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ABSTRACT

MODELING AND CONTROL OF AUTOMATIC TRANSMISSION

WITH PLANETARY GEARS

FOR SHIFT QUALITY

Patinya Samanuhut, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Atilla Dogan

Automatic transmission is a major component in a vehicle that transmits the

power source from the engine to the drive wheels of the vehicle. To improve fuel econ-

omy, reduce emission and enhance driving performance, many researchers have made

tremendous efforts on new technologies for automatic transmission with planetary

gear sets. Among these new technologies, system dynamics and control methodolo-

gies are extremely important tools to realizing the fuel economy, emission and driving

performance. This research effort focuses on the modeling and control of an auto-

matic transmission with planetary gear sets. A Lagrange-based method is developed

to derive the equations of motion of planetary gear sets and applied to the devel-

opment of a mathematical model for the automatic transmission GM Hydramatic

440. The other transmission subsystems such as torque converter, hydraulic system,

friction elements and final drive are modeled based on the methods available in the

open literature. Additionally, simple engine and vehicle models are included as the

main focus of the research is on the transmission. Since the model of friction used in

v



clutches and bands are very important for studying shift quality, an improved fric-

tion model based on three modes is used. The hydraulic system is given particular

attention as it is the primary source of actuation in performing shifts. The second

part of the research focuses on developing feedback control mechanisms for improving

shift quality. The implementation of feedback control helps avoid tedious process of

pressure profile calibration to obtain satisfactory shift quality. Further, it provides a

level of robustness in shift quality against the variation of vehicle properties and the

changes in driving condition. One nonlinear and one linear feedback control design

methods are implemented. The sliding mode control method is the nonlinear con-

trol approach. The implementation of this controller requires the knowledge of the

clutch/band torque, which is not practical to measure. To overcome this difficulty,

various observer solutions are investigated. Despite the difficulty in its implementa-

tion, the sliding mode controller is still useful to obtain required speed profiles for a

satisfactory shift quality. As the linear feedback controller, the PID control design

is employed. For each up and down shifts, a PID controller is tuned to generate the

applied friction profile for the friction element involved. For the calculation of the

error signal as the input to each PID controller, the most relevant speed measure-

ments are used for feedback and the desired speed command is determined based on

the status of the rotating elements in the desired gear. Despite its simplicity and

ease of its implementation, the speed-measurement-based PID controllers are shown

to provide satisfactory shift quality in terms of reduced jerk experienced during the

shift and shorter duration of the shift. Further, a Monte Carlos analysis has shown

the robustness of the PID controller against the model variation, specifically variation

of the parameters in friction model.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

An automatic transmission has a long history along with the development of

a car [1]. The main purpose of the transmission is to provide, for any situation,

the best gear ratio for the vehicle. Different gear ratios have different speeds. They

trade engine output speed for torque multiplication to match the engine output to the

vehicle and operator requirements at the drive wheels of the vehicle. Transmission

also provides reverse gear ratio that permits the driver to back the vehicle up. Further,

transmission provides “park”(P) and “neutral”(N), which disconnect the engine from

the drivetrain, prevent the drive wheels from turning (P) and allow the drive wheels

to turn freely (N), respectively. The transmission allows the driver to stop the vehicle

with engine running (idle) without disengaging the gears. In addition, automatic

transmission offers manual ranges which allow the engine to be used to slow the

vehicle down (engine braking) without using the service brakes when descending steep

grades. In some cases, the manual ranges also allow the driver to select higher gear to

initiate the motion of the vehicle on a slippery surface (snow, ice, etc.). Among other

benefits are reduced driver’s distraction, better fuel-consumption, better performance

and more comfortable ride.

Maximum torque at driving wheels (along with the maximum traction force at

tireprints) limits the maximum achievable acceleration of a vehicle. The maximum

attainable power of an internal combustion engine is a function of the engine angular

speed and is approximated by a third-order polynomial as shown in Fig. 1.1. Fig.
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Figure 1.1. Real Engine Diagram.

1.1 indicates that the maximum attainable power increases to a peak and then starts

dropping as the engine speed increases. The torque, T = P/ω, also increases with en-

gine angular speed but reaches a maximum point before the power peak. Thus, torque

starts decreasing sooner than the power does. When the power starts decreasing, the

torque is very far from its peak value.

Engine with the performance curve similar to Fig. 1.1 will provide the maximum

torque at the drive wheels through a gear with the angular speed corresponding to

the power peak. When the engine operates at the peak torque for a given drive wheel

speed, the torque at the drive wheel will be the product of the the peak torque and

the gear ratio required to go from the engine speed to the given drive wheel speed.

By changing the gear ratio for the same drive wheel speed, the engine speed can

be changed. If the gear ratio is selected such that the engine operates at the speed

corresponding to the peak power, the torque at the drive wheels will be more than
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Figure 1.2. Ideal Engine Diagram.

the torque corresponding to the peak engine torque for the same drive wheel speed.

For engines with performance curve similar to Fig. 1.1, any engine speed other than

the peak power speed, at a given drive wheel speed, will provide a lower torque at

the drive wheels.

An ideal engine is said to produce a constant power regardless of speed, as

shown in Fig. 1.2. In vehicle dynamics, a gearbox is introduced to keep the engine

running around the maximum power. In other words, the gearbox is used to keep

the power of the engine constant at the peak value. Thus, the torque at the wheels

should be similar to the torque of an ideal engine.

Figure 1.3 shows the wheel torque versus vehicle speed at six speeds (ni refers

to the ith gear) [2]. Fig. 1.3 also presents the required wheel torque which includes

wheel resistance, air drag, acceleration resistance and gradient resistance. Note that

the envelop curve is similar to the torque curve of a constant power ideal engine.
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Note that increasing the number of speed in a gearbox gives correspondingly better

approximation to the ideal engine torque curve. Thus, with a transmission, the power

potential of the engine can be better applied [1]. Theoretically, the best performance

is obtained when the engine operates at its peak power. Thus, the automatic trans-

mission is scheduled to shift gears to keep the engine speed close to the peak power

speed. Other factors considered in shift scheduling are performance, fuel-efficient and

driving comfort.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

speed, m/s

To
rq

ue
 (N

−m
) 

 

 

envelope
20%

10%

0%

n1

n2

n3

n4

n5

n6

Wheel Torque

Resistance Torque

Figure 1.3. Traction Diagram.

1.1.1 Shift Schedule for Automatic Transmission

The main objective of a transmission is to keep the engine operating at an

optimal condition in terms of engine speed for peak power as well as other factors

such as fuel efficiency and driving comfort. This objective is formulated as a shift

schedule to define when the transmission should change gear. The most common shift
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Figure 1.4. Shift Schedule.

scheduling is defined based on engine throttle position and engine or vehicle speed.

Fig. 1.4 shows an example of a shift schedule chart for a four–speed transmission

based on the throttle setting and vehicle speed. The chart consists of upshift and

downshift curves that determines when to shift and which gear to shift to depending

on the current gear, throttle setting and vehicle speed. The following is a sample

scenario to demonstrate how the shift scheduling is done during the operation of a

vehicle. The abc–line on the chart shows when the transmission is required to shift

gears while the vehicle speed is increasing with a fixed throttle position. On the
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other hand, with a different throttle setting, if the vehicle is slowing down, def–line

demonstrates when the transmission should shift to a down gear. The focus of this

research is not on the shift scheduling, but on the dynamics of a shift once the gear

change command is issued based on the shift schedule chart.

1.1.2 Shift in Automatic Transmission by Planetary Gears

Figure 1.5. A single planetary gear set.

A conventional automatic transmission is composed of a torque converter, hy-

draulic system, planetary gear sets, friction elements and final drives. Planetary gear

set is the most important component in an automatic transmission because it enables

the variation of torque and speed ratios to match the vehicle and driver requirements.

A planetary gear set, also known as epicyclic gear set, consists of a ring gear, a sun

gear, a set of planet gears, and carrier as seen in Fig. 1.5 and is used to perform

gear shifting. Different speed and torque ratios are easily achieved by alternating

input, output, stationary components and holding elements. This is done by an elec-

tronic unit, engaging and/or disengaging various friction elements such as clutches

and bands through the hydraulic system. The amount of hydraulic pressure applied



7

on a friction element determines the maximum amount of torque that the friction

element can transmit, which is known as “the torque capacity of a friction element”.

To engage a friction element, its torque capacity should be increased, by increasing

applied pressure on the friction element, more than the torque it needs to transmit

in a given driving condition. The torque capacity is reduced to zero, by releasing its

hydraulic pressure, to disengage a friction element.

1.1.3 Shift Quality
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Figure 1.6. Shifting 2 to 3 (Note that: TcapB12 = torque capacity of band 12,
TcapCL3 = torque capacity of clutch 3, B12 = applied torque at band 12 = applied
torque at sun–2, CL3 = applied torque at clutch 3 = applied torque at sun–1, Toutput
= Torque at output shaft before final drive, v = translational velocity of vehicle, S1
= angular velocity of sun–1, S2 = angular velocity of sun–2, wt = angular velocity
of turbine, C2R1 = angular velocity of carrier–2 and ring–1).
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The characteristics of a shift is determined by how the torque capacities are

adjusted for the friction elements. Fig. 1.6 shows three different shift characteristics

for the same shift, from 2nd gear to 3rd gear. In this particular transmission, band–12

(B12) should be released and clutch–3 (CL3) should be applied to conduct 2–3 shift.

A shift that requires both an on–coming and off–going elements is called “a swap

shift”. The timing and the profiles of the torque capacity adjustment for B12 and

CL3 are the defining factors for the shift characteristics. Fig. 1.6 shows two extreme

shift characteristics and a “compromise” shift with the torque capacity profiles shown

in Fig. 1.6.

Part (a) of Fig. 1.6 presents the “compromise” case with a good timing of the

on-coming element (the clutch being applied) and the off-going element (the band

being released). The shift is initiated by lowering the capacity of B12 and, after a

short time, raising the capacity of CL3, as shown in the first plot of column (a) of Fig.

1.6. The increasing torque capacity of CL3 while B12 still has some torque capacity

splits the torque transmission between CL3 and B12. This can be seen in the second

plot of column (a) of Fig. 1.6. As more torque goes through CL3, less torque is carried

by B12. Note that during this time, the output torque decreases. At the time when

the torque capacity of B12 drops to zero and B12 no longer carries torque, CL3 starts

carrying all the torque and the decrease in the output torque stops. This signifies the

end of the “torque transfer phase” and the beginning of the “ratio change phase”, or

“inertia phase”. During the inertia phase, the gear ratio is between the 2nd gear and

the 3rd gear ratios. Since B12, which connects sun–2 to the transmission case, is fully

released, sun–2 starts rotating. CL3 is used to connect sun–1 to the turbine shaft.

As CL3 is engaged, the clutch slips until sun–1 and the turbine have the same speed.

Once Sun–1 and the turbine rotate (zero slip in CL3) together with the sun–2 and

they all have the same speed as carrier–2 (connected to the output shaft), the 3rd gear
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ratio (= 1) is obtained and the shift is completed (see the last plot of part (a) of Fig.

1.6). Then, the torque carried by CL3 is only the amount to prevent slipping. Once

the shift is completed, the capacity on the clutch can be increased with no effect on

the speeds or the torques. Note that the output torque drop stops at the beginning

of the inertia phase and the output torque shows a transient in the inertia phase.

Part (b) of Fig. 1.6 presents 2–3 shift with a different B12 and CL3 torque

capacity profiles. The torque capacity of B12 is reduced rapidly to zero before raising

the torque capacity in CL3. This results in a very short torque transfer phase. In

fact, since CL3 does not start carrying torque when B12 is fully released, no torque

is transmitted from the turbine to the output shaft in the meantime, this causes the

turbine speed and, as a result, the sun speeds to “flare up”. Note that from the

vehicle velocity plot that the vehicle acceleration stops during the “flare”. Further,

the output torque demonstrates a longer transient with longer oscillation relative to

the “compromise” case. A longer inertia phase also results in a longer time of clutch

slipping.

In part (c) of Fig. 1.6, another set of torque capacity profiles is used for 2–

3 shift. In this case, CL3 torque capacity is started to raise while B12 still has

significant torque capacity. By applying CL3 while CL2 is on, the whole planetary

gear set becomes a rigid shaft. Since B12 still holds sun–2 stationary, CL3 acts

like a brake for the vehicle, which can be clearly seen from vehicle velocity plot in

part (c) as the vehicle speed starts decreasing. The braking–effect, called “tie-up”,

can also be seen in output torque dropping into the negative range. This continues

until the torque capacity of B12 drops low enough for B12 to start slipping and thus

for sun–2 to start spinning. After this point, the inertia phase lasts very short and

turbine speed becomes equal to the output shaft (C2R1) speed as the third gear ratio

is 1. Further, the vehicle starts accelerating again. However, even after the shift
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is completed, a very long transient with large oscillations in the output torque and

speed, called “jerking”, is experienced.

These three examples, “flare”, “tie-up” and “compromise” shifts, manifest the

importance of the torque capacity or applied pressure profiles in shift quality. Better

shift characteristics or better “shift quality” is desired for, first of all, driver and

passenger comfort and easier driving conditions, especially in urban driving with

frequent shifting. Shift quality is also sought for fuel efficiency, improved drivability

and performance (maintained acceleration). Further, better shift quality leads to

longer transmission and powertrain life and less maintenance cost.

The most common method of assessing shift quality is to rely on trained drivers

to make a subjective judgement. Trained drivers and “calibrators”, who calibrate

torque capacity or applied pressure profiles to improve shift quality, rely on their

experience and noise–vibration that they hear–sense during shifts. However, feedback

control approaches for improving shift quality have to have measurable quantities.

Methods are developed to provide objective description of shift characteristics [3, 4, 5].

Objective methods for measuring shift quality can rely on various characteristic such

as torque at the output gear/shaft, acceleration or the derivative of acceleration of

the output gear, or the shift duration, the time between the current gear ratio and

the desired gear ratio. The torque at the output gear should have short transient with

small amplitude during shifts. The acceleration of the output gear should also have

small transient. Sudden change in output acceleration indicates poor shift quality.

The derivative of acceleration is also used to measure shift quality.

1.2 Problem Statement

This research is aimed at investigating feasibility of robust feedback control

laws that can lead to better shift quality. The emphasis of the control laws will be on
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controlling the torque capacities or applied pressure of the friction elements involved

in a given shift based on various feedback control signals. For the development,

implementation and evaluation of feedback control laws, a mathematical model of a

representative vehicle with the emphasis on planetary gear set should be developed.

Further, the mathematical model should be implemented in a simulation environment

for easy and accurate simulation of system response with the feedback control laws

employed. Therefore, the objectives of this research effort are listed as follow:

(i) Development of dynamic models of transmission and other subsystems of a

representative vehicle with a fidelity that the dynamic behavior of gear shifts

can be described.

(ii) Development of a simulation environment that can be used for the analysis of

dynamic system response in shift.

(iii) Development of quantitative measures that can describe “shift quality”.

(iv) Definition of “good shift quality” in terms of quantitative measures.

(v) Development of feedback control laws for gear shift that can result in better

shift quality.

(vi) Evaluation of feedback controllers by simulation of closed–loop system response

in various test conditions.

1.3 Research Contributions

The following list summaries the contributions of this research.

• Development of a mathematical model of a planetary gear sets used in an au-

tomatic transmission.

– Using Langrange’s Method to derive the dynamics equations of planetary

gear sets.
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– Develop the mathematical models of automatic transmissions for simula-

tion of shift behaviors, including pinion effects.

– A simple set of equations that are valid of any gear or shift.

– A mathematical tool to easily determine steady-state speed relations of

rotating elements in a given gear.

• Development of a hydraulic actuation system used in an automatic transmission.

• Development of friction elements model in an automatic transmission to increase

the model’s fidelity.

• Development of the control methodologies used to control gear shifting to achieve

better shift quality.

• Evaluation of the control methodologies.

1.4 Organization of the Dissertation

A literature review of powertrain modeling including engine, transmission, and

vehicle model is presented in Chapter 2. The planetary gear sets modeling is specially

focused, since it is the key to understand the shift dynamics. The survey of control

techniques implemented in a conventional automatic transmission is discussed and

compared to find the control techniques that is suitable and available to improve the

shift quality. A review of observers is also discussed to reconstruct the inaccessible

variables in the automatic transmission.

In Chapter 3, the detailed powertrain model including engine, torque con-

verter,final drive and vehicle mode is presented. The subsystems that are connected

to the transmission have to be studied and developed properly to be able to obtain

the shift dynamics.

In Chapter 4, the transmission modeling is described in details. The planetary

gear sets is modeled by using Lagrange method. The equation of motion of the plan-
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etary gear sets is presented. The hydraulic actuation system is modeled to determine

the limitation of hydraulic actuation system to the shift dynamics. Further, new and

more capable actuation mechanism for applying pressure on clutches and bands are

presented. The friction elements are modeled by various friction models. The most

suitable for the dynamics and control in the automatic transmission is selected and

discussed.

In Chapter 5, the open–loop simulation results are presented. The powertrain

model with classical friction model excluding hydraulic system is first discussed. Sec-

ond, the powertrain model including the stiff drive shaft, hydraulic system and Woods

static and dynamic friction model is discussed. Finally, the powertrain model includ-

ing the non–stiff drive shaft, hydraulic system and Woods static and dynamic friction

model is discussed.

In Chapter 6, the control objectives for good shift quality are discussed. The

implementation of PID controllers and the evaluation of closed–loop simulations of

various shifts are discussed. The PID controller is evaluated to determine its perfor-

mance robustness against variation in friction characteristics. The robustness evalu-

ation is performed using the Monte Carlo simulations and the results are presented

as histograms. As a nonlinear control design method, sliding mode control design is

presented. Since the sliding mode controller requires various variables that cannot be

measured, various observer design methods are discussed.

Chapter 7 presents the summary and conclusion of the research work and dis-

cusses various future research directions.



CHAPTER 2

LITERATURE REVIEWS

This literature review has focused on modeling and control of automotive trans-

mission with emphasis on planetary gear sets. The papers related to modeling meth-

ods are studied and compared to understand the prior work that have been done in

this area. In addition to transmission, other subsystems in powertrain and vehicle

models are also investigated. Other subsystems and vehicle dynamics models are

needed for developing a simulation environment to study shift quality. The mod-

eling techniques of the planetary gear sets are categorized as kinematics-based and

dynamics-based, which are explained below. The friction model is studied and imple-

mented to the clutch/band model. The friction plays a major role in the gear shift.

With accurate friction models, the transmission model fidelity can be significantly

improved. This gives us an insight into understanding shift behaviors and enables

us to design and implement various control laws. The control techniques that are

implemented to improve shift quality are proposed by many researchers. The control

techniques are grouped into open–loop and closed–loop according to their dependency

on feedback signals. Torque estimation is also investigated as one of the controllers

investigated requires torque estimation.

2.1 Kinematics-Based Planetary Gear Modeling

1. Energy method [6] : This method utilizes the conservative energy law, where

energy can be transferred from one system to other system. Then, a simple

power flow equation within a planetary gear set is established in terms of torque

14
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and velocity. Also, a gear geometry relationship is combined with the power

flow equation. The results of the analysis are given in the formulas governing

the speed and torque of the components in the planetary gear sets.

2. Lever analogy method [7] : In this method, an entire transmission is represented

by a single vertical lever. The input, output and reaction torques are represented

by horizontal forces on the lever, and the lever motion, relative to the reaction

point, represents rotational velocities. The lever proportions are determined by

the numbers of teeth (or the radii) on the sun and annulus.

3. Relative velocity method [8, 9] : It is based on simple principles of relative

motion, the observation that a carrier can have four possible roles in a gear

train, and concepts of mixed and fixed gear ratio. The velocities of gears relative

to the carrier can be expressed as function of gear ratios. The derivation of the

equations finally gives absolute velocity of all components in the planetary gear

set.

4. Signal flow graph [10, 11] : By assuming the angular velocities as a collection

of nodes, a full analogy between a planetary gear set and signal flow graph is

established. This method considers a planetary gear set as a system processing

inputs, outputs, and system transfer function. The system is then analyzed

by means of block diagrams or flow graphs. Applying the Mason’s rule, the

governing equation of the dynamics of a planetary gear set is developed.

5. Tabular method [12] : The method provides computation of speeds and torques

at each gear position. This is because gear geometry relations of its compo-

nents are known. Utilizing the relations, formulas at specific conditions in the

planetary gear set are formulated. This method, however, can not reveal power

flow and action-reaction of each component in a planetary gear set.
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6. Vector loop method [13, 14] : The equation of motion derived by this approach

comes from a straightforward process of generating a sequence of vectors which

sum to zero around a closed path. The velocity and acceleration are determined

by differentiating the terms in the vector equations.

7. Velocity diagram method or graphical method [15] : This method presents the

speed and torque relations of components in a planetary gear set based on the

principle used for velocity analysis of other mechanism. This is by constructing

the velocity diagram that exposes all related velocities of a planetary gear set.

The formulas for a planetary gear set then are established by analyzing the

velocity diagram. Since the method has the advantage of visualizing the effect

of geometric variation on the kinematics of the planetary gear set, it could be

used by a designer at an early stage of design.

2.2 Dynamics-Based Planetary Gear Modeling

1. Bond graph [3, 4, 16, 17] : This method analyzes a system by considering

interactions between its components via ports having flow and effort variables as

input-output. It helps visualize the whole system power flow as the subsystems

are interacting. By using bond graph, a dynamic system of a planetary gear

set that is analyzed with Newton’s Law is established so that the flow variable

(speed) and the effort variable (torque) interconnect to each component in the

system via the input-output ports. In this way, the governing equations for the

system are formed systematically.

2. Kinematics and static force analysis [5, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27] : Kinematic analysis of a planetary gear train is established by applying

Graph Theory. Static force and torque analysis is performed based on Newton’s

Law while analyzing the components in free-body diagram. Within free-body
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diagram, the interaction of each component in a system can be visualized. It is

a straightforward method in considering a multibody dynamics system.

3. Lagrange’s method [28, 29, 30, 31, 32] : This method uses energy-based ap-

proaches to the derivation of the governing equations of planetary gears. If

the focus is not on the structural mechanics of gears, then Lagrange methods

are more appealing as the equations of motion can be derived without com-

puting the reaction/contact forces and torques. Ref. [29] studies the dynamics

of a robot wrist driven by motors. It uses the Lagrange method to derive the

equations of motion for the gear-mechanism as well as the constraint forces and

torques. In Ref. [30], the planetary gear sets in a transmission is analyzed by

Lagrange equations under certain constraints. In this study, the shift dynamics

is not studied while the transmission model along with the other subsystems is

used to analyze vehicle dynamics. Ref. [31] starts with the general Lagrange

equation, but derives only the speed relations. Ref. [32] applies the Lagrange

method to derive torsional dynamic models to predict free vibration character-

istics; no attempt is made for shift behavior or control. This research effort also

uses the Lagrange method in deriving the dynamics equations of planetary gear

sets [28]. In derivation, the assumption of ideal planetary gear is made. That is,

no backlash occurs between gear meshing, gears and shafts are rigid, and friction

is negligible. In this case, the Lagrange method is the most suitable because

it provides a systematic and direct approach to derive the equations in terms

of generalized coordinates and applied torques without dealing with vectors or

constraint forces and torques. This method can easily take into consideration

all rotating elements including pinions and their inertias in the derivation of the

equations. This systematic approach can be easily applied to planetary gears

of any configuration. The derived equations are used to study transient shift
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behavior including the effects of the pinions and the torque capacity build up or

release in friction elements. There is no need to switch from a set of equations

to another when shifting gear ratio as the equations derived are valid in all gears

and shifts.

2.3 Powertrain Modeling

Other subsystems in powertrain are crucial to obtaining high fidelity simulations

for investigating shift quality. These subsystems are engine, torque converter, friction

element, hydraulic system, final drive and vehicle model.

2.3.1 Engine Model

The engine models which is suitable for control design have been studied by

many researchers. This type of the engine model is used in [3, 4, 5, 33], which also

study shift dynamics for improving shift quality. Refs. [4, 33] works on improving shift

quality by controlling the shift in the transmission. Ref. [5] controls both transmission

and engine, while more emphasis is given to transmission. Ref. [3] tries to control

both engine and transmission to improve shift quality as well as fuel consumption.

Results presented in these references demonstrate that this engine model is adequate

for capturing transient behaviors during all shifts as well as steady–state behavior.

The engine model used in Refs. [3, 4, 5, 33] is originated from Refs. [34, 35,

36, 37, 38], which study engine modeling and control. This model is a continuous

time, three states engine model for a four–stroke engine. There are three states in

the engine model – the mass of air in the intake manifold, the engine speed, and the

fuel flow rate. Additionally, there are two transport delays in the model due to the

discrete nature in a four–stroke engine – the intake–to–torque production delay and

the spark–to–torque production delay. These engine models approximate all rotating
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and oscillating masses inside the engine as a single engine mass with a polar moment

of inertia [35]. Ref. [21] designs observer to estimate states of the whole powertrain

model and also uses the same “single rotating mass” concept for engine modeling.

The mathematical model of an engine has long been developed for application

to dynamic engine modeling and control [39, 34, 35, 36, 37, 38, 40, 41]. Physical phe-

nomena that occur in an engine have been studied for many years. There are two main

approaches to engine modeling [39, 40]. First one describes the combustion process,

chemical reaction, pollution, exothermicity and phenomena involving the combustion

in an engine [42, 43]. These models are rather complex and require issues related to

heat transfer, thermodynamics, fluid mechanics and chemistry. Second one is for more

control development oriented models. The models represent input-output behavior of

the engine system with reasonable precision with low computational complexity, and

includes, explicitly, all relevant transient (dynamics) effects. The engine model can be

just, in some cases, a torque generation map whereas, in other cases, capture dynam-

ics of the engine. Typically, in the latter approach, the engine models are represented

by systems of nonlinear differential equations based on some physical principles. Fur-

ther, data from engine experiments are used to identify the key parameters of these

models. The engine models used in Refs. [4, 3, 21, 5, 33, 34, 35, 36, 37, 38] and

adopted in this research are developed for control develop and design. These mod-

els are flexible and adjustable to different engines and operations without significant

modification. Further, the engine models are validated with measurements taken on

the vehicle of interest from wide-open throttle, standing start experiments.

2.3.2 Torque Converter

A torque converter generally consists of a pump (driving member or input mem-

ber), a turbine (driven member or output member) and a stator (reaction member).
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The converter pump is attached to the engine and turns at the same speed as the

engine speed. The pump works as a centrifugal pump. It induces oil flow and trans-

fers the engine torque/speed to the turbine. The detailed operational principles can

be found in Refs [44, 45, 46]. The model of torque converter used in this study is

adopted from Refs. [3, 4, 5, 44]. The model is a quadratic, regression-fit data from

experiment to represent the static characteristics of a torque converter. The model

has “torque converter/multiplier” and “fluid coupling” modes depending on engine

or pump speed and turbine speed.

2.3.3 Friction Element

Clutches and bands in an automatic transmission are commonly represented

with classical friction models. The friction is proportional to the normal force to

the contact surfaces of two bodies. While this represents the ideal friction model, it

gives rise to discontinuity problem in numerical solution in zero velocity region. To

eliminate this problem, the steep curve in the neighborhood of zero velocity region

is introduced. Additionally outside the small velocity neighborhood the friction is

modeled as a function of the velocity, which is called “Stribeck effect” [47]. However,

this model still has drawbacks including numerical simulation problem and physical

fault representation [48], [49], [50].

There are many models developed to handle the problems in the classical fric-

tion model. These approaches known as dynamic friction model are studied and

developed in various references including [47], [49], [51], [52], [53]. Dahl [51] devel-

oped his friction model from stress–strain characteristics in solid mechanics. The

connection between two surfaces is modeled as spring and damper. Therefore, in this

model, the friction force is proportional to displacement. An extension of Dahl fric-

tion model are Lugre and Bliman–Sorin friction models [54]. These models represent
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many characteristics of friction phenomena. However, the models are quite difficult

to apply to a complicated dynamic system such as in an automatic transmission. In

[49], the bristle model and reset integrator model are presented. The models capture

the behavior of the friction in microscopic level where the contact points between two

surfaces are viewed as bonds between flexible bristles. As surfaces move, the strains

in the bonds increase and the bristle acts as springs, which give rise to the friction

force. Due to complexity, the bristle model consumes a lot of simulation time while

the reset integrator model has a discontinuous function in the model that requires

numerical algorithm to be carried carefully [55, 56].

2.3.4 Hydraulic System

An hydraulic system is an important component in gear shifting operation in

an automatic transmission. The hydraulic system initiates the shifting operation by

supplying pressure on the clutch surface where friction torque is generated. Then,

the torque from the input shaft can be transmitted to the gear through the clutch.

The hydraulic system in an automatic transmission consists of various components

such as hydraulic pump, accumulators, valves and pressure regulators. This study

focuses on a subsystem that is directly involved during shifting gears in an automatic

transmission. Refs. [5] and [33] study the hydraulic system extensively in detail.

However, the hydraulic system is complicated. Thus, for control purpose, a second

order system is used to represent the hydraulic system without losing its character-

istics. The hydraulic system in GM Hydramatic 440, used in this research, is similar

to the hydraulic system in Refs. [5, 57, 58]. The hydraulic system consists of two

main parts, “hydraulic supply” and “hydraulic load”. Hydraulic supply, consisting

of a variable–displacement vane pump, a pressure regulator and control circuit, reg-

ulates the line pressure in the automatic transmission. The hydraulic load is either
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leakage during fixed ratio condition or a combination of leakage, compliance and fluid

resistance during shifting gear. The hydraulic load part consists of clutch actuators,

accumulators and shift valve. This physics-based hydraulic model can be used to

represent the dynamics of hydraulic system during fixed gear ratio and shifting gear.

