Section 2.6). 

However, the provider’s internal model is irrelevant for meta-data matching. It is the source 

agnostic meta-data model elements that are important to HyCoRE.   Providers include an 

actuation component which serves as a control for local or remote communication. Context 

providers publish their capability to share context using a service contract. The context provider 

service contract along with periodic quality verification, give HyCoRE knowledge of types and 

quality of context available.  Section 3.1 discussed ideal architecture requirements and suggested 

that a desirable feature of a context provider definition would include optimization parameters or 

some means to control internal behavior.  This design could be extended to support such 

attributes.  Alternatively, context provider may publish multiple services contracts; where distinct 

configurations are actuated separately, resulting in different QC indications.  In this case, 

HyCoRE would choose between configurations the same way as it would choose between 

different providers. Figure 17 below is a prototypical example of a context provider declaration 

containing meta-data. 



 

Figure 17 Example 
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Example Context Provider Context Meta-data 

  

 



 

3.4.3 Reasoning Data Model 

HyCoRE’s context reasoning begins with declaration of reasoning plans or templates.  These are 

dynamically realized and bound to specific context providers as context flow

reasoning stream which contains

reasoning nodes, templates and flows are given 

representation of the HyCoRE’s reasoning model.

Figure 

3.4.3.1 Context Templates 

A context template is a generalized context inference network configuration, representing a 

formal description of a single high level context. The template does not specify context providers 

or reasoners. It only describes how published context specificati

level context. This generalization supports dynamic and adaptive context inference. 

context reasoning is accomplished through the execution of instantiated reasoning plans (

flows). A reasoning plan or template i

as illustrated by the context template depiction in

reasoning processes with directed acyclic graphs (DAG) for 

and available graph theoretical solutions. 
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HyCoRE’s context reasoning begins with declaration of reasoning plans or templates.  These are 

realized and bound to specific context providers as context flows.  A flow contains a 

stream which contains a serialized list of reasoning nodes.  Details on context 

reasoning nodes, templates and flows are given in the next section. Figure 

representation of the HyCoRE’s reasoning model. 

Figure 18 HyCoRE Reasoning Data Model 

 

A context template is a generalized context inference network configuration, representing a 

formal description of a single high level context. The template does not specify context providers 

or reasoners. It only describes how published context specifications are used to derive higher 

level context. This generalization supports dynamic and adaptive context inference. 

context reasoning is accomplished through the execution of instantiated reasoning plans (

plan or template is represented as a directed graph of reasoning components, 

as illustrated by the context template depiction in Figure 19. Many works represent

reasoning processes with directed acyclic graphs (DAG) for their parsimonious representation 

graph theoretical solutions.  

HyCoRE’s context reasoning begins with declaration of reasoning plans or templates.  These are 
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Figure 18 is a UML 
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Context templates represent domain expert knowledge 

Templates may be administratively added to HyCoRE at any time. We envision a toolbox 

templates made available as HyCoRE matures and allows for dynamic discovery of new 

templates. The inferenceModel attribute incl

to a context template, which support provenance as discussed.

Templates are expressed as a graph

edges contains context.  Edges imply dependency of a destination node on contextual outputs of 

source node.   Nodes are the work p

search, aggregation, reusable component 

A search node represents a local context query for profiled or stored context as distinct from 

initiating a reasoning process or executing a remote query. Search components have no need for 

a QM, since locally stored data includes a QM associated with its original derivation sources.  The 

assumption is that no change in reported context quality occurs with the exception of adding edge 

latency associated with search time. Context Flow designers include search 

known to be available locally, and which cannot be inferred or trusted when derived from remote 
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Figure 19 Unweighted Context Template 

 

Context templates represent domain expert knowledge of transforming raw data into knowledge.

Templates may be administratively added to HyCoRE at any time. We envision a toolbox 

templates made available as HyCoRE matures and allows for dynamic discovery of new 

inferenceModel attribute included in the context model of Figure 14

to a context template, which support provenance as discussed. 
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Edges imply dependency of a destination node on contextual outputs of 

Nodes are the work processes for context reasoning.  Supported nodes include
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elements for context 
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sources. Search elements add minimal processing overhead when compared with RUCs. An 

aggregation node is used in the reasoning plan to indicate synchronization of context output and 

aggregation for input to the next node. Incoming edges of an aggregation node indicate possible 

parallel activity. The reusable component (RUC) node is an abstraction for generalized context 

providers participating in flow reasoning. Context providers may support many types of context. 

Each RUC is an abstraction for a particular type of context inferred by a reasoner, sensing 

device, service, or other generalized context provider. In the case of templates, RUC nodes 

contain on only meta-data and are not bound to a specific provider. 

The implicit concurrency, serialization and participant context contribution weight (not depicted) 

are included in the template. A node’s context contribution weight represents the percentage of 

inference effect that node’s function has on the overall reasoning plan. Inference effect relates to 

the correctness and quality of the resulting high level context. Since templates are not bound to 

providers, the potential quality of context provided by a template depends on its realization as a 

context flow; where all bound context provider quality is integrated to produce high level context 

quality.  Multiple context templates may exist for inferring the same high level context meta-data. 

Each offers features (i.e. quality, cost, performance etc.) that are used by HyCoRE’s context 

building function in selecting the most effective template for an inferencing task. Context building 

will be discussed in Chapter 5.  Following are definitions to clarify components used in HyCoRE 

reasoning as illustrated in Figure 19: 

A graph node represents any RUC, search or aggregation element. Each node is weighted by its 

contribution to the resulting high level context.  Aggregation nodes have 0 weight. Typically, 

transformation RUC nodes have little weight.  It is the reasoning and source nodes that play the 

greatest role in the resulting high level context quality.  Weights are defined administratively by 

domain experts when context templates are registered. 

A Reasoner represents algorithms for reasoning. These may use trained models and/or apply 

machine learning. A Transformation Function is any function/algorithm that filters, extracts 



71 

 

features or transforms information. Both reasoners and transformation functions are abstracted 

as context providers and represented as RUC nodes in a context flow. 

Edges of the context flow represent the transmission of context from a source to a destination 

node. These imply a serialization of inference events as well. Not seen on the context flow, are 

implicit incoming edges at start nodes. All latency is initially 0. Context nodes update edge latency 

values as the difference of arrival and transmission times. The latency on the edges between 

aggregation nodes and other node is implicitly 0.  In a diagram, an aggregation node should 

never be joined to another aggregation node (it is redundant). An edge does not imply 

synchronous communication, only the order of events is implied. Context result may arrive 

asynchronously from local or remote sources. 

3.4.3.2 Context Flows 

Context flows are dynamic reasoning plans instantiated at runtime in response to consumer 

requests and provider changes.  A context flow follows the pattern of a specific context  template. 

The biggest difference between templates and flows is that flows are bound to specific context 

providers whereas templates are not.  The RUC nodes in flows are abstractions of context 

providers which provide an I/O specification, describing input context requirements and inferred 

context output. As a concept clarifying supplement to Figure 19, Figure 20  offers an alternative 

conceptual specification for context templates/flows; where a specific ContextID is inferred using 

a the sequence of instructions provided there. 
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Flow Specification : ContextID{ 1..*{ INSTR}} 

ContextID : Unique alphanumeric identifier for a context value 

INSTR: AGGREGATE, TRANSFORM, COLLECT, SEARCH, CONNECT( parameter list) 

AGGREGATE : Combine information essentially a logical AND 

TRANSFORM: Apply function to output 

COLLECT : Use RUC to sense or infer data 

SEARCH: Execute data model or context query 

CONNECT: Implies a sequential processing.  X CONNECT Y would be graphically represented 
as two nodes with a directed arrow emanating from X towards Y.  It specifies that X must occur 
before Y. 

Figure 20 Context Flow Conceptual Specification 

 

Adaptation is important in maintaining the inferencing plan.  No sensor has infinite energy or 

availability.  At some point any physical device will fail due to energy, malfunction, mobility etc. 

When device failure occurs, inferencing is stalled.  We mitigate this and increase the 

uninterrupted running time for a context flow by repairing the flow using alternative RUC nodes. 

Also, there are quality requirements associated with context flows.  Context providers include 

sensing devices as well as local / remote reasoning algorithms or services.  Quality indications 

and cost associated with these providers contribute to the integrated high level context QC 

indicators. As an example, remote nodes have bandwidth-communication and latency costs often 

greater than local node which may offer low latency with minimal accuracy. The system policies 

and consumer requirements determine what is acceptable.  Reasoning adaptation sustains 

context while meeting requirements.  More details on reasoning adaptation are provided in 

Section 5.7.  For now, this discussion turns to the importance of context quality.  The next section 

discussion information and middleware quality measures as it relates to HyCoRE. 
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CHAPTER 4  

QUALITY OF CONTEXT 

 

Information quality is a general measurement term for information integrity. The term remains 

ambiguous until its constitution is revealed as a function of observable data measures.  One work 

[32] uses the term ‘quality indicator’ to refer to individual measures that affect quality evaluation. 

Likewise, the terms quality indicator and quality measure will be used interchangeably throughout 

this document. 

Establishing high level context quality is not as simple as selecting the device with the best 

accuracy or other singular quality indication. Increasingly, context-aware applications are 

interested in information that must be combined from multiple sources, using heterogeneous 

transformation and reasoning processes.  We call this process hybrid high level context 

reasoning. Establishing true context quality in such environments requires an integrated approach 

to acquiring heterogeneous quality measures and propagating them through reasoning and 

transformational processes to produce a composite high level context quality. Many quality 

measures are only appropriate for describing low level sensor or other context sources. These 

have a cross effect on resulting high level quality indicators, but many do not translate directly to 

useful high level context measures.   Figure 7 illustrates the dilemma. 



 

Quality of Context (QoC) has been defined as 

information that is used as context

(QoI) as “the collective effect of information characteristics (or attributes) that determine the 

degree by which the information is (or perceived to be) fit

discussion, Quality of Context (QoC)

reflecting the integrity and discriminative characteristics of information that is used as context

QoC is one means by which a context middleware accesses the 

associated reasoning process for an application.  When serving several heterogeneous 

applications, it is beneficial for the middleware to allow each application to specify quality 

requirements.  An ideal middleware maintains 

environmental changes. At the same time, the middleware may make the most efficient use of 

available resources.  We identified the need for m

redefine Quality of Context Middleware (QoCS)

reflect the informational integrity and efficacy of a middleware system in meeting the collective 

context quality requirements of client applications
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Figure 21  Quality Indicators 

 

has been defined as “any information describing the quality of 

information that is used as context.”[15]. A related definition is provided for quality of information 

the collective effect of information characteristics (or attributes) that determine the 

degree by which the information is (or perceived to be) fit-to-use for a purpose.” [9

Quality of Context (QoC) can be defined as a collection of measures (indicators) 

reflecting the integrity and discriminative characteristics of information that is used as context

QoC is one means by which a context middleware accesses the suitability of context and its 

associated reasoning process for an application.  When serving several heterogeneous 

applications, it is beneficial for the middleware to allow each application to specify quality 

requirements.  An ideal middleware maintains application quality requirements by adapting to 

environmental changes. At the same time, the middleware may make the most efficient use of 

We identified the need for middleware quality measures in [4

ext Middleware (QoCS) as a collection of measures (indicators) which 

reflect the informational integrity and efficacy of a middleware system in meeting the collective 

context quality requirements of client applications. 

any information describing the quality of 

quality of information 

the collective effect of information characteristics (or attributes) that determine the 

.” [9]   For this 

collection of measures (indicators) 

reflecting the integrity and discriminative characteristics of information that is used as context. 

suitability of context and its 

associated reasoning process for an application.  When serving several heterogeneous 

applications, it is beneficial for the middleware to allow each application to specify quality 

application quality requirements by adapting to 

environmental changes. At the same time, the middleware may make the most efficient use of 

iddleware quality measures in [4] and here 

collection of measures (indicators) which 

reflect the informational integrity and efficacy of a middleware system in meeting the collective 
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One goal of the HyCoRE framework is adaptation to meet application and system context quality 

requirements. Which quality measures may be controlled through middleware adaptation 

depends on the constitution of the context.  For example, individual low level context source 

credibility cannot be controlled. However, given multiple sources, the high level context’s 

credibility can be controlled by adapting the participating sources.  For the remainder of the 

document the term QC indicator will refer to both context quality and cost measures. The 

identification of a specific measure as a quality indication is subjective and domain dependent. In 

this work, we focus on objective indicators of high level context data integrity or value. 

