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ABSTRACT 

 
THE EQUIVALENCE AND GENERALIZATION 

OF OPTIMIZATION CRITERIA 

 

Surachai Charoensri, PhD 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  H.W. Corley  

 In this dissertation we first show that existing optimization criteria are 

equivalent to the maximization of a real-valued function in a one-dimensional 

Euclidean space. The criteria are said to be scalar equivalent. All solutions and only 

solutions to an optimization problem involving the original criterion can be obtained by 

scalarization without the typical convexity or concavity assumptions on the original 

objective functions and feasible region. Examples include Pareto (including the scalar 

case), satisficing, maximin, and cone-ordered optimization, as well as the more general 

notion of set-valued optimization in abstract spaces. Moreover, equivalences between 

various different optimization criteria are also established directly. As a consequence, 

any problem stated as one criterion can be solved as another.  
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Second, we axiomatize and generalize the definition of an optimization criterion 

definition to include the existing standard criteria as special cases. We discuss our 

choices of axioms and explain why other possible axioms are excluded from our 

formalization. We then propose an equivalent scalarization of a general optimization 

criterion problem. In other words, we can obtain solutions of a problem involving any 

criterion satisfied our definition by simply solving scalar maximization problems. We 

present examples of new optimization criteria and apply them in practical decision-

making situations. In addition, to provide insight into the scope of our work, we give a 

decision rule that is not a criterion within our framework. 
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CHAPTER 1 

INTRODUCTION 

 

The research of this dissertation considers the concept of an optimization 

criterion, which is effectively the way one makes a best decision according to some 

interpretation of the term “best.” For example, a business may try to maximize its profit, 

so the optimization criterion is to maximize the amount of money made. On the other 

hand, a fire station might be built to serve a particular population area so as to minimize 

the maximum distance a fire truck would have to travel. The decision on where to build 

the fire station would thus be decided based a maximin criterion. Moreover, a person 

might aspire to a certain salary in finding a job. In fact, any job meeting the salary goal 

would be deemed acceptable, so the decision would be based on other factors than 

salary. This criterion is called satisficing. As a final example, legislators want to meet 

energy demands without depleting natural resources. Tradeoffs are required. Various 

optimization criteria consider such multiple objectives, including the well-known Pareto 

criterion. 

We show here that all standard optimization criteria can be scalarizable; i.e., a 

solution of the problem can be achieved as the maximization or minimization of a real-

valued objective function subject to certain constraints. No matter what the criterion of 

the original problem is, we can obtain its solutions by finding the largest or smallest 
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scalar number via a real-valued maximization or scalar minimization problem. 

Furthermore, we show that each existing optimization criterion can be solved as the 

scalarization of any other criteria. In other words, all existing optimization criteria may 

be called scalar equivalent, and any problem involving one criterion can be formulated 

as a problem involving any other.  

This realization motivates us to define a more general definition of optimization 

criteria to include all existing optimization criteria as special cases. Thus we give an 

axiomatic mathematical definition of an optimization criterion to state consistent rules 

for calling something “the best.” Next we develop an equivalent scalarization of an 

optimization problem involving a general criterion in the following sense. All solutions 

to the original problem and only solutions to it can be obtained via the maximization of 

a related real-valued function that is a scalarization of the original problem.  

Finally we construct two new optimization criteria. One of these criteria 

interprets “optimize” as “compromise.” Such a compromising criterion appears useful 

for multi-objective optimization in general and for game theory in particular.  

 The organization of the dissertation is as follows. In chapter 2 we review the 

notions of maximin, satisficing (goal programming), and cone-ordered optimization 

(including the including Pareto and set-valued cases). We also summarize such concepts 

as cones in finite-dimensional real vector spaces, as well as the orders induced by such 

cones.  

 In chapter 3, we present an equivalent scalarization of the standard Pareto, 

satisficing, maximin, and cone-ordered optimization criteria, as well as the more general 
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notion of set-valued optimization in abstract spaces. As an example, we establish the 

scalar equivalence between the maximin and Pareto criteria. In addition, the 

equivalence of various standard criteria is established directly without resorting to 

scalarization. In other words, any problem involving one criterion can be restated as an 

equivalent problem involving another criterion in the sense of obtaining all solutions 

and only solutions to the original problem. Scalar equivalence thus follows. We 

illustrate the direct equivalence between the standard optimization criteria with the 

cases of maximin and Pareto maximization, Pareto maximization and lexicographic 

maximization, goal programming and Pareto maximization, as well as set-valued 

maximization and cone-ordered maximization. 

 In chapter 4, an axiomatization and generalization of optimization criteria are 

presented. We discuss our choice of axioms and explain why other possibilities are 

excluded.  We then show that existing optimization criteria satisfy the axioms.  

