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ABSTRACT 

 

PERFORMANCE ANALYSIS OF CACHING EFFECT ON REAL TIME PACKET 

PROCESSING IN A MULTI-THREADED PROCESSOR 

 

Publication No. ______ 

 

Miao Ju, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Hao Che  

Caching has been time proven to be a very effective technique to improve 

memory access speed and average performance for general processors. Based on the 

real-world trace simulation, earlier research showed that cache can help improve the 

route lookup and packet classification performance in a Network Processor (NP). 

However, the existing studies did not take the packet delay/loss constraints into account. 

As a result, how effective the caching technique is, in dealing with traffic under 

stringent delay/loss constraints (as is the case for router interface using an NP for packet 

processing), is still an open issue. 

In this thesis, we aim at addressing the above issue through simulation studies 

based on a well-designed, lightweight simulator. We first demonstrate how such a
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simulator can be developed to allow effective performance analysis of a multi-threaded, 

single core processor. Then we apply this simulator to the study of the caching effect on 

the packet throughput performance under various delay/loss constraints. Our simulation 

studies indicate that the effectiveness of caching is sensitive to the actual delay/loss 

constraints. When drop/loss constraint is loose, use of a larger number of threads can 

effectively hide the memory latency, making caching less effective. Moreover, the 

effectiveness of caching is getting worst, when drop/loss constraint is tight and the 

number of threads is relatively small. Finally, our simulation shows that when cache 

miss distribution is uniform, caching is effective, improving throughput performance by 

4.6% even when the miss ratio is as large as 27.2%. 
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CHAPTER 1   

INTRODUCTION 

1.1 Background and Motivation 

With the enormous momentum behind Internet-related technologies and 

applications, demands for data network bandwidth are on the rise at an astounding rate. 

As a result, the amount of throughput required by network processors (NPs) is 

increasing significantly. For example, supporting OC-192 (10 Gbps) and OC-768 (40 

Gbps) line rates require that a packet be processed within 52 nanoseconds and 13 

nanoseconds, respectively. 

There are two critical functions in packet processing, i.e. IP forwarding table 

lookup (or IP-lookup) and packet classification. Most packet processing algorithms are 

based on some utility data structures.  These data structures involved in routing tasks 

are stored on-chip in large SRAMs with latencies in the range of 10 to 30 cycles. Thus, 

much of the time spent on packet processing is taken up by reading (and sometimes 

writing) of the data structures in the SRAM multiple times, creating bottlenecks and 

non-deterministic performance for packet processing. A widely recommended solution 

is to employ cache to speed up IP-lookup and/or packet classification. 

In fact, most existing studies claim that caching is effective in improving both 

IP-lookup and packet classification performance and that the caching technique should 

be adopted in NP for real-time packet processing [15, 16, 17, 18, 19, 20, 21]. However,  
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in this thesis, we argue that the reasoning behind such a claim is inadequate for the 

following two reasons. First, such a claim is mainly based on the ground that the cache 

miss ratios were low for real-world traffic traces tested (0.1%-27.2% for IP-lookup and 

3%-25% for packet classification).  How the cache misses will impact the packet delay 

and loss performance has not been tested (note that packet delay and loss constraints are 

generally tight for real-time packet processing). Second, to make the testing 

environment as close to the real-world environment as possible, most existing results 

were obtained based on either real NP or cycle-accurate simulation (with emulated 

caching) and real-world traffic traces as input. There are two problems with this 

approach. First, simulation based on real NP or cycle-accurate simulation is generally 

time consuming and slow. Second, the real-world traffic traces used in the simulation 

generally run at low line rates and may not represent future traffic demands. As a result, 

the claim was drawn based on very limited samples in a large parameter space, which is 

clearly inadequate.  

For the above reasons, we conclude that it is still an open issue as to whether or 

not caching is effective in improving real-time packet processing performance. The 

need to quantify the benefits and drawbacks of caching in support of real-time packet 

processing becomes even more urgent, as multi-core, multithreaded processors have 

increasingly been adopted in router interface cards for packet processing, which heavily 

rely on caching for performance enhancement.   
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1.2 Scope and Contributions 

This thesis aims at quantitatively characterizing the benefits and drawbacks of 

caching for real-time packet processing in a multithreaded, single-core NP/processor. 