The following subsections clarify this work’s use of existing quality labels and define new quality 

indicators. We later offer insight for solving quality integration challenges.  The terms for 

semantically equivalent concepts vary, so we offer our perspective. To the best of our knowledge 

the following quality indicator concepts are first identified in this work.  These are: i) information 

semantic equivalency; ii) context fluidity; iii) inferencing resource efficiency; iv) middleware 

context effectiveness and v) context middleware operational efficiency.  All of the indicators we 

have chosen can be represented by a numerical value for ease of computation in mathematical 

equations.  Concrete individual representations of indicator values are implementation specific.  

These reflect the semantics of their associated applications.  So herein, we discuss indicators at 

a conceptual level; only offering concrete examples for illustration. This is not an attempt to 

identify all quality indicators.  No one can anticipate which factors will be important to every 

application.  Any taxonomy of quality indicators, including that given herein, must be extensible. 

4.1 Quality Definitions 

4.1.1 Intrinsic Context Data Quality Indicators 

Intrinsic quality indicators reflect the nature of the data.  These characteristics are irrespective of 

the source device and transformation applied to achieve them. 
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Information Freshness - a relative measure of the recency of information. Creation and update 

timestamps along with expiration polices may be used in computing this value.  Middleware may 

use this value as criteria for data maintenance, identification and removal of stale values. 

Information Fidelity - measures the level of information detail.  Similar to the way that numerical 

units (i.e. feet vs. centimeter, seconds vs. minutes) imply resolution, context fidelity measures the 

detail exposed by a given value relative to all possible values.  In meeting consumer requests, 

context providers comply with security polices for sharing data.  Such security policies may be 

expressed using context fidelity. 

Information Fluidity - measures the rate at which a context value changes with time.  Low level 

facts such as a person’s age have low fluidity.  Values for high level contexts like activity and 

location are much higher. 

Information Semantic Relevancy/Equivalency - measures the closeness in meaning or 

semantic distance between two concepts.  Disparate context providers use distinct terms for 

semantically equivalent concepts.  This gives an indication of context exchangeability.  Semantic 

equivalency can be used by applications to discriminate available context.  Middleware context 

processing may use these values in adapting reasoning for high level context.  In HyCoRE, a 

consumer request for context is matched on weighted context attributes, categories, locations 

and targets irrespective of the knowledge models used for derivation.  We can infer semantic 

relevancy by a weighted ratio of matching identifiers values to those requested.  If a semantic 

relevancy policy were configured, it could be used as an optimization, short circuiting exact 

context matching. 

Informational Resolution  is a measure of how much information is revealed by a value. This 

metric can subsume precision, sensitivity, and disclosure level as described in other quality 

works. The value gives an application insight into the details of the information provided.  Also, 

informational resolution may be used for privacy protection. A middleware may define a system 

policy threshold on information resolution.  Only context information with resolution lower than 
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that threshold may be shared with consumers.  Context providers many further specify a per 

context informational threshold to limit information sharing. 

4.1.2 Context Source Quality Indicators 

Context sources include: i) devices providing raw data or ii) services that transform data and 

reason to infer context.  Hardware, platform, and environmental fluctuations contribute to the 

integrity with which context is provided. Useful context source quality indicators include: 

availability, error rate, refresh rate and credibility.  We do not redefine these measures, since our 

interpretation is consistent with existing uses [15],[32],[51],[73]  

4.1.3 Quality of Inference 

The expressiveness and complexity of reasoning techniques vary greatly 

[1],[2],[7],[26],[27],[31],[38],[53],[57],[63].  Such differences are part of the reason HyCoRE 

recommends integrating a variety of reasoning techniques to accomplish effective high level 

context reasoning. Quality of inference indicators are QoC measures reflecting the cost of 

inferring context.  These may be used to discriminate between comparable inferencing 

methods/algorithms. 

Inferencing Latency-  a quality measure of timeliness in reasoning for context.  Reflects the 

complexity of algorithms used. 

Inferencing Accuracy-  a quality measure of how correctly the reasoning process captures 

situational truth.  It reflects the completeness of algorithms used as well as quality of data models 

(including statistical training data, rules, and ontology specifications)  

Inferencing Resource Utilization( power, CPU, memory, network)- measures the resource 

usage of an inferencing technique. This measure reflects the ratio of resources used to resources 

available on the platform where the reasoning task is deployed.  A middleware system may adapt 

by contracting reasoning from a resource rich remote source when the technique has high 

resource utilization locally but low utilization remotely. Note that network utilization reflects 

bandwidth usage in acquiring contributing data from remote stores or other sources. 
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Inferencing Resource Efficiency( power, CPU, memory, network)- relative measure of reasoner 

ability to minimize resource utilization. 

4.1.4 High Level Context Quality Indicators 

High level context quality indicators are the result of quality aggregation and propagation.  These 

are of concern to context consumers and can be used to express context requirements. 

Context Accuracy-  a quality measure of how correctly a context value reflects the situational 

truth at a moment in time.  It is affected by error rate of the raw sensing device, as well as the 

error potential of the inference process. 

Context Certainty -  a quality measure of confidence in inferred value. 

Context Latency - a quality measure of the time required to retrieve and return context 

information to the requestor.  Context latency may include times for sensing, transformation and 

reasoning, data store access and end- to-end communication. 

Context Completeness- measures the totality of the information set used in deriving a specific 

context value.  Missing and expired information would reduce completeness.  It reaches 

maximum value when all relevant context contributory data is available with the required 

freshness. Direct information from profiles or sensors have an implicit completeness of 1. This 

value is not related to the number of queries satisfied for an application.  See Section 4.2 for 

quantification discussion. 

Context Freshness- same as previous definition given in 4.1.1.  When data is used directly from 

the sensing source this value is the same as that defined for intrinsic data characteristics. 

Context Credibility-  a measure of trust in the correctness of information; a measure of belief as 

distinct from accuracy.  High level context credibility can be affected by data freshness as well as 

contributing context source credibility.  A context consumer may interpret this value as an 

indication of trust. 

Context Proximity- an indicator of spatial relation to a specified location. This value is affected 

by location of data sources. 
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Context Cost- a multidimensional indicator of context liability.  In general, it reflects inferencing 

resource utilization and end-to-end communication costs. CPU, memory, energy, and currency 

are all dimensions of cost. It is necessary to measure integrated cost since the middleware 

platform has physical limitations.  To illustrate: Context flows using local sensors could incur 

significant energy costs (i.e. camera, mic, gps, accel, light etc.); ontological reasoning on large 

knowledge base would significantly impact CPU and memory cost; in a dynamic environment 

where providers offer context for a price, currency is a context cost consideration. See Section 

4.2 for quantification discussion. 

Context Fluidity-  rate of information change over time with respect to all contributing factors. 

Fluidity provides an indication of data temporality, a measure of information stability over time.  

Low fluidity indicates a value that is not subject to change beyond set time and value ranges.  

Fluidity may drive how often a consumer needs to acquire new context values prior to decision 

making.  Alternatively, different knowledge representations of the same context are distinguished 

by fluidity, so then middleware and applications may discriminate among choices base this 

indicator. Context provider quality measures such as refresh rate, sampling rate have a direct 

effect on fluidity. See Section 4.2 for quantification discussion. 

Context Fidelity-  similar to previous definition given for information fidelity in 4.1.1. 

Context Informational Resolution - is measure of how much information is revealed by a value. 

This metric subsumes precision, sensitivity, and disclosure level as described in other quality 

works.  The value gives insight into the detail of the information provided.  Also, informational 

resolution may be used for privacy protection.  For example, only context information with 

resolution lower than a specified threshold may be shared with consumers.  Context providers 

many further specify a per context informational threshold to limit information sharing. See 

Section 4.2 for quantification discussion. 

Context Semantic Equivalency-  is the measure of the semantic distance between two 

concepts. See Section 4.2 for quantification discussion. 
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These indicators also apply to low level contexts.  There are instances where context consumers 

use low level contexts direct from the sensing source.  Examples are: user profile values or 

simple environment measurements such as temperature. Quantification for some of the high level 

context measures above is discussed Section 4.2. 

4.1.5 Context Middleware Quality Indicators (QoCS) 

We offer the following middleware quality indicators. A later section discusses how these can be 

quantified. 

Middleware Context Effectiveness - a cumulative measure of the system’s performance in 

meeting context requirements for all applications at an instant in time. 

Middleware Context Cost - a measure of liability associated with context acquisition.  Cost 

reflects the cumulative effect of processing, reasoning, and communication cost indicators. The 

concept of middleware context cost may directly correlate to resource utilization. 

Middleware Cost Effectiveness-  measures the platform’s ability to stay within policy defined 

cost bounds for all cost indicators. 

Middleware Quality Effectiveness- measures the system’s performance in remaining within 

policy defined quality thresholds 

Middleware Operational Efficiency - a measure of efficient context recognition. It reflects the 

ability of the middleware system to adapt in a way that meets requirements while minimizing cost. 

Meantime Before Context Failure -- an average running time before failure or adaptation for all 

flows that have been running since system startup. 

Reasoning Stability Measure-  a cumulative measure of uninterrupted context reasoning. 

Quantification for QoCS middleware measures given above is discussed in 4.4. 
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4.2 High Level Context Quality Quantification 

The previous section offered definitions for context quality measures. We offer quantification 

details for some of those measures in this section. 

 

Cost of Context  as defined in HyCoRE is given by: 
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(1)

where i ∈( Context Indicators( cpu,memory,energy,bandwidth,currency.. ) and  j ∈(context 

reasoning node list of flow representing  context i). 

Context Completeness is given by: 
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(2) 

Context Freshness measure of information age.  Unexpired old and new information has value.  

It is up to the consumer to specify its preference of age. 

,-#./0�.// �������1���������2���3�'� 

(3) 

Context Fluidity -Suppose that the context update rate (ur) forms a continuous curve over 

time(t).  Let, function (f) be determined by interpolation , then fluidity is given by: 

�*	�� � �	��, (������4 � �5	�� 

Alternatively fluidity can be approximated simply as the information update rate. 

(������4 	'��*��� � ���6�* �7��'���	���  

(4) 

Again, we must presume there exists a function that would map fluidity to the range [0,1]. 
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Context Informational Resolution is given by: 

����*�'���� 8��������� � ��**�������*�'����9'����'�����*�'����9'���  

(5) 

Context Semantic Relevancy (Equivalency) is given by: 
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(6) 

The succeeding sections will discuss techniques for deriving  integrated QC indicators, linking QC 

indications to middleware performance, and adaptation based on evaluation of QC indications 

against requirements. 

4.3 Quality Integration 

Quality aggregation occurs when the quality indicators of multiple context inputs must be 

combined to produce composite indicators of data integrity. A search component may yield 

multiple evidences that need to be aggregated. Also, the nodes of a context flow may require 

several inputs.  Aggregation of these inputs must be performed to achieve a combined qualitative 

effect. With reference to Figure 19, aggregation is a vertical integration of inputs at any node. 

Quality propagation refers to the process of creation and transformation of quality indicators from 

raw data acquisition though all stages of reasoning. Propagation produces composite quality 

indicators appropriate for measuring high level context data integrity. With reference to Figure 19, 

propagation is a horizontal integration of inputs at any node.  Aggregation or propagation of 

context may increase or reduce resulting high level context quality.   As the middleware system 

infers context, it incurs quality aggregation and propagation challenges.  This is especially true for 

hybrid high level context reasoning. 



 

Figure 22 Quality Aggregation

We have identified the following propagation challenges:

• Accurately reflecting the reasoning transformation process

quality indicator-In the HyCoRE extension presented later, we partially address the issue by 

offering a way to declaratively reveal the inferencing transformational pattern. We refer to 

the patterns as context flows.  Context flows are inference specificat

context.  However, context flows only partially expose reasoning. Reusable reasoning 

components (RUC) in the context flow serve as black boxes for reasoning. Runtime 

computation of composite quality indicators does not present a problem 

RUCs bear the responsibility for computation. Accurate prediction of resulting quality is what 

proves difficult.  In order to fully capture the transformation process, heuristic functions of 

quality indicators would need to be express

containing context flows with quality indicator transformation heuristics can be used to 

predict context quality. Such predictions are useful to reasoning adaptation.

• Combining heterogeneous context contributio

form complex high level context inference.  The challenge is to reflect the relative 

significance of each contribution to the resulting inferred context quality indicators. One 

solution is to declaratively specify

flow RUCs mentioned previously.