In chapter 5, we define the new optimization criteria of “compromising” and 

give applications in multi-objective optimization and game theory. We next show that 

the notion of “randomizing” is formally an optimization criterion in the situation where 

any action can be taken but some decision is required. We then present two group 

decision-making schemes for voting that do not conform to our definition of a general 

optimization criterion. 

 Finally, in chapter 6, we discuss the contributions of this research and discuss 

possible future work. 
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CHAPTER 2 

PRELIMINARIES 

 

In this chapter the notions of maximin, satisficing (goal programming), and 

cone-ordered (including Pareto and set-valued) optimization are presented. We also 

summarize such concepts as cones in n-dimensional Euclidean space, as well as the 

orders induced by such cones. 

 

2.1. Notation  

The following notion will be used throughout the dissertation.  

• Vectors are represented by boldface lowercase Roman letter such as x 

and y. 

• xt denotes the transpose of vector x. Thus if x is a column vector, then xt 

is a row vector and vice versa.  

• ix  denotes the component ith of vector x. 

• Scalar values are denoted by lower case Roman and Greek letter such as 

c, ,α and .λ  

• The n-dimensional Euclidean space is the set of all real vectors 

containing n components. It is denoted by .nR  
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2.2. Maximin Problem 

Let RRRf mn →×: be a real-valued function. For each ,nRA⊂∈x define the 

set mRB ⊂)(x to be a nonempty feasible region. Assume that the function

),(min)(
)(

yxx
xy

fg
mRB ⊂∈

= is well-defined for all .A∈x  Referring to [1], the general 

maximin problem can be stated as   

).,(minmax
)(

yx
xyx

f
mn RBRA ⊂∈⊂∈

 

Note that for different ,, 21
nRA⊂∈xx the associated feasible regions )( 1xB and )( 2xB  

are not necessarily identical. In another words, this formulation restricts the feasible 

choices of y depending on the certain choices of x. If BB =)(x for all ,nA R∈ ⊂x  the 

above problem takes the more familiar form 

).,(minmax yx
yx

f
mn RBRA ⊂∈⊂∈

   

In particular, if },...,1{ nB = for some given positive integer n, the problem becomes the 

discrete maximin problem   

)}.,(),...,1,(min{max nff
nRA

xx
x ⊂∈

 

Example 2.2.1. Let RA ⊂= ]9,1[ and { }1:],1[)( −≥−∈= yyxxyxB for each .Ax∈  

Define
y
xyxf =),( for , ( ),x A y B x∈ ∈ and consider the maximin problem  

.minmax
)(]9,1[ y

x
xByx ∈∈
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In this example, the feasible region of variable y in minimization depends on the value 

of variable x given. For example, we have that ]3,1[)5( =B while ].4,1[)7( =B  The dotted 

area in Figure 2.1 represents the feasible region of this general maximin problem. 

 

Figure 2.1 The feasible region for Example 2.2.1. 

 

2.3. Pareto Optimization 

Let mRA⊂ be a set of feasible solutions and nm RRf →: be the n-dimensional 

objective function. The objective function value can also be represented as

))(),...,(()( 1 xxx nfff = for all ,A∈x where RRf m
i →: is defined to be the ith objective 

function of the problem for each .,..,1 ni =  Then Pareto maximization, or vector 

maximization, can be stated as 

)).(),...,((Vmax 1 xx
x nA

ff
∈

 

A feasible solution A∈x is called a Pareto maximum or efficient point if there 

is no A∈y such that )()( yx ii ff ≤ for all mi ,..,1= and )()( yx jj ff < at least one index 
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j. The set }maxima Pareto are  :)({ xx nRf ∈ is called the Pareto frontier or efficient 

frontier. 

 

2.4. Goal Programming 

Goal programming is usually stated written as a scalar maximization or 

minimization of a function involving only the deviational variables. However, we 

present here the more general definition as given in [2] in which it formulated as a 

Pareto optimization. 

Let RRf m
i →: for ni ,...,1=  be the goal functions and nbb ,...,1  represent the 

associated aspiration levels for objective 1 to n, respectively. Then the goal 

programming problem can be stated  

.

,0,
0

)(

)(s.t.

)or  ,...,or (min

1111

11
,,

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈≥
=⋅

=−+

=−+

+−

+−

+−

+−

+−+−
−+

Ass
ss

bssxf

bssxf

ssss

ii

ii

nnnn

nn
ss

x

x

M  

The objective is to minimize the deviations ,i is s− +  to obtain a feasible x making the goal 

functions as close to the aspiration levels bi as possible. For more details, see [3] and 

[4]. 
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2.5. Cones, Orders, and Dual cones 

The concepts of an order induced by a cone in a vector space, as well as its dual 

cone, are next defined. 