In Ref. [33], more detailed models involved during shifting gear are studied

including pressure regulation system, pressure control valve, solenoid valve and clutch

and accumulator. The analysis in Ref. [33] is started with a physics–based model

which is used for the purpose of design rather than control analysis. The detailed

model, which is highly nonlinear and complex, is then simplified for the purpose of

control design. In Ref. [33], the model includes a solenoid valve that operates under

PWM signal. In PWM solenoid valve, the pressure is regulated by controlling duty

cycle. There is another type of shift valve that is controlled by variable force solenoid

(VFS). This types of valve directly attenuates the pressure more precisely than the

PWM solenoid valve, since the pressure is a function of current. Ref. [59] developed

a VFS model suitable for the purpose of control design. The model is simple, yet

efficient enough to capture the essential dynamics.

From Refs. [57, 5, 58, 33], it is evident that the hydraulic system directly effects

shift quality, since the friction torque at the clutch and bands are a function of the

pressure generated by the hydraulic system. Thus, it is essential to realize the required

pressure profile. During a fixed gear ratio, the assumption is that the transmission

line pressure and pressure in clutch cavity are maintained constant. This means that

the pressure control regulation of the hydraulic system can be neglected in this study.

Thus, the hydraulic system in this study focuses on the components that involve with

gear shifting operation. To obtain the shift characteristics, the major components

must be included in the hydraulic model which are shift valve, supply transmission

line pressure and clutch system. The solenoid valve is excluded from the hydraulic
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model since the solenoid valve operates with high frequency comparing to the overall

powertrain frequency. Excluding the solenoid valve from the hydraulic model reduces

the degree of complexity due to the solenoid valve model. Currently automobile

technology moves toward eliminating one-way clutches. The new technologies are

in search for the clutch–to–clutch shifting which is achievable by using devices that

handle the desired pressure profile directly [60].

2.3.5 Final Drive and Vehicle Model

Final drive gear is modeled as a simple torque/speed converter. Thus, the

mathematical model of the final drive gear is a simple input/output proportional

equation. The vehicle model used in this study considers longitudinal dynamics of

the vehicle as a rotating shaft with a torsional spring constant and a lumped inertia.

References [3, 4, 5, 33] also use this simplified vehicle model in studying shift dynamics

and shift quality. With this type of vehicle model, power transferred from engine

through transmission and finally from tires to road is analyzed in the form of torque

and angular speed.

2.4 Description of Shift Quality

A poor quality shift appears in the form of jerking, inconsistent acceleration

and output oscillation. In the literature, various metrics are reported that define

and quantify shift quality. Such metrics are used to evaluate the performance of

various open and closed loop control approaches to improving shift quality. The most

common ones are listed below.

• Shift Duration [3, 5]: Shift duration is defined as the time from the start to the

end of a shift process. A shift that takes a long time results in damages to the

transmission, specifically to the friction elements of the transmission. Further,
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a shift with long duration leads to loss of power transmission to the vehicle

wheels. On the other hand, if the shift duration is too short, the shift may

result in large overshoot and oscillation.

• Oncoming Clutch/Band Torque [3, 5]: Practically, it is difficult to measure

clutch/band torque. However, this can be used to measure shift quality. Torque

at the clutch/band are related to the fore/aft motion of the vehicle, since it is

the torque that is transmitted to the planetary gear sets and finally to the

driven wheel. Thus, the torque characteristic effects the driver and passenger

comfort. The oscillation and overshoot in oncoming clutch/band torque are

used to measure the shift quality.

• Output Torque at Planetary Gear Sets [3, 5]: Driver and passenger comfort

during a shift depends on fluctuation of vehicle fore/aft motion. Torque is

transmitted from the output gear of the planetary gear sets to the driven wheel,

which drives the vehicle forward. Thus, it is directly related to with fore/aft

motion. Maximum overshoot and oscillation in the torque at the output gear

of the planetary gear sets are indications for the quality of a shift.

• Acceleration [3, 5]: The driver and passenger feel a sudden change of gear from

the vehicle acceleration. Fore/aft acceleration is correlated with output torque

of the planetary gear sets. It has been generally agreed that a shift quality

metric should be a function of the fluctuation of vehicle fore/aft motion during

a shift such as maximum overshoot and oscillation in the vehicle acceleration.

• Derivative of Acceleration (jerk) [3, 5]: The rate of change of acceleration with

time has been used to evaluate shift quality. A good shift has small oscillation

and overshoot in the jerk of the vehicle.

• Maximum Average Power (MAP) [3, 5, 61]: The power level of a shift is cal-

culated from an algorithm called “Maximum Average Power” (MAP). It is an
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objective measure directly related to the human perception of gear shift. A

good shift has a low MAP, which implies comfortable ride. MAP is formulated

as

MAP = max(10

∫ to

to−0.1

[a − amean]2dt), 0 < to ≤ T (2.1)

where a is acceleration, amean is the mean acceleration during shift event, to is

time of observation and T is shift duration.

• Vibration Dose Value (VDV) [62]: A particular function, the vibration dose

value (VDV), has been used to quantify human reaction to numerous types of

vibration in many fields including harsh/noise in automotive industrial. When

applied to vehicle fore/aft acceleration during a transmission shift, this function

produces a single output number proportional to the driver’s sensation of the

severity of the shift, regardless of the character of the acceleration signal. The

VDV is calculated from a properly filtered vehicle acceleration signal as

V DV =
4

√

∫ Tf

Ts

a(t)4dt; (2.2)

2.5 Control Techniques

In recent years, there are many attempts for improving shift quality either by

open-loop or closed-loop control. Conventionally, automatic transmissions employ

open–loop control to perform gear shift. Open–loop control requires tedious process

of pressure profile calibration to obtain satisfactory shift quality. Further, open–

loop control is susceptible to variation of vehicle properties and changes in driving

conditions. Such issues with open–loop control motivates the investigation of the

feasibility of feedback control in performing gear shifts.
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2.5.1 Open-Loop Control

In a conventional automatic transmission, the transmission controller is pre–

programmed by a tedious and complicated calibration procedure. The controller

usually has the ability to perform gear shift when the desired shift point meets condi-

tions pre–programmed in the transmission control module (TCM). The desire clutch

pressure profile is generated by the hydraulic actuation system. The clutch pressure

profile for each shift is pre–programmed in TCM. The open–loop controller in TCM is

expected to perform well during the entire life of the transmission despite encounter-

ing various conditions. The fundamentals of passenger car automatic transmission can

be found in Ref. [63]. The characteristics of torque and speed during gear shift with

a specific pressure profile is analyzed. This pressure profile is commonly implemented

in the conventional automatic transmission equipped with planetary gears.

The gear shift process as described in [63] is accomplished in open–loop manner.

At the beginning of gear shift when conditions meet the preset shift point, the pre–

programmed pressure profile commands are executed to generate a build up clutch

pressure at the oncoming clutch while reducing offgoing clutch pressure. During gear

shift, there are two phases, torque phase and inertia phase. In each phases, the

pressure has to be properly regulated in a timely manner to maintain good shift

quality.

In Ref. [64], the shift quality is accomplished by preset duty ratio map for the

regulator valve to adjust the line pressure related to throttle position. A detailed de-

scription of the complete algorithms for power–on upshifts and downshifts is given in

Refs. [65] and [66]. Variation in an automatic transmission such as clutch/band and

hydraulic actuator, for instance, can lead to failure in gear shift operation. Optimal

open-loop control and robustness analysis of the clutch-to-clutch shift in automatic

transmission are studied in Ref. [67]. However, there are many criteria needed to ob-
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tain the robust open–loop controller. Closed–loop control technique has an advantage

over this problem, since it uses the feedback signal to compensate the error that oc-

curs during gear shift. Therefore, it can yield the consistent performance during gear

shift. Further, the transmission calibration procedure can be reduced significantly

due to computer simulation and later field tested in realistic driving conditions.

2.5.2 Closed-Loop Control

The closed–loop control techniques can be used to overcome the difficulties

with open–loop control such as those discussed above and to obtain consistent gear

shift performance. During gear shift, there are many possible combinations of on/off

clutches and bands involved such as ones called “clutch–to–clutch” and “overrunning

clutch–to–clutch”. In overrunning clutch–to–clutch, the oncoming clutch is controlled

while the offgoing clutch which is one–way clutch or freewheeler assists gear shift pro-

cess to obtain a satisfactory gear shift. Since there is only one clutch to be controlled,

the process is less complicated but, on the other hand, there is no direct control on

the engagement and the disengagement of the one–way clutch. Satisfactory execu-

tion of clutch–to–clutch control or swap shift is more challenging. In clutch–to–clutch

control or swap shift, there is no freewheeler assisted shifting. The controller must

be able to release offgoing clutch while engaging oncoming clutch in a compromising

fashion. Any mismatch between the offgoing clutch and oncoming clutch can lead to

“flare–up” or “tie–up”. Flare–up happens when the offgoing clutch is released too

early while the oncoming clutch is not engaged in time to carry the loads from the

offgoing clutch. Tie–up happens when the offgoing clutch is released too late while

the oncoming clutch has been engaged already. In the past decade, an automatic

transmission relies on an acceleration detection to detect clutch pressure fill which

prevents “tie–up” and “flare–up”. Closed–loop control is executed after the clutch
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pressure are detected [68]. Controller uses slip speed detection to ramp up the clutch

pressure until it finishes gear shift by locking up the clutch. Thus, detecting the

clutch pressure fill time is a key to the good shift quality.

In Ref. [68], the adaptive control strategies for power–on upshifts and down-

shifts are developed and tested in both simulation and vehicle. The adaptive control

system is capable of compensating for the variation in the transmission. Adaptive

control system focuses on the key parameters that influence the transmission over the

life of the transmission. In the case of upshifts, oncoming clutch–fill time, oncoming

and offgoing clutch pressures are adapted from one shift to the next, which will con-

verge to a nominal shift in 3-5 shifts. In downshifts, only the clutch pressures are

adapted, which will converge to a nominal shift in 1-2 shifts. Detecting the clutch

fill is determined by the acceleration of input and output shafts. A Kalman filter

technique is used to estimate the acceleration of the input and output shafts which

are calculated from the measured speeds [69].

Reference [70] discusses the employment of computer simulation in the devel-

opment of a transmission. Its hydraulic system has feedback control where the clutch

pressure is controlled according to the rate of acceleration and compensated for dis-

persion to applied pressure, engine torque and the coefficient of friction of the clutch.

The engine torque is also reduced by retarding ignition timing when the inertia phase

is reached to obtain a smooth shift.

An example of closed-loop control of speed ratio is described in Ref. [71] along

with computer control technique for a powertrain. The shift is controlled by electronic

transmission control (ETC) through a clutch pressure modulation which is controlled

via a PWM solenoid. The clutch controls the torque converter turbine speed such

that the speed ratio is satisfied. The input of the PID controller is the difference
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between the desired turbine speed and the feedback turbine speed. The performance

of the controller is verified by various experiments.

In Ref. [5], a model-based control design is used for a 1-2 upshift and neutral

idle control. The shift hydraulic system is controlled by a pulse–width–modulated

(PWM) solenoid valve to perform gear shift. A simple linear second order model for

this valve is developed and used to achieve good shift quality.

A new clutch–to–clutch shift control is reported in Ref. [72]. The new technol-

ogy uses a hydraulic washout technique to control the synchronization of the oncoming

and offgoing clutches. Regardless of detecting the end of the fill phase at the oncoming

clutch as traditionally done, there are other ways to control gear shift.

A nonlinear sliding mode control technique for clutch–to–clutch is reported in

Refs. [3]. The design controller is implemented to oncoming and offgoing clutch to be

able to achieve a good shift quality. However, an ideal actuator is assumed. Thus, to

be more realistic, a mathematical model representing the hydraulic actuation system

must be developed to be able to implement the sliding mode controllers

In Ref. [73], using acceleration and an input/output speed ratio of the trans-

mission, the controller can operate clutch–to–clutch shift with smooth shift quality

and robustness. Ref. [73] also presents methods to estimate torque and calculate

acceleration. The torque estimation uses the torque converter characteristics and an

existing speed sensor. Clutch–to–clutch shift control has two parts, learning control

and robust control. The learning control is applied to the engagement of the clutch

in the upshift and the disengagement of the clutch in the downshift. The estimated

torque is required to follow the target value. The H–∞ control theory is employed to

restrain the torque fluctuation when shift characteristic changes in oil temperature

range from 30 to 120 ◦C.
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Reference [74] reports the development of a new very compact five-speed au-

tomatic transmission. The control during gear shift has three stages including servo

activating control period, torque phase control period and inertia phase control period.

In servo activating control period, the gear shift lag time due to hydraulic actuation

system is reduced by detecting oil temperature and acceleration of input shafts. In

the torque phase control period, the oncoming clutch pressure is determined based

on transmission input torque calculated by the TCM using the engine torque signal

input from the engine through CAN (Control Area Network) communication. In the

inertia phase control period, the revolution change of oncoming element is detected

and used to execute the controller while at the beginning of the inertia phase the

engine torque is reduced to have a good smooth shift.

Reference [75] reports the development of a newer transmission with enhanced

capabilities as compared to its predecessor [74]. Gear shift procedure is directly

controlled by linear solenoids and compensation is executed using feedback control

and self–learning control.

2.5.3 Integrated Powertrain Control

There are various simple methods to control the whole powertrain, instead of the

engine and transmission separately. While it is more complicated, it can potentially

provide better shift quality. Refs. [3] and [68] show that spark ignition retarding at the

engine helps reduce the drop and high overshoot in the output torque and acceleration

of the output shaft. As reported in [3] and [4], the sliding mode controller is capable

of controlling the engine and the clutch pressure so that the gear shift process can be

achieved smoothly. Many transmissions in the market control the engine during the

gear shift by retarding the ignition timing [70, 74, 75, 76]. In Ref. [77], the anti-jerk

control is developed using model-based control concepts. The controller designed by
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root locus gives corrected torque. When it is compared to the assigned torque and

feeded to the engine, the oscillation at the drive shafts are significantly reduced.

2.5.4 Observer

When a control law requires state or input information that are not measured,

an observer can be designed and implemented to estimate the required information

from the sensor measurements [78]. In this research, the system model is highly

nonlinear. However, linear observer designs are investigated. A Luenberger observer

based method, called Thau observer, is used to estimate states of a nonlinear system

[79]. Ref. [80] investigates using an estimation technique for determining states for

shift control.



CHAPTER 3

POWERTRAIN MODEL

Powertrain model is important to study shift dynamics. A powertrain consists

of an engine, transmission, final drive and vehicle dynamics. As depicted in Fig. 3.1,

the engine torque and speed are inputs to and the load torque and speed are outputs

of the transmission. Thus, it is important to have appropriate models for the other

subsystems in addition to the transmission model for the study of shift dynamics.

This chapter gives the details of the models used to represent the engine, torque

converter, final drive and vehicle.

Figure 3.1. Powertrain System.

3.1 Engine

The engine model used in this research is adopted from [3, 4, 5, 33], which also

study shift dynamics for improving shift quality. This engine model is a continuous

time domain, three states engine model for a four–stroke engine. There are three

32
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states in the engine model – the mass of air ma in the intake manifold, the engine

speed ωe, and the fuel flow rate ṁfi. In addition, there are two transport delays in

the model due to the discrete nature of a four–stroke engine – the intake–to–torque

production delay, ∆tit and the spark–to–torque production delay, ∆tst. These engine

models approximate all rotating and oscillating masses inside the engine as a single

engine mass with a polar moment of inertia [35].

In the remainder of this section, specific models and mathematical expressions

used for each subsystem of the engine model are presented. The numerical values of

the parameters of the engine model, as implemented in simulation are given in Table

3.1.

3.1.1 Intake Manifold

By considering conservation of mass, air dynamics in the intake manifold is

described by

ṁa = ṁai − ṁao (3.1)

where ṁa is mass flow rate of air in the intake manifold, ṁai is the mass flow rate

of air entering the intake manifold and ṁao is the mass flow rate of air leaving the

intake manifold and entering the combustion chamber.

The mass flow rate of air entering the intake manifold is modeled as

ṁai = MAX · TC · PRI (3.2)

where MAX is the maximum mass flow rate, obtained at a wide–open–throttle and

chocked flow. TC is the normalized throttle area and, as shown in Fig. 3.2, charac-
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terized by the following experimental curve–fit equation as a function of the throttle

angle, α, as

TC =











1 − cos(1.14459 · α − 1.06) for α ≤ 79.46◦

1 for α > 79.46◦

(3.3)

PRI is the normalized pressure influence and characterizes the effect of the pressure

ratio across the throttle body (ratio of the intake manifold plenum and upstream

ambient pressure). The experimental curve fitting equation is developed (see Fig.

3.3) as

Figure 3.2. Normalized Throttle Characteristics [3].

PRI = 1 − exp

[

9 ·

(

Pm

Patm

− 1

)]

(3.4)

where Patm is the atmospheric pressure and Pm, the intake manifold pressure under

the assumption of uniform pressure distribution in the intake manifold, is

Pm =
RTm

Vm

· ma (3.5)
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Figure 3.3. Normalized Pressure Ratio Influence Function [3].

where R is the universal gas constant for air, Tm is the intake manifold tempera-

ture, and Vm is the intake manifold volume. The mass flow rate of air entering the

combustion chamber which is modeled as

ṁao = c1ηvolmaωe (3.6)

where ωe is the engine speed, c1 is a physical constant and ηvol is the engine volumetric

efficiency. The physical constant is given by

c1 =
Ve

4π · Vm
(3.7)

where Ve is the engine displacement. The volumetric efficiency, ηvol, is a measure of

the effectiveness of an engine’s induction process and defined as the volume flow rate

of the air into an engine divided by the rate at which the volume is displaced by the

piston. In this study, the following quadratic curve-fit from experiment data is used

to characterize the volumetric efficiency.

ηvol = (24.5ωe − 3.1 × 104)m2
a + (−0.167ωe + 222)ma + (8.1 × 10−4ωe + 0.352) (3.8)
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3.1.2 Fueling Dynamics Model

According to Refs. [36, 37, 3], any fueling method results in a lag and a trans-

portation delay. The transport delay is primarily a function of the timing of the

injector firing interval and injector solenoid sizing rather than the characteristics of

an engine. Thus, it is sufficient to model these two effects by a single first–order

transfer function as

τfm̈fi + ṁfi = ṁfc (3.9)

where ṁfc is the commanded fuel rate, ṁfi is the actual fuel rate entering the com-

bustion chamber and τf is the effective fueling time constant. The fuel rate command

is calculated to obtain the desired A/F as

ṁfc =
ṁao

A/F
(3.10)

While the effective time constant should be a function of engine speed, as done in

Ref. [3], this study assumes τf to be constant. Otherwise, injector solenoid size

and dynamics would need to be considered [3]. Refs. [4, 5, 33], which study shift

dynamics, also assume the same.

3.1.3 Rotational Dynamics of Engine

The rotational motion of the engine crankshaft is given in terms of the engine

polar moment of inertia, angular acceleration and the difference between the net

torque generated by the engine and the load torque of the shaft. Such models are

called constant inertia models [34, 35, 37, 21] since the effects from individuals events

from the cylinders are not included. With this approach, the engine is modeled as a

rotational shaft as

Ieω̇e = Ti − Tf − Ta − Tp (3.11)
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where Ie is the effective inertia of engine and pump, Ti is the engine indicated torque,

which will be explained in detail in the next section, Tf is the engine friction torque,

modeled by an experimental curve–fitting equation as

Tf = 0.1056 ωe + 15.10 (3.12)

where the constant term represents the static friction torque in N–m. Tp is the

torque converter pump torque. Ta is from accessory components such as air condition

compressor and steering power and assumed to be zero in this study.

The torque production is modeled as a steady–state phenomenon with the pro-

cess delays associated with the four–stroke combustion process. The possible maxi-

mum torque is reduced by two reasons. First, AFI function represents the decreased

torque when there is not enough fuel to utilize all of the air in the cylinders, or if there

is insufficient air for fuel in the combustion chamber. Second, SI function decreases

the engine indicated torque as a function of how far the spark/retard is from the

MBT spark timing. The engine indicated torque is modeled by

Figure 3.4. Normalized Air Fuel Influence Function [3].
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Figure 3.5. Normalized Spark Influence Function [3].

Ti = ct ·
ṁao (t − ∆tit)

ωe (t − ∆tit)
· AFI (t − ∆tit) · SI (t − ∆tst) (3.13)

where cT is torque constant representing the maximum torque capability of an engine

for a given air mass. AFI is the normalized air fuel influence as a function of air–to–

fuel ratio as illustrated in Fig. 3.4. It is a curve–fitted equation from the empirical

data as shown

AFI = cos (7.3834 · (A/F − 13.5)) (3.14)

SI is the normalized spark influence as a function of spark advance/retard from MBT

as illustrated in Fig. 3.5. It is a curve–fitted equation from the empirical data as

SI = [cos (SA − MBT )]2.875 (3.15)

SA is the spark advance/retard from TDC (Top Dead Center) and MBT is the

minimum spark advance for best torque. In this work, following the other references,

(SA − MBT ) is taken as an input to the engine model. The cyclic nature of four–

stroke engines is captured via the use of the intake to torque production delay, ∆tit,
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Table 3.1. Engine Model Parameters [4, 3, 5, 33]

Intake Manifold Model Parameters

Symbol Definition Numerical Value Unit

MAX Maximum mass flow rate obtained at 0.1843 Kg/s
wide–open–throttle and choked flow

Patm Atmospheric pressure 101.3 KPa
Tm Intake manifold temperature 300 Kelvin
Vm Intake manifold volume 0.0027 m3

R Universal gas constant 286 J/Kg · K
Ve Engine Displacement 0.0038 m3

Fuel Dynamics Model Parameters

τf Fuel delivery time constant 0.05 second

Rotational Dynamics of Engine Model Parameters

Ie Engine inertia 0.087 Kg · m2

Ip Pump inertia 0.058 Kg · m2

It Turbine-Chain lumped inertia 0.05623 Kg · m2

cT Maximum torque constant 498,636 N · m/Kg/s

and the spark to torque production delay, ∆tst, as express in Eq. (3.13). They are

modeled as

∆tit ≈
5.48

ωe
(3.16)

∆tst ≈
1.30

ωe

(3.17)

In summary, the engine model adopted herein has three control variables, (i)

throttle angle, α, (ii) air–to–fuel ratio, A/F , and (iii) spark advance from MBT ,

(SA−MBT ). Since the focus of this research is transmission control for shift quality,

the engine model is set up to generate maximum possible torque for a given throttle

angle. That is, A/F is set to 13.5 such that AFI is 1, based on Eq. (3.14) and

(SA − MBT ) is set to 0 such that SI in Eq. (3.15) is 1.
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3.2 Torque Converter

A torque converter generally consists of a pump (driving member or input mem-

ber), a turbine (driven member or output member) and a stator (reaction member).

The converter pump is attached to the engine and turns at the same speed as the

engine speed. The pump works as a centrifugal pump. It induces oil flow and trans-

fers the engine torque/speed to the turbine. The detailed operational principles can

be found in Refs. [44, 45, 46]. The model of torque converter used in this study is

adopted from Refs. [4, 3, 5, 44]. The model is a quadratic, regression-fit data from

experiment to represent the static characteristics of a torque converter. The model

has “torque converter/multiplier” and “fluid coupling” modes depending on engine

or pump speed, ωe, and turbine speed, ωt. The input–output models for the torque

converter of interest in these two modes are given below [4, 3, 5].

• For converter mode ωt

ωp
< 0.9

Tp = 3.4325 × 10−3ω2
e + 2.2210 × 10−3ωeωt − 4.6041 × 10−3ω2

t

Tt = 5.7656 × 10−3ω2
e + 0.3107 × 10−3ωeωt − 5.4323 × 10−3ω2

t

(3.18)

• For fluid coupling mode ωt

ωp
≥ 0.9

Tp = Tt = −6.7644 × 10−3ω2
e + 32.0084× 10−3ωeωt − 25.2441× 10−3ω2

t (3.19)

The effect of the inertia of transmission fluid in torque converter is ignored in this

study, as suggested in Refs. [4, 3, 5, 44].

Turbine shaft acts as the input shaft for the transmission, transmitting speed

and torque from the torque converter to the planetary gear sets. As shown in Fig. 4.1

and Table 4.1, the turbine is coupled with the planetary gear set through combinations

of C1, C2 and C3, depending on the gear. Thus, the dynamics equation of the turbine

shaft can be expressed as

It ω̇t = Tt + Tt,C1
+ Tt,C2

+ Tt,C3
(3.20)
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where Tt is turbine torque and Tt,Ci
is the applied torque due to Ci, where i = 1, 2, 3.

Tt,C1
, Tt,C2

and Tt,C3
are given in Eqs. (4.105), (4.109) and (4.112), respectively.

3.3 Final Drive Gear and Vehicle Dynamics

The vehicle model used in this study considers longitudinal dynamics of the

vehicle as a rotating shaft with a torsional spring constant and a lumped inertia.

References [4, 3, 5, 33] also use this simplified vehicle model in studying shift dy-

namics and shift quality. The numerical values of the parameters of the final drive

gear and vehicle models, as implemented in simulation are given in Table 3.3. The

parameters are obtained from Refs. [4, 3, 5, 33]. With this type of vehicle model,

power transferred from engine through transmission and finally from tires to road is

analyzed in the form of torque and angular speed. The value of lumped inertia, which

represents the equivalent moment of inertia of the vehicle, is computed as

IV = (mV + ml) · r
2 (3.21)

where mV is vehicle mass, ml is passenger and luggage masses and r is tire radius.

The rotational dynamics of the equivalent vehicle inertia is

ω̇V =
1

IV
(TD − TL) (3.22)

where ωV is the wheel angular speed, TD is the torsional torque in the final drive

shaft and TL is the load torque due to external forces.

Final drive gear is modeled as a simple torque/speed converter. Thus, the

simple mathematical model of the final drive gear is

TFD

TFD,in

=
ωC2R1

ωFD

= RFD (3.23)
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Table 3.2. Drivetrain–Vehicle Parameters [4, 3, 5, 33]

Drivetrain-Vehicle Parameters

k combined axle shaft stiffness 6742 N–m/rad
mV vehicle mass 1644 Kg
ml passenger and luggage 125 Kg
r average front and rear wheel 0.31 m

from ground to axle
RFD final gear ratio 2.84

where note that the final drive input speed is ωC2R1
since C2R1 is directly connected

to the input side of the final drive gear. Further, the free body diagram analysis of

C2R1 and the final drive implies that TC2R1,FD in Eq. (4.69) is

TC2R1,FD = −TFD,in (3.24)

The final drive shaft from the final drive gear to the vehicle is modeled as a

torsional spring with spring coefficient k. Thus, the derivative of the torque in the

final drive shaft is

ṪD = k (ωFD − ωV ) (3.25)

Note that when the final drive rotates faster than the wheel, TD > 0 and the torsional

torque should slow down the final drive. This implies that the output torque of the

final drive gear in Eq. (3.23) is

TFD = −TD (3.26)

The load torque due to the motion of the vehicle is due to the external forces

such as aerodynamic drag force, gravitational force, longitudinal tire force and rolling

resistance force at tires. TL is modeled as a function of the vehicle translational speed

as [4, 3, 5, 33]

TL =
(

158.2 + 4.479 × 10−2V 2
Kmh

)

· r (3.27)
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where VKmh is the vehicle velocity in kilometer per hour.

Torsion in the drive shaft models the oscillation in a powertrain, caused by

bad quality shifts. To understand the effect of torsional spring in shift modeling and

simulation, the shaft compliance is set to be stiff and the simulation with stiff and

torsional spring drive shafts are compared. In the case of stiff shaft, the dynamic

equations reduce to Eq. 3.22 only. The shaft is rigid which implies that

ωFD = ωV (3.28)

ω̇FD = ω̇V (3.29)

By this assumption, the simulation results reveal that the oscillation due to the

drive shaft is omitted from the simulation results. The drive shaft inertia only effects

the powertrain model. The simulation results are discussed in Chapter 5.



CHAPTER 4

TRANSMISSION MODEL

Transmission consists of torque converter, planetary gear sets, friction elements,

hydraulic system and final drive. The transmission model used in the simulation

represents GM Hydramatic 440. This transmission is selected for this study because

the numerical values of its parameters are available in Refs. [3, 4, 5, 28]. As shown

in its stick diagram in Fig. 4.1, this transmission has two coupled planetary gear

sets, controlled with four clutches and two bands. This transmission has a torque

converter, a planetary gear set, four clutches and two bands and a final drive. The

torque converter is connected to an engine at the pump side. It transmits torque

and speed to the planetary gear set at the turbine side through clutch–1 and clutch–

2 which are activated by the hydraulic system corresponding to the gear shifting

schedule from the transmission control unit (TCU). Clutch C1 and C3 are modeled

as one–way clutches due to the accompanying sprag clutches. The torque converter

model is adopted from Ref. [44]. Table 4.1 shows the clutch engagement schedule and

gear ratios. The subsystems of the transmission are described in following sections.

4.1 Planetary Gear Sets

A new approach to deriving a mathematical model for the dynamics of rigid

planetary gear sets is developed. This approach that uses Lagrange method is applied

to the planetary gear set configuration of GM Hydramatic 440 [28]. The details of this

44
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Figure 4.1. Stick Diagram for GM Hydramatic 440.