Context aggregation issues [51][69][73

for meeting these challenges: 

• Coping with missing context or quality

context may be unavailable, stale or too costly to infer at an instant in time.  In some cases, 
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Quality Aggregation  Figure 23 Quality Propagation

We have identified the following propagation challenges: 

Accurately reflecting the reasoning transformation process in resulting inferred context 

In the HyCoRE extension presented later, we partially address the issue by 

offering a way to declaratively reveal the inferencing transformational pattern. We refer to 

the patterns as context flows.  Context flows are inference specifications of high level 

context.  However, context flows only partially expose reasoning. Reusable reasoning 

components (RUC) in the context flow serve as black boxes for reasoning. Runtime 

computation of composite quality indicators does not present a problem in this design, since 

RUCs bear the responsibility for computation. Accurate prediction of resulting quality is what 

proves difficult.  In order to fully capture the transformation process, heuristic functions of 

quality indicators would need to be expressed for every RUC.  An inference specification 

containing context flows with quality indicator transformation heuristics can be used to 

predict context quality. Such predictions are useful to reasoning adaptation. 

Combining heterogeneous context contributions- Heterogeneous contexts are combined to 

form complex high level context inference.  The challenge is to reflect the relative 

significance of each contribution to the resulting inferred context quality indicators. One 

solution is to declaratively specify this significance by weighting the contributions of context 

flow RUCs mentioned previously. 

Context aggregation issues [51][69][73] have previously been identified.  We offer suggestions 

 

Coping with missing context or quality indicators- In dynamic environments, sources of 

context may be unavailable, stale or too costly to infer at an instant in time.  In some cases, 
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in resulting inferred context 

In the HyCoRE extension presented later, we partially address the issue by 

offering a way to declaratively reveal the inferencing transformational pattern. We refer to 

ions of high level 

context.  However, context flows only partially expose reasoning. Reusable reasoning 

components (RUC) in the context flow serve as black boxes for reasoning. Runtime 

in this design, since 

RUCs bear the responsibility for computation. Accurate prediction of resulting quality is what 

proves difficult.  In order to fully capture the transformation process, heuristic functions of 

ed for every RUC.  An inference specification 

containing context flows with quality indicator transformation heuristics can be used to 

Heterogeneous contexts are combined to 

form complex high level context inference.  The challenge is to reflect the relative 

significance of each contribution to the resulting inferred context quality indicators. One 

this significance by weighting the contributions of context 

] have previously been identified.  We offer suggestions 

In dynamic environments, sources of 

context may be unavailable, stale or too costly to infer at an instant in time.  In some cases, 
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it is appropriate to bypass unavailable values, using some representation interpreted as 

unknown.  Otherwise missing values can be approximated using quality history or default 

policies. The context completeness quality indicator can be used as a measure of missing 

data. 

• Handling redundant context- some works have applied simple approaches to data 

aggregation from homogenous sources.  Examples include min, max, and average functions 

applied to the context set.  Dempster Shaefer Evidence Theory (DSET)[57] could be applied 

for deriving composite quality indication. In this case, the resulting composite quality 

indicators would be potentially greater than any individual contribution.  The important issue 

is to accurately represent the added value of additional evidences. 

• Mitigating Conflicting data- in [51] the authors use quality indicators such as accuracy, 

credibility and freshness to prioritize data importance.  Alternatively, DSET also allows for 

representing contradictory evidences in a manner consistent with the significance of the 

evidence. 

4.3.1 Aggregation and Propagation Strategies 

To compute an integrated quality model, the problem we need to solve is identifying the 

appropriate functions for aggregation and propagation. The correct aggregation and propagation 

function can be a matter of debate.  The quality indicator in question, application and middleware 

goals all contribute to the appropriateness of an approach.  Also, the technique used for 

aggregation may necessarily differ from propagation.  For example, a SUM function is appropriate 

for propagating latency, but MAX is better for aggregation.   AVERAGE function might be used for 

aggregating accuracy, but a PRODUCT function when propagating.  In HyCoRE, these QC 

integration functions are implemented as middleware policy dependent interchangeable 

strategies. Several approaches to quality data integration have been used in other works.  These 

are described below: 
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Product- computes the quality product of participating sources; 

Sum- computes the quality sum of participating sources; 

Average- computes the quality average of participating sources; and 

Maximum, Minimum – determine the maximum or minimum quality from participating 

sources. 

This pluggable architecture facilitates dynamic configuration of integration strategies. The 

reasoning process considers current system policy when calculating the integrated context quality 

model (AWM). For the aforementioned evaluation scenario, the QC indicator strategies shown in  

Table 4 are applied: 

 
Table 4 Quality Integration Strategies 

QC Indicator Aggregation  Propagation  
Accuracy Average Product 
Certainty Minimum Product 
Credibility Average Average 
Freshness Minimum Minimum 

Informational 
Resolution 

Maximum Maximum 

Latency Maximum Sum 
CPU Cost Sum Sum 

Memory Cost Sum Sum 
Energy Cost Sum Sum 

Bandwidth Cost Sum Sum 
Currency Cost Sum Sum 

 

 

Figure 10 illustrates the quality integration process beginning with outputs from two 

transformation functions. In the first step, the QC indicators for inputs must be combined to form 

an aggregated quality model (aqm).  Next, the learned or acquired QC indicators of a context 

provider used for reasoning must be integrated with the aqm, resulting in a propagated quality 

model (pqm).  Only, the QC indicators that are directly affected by the quality of intermediate 

inferencing nodes participate in the pqm step. Of the indicators mentioned in table 1, only 

accuracy, credibility, and certainty are affected. Latency is measured in real-time. Finally, the 



 

runtime actuator inference QC indicators are combined with the 

level context quality.  When the strategies specified in table 1 are used, the resulting high level 

context QC indicator vector is: [

labels are [Latency (ms), Accuracy, Credibility, Certainty

RemainingEnergy, CpuCost, MemoryCost

CurrencyCost]. 
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runtime actuator inference QC indicators are combined with the pqm to yield the composite high 

level context quality.  When the strategies specified in table 1 are used, the resulting high level 

context QC indicator vector is: [240, .88, .95,.78, .94,1,  .1, .45, 40 , 1,7, 23.8 ,0

Accuracy, Credibility, Certainty, Freshness, InformationalResolu

RemainingEnergy, CpuCost, MemoryCost(bytes), EnergyCost, BandwidthCost(bytes)

 

Figure 24 Quality Integration Process 

 

  

to yield the composite high 

level context quality.  When the strategies specified in table 1 are used, the resulting high level 

, .95,.78, .94,1,  .1, .45, 40 , 1,7, 23.8 ,0], where QC 

Freshness, InformationalResolution, 

andwidthCost(bytes), and 

 



 

4.4 Context Middleware Quality Quantification

Context middleware should rate itself primarily on its ability to meet consumer context 

requirements. 

Context middleware effectiveness is ach

(especially reasoning) to maximize the cumulative context effectiveness for all applications while 

minimizing system cost. Here, we propose context middleware system quality measures that 

appropriately aggregate application context requirements, reasoning performance and system 

cost.  Of course our pre-supposition is that middleware has its own admission control policy and 

only rates itself relative to admitted consumers. Additionally, the middleware platform h

soft and hard resource limitations. Efficient usage of platform resources while remaining below 

hard resource limits is important.  Another issue involves efficient use of available providers of 

context.  Depending on the application domain in whic

and context cost limits define what is considered efficient for the system domain. In summary, 

platform resource limitations, middleware context cost and quality policies can be used to 

efficiently adapt context reasoning.

Figure 
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Context Middleware Quality Quantification (QoCS) 

ontext middleware should rate itself primarily on its ability to meet consumer context 

Context middleware effectiveness is achieved by adapting the use of context resources 

(especially reasoning) to maximize the cumulative context effectiveness for all applications while 

Here, we propose context middleware system quality measures that 

te application context requirements, reasoning performance and system 

supposition is that middleware has its own admission control policy and 

only rates itself relative to admitted consumers. Additionally, the middleware platform h

soft and hard resource limitations. Efficient usage of platform resources while remaining below 

hard resource limits is important.  Another issue involves efficient use of available providers of 

context.  Depending on the application domain in which HyCoRE is deployed, quality indicator 

and context cost limits define what is considered efficient for the system domain. In summary, 

platform resource limitations, middleware context cost and quality policies can be used to 

oning. 

Figure 25 HyCoRE Performance Criteria 
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platform resource limitations, middleware context cost and quality policies can be used to 
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We offer the following methods to quantify for middleware quality indicators previously discussed. 

4.4.1 Middleware Context Effectiveness 

Context effectiveness (Ceff) is a cumulative measure of the system’s performance in meeting 

context requirements for all applications at an instant in time. To derive Ceff, we must define a 

few intermediate measures. 

Quality quotient (Qq) refers to the system’s ability to meet individual context quality goals of an 

application.  It is a measure of quality with regards to single context required by a consumer at an 

instant in time. Quality quotient is given by: 

,+�	�� � 1���'� ,�'���4 9'����,�'���4 9'��� =�'��  
(7)
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The actual context quality value is measured in real-time, while the quality goal is given as part of 

the consumer requirement specification6.  Some quality indicator ratios such as latency should be 

interpreted differently from others like accuracy.  For example: the resulting value of .885 /.96 for 

accuracy appropriately reflects good performance with a higher value. However, 3ms/10ms for 

latency would cause one to believe that the quality is too low.  A small ratio is good for latency, 

but this is not the case with accuracy. So that the relative meaning of all ratios in the system is 

the same, we recommend equation 2.1 for certain measures, especially those with time units. A 

higher ratio indicates that the system is performing well, relative to 100%. So, in the case of 

latency, 10ms/3ms appropriately indicates good performance. 

The individual context effectiveness (Ice(t)) for a given application/consumer represents the 

system performance in reasoning for a single context within the required quality thresholds. It is 

measured as a function of Qq for all QC indicators specified.  We express this as: 

                                                      
6 The consumer requirement specification allows the consumer to specify a weighted list of 

context requirements. Additionally, for each context, consumer specify QC indicator thresholds 
and priorities. 
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(8)

Where 0 ≤ ICe(t) ≤ 1 , i  represents a QC indicator index, and >+� is the weight/priority given to 

that QC indicator(i)  in the consumer requirement specification for a particular context. 

Application context effectiveness is a measure of the middleware ability to meet all of an 

application’s context needs. We express the context effectiveness with respect to a single 

application/consumer as: 

1��	�� � � >�����
��� ? ����	�� 

(9)

Where 0 ≤ ACe(t) ≤ 1 and >�� is context weight as specified in the consumer requirement 

specification. 

Now that we have all the intermediate measures, we express cumulative context effectiveness 

(Ceff) as: 

�:��	�� �  ∑ 1��	�������� �  (10)

Where 0 ≤ CEff(t) ≤ 1, and n represents the number of context consumers currently being served. 

In the ideal case context effectiveness remains 1 to indicate that all consumer requirements are 

met. 

4.4.2 Middleware Quality Requirement Policy (Middleware Quality Priorities and Middleware 
Quality Effectiveness) 
 

The middleware quality policy specifies a weighted list of QC indicator concerns.  The system 

adapts according to these priorities. As an example: If the energyCost QC indicator is specified 

as the only system quality concern; the system will always select the most energy efficient of 

qualified providers for inferencing, rather than the first available. 

The middleware quality policy also specifies the minimum quality indicator value that a provider 

must meet to participate in inferencing. The middleware quality effectiveness (MQe) measures 
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the system’s performance in remaining within policy defined quality thresholds. MQe policy is 

specified as a weighted list of quality indicator thresholds.  MQe is given as a function of quality 

indicator effectiveness (QIE). QIE measures the systems performance in remaining within a 

quality indicator policy thresholds. MQe and QIE are given by: 

,�:�	��
� >�*�� 1���'� ,�'���4 �����'��* 9'����;�����)'*� ,�'���4 �����'��* E<*��<���� 

(11)

 ,�:�	��� >�*�� 1���'� ,�'���4 �����'��* 9'����;�����)'*� ,�'���4 �����'��* E<*��<���� 
(11.1) 

 

;,�	�� �  � >,����
��� ? min	1, ,�:�	��� 

(12)

 

Where 0 ≤ >,� ≤ 1, represents the relative priority of the QC indicator to the overall middleware 

quality effectiveness as set in current middleware policy. Similar to the way the quality quotient 

(Qqi) is defined, equation 6.1 is given as alternative representation of the QIE ratio.  See the 

quality quotient discussion in section 3.8.1 for rationale. Also,  

;����� ,�'���4 �����'��* E<*��<��� is a system policy setting.  

If any provider is below the quality threshold for a given indicator that has been identified as a 

concern for the system, middleware quality effectiveness is reduced. Continued use of such 

providers failing to meet middleware quality thresholds, degrades the overall middleware quality, 

which further degrades middleware operational efficiency discussed in section 4.4.4.  If there are 

no quality priories set, the MQe will always be 1. 