Definition 2.5.1. A nonempty set nRC ⊂ is called a cone if C∈cλ for all C∈c and 

.0≥λ A cone C is pointed if the set CC −I contains only the vector of zero. Moreover, 

a convex cone C is a cone such that C∈+ 2211 cc λλ for all C∈21,cc and .0, 21 ≥λλ  

 

Example 2.5.2. The left drawing below in figure 2.2 shows a nonconvex cone in two-

dimensional Euclidean space while the right picture represents an important convex 

cone in the space. We usually call the convex cone in the right picture as the 

nonnegative orthant in 2R and denote it as { }.0,:),(2 ≥=≥ yxyxR  Notice that both cones 

are pointed.   

 

Figure 2.2 Examples of cones in .2R  

 

Example 2.5.3. Another important cone is called the lexicographic cone [5] used to 

define lexicographic optimization [6], where individual goals are ordered by priority so 
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that any higher level preempts a lower level one. For example, in ,2R the lexicographic 

cone is defined as 

{ }0 and 0 elseor  0either :),( 2 >=>∈= yxxRyxL . 

Notice that the lexicographic cone is a pointed and convex. Below, we graph 

lexicographic cone in two-dimensional Euclidean space. Note that the line 

2
1 2 1 2{( , ) : 0, 0}x x R x x∈ = < is missing from the cone of figure 2.3. 

 

Figure 2.3 The lexicographic cone in Euclidean 2-space. 

 

Definition 2.5.4. Let C be a pointed convex cone in nR and define a relation order C≤

on nR  as follows. For any ,, 21
nR∈yy we say that 21 yy C≤ if .12 C∈− yy  Define 

21 yy C< if 21 yy C≤ and .21 yy ≠ In particular, we say that 2y dominates 1y if 21 yy C≤  

and .21 yy ≠  A vector nRB⊂∈1y is said to be non-dominated in B if there is no

B∈2y such that 21 yy C≤ and .21 yy ≠  Denote the set BCmax as the set containing all 

non-dominated vectors in B with respect to the cone C. 
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Proposition 2.5.5. Let C be a cone in .nR If ba C≤ then dbda +≤+ C  for any .nR∈d  

Proof. Let C be a cone in nR and assume that .ba C≤ By definition, we have cab += for 

some .C∈c Then it follows that ( ) ( ) ;+ = + +b d a d c i.e., dbda +≤+ C for any .nR∈d ■ 

 

Example 2.5.6 For the lexicographic cone of Example 2.5.3., we construct the order 

induced by it. Let 2)}1,1(),0,1(),1,0(),0,0{( RB ⊂= and L be the lexicographic cone in .2R  

Then  

).1,1()0,1( and ),0,1()1,0( ),1,0()0,0( LLL ≤≤≤  

 

Definition 2.5.7. A relation order =p  on nRA ⊂ is said to be a partial order if it 

satisfies the following 3 properties. 

1. Reflexive property: xx =p for all .A∈x   

2. Antisymmetric property: If yx =p and xy =p for any A∈yx  , , then .yx =   

3. Transitive property: If yx =p and zy =p  for any A,, ∈zyx   , then .zx =p       

If =p  
is reflexive and transitive, then we say that =p  is a preorder. A partial order 

implies a preorder, but the converse is not true. 

 

Definition 2.5.8. A partial order =p  on nRA⊂ is a total order if yx =p or xy =p for any 

. , A∈yx  A set AB⊂ of totally ordered elements is called a total ordered set or a 

chain.   



 

 11

Definition 2.5.9. Let nRA⊂ with a partial order .=p  A vector A∈x  is said to be a 

maximal element of A if zx =p implies zx =  for any ..A∈z For a subset of B of A, a  

vector A∈y  is said to be an upper bound of B if yx =p for all .A∈x  

 

Definition 2.5.10. If a partial order =p  on nRA⊂  has no a maximal element, we say 

that A is unbounded from above.  

 

Lemma 2.5.11 Zorn’s Lemma [7]. A partial order =p  has a maximal element on any

nRA⊂  in which every chain has an upper bound. 

 

Definition 2.5.12 [8]. Let ),( =p
nR be a preordered set. We say that the preorder =p  

is 

order separable in the sense of Cantor if there exists a countable subset nRZ ⊂ such 

that whenever ,yx p there exists Z∈z such that .xzy pp  

 

Theorem 2.5.13 [8]. Let ),( =p
nR be a partially ordered set that is order separable in the 

sense of Cantor. Then there is a real-valued function f on nR  such that 21 yy p implies

).()( 21 yy ff <  Such a real-valued function f is called a strictly monotone functional 

on ).,( =p
nR  
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Remark 2.5.14 [9]. The order C≤ induced by a cone C in nR is a partial order if and only 

if C is a pointed and convex cone. 