Table 4.1. Clutch Engagement Schedule

Range Clutches Engaged Gear

C1 C2 C3 C4 B12 BR Ratio

1st X X 2.93

2nd
⊗

X X 1.57

3rd X X 1

4th X
⊗

X 0.70

Rev X X 2.38

X ∼ Clutch on
⊗

∼ sprag over-running

method is given below starting with a simple system of two gears and then applied

to the planetary gear set of the transmission.

A single planetary gear set consists of a ring gear, a sun gear, a set of planet

gears (or pinions) and a carrier. GM Hydramatic 440 transmission has two single

planetary gear sets, which are coupled as follows. The carrier of the first planetary

gear set is rigidly connected to the ring of the second set and the ring of the first set

is rigidly connected to the carrier of the second one, as depicted in Fig. 4.2.

In automatic transmissions, different speed and torque ratios are achieved by

alternating input, output and stationary components of the planetary gear sets. Table
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4.1 summarizes which friction elements are used to obtain different gear ratios. For

the first gear in Hydramatic 440, C1 and B12 should be engaged. B12 is engaged to

stop the sun of the second planetary gear set. Note from Fig. 4.1 that, in the first

gear, the torque is transmitted from the turbine through C1 to the sun of the first

planetary gear set. To shift to the second gear, C2 should be applied. When C2

is engaged, C1 starts over-running and the torque is transmitted through C2 to the

carrier of the first planetary gear set. To shift to the third gear, C3 should be applied

while B12 is released. Note that shift to the 3rd–gear requires the synchronization of C3

engagement and B12 disengagement. Shifts requiring such synchronization of multiple

friction elements are called “swap” or “clutch–to–clutch” shifts and most challenging

for shift quality. In the third gear, C2 and C3 are both engaged, which indicates

that the sun and carrier of the first planetary gear set are connected. In planetary

gear sets, when two elements are connected, i.e. forced to rotated together, then

the other elements also have to rotate with the two elements, making the planetary

gear set rotate like a single shaft, with 1–to–1 speed ration between its input and

output shafts. Similarly, planetary gear configurations and the required clutch/band

engagements for other shifts and gears can be seen from Fig. 4.1 and Table 4.1.

Figure 4.2. GM Hydramatic 440 Gear Set.
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4.1.1 Lagrange Method Applied to Gear Dynamics :

A general form of Lagrange’s equation used to derive the equations of motion

of a system with generalized coordinates, qi, (i = 1, 2, . . . , n) is [81]

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= Qi (i = 1, 2, . . . , n) (4.1)

where Qi are generalized forces not derivable from a potential function. Examples of

typical Q forces are frictional forces, time-variant forcing functions, and nonholonomic

constraint forces. Note that although Qi is called generalized “force”, it can also be

a “moment” if the corresponding generalized coordinate is a rotational position, i.e.

“angle” instead of a translational position, i.e. “distance”. L is called “Lagrangian

function”

L = K − V (4.2)

where K and V are the total kinetic and potential energy of the system, respectively.

In order to introduce the basic concepts used in the application of Lagrange

Method on gear sets, the equations of motion of a simple system of two gears (see

Fig.4.3) is derived. First, the coordinates which are used to specify the configuration

of the system are selected. In this example, α, angular position of Gear–1, and β,

angular position of Gear–2, are the coordinates of this system. Positive direction for

this coordinate system is counter–clockwise. Positive torque is also in the counter-

clockwise direction. Second, the constraint equations of the system are written. Since

the two gears are meshed together by teeth, no sliding occurs between. That is, the

translational velocities of the two gears are equal at the contact point

−β̇r2 = α̇r1 (4.3)

where ˙( ) stands for time derivative of ( ), e.g. α̇ is the time derivative of α or angular

velocity of Gear–1, r1 and r2 are the radia of Gears–1 and –2, respectively. Then, the
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total kinetic and potential energies of the whole system is formulated in term of the

coordinates of choice. Since the potential energy of the system is constant, we can

say that the total potential energy of the system is zero, i.e.,V = 0. The system has

only rotational kinetic energy due to the rotation of each gear as

K =
1

2
I1α̇

2 +
1

2
I2β̇

2 (4.4)

where I1 and I2 are the moments of inertia of Gears–1 and –2, respectively.

Note that the system has only one independent constraint (Eq.4.3) in terms of

the coordinates of choice, (α, β). Since the system has two coordinates and one con-

straint equation, its DOF (Degree–Of–Freedom) is 1. Since the system is holonomic,

we can describe the configuration of the system by one independent coordinate.

In order to apply the Lagrange’s equation (4.1), we choose α as the general-

ized or independent coordinate. Then, we need to write the Lagrangian and the

generalized force in terms of the generalized coordinate. Eq.(4.3) implies

β̇ = −
r1

r2

α̇ (4.5)

Substituting β̇ into Eq.(4.4) and recalling that the total potential energy is zero, we

obtain, from Eq.(4.2), the Lagrangian in terms of the generalized coordinate, α as

L =
1

2

[

I1 +

(

r1

r2

)2

I2

]

α̇2 (4.6)

In the Lagrange’s equation (4.1), generalized moment Qα should be determined

in terms of the generalized coordinate. A convenient way to obtain generalized forces

is to write the virtual work of the system in terms of the generalized coordinates.

Since N , the normal forces at the contact point (see Fig.4.3), are constraint forces

and F , tangential forces at the contact point, are “frictionless” forces, only forces or

moments that do virtual work in a virtual displacement are the applied torques T1
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Figure 4.3. Free Body Diagram of Two Gear.

and T2 on Gear–1 and –2, respectively. Thus, the virtual work of the system in terms

of the virtual displacements, δα and δβ is

δW = T1δα + T2δβ (4.7)

The constraint in Eq.(4.5) implies δβ = − r1

r2
δα. Substituting δβ into Eq.(4.7), yields

the virtual work in terms of virtual displacement of the generalized coordinate as

δW =

(

T1 −
r1

r2
T2

)

δα (4.8)

where the coefficient of δα is the generalized moment corresponding to the generalized

coordinate, α. Thus,

Qα = T1 −
r1

r2
T2 (4.9)

Lagrange’s equation for the system is

d

dt

(

∂L

∂α̇

)

−
∂L

∂α
= Qα (4.10)

which requires the partial derivatives of the Lagrangian with respect to α̇ and α. The

partial derivative of L with respect to α is zero, since L does not explicitly depend
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on α. Taking the partial derivative of L in Eq.(4.6), substituting its time derivative

along with Eq. (4.9) into Eq.(4.10), the equation of motion of the system in terms of

the angular position of Gear–1 is obtained as

[

I1 +

(

r1

r2

)2

I2

]

α̈ = T1 −
r1

r2
T2 (4.11)

Note that if the inertias of the gears are ignored (i.e. I1 = I2 = 0) or the motion

of the system is at steady-state (i.e. α̇ = constant), then Eq.(4.11) yields

T1

r1
=

T2

r2
(4.12)

which is the well-known gear torque relation.

4.1.2 Single Planetary Gear Set :

This section follows the procedure established in the previous section to derive

the equations of motion of a single planetary gear set.

The four coordinates to specify the configuration of the system are (α, β, γ, θ),

the angles of the sun, carrier, pinions and ring, respectively (see Fig.4.4). Note,

however, that they are not independent because the system has some constraints in

terms of these coordinates. No sliding can occur between the sun and the pinions, or

between the pinions and the ring since they are meshed by teeth. This implies

β̇RS − γ̇RP = α̇RS (4.13)

β̇(RS + 2RP ) + γ̇RP = θ̇RR (4.14)

where RS, RP , and RR are the radia of the sun, pinions, and ring, respectively. By

the geometry, we have the following relation between the radia :

RR = RS + 2RP (4.15)
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Figure 4.4. A Single Planetary Gear Set.

The potential energy of the system may vary due to the rotational motion of

the pinions around the sun. However, in this work, this variation is neglected due

to the fact that the vertical motion of the pinions is small and they are positioned

around the sun by equal angles between each other. Furthermore, note that many

planetary gear sets use 4 pinions. In this case, there is no potential energy change

due to the rotation of the pinions around the sun. Thus, V = 0 . The kinetic energies

of the sun and the carriers, respectively, are

KS =
1

2
ISα̇2 (4.16)

KC =
1

2
IC β̇2 (4.17)
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where IS and IC are the moment of inertia of the sun and the carrier, respectively,

and everything rigidly connected to them. The kinetic energy of the pinions :

KP = n

[

1

2
IP γ̇2 +

1

2
mP (RS + RP )2 β̇2

]

(4.18)

where IP is the moment of inertia of one of the pinions, and mP is the mass of one of

the pinions. The second term is due to the fact that each pinion can rotate around

the sun while rotating around its center and n is the number of pinions in this single

planetary gear box. The kinetic energy of the ring :

KR =
1

2
IRθ̇2 (4.19)

where IR is the moment of inertia of the carrier and everything rigidly connected to

it.

The system has 4 coordinates and 2 equations of constraint in terms of these

coordinates. Thus, the DOF of the system is 2. This means that the configuration

of system can be specified by two independent generalized coordinates. We choose

(β, γ) as the set of independent coordinates.

As can be seen in Fig.4.5, F and N forces do not do virtual work due to the

reasons explained in Section 4.1.1. Only the applied torques, TS, TC , TR do virtual

work. Thus, the virtual work of the system in a virtual displacement is

δW = TSδα + TCδβ + TRδθ (4.20)

The virtual displacements δα and δθ can be written, from Eqs.(4.13) and (4.14), in

terms of the virtual displacements of the generalized coordinates (β, γ) as

δα = δβ −
RP

RS
δγ (4.21)

δθ = δβ +
RP

RR

δγ (4.22)
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Figure 4.5. Free Body Diagram of Single Planetary Gear Set.

where in the δθ–equation we use the relation from Eq.(4.15). Substituting δα and δθ

into Eq.(4.20) yields the virtual work in terms of the generalized coordinates as

δW = (TS + TC + TR) δβ + RP

(

TR

RR

−
TS

RS

)

δγ (4.23)

From Eqs.(4.13) and (4.14), α̇ and θ̇ can also be written in terms of the time

derivative of the generalized coordinates (β, γ)

α̇ = β̇ −
RP

RS
γ̇ (4.24)

θ̇ = β̇ +
RP

RR
γ̇ (4.25)
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Using the constraint equations in Eqs.(4.16)–(4.19), the kinetic energies are rewritten

in terms of the time derivative of the generalized coordinates as

KS =
1

2
IS

(

β̇ −
RP

RS
γ̇

)2

(4.26)

KC =
1

2
IC β̇2 (4.27)

KP = n

[

1

2
IP γ̇2 +

1

2
mP (RS + RP )2 β̇2

]

(4.28)

KR =
1

2
IR

(

β̇ +
RP

RR
γ̇

)2

(4.29)

Lagrange’s equations for this system, from Eq.(4.1), are

β–equation :
d

dt

(

∂L

∂β̇

)

−
∂L

∂β
= Qβ (4.30)

γ–equation :
d

dt

(

∂L

∂γ̇

)

−
∂L

∂γ
= Qγ (4.31)

where, from Eq.(4.23),

Qβ = TS + TC + TR (4.32)

Qγ = RP

(

TR

RR

−
TS

RS

)

(4.33)

Since the potential energy is constant, L = K, which is the total kinetic energy,

i.e., sum of KS, KC , KP and KR. Since K does not explicitly depend on β or γ, the

partial derivatives with respect to β and γ are zero. Taking the partial derivative of

L with respect to β̇, substituting it and Eq.(4.32) into Eq.(4.30), and rearranging,

β–equation of motion is obtained as

[

IS + IC + n mP (RS + RP )2 + IR

]

β̈ + RP

(

IR

RR

−
IS

RS

)

γ̈ = TS + TC + TR (4.34)

Taking the partial derivative of L with respect to γ̇, substituting it and Eq.(4.33) into

Eq.(4.31), and rearranging, γ–equation of motion is obtained as

[

IR

RR
−

IS

RS

]

β̈ + RP

[

IS

R2
S

+ n
IP

R2
P

+
IR

R2
R

]

γ̈ =
TR

RR
−

TS

RS
(4.35)
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In summary, the dynamics of a single planetary gear set is represented by two

differential equations, Eqs.(4.34) and (4.35), in terms of the angles of the carrier

and pinions. The equations are second order regarding the angles, (β, γ), but first

order regarding the angular velocities, (β̇, γ̇). Also note that we have a linear set of

equations in terms of the accelerations. Additionally, we have two algebraic equations,

Eqs.(4.24) and (4.25) for the other coordinates, i.e. angle/velocity/acceleration of the

sun and ring.

4.1.3 Coupled Planetary Gear Set in GM Hydramatic 440

This section applies the Lagrange method to the coupled planetary gear set

used in GM Hydramatic 440. In this planetary gear configuration, there are two sets

of planetary gears. The carrier of the first planetary gear set is rigidly connected

to the ring of the second set and the ring of the first set is rigidly connected to the

carrier of the second one.

The coordinates to specify the configuration of the system are (see Fig.4.2) α1

as the angle of the sun–1, θ2 as the angle of carrier–1 and ring–2, γ1 as the angle

of pinions–1, θ1 as the angle of ring–1 and carrier–2, α2 as the angle of the sun–2,

and γ2 as the angle of pinions–2. There are 4 constraint equations for the above

set of coordinate system. No sliding occurs between (i) the sun–1 and pinions–1,(ii)

pinions–1 and ring–1 , (iii) the sun–2 and pinions–2, and (iv) pinions–2 and ring–2.

These imply

RS1
θ̇2 − RP1

γ̇1 = RS1
α̇1 (4.36)

(RS1
+ 2RP1

) θ̇2 + RP1
γ̇1 = RR1

θ̇1 (4.37)

RS2
θ̇1 − RP2

γ̇2 = RS2
α̇2 (4.38)

(RS2
+ 2RP2

) θ̇1 + RP2
γ̇2 = RR2

θ̇2 (4.39)



56

The system has 6 coordinates and 4 equations of constraint in terms of these coordi-

nates. Thus, the DOF of the system is 2. We choose (θ1, θ2) as the set of independent

coordinates. Then, we solve the constraint equations for the remaining coordinates

in terms of the generalized ones.

α̇1 = A1θ̇2 − A2θ̇1 (4.40)

γ̇1 = A3

(

θ̇1 − θ̇2

)

(4.41)

α̇2 = A4θ̇1 − A5θ̇2 (4.42)

γ̇2 = A6

(

θ̇2 − θ̇1

)

(4.43)

where

A1 = 1 + A2 , A2 =
RR1

RS1

, A3 =
RR1

RP1

,

A4 = 1 + A5 , A5 =
RR2

RS2

, A6 =
RR2

RP2

.

As in the case of the single planetary gear set, we assume that the potential

energy variation is small enough to neglect. The kinetic energy of carrier–1 and ring–

2 is represented as a single quantity since they are rigidly attached. Similarly, the

combined kinetic energy of carrier–2 and ring–1 is formulated. The kinetic energies

of all the components are :

KS1
=

1

2
IS1

α̇2
1 (4.44)

KC1R2
=

1

2
IC1R2

θ̇2
2 (4.45)

KP1
= n1

[

1

2
IP1

γ̇2
1 +

1

2
mP1

(RS1
+ RP1

)2 θ̇2
2

]

(4.46)

KS2
=

1

2
IS2

α̇2
2 (4.47)

KC2R1
=

1

2
IC2R1

θ̇2
1 (4.48)

KP2
= n2

[

1

2
IP2

γ̇2
2 +

1

2
mP2

(RS2
+ RP2

)2 θ̇2
1

]

(4.49)
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Substituting Eqs.(4.40)–(4.43) into Eqs.(4.44)–(4.49), yields the kinetic energies in

terms of the generalized coordinates, (θ1, θ2)

KS1
=

1

2
IS1

(

A1θ̇2 − A2θ̇1

)2

(4.50)

KC1R2
=

1

2
IC1R2

θ̇2
2 (4.51)

KP1
= n1

[

1

2
IP1

A2
3

(

θ̇1 − θ̇2

)2

+
1

2
mP1

(RS1
+ RP1

)2 θ̇2
2

]

(4.52)

KS2
=

1

2
IS2

(

A4θ̇1 − A5θ̇2

)2

(4.53)

KC2R1
=

1

2
IC2R1

θ̇2
1 (4.54)

KP2
= n2

[

1

2
IP2

A2
6

(

θ̇2 − θ̇1

)2

+
1

2
mP2

(RS2
+ RP2

)2 θ̇2
1

]

(4.55)

The virtual work of the system in terms of the virtual displacements of the original

coordinates is written as

δW = TS1
δα1 + TC1R2

δθ2 + TC2R1
δθ1 + TS2

δα2 (4.56)

Eqs.(4.40)–(4.43) can be written in terms of the virtual displacement of the coordi-

nates instead of their time derivatives. Substituting these equivalent equations into

Eq. (4.56) and rearranging, the virtual work is written in terms of the virtual dis-

placements of the generalized coordinates, (δθ1, δθ2) as

δW = (−A2TS1
+ TC2R1

+ A4TS2
) δθ1 + (A1TS1

+ TC1R2
− A5TS2

) δθ2 (4.57)

which indicates the generalized forces (torques) for the generalized coordinates as

Qθ1
= (−A2TS1

+ TC2R1
+ A4TS2

) (4.58)

Qθ2
= (A1TS1

+ TC1R2
− A5TS2

) (4.59)
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For the same reasons explained in the previous sections, the Lagrange’s equations for

this system are reduced to

θ1–equation :
d

dt

(

∂K

∂θ̇1

)

= Qθ1
(4.60)

θ2–equation :
d

dt

(

∂K

∂θ̇2

)

= Qθ2
(4.61)

where the total kinetic energy, K, is

K = KS1
+ KC1R2

+ KP1
+ KS2

+ KC2R1
+ KP1

(4.62)

Taking the partial derivatives of the kinetic energy in Eq.(4.62) with respect to θ̇1

and θ̇2 and substituting them into Eqs.(4.60) and (4.61) along with the generalized

moments from Eqs.(4.58) and (4.59) yield the θ1– and θ2–equations of dynamics for

the planetary gear set of GM Hydramatic 440 as

B11θ̈1 + B12θ̈2 = −A2TS1
+ TC2R1

+ A4TS2
(4.63)

B21θ̈1 + B22θ̈2 = A1TS1
− A5TS2

+ TC1R2
(4.64)

where

B11 = A2
2IS1

+ n1A
2
3IP1

+ IC2R1
+ A2

4IS2

+n2

[

A2
6IP2

+ mP2
(RS2

+ RP2
)2]

B12 = B21 = −A1A2IS1
− n1A

2
3IP1

− A4A5IS2
− n2A

2
6IP2

B22 = A2
1IS1

+ n2A
2
6IP2

+ IC1R2
+ A2

5IS2

+n1

[

A2
3IP1

+ mP1
(RS1

+ RP1
)2]

4.1.4 Matrix Representation of the Equations of Motion

In this section, the equations of dynamics and constraint for GM Hydramatic

440 are written in matrix form. This produces a concise representation of the equa-

tions and enables an efficient implementation in simulation.
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Figure 4.6. Block Diagram Representation.

Figure 4.6 shows the block diagram representation of the planetary gear set of

GM Hydramatic 440. Eqs.(4.63) and (4.64), in matrix form, are

EG







θ̈1

θ̈2






= BG



















TS1

TC1R2

TS2

TC2R1



















(4.65)

where EG is a 2 × 2 and BG is a 2 × 4 matrices. The entries of the matrices are

determined easily by inspection of Eqs.(4.63) and (4.64). By inspection, it can be

seen that EG is almost always non-singular. Pre–multiplied by the inverse of EG,

Eq.(4.65) gives the equations of motion in state-space form for implementation in

simulation. The constraint equations in Eqs.(4.40)–(4.43), in matrix form, are



















α̇1

γ̇1

α̇2

γ̇2



















= CG







θ̇1

θ̇2






(4.66)

where CG is a 4×2 matrix and its entries are determined by inspection of Eqs.(4.40)–

(4.43).
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Note that all the matrices EG
−1,BG,CG, are constant with respect to time

once radia and the moments of inertia of the gears are given. The dynamic model

of the coupled planetary gear sets in GM Hydramatic 440 is Eqs. (4.63) and (4.64)

where TS1
is the applied torque on sun–1, TS2

is the applied torque on sun–2, TC2R1
is

the applied torque on carrier–2, which is ring–1, and TC1R2
is the applied torque on

carrier–1, which is ring–2. The numerical values of the parameters of the planetary

gear sets model, as implemented in simulation are given in Table 4.2. The coefficients

in Eqs. (4.63) and (4.64) depend on the moment of inertia of all the gears, the mass

and number of pinions, and the inertia of all the gears. These coefficients are constant

for a given transmission and can be calculated as follows.

The applied torques included in Eqs. (4.63) and (4.64) are moments that are

the results of the engagements of the clutches and bands, or the connection to the

final drive. The reaction forces between the gears do not appear in the equations

because they are constraint forces and the constraint equations are handled by the

Lagrange method [28].

Note that, Ci and Bj refer to the ith clutch and jth band, respectively. From

Fig. 4.1, it can be seen that sun–1 is connected to C1, C3 and C4. Thus, the applied

torque on sun–1 is

TS1
= TS1,C1

+ TS1,C3
+ TS1,C4

(4.67)

where Ti,j is the torque acting on gear–i due to friction element–j, e.g., TS1,C1
is the

torque acting on sun–1 due to clutch C1. Note that torque due to friction elements

are zero when they are not applied and will be discussed in detail in a subsequent

section. Similarly, Fig. 4.1 shows that sun–2 is connected only to B12. Thus,

TS2
= TS2,B12

(4.68)
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Again, from Fig. 4.1, carrier–2 and ring–1, as one single rotating element, are con-

nected to the final gear set only, which implies that

TC2R1
= TC2R1,FD (4.69)

Finally, carrier–1 and ring–2, together, are connected to C2 and BR. Thus,

TC1R2
= TC1R2,C2

+ TC1R2,BR
(4.70)
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Table 4.2. Planetary Gear Set Parameters [3, 4, 5, 33]

Inertia Values

Symbol Definition Numerical Value Unit
IS1

Sun–1 lumped inertia 0.00102 Kg · m2

IS2
Sun–2 lumped inertia 0.00452 Kg · m2

IC1R2
Carrier–1/Ring–2 lumped inertia 0.00902 Kg · m2

IC2R1
Carrier–2/Ring–1 lumped inertia 0.005806 Kg · m2

IP1
Pinion–1 inertia 6.7295·10−6 Kg · m2

IP2
Pinion–2 inertia 4.7637·10−6 Kg · m2

Number of Teeth

NS1
No. of teeth in sun–1 gear 26

NR1
No. of teeth in ring–1 gear 62

NP1
No. of teeth in pinion–1 gear 18

NS2
No. of teeth in sun–2 gear 42

NR2
No. of teeth in ring–2 gear 74

NP2
No. of teeth in pinion–2 gear 16

NRi
= NSi

+ 2 · NPi
, i = 1, 2

Radius

RS1
Radius of sun–1 gear 0.019786 m

RR1
Radius of ring–1 gear 0.047182 m

RP1
Radius of pinion–1 gear 0.013698 m

RS2
Radius of sun–2 gear 0.031962 m

RR2
Radius of ring–2 gear 0.056314 m

RP2
Radius of pinion–2 gear 0.012176 m

RRi
= RSi

+ 2 · RPi
, i = 1, 2

Pinions

mP1
mass of pinion–1 gear 0.060967 Kg

mP2
mass of pinion–2 gear 0.053199 Kg

n1 Number of pinion–1 gear 4
n2 Number of pinion–2 gear 4
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4.2 Hydraulic System in Automatic Transmission

An hydraulic system in an automatic transmission consists of various compo-

nents such as hydraulic pump, accumulators, valves and pressure regulators. This

study focuses on a subsystem that is directly involved during shifting gears in an

automatic transmission. As shown in Fig. 4.7, the simple hydraulic system for clutch

C2 consists of 1–2 upshift valve, supply transmission line pressure and clutch actua-

tor. Supply transmission line pressure is assumed to have constant pressure and thus

the transmission fluid inductance is neglected. The resistance in shift valve accounts

for all the resistance including the resistance in the supply transmission line pressure.

Shift valve is opened very fast and operating at high frequency. Thus, the solenoid

is not considered in this study. Under these assumptions, the dynamic model of the

simple hydraulic system is derived as follows.

Figure 4.7. Simple Hydraulic System including 1–2 upshift valve, fluid line, clutch C2

actuator and clutch packs.
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The transmission fluid flowing through 1–2 upshift valve is assumed to have

incompressible flow. The volumetric flow rate equation is

Qin = CdA

√

2|Pl − PC |

ρ
sign(Pl − PC) for 0 ≤ u ≤ 1 (4.71)

where

A = Ao
vu

when u is positive, the inlet port is opened while the exhaust port is fully closed.

Qout = CdA

√

2|PC − Pr|

ρ
sign(PC − Pr) for − 1 ≤ u < 0 (4.72)

when u is negative, the exhaust port is opened while the inlet port is fully closed.

The transmission fluid flows, with rate Qin, from transmission line into the

clutch cavity through the upshift valve orifice, Ao
v. The build–up pressure, PC , in the

clutch cavity compresses the spring in the clutch actuator. The transmission fluid

flows, with rate Qout, from the clutch cavity to transmission reservoir or transmission

oil pan.

The net flow into and out of clutch is conserved. With the assumption that

the transmission fluid bulk modulus is very large, the continuity of clutch cavity for

incompressible flow implies

Qin = AC ẋC (4.73)

Clutch actuator force balance equation, neglecting inertial and friction, is

PC =
kC

AC

xC +
F

AC

(4.74)

The pressure has to be adequate to overcome the clutch return spring and the clutch

pack. The clutch pack including a number of clutches and a wave spring behaves like
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Table 4.3. Hydraulic Actuator System Parameters

Symbol Description Value

kC clutch return spring rate 111, 400 N/m
xCstk

clutch return spring stroke 2.941 × 10−3 m
xCmax

the maximum deflection of clutch return spring 4.611 × 10−3 m
kw wave spring rate 5408 × 103 N/m
AC clutch actuator area 9.5411 × 10−3 m2

Ao
v orifice area of the shift valve 2.6273 × 10−6

ρ transmission fluid density 840 kg/m3

Cd Orifice discharge coefficient 0.61
Pl Transmission line pressure 100 kPa

a spring. This spring will exert force, F , on the actuator after the force due to the

fluid pressure exceeds the return spring which has deflection including preload, xC ,

and clutch return spring rate, kC . The clutch pack model is described as follow.

F =











0 if 0 < xC ≤ xCstk

kw(xC − xCstk
) if xCstk

< xC ≤ xCmax

(4.75)

When the clutch packs are pushed together and wave spring starts to stroke, F is

determined by the second expression in Eq. (4.75). Wave spring rate accounts for all

effects of the clutch pack and the wave spring between the clutch packs. The clutch

actuator area is calculated by

AC = πD2
C/4 (4.76)

4.3 Fast Hydraulic Actuation Technologies

The desired control pressure profile is generated by the hydraulic actuation sys-

tem of the transmission. Traditional shift control systems manipulate the oil pressure

on the clutch actuator by a control pressure valve, which is controlled by PWM (Pulse

Width Modulation) solenoid valve. Traditional hydraulic actuation systems cannot
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regulate pressure profile for a successful implementation of feedback control systems.

It is obvious that faster actuation system are needed for feedback control. This section

will demonstrate in detail the need for fast hydraulic actuation systems and discuss

some new technologies that can potentially provide fast pressure regulation.

For traditional control systems in an automatic transmission with clutch-to-

clutch shifts, the oncoming clutch fill process is a major source of uncertainty and

it makes the clutch coordination during the shift a difficult task. The fill time of

the oncoming clutch varies due to many factors, such as fluid temperature, solenoid

valve characteristics, line pressure variations and elapsed time between shifts. The

commanded fill pressure and the commanded fill time are critical to achieving a good

fill and a smooth start to the shift process. Even small errors in these two parameters

could lead to an overfill or an underfill, as shown schematically in Fig. 4.8. In Ref.

[69], the speed and acceleration of the input and output shafts in a powertrain is

used to detect the fill time. Some algorithms have been developed to detect the end

of fill using speed signals but none of them has proven reliable and fast enough to

prevent overfill spikes. An example of an oncoming clutch overfill during an upshift

is shown in Fig. 4.9. The high oil pressure and high flow rate is applied to the

oncoming clutch. With the improper detection of the end of fill, this event makes

the transmission oil overfill. On the under hand, the oil underfill occurs when the

detection misinterprets signals and leads to slow filling in oil pressure. In the past,

an automatic transmission was equipped with a proportional PWM valve. A PWM

valve operates on a duty cycle that comprises a percentage of time within a period

of time during which the valve is open. The PWM valves are able to output the

flow and pressure, by opening and closing during the duty cycle. PWM valves are

more efficient to operate, but require greater bandwidth. It has delay in response to

commanded signal due to physical interaction between pressure supply device and
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Figure 4.8. Variation in Clutch Fill Process [60].

Figure 4.9. Effect of Clutch Overfill on an Upshift [60].

control device. The automatic transmission equipped with a PWM valve appears to

have limitation in solenoid part which limits the hydraulic actuation system. Thus,

alternative technologies are required to reduce the delay in response to commanded

signals so that precise control pressure generated on the clutch/band surface can be

achieved.