Unlike the existing work, this thesis characterizes caching effects in a large parameter 

space and based on multiple performance measures. This allows the impact of caching 

effect on the overall packet processing performance to be comprehensively 

characterized. This thesis makes the following two major contributions. 

            First, we build a lightweight processor simulator, which can be easily adapted to 

any multithreaded, single-core processor architecture. We then demonstrate that this 

simulator can provide packet throughput/latency data within 10% of the cycle-accurate 

simulation results. Moreover, this simulator is extremely fast and requires only a pseudo 

code as input for simulation (note that cycle-accurate simulators require micro-code as 

input for simulation). As a result, it allows effective performance analysis of a multi-

threaded, single-core NP/processor in a large parameter space.  

Second, we apply this simulator to the study of the effect of caching for IP-

lookup on the packet throughput performance. The simulator emulates a typical IP 

packet forwarding using an IXP1200 NP with the addition of caching for IP-look. The 

simulation study is performed in a large parameter space in terms of hit ratio, number of 

threads, and line rate, and under various delay/loss constraints. As a result, it 

successfully characterizes the benefits and drawbacks of caching as a potential 

mechanism to improve real-time packet processing performance. 
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1.3 Thesis Organization  

The remaining part of this thesis is organized as follows. Chapter 2 gives an 

overview of the related work. Chapter 3 describes a lightweight simulator for 

multithreaded, single-core processors. Chapter 4 discusses the simulation results for 

caching based packet processing. Finally, chapter 5 provides conclusions and future 

work. 
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CHAPTER 2  

RELATED WORK 

2.1 Processor Simulators 

The traditional processor/NP simulation tools are aimed at faithfully emulating 

the processor microscopic processes, and are useful for fine tuning the processor 

configuration to achieve optimal performance. They are not designed to allow fast 

processor performance testing. 

The most popular processor simulator is an execution driven simulator called 

“SimpleScalar”. SimpleScalar [5] is a tool which can simulate the behavior of a general 

purpose processor based on SimpleScalar architecture. The architectural characteristics 

studied in [5] would be more applicable to MIPS-based processor architecture rather 

than RISC-based architecture (used by most of the modern day processors). Moreover, 

SimpleScalar needs to know the exactly instructions of the code, and is very slow. 

            There has been a few efforts to study the behavior of multithreads in network 

processors. Most existing NP simulation tools are aimed at providing rich features to 

allow detailed statistical or per packet analysis. One such effort was explained in [2] 

where the performance of two types of architectures – single processor with 

multithreading (SMT) [2] and chip-multiprocessors (CMP) [2] was analyzed. The 

simulation used a cycle accurate simulator [3] [4] with multi-programmed work load [2].

The work load [4] comprised of three different tasks – IP forwarding, a web-switch
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monitoring HTTP requests and connections and VPN node that performs 

encryption/decryption and authentication. The main contribution of [2] was the 

comparison of the performance of SMT and CMP processors. Cycle accurate simulator 

is very slow and memory hungry.  Even for the most lightweight NP simulator 

described in [14], it is reported that it takes a hour to simulate 1 second of hardware 

execution on a Pentium III 733 PC with 128 Mbytes memory, assuming the micro-code 

is available as input to the simulator. 

            System level modeling tools like POOSL [6] and Click-modular router [7] [8] 

have also been used for modeling NPs. [9] compared the results from an analytical 

model to that of the simulation on an Intel IXP 1200 network processor and the results 

are shown to be within 15% accuracy. 

            In [7] the authors presented several examples of modeling uniprocessor and 

multiprocessor systems executing IPv4 routing and IPSec VPN encryption/decryption 

applications. The performance results of the architecture in Click-modular [7] model 

were compared to the actual results measured on the real systems being modeled; the 

results were found to be accurate within 10%. 

            [10] and [11] estimated the performance of an NP for different applications. It 

provided a new scheme to estimate end-to-end packet delays, packet queuing and to 

explore the design spaces. This scheme can be used to quickly develop new 

architectures which can be later analyzed in detail using other design tools. [12] and  

[13] described a systematic approach to benchmarking NPs. 
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2.2 Caching 

            Recently, a lot of research work has been done in performance analysis of 

caching effect on packet processing. Some studies [22] [23] discussed if there is 

sufficient temporal locality to justify the use of cache. There are two major functions in 

packet processing, IP-lookup and packet classification. [15, 16, 17, 20, 21] show the 

caching effect in route lookup, [18] and [19] demonstrate how a caching technique can 

help improve the performance of packet classification.  