 

Definition 2.5.15. Let C be a pointed cone in .nR  A linear functional l is a function 

mapping nR  into R, which satisfies the following property: 

)()()( 22112211 yyyy lll αααα +=+ for all ., and , 2121
nRR ∈∈ yyαα  

Moreover, a linear functional l is said to be strictly positive on C if 0)( >cl for all non-

zero vectors .C∈c  The dual cone associated with C is defined as the collection of all 

strictly positive linear functionals on C and denoted by   

{ }Any linear functional :  such that  ( ) 0 for all non-zero .nC l R R l C+ = → > ∈c c  

 

Example 2.5.16. Consider 2R equipped with the order induced by the nonnegative 

orthant cone { }.0,:),(2 ≥=≥ yxyxR  We construct a linear functional RRl →2: given by 

yxyxl +=),(  for all ., Ryx ∈  Then, it follows that l is a linear functional such that 

0),( >+= yxyxl for all non-zero .),( 2
≥∈ Ryx  The existence of this linear functional 

shows that the dual cone φ≠+
≥ )( 2R .  

An important standard property of a strictly linear functional l on a pointed cone 

C is given in the next lemma, which is proved. It is followed by a well-known existence 

theorem for strictly linear functionals on C. In particular, the “pointed” property of a 

cone is required for a strictly positive linear functional on C to exist.  
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Lemma 2.5.17. Let C is a pointed cone in nR  and assume that .φ≠+C  If 10 xx C< then 

)()( 10 xx ll < for any .+∈Cl  

Proof. Assume that .10 xx C<  By definition it follows that ,01 C∈−≠ xx0 and 

consequently we have .10 C−∈− xx Let .+∈Cl Thus we obtain ,0)( 01 >− xxl implying 

.0)( 01 <−− xxl  From the linear property of l, we get the following 

,0)())(()()()( 01011010 <−−=−−=−=− xxxxxxxx lllll  

which leads to the condition 0)()( 10 <− xx ll , i.e., ).()( 10 xx ll <   

 

Theorem 2.5.18 (cone separation theorem [10]). Assume 21,SS are closed convex 

cones in nR  such that },{21 0=SS I and denote the topological dual of nR by .)( 'nR

Suppose that the dual cone +
1S has nonempty interior in some topologyτ which provides 

nR  as the dual of .)( 'nR  Then there exists 0
1 )( ++ ∈ Ss such that ++ ∈− 1Ss and 0)( 1 >+ ss

for all non-zero vector .11 S∈s   

 

Remark 2.5.19. If C is not a pointed cone, the set +C is empty. 

Proof. Assume that C is not a pointed cone in .nR  Then, we have }.{0≠−CC I To 

obtain a contradiction, suppose that .φ≠+C  Let +∈Cl and a non-zero vector .CC −∈ Ic

Since ,C∈c  we have .0)( >cl  In addition, since ,C−∈c we obtain that C∈− c  and 

.0)( >−cl  But .0)()( >−=− cc ll  It follows that ,0)( <cl contradicting with .+∈Cl  
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According to Remark 2.5.19, the pointed cone is a necessary condition for 

existence of a strictly linear functional on C. (If ,φ≠+C then C is a pointed cone.) 

 

Remark 2.5.20. φ=+L where L is a lexicographic cone in .nR  

 Proof. It suffices to prove for the case of .2=n To obtain a contradiction, suppose that 

there exists a strictly linear functional on the lexicographic cone in .2R We call that 

existing strictly linear functional as f. Since ,)0,1(),1,0( L∈ we must have

.0)0,1(),1,0( >ff  Let .0)1,0(,0)0,1( >=>= ff βα Then, we have that L∈
−

)1,1(
βα

, 

thus by definition of a strictly linear functional, we obtain .0)1,1( >
− βα

f However, the 

linearity of f provides that 

.011)1,0(1)0,1(1)1,1( =−=−=
−

fff
βαβα

 

This contradicts the previous inequality.  

Note that even though the lexicographic cone is a pointed convex cone, the 

associated dual cone is still an empty set. However, lexicographic optimization still has 

a scalar equivalence to be presented in Example 3.2.4.3.   
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2.6. Cone-Ordered Maximization 

Definition 2.6.1. Let C be a pointed convex cone in nR  and .: nm RRf →  Suppose 

mRA⊂ is a feasible region. Then cone-ordered maximization, or C-maximization, 

can be written as 

)(max x
x

fC
A∈

 

The problem is to find all A∈x for which ),(max)( Aff C∈x for )()( x
x

fAf
A∈

= U and  

}.for  in  )( dominated-non All{)(max n ARfAfC ∈= xx  Thus the problem is to find 

non-dominated f (x) for all feasible solution .A∈x  General optimality conditions are 

found in [11]. 