In the past decade, the proportional PWM valve was replaced by two faster

valves for clutch actuation in an automatic transmission. Variable bleed solenoid

(VBS) valves and variable force solenoid (VFS) valves are widely used now for better

controllability. The VBS valve or proportional control solenoid valve attenuates the
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pressure as a function of input current. Analytical modeling of proportional control

solenoid valves was conducted using system identification theory in [82]. The PCSV

characteristics is analyzed as illustrated in Fig. 4.10. It has bandwidth around 10

Hz. Ref. [82] concludes that the valve bandwidth was limited by the bandwidth of

the electromagnetic portion of the solenoid. This implies that the valve can be fully

opened approximately in 100 ms. Variable force solenoid (VFS) valves are also used

in some transmissions. VFS is studied in Refs. [59] and [83]. In Ref. [59], it is shown

that the VFS valve can be fully opened in 100 ms when it is tested with a step input

from 0 to 50 psi as shown in Fig. 4.12. Its natural frequency is around 10 Hz as

shown in Fig. 4.11. In Ref. [83], VFS valve is studied with a different set–up which

shows that the valve can be fully opened in 16 ms. VBS and VFS valves are also

known as proportional valves because they regulate pressure based on the valve being

open or partially open. However, VBS valves suffer from hysteresis and variations

due to temperature. To further enhance system performance, fast and precise valve

actuation devices are needed. A new concept for an on/off valve with rotary actuator

was proposed to handle flow rate greater than 10 lpm with less than 5 ms response

time [84], as illustrated in Fig. 4.13. A key feature of this concept is that the valve

has a single stage construction, but performs as a two-stage valve. Figure 4.14 shows

the schematics and cross section view of this valve.

Alternative clutch actuation technologies were also pursued to replace the electro-

hydraulic actuators in automatic transmissions to improve fuel economy and perfor-

mance. Motor driven clutch actuation has been investigated by a number of re-

searchers [85]. The major challenges for the electromechanical actuators are the low

power density and available electrical power inside the vehicle. Usually, some kind of

gearing is required to amplify the torque capacity of the motor.
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Figure 4.10. Frequency Response of the Overall System for PCSV [82].

Figure 4.11. Frequency Response and the Identified Function Plot for VFS Solenoid
[59].
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Figure 4.12. VFS Valve Validation Data for Solenoid and Clutch [59].

Figure 4.13. Illustration of ON/OFF Time calculation [84].
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Figure 4.14. High Speed On/Off Valve Schematic and Cross Sectional Views [84].

Smart material based clutch actuation devices were also developed by a number

of researchers. Feasibility of using electrorheological (ER) fluid clutch inside automo-

tive transmission was investigated and desirable properties of ER fluid were proposed

for future research [86]. Magnetic powder clutch was used as a starting clutch for a

CVT equipped vehicle [87]. Potential applications of magnetorheological (MR) fluid

clutch were discussed [88].

There are many research and development studies in both control algorithm

and hardware to improve the actuation technology in the automotive transmission.

The key to any successful development is the integration of software and hardware

systems.
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4.4 Friction Elements

Basically, the clutches and bands in an automatic transmission are represented

as classical friction model. The characteristic of this model is as shown in Fig. 4.15.

The friction is proportional to the normal force to the contact surfaces of two bodies.

While this represents the ideal friction model, it gives rise to discontinuity problem

in numerical solution in zero velocity region. To eliminate this problem, the steep

curve in the neighborhood of zero velocity region is introduced as shown in Fig.

4.16. Additionally, outside the small velocity neighborhood, the friction is modeled

as a function of the velocity, which is called “Stribeck effect” [47]. However, this

model still has drawbacks including numerical simulation problem and physical fault

representation [48, 49, 50].

Figure 4.15. Classical Friction Model.

Figure 4.16. Stribeck Friction Model.
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Figure 4.17. Karnopp’s Friction Model.

There are many models developed to handle the problems in the classical friction

model. These approaches are known as dynamic friction models, which are studied

and developed in various references including [47, 49, 51, 52, 53]. Dahl friction model

primarily reported in [51] develops the friction model from stress–strain characteristics

in solid mechanics. The connection between two surfaces is modeled as spring and

damper. Therefore, in this model, the friction force is proportional to displacement.

An extension of Dahl friction model is Lugre friction and Bliman–Sorin model [54].

These models represent many characteristics of friction phenomena. However, the

models are quite difficult to apply to a complicated dynamic system such as in an

automatic transmission. In [49], the bristle model and reset integrator model are

presented. The models capture the behavior of the friction in microscopic level where

the contact points between two surfaces are viewed as bonds between flexible bristles.

As surfaces move, the strains in the bonds increase and the bristles act as springs,

which give rise to the friction force. Due to complexity, the bristle model consumes a
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Figure 4.18. Modified Woods Static and Dynamic Friction Model.

lot of simulation time while the reset integrator model has a discontinuous function in

the model that requires numerical algorithm to be carried carefully [55, 56]. Karnopp’s

model eliminates the discontinuity in ideal Coulomb friction model while be able to

implicate stick-slip behavior of a system with friction[48].

Woods static and dynamic friction model is based on the Coulomb friction

model for dry friction [89]. This model is a three–state logic function of the differ-

ential velocity and the forces that could pass through it as shown in Fig. 4.19. If

the forces are larger than the torque capacity of the friction element or if there is a

velocity difference already, then the friction force is constant and the normal differ-

ential equations governing the analyzed system are in effect. However, if the velocity

difference is near zero and the forces applied to the friction element are smaller than

the torque capacity, then there is a “capture” of the motion such that there is no

velocity difference in the element. The element can come out of capture when the

forces applied to it exceed the friction value. When the element is in capture, the

velocity difference is zero and the acceleration of the masses connected by the friction
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Figure 4.19. Woods Static and Dynamic Friction Model.

element should be identical. In such a case, the number of states of the system drops

by one and a new set of reduced–order differential equations should be defined. There

are three distinct operational states for Coulomb friction: in motion, in capture but

about to accelerate out of capture, in capture but insufficient forces to accelerate into

motion. Notice that we need to know the definitions of velocity difference and the

summation of forces to get the proper signs for the logic function. Also, the minimum

velocity difference should be defined. This minimum velocity determines when the

velocity difference will go to zero, which prevents any computer simulation error due

to any non–zero speed difference.

Even through there are many accurate friction models in the literature, Woods

static and dynamic friction model is the preferred one in this study over other fric-

tion models when it comes to stick–slip behavior prediction and simulation accuracy.

Therefore, in this research the clutches and bands are modeled by Woods static and

dynamic friction model to overcome the numerical difficulties in zero velocity neigh-

borhood, which would happen when the classical friction model is used.

4.5 Classical and Woods Static and Dynamic Friction in Clutch and Band

In this section, the implementation of the friction models in modeling friction

elements of automatic transmission is explained, using a simple system of two shafts

connected through a clutch. The hydraulic system described in Section 4.2 is used
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to generate the pressure on the clutch. The clutch is modeled by Woods static and

dynamic friction model.

Coulomb friction or dry friction model describes friction force that occurs be-

tween two connecting surfaces when a moving body slips over another body or a

stationary body has a tendency to slip over another body. Coulomb friction model

approximates the friction force as a coefficient of friction, µ, multiplied by the normal

force, N , which is the contacting force between the two surfaces. The coefficient of

friction, µ, depends on the material properties and surface characteristics. For two

bodies with relative speed on the contacting surfaces, the coefficient of friction is

determined as the coefficient of kinetic friction, µk. For two bodies with zero relative

speed, the coefficient of friction is determined as the coefficient of static friction, µs.

In general, the coefficient of static friction, µs, is greater than or equal to the coeffi-

cient of kinetic friction, µk. Therefore, the two bodies begin to move apart when the

applied force exceeds the friction forces µsN or the breakaway force level, Fh as seen

in Fig. 4.15. Once the bodies start moving, the friction force becomes µkN . Figure

4.15 illustrates this ideal friction model. However, this friction model has discontinu-

ity at zero relative speed. This causes numerical problems in computer simulation.

As seen in Fig. 4.15, at zero relative speed, the friction force is not unique. In simu-

lation of discontinuous dynamic system such as this one, the simulation software such

as Matlab/Simulink will experience sudden appearance of an eigenvalue located far

out to the left in the complex plane due to very steep gradient in the discontinuous

differential equations. In a numerical software with variable step size, its step-size

control algorithm will try to reduce the step-size. However, the new eigenvalue can-

not be easily solved. The algorithm finally quits solving for the new eigenvalue, as

its step size is either reduced to the smallest tolerance value or the step size control

is fooled. The integration algorithm recognizes the discontinuity as a singular point
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of stiffness. As a consequence, the discontinuity is passed through with a very small

step size. The algorithm judges the solution to be correct, even though the solution

might be incorrect. Other possible phenomena is that the algorithm might not be

able to recognize the discontinuity and pass over the point of discontinuity [55, 56].

To deal with this problem, the classical friction model or generalized Stribeck

friction model is introduced [47, 48, 49, 50, 90]. In this model, as shown in Fig. 4.16,

a steep straight line in small relative speed region replaces the friction curve around

the zero relative speed. The friction force, now, is a unique function of the relative

speed.

As stated earlier, different speed and torque ratios in a transmission are easily

achieved by alternating input, output, stationary components and holding elements.

This is done by an electronic unit, engaging and/or disengaging various friction el-

ements such as clutches and bands through the hydraulic system. The amount of

hydraulic pressure applied on a friction element determines the maximum amount of

torque that the friction element can transmit, which is known as “the torque capacity

of a friction element”. To engage a friction element, its torque capacity should be

increased more than the torque it needs to transmit in a given driving condition. The

torque capacity is reduced to zero, by releasing its hydraulic pressure, to disengage a

friction element.

Using the classical friction model, the friction elements are modeled as Coulomb

friction torque where the amount of friction torque is a function of contact area, fric-

tion coefficient, and pressure applied to the friction elements. To avoid the singularity
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present in the Coulomb friction model, torque friction is represented as a two–folded

saturation function, T = fTC(∆ω, Tcap+, Tcap−) as (see Fig. 4.20 for the depiction)

fTC(∆ω, Tcap+, Tcap−) =



































Tcap+ , ∆ω > ωtol

T
cap+

ωtol
∆ω , 0 ≤ ∆ω ≤ ωtol

T
cap−

ωtol
∆ω , −ωtol ≤ ∆ω ≤ 0

Tcap− , ∆ω < −ωtol

(4.77)

Figure 4.20. Friction element torque.

where Tcap+ and Tcap− are the torque capacities adjusted by pressure increase or de-

crease through the hydraulic system, ∆ω is the relative speed and ωtol is a simulation

parameter set to a very small number as the relative speed tolerance, for example,

ωtol is 0.001 rad/s in the simulations that use this friction model. For clutches,

Tcap+ = Tcap− while Tcap+ 6= Tcap− for bands as bands may have more torque friction

capacity in one direction than the other. For one–way clutches, either Tcap+ or Tcap−

is zero depending on the sprag direction.

There are still some issues in the implementation of this friction model in sim-

ulation. Improper simulation results may occur when the bodies move into the small

relative speed region. This model allows the bodies to move even though the net
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sum of external force is less than the breakaway force level, Fh. As a result, it can-

not predict the static behavior. Therefore, this model cannot predict limit cycle or

other effects associated with stick-slip phenomena. Additionally, the simulation time

is increased if a larger slope is used in the small relative speed region. Karnopp’s

model eliminates the discontinuity in ideal Coulomb friction model while be able to

implicate stick-slip behavior of a system with friction. As illustrated in Fig. 4.17, this

model introduces a finite neighborhood of zero velocity where static friction occurs.

Outside the neighborhood, the kinetic friction is a function of velocity. Inside the

neighborhood, velocity is set to zero and the static friction force is determined by the

other elements in the system. If the friction force exceeds the breakaway force level,

Fh, then the friction switches to slipping mode [48].

The friction model adopted here is modified from Woods static and dynamic

friction model, as shown in Fig. 4.18. This model inherits stick-slip behavior within

the finite neighborhood of zero velocity. Outside the neighborhood where the friction

is in slipping mode, the friction is a function of the velocity which happens according

to Stribeck effect. However, to account for Stribeck effect, this friction model uses a

function from [57], instead of the function used in Refs. [50] and [47]. As illustrated

in Fig. 4.22, the coefficient of friction is a function of the relative speed.

In this model, dynamic torque, Td is defined as Coulomb friction torque oc-

curring between two contacting surfaces that are rotating relatively to each other.

The magnitude of the dynamic torque is proportional to axial force across the clutch

surface and the fiction coefficient which is a function of velocity [57]. The direction

of the dynamic torque opposes the relative motion of the rotating objects.

Throughput or static torque, Ttp is defined as friction torque occurring between

two contacting surfaces that have zero relative speed. Two objects rotate together,

with the equal speed in the same direction. The throughput or static torque in
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this case no longer depends on the friction coefficient and normal force. The static

torque is calculated from all the external torques applied to the system with the

direction against the rotation. The throughput torque is limited to the value of

breakaway toque, Th. However, in this study, the value of the dynamic torque, Td,

when the relative speed goes to zero, is used instead of Th. To account for the stiction

event which is greater than the friction torque/force during in–motion mode, the

approximation is made by using the friction coefficient function available in Ref. [58].

Thus, the value of Td and Th are approximately the same value in the region of zero

relative speed. Using Td as the value of breakaway torque does not cause the error in

the simulation result, but it enhances the transition event when the friction modes are

changed. The available data for coefficient of friction for wet clutch that is needed to

calculate for Td can be obtained from Ref. [58]. For a single-mass system, the static

torque is equal to the value of applied torque to the mass with the opposite direction

[89]. For a multi–mass and multi–friction system, the procedure is demonstrated in

the next section.

Woods static and dynamic friction model for dry friction is a three–state logic

function of the relative speed and torque that could pass through the friction element.

Three distinct operational modes are “In–Motion”, “Captured but Accelerating” and

“Captured and Static” as shown in Fig. 4.21.

4.5.1 In–Motion Mode

When two contacting objects have relative speed, they are considered to be in

“in–motion mode”. In this mode, Coulomb friction torque is proportional to clutch

pressure, piston area, effective radius of clutch plates or band drum, number of clutch

surfaces and the coefficient of friction. The coefficient of friction is dependent of the
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Figure 4.21. New Friction Model Modes.
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relative angular velocity, as shown in Fig. 4.22, and has a direction against the motion

of the objects. In this state, the coulomb friction torque is given by

If |∆ω| > ∆ωtol , then

Tf = Td (4.78)

where

Td =











PC A r n µ sign∆ω for clutch

PC A r n (expµα −1) sign(∆ω) for band
(4.79)

where

Tf = friction torque

Td = dynamic torque

PC = hydraulic pressure applied to clutch actuator

A = actuator area

r = effective radius of clutch plate and band drum

n = number of clutch surfaces

µ = coefficient of friction

α = effective wrap angle of the band around a drum

∆ω = relative angular velocity

4.5.2 Captured and Accelerating Mode

This mode occurs when the relative speed between two contacting objects is

less than or equal to ∆ωtol but the throughput torque is greater than the breakaway
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torque. Therefore, the objects are accelerating out of capture. In this mode, the

friction torque is given by

If |∆ω| ≤ ∆ωtol and |Ttp| ≥ |Td|, then

Tf = Tca (4.80)

where

Tca = |Td| sign (Ttp) (4.81)

4.5.3 Captured and Static Mode

In this mode, two contacting objects have relative speed equal to zero, the

friction torque is exactly the same magnitude and direction as the throughput torque,

Ttp. When the throughput torque, Ttp exceeds the breakaway friction torque while

the relative speed is still in the zero velocity region, the system leaves “Captured and

Static” mode and moves into “Captured and Accelerating” mode. When the relative

speed is greater than ∆ω and the surfaces of the two objects start moving relative to

each other, the Coulomb friction switches to “In–Motion” mode.

If |∆ω| ≤ ∆ωtol and |Ttp| < |Td|, then

∆ω = 0 (4.82)

Tf = Tcs (4.83)

where

Tcs = Ttp (4.84)

In Captured and Static mode, the friction is independent from the normal forces

applied to the clutch plates. For a single-rotating inertia system, the friction in the

captured and static condition has the same magnitude as the applied torque to the

shaft, but it has the opposite direction. For the multi-mass and multi-friction systems
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such as planetary gear sets, the calculation of the throughput torque is more involved

and will be explained in Sections 4.6, 4.7 and 4.8.

4.6 Application to a System of Two Shafts

Figure 4.23 depicts a system of two shafts connected together by a clutch. This

system analyzed using a lumped-parameter model. The clutch in this system consists

of two plates that are used to transmit torque between shaft–1 and shaft–2. The

clutch is modeled as explained in Section 4.5.

Figure 4.23. Two shafts connected by a clutch.

The differential equations representing the dynamics of two shafts coupled by

the clutch are

θ̈1 = −
b1

I1
θ̇1 +

1

I1
Tin −

1

I1
Tf (4.85)

θ̈2 = −
b2

I2
θ̇2 +

1

I2
Tf −

1

I2
Tload (4.86)

where Tin is the input torque at the shaft–1, Tload is the load at the shaft–2 and Tf

is the Coulomb friction torque on the clutch. Shaft–1 and Shaft–2 have the moments

of inertia, I1 and I2, respectively. Both shafts have rotational damping constant, b1

and b2, respectively.

In addition to the relative angular velocity, the throughput torque is a factor

determining transitions between the modes. In Captured and Static mode, the two
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shafts coupled by the clutch rotate together, and thus have the same speed and

acceleration. This implies, along with, Eqs. (4.85) and (4.86), that

θ̈1 − θ̈2 = −
b1

I1
θ̇1 +

b2

I2
θ̇2 +

1

I1
Tin − (

1

I1
+

1

I2
)Tf +

1

I2
Tload = 0. (4.87)

This is a simple algebraic equation, which can be solved for the only unknown, Tf .

In this mode, the friction torque, Tf , is equal to the throughput torque, Ttp, which is

used, along with the relative angular speed, to determine the friction modes.

Tf =
I2Tin + I1Tload + (I1b2 − I2b1)θ̇1

I1 + I2

(4.88)

Ttp = Tf (4.89)

As shown in Fig. 4.23, shaft–1 and shaft–2 are connected via a clutch. Input

torque, Tin, is the applied torque on Shaft–1 and load torque, Tload, is the applied

torque on shaft–2. Tin and Tload are assigned as a function of time as shown in Fig.

4.24. Tin and Tload are applied at the beginning of simulation. However, Tin is reduced

to zero at 6 seconds while Tload stays acting on shaft–2. The load torque on shaft–2

has slightly change which is enough to move shaft–2 from shaft–1.

At the initial time, the upshift valve is opened, as seen in Fig. 4.25. The

transmission fluid is passed into the clutch cavity, as shown in Fig. 4.26. The pressure

that builds up in the clutch cavity pushes the clutch plates together. At this moment,

the relative speed at the clutch is still grater than the speed tolerance, ∆ωtol. Coulomb

friction is in “In–Motion” mode where flag number, i, is 1. Note that flag number in

Fig. 4.27 indicates the friction mode. The friction torque in this mode depends on the

applied pressure, which is being raised to about the magnitude of the line pressure.

After the pressure on the clutch increases, as shown in Fig. 4.26, the input shaft and

the output shafts are accelerating to have the synchronous angular velocity as shown

in Fig. 4.27. When the relative angular velocity between two shaft are less than or
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equal to the relative speed tolerance, ∆ωtol, the friction mode would change to either

“captured and acceleration” or “captured and static” modes. Once the throughput

torque, Ttp, is equal to or greater the breakaway torque Th, the friction mode is in

“Capture and Accelerating” mode where flag number in Fig. 4.27 is 2. Note that in

this friction model, the breakaway torque, Th is approximated by the dynamic friction

torque, Td, which is computed by the available data in [58]. The friction torque, Tf

is the same amount as the breakaway torque, Th, but with the same direction as the

throughput torque, Ttp. When the throughput torque, Ttp, is less than the breakaway

torque, Th, the friction is in “Captured and Static” mode where flag number in Fig.

4.27 is 3. The friction torque, Tf , is equal to the throughput torque, Ttp. Figs. 4.28

and 4.29 show a close–up view of the shaft speeds when the shafts couple and break

away, respectively.

Figure 4.30 shows the friction torque, the torque capacity and the throughput

torque at the clutch. It is the breakaway level of friction torque, Th, that defines

the maximum amount of the friction torque that a clutch/band can hold. Thus,

it is called as “torque capacity, TC” which is the maximum possible friction toque

that can occur on the clutch surface. In our research, Th is assumed to have the

same value as dynamic torque, Td. During “In–Motion” mode, the friction torque

is dynamic torque, Td, which has the same direction and magnitude as the torque

capacity. During “Captured and Accelerating” mode, the friction torque Tf is the

same amount as the torque capacity, TC , but with the same direction as the calculated

static torque, Ttp. During “Captured and Static” mode, the friction torque, Tf , is

equal to the throughput torque, Ttp. Notice from Fig. 4.30 also that, the magnitude

of the friction torque drops from the higher value supplied during “In–Motion” mode

to a value that is necessary to keep the two shafts rotating at the same rate. Note
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Table 4.4. Coulomb Friction Logic Function

Mode Flag,i logic function differential equation

In–Motion 1 If |∆ω| > |∆ωtol| , then

Tf = Td θ̈1 = − b1
I1

θ̇1 + 1
I1

Tin − 1
I1

Tf

Td = P (t) A r n µ sign (∆ω) θ̈2 = − b2
I2

θ̇2 + 1
I2

Tf −
1
I2

Tload

Captured 2 If |∆ω| ≤ |∆ωtol|

and , then and |Ttp| ≥ |Td| θ̈1 = − b1
I1

θ̇1 + 1
I1

Tin − 1
I1

Tf

Accelerating Tf = |Td| sign (Ttp) θ̈2 = − b2
I2

θ̇2 + 1
I2

Tf −
1
I2

Tload

Captured 3 If |∆ω| ≤ |∆ωtol|

and ,then and |Ttp| < |Td| θ̈1 = − b1
I1

θ̇1 + 1
I1

Tin − 1
I1

Tf

Static Tf = Ttp θ̈2 = θ̈1

θ̇2(tk) = θ̇1(tk)
where tk=time instant of
transition to this mode

that for a two–way clutch, the torque capacity has both positive and negative values

due to the capability to resist the rotation in both direction.

A significant moment of the simulation is when the friction model changes

mode. The differential equations representing the system dynamics switch from one

to another as shown in Table 4.4. When the system is in captured and static mode,

the angular velocity of the output shaft in next step time should be exactly the same

as the angular velocity of the input shaft. In order to have the both shafts rotate

with same speed in the next step time, the integral state (angular velocity) of the

output shaft is reset to the angular velocity of the input shaft as shown closely in

Fig. 4.28. The output shaft has less moment of inertia. Thus, the angular speed in

next step time of the output shaft is assumed to be the same as the angular speed
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of the input shaft, which has larger moment of inertia. The clutch starts to slip

when the throughput torque, Ttp, at the clutch exceeds the breakaway level or the

torque capacity as shown in Figure 4.29. The friction mode switches to “Captured

and Accelerating” mode and later to “In–Motion” mode due to the releasing of the

pressure in the clutch cavity as shown in Fig. 4.26.
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Figure 4.29. Enlarged View when the Shaft–1 and Shaft–2 break apart.
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4.7 Three Shafts Connected by Two Clutches

A system of three shafts connected by two clutches, as illustrated in Fig. 4.31,

is analyzed. Analysis of this system will facilitate transitioning to the analysis of

planetary gear set, which consist of multiple shafts connected through multiple friction

elements. Similar to the system of two shafts, the coulomb friction model with three

distinct modes is used at clutch–1 and clutch–2.

Figure 4.31. Three shafts connected by two clutches.

The differential equations representing the dynamics of three shafts connected

by two clutch are

θ̈1 =
1

I1

Tin −
1

I1

Tf1 (4.90)

θ̈2 =
1

I2

Tf1 −
1

I2

Tf2 (4.91)

θ̈3 =
1

I3

Tf2 +
1

I3

Tload (4.92)

where Tin is the input torque at the shaft–1, Tload is the load at the shaft–3, Tf1 is

the Coulomb friction torque on the clutch–1 and Tf2 is the Coulomb friction torque

on the clutch–2. The shaft–1, –2 and –3 have the moments of inertia, I1, I2 and

I3, respectively. For simplicity, torsional spring and rotational damper in these three

shafts are neglected.

According to the coulomb friction model, each clutch can be in one of the three

different modes, “in–motion”, “capture and accelerating” and “captured and static”.
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Therefore, there are 32 = 9 possible cases for this system of two clutches, as shown in

Table 4.5. The case number, i, indicates which friction mode each clutch is as follows.

When i is 1, the clutch is in dynamic mode. When i is 2, the clutch is in captured

and accelerating. When i is 3, the clutch is in captured and static. Angular velocity

of the shaft with less inertia is reset to that with more inertia when both shaft should

have the same velocity after the relative speed is less than ∆ωtol. It always happens

when the clutch goes into “captured and static” mode.

Note from Table 4.5 that the differential equations in Eqs. (4.90)–(4.92) rep-

resenting the dynamic system switch from 3–DOF to 2–DOF or 1–DOF depending

on the coulomb friction mode of the clutches. Similar to the system of two shafts

coupled by a clutch, throughput or static torque, the Ttp is another condition used

to determine the mode of the Coulomb friction in additional to the relative angular

velocity at the clutch.

The throughput or static torque, Ttp is more involved as the system has more

friction elements. Depending on the modes of each clutch, the number of the un-

knowns, namely the static torques to compute, changes. In general, the equations

used to solve for the unknown static torque(s) are obtained from the dynamic equa-

tions, Eqs. (4.90)–(4.92). Since the static torque on a friction element needs to be

calculated when the friction element is in “captured and static mode”, i.e., relative

speed and acceleration are zero, the relative accelerations are calculated from Eqs.

(4.90)–(4.92) as

θ̈1 − θ̈2 =
1

I1
Tin − (

1

I1
+

1

I2
)Tf1 +

1

I2
Tf2 (4.93)

θ̈2 − θ̈3 =
1

I2
Tf1 − (

1

I2
+

1

I3
)Tf2 −

1

I3
Tload (4.94)
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Table 4.5. Possible Modes of Two Clutches

Case C1 C2 differential equation friction torque

1 1 1 θ̈1 = 1
I1

Tin − 1
I1

Tf1 Tf1 = TC1,d

θ̈2 = 1
I2

Tf1 −
1
I2

Tf2 Tf2 = TC2,d

θ̈3 = 1
I3

Tf2 + 1
I3

Tload

2 1 2 θ̈1 = 1
I1

Tin − 1
I1

Tf1 Tf1 = TC1,d

θ̈2 = 1
I2

Tf1 −
1
I2

Tf2 Tf2 = TC2,ca

θ̈3 = 1
I3

Tf2 + 1
I3

Tload

3 1 3 θ̈1 = 1
I1

Tin − 1
I1

Tf1 Tf1 = TC1,d

θ̈2 = 1
I2+I3

Tf1 + 1
I2+I3

Tload Tf2 = TC2,cs

θ̈3 = 1
I2+I3

Tf1 + 1
I2+I3

Tload reset θ̇3(tk) = θ̇2(tk)

4 2 1 θ̈1 = 1
I1

Tin − 1
I1

Tf1 Tf1 = TC1,ca

θ̈2 = 1
I2

Tf1 −
1
I2

Tf2 Tf2 = TC2,d

θ̈3 = 1
I3

Tf2 + 1
I3

Tload

5 2 2 θ̈1 = 1
I1

Tin − 1
I1

Tf1 Tf1 = TC1,ca

θ̈2 = 1
I2

Tf1 −
1
I2

Tf2 Tf2 = TC2,ca

θ̈3 = 1
I3

Tf2 + 1
I3

Tload

6 2 3 θ̈1 = 1
I1

Tin − 1
I1

Tf1 Tf1 = TC1,ca

θ̈2 = 1
I2+I3

Tf1 + 1
I2+I3

Tload Tf2 = TC2,cs

θ̈3 = 1
I2+I3

Tf1 + 1
I2+I3

Tload reset θ̇3(tk) = θ̇2(tk)

7 3 1 θ̈1 = 1
I1+I2

Tin − 1
I1+I2

Tf2 Tf1 = TC1,cs

θ̈2 = 1
I1+I2

Tin − 1
I1+I2

Tf2 Tf2 = TC2,d

θ̈3 = 1
I3

Tf2 + 1
I3

Tload reset θ̇2(tk) = θ̇1(tk)

8 3 2 θ̈1 = 1
I1+I2

Tin − 1
I1+I2

Tf2 Tf1 = TC1,cs

θ̈2 = 1
I1+I2

Tin − 1
I1+I2

Tf2 Tf2 = TC2,ca

θ̈3 = 1
I3

Tf2 + 1
I3

Tload reset θ̇2(tk) = θ̇1(tk)

9 3 3 θ̈1 = 1
I1+I2+I3

Tin + 1
I1+I2+I3

Tload Tf1 = TC1,cs

θ̈2 = 1
I1+I2+I3

Tin + 1
I1+I2+I3

Tload Tf2 = TC2,cs

θ̈3 = 1
I1+I2+I3

Tin + 1
I1+I2+I3

Tload reset θ̇2(tk) = θ̇1(tk)

and θ̇3(tk) = θ̇1(tk)
Note that : tk is time instant of transition to the specific mode

TCi,d = Pi(t) Ai ri ni µi sign (∆ωi)
TCi,ca=Td,i sign (Ttp,i)

TCi,cs=Ttp,i
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Writing Eqs. (4.93) and (4.94) in matrix form yields







θ̈1 − θ̈2

θ̈2 − θ̈3






= A







Tin

Tload






+ B







Tf1

Tf2






. (4.95)

where

A =







1
I1

0

0 − 1
I3






, (4.96)

and

B =







−( 1
I1

+ 1
I2

) 1
I2

1
I2

−( 1
I2

+ 1
I3

)






. (4.97)

Since the relative accelerations are zero in “captured and static” mode, Eq. (4.95)

becomes a set of linear algebraic equations with the unknown Tf1 and Tf2 as







0

0






= A







Tin

Tload






+ B







Tf1

Tf2






. (4.98)

The modes of the clutches will indicate which one(s), if any, of these equations should

be solved for the static torque(s). For example, when both clutches are fully engaged,

i.e., in “captured and static” mode, the static torques for both the clutches should be

solved. Thus, Eq. (4.98) is considered as a set of two algebraic equations with two

unknowns and can analytically be solved as






Tf1

Tf2






= −B−1A







Tin

Tload






. (4.99)

Eq. (4.98) can also be solved numerically by a numerical solver such as “linsolve” in

[91].