However, almost all of these researches are based on the real world trace 

simulation. B. Talbot et al. [22] studied the packet traces captured from enterprise class 

routers. Keith Morris et al. [15] uses three different packet traces collected from the sole 

router that connects Taiwan’s academic network to the ISP in California. Tzi-cher 

Chiueh et al. [17] gets packet traces from public domain. Kang Li et al. [18] uses traces 

obtained from an OC-3 link that connects a university campus network to the Internet. 

We note that the line rates in these traces are low. For example, OC-3 link trace in [16] 

and [18], 9Mbps Internet link in [19], and 45Mbps Internet link in [17]. 

 

2.2.1 Caching for IP Lookup    

The IP forwarding table which is usually stored in an on-chip SRAM consists of a set of 

entries, each containing a destination network address, a network mask and an output 

port identifier. NPs need to go to the SRAM several times to get the final lookup result. 

Earlier research has shown that caching frequently accessed entries in an IP forwarding 

table can help improve the IP-lookup performance in a NP based on the real-world trace
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simulation. Recently research works concentrate on three areas:  

1. Trying to find out the cache design tradeoffs, by tuning time, space and 

configuration parameters [15] [20] [21].   

2. Developing new efficient data structure or hashing function to speed up the 

lookup process [16] 

3. Using appropriate cache update mechanism to reduce the miss ratio [17]. 

 

2.2.2 Packet Classification Processing 

            Li et al. [18] demonstrated how a cache’s associativity, replacement policy, and 

hash function contribute in varying magnitudes to the cache’s performance. Specifically, 

they concluded that small levels of associativity can result in enormous performance 

gains; that replacement policies can give modest performance improvements for under-

provisioned caches; and that the faster, less complex hashing can improve overall cache 

performance. 

Chang et al [19] examined the accuracy issue in cache design space. In 

particular, they quantify the benefits of relaxing the accuracy of the cache on the cost 

and performance of packet classification caches.   
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CHAPTER 3  

SIMULATOR DESIGN 

3.1 Processor Organization 

This research will consider a generic processor organization depicted in Fig. 1. 

In this organization, a processor is viewed generically as composed of a set of core 

components, i.e., core and a set of on-chip or off-chip supporting components, such as 

I/O interfaces, memory, special processing units, scratch pads, embedded CPUs, and 

coprocessors. These supporting components may appear at three different levels, i.e., 

the thread, core, and processor levels, collectively denoted as mem, Mem, and MEM, 

respectively.  Each core supports multiple threads which are scheduled based on a given 

thread scheduling discipline. Cores may be configured in parallel and/or multi-stage 

pipeline (a two-stage configuration is shown in Fig. 1). Data path functions that are 

mapped to a given processor will be further mapped to different cores at different 

pipeline stages or different cores at a given stage. Clearly, this generic processor 

organization covers most existing processor architectures. 

 
Figure. 1 A generic processor organization 
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3.2 Code Path 

An important concept used in processor performance analysis is code path. We 

explain how we define the code path in this research work through an example. Fig. 2 

gives a simplified flow diagram or graphical representation of the pseudo code for the 

data path functions to be processed in a typical router data path, including IP forwarding, 

MPLS label swapping, and the IS-IS routing protocol processing. An incoming packet 

is in the form of an Ethernet frame. The core first inspects the EtherType field in the 

Ethernet header to identify the upper layer data format for the frame payload. There are 

four possible outcomes:  

(1) It is an IS-IS routing protocol packet. In this case, the frame is sent to the control 

card without further processing;  

(2) It is an IP packet. In this case, the IP forwarding is performed which may 

include firewall/policy filtering, DiffServ traffic conditioning, IP forwarding 

table lookup, TTL (i.e., Time-to-Live) update, checksum update, and so on. 

Then the layer 2 framing is performed on the packet which may include 

outgoing interface MTU check, packet fragmentation, ARP table lookup, and 

layer 2 framing.  