Note that if a cone C is specified to be the nonnegative orthant 

{ }nicccR in
n ,...,1for  0:),...,( 1 =≥=≥ for a given positive integer n, C-maximization 

becomes Pareto maximization with n objective functions. Pareto maximization is thus a 

special case of cone-ordered maximization with respect to the nonnegative orthant cone 

in .nR  

 

Example 2.6.2. The lexicographic cone in Example 2.5.3 can be used to define a certain 

cone-ordered maximization to be called lexicographic maximization. Recall that in 

Example 2.5.6, the set { } 2(0,0), (0,1), (1,0), (1,1) .B R= ⊂  If we define the objective 

function f to be the identity map on set B, the cone-ordered maximization with respect 

to the cone L becomes the lexicographic maximization  
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)(Leximax x
x

f
B∈

 

The problem now is to find a feasible solution B∈x for which there is no other vector

B∈y such that .yx L<  Notice that )1,1(  is the only non-dominated vector in B and 

therefore the solution to the lexicographic maximization.  

 

2.7. Set-Valued Optimization 

Definition 2.7.1. Let
nRmRF 2: → be a point-to-set map. An order in nR is induced by a 

pointed convex cone C in .nR We define a set-valued maximization over a subset A of 

mR  as )(max x
x

F
A∈

as the problem of finding all feasible vector mRA⊂∈x such that

,)(max)( φ≠AFF CIx where ).()( x
x

FAF
A∈

= U  Stated differently, the problem is to find 

all feasible x for which there exists )(xy F∈ and ).(max AFC∈y If F is indicated to be 

a point mapping to a singleton set, then set-valued maximization becomes cone-ordered 

maximization. Set-valued optimization was defined in [12], where general optimality 

conditions were given.   

 

Example 2.7.2. Let ,}0,,1:),{( 2
2121

2
21 RxxxxRxxA ⊂≥≤+∈= and .2

≥= RC  Define

2
2121 ],0[],0[),( RxxxxF ⊂×= for all ].1,0[, 21 ∈xx  Notice that the function F is a point-

to-set map, and the problem )(max x
x

F
A∈

is a set-valued maximization. The set of solutions 

the set }.0,,1:),{( 2121
2

21 ≥=+∈ xxxxRxx  
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CHAPTER 3 

EQUIVALENCE OF STANDARD  

OPTIMIZATION CRITERIA 

 

The scalar equivalence of the standard optimization criteria of chapter 2 are now 

established. Equivalence proofs are given, and some examples are presented.  

 

3.1. Background and Motivation 

A multiple-objective optimization problem is typically solved by transforming 

the original problem into the scalar maximization of a real-valued function in which 

certain parameters are varied to give alternate solutions to the original multiple-

objective problem. See [2], [3], [6], [13], and [14] for more details. However, the most 

frequently used such scalarizations of Pareto optimization require assumptions about the 

convexity or concavity of functions to guarantee that a scalarization exists and yields all 

solutions to the original Pareto problem. Because of this limitation, we say that a non-

scalar optimization problem is scalarizable if and only if all solutions and only solutions 

of the non-scalar problem can be obtained by a possibly parameterized scalar 

maximization problem called its equivalent scalarization. In that case, the scalarization 

is said to be scalar equivalent to the original non-scalar problem. More generally, any 

two optimization problems are said to be criteria equivalent if all solutions and only 
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solutions to one optimization problem are obtained as the solutions to the other, despite 

different notions of optimality. In another words, the set of solutions of one problem is 

the set of solutions to the other. 

The notion of scalar equivalence stems then work of Corley [15] (see also [2] 

and [6]) in cone-ordered optimization, which includes Pareto and scalar optimization. 

This equivalent scalarization involves no more effort to solve than scalarizations 

requiring various convexity or concavity assumptions on the original problem. It is now 

known as a hybrid method [2] from its relation to the Corley hybrid fixed point 

theorems of [16].  

In this chapter we show that any optimization problem has an equivalent 

scalarization (i.e., can be reduced to real-valued maximization) and that all standard 

optimization problems are criteria equivalent. In other words, a maximin problem is 

criteria equivalent to, say, a satisficing or lexicographic or Pareto problem.  Any one 

type of problem can be solved as any other type directly or by the other’s scalarization. 

 

3.2. Equivalent Scalarizations of Standard Optimization Criteria 

3.2.1. Maximin 

In this section, a scalarization equivalence of a given maximin problem is 

presented. We denote A1 below as a given maximin problem, where

),(min)(
)(

yxx
xy

fg
mRB ⊂∈

= for all .A∈x  The problem A2 is an obvious equivalence of A1 

after introducing a real-value decision variable v to be the value of ).(xg  We prove that 

A3 is a scalar equivalence of the given maximin A1. We note that in A3 the variable y in 
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the set of constraints is not a decision variable but relates the constraints of A2 to the set 

B(x) for each feasible point x.   