Another example is when clutch–1 is in “captured and static” mode while

clutch–2 is in one of the other two modes. In this case, the second equation in Eq.
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(4.98) is not valid as the relative acceleration is nonzero. Then, only for clutch–1, the

static torque is calculated from the solution of the first equation in Eq. (4.98). Note

that, in this case, Tf2 is known from the dynamic friction calculation. The numerical

solver can be used to solve the first equation in Eq.(4.98). In this case, the analytic

solution can easily be obtained as

Tf1 =
I2

I1 + I2
Tin +

I1

I1 + I2
Tf2. (4.100)

Similarly, when clutch–2 is in “captured and static” mode while clutch–1 is not, the

second equation in Eq. (4.98) can numerically or analytically solved as

Tf2 =
I3

I2 + I3
Tf1 −

I2

I2 + I3
Tload. (4.101)

When none of the clutches is in “captured and static” mode, Eq. (4.98) becomes

irrelevant and dynamic friction calculation is used for Tf1 and Tf2. Table 4.5 presents

all possible cases and summarizes the differential equations and friction calculations

in every cases.

The system consists of three shafts and two clutches as shown in Fig. 4.31.

The pressure, applied on the clutch, is controlled by the hydraulic system during

connecting and disconnecting the shafts. Shaft–1 is connected to shaft–2 via clutch–

1. Input torque, Tin, is applied on shaft–1, causing it to rotate. Friction torque, Tf1,

acts on shaft–1 to resist its rotation while pushes shaft–2 to rotate against the friction

torque Tf2 applied on shaft–2, as illustrated in Fig. 4.31. Shaft–2 is connected to

shaft–3 via clutch–2. Load torque, Tload, is applied on shaft–3. Friction torque, Tf2,

acts on the direction that resists the rotation of shaft–3.

At the initial time, the three shafts system is at ease. When the input torque is

applied to shaft–1, as shown in Fig. 4.32, and shift valve–1 is opened, as illustrated in

Fig. 4.33, shaft–1 starts rotating while clutch–1 connects it to shaft–2. The pressure
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build up in clutch–1, as shown in Fig. 4.34, generates the friction on the clutch

surface. As a result, shaft–2 is pushed to rotate by the clutch. Both shafts are

rotating with different speeds as seen in Fig. 4.35. The friction at clutch–1 is in “in–

motion” mode. When the pressure in clutch–1 reaches the highest value around 1000

kPa, the friction torque is build up enough to make shaft–2 to have the same speed

as shaft–1. When they reach the synchronous velocity, this is where the friction is in

“Captured and Static” mode. At this moment, the differential equations of shaft–1,

shaft–2 are changed, as seen in Table 4.5. Also, the angular velocity states are reset

to the same angular velocity to be integrated to obtain the same angular velocity in

the next time step, as shown in Fig. 4.36. Once the friction is switched mode to

“captured and accelerating”, the friction torque is reduced to the magnitude that is

enough to maintain both shafts at the same speed. As seen in Fig. 4.38, the friction

torque at clutch–1 drops significantly from the beginning even though the pressure

at clutch–1 remains at 1000 kPa.

When releasing shift valve–1, the pressure in clutch–1 drops as seen in Fig. 4.33

and 4.34. Consequently, the friction in clutch–1 drops, as shown in Fig. 4.38. Shaft–

1 and shaft–2 start rotating with different speeds. As seen in Fig. 4.35, the speed

of shaft–1 departs from the speed of shaft–2. After a few seconds, shift valve–2 is

opened and the pressure in clutch–2 is built up. The friction in clutch–2 is generated

as seen in Fig. 4.39. This causes shaft–2 and shaft–3 to rotate together with different

speeds. Once the friction is enough to make both shafts to rotate at the same speed,

the friction drops to the magnitude that is enough to maintain both shafts at the

same speed. The differential equations of shaft–1 and shaft–2 are changed as seen in

Table 4.5. Also, the angular velocity states are reset to the same angular velocity, as

done previously at clutch–1.
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Figure 4.32. Input Torque and Torque Capacity at Clutch–1 and Clutch–2.
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Figure 4.33. Hydraulic Effective Area of Spool Valve 1 and 2 in Percentage.
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Figure 4.34. Pressure at Clutch–1 and Clutch–2.
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Figure 4.38. Torque Capacity and Friction Torque at Clutch–1.
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Figure 4.39. Torque Capacity and Friction Torque at Clutch–2.
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4.8 Hydramatic 440 Automatic Transmission Clutch and Band with Classical Fric-

tion Models

To apply the classical friction model in Section 4.5 to the friction elements in

GM Hydramatic 440, the relative speed for each clutch and band should be defined.

C1 couples the turbine with sun–1 and the relative speed is defined as

∆ωC1
= ωt − ωS1

(4.102)

Further, the sprag is set up such that this one–way–clutch allows S1 to rotate freely

faster than the turbine, or the turbine to rotate freely slower than S1. This implies

Tcap− = 0. Thus, the torque carried through C1, based on Eq. 4.5, is expressed as

TC1
= fTC(ωt − ωS1

, TC1,cap+, 0) (4.103)

Note that when TC1
is applied (i.e. TC1,cap+ is increased) while the turbine rotates

faster than S1, TC1
> 0, which should accelerate S1. Positive torque should accelerate

a rotating element in the positive direction. Thus,

TS1,C1
= TC1

(4.104)

Consequently,

Tt,C1
= −TC1

(4.105)

C2 couples the turbine with carrier–1/ring–2 and the relative speed is defined

as

∆ωC2
= ωt − ωC1R2 (4.106)

Thus, the torque carried through C2 is

TC2
= fTC(ωt − ωC1R2

, TC2,cap+, TC2,cap−) (4.107)
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Based on the definition of ∆ωC2
, when C2 is applied while ωt > ωC1R2

, TC2
> 0. In

this case, either the turbine will slow down, or C1R2 will speed up. Thus,

TC1R2,C2
= TC2

(4.108)

Tt,C2
= −TC2

(4.109)

C3 couples the turbine with sun–1 and the relative speed is defined as

∆ωC3
= ωt − ωS1

(4.110)

Recall that C3 is a one–way clutch like C1. However, its sprag is set up to rotate

freely in the opposite direction of C1. That is, S1 can rotate freely slower than the

turbine, or the turbine can rotate freely faster than S1. This implies TC3,cap+ = 0

TC3
= fTC(ωt − ωS1

, 0, TC3,cap−) (4.111)

Based on the definition of ∆ωC3
, when C3 is applied while S1 rotates faster than the

turbine, TC3
< 0. In this case, either S1 slows down or the turbine speeds up. Thus,

the applied torque on the turbine due to C3 should be positive but TC3
< 0, which

implies

Tt,C3
= −TC3

(4.112)

Since S1 slows down

TS1,C3
= TC3

(4.113)

C4 couples S1 with the transmission case, whose rotational speed is assumed to

be zero. Then, the relative speed is defined as

∆ωC4
= −ωS1

(4.114)

Thus, the torque carried through C4 is

TC4
= fTC(−ωS1

, TC4,cap+, TC4,cap−) (4.115)
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Based on the definition of ∆ωC4
, when C4 is applied while S1 rotates in the positive

direction, TC4
< 0 and S1 will slow down. Thus, Since S1 slows down

TS1,C4
= TC4

(4.116)

B12 couples S2 with the transmission case. The relative speed is defined as

∆ωB12
= −ωS2

(4.117)

The torque carried through B12 is

TB12
= fTC(−ωS2

, TB12,cap+, TB12,cap−) (4.118)

when B12 is applied while S2 rotates in the positive direction, TB12
< 0 and S2 will

slow down. Thus,

TS2,B12
= TB12

(4.119)

When the shift valve responds to a shifting signal, it directs the hydraulic

pressure to the designated clutch or band that causes the shift to occur. The hydraulic

pressure enters the cylinder-housing cavity behind the piston. As the pressure in the

cavity increases, the piston is forced against the return spring, drive plates and driven

clutch plates. The drive plates are splined to the drum. The driven clutch plates are

splined to the hub connected to a planetary gear member. The return spring reaches

full compression as the piston reaches the end of its travel in the drum. At the

same time the drive plates and the clutch plates are compressed together, torque is

transmitted via the clutch from the input shaft torque to a component of the planetary

gear sets. Consequently, the input shaft and the planetary gear set member rotate

with the same speed. When hydraulic fluid is “cut–off” to the piston by the shift valve

due to the shift signal, the circuit is exhausted and vented to atmosphere through

the valve body, and the return spring forces the piston to its“off position”. When
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the clutch pressure decays to the check ball apply pressure, the check ball drops from

its seat, thereby relieving residual centrifugal pressure. The drive and driven clutch

plates are separated.

4.9 Hydramatic 440 Automatic Transmission Clutch and Band with Woods Static

and Dynamic Friction Models

The hydraulic system in Section 4.2 and Woods static and dynamic friction

model are applied to GM Hydramatic 440 transmission model in this section. The

equations of motion of the planetary gear set model are given in Eqs. (4.63) and

(4.64).

Based on Eq. (4.65), the dynamics equation of the planetary gear sets can be

represented in matrix form. Rearranging Eq. (4.65) to have the angular acceleration,

ω̇C2R1
and ω̇C1R2

in the right hand–side of the equation yields







ω̇C2R1

ω̇C1R2






= E−1

G BG



















TS1

TC1R2

TS2

TC2R1



















(4.120)

where E−1

G
is a 2× 2 and BG is a 2× 4 matrices which can be obtained by inspection

from Eqs. (4.63) and (4.64). From Eqs. (4.40) and (4.42) the angular acceleration of

sun–1 and sun–2 are expressed in matrix form as







ω̇S1

ω̇S2






= HG







ω̇C2R1

ω̇C1R2






(4.121)
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where HG is a 2 × 2 which can be obtained by inspection. From Eqs.(4.120) and

(4.121), the derivative of speeds of sun–1, carrier–1 ring–2, sun–2, and carrier–2 ring–

1 can be written as


















ω̇C2R1

ω̇C1R2

ω̇S1

ω̇S2



















= D



















TS1

TC1R2

TS2

TC2R1



















(4.122)

where

D =







E−1
G BG

HGE−1
G BG






(4.123)

The dynamics equation of the turbine shaft gives the derivative of the turbine speed

which is expressed as

ω̇t =
1

It
(Tt + Tt,C1

+ Tt,C2
+ Tt,C3

) (4.124)

where Tt is turbine torque and Tt,Ci
is the applied torque due to Ci, where i = 1, 2, 3.

In Woods static and dynamic friction model, the relative speed and the through-

put torque determine the friction mode. The relative speed and its derivative at the

clutches and bands are found from Eq. (4.122). The relative speed derivatives at

the clutches and bands can be written in terms of turbine, sun, carrier, ring and

transmission case speeds.


























∆ω̇C1

∆ω̇C2

∆ω̇C3

∆ω̇C4

∆ω̇B12



























=



























ω̇t − ω̇S1

ω̇t − ω̇C1R2

ω̇t − ω̇S1

−ω̇S1

−ω̇S2



























(4.125)
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Substituting Eq. (4.124), and 2nd, 3rd and 4th rows of Eq. (4.122) with corresponding

gear positions into Eq. (4.125) yields following equation. Note that the gear positions

determine whether there are friction torques at sun–1, carrier–1 ring–2, sun–2, and

carrier–2 ring–1.



























∆ω̇C1

∆ω̇C2

∆ω̇C3

∆ω̇C4

∆ω̇B12



























= K






































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where Dij can be obtained from matrix D in Eq. (4.123).

The throughput torque is solved from Eq. (4.126). In Eq. (4.126), whenever a

clutch or a band is in “captured and static” mode, the corresponding relative speed at

the clutch or the band ∆ω and its derivative ∆ω̇ are equal to zero. Rearranging those

rows from Eq. (4.126) which relate to the clutches and bands that are in “capture
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and static” mode yields the throughput torque at those clutches and bands. This is

written in matrix form as

Ttp = Z · Tapplied (4.128)

where Z is a product of matrices after rearrange Eq. (4.126) at the clutch and band

that are in “captured and static” mode. Tapplied is the applied torque to the turbine

and the friction torque at the other clutches and bands that are not in “captured and

static” mode. The procedure to find the throughput torque is demonstrated in the

following example.

Table 4.6. Total events that would happen in 1st gear

case C1 B12

1 1 1
2 2 1
3 3 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3

In the first gear, clutch C1 and band B12 are engaged. The clutch and band can

be in one of the three friction modes. Thus, there are 32 = 9 possible cases. Table

4.6 shows all the cases regarding clutch C1 and band B12.

In case 9, the clutch C1 and the band B12 are in “captured and static” mode,

which represents the first gear. From Eq. (4.126), the first and the fifth rows are
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separated and rewritten as

∆ω̇C1
=

1

It
Tt − D34TC2R1,FD − (

1

It
+ D31)TC1,tp

−(
1

It

+ D32)TC2
− D33TB12,tp (4.129)

∆ω̇B12
= −D44TC2R1,FD − D41TC1,tp − D42TC2

−D43TB12,tp (4.130)

TC1
and TB12

are the throughput torques that needs to be calculated. The corre-

sponding derivative of the relative speed at the clutch C1, ∆ω̇C1
, and the band B12,

∆ω̇B12
both equal to zero. TC2

is zero because clutch C2 is not activated in first gear.

Thus, Eqs. (4.129) and (4.130) is reduced to

0 =
1

It
Tt − D34TC2R1,FD − (

1

It
+ D31)TC1,tp

−D33TB12,tp (4.131)

0 = −D44TC2R1,FD − D41TC1,tp − D43TB12,tp (4.132)

From Eqs. (4.131) and (4.132), the throughput frictions at the clutch C1 and the

band B12 in matrix form are

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where

Z3 = MK−1
3 MD3 (4.134)
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MD3 =







1
It

−D34

0 −D44






(4.136)
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For other gears and shifting, a similar procedure can be applied to determine

the throughput torque at the corresponding clutches and bands. For the specific

transmission studied, the total number of the possible friction modes needed to be

determined for shifting gear and fixed gear operation is 36 = 729. In this study,

however, the simulation for the 1st gear, 1 − 2 − 1 up/downshift, 2nd gear, 2 − 3 − 2

up/downshift, 3rd gear, 3− 4− 3 up/downshift, 4th gear are studied. Thus, the total

possible friction modes is 81 modes. The comparison of the simulation results with

the classical friction model and with Woods static and dynamic friction model is

presented in Chapter 5 and [28].



CHAPTER 5

OPEN LOOP SIMULATION RESULTS

This chapter presents the simulation of various shifts using open–loop con-

trol. Depending on the type of the friction model used, a pre–set torque capacity

or clutch/band pressure profile is applied to execute a desired shift. A significant

amount of time is spent in each case in calibrating the torque capacity or pressure

profile in order to obtain a good shift. As stated in Section 1.1.3, the shift quality can

be characterized by various specifications of a shift. The ones used in this research

are listed below.

1. Torque at the output gear/shaft: The torque at the output gear/shaft should

have small amplitude and low frequency of oscillation during the shift transient.

2. Vehicle Acceleration: The magnitude and frequency of oscillation of the vehicle

acceleration should be small during the time the gear ratio is changed.

3. Derivative of acceleration of the output gear: This is also called “Jerk”. The

magnitude and oscillation should be small during the shift transient.

4. Shift duration: The time between the current gear ratio and the desired gear

ratio should be as short as possible.

Through this exercise, it has become clear that manual calibration is a very

tedious and ineffective process to obtain good shifts. There are three different simu-

lation cases presented in this chapter. In all three cases, the powertrain model has the

same subsystems, except the friction, hydraulic and drive shaft models. The first case

uses the classical friction model, which takes torque capacity as the control variable

and uses only a first–order filter as the representation of the hydraulic system. In

111
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the first case, a non–stiff drive shaft model is used. The second and the third cases

have the Woods friction model with a traditional hydraulic actuation system. The

difference between these two cases is that the second case uses a stiff drive shaft while

the third case uses a non–stiff one. The initial conditions of the simulation are set as

below.

1. The engine is set up to run at 60 rad/s, 13.5 air-fuel ratio and 90 degree throttle

angle.

2. The turbine shaft has speed of zero rad/s.

3. The gear position is in neutral.

4. Gears in the planetary gear sets have speeds of zero rad/s.

5. The vehicle speed is at zero km/h.

5.1 Powertrain with the Classical Friction Model

First, the overall simulation results are discussed. The overview of the simu-

lation results of the powertrain from start to finish of the simulation are illustrated

in Figs. 5.1–5.9. This is followed by two subsections focusing on two specific up-

shifts. Figs. 5.10 - 5.18 present the characteristics of the shift dynamics during 1–2

upshift. Figs. 5.19–5.27 present the characteristics of the shift dynamics during 2–3

upshift. At the initial time, the simulation starts while the transmission is in neutral,

but immediately shift to the first gear is initiated. At 2.5 s, 1–2 shift is started.

Upshift 2–3 starts at 6 s. Shift to the fourth gear from the third starts at 14.0 s.

As discussed in Section 4.5, the clutch and band models with the classical friction

model takes “torque capacity” as the input. Torque capacity indicates the maximum

amount of torque a friction element can hold and is adjusted by applied pressure in

real implementations. Since the hydraulic system is not modeled with this friction

model, torque capacities of the friction elements will be adjusted to initiate a shift
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and control its quality. To engage a friction element, its torque capacity should be

increased to exceed the amount of torque that the friction element needs to hold in

the target gear in the driving condition. If the torque capacity is less than the torque

that the friction element is required to carry, the friction element will slip. To fully

disengage a friction element, its torque capacity should be reduced to zero. Fig. 5.1

shows the torque capacities adjusted based on Table 4.1 to achieve the desired shifts.

The engine torque and speed plots representing the dynamics of the engine are

shown in Figs. 5.2 and 5.3. Note that the engine and the pump in the torque converter

are lumped together as explained in Chapter 3. Fig. 5.2 shows the turbine torque and

pump torque in the torque converter. The large torque multiplication can be seen in

Fig. 5.2. The turbine torque is greater than the engine torque. On the other hand,

the engine has higher speed than that of the turbine as shown in Fig. 5.3. This results

from the torque converter characteristics. Changing gear results in torque and speed

changes in the engine and the torque converter. As seen in Fig. 5.2, both torques

repeatedly spike up. The two shift phases, “torque phase” and “inertia phase” can

be easily seen. “Torque phase” is initiated when the oncoming clutch torque starts to

increase. In the “torque phase”, the engine and turbine torques remain unchanged. In

the “inertia phase” or “speed phase”, which starts after “torque phase”, the offgoing

clutch/band torques are zero. Also, sudden increases occur in the engine and turbine

torques. After the peaks in magnitudes, the torques start to decrease. Fig. 5.3 shows

that large drops occur in the engine and turbine speeds due to the gear ratio charge

during the inertia phase of each shift. The oscillations seen in Figs. 5.2 and 5.3 are

due to poor shift quality and will be addressed via feedback control.

Fig. 5.4 shows the clutch torques in the clutches and bands. Fig. 5.5 shows

applied torques on gears in the planetary gear sets from the first gear to the forth

gear. Fig. 5.6 shows the speed of gears in the planetary gear sets. The output shaft
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Figure 5.1. Torque Capacities.
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Figure 5.3. Engine Speed, Turbine
Speed and Vehicle Velocity.
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Figure 5.4. Clutch Torques.

torque at final drive is illustrated in Fig. 5.7. The simulation results of the vehicle

model are also illustrated in Figs. 5.3, 5.8 and 5.9. The vehicle velocity is shown in

Fig. 5.3. The vehicle moves from starting point at zero km/h and reaches the velocity

about 50 km/h in 18 sec. The vehicle acceleration is shown in Fig. 5.8. The peak

and transient during upshifts can be seen. In Fig. 5.9, the derivative of acceleration

is shown. The derivative of acceleration or jerk indicates unpleasant ride caused by

poor shifting.
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Figure 5.8. Vehicle Acceleration.
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5.1.1 1–2 Upshift

The characteristic of 1–2 upshift is analyzed in this section through Figs. 5.10

to 5.18. The characteristic of shift is influenced by torque capacities on the clutches

and bands. In practice, the torque capacities is determined by calibration until the

shift quality is acceptable. The results of improper applied torque capacities are “tie

up” or “flare up” as discussed in Chapter 1. In this section, the torque capacities are

adjusted to obtain the best results as much as possible without any help from control

techniques. In 1–2 upshift, the on–coming clutch is clutch C2 and off–going clutch is

clutch C1 as indicated in Table 4.1. The shift happens when clutch C2 is engaging to

connect the turbine with carrier–1. Even though clutch C1 is off-going clutch in this

upshift, the characteristic of shift is solely influenced by torque capacity profile of the

on–coming clutch C2. As shown in Fig. 5.10, the torque capacity profile of clutch C1

remains constant during 1–2 upshift. Band B12 remains engaged through 1–2 upshift

with the constant torque capacity. C1 is one–way clutch which has a mechanism called

“sprag” that makes upshift happens automatically when on-coming clutch engages

without adjusting the clutch C1 pressure profile.

The torque phase of 1–2 upshift starts when clutch C2 torque capacity starts

to increase at time 2.5 sec as shown in Figs. 5.10 and 5.11. The output shaft

torque drops as seen in Fig. 5.18, because some parts of turbine torque start to be

transmitted via sun–1 while carrier–1 still transmits the other part of turbine torque.

This drop is undesirable, since the output torque to the drive shaft is interrupted

and the passengers may feel this. However, it is unavoidable, since changing the

size of gear ratio is not a continuous event in the step gear automatic transmission.

Intuitively, the drop in the output torque should be around the neighborhood of

the output torque when the shift is completed at the next gear. During this torque

phase, the speed of turbine is still equal to the speed of sun–1. Even tough clutch C2
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is engaging and clutch torque on clutch C2 is increasing, the turbine and sun–1 speed

are still increasing. The torque at turbine remains unchanged, thus it still speeds up.

This happens because torque on clutch C1 is decreasing while torque on clutch C2 is

increasing as seen in Fig. 5.11. Turbine torque is transmitted from sun–1 to carrier–1

as seen in Fig. 5.12.

At the beginning of inertia phase which is the end of torque phase at 2.75 sec,

the turbine speed decelerates to a new synchronous speed. As seen in Fig. 5.13,

turbine is apart from sun–1. At this moment, the sprag is overrun by sun–1, since

the speed of sun–1 is faster than the speed of turbine. Clutch C1 fully disengages due

to the sprag. Even though the hydraulic actuator at clutch C1 is still on, as shown in

Fig. 5.10, there is no clutch torque at clutch C1 as seen in Fig. 5.11. Applied torque

on sun–1 is zero as seen in Fig. 5.12. In the speed phase, turbine and carrier–1 are

slipping until clutch C2 is slowing down the turbine and speeding up carrier–1. The

speed of the turbine is reduced because the turbine torque is reduced by increasing

clutch torque at clutch C2 as seen in Fig. 5.14 and 5.15. The decrease in turbine

speed results in a higher slip across the the converter, which yields a higher pump

torque as seen in Fig. 5.14. Consequently, the engine speed is reduced. During this

phase, the speed of turbine is dropping to the new synchronized speed to be equal to

the speed of carrier–1 as seen in Fig. 5.13. At the end of speed phase, turbine and

carrier–1 have the same speed and there is no slipping in clutch C2. Also, the clutch

C2 and applied torque on carrier–1 reach highest magnitude as seen in Figs. 5.11 and

5.12, respectively.

At the end of 1–2 upshift carrier–1’s torque drops to the level of the turbine

torque in Fig. 5.12. The output shaft torque has a large transient as seen in Fig.

5.18. Following the drop, the output torque increases until it reaches the peak and

later oscillates with high frequency. Again, the maximum output torque should be
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Figure 5.10. Torque Capacities During
1–2 Upshift.
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Figure 5.11. Clutch Torques During
1–2 Upshift.

the same level as the output torque in the next gear. The frequency of the oscillation

should be as small as possible. The vehicle acceleration is shown in Fig. 5.16 and the

derivative of the acceleration in Fig. 5.17. The high frequency and amplitude in the

output torque and vehicle acceleration indicate the poor shift quality. To a passenger

of the vehicle, this rapid change in the vehicle acceleration is felt as a jerk. Jerk is

derivative of acceleration as shown in Fig. 5.17 used to measure the quality of the

shift. High frequency and amplitude in jerk indicates the poor shift quality.

The transient will be damped out by torque converter once 1–2 upshift com-

pletes where the turbine rigidly connects to output shaft. While in speed phase during

1–2 upshift, the slipping clutch decouples the output shaft from the torque converter.

The shift duration is about 1 sec. Even though this short duration seems to be ac-

ceptable, there are torque and speed oscillations with high amplitude and frequency

as shown in the figures, which indicates poor shift quality.

5.1.2 2–3 Upshift

The characteristics of 2–3 upshift is determined by how the torque capacities

are adjusted for band B12 and clutch C3. In this particular transmission, band B12

should be released and clutch C3 should be applied to conduct 2–3 shift. A shift
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Figure 5.15. Engine Speed, Turbine
Speed and Vehicle Velocity During 1–
2 Upshift.

that requires both an on-coming and off-going elements is called “a swap shift”. The

timing and the profiles of the torque capacity adjustment for B12 and C3 are the

defining factors for the shift characteristics. If C3 is applied before B12 is release, a

tie–up will occur while a flare will take place if B12 released before C3 is applied. Fig.

5.20–5.27 shows shift behavior during 2–3 upshift with the torque capacity profiles

shown in Fig. 5.19.

In this upshift the timing of the on–coming element (the clutch being applied)

and the off–going element (the band being released) are tuned up to obtain the better
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Figure 5.17. Derivative of Accelera-
tion During 1–2 Upshift.
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Drive During 1–2 Upshift.

upshifting results. The shift is initiated by lowering the torque capacity of band B12

and, after a short time, raising the torque capacity of clutch C3, as shown in Fig.

5.19. The increasing torque capacity of C3 while B12 still has some torque capacity

splits the torque transmission between C3 and B12. This can be seen in Fig. 5.20.

The transmission torque is carried through carrier–1 and sun–1 as seen in Fig. 5.21.

The turbine torque remains unchange during this torque phase as shown in Fig. 5.23.

As more torque goes through C3, less torque is carried by B12. The sharp drops in

the output shaft torque and the vehicle acceleration indicate the beginning of torque

phase as seen in Figs. 5.25 and 5.27. This drop happens since the output torque to

the drive shaft is interrupted due to changing gear ratio size. The passengers feel
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this event. However, it is unavoidable, since changing the size of gear ratio is discrete

event in the step gear automatic transmission. Intuitively, the drop in the output

torque should be approximately around the vicinity of the output torque when the

shift is completed at the next gear. At the time when the torque capacity of B12

drops to zero and B12 no longer carries torque, C3 starts carrying all the torque and

the decrease in the output torque stops. This signifies the end of the “torque transfer

phase” and the beginning of the “ratio change phase”, or “inertia phase”. During the

inertia phase, the gear ratio is between the 2nd gear and the 3rd gear ratios. Since

B12, which connects sun–2 to the transmission case, is fully released, sun–2 starts

rotating as seen in Fig. 5.22. C3 is used to connect sun–1 to the turbine shaft. As C3

is engaged, the clutch slips until sun–1 and the turbine have the same speed. Once

Sun–1 and the turbine rotate (zero slip in C3) together with the sun–2 and they all

have the same speed as carrier–2 (connected to the output shaft), the 3rd gear ratio

(= 1) is obtained and the shift is completed as shown in Fig. 5.22. Then, the torque

carried by C3 is only the amount to prevent slipping. Once the shift is completed, the

capacity on the clutch can be increased with no effect on the speeds or the torques.

Note that the output torque drop stops at the beginning of the inertia phase and the

output torque shows a transient in the inertia phase.

The speed of the turbine is reduced because the turbine torque is reduced by

increasing clutch torque at C2 and C3 as seen in Figs. 5.22 and 5.24. The decrease

in turbine speed results in a higher slip across the converter, which yields a higher

pump torque as seen in Fig. 5.23. Consequently, the engine speed is reduced.

At the end of 2–3 upshift the magnitude of carrier–2/ring–1 torque drops to

the level of the turbine torque in Fig. 5.21 and 5.23. The output shaft torque begins

to oscillate as seen in Fig. 5.27. The output shaft torque has a large transient as

seen in Fig. 5.27. Following the drop, the output torque increases until it reaches the
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peak and later oscillates with high frequency. Again, the maximum output torque

should be the same level as the output torque in the next gear. The frequency of

the oscillation should be as small as possible. The high amplitude and frequency of

the oscillation in the vehicle acceleration can be seen in Fig. 5.25 and derivative of

acceleration in Fig. 5.26. The high frequency and amplitude in the output torque

and vehicle acceleration indicate the poor shift quality.