(3) It is an MPLS encapsulated IP packet. In this case, the MPLS label swapping 

table lookup is performed. As a result, there are two possible outcomes, i.e., the 

packet needs to be label forwarded or IP forwarded downstream.  In the former 

case, the label is swapped and the layer 2 framing is performed on the labeled      

packet.  In the latter case, the label is popped off and the IP forwarding in case
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  (2) is performed.  

(4) It is an unknown protocol. In this case, the frame is simply discarded.      

Now, assume that all the data path functions are mapped to a single core. Then a 

unique branch from the root to a given leaf is defined as a code path associated with 

that core. An incoming packet to a core is always associated with one code path.  Fig. 2 

didn’t expose the branches that may exist in each processing module. For example, in 

the MPLS label swapping module, there are a number of branches corresponding to 

different numbers of label popping and pushing. So the number of code paths is much 

larger than what we have seen in Fig. 2.   
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Figure. 2 A pseudo code or flow diagram for fast data path 
functions typically seen in a router interface  
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Now, we formally define a code path as a sequence of instructions that a core 

has to execute throughout the life-time a packet is handled by a thread in that core. A 

code path may be broken down into smaller sequences of instructions due to supporting 

component accesses. For example, for a code path that involves IP Forwarding, an IP 

forwarding table lookup in an off-chip TCAM coprocessor may be performed in the 

middle of the code path.  Hence, a code path can be generally expressed in the 

following format:  

Tk(Mk; m1,k , t1,k, τ1,k, …, mMk, k,, tMk, k,τMk, k):   Code path k with access to mi,k ∈ mem, Mem, 

or MEM, and unloaded access latency τi,k  

after the ti,k-th cycle    

In the code path, where k = 1, …, K and i = 

1, 2, …, Mk, where Mk is the total number of 

supporting component accesses.  

|Tk|:   code path length or total number of instructions in the code path Tk(Mk; m1,k , t1,k, 

τ1,k, …, mMk, k,, tMk, k,τMk, k), where k = 1, 2, …, K. 

A graphical representation for the above code path is given in Fig. 3. 

 

 

 

m1,k, t1,k, τ 1,k m2,k, t2,k, τ 2,k mMk, k, tMk, k, τ Mk, k 

  |Tk| 

Fig. 3  Tk(Mk; m1,k , t1,k, τ1,k, …, mMk, k,, tMk, k,τMk, k) 

. . .
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3.3 Event 

Here an “event” is a loose term. It may refer to a specific code path mixture, a 

packet arrival process, a memory access, or a given instruction in a code path. 

Apparently, not all the events will have equal impact on the packet processing 

performance.  

 

3.4 Design Methodology 

3.4.1 Introduction 

In this thesis, the key idea to the design of a fast, generic processor simulation 

tool is to decouple the common features pertaining to all possible processor 

architectures from the processor-specific features (e.g., I/O interface, bus, memory, and 

memory controller architectures).. Then focus on the modeling of the common features, 

while still being able to incorporate all the processor-specific effects that will impact the 

processor performance. On the basis of this idea, our approach is to focus on the 

modeling of non-processor specific components including core topology, 

multithreading, code path, code path mixtures, and packet arrival processes, pertaining 

to all the processor architectures, with plug-ins of a limited number of models that 

account for the processor-specific effects. These models, such as unloaded latency 

model and queuing model, are pre-developed and plug-in into the common part. Fig. 4 

gives a logic diagram for the proposed methodology, which focuses on the modeling of 

three components:  

(1) A packet arrival process; 
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(2) Code path association with arriving packets; 

(3) A core that processes packets and produces performance data. 

 

 

Each core is modeled at a highly abstract level, running any configurable 

number of threads handling various code paths based on a given thread scheduling 

discipline (e.g., the fine-grained, coarse-grained, or TDM-based discipline). This 

lightweight involvement of the processor-specific features is made possible for our 

methodology since our design goal is to focus on latency/throughput performance only, 

rather than rich features, such as program development. This allows us to focus on the 

design of the common part, independent of specific processor architectures. This also 

makes it possible to develop rich features easily, such as various thread scheduling 

disciplines. 