A1: )(max x
x

g
nRA⊂∈

 A2:
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈⊂∈
=

RvRA
gv
v

n

v

,
)(s.t.

max
,

x
x

x

 

 

A3:
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈⊂∈
∈∀≤

RvRA
Bfv

v

n

v

,
)(),,(s.t.

max
,

x
xyyx

x

 

 

Lemma 3.2.1.1. If ),( *
3

*
3 xv is a solution to A3, then *)*,(* 33 yxfv = for some ).(* *

3xy B∈  

That is,  *)(* 33 xgv = and ),( *
3

*
3 xv is also a feasible solution to A2.  

Proof. Assume that ),( *
3

*
3 xv is a solution to A3. With the feasibility, we observe that

),( *
3

*
3 yxfv ≤ for all ).( *

3xy B∈  To obtain a contradiction, suppose ),( *
3

*
3 yxfv < for all

).( *
3xy B∈  By the assumption that )( *

3xg exists, we have that ),(min)( *
3

)(

*
3 yxx

*
3xy

fg
B∈

= is a 

finite real number. Then, it follows that ),(
2

),(min
*
3

*
3

)(

*
3 *

3 yx
yx

xy f
fv

B ≤
+

∈ for all ),( *
3xy B∈

which implies that ),
2

),(min
( *

3

*
3

)(

*
3 *

3 x
yx

xy
fv

B∈
+

is a feasible solution of A3. However, we 

also have that
2

),(min *
3

*
3*

3

yx
y

fv
v B∈

+
< , contradicting that *

3v  is the optimal objective value 

of A3. Thus, we can conclude that *),( *
3

*
3 yxfv = for some )(* *

3xy B∈ and ),( *
3

*
3 yxfv ≤

for *,yy ≠ i.e., ).( *
3

*
3 xgv =    
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Theorem 3.2.1.2. The point ),( ** xv is a solution to A2 if and only if ),( ** xv is a solution 

to A3. 

Proof. Suppose ),( ** xv is an optimal solution to A2. By the definition of the function g, 

we have that ),( ** xv is a feasible solution to A3 as well. To obtain a contradiction, 

suppose that ),( ** xv is not an optimal solution to A3. Then there is another feasible 

solution ),( *
3

*
3 xv of A3 such that ).(),,( *

3
*
3

*
3

* xyyx Bfvv ∈∀≤<  

Case 1: ),( **
3

*
3 yxfv =  for some ).( *

3
* xy B∈  In this case * *

3 3( ),v g= x  and hence 

),( *
3

*
3 xv is a feasible solution to A2. However, we have that ,*

3
* vv < contradicting that

),( *
2

*
2 xv is an optimal solution to A2.  

Case 2: ).(),,( *
3

*
3

*
3 xyyx Bfv ∈∀<   Since ),(min)(

)(
yxx

xy
fg

mRB ⊂∈
=  is well-defined 

for all ,nR∈x  let ).(ˆ *
3xgv =  By the construction, we have that ),ˆ( *

3xv is a feasible 

solution to A2. However, we also obtain the condition  ,ˆ*
3

* vvv <<  contradicting that

),( ** xv is an optimal solution to A2. Thus we conclude that ),( ** xv is an optimal 

solution to A3.  

To establish the reverse implication, suppose ),( ** xv is an optimal solution to A3. 

By Lemma 3.2.1.1, we have that ),( ** xv is a feasible solution to A2. To obtain a 

contradiction, suppose that ),( ** xv is not an optimal to A2. Then there is another 

feasible solution ),( *
2

*
2 xv of A2 such that .*

2
* vv <  Since the feasible region of A2 is a 
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subset of the feasible region of A3, it follows that ),( *
2

*
2 xv is a feasible solution to A3 

such that .*
2

* vv <  This inequality is a contradiction because ),( ** xv is an optimal solution 

to A3. Thus we obtain that ),( ** xv is an optimal solution to A2.  

The next two corollaries follow immediately. 

 

Corollary 3.2.1.3. For ,: RBAf →×  an equivalent scalarization for the maximin 

problem ),(minmax yx
yx

f
mn RBRA ⊂∈⊂∈

is  

.
,

),,(s.t.
max

,

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈⊂∈
∈∀≤

RvRA
Bfv

v

n

v

x
yyx

x

 

 

Corollary 3.2.1.4. For RAfi →: for all ni ,...,1∈ for a fixed positive integer n, an 

equivalent scalarization for the discrete maximin problem,
{ }

{ })(,...,)(minmax 1,...,1
xx

x
nniRA

ff
n ∈⊂∈

is  

.