The transient in Figs. 5.20 – 5.27 will be damped out by torque converter once

2–3 upshift completes when the turbine rigidly connects to the output shaft. While in

the speed phase during the 2–3 upshift, the slipping clutch decouples the output shaft

from the torque converter. Torque converter provides good damping characteristics

to the powertrain similar to the 1–2 upshift.

5.1.3 3–4 Upshift

The characteristic of 3–4 upshift is analyzed in this section. The characteris-

tic of shift is determined by how the torque capacities are adjusted for clutch C4.

The torque capacities are adjusted by calibration until an acceptable shift quality is

obtained. In 3–4 upshift, the on–coming clutch is clutch C4 and off–going clutch is

clutch C3 as stated in Table 4.1. The shift is initiated when clutch C4 starts to engage.

Even though clutch C3 is off-going clutch in this upshift, the characteristic of shift is

determined by the torque capacity of the on–coming clutch C4. The torque capacity

profile of clutch C3 does not affect 3–4 upshift because C3 is a one–way clutch. C3 like

any other one-way clutch has a mechanism called “sprag” that enables the clutch spin

freely when the on–coming clutch engages. Note that C2 remains engaged through

the 3–4 upshift. The operational principles of the clutch C3 during 3–4 upshift is

identical to those of clutch C1 during 1–2 upshift. The 3–4 upshift process is similar

to 1–2 upshift since the shift is accomplished with one–way clutch. The shift behavior
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Figure 5.19. Torque Capacities During
2–3 Upshift.
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Figure 5.20. clutch Torques During 2–
3 Upshift.
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Figure 5.21. Applied Torques on Gears
in Planetary Gear Sets During 2–3 Up-
shift.
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Figure 5.22. Speed of Planetary Gear
Sets and Turbine During 2–3 Upshift.
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Figure 5.23. Pump and Turbine
Torque During 2–3 Upshift.
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Figure 5.25. Vehicle Acceleration Dur-
ing 2–3 Upshift.
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Figure 5.26. Derivative of Accelera-
tion During 2–3 Upshift.
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Figure 5.27. Output Torque of Final
Drive During 2–3 Upshift.

has similar characteristics as discussed in 1–2 upshift section. However, the magni-

tude and frequencies of the oscillations are higher. Since during this 3–4 upshift the

torque converter is not locked up as usually done, the torque multiplication is large

as seen in Fig. 5.32. However, the torque converter lock–up is not studied in this

research. This phenomena is considered as one of the bad shift quality indications

and eliminated by feedback control in Chapter 6.

The 3–4 upshift starts with the torque phase of 3–4 upshift when clutch C4 starts

to engage as shown in Figs. 5.28 and 5.29. The output shaft torque drops as shown
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in Fig. 5.36 because some parts of the turbine torque starts to go through carrier–1

while sun–1 still transmits the other part of turbine torque. This drop is undesirable,

since the output torque to the drive shaft is interrupted and the passengers may feel

this disturbance. During this torque phase, the speed of the turbine is still equal

to the speed of sun–1 and carrier–1. Even though clutch C4 is engaging and clutch

torque on clutch C4 is increasing, the turbine, carrier–1 and sun–1 speeds are still

increasing. The torque at the turbine remains unchanged, thus it still speeds up.

This happens because torque on clutch C3 is decreasing while torque on clutch C4 is

increasing as seen in Fig. 5.29. Turbine torque is transmitted to sun–1 and carrier–1

as seen in Fig. 5.30.

At the beginning of inertia phase which is the end of torque phase, the turbine

speed decelerates to a new synchronous speed. As seen in Fig. 5.31, the turbine

is apart from sun–1 but still connected to carrier–1. At this moment, the sprag in

clutch C3 is overrun by sun–1, since the speed of sun–1 is slower than the speed of

the turbine. Clutch C3 becomes fully disengaged due to the sprag. Even though

the hydraulic actuator at clutch C3 is still on, as shown in Fig. 5.28, there is no

clutch torque at clutch C3 as seen in Fig. 5.29. Applied torque on sun–1 is equal

to the clutch torque from clutch C4 as seen in Fig. 5.30. In the speed phase, sun–1

is slipping until clutch C4 is slowing down sun–1 to stop. The speed of the turbine

inertia is reduced because the turbine torque is reduced by increasing clutch torque

at clutch C4 as seen in Fig. 5.32 and 5.33. The decrease in turbine speed results in

a higher slip across the the converter, which yields a higher pump torque as seen in

Fig. 5.32. Consequently, the engine speed is reduced. During this phase, the speed

of turbine is dropping to the new synchronized speed to have the same speed as that

of carrier–1 as seen in Fig. 5.31. At the end of speed phase, sun–1 has the zero speed
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and there is no slipping in clutch C4. Also, the clutch C4 and applied torque on sun–1

reach their highest magnitude as seen in Figs. 5.29 and 5.30, respectively.

The output shaft torque has a large transient as seen in Fig. 5.36. Following

the drop, the output torque increases until it reaches the peak and later oscillates

with high frequency. Again, the maximum output torque should be the same level

as the output torque in the next gear. The frequency of the oscillation should be as

small as possible. Also high amplitude and frequency of the oscillations can be seen

in the vehicle acceleration in Fig. 5.34 and derivative of acceleration in Fig. 5.35.

As shown in Fig. 5.35, high frequency and amplitude in jerk indicates poor shift

quality. Similarly, the high frequency and amplitude in the output torque and vehicle

acceleration indicate poor shift quality.

The transient will be damped out by torque converter once 3–4 upshift com-

pletes when the turbine rigidly connects to the output shaft. During the speed phase,

the slipping clutch decouples the output shaft from the torque converter. The shift

duration is about 1 sec. Even with this short duration, but there are torque and

speed oscillations with high amplitude and frequency as shown in the figures. These

imply poor shift quality.
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Figure 5.28. Torque Capacities During
3–4 Upshift.
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Figure 5.30. Applied Torques on Gears
in Planetary Gear Sets During 3–4 Up-
shift.
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Figure 5.31. Speed of Planetary Gear
Sets and Turbine During 3–4 Upshift.
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Figure 5.32. Pump and Turbine
Torque During 3–4 Upshift.
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Speed and Vehicle Velocity During 3–
4 Upshift.
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Figure 5.34. Vehicle Acceleration Dur-
ing 3–4 Upshift.
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Figure 5.35. Derivative of Accelera-
tion During 3–4 Upshift.
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Drive During 3–4 Upshift.
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5.2 Powertrain with Stiff Drive Shaft Using Woods Friction Model

The powertrain in this section had a hydraulic actuation system, Wood friction

model used for the clutches and bands and the drive shaft modeled as a stiff one.

The hydraulic actuation system is added to have pressure as the control variable.

This way, the limitations of current hydraulic systems are investigated in regulating

friction element pressures for enhancing shift quality. Employment of Wood friction

model is to improve accuracy of the models of the friction elements. The output shaft

is modeled as a torsional spring in the previous section, Section 5.1. While this is

a common modeling approach in shift dynamics research, in this section, the output

shaft is assumed to be stiff. This will help investigate whether the shift quality can be

studied without the oscillations in torque and speed variables, as observed in Section

5.1.

Figure 5.37 shows the pressure profiles at clutches and bands adjusted for 1–2

and 2–3 upshifts. The speed of turbine and engine are illustrated in Fig. 5.38. The

speed of planetary gear sets are shown in Fig. 5.39. Figure 5.40 shows that the vehicle

accelerates from about 10 km/h to 50 km/h. In first gear, clutch C1 and band B12

are engaged. The pressure at the clutch and band is at 1000 kPa. In first gear, the

turbine speed and sun–1 speed are equal while sun–2 speed is zero as shown in Fig.

5.38. During 1st–2nd upshift, clutch C2 is engaged while the pressure on clutch C1

and band B12 stay on as shown in Fig. 5.37. This is because clutch C1 is a one–way

clutch and allows sun–1 to rotate faster than the turbine even when it is engaged.

During this shift, the turbine speed decreases while carrier–1 accelerates to have a

synchronized speed at the end of the shift. In second gear, clutch C2 is locked up and

the turbine speed is equal to carrier–1 speed. Clutch C1 is disengaged after the shift

is completed. During 2nd–3rd upshift, band B12 is released and clutch C3 is engaged,

as shown in Fig. 5.37. Fig. 5.39 shows that sun–2 is accelerated while sun–1 and
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Figure 5.40. Vehicle Speed.

carrier–1 are decelerated to have the synchronized speed at the end of 2nd–3rd upshift.

Planetary gear sets rotate with the the same speed as the turbine in third gear.

Figure 5.41 shows the transmission output shaft torque, which is transmitted

to the drive shaft. The output torque spikes during the 1st–2nd and 2nd–3rd upshifts.

The on–coming clutch causes the high magnitude transient in the output torque

during the upshifts. As the pressure is raised on the on–coming clutch, the friction

torque is increased. The on–coming clutch friction torque resists the rotation of the

turbine while it pushes the gear that is connected to the another side of the clutch.
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Figure 5.41. Transmission Output
Shaft Torques Ts.

0 2 4 6 8 10 12
50

100

150

200

250

time (sec)

To
rq

ue
 (N

−m
)

 

 

T
p

T
t

Figure 5.42. Turbine and Pump
Torques Tt and Tp.

The similar transients appear in the vehicle acceleration and its derivative. These

transients depend on the clutch pressure profile. In this case, the pressure is applied

to the clutch rapidly and causes the shorter and sever transients than it should be in

a normal operation.

During torque phase in upshift, the turbine speed continues to increase. The

output torque remains unchanged. This is because torque is transmitted through the

on–coming clutch and off–going clutch. During the speed phase, the off–going clutch

is fully released. The on–coming clutch friction torque is increased to connect turbine

to the new component in the planetary gear set. This results in a turbine speed

decreases as shown in Figs. 5.38 and 5.39. This decrease in turbine speed results in

a high slip over across the converter, which yields a higher pump torque. This causes

the engine inertia to decelerate. Figure 5.42 shows the torque converter pump and

turbine torque. The torque converter operates in the torque multiplying mode most

of the time. Figure 5.40 shows the vehicle speed during the 1–2 and 2–3 shifts.
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5.2.1 1–2 Upshift

The characteristics of 1–2 upshift for the powertrain model with stiff drive shaft

is analyzed in this section. The characteristics of the shift is influenced by the hy-

draulic pressure profile and the friction model of the clutches and bands. The pressure

profile is determined by calibration until an acceptable shift quality is obtained. An

improper pressure profile results in “tie up” or “flare up”. In 1–2 upshift, the on–

coming clutch is clutch C2 and off–going clutch is clutch C1 as listed in Table 4.1.

The shift happens when clutch C2 starts to engage, which connects the turbine with

carrier–1. Since the off-going clutch C1 is a one-way clutch, the characteristics of

the shift is solely influenced by the pressure profile and the friction model of the on–

coming clutch C2. As shown in Fig. 5.37, the pressure profile of clutch C1 remains

constant during 1–2 upshift. Band B12 remains engaged through the 1–2 upshift with

constant pressure.

The torque phase of 1–2 upshift starts when clutch C2 engages by applied

pressure as shown in Figs. 5.37. The friction torque on clutches C1, C2 and band B12

are shown in Fig. 5.48. The output shaft torque drops as shown in Fig. 5.46 because

part of turbine torque starts to transmit via carrier–1 while sun–1 still transmits the

other part of turbine torque. This drop is undesirable since the output torque to

the drive shaft is interrupted and the passengers may feel this disturbance. During

this torque phase, the speed of turbine is still equal to the speed of sun–1. Even

tough clutch C2 is engaged and clutch torque on clutch C2 is increasing, the turbine

and sun–1 still speed up. The torque at the turbine remains unchanged, thus it still

speeds up. This happens because torque on clutch C1 is decreasing while torque on

clutch C2 is increasing as seen in Fig. 5.48. Turbine torque is transmitted from sun–1

to carrier–1 as seen in Fig. 5.47.
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At the beginning of inertia phase, the turbine speed decreases to a new syn-

chronous speed. As seen in Fig. 5.44, the turbine rotates apart from sun–1. At

this moment, the sprag is overrun by sun–1 since the speed of sun–1 is faster than

the speed of the turbine. Clutch C1 fully disengages due to the sprag. Even though

the hydraulic actuator at clutch C1 is still on as shown in Fig. 5.37, there is no

clutch torque at clutch C1 as seen in Fig. 5.48. In the speed phase, the turbine and

carrier–1 are slipping until clutch C2 slows down the turbine and speeds up carrier–1.

The turbine inertia slows down as shown in Fig. 5.43 because the turbine torque is

reduced by increased clutch torque at clutch C2 as seen in Fig. 5.48. The decrease in

turbine speed results in a higher slip across the the converter, which yields a higher

pump torque as seen in Fig. 5.47. Consequently, the engine speed is reduced. During

this phase, the speed of turbine drops to a new synchronized speed with carrier–1 as

shown in Figs. 5.43 and 5.44. At the end of the speed phase, turbine and carrier–1

have the same speed and there is no slipping in clutch C2. Also, the clutch C2 torque

reaches its maximum as seen in Fig. 5.48.

At the end of 1–2 upshift, clutch C2 torque drops to the level of the turbine

torque as can be seen in Figs. 5.48 and 5.47. The output shaft torque has a large

interruption as seen in Fig. 5.46. Following the large drop, the output torque increases

until it reaches its peak. There are large variations in the vehicle acceleration and in

the derivative of the acceleration (jerk) as seen in Figs. 5.49 and 5.50, respectively.

These variations indicate poor shift quality. The transient is damped out by the

torque converter once the 1–2 upshift is complete when the turbine rigidly connects

to the output shaft.
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Figure 5.43. Turbine and Pump Speed
During 1–2 Upshift for Stiff Drive
Shaft.
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Figure 5.44. Speed of Planetary Gear
Sets and Turbine During 1–2 Upshift
for Stiff Drive Shaft.
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Figure 5.45. Vehicle Speed During 1–2
Power–On Upshift.
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Figure 5.46. Output Torque of Stiff
Drive Shaft During 1–2 Upshift.
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Figure 5.47. Pump and Turbine
Torque During 1–2 Upshift for Stiff
Drive Shaft.

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

0

50

100

150

200

250

300

350

time (sec)

To
rq

ue
 (N

−m
)

 

 

T
CL1

T
CL2

T
B12

Figure 5.48. Clutch Torques During
1–2 Upshift for Stiff Drive Shaft.



135

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
0.5

1

1.5

2

2.5

time (sec)

A
cc

el
er

at
io

n 
(m

/s
2 )

Figure 5.49. Vehicle Acceleration Dur-
ing 1–2 Upshift.
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Figure 5.50. Derivative of Accelera-
tion During 1–2 Upshift.

5.2.2 2–3 Upshift

The characteristics of 2–3 upshift is determined by the pressure profiles on band

B12 and clutch C3. Band B12 should be released and clutch C3 should be applied to

have 2–3 shift. A shift that requires both an on-coming and off-going elements is

called “a swap shift”. The timing as well as the pressure profiles for B12 and C3 are

very important for shift quality. If C3 is applied before B12 is release, a tie–up will

occur while a flare will take place if B12 released before C3 is applied. The pressure

profiles for clutch C3 and band B12 are shown in Fig. 5.37.

The shift is initiated by lowering the pressure on band B12 and, after a short

time, raising the pressure of clutch C3, as shown in Fig. 5.37. The increasing pressure

on C3 while B12 still has some pressure splits the torque transmission between C3

and B12. This can be seen in Figs. 5.56 and 5.55. The transmission torque is

carried through carrier–1 and sun–1 as seen in Fig. 5.56. The turbine torque remains

unchanged during the torque phase as shown in Fig. 5.55. The more torque goes

through C3, the less torque is carried by B12. The sharp drops in the output shaft

torque and the vehicle acceleration indicate the beginning of torque phase as seen in

Figs. 5.54 and 5.57. This drop happens since the output torque to the drive shaft is
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interrupted due to the gear ratio change. At the time when the torque capacity of B12

drops to zero and B12 no longer carries torque, C3 starts carrying all the torque and

the decrease in the output torque stops. This signifies the end of the “torque transfer

phase” and the beginning of the “ratio change phase”, or “inertia phase”. During the

inertia phase, the gear ratio is between the 2nd gear and the 3rd gear ratios. Since

B12, which connects sun–2 to the transmission case, is fully released, sun–2 starts

rotating as seen in Fig. 5.52. C3 is used to connect sun–1 to the turbine shaft. As C3

is engaged, the clutch slips until sun–1 and the turbine have the same speed. Once

Sun–1 and the turbine rotate together with the sun–2 (zero slip in C3) and they all

have the same speed as carrier–2 (connected to the output shaft), the 3rd gear ratio

(= 1) is obtained and the shift is completed as shown in Fig. 5.52. Then, the torque

carried by C3 is only the amount to prevent slipping. Once the shift is completed,

the pressure on the clutch is increased to prevent the slipping with no effect on the

speeds or the torques. Note that the output torque drop stops at the beginning of

the inertia phase and the output torque shows a transient in the inertia phase.

The speed of turbine is reduced because the turbine torque is reduced by the

increase in the clutch torque at C2 and C3 as seen in Figs. 5.51. The friction torque

on the clutches and band are illustrated in Fig. 5.56. The decrease in the turbine

speed results in a higher slip across the converter, which yields a higher pump torque

as seen in Fig. 5.55. Consequently, the engine speed is reduced.

At the end of 2–3 upshift, the output shaft torque has a large transient as shown

in Fig. 5.54. As a result, the vehicle acceleration and its derivative (jerk) show large

transients, as can be seen in Figs. 5.57 and 5.58, respectively. These are indications

of poor shift quality.

The transient will be damped out by the torque converter once the 2–3 upshift

is complete when the turbine is rigidly connected to the output shaft. During the
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speed phase of the 2–3 upshift, the slipping clutch decouples the output shaft from

the torque converter. Torque converter provides good damping characteristics to the

powertrain as also seen in 1–2 upshift.
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Figure 5.51. Turbine and Pump Speed
During 2–3 Upshift for Stiff Drive
Shaft.
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Figure 5.52. Speed of Planetary Gear
Sets and Turbine During 2–3 Upshift
for Stiff Drive Shaft.
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Figure 5.53. Vehicle Speed During 2–3
Power–On Upshift.
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Figure 5.54. Output Torque of Stiff
Drive Shaft During 2–3 Upshift.
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Torque During 2–3 Upshift for Stiff
Drive Shaft.
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Figure 5.56. Clutch Torques During
2–3 Upshift for Stiff Drive Shaft.
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Figure 5.57. Vehicle Acceleration Dur-
ing 2–3 Upshift.
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Figure 5.58. Derivative of Accelera-
tion During 2–3 Upshift.

5.3 Powertrain with Non–stiff Drive Shaft Using Woods Friction Model

The simulation results in this section corresponding to the powertrain model

with the drive shaft modeled as a compliant shaft. The conditions used here are the

same as in the previous section, where the drive shaft is assumed to be a non–stiff

shaft.

Figures 5.59–5.62 show an overview of the simulation results when shifts 1–2,

2–3 and 3–4 are conducted. The oscillations are excited by the shifts are observed

as a results of the drive shaft compliant effect. The details of the 1–2 upshift are
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shown in Figs. 5.66 to 5.73 and the details of the 2–3 upshift are given in Figs.

5.74 to 5.81. The torque phase and speed phase occur while the on–coming clutch

engages and off–going clutch disengages. The shift characteristics observed in this

case are similar to those in the stiff shaft simulation. However, this case shows high

frequency oscillations can be observed due to the compliant shaft model included in

the powertrain. Figure 5.73 and 5.81 show the jerks during the 1–2 and 2–3 upshifts.
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Figure 5.59. Pressure at Clutch and
Band During 1st–4th gear upshifts.
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Figure 5.60. Turbine and Engine
Speeds During 1st–4th gear upshifts.
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Figure 5.61. Turbine and Subassembly
Speeds During 1st–4th gear upshifts.
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Figure 5.62. Vehicle Velocity.
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Figure 5.63. Transmission Output
Shaft Torque.
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Figure 5.64. Turbine and Pump
Torques Tt and Tp.

5.3.1 1–2 Upshift

The characteristics of the 1–2 upshift is analyzed in this section. The charac-

teristics of the shift is defined by the pressure profile on the clutches and bands. In

the 1–2 upshift, the on–coming clutch is clutch C2 and off–going clutch is clutch C1 as

listed in Table 4.1. The shift is initiated with connecting the turbine with carrier–1

by engaging clutch C2. Even though clutch C1 is off-going clutch in this upshift, the

characteristics of the shift is solely influenced by pressure profile of the on–coming

clutch C2 because clutch C1 is a one-way clutch. As shown in Fig. 5.59, the pressure

profile of clutch C1 remains constant during 1–2 upshift. Band B12 remains engaged

during the 1–2 upshift with the constant torque capacity.

The 1–2 upshift stars with the torque phase when clutch C2 engages as shown in

Figs. 5.59 and 5.71. The output shaft torque drops as seen in Fig. 5.69 because some

parts of turbine torque start to transmit via carrier–1 while sun–1 still transmits the

other part of the turbine torque. During this torque phase, the speed of turbine is

still equal to the speed of sun–1. Even tough clutch C2 is engaged and clutch torque

on clutch C2 is increasing, the turbine and sun–1 speeds still increase. The torque

at the turbine remains unchanged, thus it still speeds up. This is because torque on
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clutch C1 decreases while torque on clutch C2 increases as seen in Fig. 5.71. Turbine

torque is transmitted from sun–1 to carrier–1.

At the beginning of the inertia phase, the turbine speed decelerates to a new

synchronous speed. As seen in Fig. 5.67, turbine detaches from sun–1. At this

moment, the sprag is overrun by sun–1 since the speed of sun–1 is faster than the

speed of turbine while the hydraulic actuator at clutch C1 is still on as shown in Fig.

5.59. Once the clutch overruns, the clutch torque at clutch C1 goes to zero as seen

in Fig. 5.71. In the speed phase, turbine and carrier–1 are slipping until clutch C2

slows down the turbine and speeds up carrier–1. The turbine speed decreases because

the turbine torque is reduced by increased clutch torque at clutch C2 as seen in Figs.

5.66 and 5.70. The decrease in turbine speed results in a higher slip across the the

converter, which yields a higher pump torque as seen in Fig. 5.66. Consequently,

the engine speed is reduced. During this phase, the turbine speed drops to a new

synchronized speed with the speed of carrier–1 as shown in Fig. 5.67. At the end

of the speed phase, turbine and carrier–1 speed difference goes to zero and there is

no slipping in clutch C2. Also, the clutch C2 torque on carrier–1 reach its highest

magnitude as seen in Figs. 5.71.

At the end of the 1–2 upshift, carrier–1 torque drops to the level of the turbine

torque as shown in Figs. 5.70 and 5.71. The output shaft torque has a large transient

as seen in Fig. 5.69. Following the drop, the output torque increases until it reaches

its peak and then oscillates with high frequency. Similar oscillation can also be seen in

the vehicle acceleration in Fig. 5.72 and the derivative of the acceleration in Fig. 5.73.

The high frequencies and large transients in the output torque, vehicle acceleration

and jerk indicate poor shift quality.

The transient will be damped out by the torque converter once the 1–2 upshift

is complete when the turbine rigidly connects to the output shaft. During the speed
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Figure 5.65. Ideal Path During Shift for Non–Stiff Drive Shaft.
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Figure 5.66. Turbine and Pump Speed
During 1–2 Upshift for Non–Stiff Drive
Shaft.
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Figure 5.67. Speed of Planetary Gear
Sets and Turbine During 1–2 Upshift
for Non–Stiff Drive Shaft.

phase of the 1–2 upshift, the slipping clutch decouples the output shaft from the

torque converter. The shift duration is about 1 sec. Even though the shift takes a

short amount of time of 1 sec, the high frequencies and large transients indicate poor

shift quality. As depicted in Fig. 5.65, in an ideal case, the transient from one gear

to another in a shift should be very smooth for a good shift quality as opposed to

what is observed with 1–2 upshift analyzed in this section.
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Figure 5.68. Vehicle Speed During 1–2
Power–On Upshift.
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Figure 5.69. Output Torque of Stiff
Drive Shaft During 1–2 Upshift.
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Figure 5.70. Pump and Turbine
Torque During 1–2 Upshift for Non–
Stiff Drive Shaft.
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Figure 5.71. Clutch Torques During
1–2 Upshift for Non–Stiff Drive Shaft.
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Figure 5.72. Vehicle Acceleration Dur-
ing 1–2 Upshift.

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
−80

−60

−40

−20

0

20

40

60

80

time (sec)

Ti
m

e 
D

er
iv

at
iv

e 
of

 A
cc

el
er

at
io

n,
 J

er
k 

(m
/s

3 )

Figure 5.73. Derivative of Accelera-
tion During 1–2 Upshift.
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5.3.2 2–3 Upshift

The characteristics of the 2–3 upshift are determined by the torque capacity

profiles of band B12 and clutch C3. Band B12 should be released and clutch C3 should

be applied to conduct 2–3 shift. A shift that requires both an on-coming and off-going

elements is called “a swap shift”. The timing and the profiles of the torque capacity

adjustment for B12 and C3 are the defining factors for the shift characteristics. In

this upshift the timing of the on–coming element (the clutch being applied) and the

off–going element (the band being released) are tuned up to obtain better upshifting

results.

The shift is initiated by lowering the pressure on band B12 and, after a short

time, raising the pressure on clutch C3, as shown in Fig. 5.59. The increasing pressure

on C3 while B12 still has some pressure splits the torque transmission between C3 and

B12. This can be seen in Fig. 5.79. The transmission torque is carried through

carrier–1 and sun–1. The turbine torque remains unchanged during this torque phase

as shown in Fig. 5.78. The more torque goes through C3, the less torque is carried by

B12. The sharp drops in the output shaft torque and the vehicle acceleration indicate

the beginning of torque phase as seen in Figs. 5.77 and 5.80. This drop happens since

the output torque to the drive shaft is interrupted due to changing gear ratio. At the

time when the torque capacity of B12 drops to zero and B12 no longer carries torque,

C3 starts carrying all the torque and the decrease in the output torque stops. This

signifies the end of the “torque transfer phase” and the beginning of the “ratio change

phase”, or “inertia phase”. During the inertia phase, the gear ratio is between the

2nd gear and the 3rd gear ratios. Since B12, which connects sun–2 to the transmission

case, is fully released, sun–2 starts rotating as seen in Fig. 5.75. C3 is used to connect

sun–1 to the turbine shaft. As C3 is engaged, the clutch slips until sun–1 and the

turbine have the same speed. Once Sun–1 and the turbine rotate together with the
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sun–2 (zero slip in C3) and they all have the same speed as carrier–2 (connected to

the output shaft), the 3rd gear ratio (= 1) is obtained and the shift is complete as

shown in Fig. 5.75. Then, the torque carried by C3 is only the amount to prevent

slipping. Once the shift is completed, the pressure on the clutch can be increased

with no effect on the speeds or the torques. Note that the output torque drop stops

at the beginning of the inertia phase and the output torque shows a transient in the

inertia phase.

The turbine torque is reduced by increasing clutch torque at C3 as seen in

Fig. 5.79, which results in reduction in the turbine speed as seen in Fig. 5.74. The

decrease in turbine speed leads to a higher slip across the converter, which yields a

higher pump torque as seen in Fig. 5.78. Consequently, the engine speed is reduced.

At the end of the 2–3 upshift, the magnitude of carrier–2/ring–1 torque drops

to the level of the turbine torque as shown in Figs. 5.79 and 5.78. The output

shaft torque begins to oscillate as can be seen in Fig. 5.77 and has a large transient.

Following the drop, the output torque increases until it reaches its peak and then

oscillates with high frequency. Figs. 5.80 and 5.81 show that the vehicle acceleration

and its derivative (jerk) go through large transients with high frequencies, which are

indicators of poor shift quality.

The transients shown in Figs. 5.74 – 5.81 are damped out by the torque con-

verter once the 2–3 upshift is over when the turbine rigidly connects to the output

shaft. During the speed phase of the 2–3 upshift, the slipping clutch decouples the

output shaft from the torque converter.
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Figure 5.74. Turbine and Pump Speed
During 2–3 Upshift for Non–Stiff Drive
Shaft.
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Figure 5.75. Speed of Planetary Gear
Sets and Turbine During 2–3 Upshift
for Non–Stiff Drive Shaft.
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Figure 5.76. Vehicle Speed During 2–3
Power–On Upshift.
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Figure 5.77. Output Torque of Stiff
Drive Shaft During 2–3 Upshift.
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Figure 5.78. Pump and Turbine
Torque During 2–3 Upshift for Non–
Stiff Drive Shaft.

9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2
−200

−100

0

100

200

300

400

time (sec)

To
rq

ue
 (N

−m
)

 

 

T
CL3

T
CL2

T
B12

Figure 5.79. Clutch Torques During
2–3 Upshift for Non–Stiff Drive Shaft.
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Figure 5.80. Vehicle Acceleration Dur-
ing 2–3 Upshift.
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Figure 5.81. Derivative of Accelera-
tion During 2–3 Upshift.