4.4.3 Middleware Context Cost 

Middleware system context cost is a measure of liability associated with context acquisition.  At 

any instant of time, cost represents the cumulative effect of processing, reasoning, and 

communication cost indicators. The concept of middleware context cost may directly correlate to 

resource utilization.  Middleware context cost is more efficient when context is shared. Notice in 
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the equation that the cost of context from a single provider is only counted once, even if many 

consumer flows are using it. Logically, middleware cost is calculated as follows: 

;����	��, �� � F �	(��)G
���H	����� �I��
J��

K

���
L M � 	N*�&���*�	��������	 ����� �#O�

K��

"

P��? ��������	���8�'������
���8����, 
(13) 

where  m represents the number of active context flows, n represent the number of nodes in a 

flow; p represent the number of active providers; r represents the number of contexts each 

provider has; Ci ∈(cpu,memory,energy,bandwidth,currency…) and numReasoningNodeRefs 

reflect the number of nodes sharing nodek(contexti). Refer Section 4.4.3 for discussion on 

deriving CCosti. 

Operationally, the bulk of middle context cost calculation is performed at run time in-line with 

context flow inferencing. 

4.4.4 Middleware Cost Effectiveness 

Middleware cost effectiveness (MCe) measures the platform’s ability to stay within policy defined 

cost bounds for all cost indicators.  The middleware cost policy is a weighted list of cost indicator 

thresholds. These reflect the hard or soft limitations imposed on the reasoning middleware. Cost 

Indicator effectiveness (CIE) is a sub-measure of MCe.  It reflects the system’s platform’s ability 

to stay within policy defined cost bounds for a single cost indicator. CIE and MCe are given by: 

 ��:�	��
� ;�����;�����)'*� ���� �����'��* E<*��<���� 

(14)

��:�	��� ;�����)'*� ���� �����'��* E<*��<����;�����  

 
 (14.1) 



92 

 

 

;��	�� �  � >�����
��� ? min	1, ��:�	��� 

(15)

Where  ;����� ���� �����'��* E<*��<��� is a system policy setting.  

 

4.4.5 Middleware Operational Efficiency 

Operational efficiency(OEff)  is a measure of efficient, effective context recognition.  It reflects the 

ability of the middleware system to adapt in a way that meets both consumer and system 

quality/cost requirements. OEff is given by: 

 :��	�� �  ����	�� ? ;��	�� ? ;,�	�� (16)

 

4.4.6 Mean Time before Context Failure 

 

The meantime before context failure is an average running time before failure or adaptation for all 

flows that have been running since system startup. We use this statistic to compare the effects of 

reasoning adaptation in different HyCoRE system configurations.  MTBCF is given by:

;EQ�(	�� �  R 	;EQ�(�	���-��� �  
(17)

 

;EQ�( �  ∑ 	;EQ�(S�S��� �  

(17.1)

 

Where f represents the number of context flows and t represents the number of instantaneous 

MTBCF calculations. So, then MTBCF reflects the uninterrupted context flow inference time 

average over the system running time.  
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4.4.7 Reasoning Stability Measure 

Reason stability is an average of uninterrupted context reasoning times for all contexts being 

actively inferred. The reasoning stability measure reflects the percentage of time inferencing is 

uninterrupted.  Context flows (reasoning plans) are active when all components are ready, but 

temporarily set as inactive when a failure occurs.  Periods of time between a flow becoming 

inactive and being repaired and reactivated reduce the reasoning stability. Context flow stability 

measure(FSM) reflects the percentage of uninterrupted reasoning for specific reasoning plan. 

(3;	�� �  ��� T1, E��'���'���&�E���(��)2���E���  U 
(18) 

 

83;	�� �  R VFSM�	t�[���� �  
(19)

If there are no flows in the system but there are active consumers, the reasoning stability 

measures is 0. If there are no flows in the system and there are no active consumers, the 

reasoning stability measure is 1. 

4.4.8 Summary System Measures and Symbols 

The QoCS measures that have been presented assume independent context provider behavior. 

Collaborative failure of context providers would cause operational efficiency to drop precipitously. 

The system would continuously attempt to adapt.  Unfortunately in the case of collaborative 

value, the alternative devices have also failed, so that HyCoRE will not adapt successfully until 

after this anomalous failure period is over. 

With regard to middleware cost effectiveness, we envision deriving a measure that truly reflects 

the cost efficiency of inferencing. However, we must first derive a way to estimate minimum cost 

for a context given the available providers. This minimum possible cost can be compared to 

current  system cost as an indication of how well the system is keeping costs low. For now, the 

cost effectiveness calculation uses middleware cost indicator threshold policies. 

Table 1 summarizes the QoCS performance measures defined previously. 
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Table 5 Middleware Quality of Context Measures (QoC S) 

Equation 
Number 

QoCs Measure Name Definition 

7 Qqi(t) Quality Quotient Measures system’s ability to meet 
individual context quality goals of an 

application. 

8 ICe(t) Individual Context 
Effectiveness 

Measures the system performance in 
reasoning for a single context within the 

required quality thresholds. 

9 ACei(t) Application Context 
Effectiveness 

Measure of the middleware ability to 
meet all of an application’s context 

needs. 

10 Ceff(t) Middleware Context 
Effectiveness 

Cumulative measure of the system’s 
performance in meeting context 

requirements for all applications at an 
instant in time. 

11 QIEi(t) Quality Indicator 
Effectiveness 

QIE measures the systems performance 
in remaining within quality indicator policy 

threshold. 

12 MQe(t) Middleware Quality 
Effectiveness 

Measures the system’s performance in 
remaining within policy defined quality 

thresholds. 

13 MCost(Ci, t) Middleware Context Cost Measures liability associated with context 
acquisition. Cost represents the 
cumulative effect of processing, 

reasoning, and communication cost 
indicators. 

14 CIEi(t) Cost Indicator 
Effectiveness 

Measures the platform’s ability to stay 
within policy defined cost bounds for a 

single cost indicators. 

15 MCe(t) Middleware Cost 
Effectiveness 

Measures the platform’s ability to stay 
within policy defined cost bounds for all 

cost indicators. 

16 OEff(t) Middleware Operational 
Efficiency 

Operational efficiency is a measure of 
efficient, effective context recognition 

17 MTBCF Mean Time Before Context 
Failure 

An average running time before failure or 
adaptation for all flows that have been 

running since system startup. 

18 FSMi(t) Flow Stability Measure Reflects the percentage of uninterrupted 
reasoning for specific reasoning plan. 

19 RSM(t) Middleware Reasoning 
Stability Measure 

Average of uninterrupted context 
reasoning time for all contexts being 

actively  inferred. 
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The context reasoning data model was introduced in 

context reasoning as the process of inferring knowledge.  

heart of HyCoRE’s adaptable context 

occurs several times in HyCoRE processing. 

criteria: i) context category, ii) targets, iii)semantic model, iv) physical model; and v)QC 

indications.  Figure 26 highlights the collaborations of reasoning subsystem components.

The follow sections define each component and their interactions in details.

Figure 26 Context Reasoning Subsystem Components
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CHAPTER 5  

ADAPTABLE CONTEXT REASONING WITH HYCORE 

The context reasoning data model was introduced in section 3.4.3.  In this section we describe 

context reasoning as the process of inferring knowledge.  The reasoning subsystem is at the 

adaptable context reasoning engine.  Meta data matching is a 

occurs several times in HyCoRE processing.  It involves matching on the five potential meta data 

criteria: i) context category, ii) targets, iii)semantic model, iv) physical model; and v)QC 

highlights the collaborations of reasoning subsystem components.

The follow sections define each component and their interactions in details. 

Context Reasoning Subsystem Components  

 

In this section we describe 

The reasoning subsystem is at the 

Meta data matching is a function that 

It involves matching on the five potential meta data 

criteria: i) context category, ii) targets, iii)semantic model, iv) physical model; and v)QC 

highlights the collaborations of reasoning subsystem components. 
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5.1 Template Manager Functions 

To initiate even the simplest reasoning, there must exist a patterns for inferring context. Domain 

knowledge of inferring context is capture in the form of context templates.  As introduced in 

section 3.4.3, the context template is a generalized reasoning plan, not bound to a specific 

context provider. The context template manager component handles context template 

registrations and well as events that affect potential realizations of those patterns. A context 

template can have a number of possible instantiations. Each possible instantiation is a context 

projection. A context projection is a specific instance of a reasoning plan, using selected context 

providers; reflecting the composite quality of participating providers.  The template manager 

configures and maintains projections of potential context flows. Projection finding is triggered by 

provider or template changes including: i) New Template Registration; ii) New provider 

registration and iii) Provider availability change or failure. Since the template manager maintains 

dynamic context projections, HyCoRE has alternative reasoning plans readily available for 

instantiation. When new projections are identified by the template manager, a context adaption 

trigger is created.  The new projection trigger handler adapt reasoning by:  i) attempting to initiate 

context reasoning for consumers not assigned to a context flow. Perhaps because there were no 

providers or projections existing at the time; and ii) Attempting to replace suspended flows 

experiencing temporary failure with an alternative projection.  Note that a separate context quality 

manager component performs periodic optimization of existing context flows.  Also, reasoning 

adaptation due to failure to meet requirements is handled at runtime. Run-time adaptation events 

are captured by the Adaptation Trigger Manager which is discussed later. 

The process for deriving the possible projections of a template is as follows: 

1. Receive new template 

2. Create an array mapping of providers’→ references rences for each RUC node context 

meta-data description given in the template.  Below is a sample provider mapping for a 
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template (c1→c2→c3→High Level Context A) that calls for 3 RUCs producing  3 distinct 

contexts  : 

Table 6 Template Manager Provider Mapping Example 

Context1 Context 2 Context 3 

Provider 4 Provider 1 Provider 2 

Provider 5  Provider 3 

 

a. In the above illustrations context providers are matched to the meta-data described in the 

template such that the possible template projections  (omitting search and aggregation 

nodes) are: 

b. RUC Node(provider 4) → RUC Node( provider 1) → RUC Node (Provider 2) → High 

Level Context A 

c. RUC Node(provider 5) →RUC Node( provider 1) → RUC Node (Provider 2) → High 

Level Context A 

d. RUC Node(provider 4) →RUC Node( provider 1) → RUC Node (Provider 3) → High 

Level Context A 

e. RUC Node(provider 5) →RUC Node( provider 1) →RUC Node (Provider 3) → High Level 

Context  A 

So, there are four possible ways to realize the template in this example. The template manager is 

only responsible for maintaining the projections.  The context builder, discussed in the next 

section, is responsible for projection selection. 
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Figure 27 Template Manager Sequence Diagram  
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5.2 Context Builder Functions 

The context builder instantiates context templates as context flows to serve consumer requests 

based on available template projections. The context builder picks the best fit available projection 

for current context inferencing tasks.  Projections are selected based on their closeness to 

matching consumer requirements. By selecting a projection, the collective effect of all 

participating providers is considered.  The logic for metadata matching is the domain of the 

context builder.  So, in other situations where a flow needs be repaired by replacing a single 

node, context builder utilities are called upon.  These run-time adaptation events are captured by 

the Adaptation Trigger Manager which is discussed later. The context building process is as 

follows: 

1. Query Template Manager for templates with meta-data matching the consumer request. 

2. Select set of projections based on consumer meta-data match and builder selection 

policy.  Builder selection policies are provided as a way to optimize system performance. 

Policies include: 

a. Best of first X available projections policy, where X is a limited number of 

projections to consider. This can be beneficial where many projections are 

anticipated and real-time analysis of each would be unreasonable; 

b. Shortest projection policy causes the builder to select the meta-matched 

projection with the least number of nodes; 

c. Maximum of X nodes policy causes the builder to select meta-matched 

projections with no more than X nodes; and 

d. All projections policy causes the builder to select all meta-matched projections for 

consideration. 

3. Score selected projections: If more than one meta-matched projection was selected, the 

best match is determined by computing a context effectiveness score.  The projection 

with the highest effectiveness score is selected for instantiation.  Scoring is based on 
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consumer requirements, projected provider QoC, and system requirements. Where 

projection scores are equal, a discrimination factor is used to distinguish them.  The 

projection with the smaller DF has lower cost and is a more efficient choice. 

4. Instantiate best projection. Even if none of the selected projections meet requirements, it 

is used since HyCoRE makes a best effort in meeting requirements.  Run-time adaptation 

will fix the situation should new providers become available and /or provide QC 

indications improve. In HyCoRE, context flows represent the process of knowledge 

inference for a single context element with regard to a specific consumer. Consumers 

don’t not share context flows, but they may share providers through the use of RUC 

reasoning node abstractions. 

5. Register context flow with Flow Manager. 

6. Start context flow for active inferencing. 

In the cases where there are no available projections or where the context builder projection 

selection policy is configured to quickly instantiate  a potentially sub-optimal reasoning plan, 

periodic quality evaluation will cause the reasoning to adapt to the best available. 