,
)(

)(s.t.
max

1

,

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈⊂∈
≤

≤

RvRA
fv

fv
v

n
n

v

x
x

x
x

M  

It should be noted that the scalar equivalence for the discrete maximin of 

Corollary 3.2.1.4 has been used extensively and referred to in [6], [17], and [18], among 

numerous places, with either no valid reference or else by referring to the proof of  
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Dantzig [19] for the linear case using the duality theory of linear programming. Proofs 

for the nonlinear and general maximin cases have not been found in the literature.  

 

Example 3.2.1.5. Consider the following maximin problem.
  

{ }xxfxxf
Rx

−==
∈

)(,)(minmax 21                                               

 

Figure 3.1 The graph of maximin Example 3.2.1.5. 

It is analytically difficult to solve such a maximin problem directly as a maximization 

problem with a discontinuous objective function. Algorithms to do so have been 

developed in [17], [20], and [21]). However, a graphical interpretation of Figure 3.1 

shows that 0* =x is the unique solution, as does the scalar equivalence 

.

,

s.t.
max

,

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
−≤
≤

Rxv
xv

xv
v

xv

 

 

 

3.2.2. Pareto Maximization 

For Pareto optimization with m-dimensional objective functions, where m is a 

positive integer, Corley [15] provided a scalar equivalence to the problem without 
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assumptions such as convexity or concavity. The Corley method, as it is called in [2] 

and [6], allows us to obtain all solutions and only solutions for a given Pareto via 

solving a family of parameterized scalar problems. We restate the scalar equivalence as 

follows.  

1

1

max ( ( ),..., ( ))

s.t. ( ( ),..., ( ))
n m

A R

m

f f

f f C

λ
∈ ⊂

⋅⎧ ⎫⎪ ⎪
⎨ ⎬

− ∈⎪ ⎪⎩ ⎭
x

x x

x x y
for all ,mR∈y where C is a pointed convex cone in

mR , and { }}{\,0: 0cc CRC m ∈∀>⋅∈=∈ + λλλ  for given positive integers n, and m.   

 

Example  3.2.2.1. Consider the following Pareto problem  

1 2
1 2,

1 2

1 2

Vmax ( , )

s.t. 1 .
, 0

x x
x x

x x
x x

⎧ ⎫
⎪ ⎪⎪ ⎪+ ≤⎨ ⎬
⎪ ⎪≥⎪ ⎪⎩ ⎭

 

 

Figure 3.2 Pareto frontier of Example 3.2.2.1. 

Figure 3.2 shows the set of all solutions for the Pareto problem as well as the Pareto 

frontier. Again, our approach is to solve the Pareto maximization by solving its 

equivalent scalarization 
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:),( 21 yyP ,

0,
1

s.t.

max

21

21

22

11

21, 21

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥
≤+

≥
≥

+

xx
xx

yx
yx

xx
xx

 for all 1 2, .y y R∈  

To illustrate the parameterization, choose 1 2
1 1,  and .
2 2

y y= =  Then solving the problem

1 1( , )
2 2

P gives 1 1( *, *) ( , ).
2 2

x y =
 
In theory we can similarly obtain all solutions of the 

Pareto problem, by solving ),( 21 yyP for all feasible choices of 1y and .2y  In practice, a 

reasonable number of such solutions will approximate the Pareto frontier. 

 

Remark 3.2.2.2. Refer to Example 3.2.2.1, where an optimal solution of the 

scalarization problem ),( 21 yyP for parameters 1y and 2y is only one solution of the given 

Pareto maximization. Any other solution of the Pareto maximin problem can be also 

achieved by solving ),( 21 yyP for suitable parameters 1y and .2y In summary, we 

theoretically obtain all solutions and only solutions for the Pareto maximization 

problem by solving a collection of the problems ),( 21 yyP for all possible values of 1y

and .2y  
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3.2.3. Set-Valued Maximization 

We next establish a scalar equivalence for set-valued maximization. Denote the 

general set-valued maximization as B1. A scalar equivalence is presented in B2 for a 

convex, pointed cone .nRC ⊂  

 
B1:  )(max x

x
F

mRA⊂∈
 

      

B2(w):  

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈∈

∈−
∈

nRA
C

F
l

tx
wt

xt
t

tx

,

)(
)(max

,

  for andl C +∈ all .nR∈w  

 
To ensure the existence of a linear functional l in the dual cone ,+C  we usually assume 

that C is pointed and satisfies the conditions of Theorem 2.5.18 because of Remark 

2.5.19.    

 

Lemma 3.2.3.1. If the problem B2(w) has a solution for some ,nR∈w the problem B1 

has a solution as well. 