5.3.3 3–4 Upshift

The characteristics of the 3–4 upshift are analyzed in this section. In the 3–4

upshift, the on–coming clutch is clutch C4 and off–going clutch is clutch C3 as listed

in Table 4.1. The shift starts when clutch C4 is engaging to stop sun–1. Even though

clutch C3 is off-going clutch in this upshift, the shift quality is solely influenced by

the pressure profile of the on–coming clutch C4 since C3 is a one-way clutch with

constant pressure profile as shown in Fig. 5.59.

The 3–4 upshift starts with the torque phase when clutch C4 starts to engage

as shown in Figs. 5.59 and 5.87. The output shaft torque drops as seen in Fig. 5.86

because some parts of turbine torque starts to transmit via carrier–1 while sun–1

still transmits the rest of the turbine torque. During the torque phase, the speed of

turbine remains equal to the speed of carrier–1. Clutch C4 is engaging and clutch

torque on clutch C4 is increasing. Consequently, the turbine and carrier–1 speed

decrease. The turbine torque remains unchanged. This is because the torque on

clutch C3 is decreasing while torque on clutch C4 is increasing as seen in Fig. 5.87.

Turbine torque is transmitted from sun–1 to carrier–1.

At the beginning of inertia phase, the turbine speed decelerates to a new syn-

chronous speed. As seen in Fig. 5.83, turbine detaches from sun–1. At this moment,
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the sprag is overrun by sun–1 since the speed of sun–1 is slower than the turbine speed.

Clutch C3 fully disengages due to the sprag while the pressure is kept as shown in

Fig. 5.59. Once clutch C3 overruns, the throughput torque drops to zero as seen in

Fig. 5.87. In the speed phase, the turbine and carrier–1 have the same speed. The

turbine speed decreases because the turbine torque is reduced by increasing clutch

torque at clutch C4 as seen in Figs. 5.82 and 5.85. The decrease in the turbine speed

results in a higher slip across the the converter, which yields a higher pump torque as

seen in Fig. 5.82. Consequently, the engine speed is reduced. During this phase, the

turbine speed drops to a new synchronized speed with carrier–1 in Fig. 5.83. At the

end of the speed phase, sun–1 comes to a stop and there is no slipping in clutch C4.

At the same time, the clutch C2 torque on carrier–1 reaches its highest magnitude as

seen in Figs. 5.87.

At the end of 3–4 upshift, carrier–1 torque drops to the level of the turbine

torque as shown in Figs. 5.85 and 5.87 and the sun–1 stops. The output shaft torque

has a large transient as seen in Fig. 5.86. Following the drop, the output torque

increases until it reaches its peak and then oscillates with high frequency. Similar

transients are seen in the vehicle acceleration and its derivative (jerk) as shown in

Figs. 5.88 and 5.89, respectively. These indicate poor shift quality.
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Figure 5.82. Turbine and Engine
Speed During 3–4 Upshift for Non–
Stiff Drive Shaft.
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Figure 5.83. Speed of Planetary Gear
Sets and Turbine During 3–4 Upshift
for Non–Stiff Drive Shaft.
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Figure 5.84. Vehicle Speed During 3–4
Power–On Upshift.

13.4 13.5 13.6 13.7 13.8 13.9 14  14.1 14.2
90

100

110

120

130

140

150

160

170

180

time (sec)

To
rq

ue
 (N

−m
)

 

 

turbine
pump

Figure 5.85. Pump and Turbine
Torque During 3–4 Upshift for Non–
Stiff Drive Shaft.
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Figure 5.86. Output Torque of Stiff
Drive Shaft During 3–4 Upshift.
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Figure 5.87. Clutch Torques During
3–4 Upshift for Non–Stiff Drive Shaft.
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Figure 5.88. Vehicle Acceleration Dur-
ing 3–4 Upshift.
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Figure 5.89. Derivative of Accelera-
tion During 3–4 Upshift.



CHAPTER 6

FEEDBACK CONTROL FOR SHIFT QUALITY

This chapter investigates the feasibility of feedback control for shift quality.

The previous chapter describes in detail the importance of calibrating proper pres-

sure profiles on the relevant friction elements for good shift quality. The previous

chapters also demonstrate the difficulty in finding such a satisfactory pressure profile

for open loop execution of a shift. This chapter presents the application of feedback

control methods to shift dynamics, which eliminates the need for calibrating pressure

profile and generates a satisfactory pressure profile based on a formulation of a shift

objective. First, a linear feedback control method is employed. Then, the feasibility

of a nonlinear feedback control approach is investigated.

6.1 PID Controller and its Evaluation

The Proportional–Integral–Derivative (PID) control approach is employed for

the feedback control of shift due to its simplicity in design and implementation. Fig.

6.1 depicts the feedback structure. Angular speed is used in the feedback since speed

measurements are available from the speed sensors. The choice of the reference speed

signal differs depending on the rotating elements involved in a given shift. In the

target gear after a shift, the speed ratios of the rotating elements are known, thus,

the desired speed is chosen based on the speed that the rotating element (whose speed

is used in the feedback) should have after the shift is complete. As depicted in Fig.

6.1, the input to the PID controller is the error in speed and the output is the pressure
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command, Pd, the desired pressure for the friction element involved in the shift. The

equation of a PID controller in time domain in terms of this input–output pair is

Figure 6.1. PID Feedback Control Structure.

u(t) = KP e(t) + KI

∫

e(t)dt + KD ė(t) (6.1)

where e(t) is the speed error, KP is the proportional gain, KI is the integral gain,

KD is the derivative gain. Once computed by the PID controller, the desired pressure

on the clutch or band involved should be realized by a hydro–electric solenoid valve,

described in Section 4.2. The dynamics of such a solenoid valve that generates the

applied pressure on a clutch or band based on the desired pressure is modeled by a

first order transfer function.

Gvalve =
1

τs + 1
(6.2)

where τ is set to be 0.02 sec based on the response characteristics of fast hydraulic

actuation technologies discussed in Section 4.3.

For each up and down shift, the reference and the desired speeds as well as the

clutch/band involved are different. Thus, each shift requires a different PID control

design. However, the objectives of the control design are the same: (i) minimum drop

around 50% reduction when comparing to the open loop both in the output shaft

torque and accelerations and (ii) if not avoided completely, short transient with about

50% reduction in overshoot and oscillation in clutch/band torques and planetary gear

speeds. Based on these objectives, the PID gains are tuned to obtain a satisfactory

shift response by hand. The tuning procedure consists of the following steps.
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1. Analyze the open–loop response in Chapter 5 to determine what aspects of the

shift needs to be improved.

2. Add the proportional gain to reduce the rise time and steady–state error.

3. Add the integral gain to eliminate the steady–state error without degrading

the transient response. The speed error goes to zero eventually when the

clutch/band is locked up.

4. Add the derivative gain to reduce overshoot and improve transient response.

5. Adjust each gain until a satisfactory response is achieved.

Table 6.1 lists the important aspects of PID controller designed for each shift in terms

of the reference angular speed, desired angular speed, desired pressure output and the

gains. The performances of the upshift and the downshift sequences achieved by the

PID controllers are shown in Figs. 6.2 and 6.3, respectively. The details of each PID

controller and the closed–loop performance of the corresponding shift are discussed

in the following sections.

Table 6.1. Reference and Desired Speeds, Output Pressure and Gains of the PID
Controllers

Shift Reference Desired Output Gains

Speed Speed Pressure KP ( kPa
rad/s

) KI(
kPa
rad

) KD ( kPa
rad/s2 )

1–2 ωC1R2 ωt Clutch C2 100 400 10

2–3
ωS2 ωt Band B12 100 10 10
ωS1 ωt Clutch C3 100 10 10

3–4 ωS1 0 Clutch C4 0.01 1 1
4–3 ωS1 ωt Clutch C4 100 10 10

3–2
ωS1 1.863 · ωt Clutch C3 0.1 1 0.1
ωS2 0 Band B12 0.3 0.4 0.1

2–1 ωS1 ωt Clutch C2 10,000 40,000 10,000
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Figure 6.2. Overview 1–2, 2–3 and 3–4 Sequence of the Upshifts.
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Figure 6.3. Overview 4–3, 3–2 and 2–1 Sequence of Downshifts.
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6.1.1 1–2 upshift

A 1–2 upshift requires the engagement of clutch C2 since the one–way clutch C1

will overrun in the second gear, as listed in Table 4.1. Once engaged, clutch C2 will

connect the carrier of the front planetary gear set to the turbine. Thus, the reference

angular speed is ωC1R2, the speed of carrier–1 and ring–2, which are rigidly connected,

and the desired speed is the turbine speed. This means the error signal for the PID

controller for this shift is

e12(t) = ωt − ωC1R2 (6.3)

The PID controller, with this error input, generates the desired pressure profile for

the hydro-electric solenoid valve of clutch C2.

The PID gains are tuned based on the simulation results of the velocity, the

acceleration, the jerk and the output shaft torque. Increasing KP results in smaller

speed error. First, KP is set to be 1, suggested as the PID tuning method [92].

Gain KP is increased until excessive oscillation is seen in both speed and torque

plots, which indicate poor shift quality. Then, the gains are reduced by half. The

re-tuning of the gains is repeated until a satisfactory change of the pressure in the

torque phase is observed as shown in Fig. 6.4. Adding KI eliminates the steady

state error, but worsens the transient response with high overshoot and slow settling

time. Finally, adding KD improves the transient response by reducing overshoot

and achieves tracking the desired speed. KI and KD are used to shape the pressure

profile as shown in Fig. 6.4, since increasing KP only can not eliminate the steady-

state error. Gains KI and KD are initially started as 1 and increased gradually until

acceptable results are obtained. The final values of the gains are given in Table 6.1,

which result in satisfactory shift response. A comparison is made between the open

loop pressure profiles as illustrated in Fig. 5.59 with the closed loop pressure profile
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in Fig. 6.4. Fig. 6.4 shows that the control pressure is built up in the beginning

of the torque phase to about 400 kPa. In the inertia phase, the pressure slightly

drops before it increases to about 1000 kPa where the clutch is locked up to prevent

the clutch slipping. This pressure profile generated by the PID controller leads to

a good shift quality. The open loop response has high overshoot and oscillation at

the carrier–1 speed as illustrated in Fig. 5.67. Once the PID controller is used to

generate the pressure profile, Fig. 6.5 shows that the overshoot and oscillation are

eliminated significantly. Fig. 6.5 shows that the speed of carrier–1 is successfully

raised to match the turbine speed without any unacceptable transient. Note that the

steady-state error is reduced to zero after two rotating elements are matched. The

friction torque at clutch C2 applied to carrier–1 is controlled to have small overshoot

and oscillation. The open loop response has high overshoot and oscillation as shown

in Fig. 5.71. Compared with the open loop response, PID controller, as shown in

Fig. 6.6, almost completely eliminates the overshoot and oscillation. The output

torque of the planetary gear sets also has low overshoot and oscillation, as shown in

Fig. 6.7. Recall from Fig. 5.69 that the open loop response has higher overshoot and

oscillation. In the closed loop response, the vehicle acceleration and jerk show small

overshoot and oscillation, as seen in Figs. 6.8 and 6.9, respectively, in comparison to

the open loop response with high overshoot and oscillation as can be seen in Figs.

5.72 and 5.73. Maximum Average Power is reduced from 0.2419 in the open loop to

0.0083 in the closed loop control. Vibration Dose Value (VDV) is reduced from 1.2546

in the open loop to 0.942 in the closed loop control. Table 6.2 summarizes the shift

characteristics of the closed–loop response compared with the open–loop and clearly

demonstrates the significant improvements in shift quality with the employment of

the PID controller.
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Table 6.2. Comparison of 1–2 Upshift Characteristics between the Open–Loop and
Closed–Loop Simulations

open closed percent reduction
Carrier–1 speed
overshoot ∼ 14% none
frequency (cycle/shift duration) 8 none
Clutch Torque at clutch C2

overshoot ∼ 183% 25.65% 88%
frequency (cycle/shift duration) 8 4 50%
Output Torque
overshoot ∼ 172% 25.6% 85.1%
frequency (cycle/shift duration) 8 5 37.5%
Acceleration
overshoot ∼ 237% 29.97% 87.35%
frequency (cycle/shift duration) 8 5 37.5%
Jerk
overshoot 7 × 106% 6800% 100%
frequency (cycle/shift duration) 8 8 0%
Max. Average Power (MAP) 0.2419 0.0083 96.6%
VDV 1.2546 0.942 24.9%
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Figure 6.4. Closed–Loop Control Pressure Profile for 1st–2nd Upshift.
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6.1.2 2–3 upshift

A 2–3 upshift requires the engagement of clutch C3 and the disengagement of

band B12, as listed in Table 4.1. Once engaged, clutch C3 will connect the sun of

the front planetary gear set to the turbine. Thus, the reference angular speed is ωS1,

the speed of sun–1, and the desired speed is the turbine speed. This means the error

signal for the PID controller for clutch C3 is

e23,C3(t) = ωt − ωS1 (6.4)
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Band B12 will disconnect the sun of the rear planetary gear set from the transmission

case. Thus, the reference angular speed is ωS2, the speed of sun–2, and the desired

speed is the turbine speed. This means the error signal for the PID controller for

band B12 is

e23,B12(t) = ωt − ωS2 (6.5)

The PID controllers, with these error inputs, generate the desired pressure profiles

for the hydro-electric solenoid valves of clutch C3 and band B12.

The PID gains are tuned based on the simulation results of the velocity, the

acceleration, the jerk and the output shaft torque. Increasing KP results in smaller

speed error. First, KP is set to be 1 for both C3 and B12. Gains KP are increased until

excessive oscillation is seen in both speed and torque plots, which indicate poor shift

quality. Then, the gains are reduced by half. The re-tuning of the gains is repeated

until a satisfactory change of the pressure in the torque phase is observed as shown

in Fig. 6.10. The control pressure is built up in the beginning of the torque phase

for clutch C3 while band B12 pressure is reduced significantly. Adding KI eliminates

the steady state error, but worsens the transient response with high overshoot and

slow settling time. Finally, adding KD improves the transient response by reducing

overshoot and achieves tracking the desired speed. KI and KD are used to shape the

pressure profile as shown in Fig. 6.10, since increasing KP only can not eliminate the

steady-state error. Gains KI and KD are initially started as 1 and increased gradually

until acceptable results are obtained. The final values of the gains are given in Table

6.1, which result in satisfactory shift response. A comparison is made between the

open loop pressure profiles as illustrated in Fig. 5.59 with the closed loop pressure

profile in Fig. 6.10. Fig. 6.10 shows that the control pressure on clutch C3 is built

up in the beginning of the torque phase to about 400 kPa. In the inertia phase, the
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pressure slightly drops before it increases to about 800 kPa where the clutch is locked

up to prevent the clutch slipping. The control pressure on band B12 is reduced to

zero at the end of the torque phase. These pressure profiles generated by the PID

controllers leads to a good shift quality. The open loop response has high overshoot

and oscillation at the sun–1 and sun–2 speeds as illustrated in Fig. 5.75. Once the

PID controllers are used to generate the pressure profiles, Fig. 6.11 shows that the

overshoot and oscillation are eliminated significantly. Fig. 6.11 shows that the speed

of sun–1 is successfully reduced to match the turbine speed without any unacceptable

transient. Also, the speed of sun–2 is raised to match the turbine speed without any

unacceptable transient. Note that the steady-state error is reduced to zero after two

rotating elements are matched. The friction torque at clutch C3 applied to sun–1

is controlled to have small overshoot and oscillation. Similarly, the friction torque

at band B12 applied to sun–2 is controlled to have small overshoot and oscillation.

The open loop response has high overshoot and oscillation as shown in Fig. 5.79.

Compared with the open loop response, PID controllers, as shown in Figs. 6.12 and

6.13, almost completely eliminate the overshoot and oscillation. The output torque

of the planetary gear sets also has low overshoot and oscillation, as shown in Fig.

6.14. Recall from Fig. 5.77 that the open loop response has higher overshoot and

oscillation. In the closed loop response, the vehicle acceleration and jerk show small

overshoot and oscillation, as seen in Figs. 6.15 and 6.16, respectively, in comparison

to the open loop response with high overshoot and oscillation as can be seen in Figs.

5.80 and 5.81. Maximum Average Power is reduced from 0.0632 in the open loop

to 0.0029 in the closed loop control. Vibration Dose Value (VDV) is reduced from

0.6297 in the open loop to 0.5712 in the closed loop control. Table 6.3 summarizes

the shift characteristics of the closed–loop response with the open–loop and clearly
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demonstrates the significant improvements in shift quality with the employment of

the PID controller.

Table 6.3. Comparison of 2–3 Upshift Characteristics between the Open–Loop and
Closed–Loop Simulations

open closed percent reduction
Sun–1 speed
overshoot ∼ 5% none
frequency (cycle/shift duration) 5 none
Sun–2 speed
overshoot ∼ 7% none
frequency (cycle/shift duration) 5 none
Clutch Torque at clutch C3

overshoot ∼ 200% 50% 75%
frequency (cycle/shift duration) 7 5 28.6%
Clutch Torque at Band B12

overshoot none none 0%
frequency (cycle/shift duration) none none 0%
Output Torque
overshoot ∼ 130% 38.34% 70.5%
frequency (cycle/shift duration) 12 8 33.33%
Acceleration
overshoot ∼ 176% 49.64% 71.8%
frequency (cycle/shift duration) 12 8 33.33%
Jerk
overshoot 5.5 × 105% 1.2 × 105% 78%
frequency (cycle/shift duration) 14 9 35.7%
Max. Average Power (MAP) 0.0632 0.0029 95.41%
VDV 0.6297 0.5712 9.3%

6.1.3 3–4 upshift

A 3–4 upshift requires the engagement of clutch C4 since the one–way clutch

C3 will overrun in the second gear, as listed in Table 4.1. Once engaged, clutch C4

will connect the sun of the front planetary gear set the transmission case. Thus, the
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Figure 6.11. Closed–Loop Speed Results for 2nd–3rd Upshift.
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reference angular speed is ωS1, the speed of sun–1, and the desired speed is zero. This

means the error signal for the PID controller for this shift is

e34(t) = −ωS1 (6.6)

The PID controller, with this error input, generates the desired pressure profile for

the hydro-electric solenoid valve of clutch C4.

The PID gains are tuned based on the simulation results of the velocity, the

acceleration, the jerk and the output shaft torque. Increasing KP results in smaller

speed error. KP is set to be 1. Gain KP is increased until excessive oscillation is seen

in both speed and torque plots, which indicate poor shift quality. However, in 3–4

upshift increasing KP results in the worse shift. Instead, the gain is reduced from

1 by decimals which results in some improvements. The re-tuning of the gains is

repeated until a satisfactory change of the pressure in the torque phase is observed

as shown in Fig. 6.17. Adding KI eliminates the steady state error, but worsens the

transient response with high overshoot and slow settling time. Adding KD improves

the transient response by reducing overshoot and achieves tracking the desired speed.

KI and KD are used to shape the pressure profile as shown in Fig. 6.17, since KP
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only can not eliminate the steady-state error. Gains KI and KD are initially started

as 1 and increased gradually until acceptable results are obtained. The final values

of the gains are given in Table 6.1, which result in satisfactory shift response. A

comparison is made between the open loop pressure profiles as illustrated in Fig.

5.59 with the closed loop pressure profile in Fig. 6.17. Fig. 6.17 shows that the

control pressure is built up in the beginning of the torque phase to about 140 kPa.

In the inertia phase, the pressure slightly drops before it increases to about 300 kPa

when the clutch is locked up to prevent the clutch slipping. This pressure profile

generated by the PID controller leads to a good shift quality. The open loop response

has high overshoot and oscillation at the sun–1 speed as illustrated in Fig. 5.83.

Once the PID controller is used to generate the pressure profile, Fig. 6.18 shows that

the overshoot and oscillation are eliminated significantly. Fig. 6.18 shows that the

speed of sun–1 is successfully reduced to match the transmission case without any

unacceptable transient. Note that the steady-state error is reduced to zero after two

rotating elements are matched. The friction torque at clutch C4 applied to sun–1

is controlled to have small overshoot and oscillation. The open loop response has

high overshoot and oscillation as shown in Fig. 5.87. Compared with the open loop

response, PID controller, as shown in Fig. 6.19, almost completely eliminates the

overshoot and oscillation. The output torque of the planetary gear sets also has low

overshoot and oscillation, as shown in Fig. 6.20. Recall from Fig. 5.86 that the open

loop response has higher overshoot and oscillation. In the closed loop response, the

vehicle acceleration and jerk show small overshoot and oscillation, as seen in Figs. 6.21

and 6.22, respectively, in comparison to the open loop response with high overshoot

and oscillation as can be seen in Figs. 5.88 and 5.89. Maximum Average Power is

0.0016 in both the open loop and closed loop control. Vibration Dose Value (VDV) is

reduced from 0.3979 in the open loop to 0.3753 in the closed loop control. MAP and
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VDV do not change much because, at high gear ratio such as 4th gear, the turbine

torque, which is the input torque to the planetary gear sets, is converted to lower

torque while the turbine speed is converted to a higher speed. Table 6.4 summarizes

the shift characteristics of the closed–loop response compared with the open–loop and

clearly demonstrates the improvements in shift quality with the employment of the

PID controller.

Table 6.4. Comparison of 3–4 Upshift Characteristics between the Open–Loop and
Closed–Loop Simulations

open closed percent reduction
Sun–1 speed
overshoot none none
frequency (cycle/shift duration) none none
Clutch Torque at clutch C4

overshoot 124% 60% 51.61%
frequency (cycle/shift duration) 15 10 33.33%
Output Torque
overshoot 86.27% 50.28% 41.71%
frequency (cycle/shift duration) 20 15 25%
Acceleration
overshoot 134.37% 78.47% 41.6%
frequency (cycle/shift duration) 19 15 21%
Jerk
overshoot 4.82 × 105% 1.06 × 105% 78%
frequency (cycle/shift duration) 20 20 0%
Max. Average Power (MAP) 0.0016 0.0016 0%
VDV 0.3979 0.3753 6%

6.1.4 4–3 downshift

A 4–3 downshift requires the disengagement of clutch C4 since the one–way

clutch C3 will be automatically engaged in the third gear, as listed in Table 4.1. Once
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Figure 6.17. Closed–Loop Control Pressure Profile for 3rd–4th Upshift.
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Figure 6.18. Closed–Loop Speed Results for 3rd–4th Upshift.
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disengaged, clutch C3 will let the sun–1 of the front planetary gear set spin with the

turbine. Thus, the reference angular speed is ωS1, the speed of sun–1 and the desired

speed is the turbine speed. This means the error signal for the PID controller for this

shift is

e43(t) = ωt − ωS1 (6.7)

The PID controller, with this error input, generates the desired pressure profile for

the hydro-electric solenoid valve of clutch C4.

The PID gains are tuned based on the simulation results of the velocity, the

acceleration, the jerk and the output shaft torque. Increasing KP results in smaller

speed error. KP is set to be 1. Gain KP is increased until excessive oscillation is

seen in both speed and torque plots, which indicate poor shift quality. Then, the

gains are reduced by half. The re-tuning of the gains is repeated until a satisfactory

change of the pressure in the torque phase is observed as shown in Fig. 6.23. Adding

KI eliminates the steady state error, but worsens the transient response with high

overshoot and slow settling time. Adding KD improves the transient response by

reducing overshoot and achieves tracking the desired speed. KI and KD are used

to shape the pressure profile as shown in Fig. 6.23, since increasing KP only can

not eliminate the steady-state error. Gains KI and KD are initially started as 1 and

increased gradually until acceptable results are obtained. The final values of the gains

are given in Table 6.1, which result in satisfactory shift response. The closed loop

pressure profile is illustrated in Fig. 6.23. Fig. 6.23 shows that the control pressure

on clutch C4 is reduced from 300 kPa in the beginning of the torque phase to about

40 kPa. In the inertia phase, the pressure rapidly drops to 0 kPa and the clutch is

completely disengaged. This pressure profile generated by the PID controller leads to

a good shift quality. Once the PID controller is used to generate the pressure profile,
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Fig. 6.24 shows that the overshoot and oscillation are eliminated significantly. Fig.

6.24 shows that the speed of sun–1 is successfully raised to match the turbine speed

without any unacceptable transient. Note that the steady-state error is reduced to

zero after two rotating elements are matched. The friction torques at clutch C4 applied

to sun–1 is controlled to have small overshoot and oscillation, as shown in Fig. 6.25.

The output torque of the planetary gear sets also has low overshoot and oscillation,

as shown in Fig. 6.26. In the closed loop response, the vehicle acceleration and jerk

show small overshoot and oscillation, as seen in Figs. 6.27 and 6.28, respectively.

Maximum Average Power is 0.0017. Vibration Dose Value (VDV) is 1.4557.
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Figure 6.23. Closed–Loop Control Pressure Profile for 4th–3nd downshift.

6.1.5 3–2 downshift

A 3–2 downshift requires the engagement of clutch B12 and the disengagement

of band C3, as listed in Table 4.1. Once engaged, band B12 will stop the sun of the

rear planetary gear set. Thus, the reference angular speed is ωS2, the speed of sun–2,
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Figure 6.24. Closed–Loop Speed Results for 4st–3nd downshift.
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Figure 6.25. Closed–Loop Friction Torque at Clutch/Band during 4th–3rd downshift.
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Figure 6.26. Closed–Loop Output Torque during 4th–3rd downshift.
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Figure 6.27. Closed–Loop Vehicle Acceleration during 4th–3rd downshift.
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Figure 6.28. Closed–Loop Derivative of Acceleration or Jerk during 4th–3rd downshift.

and the desired speed is zero. This means the error signal for the PID controller of

band B12 is

e32,B12(t) = ωcase − ωS2 (6.8)

Clutch C3 will disconnect the sun of the front planetary gear set from the transmission

case. Thus, the reference angular speed is ωS1, the speed of sun–1, and the desired

speed is the turbine speed times 1.863, which is the ratio of the sun–1 speed over the

turbine speed in the second gear. This means the error signal for the PID controller

for clutch C3 is

e32,C3(t) = 1.863 · ωt − ωS1 (6.9)
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The PID controllers, with these error inputs, generate the desired pressure profiles

for the hydro-electric solenoid valves of band B12 and clutch C3.

The PID gains are tuned based on the simulation results of the velocity, the

acceleration, the jerk and the output shaft torque. The similar tuning procedure is

used to tune the PID for 3–2 downshift. First, KP is set to be 1 for both C3 and B12.

Gains KP are increased until excessive oscillation is seen in both speed and torque

plots, which indicate poor shift quality. Then, the gains should be reduced by half.

However, increasing KP results in the worse oscillation. Instead, reducing KP from 1

by decimals can give the better results. The re-tuning of the gains is repeated until

the pressure profile in Fig. 6.29 are obtained. The control pressure is built up in

the beginning of the torque phase for band B12 while clutch C3 pressure is reduced

significantly. Adding KI eliminates the steady state error, but worsens the transient

response with high overshoot and slow settling time. Finally, adding KD improves the

transient response by reducing overshoot and achieves tracking the desired speed. KI

and KD are used to shape the pressure profile as shown in Fig. 6.29, since KP only

can not eliminate the steady-state error. Gains KI and KD are initially started as 1

and increased gradually until acceptable results are obtained. The final values of the

gains are given in Table 6.1, which result in satisfactory shift response. The closed

loop pressure profiles is illustrated in Fig. 6.29. Fig. 6.29 shows that the control

pressure on band B12 is built up in the beginning of the torque phase to about 130

kPa. In the inertia phase, the pressure increases to about 900 kPa where the clutch

is locked up to prevent the clutch slipping. The control pressure on clutch C3 is

reduced to zero at the end of the inertia phase. These pressure profiles generated by

the PID controllers leads to a good shift quality. Once the PID controllers are used to

generate the pressure profiles, Fig. 6.30 shows that the overshoot and oscillation are

eliminated significantly. Fig. 6.30 shows that sun–2 is successfully stopped without
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any unacceptable transient. Also, the speed of sun–1 is raised to match its desired

speed without any unacceptable transient. Note that the steady-state error is reduced

to zero after two rotating elements are matched. The friction torque at band B12

applied to sun–2 and the friction torque at clutch C3 applied to sun–1 are controlled

to have small overshoot and oscillation, as shown in Fig. 6.31. The output torque of

the planetary gear sets also has low overshoot and oscillation, as shown in Fig. 6.32.

In the closed loop response, the vehicle acceleration and jerk show small overshoot

and oscillation, as seen in Figs. 6.33 and 6.34, respectively. Maximum Average Power

is 0.0032 and Vibration Dose Value (VDV) is 1.4273.
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Figure 6.29. Closed–Loop Control Pressure Profile for 3rd–2nd downshift.

6.1.6 2–1 downshift

A 2–1 upshift requires the disengagement of clutch C2 since the one–way clutch

C1 will be automatically engaged in the first gear, as listed in Table 4.1. Once engaged,

clutch C1 will connect the sun of the front planetary gear set to the turbine. Thus,
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Figure 6.30. Closed–Loop Speed Results for 3rd–2nd downshift.
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Figure 6.31. Closed–Loop Friction Torque on Clutch/Band during 3rd–2nd Downshift.
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Figure 6.32. Closed–Loop Output Torque during 3rd–2nd downshift.
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Figure 6.33. Closed–Loop Vehicle Acceleration during 3rd–2nd downshift.
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Figure 6.34. Closed–Loop Derivative of Acceleration or Jerk during 3rd–2nd downshift.

the reference angular speed is ωS1, the speed of sun–1 and the desired speed is the

turbine speed. This means the error signal for the PID controller for this shift is

e21(t) = ωt − ωS1 (6.10)

The PID controller, with this error input, generates the desired pressure profile for

the hydro-electric solenoid valve of clutch C2.