 

3.4.2 Design Detail 

The simulation software will be event-driven. The code path associated with an 

incoming packet will trigger a sequence of events handled by a given thread. Multiple 

Latency Model Queuing Model 

 Core 
(Coarse Grained, Fine 
Grained, TDM, etc.) 

througput 
(1) 

(2) 

(3)

Plug-ins 

τ j,k 

Common part 

Fig. 4 Proposed Methodology 
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threads, each handling a given code path, will then interact and compete for the core 

ALU and other supporting resources through a thread scheduling discipline. The tool 

will allow any instruction level events that have an impact at the thread level to be 

captured, such as average cost of context switching in the units of core cycles, dynamic 

code generation, serialization effect, critical section, etc.   

To minimize the number of events to be processed in the core, the simulator 

only capture the instruction level events that affect thread-level interactions. This is 

based on the observation that interactions among threads are triggered by only a handful 

of events in the code paths and the semantics for the rest of instructions in the code 

paths are largely irrelevant. This observation allows the tool to simulate the thread-level 

events only, or instructions that causes, e.g., context switching or serialization effects, 

rather than all the instruction level details. 

To see why this can be done, let’s take a look at an example. 

 

 

 

Consider an event-annotated code path in Fig. 5. In this code path, there is only 

one event e, which takes place at the t-th cycle for supporting component, m, access 

with unloaded latency τ. This event causes a context switching.  Now consider two 

threads in a core, each handling a code path as in Fig. 5. They share the ALU resource 

based on a fine-grained thread scheduling discipline (i.e., switch context at every 

instruction). Fig. 6 gives the instruction execution timeline for the two code paths. The 

Fig. 5 An example of event-annotated code path

e={m, t, τ } 
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dark gray parts represent the code path segments. The light gray parts represent the 

cycles spent on event e, i.e., the loaded m access latencies. The white part stands for the 

cycles spent in the ready state waiting for execution after event e finishes.  In this case, 

each code path involves three event boundaries: the start of the code path, the end of the 

code path, and the start and end of event e. The arrows represent the switches of control 

from one thread to the other after executing one instruction. The idea is to not to 

simulate each and every switch of control, but only the cycles at the event boundaries, 

i.e., the positions indicated by vertical lines. Since each code path may have up to a few 

dozens of events, only several dozens of event boundaries need to be simulated per 

packet. As a result, the event-driven simulation tool that captures only those events can 

run very fast, as our testing results showed (less than 10 seconds per simulation run on a 

Intel Duo core PC).   

 

 

 

 

In addition to mem, Mem, and MEM, there are a few other event types that need 

to be incorporated in a code path or pseudo code, such as instructions that trigger 

dynamic code generation, critical section and ordered processing. These events can be 

identified by the user and included in the pseudo code.  

The above discussion indicates that it is possible to analyze the processor 

performance solely based on a pseudo code that can be built as soon as a mapping and 

Fig. 6 Event-level simulation  
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the lengths (i.e., number of instructions or cycles) of the code segments between those 

events are given.  

Finally, we note that there are two potential inaccuracies that may be introduced 

for not simulating instruction level details. They are: (1) the cost of the instruction 

pipeline aborts due to branching or context switching; and (2) instructions per core 

cycle in average sense only. One can expect that (2) will not introduce much 

performance error because the performance data is collected at a timescale much larger 

than per instruction timescale. Our testing based on IXP1200 simulator indicates that (1) 

may introduce about 1% to 5% throughput error. As part of the proposed research, we 

shall consider to compensate for this error by allowing the user to associate an average 

instruction pipeline abort cost with each context switching or branching. 

 

3.5 Testing Results 

In this section we test the accuracy of the simulator we developed based on the 

proposed ideas. The tool can simulate a single core with a coarse-grained thread 

scheduling discipline. We simulated a simple IPv4 Forwarding code sample available in 

IXP1200 mapped to the receive stage in IXP1200.  The results are compared against the 

performance data obtained based on the Intel IXP cycle-accurate simulation. The code 

sample consists of a single code path which includes fourteen mem events in it and 

fifteen code path segments for packet processing (Please refer to Table A1 in Appendix 

for further detail). The IXP1200 cycle-accurate simulator (CAS) is run using infinite 

wire speed mode i.e. whenever a thread is not blocked and is polling port for a packet, 



 

 17

and it will always get the packet immediately. 