In summary, the context builder is primarily invoked when a consumer request arrives and new 

context flow needs to be instantiated.  Other uses include repairing a flow when a participant 

node fails or falls below quality thresholds and needs to be replaced and replacing a context flow 

when it falls below consumer or system quality requirements. 
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5.3 Context Provider Registration and Context Update Processing 

As previously discussed, context providers are abstraction for any source of information.  The 

context provider service contract details provider actuation. This design supports synchronous 

and asynchronous pull receipt of provider information.  HyCoRE maintains a context buffer which 

allows for data staging at context updates are received. 

5.4 Context Consumer Registration with Context Mailbox 

When registering with HyCoRE, context consumers specify how context is to be returned. Mobile 

users are challenged to maintain server connections or listening ports for receiving context.  So, 

HyCoRE offers the context mailbox as a server-side storage of context reports.  Consumers are 

able to check their context mail at earliest availability.  Context consumer specify context mail in 

their service contract at the method by which context is to be returned. Below we illustrate the 

consumer registration process along with context mailbox: 
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Figure 28 Consumer Registration w/mailbox Sequence Diagram 

 

5.5 Context Flow Reasoning with Quality Integration and Provenance 

Reasoning plan projections are realized and executed as context flows. The projections 

instantiated by the context builder represented as reasoning stream of serialized nodes (refer 

back to Figure 18).  To illustrate, the context flow depicted in Figure 29 represents a context flow 

for inferencing a person’s high level activity from the low level inputs of calendar information, 

accelerometer readings and GPS positioning. 



 

Figure 

 

The label s7 represents the entire reasoning st

where the nodes represent RUC nodes (‘

points (‘a’), or other reasoning streams

the concept or HyCoRE reasoning. The labels used in the diagram are as follows: S7 infers a 

high level activity such as (‘in transit’, ‘shopping’, ‘in a meeting’, ‘working out’) and is composed of 

several sub-streams (s1-s6). R1 could be any geo location service that tra

to the nearest postal address.  R2 represents an application specific mapping of a user’s GPS 

position to a logical locations  (i.e. school, work, gym).  

103 

Figure 29 Serialized Complex Context Flow 

The label s7 represents the entire reasoning stream serialized as a linked list of nodes 

RUC nodes (‘t’ for transformations, ‘r’ for reasoners), 

’), or other reasoning streams. This illustration is left abstract purposefully to highlight 

HyCoRE reasoning. The labels used in the diagram are as follows: S7 infers a 

high level activity such as (‘in transit’, ‘shopping’, ‘in a meeting’, ‘working out’) and is composed of 

s6). R1 could be any geo location service that translates a GPS position 

to the nearest postal address.  R2 represents an application specific mapping of a user’s GPS 

ns  (i.e. school, work, gym).  T1 represents a generalized utility for 

 

ream serialized as a linked list of nodes 

’ for reasoners), aggregation 

This illustration is left abstract purposefully to highlight 

HyCoRE reasoning. The labels used in the diagram are as follows: S7 infers a 

high level activity such as (‘in transit’, ‘shopping’, ‘in a meeting’, ‘working out’) and is composed of 

nslates a GPS position 

to the nearest postal address.  R2 represents an application specific mapping of a user’s GPS 

T1 represents a generalized utility for 
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extracting features from accelerometer readings (i.e. XY, XZ, ZY correlation, standard deviation, 

mean … etc.).  The context of each node is published in their corresponding service contract.   

There a two aggregation nodes in the figures (a1 and a2).  Aggregation nodes combine stream 

outputs for form aggregated input for the next node.  The rest of the figure is self-explanatory. 

Following are a few rules regarding HyCoRE reasoning: The reasoning w/quality 

integration algorithm assumes the context flow has been serialized as a linked list of reasoning 

stream nodes, and the following rules apply:  i) A context flow may have several context input 

items.  However a reasoning stream has only one input and represents a single threaded 

reasoning path; ii) Streams may terminate with an aggregation node, but may not contain any 

intermediate aggregation nodes; iii) several streams may terminate with the same aggregation 

node reference.  For streams terminating the with same aggregation node, the order of execution 

is inconsequential. In fact they can be made concurrent; iv) All potential starting nodes of 

concurrent processing must be identifiable as such. In a HyCoRE reasoning stream it is assumed 

that for every node after the first non-start node, normal quality integration rules apply and v) The 

first aggregation node in the serialized flow sequence represents the end of start node 

processing. 

Figure 30 illustrates the sequence and components participating in context flow 

reasoning. Context flows will ideally be executed in a thread independent of other context flows.  

The periodicity of flow execution is established by the context builder and based on refresh rate 

provided in the service contract. On execution of the reasoning stream (sequence item #1 ), fresh 

context for each node is retrieved successively.  If there is no fresh/buffered context, the node’s 

actuator is called upon for reasoning.  The knowledge manager and context reporter are notified 

of new context inferences and are able to activate consumer actuators for reporting or knowledge 

repositories for storage.  Figure 31 contains baseline pseudo logic for reasoning based on 

configured quality integration strategies. 
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Figure 30 Context Reasoning Sequence Diagram 

 

Context flows are suspended whenever a provider service contract is cancelled of if fresh 

context cannot be retrieved for an extended period of time.  System events affecting the 

constitution of reasoning flows include new provider registrations, provider availability/quality 

changes, and template registrations.  Through processing by the Adaptation Trigger Manager, 

suspended flows are reconfigured or replaced with alternative reasoning plans. 
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Figure 31 Context Reasoning w Quality Integration P seudo Logic 

Context [] streamReason(ReasoningStream  stream){ 
                parallelExecution= stream->parallellExecution; 

for all  stream->nodes {   
 if node

i
 is a ReasoningStream{ 

 contextOut = streamReason(node
i
) 

} 
 else if node

i
 is a SearchNode{ 

 contextOut = searchReason (node
i
) 

} 
 else if node

i
 is a ContextFlow{ 

 contextOut = flowReason (node
i
) 

} 
 else if node

i
 is a AggregationNode{ 

 contextOut = aggregationReason (node
i
) 

parallelExecution=false 
} 
else{ 

contextOut = rucReason (node
i
) 

} 
//only chain output in serialize mode 
if ((node

i+1 
exists)(!parallelExecution)){ 

node
i+1 

->addInput(contextOut) 

} 
} 
return contextOut; 

}       
Context[] flowReason(ContextFlow flow){ 

 contextOut= streamReason(flow) 
 contextOut->addProvider(flow) 
 flow->averageQualityIndicator(latency, currtime-starttime) 
 flow->copyQualityIndicators(contextOut->getQuality) 
 return contextOut 

} 
Context [] RUCReason(IRUCNode node){ 

for all context
i
  node->getInput{ 

   context
i
->setQualityIndicator(latency, currlatency+(receipttime-transmissiontime) 

} 
aqm = aggregateQ(node->getInput) 
contextOut = node->reason() 
node-> averageQualityIndicator(latency, currtime-starttime) 
aqm = propagateQ(aqm,node->getQuality) 
contextOut->setQuality(propagateQ(aqm, contextOut>getQuality) 
contextOut->addProvider(node); 

                 return contextOut 
} 
QualityMeasure[]  aggregateQ( Context[] context){ 
//Let vector QV

i 
vertically represent quality indicator  I

 
or a all context 

for all QV
i
{ 

aqm[i] = AST[i](QV
i
);  //AST contains vector of  aggregation functions 

} 
return aqm; 

} 
QualityMeasure[]  propagateQ(QualityMeasures[] effector, QualityMeasures[] affected){ 

for all Qmi { 
pqm[i] = PST[i](effector[i], affected[i]; 

} 
return pqm; 

} 
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5.6 Quality Verification 

Quality perception requires knowledge and observation, but there is also need to verify quality. 

Otherwise we would have to trust the quality declared by a provider.  This could cause our initial 

perception to be too high or low. Quality verification aides in forming a realistic view of true 

provider quality. It is also useful to maintain historical provider quality details. In this way, as the 

system encounters past context providers, this time to form realistic perception of their provided 

quality achieved is minimized. Using a quality feedback loop HyCoRE establishes the success or 

failure of context flow reasoning. When an inference is wrong, the context flow QIs are reduced. 

Conversely they are increased when correct. We define a positive reinforcement factor λ as the 

policy specified rate of quality increase. The negative reinforcement factor θ is the rate of quality 

decrease. The reinforcement factors are distributed through the context flow such that the total 

effect on the integrated context flow quality model corresponds to the factor. λ is implicitly 

positive, θ is implicitly negative. Setting λ or θ to 0 effectively disables the effects of quality 

feedback.  Figure 32 illustrates negative quality feedback.  This illustration highlights the fact that 

the node with the greatest impact on the high level context is also impacted the most by negative 

feedback. Of course there must be bounds on the positive or negative effects of this quality 

reinforcement. Figure 33 shows general quality feedback processing using HyCoRE components.  

The Quality feedback manager is responsible for identifying the correct flow and updating node 

quality. Once feedback had been performed, context flows are verified against system and 

consumer requirements. An adaptation trigger is generated if a flow fails to meet requirements. 

 

 



 

Figure 
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Figure 32 Quality Verification Example 

 

 

 



 

Figure 33
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33 Inference Feedback Sequence Diagram 
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5.7 Quality Aware Reasoning Adaptation 

This discussion begins with the assumption of existing providers, consumers and executing 

context flows. Consumer and system context requirements drive adaptation. To this end 

continuous monitoring to evaluate provider quality against requirements is required. Note that 

establishing context quality and cost is not as simple as selecting the device with the best 

accuracy or other singular quality indication. As can be seen by our component approach to 

reasoning, establishing true context quality requires an integrated approach to acquiring 

heterogeneous quality measures and propagating them through reasoning and transformational 

processes to produce a composite high level context quality (refer back to Section 4.3 for details). 

Context reasoning adaptation is based on the adaptation action that is determined after 

evaluating integrated QC indication against context requirements during adaptation trigger 

processing. An adaptation trigger is a system event which affects the constitution of reasoning.  

These system events include: i) new context provider registration; ii) provider failure or quality 

update notifications; iii) consumer context requests; iv) and quality feed-back notifications. 

HyCoRE has established QC attestation points and associated adaptation triggers for 

evaluating integrated context QC indicators. The design of the Adaptation Trigger manager is 

such that adaptation actions can be traced back to associated attestation points and trigger 

handlers. Figure 34 illustrates considerations of the context adaptation process. 



 

Figure 

The quality evaluation/attestation processing points in HyCoRE are as follows:

Context Declaration Processing Point (DPP

registers with middleware, declaring its context

Context Update Processing Point (UPP)

quality indicators. This also includes service cancellation events. A provider cancellation reduces 

the availability of context.  A consumer ca

inferring context. 

Context Query Processing Point (QPP)

processing point is associated with the search component of a context flow.

Context Inference Processing Point (IPP)

implies observation, propagation and aggregation of QC indicators.

Context Verification Processing Point (VPP

positively or negatively. 
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Figure 34 Context Reasoning Adaptation 

The quality evaluation/attestation processing points in HyCoRE are as follows: 

Context Declaration Processing Point (DPP) occurs when a context provider or consumer initially 

registers with middleware, declaring its context and QC indicators. 

Context Update Processing Point (UPP) occurs when a context provider or consumer updates its 

quality indicators. This also includes service cancellation events. A provider cancellation reduces 

the availability of context.  A consumer cancellation reduces the middleware requirement for 

Context Query Processing Point (QPP) occurs when context is found in a knowledge base. This 

processing point is associated with the search component of a context flow. 

rocessing Point (IPP) occurs on every execution of a context flow.  This 

implies observation, propagation and aggregation of QC indicators. 

Context Verification Processing Point (VPP) occurs when feedback is used to update QoC 

 

) occurs when a context provider or consumer initially 

occurs when a context provider or consumer updates its 

quality indicators. This also includes service cancellation events. A provider cancellation reduces 

ncellation reduces the middleware requirement for 

occurs when context is found in a knowledge base. This 

occurs on every execution of a context flow.  This 

) occurs when feedback is used to update QoC 
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Performance Monitoring Processing Point (PPP) in addition to event driven quality attestation, 

HyCoRE monitors for adaptation triggering events. 

Adaptation triggers may be produced at quality attestation processing points.  A quality 

failure trigger (QFT) occurs when a context flow node’s quality degrades unacceptably, no longer 

meeting combined application and middleware goals.  A provider failure trigger (PFT) occurs 

when context flow node is unresponsive or for any reason is no longer providing context. 