The PID gains are tuned based on the simulation results of the velocity, the

acceleration, the jerk and the output shaft torque. Increasing KP results in smaller

speed error. First, KP is set to be 1, suggested as the PID tuning method [92].
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Gain KP is increased until excessive oscillation is seen in both speed and torque

plots, which indicate poor shift quality. Then, the gains are reduced by half. The

re-tuning of the gains is repeated until a satisfactory change of the pressure in the

torque phase is observed as shown in Fig. 6.35. Adding KI eliminates the steady

state error, but worsens the transient response with high overshoot and slow settling

time. Finally, adding KD improves the transient response by reducing overshoot

and achieves tracking the desired speed. KI and KD are used to shape the pressure

profile as shown in Fig. 6.35, since increasing KP only can not eliminate the steady-

state error. Gains KI and KD are initially started as 1 and increased gradually until

acceptable results are obtained. The final values of the gains are given in Table 6.1,

which result in satisfactory shift response. Fig. 6.35 shows that the control pressure is

reduced in the beginning of the torque phase from about 1000 kPa to 200 kPa. In the

inertia phase, the pressure drops to 0 kPa where the clutch is completely disengaged.

This pressure profile generated by the PID controller leads to a good shift quality.

Once the PID controller is used to generate the pressure profile, Fig. 6.36 shows

that the overshoot and oscillation are eliminated significantly. Fig. 6.36 shows that

the speed of sun–1 is successfully reduced to match the turbine speed without any

unacceptable transient. Note that the steady-state error is reduced to zero after two

rotating elements are matched. The friction torque at clutch C2 applied to carrier–1

is controlled to have small overshoot and oscillation. PID controller, as shown in Fig.

6.37, has small overshoot and oscillation. The output torque of the planetary gear

sets also has low overshoot and oscillation, as shown in Fig. 6.38. In the closed loop

response, the vehicle acceleration and jerk show small overshoot and oscillation, as

seen in Figs. 6.39 and 6.40, respectively. Maximum Average Power is 0.0098 and

Vibration Dose Value (VDV) is 1.2538.
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Figure 6.35. Closed–Loop Control Pressure Profile for 2nd–1st downshift.
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Figure 6.36. Closed–Loop Speed Results for 2nd–1st downshift.
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Figure 6.37. Closed–Loop Friction Torque on Clutch/Band during 2nd–1st Downshift.
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Figure 6.38. Closed–Loop Output Torque during 2nd–1st downshift.
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Figure 6.39. Closed–Loop Vehicle Acceleration during 2nd–1st downshift.
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Figure 6.40. Closed–Loop Derivative of Acceleration or Jerk during 2nd–1st downshift.
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6.2 Robustness Analysis of PID Controller

The previous section shows that the shift quality can be improved by employing

feedback control. This conclusion is based on the simulations of a specific driving

condition. One of the important control design requirements is the robustness of the

closed–loop system against disturbances and variations of the system characteristics

over the operational life of the system. This section is to evaluate the robustness

of the PID controller against the variations of the transmission parameters. The

robustness of the closed–loop performance is evaluated in terms of the variations of

the shift quality metrics while the system characteristics change.

The Monte Carlo method [93, 94] is used to quantify and evaluate the robust-

ness of the closed–lop system against the variations of the friction characteristics in

the clutches and bands. The friction coefficient as introduced in Fig. 4.22 is an

exponential function of the relative speed with three parameters.

µ = A + B exp(−C · ∆ω) (6.11)

where the nominal valves of A, B and C are 0.0631, 0.0504 and 0.033, respectively. In

the open–loop and closed–loop simulations presented in Chapter 5 and this chapter,

respectively, the friction coefficient function has its parameters at these nominal val-

ues. To model the variation of the friction characteristics, the three parameters are

considered to be random variables with normal distribution; their mean values and

standard deviations are given in Table 6.5. The standard deviations are selected such

that the samples of the random variables have +/− 40% variation of the friction co-

efficients from their mean values. Such large variations of the friction coefficients are

sufficient to represent the degradation of the friction elements throughout the life of

a transmission. The robustness of the PID controller is investigated in 1–2 upshift.

The 1–2 upshift is simulated 1000 times with the random friction parameters sampled
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Table 6.5. Mean and Standard Deviation of Parameter A, B and C

Parameter Mean Standard Deviation

A 0.0631 0.01
B 0.0504 0.01
C 0.033 0.01

independently for each simulations. The histograms of the samples of the parameters,

A, B and C are shown in Figs. 6.41, 6.42 and 6.43, respectively. Fig. 6.44 shows the

plots of the friction coefficients based on the samples of the parameters. The turbine,

sun–1 and carrier–1 speed responses from all the simulations are shown in Fig. 6.45.

It is clear from this figure that the shift quality remains consistently good despite

the variation in the friction characteristics. After each simulation, four metrics that

are used to quantify shift quality are calculated: (i) shift duration, (ii) maximum

overshoot in the oncoming friction torque response, (iii) maximum jerk, and (iv) Vi-

bration Dose Value (VDV). Since MAP shows similar trend to that of VDV, only VDV

results are given in this section. The histogram plots of these metrics are shown in

Figs. 6.46, 6.47, 6.48 and 6.49, respectively. The histograms represent the frequency

distribution in the rectangles whose widths represent class intervals and whose areas

are proportional to the corresponding frequencies. The width of the interval is equal

and obtained by equally spacing the rectangles. In this approach, by using default

setting in Matlab, the appearance of the histograms are not like smooth. But they

are sufficient to represent the idea of frequency distribution. The shift duration is

very likely to be around 0.68, as shown in Fig. 6.46; the shift may take up to 0.71

second with very small likelihood. The maximum clutch C2 torque is most likely to

be around 145 N–m, as shown in Fig. 6.47. There are only a few times the torque

exceeding 150 N–m, with a very small probability. The jerk, as shown in Fig. 6.48,
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Figure 6.42. Histogram Parameter B.

stays within 8–13 m/s3, more likely to be around 12 m/s3. The VDV seems to have

a normal–like distribution with its mean at 0.827. These results shown that the PID

controller is robust against the variation in shift characteristics and consistently gives

a high quality shift.

6.3 Sliding Mode Controller and its Evaluation

This section investigates the feasibility of a nonlinear control design method,

Sliding Mode (SM) control. The dynamics of the planetary gear set switches models

as the friction model switches between states for the clutches and bands. This makes
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Figure 6.45. Speed Variation during 1st–2nd upshift in the Monte Carlo Simulations.
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SM control very suitable for this inherently nonlinear problem. As depicted in Fig.

6.50, the SM controller takes, as inputs, speed, acceleration and torque measurements

as commanded and feedback signals. The SM approach can easily be applied to the

problem of transmission control. The parameters of the controller are intuitive to

tune. However, the fact that the control law requires torques as feedback signals

makes it impractical to implement unless an estimator or observer is used to provide

estimates of the required torque signals. In the following sections, the SM approach
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is used to design feedback controllers for 1–2 upshift and 3–2 downshift. Their imple-

mentations are carried out in simulation with the assumption that torque signals are

available for feedback. Then, an attempt to use an observer to estimate the torque

signals will be discussed.

Figure 6.50. Sliding Mode Controller Feedback Loop.

6.3.1 1–2 upshift

As stated earlier in the discussion of 1–2 upshift with PID controller, the en-

gagement of clutch C2 is controlled since clutch C1 is a one–way clutch and overruns

in the second gear (see Table 4.1). Thus, the purpose of the SM control design is

to find applied pressure on clutch C2. Since the engagement of clutch C2 connects

carrier–1 to the turbine, the SM design, the sliding surface, r, is defined as

r = ė − λe (6.12)

where the error, e, between the actual position of carrier–1, θ2, and desired position

of carrier–1, θd
2, is

e = θ2 − θd
2 (6.13)

and its derivative is

ė = θ̇2 − θ̇d
2 (6.14)
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The derivative of Eq. (6.12) gives

ṙ = ë − λė (6.15)

where λ is a strictly positive constant with the unit of 1/sec, which is the slope of

sliding surface in the phase plane (ė, e). From the dynamic model of the coupled

planetary gear sets in GM Hydramatic 440 detailed in Chapter 4, Eqs. (4.63) and

(4.64), the carrier–1 acceleration, which is ring–2 acceleration, θ̈2, is calculated to be

θ̈2 = a1TS1
+ b1TS2

+ c1TC2R1
+ d1TC1R2

(6.16)

where

a1 = −
B21A2 + B11A1

B21b12 − B11B22
(6.17)

b1 =
B21A4 + B11A5

B21b12 − B11B22
(6.18)

c1 =
B21

B21B12 − B11B22
(6.19)

d1 = −
B11

B21B12 − B11B22
. (6.20)

Substituting ė from Eq. (6.14) and θ̈2 from Eq. (6.16) into Eq. (6.15) yields

ṙ = a1TS1
+ b1TS2

+ c1TC2R1
+ d1TC1R2

− θ̈d
2 + λ

(

θ̇2 − θ̇d
2

)

(6.21)

As explained in Chapter 4, during 1–2 upshift, the torques of clutch C1 and band

B12 are applied on sun–1 and sun–2, respectively. The torque on clutch C2 is applied

to carrier–1. Thus, the applied torques in Eq. (6.21) on the pair of carrier–1 and

ring–2, sun–1, and sun–2 are TC2
(clutch C2 torque), TC1

(clutch C1 torque), and

TB12
(band B12 torque), respectively. The pair of carrier–2 and ring–1 is connected

to the final drive, which implies TC2R1 is calculated from the output shaft torque.

Since 1–2 upshift connects carrier–1 & ring–2 to the turbine, the desires speed, θ̇d
2
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and acceleration, θ̈d
2 are set to the speed, ωt and acceleration, ω̇t of the turbine. The

best approximation of a continuous control clutch torque, TC2
, that will lead to r = 0

is selected to be

TC2
=

1

d1

{

−a1TC1
− b1TB12

− c1TC2R1
+ ω̇t − λ

(

θ̇2 − θ̇d
2

)

+ v(t)
}

(6.22)

where v(t) can be chosen such that the sliding surface , r = 0, is an invariant set

[95]. On the surface, r = 0, the tracking problem, θ2 = θd
2 is equivalent to that of

remaining on the surface , r(t) = 0. Thus, v(t) is chosen as

v(t) = −κr (6.23)

Substituting Eqs. (6.22) and (6.23) into Eq. (6.21) yields the dynamic of the sliding

surface as

ṙ = −κr (6.24)

The solution of Eq. (6.24) is

r(t) = exp(−κt)r(0) (6.25)

where r(t) goes to zero as time goes to infinity. This implies θd
2 and θ̇d

2 are tracked

asymptotically. The torque command calculated by the control law is transformed

into control pressure command for hydro-electric solenoid valve of clutch C2 as

Pctrl,C2,command = TC2
/(µArn) (6.26)

which is processed in the simulation through the same first order transfer function

discussed in the previous PID control section. The simulation results show an im-

proved shift as illustrated in Figs. 6.51, 6.52, 6.53 and 6.54. In Fig. 6.51, oscillation

and high overshoot in speed response during the shift is reduced significantly in com-

parison with the open loop response. Fig. 6.52 shows that the high oscillation and
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Figure 6.51. Comparison Velocity Results during 1–2 Upshift between (a) Open Loop
and (b) Closed Loop with Sliding Mode Controller.

magnitude in the acceleration of the open loop control is reduced about 50% with the

SM control used. Similar improvements are also observed in Figs. 6.53 and 6.54.
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191

4.2 4.3 4.4 4.5 4.6
−80

−60

−40

−20

0

20

40

60

80

time (sec)

Ti
m

e 
D

er
iv

at
iv

e 
of

 A
cc

el
er

at
io

n,
 J

er
k 

(m
/s

3 )

6.2 6.4 6.6 6.8 7
−80

−60

−40

−20

0

20

40

60

80

time, sec

D
er

iv
at

iv
e 

of
 A

cc
el

er
at

io
n,

 ra
d/

s3

(a) (b)

Figure 6.53. Comparison Jerking Results during 1–2 Upshift between (a) Open Loop
and (b) Closed Loop with Sliding Mode Controller.
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Figure 6.54. Comparison Clutch Torque Results for 1–2 Upshift between (a) Open
Loop and (b) Closed Loop with Sliding Mode Controller.

6.3.2 3–2 downshift

For a 3–2 downshift, clutch C3 should be released while band B12 is engaged

(see Table 4.1). This is a swap shift since one friction element needs releasing while

another one engaging simultaneously. Such a shift is very challenging to control since

engagement and releasing of two friction elements should be coordinated.
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See from Fig. 4.1 that clutch C3 connects sun–1 to the turbine in 3rd gear.

When clutch C3 is released for 2nd gear, sun–1 spins faster than the turbine speed;

the ratio of the sun–1 speed over the turbine speed is 1.863. Thus, the desired speed of

sun–1 for 3–2 downshift is set to be the turbine speed multiplied by 1.863. Similarly,

Fig. 4.1 shows that band B12 is to stop sun–2. Thus, the desired speed of sun–2 for

3–2 downshift is zero. Because of the coordination of two friction elements for 3–2

swap shift, two sliding surface should be defined.

The sliding surface for clutch C3, r1, is defined as

r1 = ė1 − λ1e1 (6.27)

where the error, e1, is between the actual position of sun–1, α1, and desired position

of sun–1, αd
1,

e1 = α1 − αd
1 (6.28)

and its derivative is

ė1 = α̇1 − α̇d
1 (6.29)

For band B12, the sliding surface, r2, is defined as

r2 = ė2 − λ1e2 (6.30)

where the error, e2, is between the actual position of sun–2, α2, and desired position

of sun–2, αd
2,

e2 = α2 − αd
2, (6.31)

and its derivative is

ė2 = α̇2 − α̇d
2 (6.32)

The derivative of Eq. (6.27) is

ṙ1 = ë1 − λ1ė1. (6.33)



193

The derivative of Eq. (6.30) is

ṙ2 = ë2 − λ2ė2. (6.34)

where λ1 and λ2 are strictly positive constants with the unit of 1/sec, which are the

slopes of sliding surfaces r1 and r2, respectively.

The speed and acceleration of sun–1 can be calculated from those of carrier–1

& ring–2 and carrier–2 & ring–1 as formulated in Eq. (4.40). The acceleration of

carrier–1 & ring–2 is already formulated in Eq. (6.16). Similarly, the acceleration of

carrier–2 & ring–1 is formulated, from Eqs. (4.63) and (4.64), as

θ̈1 = a2TS1
+ b2TS2

+ c2TC2R1
+ d2TC1R2

(6.35)

where

a2 = −
B22A2 + B12A1

B11B22 − B21B12
(6.36)

b2 =
B22A4 + B12A5

B11B22 − B21B12
(6.37)

c2 =
B22

B11B22 − B21B12
(6.38)

d2 = −
B12

B11B22 − B21B12
(6.39)

Now substitute ė from Eqs. (6.29) and its derivative into Eq. (6.33). Recall from

Eq. (4.40) that, α̇1 = A1θ̇2 − A2θ̇1, which implies that α̈1 = A1θ̈2 − A2θ̈1. As stated

earlier, the desire speed and acceleration for the sun–1 are α̇d
1 = 1.863 ωt and α̈d

1 =

1.863 ω̇t, respectively. During 3–2 downshift, the turbine and carrier–1 are connected

by clutch C2. This implies that the angular velocity and acceleration of both turbine

and carrier–1 are the same, ωt = θ̇2 and ω̇t = θ̈2. As a result of these steps, Eq. (6.33)

is rewritten as

ṙ1 = A1ω̇t − A2θ̈1 − 1.863 ω̇t + λ1 (α̇1 − 1.863 ωt) (6.40)
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which, after rearranged, becomes

ṙ1 = (A1 − 1.863) ω̇t − A2θ̈1 + λ1 (α̇1 − 1.863 ωt) (6.41)

The angular dynamics of the turbine can give an expression for the turbine accelera-

tion as,

ω̇t =
1

It

(Tt + TC1
+ TC2

+ TC3
) (6.42)

which is the same as Eq. (4.124). Since clutch C1 is disenegaged/overrunning during

3–2 shift, TC1
. This implies

ω̇t =
1

It

(Tt + TC2
+ TC3

) (6.43)

Substituting ω̇t from this equation

ṙ1 = (A1 − 1.863)
Tt − TC2

− TC3

Tt

− A2θ̈1 + λ1 (α̇1 − 1.863ωt) (6.44)

The best approximation of a continuous control law for clutch C3 that would achieve

r = 0 is selected to be

TC3
= Tt − TC2

+
It

(A1 − 1.863)

[

−A2θ̈1 + λ1(α̇1 − 1.863ωt) − v1(t)
]

(6.45)

where v1(t) can be chosen such that the sliding surface , r1 = 0, is an invariant set

[95]. On the surface, r1 = 0, the tracking problem, α1 = αd
1 is equivalent to that of

remaining on the surface, r1(t) = 0. Thus, v1(t) is chosen as

v1(t) = −κ1r1 (6.46)

which implies

v1(t) = −κ1(α̇1 − 1.863 ωt) − κ1λ1(α1 − 1.863 θt) (6.47)

Substituting Eqs. (6.45) and (6.46) into Eq. (6.44), leads to the dynamic of the

sliding surface, r1, as

ṙ1 = −κ1r1 (6.48)
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The solution of Eq. (6.48) is

r1(t) = exp(−κ1t)r1(0). (6.49)

which implies that r1(t) goes to to zero as time goes to infinity. This implies αd
1 and

α̇d
1 are asymptotically tracked.

Similarly, the SM controller for band B12 is derived as follows. First, ė2 from

Eqs. (6.32) and its derivative are substituted into Eq. (6.34). Recall from Eq. (4.42)

that α̇2 = A4θ̇1−A5θ̇2 and α̈2 = A4θ̈1−A5θ̈2. And the desire velocity and acceleration

for the sun–2 are α̇d
2 = 0 and α̈d

2 = 0. Further, during 3–2 downshift, the turbine

and carrier–1 are connected by clutch C2. This implies that the angular velocity and

acceleration of both turbine and carrier–1 are equal, ωt = θ̇2 and ω̇t = θ̈2. Thus, Eq.

(6.34) is rewritten as

ṙ2 = A4θ̈1 − A5ω̇t + λ2 (α̇2) (6.50)

which is rearranged to become

ṙ2 = A4 (a2TS1
+ b2TS2

+ c2TC2R1
+ d2TC1R2

) − A5ω̇t + λ2 (α̇2) (6.51)

Note that the torque at carrier–1, sun–1 and sun–2 are the friction torque at clutch

C2, clutch C3 and band B12, respectively, TC1R2 = TC2
, TS1 = TC3

and TS2 = TB12
.

The best approximation of a continuous control law for band–12 that would achieve

r = 0 is selected to be

TB12
=

−1

b2
(a2TC3

+ c2TC2R1
+ d2TC2

) +
1

b2A4
[A5ω̇t − λ2(α̇2) + v2(t)] (6.52)

where v2(t) can be chosen such that the sliding surface, r2 = 0, is an invariant set

[95]. On the surface, r2 = 0, the tracking problem, α2 = αd
2 is equivalent to that of

remaining on the surface , r2(t) = 0. Thus, v2(t) is chosen as

v2(t) = −κ2r2 (6.53)
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which implies

v2(t) = −κ2α̇2 − κ2λ2α2 (6.54)

Substituting Eqs. (6.52) and (6.53) into Eq. (6.51) gives the dynamic of the sliding

surface, r2, as

ṙ2 = −κ2r2 (6.55)

with the solution

r2(t) = exp(−κ2t)r2(0) (6.56)

which implies that r2(t) goes to zero as time goes to infinity. This implies that αd
2 and

α̇d
2 are asymptotically tracked. Finally, the control laws for torques are transformed

into control pressure command, Pctrl,command, for hydro-electric solenoid valves as

Pctrl,C3,command = TC3
/(µArn) (6.57)

Pctrl,B12,command = TB12
/[A r n (expµα −1)] (6.58)

The simulation results in Fig. 6.55 show the control pressure profiles generated

by the SM control laws. The simulation results show the improvements in shift quality

in Figs. 6.56–6.60. Fig. 6.56 shows that the speeds of sun–1 and sun–2 have only

small oscillations and overshoot. The friction torque at clutch C3 and band B12 are

shown in Fig. 6.57 with small oscillation. There is a drop in the friction torque due

to gear change to the low gear. The output torque also has a drop during the shift

as shown in Fig. 6.58, since the gear is changed down to a lower gear. Figs. 6.59

and 6.60 show that the high oscillation and overshoot in the acceleration and jerk

observed in the open loop simulation are reduced to a satisfactory level.
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during 3rd–2nd Downshift Closed Loop
with Sliding Mode.
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6.4 Observer Design

The sliding mode controller developed in the previous section requires the in-

formation of torque as feedback signals. Since the clutch/band torques cannot be

measured, estimation of such signals are needed for a practical implementation of

the sliding mode controller. In this section, the design and implementation of an
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Figure 6.60. Comparison Jerking dur-
ing 3rd–2nd Downshift Closed Loop
with Sliding Mode Controller.

observer in simulation are attempted. This is to investigate whether the sliding mode

controller provided with the torque estimated by an observer is practical.

6.4.1 Review of Thau Observer or Lipschitz Observer

Some nonlinear systems can be represented in a special state space form as

ẋ = Ax + f(x) + Bu (6.59)

y = Cx (6.60)

where A, B and C are known state, input and output matrices, respectively, f(x) is

a known nonlinear function, u is a known input, y is the measured outputs. If (A, C)

is observable, there exits a matrix K such that the eigenvalues of A0 = A − KC are

in the left half of the complex plane. Then, a Thau observer can be constructed as

˙̂x = Ax̂ + f(x̂) + Bu + K(y − ŷ) (6.61)

y = Cx̂ (6.62)

The observer error between the estimated state, x̂, and the actual state, x, is

e = x̂ − x (6.63)
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whose derivative results in

ė = (A − KC)e + f(x̂) − f(x) (6.64)

ė = A0e + f(x̂) − f(x) (6.65)

Since A0 is stable for any given positive definite matrix Q, there exists a unique

positive definite matrix P , such that the following Lyapunov equation is satisfied

AT
0 P + PA0 = −2Q (6.66)

If K is selected such that A0 leads to the solution of the Lyapunov equation that

satisfies

λmin(Q)

‖ P ‖
> L (6.67)

where L is the Lipchitz constant

‖ f(x1) − f(x2) ‖≤ L ‖ x1 − x2 ‖ (6.68)

for any x1 and x2, then the Thau nonlinear observer is asymptotically stable.

6.4.2 Application of Thau Observer to System with friction

The brief overview of the Thau nonlinear observer in the preceding section

cannot be directly applied to the problem of shift dynamics. This is because the shift

dynamics model has torque signals as inputs, which are generated by the friction

elements and cannot be measured. Thus, a modified form of the Thau observer is

used for estimating torque inputs. This approach uses the fact that the clutch and

band torques depend on the states of the planetary gear system in addition to the

known/measured applied pressure. Expressing the friction torque as an unknown

nonlinear function of the states in Eq. (6.59) leads to

ẋ = Ax + f1(x) (6.69)
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y = Cx (6.70)

where A, C are known matrices, y is a known signal and f1(x) is an unknown function.

If (A, C) is observable, there exits a matrix K such that the eigenvalues of A0 =

A − KC are in the left half of the complex plane. Then, the nonlinear observer is

formulated as

˙̂x = Ax̂ + f2(x̂) + K(y − ŷ) (6.71)

y = Cx̂ (6.72)

where a known function f2 is used to approximate the unknown function, f1. The

observer error between the estimated state and the measured state is

e = x̂ − x (6.73)

whose its derivative results in

ė = (A − KC)e + f2(x̂) − f1(x) = A0e + f2(x̂) − f1(x) (6.74)

Since A0 is stable for any given positive definite matrix Q, there exists a unique

positive definite P , such that the following Lyapunov equation is satisfied

AT
0 P + PA0 = −2Q (6.75)

If K is selected such that A0 can make the solution of the Lyapunov equation satisfy

λmin(Q)

‖ P ‖
> L (6.76)

where L is the Lipchitz constant

‖ f2(x̂) − f1(x) ‖≤ L ‖ x̂ − x ‖ (6.77)

for any x̂ and x, then the Thau nonlinear observer is asymptotically stable.
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This Thau observer is evaluated in a closed–loop simulation with the sliding

mode controller developed in the preceding section. This is to study whether the

torque signals can be estimated. To take into account the fact that an actual friction

characteristics of a clutch/band are not accurately known, the friction approximation

function, f2(x), is intentionally chosen to be simpler that the friction model used in

the simulation of the transmission dynamics. In the transmission model, the relatively

complex and more accurate Wood friction model (see Section 4.5) is used. On the

other hand, the observer uses the simple classical friction model as f2(x̂). Recall that

the simple friction model has a zero relative–speed range defined as speed tolerance.

Fig. 6.61 shows the measured sun–1 and carrier–1 speeds, their estimation by the

Thau observer. During the 1–2 upshift, clutch C2 is engaged by the sliding mode

controller. The estimated states can track the actual states with small error in the

first gear. During and after 1–2 upshift, the error tends to be larger due to the

lack of convergence in the estimated friction torques, which are the inputs to the

observer system. In Figures 6.62, 6.63 and 6.64, the estimated friction torques in

clutch C1, clutch C2 and band B12 are shown, respectively. Since the approximation

friction function, f2, used in the observer is simple friction model with error in the

relative zero velocity region, it can not estimate the actual friction properly. In this

simulation, the sliding mode controller uses the actual torque signals. The observer

is not run in the feedback loop. This simulation experiment shows that the Thau

observer cannot properly estimate the torques. This implies that the sliding model

controller with this observer is not feasible.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

This dissertation presents the modeling and control of an automatic transmis-

sion with planetary gear sets for shift quality. The mathematical model of the plan-

etary gear sets is developed using a Lagrange method. The main advantage of the

Lagrange method is that the equations of motion can be derived without computing

the reaction/contact forces and torques. In the derivation, it is assumed that no back-

lash occurs between gear meshing, gears and shafts are rigid, and friction between

the gears is negligible. It is shown that the Lagrange method provides a systematic

and direct approach. The derived equations are used to study shift dynamics behav-

ior. There is no need to switch from a set of equations to another during a shift as

the equations derived are valid in all gears and shifts. Additionally, the transmission

model is integrated with all the other powertrain subsystems, representing the engine,

torque converter, hydraulic subsystem, final drive gear and vehicle dynamics.

The development of the friction model for friction elements in an automatic

transmission is a major challenge in properly modeling shift dynamics. With an

improper friction model, the stick–slip events in clutch/band cannot be adequately

modeled, which leads to error in accurately simulating shift dynamics. Wood static

and dynamic friction model, which has three modes (in–motion, captured and accel-

erating, and captured and static), is shown to successfully represent the clutches and

bands in shift dynamics simulation. This modeling approach increases the fidelity of

204
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the shift dynamics without compromising the simulation speed and numerical accu-

racy.

Various metrics used to measure or quantify shift quality are (i) shift duration,

(ii) transient response of clutch/band torques in terms of maximum overshoot, (iii)

transient response of the output torque, acceleration of the vehicle, (iv) the derivative

of the acceleration or jerk, (v) maximum average power, and (vi) vibration dose value.

It is shown that open–loop control of a shift requires a tedious calibration of the ap-

plied pressure of the clutches and/or bands. On the other hand, feedback control

of a shift can lead to a high quality shift in the sense of any of the metrics without

the need of calibration. The biggest obstacle to practical implementation of feedback

control is to have fast enough hydraulic systems that can provide the applied pressure

profile demanded by the controller. Traditional hydraulic actuation systems are not

capable of providing such a pressure profile. However, there are new actuation tech-

nologies such as electro–hydraulic actuators that can potentially provide fast pressure

regulations on clutches and bands. Simulation results demonstrated that PID control

approach can be successfully used to feedback control all the up– and down–shift of

a specific transmission. A separate PID controller is developed for each shift. The

PID controllers use speed measurements as feedback signals and generate pressure

profiles for the electro–hydraulic actuation systems of the clutches and/or bands in-

volved. Simulation results shown that high quality shifts are obtained in terms of

all the metrics for shift quality. A Monte Carlo simulation experiment proves the

robustness of the PID controllers against the variation of the friction characteristics

of the clutches and bands. Further, a nonlinear control design approach, sliding mode

control, is investigated. While this controller can also provide high quality shifts, the

fact that this controller requires torque measurements in addition to speed measure-

ments makes it impractical to implement. An attempt to estimate the torque inputs
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using an observer proves unsuccessful without the perfect knowledge of the friction

characteristics.

7.2 Future Work

The current planetary gear model does not consider backlash, damping and

friction between the gears. The effects of this assumption on shift dynamics should

be investigated. If any significant effect is noticed, methods to account for these

aspects should be developed. While the friction models developed and used in this

research seem to be adequate for studying shift dynamics, methods to improve sim-

ulation speed without compromising the fidelity should be investigated. The desired

angular speeds used to generate the error signals for the PID controllers are applied as

step inputs to trigger shifts. Different desired speed profiles should be investigated to

further improve shift quality. New technologies for fast pressure response on clutches

and bands are essential for successful implementation of feedback control. This topic

should be thoroughly investigated; detailed models for such electro–hydraulic actu-

ation systems should be developed and integrated into the simulation environment.

More systematic control design methods can also be studied that considers the shift

quality metrics, not only tuning and evaluation of the controllers but also during the

design phase of the controllers. The methods developed in this research for shift qual-

ity of automatic transmission can be utilized in other applications where planetary

gears are used.
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