Table 1. The tool versus CAS forIPv4 Forwarding example 
Thread Tool  

Total 

Latency(TL)(cycles)

CAS  

Total 

Latency(TL)(cycles)

Error % 

rate  

|R1-R2|*100/R2 

1 483 486 0.62% 

2 545 510 6.86% 

3 593 555 6.85% 

4 687 680 1.03% 

 

As shown in Table 1. The total latencies (TL) or data rates obtained by the tool 

are within 7% of CAS results. The results from the tool were produced within a few 

seconds with a single run, while CAS needed separate runs for each thread case with 

each run taking almost 30 minutes to stabilize, when the results were collected. The 

error is caused by not accounting for the processing overhead due to instruction aborts 

and the use of a simple FIFO queuing model for each resource access. The simulation 

results consistent with the results in Table 1 were also obtained based on a large number 

of other code samples available in the IXP1200/2400 simulators. 
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CHAPTER 4  

STUDY OF CACHING PERFRORMANCE 

This chapter describes the simulation results on the effect of caching IP 

forwarding table entries for packet processing based on a single core multithreaded 

processor. We performed simulation using the simulator we developed. The simulation 

is designed to emulate a typical IP packet forwarding using an IXP1200 NP with the 

addition of caching for IP-lookup and characterizes the benefits and drawbacks of 

caching as a potential mechanism to improve real-time packet processing performance. 

The caching performance is tested in a large parameter space in terms of miss ratio, 

number of threads, and line rate, and under various delay/loss constraints.  

 

4.1 Simulation Setup 

In this study, we use the same IPv4 Forwarding code path as the one used in 

Chapter 3 (see Table A1 in Appendix). To account for the caching effect, we added a 

new event, called cache event. Now, there are fifteen segments in the code path, 

including fourteen mem type events and one cache event. If the cache hits, the processor 

will perform cache only lookup without memory accesses for IP-lookup, otherwise, it 

will incur a miss penalty including two cycles for cache access and the four memory 

accesses and the related four code segments execution for IP-lookup (see Table A1 for 

details). The cache miss penalty includes 59 instructions and 2 cycles of cache access
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latency.  In the simulation, we assume that different packets will have equal probability 

to incur a cache miss and there is no correlation among different cache misses. .   

We assume the processor ALU clock rate is 1 GHz and the packet size is 64 

Bytes for all packets. To test caching effect under given line rate, we let packets come 

into the processor at fixed interval Tp (in the units of ALU cycles). The line rate R = 

64x8/Tp (Gbps). So, by changing Tp, we effectively change line rate R.  

To account for the threading effect, we tested various numbers of threads in the 

range of 1 to 8. To test the processing performance under various delay/loss constraints, 

we assume that the processor has an input buffer of three different sizes, i.e., 2, 4 and 8 

packet sizes. In practice, the available input buffer size varies from one NP to another. 

But in general, it is small and on the same order as the number of configurable threads. 

For some NPs based on cut-through switching architecture, there is virtually no input 

buffering and the packets are processed on-the-fly. For this very reason, we consider the 

cases from 1 all the way to 8, the maximum number of threads considered in this study.  

We also tested the throughput under three different miss ratios. They are 0.1% 

as in [16] which is the lowest miss ratio reported, 27.2% as in [15] which is the highest 

one in IP lookup caching, and 10% as reported in [20,21,22].  

In the simulation, we generated one million packets with the code path we just 

defined. For fixed miss ratio, number of threads, and size of buffer, we increase the 

input line rate to find the maximum line rate without packet drops. 
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4.2 Simulation Results and Analysis 
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Figure 7. The throughput under different miss ratio when input buffer size is 8-packets 
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Figure 8. The percentage of throughput improvement under different miss ratios when 

input buffer size is 8-packets 
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Figure 7 shows the throughput when input buffer is 8-packets size. The base 

case is the maximum throughput of processor under different number of threads without 

caching. Clearly, a smaller miss ratio can achieve higher throughput performance. For 

miss ratio equals 0.1%, the processor can support the highest line rate, i.e., 4.02 Gbps. 