Optimization Triggers (OPT) occur when action that would result increased middleware 

performance can be taken (i.e. higher quality providers available). 

Trigger processing results in one of six categories of adaptation actions. These are: i) 

replace a context reasoning flow provider; ii) continue inferencing with degraded quality; iii) derive 

an alternative reasoning plan;  iv) suspend reasoning for a specific context; v) cancel ineffective 

context providers; and vi) cancel irrecoverably failed consumers. We detail our approach in the 

sections to follow. 

5.7.1 Adaptation Triggered by Dynamic Provider Availability 

There are a number of specific triggers associated with provider availability.  However, the 

processing can be summarized as follows: When any provider becomes unavailable, we must 

attempt to find a suitable replacement in the context flow. The system checks for either an 

alternative node or an alternative context template which may be instantiated for continued 

inference.  If no replacement node can be found, inferencing plans associated with the failed 

provider are halted (i.e. context flows become inactive). A flow may be inactive for a configured 

amount of time. During this time it may be reactivated if any previously unavailable nodes 

become available or if a new provider, suitable for replacement, becomes available. Any provider 

or flow that has been inactive longer than a configured period is removed from the system. 

On events where context providers become reactivated after a period of inactivity, a 

search for a suitable use case begins.  The first use is to reactivate any flow still associated with 
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the provider.  If the provider is not associated with any flow, we check to see if it can be used to 

repair any other inactive flow. The next use would be to complete requirements of an existing 

consumer contract. In some cases, the system may not be inferring all of the contexts required by 

a consumer.  The last use would be for optimizing any existing flows. 

5.7.2 Adaptation Triggered by Dynamic Provider Quality 

Provider quality is evaluated against consumer and system requirements during context 

inferencing, on receipt of provider quality update or new provider context declaration. A number of 

triggers are associated with quality changes at these verification points. A provider quality update 

causes the systems to re-evaluate any inferencing flows associated with the provider. If any 

participating provider quality causes the overall high level context to fall below requirements, a 

search for the best alternative is begun.  An alternative context provider will match on context-

meta data information.  A context meta-model specifies the physical and semantic criteria for 

context equivalency.  Context providers are interchangeable based on matching meta-model 

information. In addition to matching meta-data, a chosen provider alternative must have sufficient 

quality to yield an integrated quality minimum. 

If no alternative is found, context inferencing associated with the provider is halted in the 

same manner as mentioned in the availability discussion.  The system will wait on the first of the 

following events to occur: i) context provider quality improvement resulting to restoration of 

inferencing; ii) new context provider alternatives enter the system leading to restoration of 

inferencing; iii) context flow inactivity timeout which causes context flow and associated consumer 

contracts to be removed from the system. Cancelling a consumer contract ensures that the 

system operation efficiency is not indefinitely penalized.   A context provider is only removed if its 

quality falls below system requirement, remaining energy is zero, or remains unavailable for an 

extended period. Though a provider may no longer satisfy current consumer requirements, new 

consumers could arrive for which lower QC indicators are sufficient. 
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5.7.3 Adaptation for Reuse and Optimization 

Receiving new consumer requests and provider offers affords opportunity to improve system 

performance.  Existing flow quality may be improved by replacing a participant. In addition to 

event driven optimization, periodic performance monitoring identifies when middleware is falling 

below established thresholds. The system only supports a configured number of providers at any 

given time, so ineffectual provider contracts are also cancelled after a configured period of 

inactivity.  Though not actively used for inferencing, inactive context flows consume limited 

system resources and are also discarded. Middleware operational efficiency is directly affected by 

existing consumer contracts, so HyCoRE will eventually cancel consumers for whom context 

inferencing is irrecoverably failing. Cancelling failed consumer contracts causes the middleware 

operational efficiency to rise. 

5.7.4 Quality Monitor 

The quality monitor component of Figure 26 is a suggested background task for verifying the 

integrity of reasoning, producing adaptation triggers as needed. HyCoRE has many events that 

trigger adaptation, but  as with any system, race conditions and anomalies lead to unexpected 

states. The quality monitor catches what adaptation trigger handlers miss. Also, the context 

builder can be configured to quickly instantiate the first available flow rather than the most 

optimal.  The quality monitor identifies optimizations of flows, triggering run-time reasoning 

adaptation for improved performance. 

5.7.5 Platform Performance Manager 

In Section 4.4, several QoCS measures were introduced. It is the Platform performance manager 

which maintains the current state of these measures and evaluates them against requirements. 

Adaptation Triggers are generated as reasoning deficiencies are identified. 
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5.7.6 Adaption Trigger Manager 

An adaptation trigger is a system event which affects the constitution of reasoning. Though, 

adaptation trigger handlers may be distributed and executed in independent threads, the 

adaptation trigger manager provides a central point in the system to which reasoning adaptation 

can be traced.  The events show in   
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Table 7 are identified and handled in HyCoRE. Each event occurs at an identifiable quality 

attestation point originating from one to the components shown in Figure 26. 
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Table 7  Detailed Adaptation Event Descriptions 

Event Explanation Trigger QVP 

Template Manager has 
identified new template 

projections 

NewProjectionAvailable DPP 

More optimal projection 
for existing flow exists 

OptimizedProjectionAvailable PPP 

New context provider is 
available 

ProviderAvailable DPP 

Existing provider 
availability has changed 

ProviderAvailabiltyChange UPP 

Consumer has update 
quality requirements 

ConsumerQualityChange UPP 

Provider’s quality had 
changed 

ProviderQualityChange UPP,VPP 

Context flows is failing 
to meet consumer or 
system requirements 

FlowQualityFailure PPP 

Provider is not 
responding 

Provider Failure PPP 

Provider is failing to 
meet system quality 

minimums 

ProviderQualityFailure PPP, IPP,VPP 

Provider had been 
unavailable longer than 

the allowable time 

Provider Availabilty 
Expiration 

PPP 

Flow has been inactive 
due to failed or inactice 
providers longer than 

allowable time 

Flow Inactivity PPP 

Middleware QoCS 
Context Effectiveness 

measure is low 

Low Context Effectiveness PPP 

Middleware QoCS 
Operational Efficiency 

measure is low 

Low Operational Efficiency PPP 

System has been 
unable to meet 

consumer context 
request for longer than 

the allowable time 

Consumer Not Assigned 
Flow Expiration 

PPP 

 

 

 



 

5.8

The HyCoRE architecture and data models were implemented in Java 

The choice of Java with the associated threading and serialized object representation are 

prototypical design choices.  Figure 

HyCoRE implementation architecture from two perspectives.

to orchestrate adaptive high level c

and scoring; ii) meta-data matching; iii) reasoning with integrated quality and provenance; and iv) 

periodic QoCS measurement.  

functionality.  Since, these are the largest potential performance bottlenecks in HyCoRE; they 

should be implemented in pluggable fashion. In future iterations of HyCoRE, baseline reasoning 

algorithms may be replaced with more efficie

Figure 35
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5.8 HyCoRE Reasoning Summary 

The HyCoRE architecture and data models were implemented in Java for concept validation.  

The choice of Java with the associated threading and serialized object representation are 

Figure 35 and Figure 36 provide a detailed view of the prototypical 

HyCoRE implementation architecture from two perspectives. There are several algorithms used 

orchestrate adaptive high level context reasoning. These include: i) reasoning plan projections 

data matching; iii) reasoning with integrated quality and provenance; and iv) 

periodic QoCS measurement.  Baseline algorithms have been provided to capture the 

functionality.  Since, these are the largest potential performance bottlenecks in HyCoRE; they 

should be implemented in pluggable fashion. In future iterations of HyCoRE, baseline reasoning 

algorithms may be replaced with more efficient ones 

35 HyCoRE Implementation Architecture 

 

or concept validation.  

The choice of Java with the associated threading and serialized object representation are 

a detailed view of the prototypical 

There are several algorithms used 

ontext reasoning. These include: i) reasoning plan projections 

data matching; iii) reasoning with integrated quality and provenance; and iv) 

ovided to capture the 

functionality.  Since, these are the largest potential performance bottlenecks in HyCoRE; they 

should be implemented in pluggable fashion. In future iterations of HyCoRE, baseline reasoning 
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Figure 36 HyCoRE Implementation Components 

 

The following section briefly describes each component’s role in high level context reasoning. 
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5.8.1 Components and Threading 

This reference implementation of HyCoRE is designed with a mixture of persistent and transient 

threads, timers and container components. Following is an explanation of each component. 

 

Message Handler - HyCoRE listens for message on a configurable port.  A transient thread is 

spawned to handle each message. 

 

Consumer Manager - Registration messages, cancellation and general management of context 

consumers are handled by the Consumer Manager. In this design, the Consumer manager is a 

singleton container component. 

 

Context Reporter - threaded component which distributes inferred context to its destination. 

 

Context Builder - threaded component which build contexts flows to meet consumer requests. 

Refer to Section 5.2 for design discussion. 

 

Context Flow Manager - Container component which holds references to all context flows  

 

Template Manager – multi-threaded component which handles context template registration 

messages and others that affect the configuration of templates. This manager is responsible for 

dynamic creation and updating of context template projection.  A separate transient thread is 

used for processing messages since the function of finding projection can be time consuming. 

 

Context Flow (executor thread w/ timer)-  Context Flows are instantiated reasoning plans 

bound to specific providers.  Each flow executes in a separate transient thread so the timing of 

each inference is independent. Refer to Section 5.1 for design discussion. 
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Provider Manager - Registration messages, updates, cancellation and general management of 

context providers are handled by the Provider Manager.  As with the consumer manager, this is a 

singleton container component. 

 

Quality Feedback Manager - thread component which adjusts the QoC of context flow 

components based on positive or negative feedback. 

 

Quality Policy Manager - singleton container component which holds all configured system 

policies. 

 

Quality Monitor - periodic timer component which looks for unhandled failure situation and ways 

to optimize existing context flows. Refer to Section 5.7.4 for design discussion. 

 

Platform Performance Manager - periodic timer component which measures QoCS.  Failures 

result in adaptation triggers passed to the Adaptation Trigger Manager. Refer to Section 5.7.5 for 

design discussion. 

 

Adaptation Trigger Manager - threaded component which handles adaptation trigger events. 

Refer to Section 5.7.6 for design discussion. 

 

Knowledge Manager - component which handles knowledge persistence and retrieval. For this 

implement KM is a marker component which is not fully functional, though easily extendable to 

meet design function. 
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Knowledge Store - provides an interface where interested stores may be registered with the 

knowledge manager. 

.
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CHAPTER 6  

HYCORE EVALUATION 

 

The HyCoRE context reasoning framework adapts to sustain high level context inference in the 

face of dynamic device quality and availability. A derived composite measure of high level context 

quality is used as a basis for adaptation.  Reasoning plans are flexible in that components may be 

replaced with current or future context providers with match generalized information description 

called context meta-data.  Context consumers specify context and quality requirement using 

context meta-data. The middleware operation measures reflect success inferring high level 

context while meeting consumer requirements.  It is difficult to find a single application that 

requires everything HyCoRE supports.  HyCoRE is general purpose framework, supporting a 

variety of applications.  For this reason, we demonstrate two applications of HyCoRE reasoning 

to highlight the various features of the architecture. 

 

6.1 Law Enforcement Search Evaluation 

An interesting use case for middleware mediated context is sustaining an application’s context 

needs in the face of fluctuating cost or quality indicators and efficiently managing the resource 

constrained devices serving as context providers.  Our solution for this use case employs a 

reusable component based approach to context reasoning; interjecting into the composition of 

context to facilitate adaptation.  All adaptation is based on integrated quality and cost indicators.  

Integrated indicators are evaluated against consumer and middleware system requirements. This 

approach to reasoning can prove useful in several context reasoning situations where diverse 

context providers participate in producing high level context. Through a real world scenario, we 
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demonstrate a middleware approach that provides i) efficient actuation of devices for context 

sensing; ii) participatory context processing/inference; and iii) sustained context dissemination. 

In the HyCoRE framework, application and middleware system quality requirements drive 

adaptation.  The system adapts to meet consumer requirements according to middleware QC 

priorities. We illustrate the HyCoRE process of  quality integration and corresponding effects on 

QoC and QoCS measures while adapting for context sustainability with the following simulated 

scenario: Law enforcement is conducting a search for suspected criminals. The investigation has 

lasted for some time and manual techniques have yielded no leads.  It is certain that the suspects 

are hiding in one of three geographic areas.  Rogue law enforcement officers may be withholding 

vital information, or maybe the answers are just outside human perceptive faculties. A recent 

study on inattentional blindness [17] verifies that humans cognitively miss events occurring right 

before their eyes. Automated visual and audio data collection bridges the void. For a brief period, 

pervasive cameras, video, microphones are deployed in the designated areas using plain clothes 

enforcement agents and unmarked vehicles.  The sensors are positioned inside and outside of 

each agent’s field of view as criminal elements will likely remain outside of view or be disguised. 

HyCoRE can be deployed on devices in such a pervasive environment to aid in context inference, 

energy efficient device actuation and context sustenance. 

In this evaluation, HyCoRE is deployed in each area for assistance with inferring 

intelligence and actuation of deployed sensors. Each geographic area is divided into cells for 

which a single set of sensor is sufficient for coverage.  Agents and vehicles move between the 

geographic areas, each time registering with the local HyCoRE instance as a context provider for 

the targeted cell.  Within a sensor period, activated sensors collect data for a period and transmit 

batches to HyCoRE for intelligence processing.  Inferred location changes for designated 

suspects are reported to interested law enforcement agencies, each having distinct qualitative 

context requirements. 



 

Figure 

HyCoRE function is simulated for a single geographic cell where sensor availability fluctuates due 

to mobility of agents and vehicles. Also, device quality indicators degrade as the sensors are 

used over time.  Sensors located in 

power than the invisible low powered sensors the agents are wearing.  HyCoRE has been 

configured with reasoning plans, feature extraction and reasoning algorithms to identify persons 

and vehicles of interest. The only pieces of inference that do not reside within HyCoRE are the 

low level video and audio context sources. HyCoRE makes a best effort sustaining context 

inferencing through the dynamic situation.  Energy levels of low

quality/cost indicator as well as 

requirements in this evaluation. Energy conservation during reasoning is the primary system 

concern for this middleware evaluation, so 
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Figure 37 Law Enforcement Scenario 

 

HyCoRE function is simulated for a single geographic cell where sensor availability fluctuates due 

to mobility of agents and vehicles. Also, device quality indicators degrade as the sensors are 

used over time.  Sensors located in the unmarked vehicles have significantly higher quality and 

power than the invisible low powered sensors the agents are wearing.  HyCoRE has been 

configured with reasoning plans, feature extraction and reasoning algorithms to identify persons 

of interest. The only pieces of inference that do not reside within HyCoRE are the 

low level video and audio context sources. HyCoRE makes a best effort sustaining context 

inferencing through the dynamic situation.  Energy levels of low-level sources among

quality/cost indicator as well as device availability are dynamic. There are no consumer 

requirements in this evaluation. Energy conservation during reasoning is the primary system 

concern for this middleware evaluation, so energyCost is configured as a middleware QC priority.

HyCoRE function is simulated for a single geographic cell where sensor availability fluctuates due 

to mobility of agents and vehicles. Also, device quality indicators degrade as the sensors are 

the unmarked vehicles have significantly higher quality and 

power than the invisible low powered sensors the agents are wearing.  HyCoRE has been 

configured with reasoning plans, feature extraction and reasoning algorithms to identify persons 

of interest. The only pieces of inference that do not reside within HyCoRE are the 

low level video and audio context sources. HyCoRE makes a best effort sustaining context 

level sources among other 

There are no consumer 

requirements in this evaluation. Energy conservation during reasoning is the primary system 

as a middleware QC priority. 



 

Of course, this is a fictitious scenario and there are numerous details not discussed. This work 

illustrates how pervasive middleware can be used for inferencing beyond personal monitoring.  

More specifically, the evaluation he

sustaining context with resource efficiency.  Middleware performance

applied, is compared to those obtained using adaption.  As we show, the mean time before 

context reasoning failure and overall operational efficiency increase where adaptation is applied. 

In summary, the middleware features demonstrated by this law enforcement scenario are

� Quality Integration 

� Middleware Operational Efficiency

� Reasoning plan using synchronous conte

� Adaptation to Low Level Context Provider Availability

6.1.1 Consumer and Providers

For our law enforcement evaluation scenario, the participating context providers and consumers 

are illustrated in Figure 38 and Figure 

Figure 38 HyCoRE Providers (Law Enforcement Scenario)

Figure 39 HyCoRE Consumers (Law Enforcement Scenario

The consumers (App1 and App

law enforcement agency applications monitoring the location of suspect.  For simplicity, t

interested agencies have requested the same context and qualitative 
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Of course, this is a fictitious scenario and there are numerous details not discussed. This work 

illustrates how pervasive middleware can be used for inferencing beyond personal monitoring.  

More specifically, the evaluation herein demonstrates how the HyCoRE framework supports 

sustaining context with resource efficiency.  Middleware performance, where no adaptation is 

compared to those obtained using adaption.  As we show, the mean time before 

ure and overall operational efficiency increase where adaptation is applied. 

middleware features demonstrated by this law enforcement scenario are

Middleware Operational Efficiency 

Reasoning plan using synchronous context pull from providers 

Adaptation to Low Level Context Provider Availability 

Consumer and Providers 

For our law enforcement evaluation scenario, the participating context providers and consumers 

Figure 39. 

HyCoRE Providers (Law Enforcement Scenario)  

 

HyCoRE Consumers (Law Enforcement Scenario  

 

The consumers (App1 and App2 of Figure 25) of our evaluation scenario are two distinct 

law enforcement agency applications monitoring the location of suspect.  For simplicity, t

interested agencies have requested the same context and qualitative criteria. We illustrate such 

Of course, this is a fictitious scenario and there are numerous details not discussed. This work 

illustrates how pervasive middleware can be used for inferencing beyond personal monitoring.  

rein demonstrates how the HyCoRE framework supports 

where no adaptation is 

compared to those obtained using adaption.  As we show, the mean time before 

ure and overall operational efficiency increase where adaptation is applied. 

middleware features demonstrated by this law enforcement scenario are: 

For our law enforcement evaluation scenario, the participating context providers and consumers 

 

 

) of our evaluation scenario are two distinct 

law enforcement agency applications monitoring the location of suspect.  For simplicity, the 

criteria. We illustrate such 



 

consumer requirement in the context meta

Requirements. The eight providers of our evaluation include image and sound recorders 

deployed in the targeted cells.  Many context reasoning devices are multisensory, but for 

illustrative purposes we show each capability as a distinct provider. Also, we initialize the system 

with algorithmic providers for reasoning.  

audio recording device. Provider 2 (

1) is an audio Mel-frequency cepstral coefficient

is a generalized Hidden Markov Model based aud

Provider 5 (Reasoner 3) is an image recognition reasoner. 

distribution based suspect location reasoner.  Provider 7 (

locater reasoning plan based on prov

suspect locater reasoning plan based on providers 2, 5 and 6.

6.1.2 Context Flows 

Both context flows are illustrated in 

types: devices, reasoners and flows.

Figure 40 Context Flows (Law Enforcement Scenario)
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consumer requirement in the context meta-data shown in Figure 16 Example Context Consumer

. The eight providers of our evaluation include image and sound recorders 

deployed in the targeted cells.  Many context reasoning devices are multisensory, but for 

w each capability as a distinct provider. Also, we initialize the system 

with algorithmic providers for reasoning.  With regard to Figure 38: Provider 1 (Device 1

audio recording device. Provider 2 (Device 2) is an image capture device. Provider 3 (

frequency cepstral coefficient (MFCC) Transformer.  Provider 4 (

is a generalized Hidden Markov Model based audio reasoner that requires MFCC inputs.  

) is an image recognition reasoner. Provider 6 (Reasoner 4

distribution based suspect location reasoner.  Provider 7 (Flow 1) is an audio based suspect 

locater reasoning plan based on providers 1, 3, 4 and 6.  Provider 8 (Flow 2) is an image based 

suspect locater reasoning plan based on providers 2, 5 and 6. 

Both context flows are illustrated in Figure 40. Notice that context providers may be of several 

types: devices, reasoners and flows. 

 

Context Flows (Law Enforcement Scenario)  

ontext Consumer 

. The eight providers of our evaluation include image and sound recorders 

deployed in the targeted cells.  Many context reasoning devices are multisensory, but for 

w each capability as a distinct provider. Also, we initialize the system 

Device 1) is an 

is an image capture device. Provider 3 (Reasoner 

MFCC) Transformer.  Provider 4 (Reasoner 2) 

io reasoner that requires MFCC inputs.  

Reasoner 4) is a 

) is an audio based suspect 

) is an image based 

. Notice that context providers may be of several 
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6.1.3 Setup and Operation 

The middleware periodically executes context flows, reporting context and associated QC 

indicators. Context flow configuration is fixed and device costs are constant. The consumers of 

the evaluation have a subscription for context for a period of time. The system endeavors to 

sustain context and quality over the period using adaptation. As the low level sensors (also 

referred to as context providers) vary in quality, so does the resulting high-level context. 

Additionally, the middleware quality of context service measures appropriately reflect quality 

changes. These indications are the basis for reasoning adaptation.  In the following evaluation 

scenario, middleware operational efficiency7, meantime before context failure8, integrated energy 

and bandwidth cost9 indicators are observed. The simulated lifespans of source devices is scaled 

down to five minutes for illustrative purposes. Initial system configuration is a follows: 

A device energy decline pattern is configured for uniform decline of .05 every 15 

seconds, so that device energy is exhausted after 5 minutes. The system is set to clean up 

inactive providers after two minutes and flows after three minutes.  Consumers who can no longer 

be served are also cancelled after two minutes of being detached from a reasoning plan.  The 

effect of consumer contract cancellation can be seen in the OPEFF snapshots, where operational 

efficiency returns to 100%. Essential system behavior highlighted in this evaluation is: i) context 

reasoning failure; ii) reasoning adaptation, integrated cost indications; iii) cancellation of 

ineffective providers and consumers that can no longer be served.  Each scenario ends when 

there are no more consumers and system operational efficiency has returned to 100%.  To 

capture essential system behavior, system performance measurements are taken at progressive 

time intervals described in Table 8. 

                                                      
7 See Section 4.4.5 
8 See section 4.4.6 
9 See section 4.4.3 
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Table 8 Initial Performance Snapshots 

Snapshot  System Performance Snapshot 

Times 

Description  

Snapshot 1 T0+312000ms Devices of scenario 1 have depleted 
energy and context reasoning cannot be 
sustained. Other scenarios are 
continuing to sustain context. 

Snapshot 2 T0+624000ms Following system clean-up of inactive 
providers< including flows> and 
cancellation of consumer contracts 
which can no longer be served in 
scenario 1. The middleware operational 
efficiency increases back to 1 for 
scenario 1. 

Snapshot 3 T0+936000ms Following system cancelling consumer 
contracts which can no longer be 
served in scenario 3. The middleware 
operational efficiency increases back to 
1 for scenario 3. 

Snapshot 4 T0+1900000ms Energy for devices of scenarios 2 and 4 
are depleted. Context reasoning failure 
occurs. 

Snapshot 5 T0+2050000ms 
 

Following system clean-up of inactive 
providers< including flows> and 
cancellation of consumer contracts 
which can no longer be served in 
scenario 2. The middleware operational 
efficiency increases back to 1 for 
scenario 3. 

 

The following sections describe each scenario. Results are presented in section 6.1.8. 

6.1.4 Scenario 1: No Adaptation – Declining Energy 

In scenario 1, HyCoRE is initialized with only a single instance of each type of provider shown in 

Figure 37. The energy of the image capture and audio recording devices declines uniformly.  

When device power is exhausted, the devices are no longer available for use as context 

providers.  HyCoRE adaptation is triggered; either replacing the provider or suspending reasoning 

until an alternative provider is available. There are no alternative providers in this scenario, thus 



130 

 

adaptation fails and operation efficiency declines to 0%.  In this scenario, operational efficiency 

does not return to 100% until consumer contracts are cancelled. 

6.1.5 Scenario 2: Reasoning Adaptation – Declining Energy 

Scenario 2 is the same as scenario 1 with added alternative audio and image context providers.   

Scenario 2 employs simulated self-replicating audio and image providers, where the number of 

replications is five. The bandwidth and energy cost of each replication successively increases by 

15% and 30%.   This is an improvement over the non-adapting scenario 1. When the system 

detects a failed provider, it immediately replaces it with the best alternative provider. Inferencing 

is minimally interrupted as reflected in the OPEFF and MTBCF graphs.  Device energy decline 

pattern is configured so that each device can actively collect for five minutes before energy is 

exhausted.  Device actuation which initiates energy decline does not begin until HyCoRE 

identifies and adds provider to a context flow and the context flow is started.  So, HyCoRE may 

sustain context based on these providers for up to 25 minutes.  The operational efficiency 

remains at 100% while there are alternative providers available for adaption. Middleware cost 

fluctuations reflect the changing cost of inferencing as source providers are replaced. It is difficult 

to discern that the system is adapting for to the provider with least energy cost.  This is due to the 

fact that the providers are continuously moving in and out of range.  However, scenario 2 does 

show that each adaptation selects with increasing cost. 