From figure 8, we see that the percentage of throughput improvement decreases rapidly, 

for example,  at miss ratio = 10%, the percentage of throughput improvement reduces 

from 33% to 27% as the number of threads increases from 1 to 6. For other two curves, 

the percentage also decreases monotonously as the number of threads increases. The 

maximum sustainable line rate saturates when the number of threads exceeds 6. This is 

because for this particular code path, 6 threads can already completely hide all the 

memory access latencies.  So adding more threads can not help increase the throughput. 

This point is also supported by Figure 7, in which the throughput of baseline doesn’t 

improve by adding more than 6 threads. From these two figures, we conclude that the 

benefit of caching becomes weakened as the number of threads increases. 
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Figure 9. The throughput under different miss ratio when input buffer size is 2-packets 
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Figure 10. The percentage of throughput improvement under different miss ratio when 

input buffer size is 8-packets 
 

Figure 9 shows the throughput when input buffer is 2-packets size. Comparing 

to Figure 7, since the drop/loss constraints (i.e. the input buffer size) is more stringent, 
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the throughput is relatively lower, especially when miss ratio is big. Comparing the two 

curves of miss ratio = 27.2% in Figure 7 and 9, we find that the curve in Figure 9 is 

much closer to the baseline case. From figure 10 we see that the percentage of 

throughput improvement is 4.6% when the miss ratio is 27.2%. This means the caching 

technique is still helpful even if the drop/loss constraint is very tight.  
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Figure 11. The throughput under different miss ratio when input buffer size is 4-packets 
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Figure 12. The percentage of throughput improvement under different miss ratio when 

input buffer size is 4-packets 
 

Figure 11 shows the throughput when input buffer is 4-packets size and Figure 

12 shows the percentage of throughput improvement. Comparing the three curves of 

percentage at miss ratio = 27% in Figure 8, 10 and 12, we find that in Figure 8 the 

improvement percentage decreases monotonously when the number of thread increasing. 

In Figure 10 and 12, however, the improvement percentage first decreases until the 

number of threads reaches 4 and 2, respectively. Then, the improvement percentage 

increases and fattened out at 7 and 8, respectively. This observation indicates that there 

are three factors will work together to affect the caching effect. They are number of 

continuous cache misses, input buffer size and number of threads. Obviously, increasing 

the number of continuous cache misses (i.e. increasing the miss ratio) will reduce the 

caching effect; both input buffer and multi-threading can help hide the continuous cache 

misses, so increasing input buffer size and using multi-threading can help to increase 
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the caching effect; increasing the number of threads itself does help hide memory access 

latencies and reduce the caching effect. We can verify these points from these figures. 

In Figure 8, since the buffer size is big enough to hide the continuous cache misses, 

increasing the number of threads does help hide memory access latencies and reduce the 

caching effect. More over, we can find that increasing the number of threads will reduce 

the caching effect more effective when thread number is low. In contrast, in the case of 

relatively small buffer sizes, as in figure 10 and 12, adding threads will reduce the 

caching effect a lot when number of threads is small, so the percentage of improvement 

decreases at first. However, since buffer size is small, buffering cannot hide all the 

continuous cache misses. As a result, multithreading can help hide the miss effect, that 

is the reason of the improvement percentage will increase when we add more threads. 

Later, after we added enough threads to hide the cache miss effect, if we add more 

threads, these threads will help to hide more memory access time during the processing 

and the improvement percentage can not increase. We also can verify this point by 

comparing the curves at miss ratio = 10%. The curves at miss ratio = 0.1% almost 

decrease monotonously since the miss ratio is too low, and even a 2-packets size buffer 

can hide the entire continuous cache misses effect.   
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Figure 13. The throughput under different size of input buffer when miss ratio is 27% 
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Figure 14. The throughput under different size of input buffer when miss ratio is 10% 

 

Figure 13 and 14 shows the throughput at different miss ratio = 27.2% and 10% 

respectively. From Figure 13 and 14, we note that looser drop/loss constraints can 

improve caching performance since the curve with larger buffer size is always above the 
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one with smaller size. Comparing Figure 13 and 14, we find that the two curves for 

buffer size 8 and 4 are closer in Figure 14 than in Figure 13. This indicates that 

increasing buffer size can be more efficient when miss ratio is large.  It is easier to see 

this point by looking at Figure 15. On average, 8-packets size buffer can improve 

throughput by 7.2% when miss ratio is 27.2% compare to 5.5% when miss ratio is 10%.   
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Figure 15. The percentage of throughput improvement when buffer size change from 4 

to 8 under miss ratio is 27.2% and 10% 
 

In summary, the above studies indicate: 