6.1.6 Scenario 3: No Adaptation – Energy Decline w/Dynamic Availability 

Scenario 3 makes use of the same singular instances of image capture and audio devices from 

scenario 1. No device replication is applied. In addition to energy decline, the devices move in 

and out of HyCoRE range as simulated through the application of an availability pattern. For this 

case we use an on/off pattern with 1 minute durations. Availability pattern is applied for eleven 

minutes. When a device becomes unavailable the middleware attempts to find another provider to 

sustain context inference. However, since there are no other devices available, inferencing will be 

suspended until the device comes back into HyCoRE range. Energy only declines when a 
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provider is being actively used for inferencing, so simulated energy decline suspends when the 

device becomes unavailable.  Device energy is exhausted after being used for a total of five 

minutes; at which time HyCoRE can no longer adapt. Accounting for off periods, context 

inference should fail permanently after nine minutes. Thereafter, we observe provider and 

consumer cancellation. Adaptation initiated by availability changes can be observed in all of the 

graphs. Fluctuations in middleware cost, MTBCF and OPEFF are all indicative of flows being 

suspended and restarted.  As with the other scenarios, observe that operational efficiency returns 

to 100% when consumer contracts are cancelled. 

6.1.7 Scenario 4: Reasoning Adaptation – Energy Decline w/Dynamic Availability 

Scenario 4 functions the same as scenario 2 with the added dynamic availability of scenario 3. 

Alternative providers are available for adaptation, so HyCoRE is able to successfully sustain 

context inferencing despite changing availability.  Unlike the drastic performance drop shown for 

scenario 3, successful context sustenance is shown in that the operational efficiency remains at 

100% until after either all image or audio device energy is exhausted.  Also, the MTBCF is more 

normalized around 60s, which is consistent with the availability interval simulation setting. 

6.1.8 Law Enforcement Search Evaluation Results 

As discussed previously,  we capture progressive system snapshots are progressive time 

intervals. This allows us to observe system measures as i) quality is integrated; ii) reasoning fails 

and iii) adaptation is handled. The first measure on each X axis represents the indicated number 

of milliseconds since system start.  Each subsequent measure is 11 seconds later. System 

collection is set for every 11 seconds with a history size of 40, so that each graph reflects 7.3 

minutes of performance. Refer to the preceding evaluation scenario descriptions for a discussion 

on the results presented below. 

6.1.9 Snapshot 1- System Startup + 312000ms 

Snapshot 1 graphs begin 2ms after system startup, covering 30, 11 second time intervals.  As 

mentioned previously, the source device energy is configured to be depleted after five minutes of 
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total use. This snapshot covers the period where devices of scenario 1 have depleted energy and 

context reasoning cannot be sustained. Other scenarios are continuing to sustain context. The 

OPEFF graph shows that scenario 1 experiences permanent context failure around 300ms.  

Since, scenarios 2-4 include intervals of unavailability, where devices are not actively used, the 

lifetime of each device is extended. However, we do see cyclic OPEFF, MTBF and Cost in 

scenario 2 that mirror periods of unavailability where there are no alternative devices. The trend 

in the MTBCF is also indicative of system behavior.  Scenario 1 and 2 MTBCF continue to rise for 

five minutes, indicating uninterrupted context reasoning for this period.  In the case of scenario 1 

the MTBCF remain constant afterwards since reasoning is suspended and never restarted.  In 

scenario 2, reasoning is suspended, adapted and restarted.  Thus, the average running time is 

reduced. Integrated middleware costs graphs are indicative of the cost using actives devices at 

that specific time instant. Scenarios 1 and 3 do not adapt, so the cost is either fixed or 0.  

Scenarios 2 and 4 reflect adaptation using the most energy efficient devices available at the time. 

 
Figure 41 Snapshot 1 – Operational Efficiency 

 

 
Figure 42 Snapshot 1 – Meantime Before Context Fail ure 
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Figure 43 Snapshot 1 – Integrated Energy Cost 

 

 
Figure 44 Snapshot 1- Integrated Bandwidth Cost 

 

6.1.10 Snapshot 2- System Startup + 624000ms 

Snapshot 2 graphs begin 1870788ms after system startup, covering 40, 11000ms time intervals. 

This snapshot covers the period where scenario1 fails and includes the cancellation of consumer 

contracts. After five minutes, scenario 1 fails irrecoverably since device energy is depleted.  

Inferencing costs drop go to 0 and OPEFF returns to 100% since the system is no longer 

inferencing. In contrast, scenarios 2and 4 are continuing to sustain context using alternative 

providers. There are no alternative providers in scenario 3, so intermittent context failure can be 

observed in all graphs. 
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Figure 45 Snapshot 2- Operational Efficiency 

 
Figure 46 Snapshot 2- Meantime Before Context Failu re 

 

 
Figure 47 Snapshot 2- Integrated Energy Cost 
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Figure 48 Snapshot 2- Integrated Bandwidth Cost 

6.1.11 Snapshot 3- System Startup + 936000ms 

Snapshot 3 graphs begin 506078ms after system startup, covering 40, 11 second time intervals.  

This snapshot covers the period following system cancellation of consumer contracts which can 

no longer be served in scenario 3. Note that fluctuations in MTBCF and cost indicate points of 

adaptation while a consistent 100% value for OPEFF is indicative of successfully sustaining 

context. The OPEFF of Scenario 3 returns to 100% when its consumer contracts are deleted after 

12.5 min. Scenarios 2and 4 are continuing to sustain context using alternative providers. It can be 

seen in scenario 2 costs, that the more energy efficient alternative is being selected for 

adaptation. This fact is obscured in scenario 4 since it includes dynamic availability. The MTCF of 

scenario 4 destabilizes and begins to rise since the availability simulation expires after 11 min. 

Thereafter, the devices are always available. Scenario 3 has already failed permanently and the 

MTBCF remains fixed to the last reasoning values. 

 
Figure 49 Snapshot 3- Operational Efficiency 
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Figure 50 Snapshot 3- Meantime Before Context Failu re 

 
Figure 51 Snapshot 3- Integrated Energy Cost 

 

 
Figure 52 Snapshot 3- Integrated Bandwidth Cost 
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6.1.12 Snapshot 4- System Startup + 190000ms 

Snapshot 4 graphs begin 1463078ms after system startup, covering 40, 11 second time intervals. 

This snapshot cover the period where context reasoning failure occurs for scenarios 2 and 4. 

Scenarios 1 and 3 have already failed.  Scenarios 2 and 4 continue to sustain context using 

alternative providers for almost 30 minutes. Eventually, all device energy is depleted and context 

reasoning failure occurs. The MTBCF of scenario 2 is consistent with the energy lifespan of 

simulated devices which is 300 seconds. In scenario 4, the availability changed every 60 seconds 

for the first eleven minutes, so the MTBF could not grow far beyond that even after availability 

simulation expired. Please refer to the following section for more discussion on system behavior 

in scenarios 2 and 4. 

 
Figure 53 Snapshot 4- Operational Efficiency 
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Figure 54 Snapshot 4- Meantime Before Context Failu re 

 

 
Figure 55 Snapshot 4- Integrated Energy Cost 

 
Figure 56 Snapshot 4 Integrated Bandwidth Cost 
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consumer contracts which can no longer be served in scenarios 2 and 4. Context reasoning is 

sustained for nearly 30 minutes, adapting to use one the six alternative devices. When energy for 

all devices is depleted, OPEFF temporarily drops to 0, but returns to 100% after consumer 

obligation are cancelled. Also, all costs related to inferencing return to 0.  The MTBCF remains at 

the levels obtained prior to permanent inferencing failure. 

 

Figure 57 Snapshot 5- Operational Efficiency 

 
Figure 58 Snapshot 5- Meantime Before Context Failu re 
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Figure 59 Snapshot 5- Integrated Energy Cost 

 

 
 

Figure 60 Snapshot 5 Integrated Bandwidth Cost 
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6.2 Hybrid Reasoning using Mobile Device Contexts

HyCoRE supports efficient context processing as it endeavors to sustain context by adapting 

reasoning components and employing context reuse where possible. There are elements

architecture that are only used in specific scenarios.  So we use several simple examples in our 

evaluation to show the generality of the framework for heterogeneous context and applications.

In this evaluation we stress the heterogeneou

for physical activity. The previous law enforcement evaluation tested the architecture in cases 

where the low level devices drive the high level quality

android evaluation, it is the intermediate reasoner quality that drives behavior. 

Device Context Illustration illustrates the scenario.  

Figure 

 

One mobile device subscribes as an ‘activity’ context provider for a specific user target.  Two 

other mobile users subscribe as consumers of ‘activity’ for the same target. T

classifiers ( naïve bayes and J48 decision tree) 

from a mobile device accelerometer samples. 

inferring ‘activity’ from accelerometer readings. The appropriate template is inst
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context flow upon receiving a consumer request. The two consuming mobiles receive context 

notifications at their respective context mailboxes. Later, manual context feedback is used to 

degrade the quality of one classifier so that adaptation is triggered. HyCoRE adapts by replacing 

the failing classifier with its alternative; thereby sustaining context and maintaining quality. In 

summary, the middleware features demonstrated by this mobile device scenario are: 

� Quality Integration 

� Middleware Operational Efficiency 

� Reasoning plan using asynchronous context push and synchronous context pull from 

providers 

� Quality Feedback 

� Adaptation to Mid- Level Context Provider Quality 

� Context Sharing 

� Context Mailbox Actuation 

 

6.2.1 Hybrid Reasoning using Mobile Device Contexts Demo Results 

This demonstration is in being completed at the time of this writing. Results will be presented in a 

separate work or as a supplement. 
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CHAPTER 7  

CONCLUSIONS 

This dissertation presents middleware solutions for efficient, effective and adaptable high level 

context reasoning. Architecture design and context reasoning solutions were evaluated through a 

prototypical implementation of HyCoRE: Hybrid Hierarchical Context Reasoning Engine.  The 

novelty of HyCoRE begins with its data model and architecture design. It is specifically designed 

to bridge gaps in existing frameworks that hinder reusability. There exists many existing 

frameworks for deriving context in pervasive domains. However, there is still a need in the area of 

quality awareness and data generalization.  Often, existing frameworks specialized in specific 

classes of context. Others, which are more general, include little consideration for quality. 

Solutions unique to HyCoRE include: i)integrated high level context quality derivation; ii)context 

provenance, reusable/adaptive reasoning plans; iii) quality of context middleware service 

measurements.  Further, HyCoRE offers: i) context data models which  are a refreshingly clear, 

generalized approach to modeling context, quality and cost; ii) (QoCS) Quality Based Middleware 

Performance Measures which serve as a basis for adaptive reasoning; iii) high level context 

quality integration and validation scheme; and iv) an adaptive reasoning scheme called context 

flows .This collective concentration of features supporting heterogeneous high level context 

derivation makes HyCoRE unique.  

The current implementation is a fully functional prototype implemented in Java; and was 

used in evaluation of the aforementioned context middleware features. This is a extensible, 

generalized architecture that can be use to infer a variety of contexts. Our evaluation illustrates 

activity and location context inference. The QoCS measures demonstrated show that integrated 

quality metrics are a valuable way to measure framework reasoning performance; Also, that 
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quality is a sound basis for reasoning adaptation. The architecture can be extended to support 

more context types using pluggable context providers.  It is the infrastructure that supports 

adapting components and measuring integrated quality that is the value of this architecture.  

HyCoRE may be used in environments lacking sufficient reasoning infrastructure. By 

adapting existing devices to HyCoRE interfaces, a fully functional reasoning system can be 

achieved in diverse application scenarios, including: i) health/biometric situation monitoring 

ii)smart homes; iii) environmental monitoring; and iv) dynamic situation detection in mobile device 

field deployments. We envision future independent development of reasoning templates and 

generalized reasoners.  The types of context that can be inferred with HyCoRE depends on these 

pluggable components. Pervasive domains are typically characterized by CPU, power and 

memory limitations. Lightweight reasoning components can be developed and used with HyCoRE 

in support of mobile and pervasive environments. The current prototype implements baseline 

processing for the core functions of reasoning plan projection, meta-data matching, adaptive 

context inference ,and quality feedback. These core algorithms can be improved to make 

HyCoRE more efficient.  It would be a worthwhile effort to build HyCoRE to full scale with the 

robustness and versatility envisioned in the design.  Also, the development of a repository of 

generalized reusable reasoning components for used in building context templates and flows 

could be a critical enabler for rapid context aware application development; a necessary step in 

achieving the vision of pervasive computing. 
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