(1) When the cache miss follows a uniform distribution, the caching technique is 

always helpful to increase the throughput performance. Even if the miss rate is big, 

(i.e. 27.2%), and the delay/loss constraints is relatively tight (i.e. 2-packets input 

buffer size), the caching can help achieve at least 4.6% throughput improvement 

comparing with the baseline case.  
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(2) Both input buffer and multithreading can help processor hide the continuous cache 

misses. The caching benefit will be weakened when delay/loss constraint is tight 

and the number of threads is small.  

(3) When the drop/loss constraint is loose, the use of a large number of threads can 

effectively hide the memory latency, making caching less effective. 

(4) Caching can be effective in the parameter range where the delay/loss constraints are 

loose (i.e. the input buffer size is large), especially when miss ratio is big. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion  

In this thesis, we first build a lightweight processor simulator, which can be 

easily adapted to any multithreaded, single-core processor architecture. We then tested 

simulator using the IPv4 Forwarding code path provided by the IXP1200 cycle-accurate 

simulator and compared the results with IXP1200 cycle accurate simulation. Our 

simulator can provide packet throughput/latency data within 10% of the IXP1200 

results. Moreover, this simulator is extremely fast and requires only a pseudo code as 

input for simulation (note that cycle-accurate simulators require micro-code as input for 

simulation). As a result, it allows effective performance analysis of a multi-threaded, 

single-core NP/processor in a large parameter space.  

Second, we apply this simulator to the study of the effect of caching for IP-

lookup on the packet throughput performance. The simulator emulates a typical IP 

packet forwarding using an IXP1200 NP with the addition of caching for IP-look. The 

simulation study is performed in a large parameter space. The caching technique is 

found to be always helpful in improving the throughput performance when the cache 

miss distribution is uniform. More over, caching effect will be weakened when 

delay/loss constraint is tight and the number of thread is small. 
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5.2 Future Work 

In this thesis we have studied only uniform cache miss distribution. Different 

input streams, different cache configuration, hashing functions and update algorithms 

can generate different cache miss distributions and can affect the effectiveness of 

caching. As part of our future work, we shall study the impact of other cache miss 

distributions on the performance of caching.  

In this thesis, we only developed the simulator for multi-threaded, single-core 

processor. We shall extend our simulator to emulate multi-core processor and then use 

this simulator for the study of the impact of multi-level caching techniques on real-time 

packet processing. 
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APPENDIX A  
CODE PATH USED IN SIMULATION 
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Table A1 Code path for IPv4 Forwarding (IXP 1200) 
 
 

Task 

# 
instructions 

in code 
segment 

( tm,k – tm-1,k )

Type of I/O 
access 

Unloaded 
latency  
τ j,k 

Check receive ready flags 5 FBI read 14 

Move packet from IX Bus to RFIFO 8 FBI write + IX 
Bus receive 76 

Read recive control information (after 
reading packet from IX Bus to RFIFO) 2 FBI read 19 

Wait for buffer allocation (in 
SDRAM); get the descriptor from 

SRAM 
11 SRAM read 17 

Read 3 Quad words from RFIFO into 
microengine for IP validation 16 RFIFO read 18 

Read 2nd 32 byte to SDRAM (in the 
allocated buffer) 15 RFIFO read 22 

IP lookup 40 SRAM read 17 
IP lookup 7 SRAM read 17 
IP lookup 5 SRAM read 17 

Get next hop information from 
SDRAM 7 SDRAM read 47 

Write packet descriptor to SRAM (after 
associating it with a TX port) 16 SRAM write 18 

Read queue descriptor from SRAM 
(for enqueue operation) 4 SRAM read 22 

Write the packet descriptor to SRAM 
(to the TX queues associated with the 

TX port) 
15 SRAM write 20 

Miscellaneous 6   
TOTAL 157  324 
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