Proof. Suppose the problem B2(w), where ,nR∈w has a solution. Let ),( 22 tx be a 

solution of B2(w). By feasibility, we have )( 22 xt F∈ and .2tw C≤  To obtain a 

contradiction, suppose that the set )(max AF is an empty set. Then there exists A∈1x  

and )( 11 xt F∈ for which ,12 tt C< otherwise ).(max2 AF∈t From the convexity of C, we 

have that 2tw C≤ and 12 tt C< implies ,1tw C≤ so ),( 11 tx is feasible to B2(w). However, 

since ,12 tt C< by Lemma 2.5.17 we have )()( 12 tt ll < in contradiction to the optimality 

of ).,( 22 tx  
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Theorem 3.2.3.2. If 1x solves B1, then ),( 11 tx  is a solution of B2(w) for 

).(max)( 11 AFF ∩∈= xtw  

Proof. Assume that 1x solves P1. Then, there exists ).(max)( 11 AFF C∩∈ xt We observe 

that ),( 11 tx is a feasible solution of ).(2 1tB Now let ),( 22 tx be any feasible solution to

).(2 1tB Therefore it follows that )()( 22 AFF ⊂∈ xt and .12 C∈− tt  However, this 

conclusion contradicts with )(max1 AFC∈t unless .12 tt = Thus, every feasible solution 

of )(2 1tB is also a solution. Since ),( 11 tx is a feasible solution of ),(2 1tB  then, it solves

).(2 1tB  

 

Theorem 3.2.3.3. If ),( 22 tx solves B2(w) for ,nR∈w then 2x is a solution of B1. 

Proof. Assume that ),( 22 tx solves B2(w) for .nR∈w To obtain a contradiction, suppose 

that 2x does not solve B1, i.e., .)(max)( 2 φ=∩ AFF x  By Lemma 3.2.1.1, there exist a 

solution 1x of B1 and a vector )( 11 xt F∈ such that { }.\21 0tt C∈−  Since ),( 22 tx is 

feasible to B2(w), we have .2 C∈−wt  It follows that C∈−wt1 because of the 

convexity of C, so ),( 11 tx is feasible to B2(w).  However, by Lemma 2.5.17, 

)()( 12 tt ll < in contradiction to the optimality of ).,( 22 tx  

 

Example 3.2.3.4. Recall the set-valued maximization problem in Example 2.7.2. with 

the problem  

),(max x
x

F
A∈

where 2
2121 ],0[],0[),( RxxxxF ⊂×= for ],1,0[, 21 ∈xx  
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{ } . and ,0,,1:),( 22
212121 ≥=⊂≥≤+= RCRxxxxxxA  

The equivalent scalarization for this problem is  

1 2 1 2
1 2, , ,

1 2 1 2

1 1
1 2

2 2

1 2

1 2 1 2

max ( )

s.t. ( , ) ( , )

( , ) :

1
, , ,

x x t t
l t t

t t F x x
t wB w w
t w

x x
t t x x R

= +⎧ ⎫
⎪ ⎪
⎪ ⎪∈
⎪ ⎪⎪ ⎪≥
⎨ ⎬

≥⎪ ⎪
⎪ ⎪+ ≤⎪ ⎪
⎪ ⎪∈⎩ ⎭

t

 

for all 1 2, .w w R∈  

In order to obtain all solutions and only solutions of the set-valued maximization, we 

can theoretically solve the problem ),( 21 wwB for all feasible choices of ., 21 ww  For 

3
2,

3
1

21 == ww , the problem 1 2( , )
3 3

P gives that )
3
2,

3
1,

3
2,

3
1( *

2
*
1

*
2

*
1 ==== ttxx is a 

solution for the set-valued problem. Again, in practice a large number of such solutions 

will approximate the Pareto frontier. 

 

Remark 3.2.3.5. An alternate scalarization for set-valued maximization has been 

proposed in [22]. However, the approach there requires assumptions regarding 

convexity and concavity. In addition, another scalarization to set-valued optimization is 

proposed in [23], but only certain solutions can be obtained.    

 

3.2.4. Cone-Ordered Maximization 

Let C be a convex cone in nR . The cone-ordered maximization is stated as C1. 

We propose a scalar equivalence to C1 and denote it as C2. 
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C1:   
nRA
fC

⊂∈x
x)( max        C2(w):  ,)(s.t.

))((max

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⊂∈
∈−

nRA
Cf

fl

x
wx
x

x
where l C+∈  for all nR∈w  

Here again, in addition to the assumption that the cone C is pointed and convex, 

we must usually assume that the cone C satisfies the conditions to Theorem 2.5.18  to 

ensure the existence of a linear functional l in the dual cone .C +  

 

Theorem 3.2.4.1. If 1x is a solution of C1, then 1x solves C2(w) for ).( 1xw f=  

 Proof. Assume that 1x solves C1. By the choice ),( 1xw f= we know that 1x is a feasible 

solution to )).((2 1xfC  Let 2x  be any feasible solution to )).((2 1xfC We therefore have 

.)()( 12 Cff ∈− xx Since 1x solves C1, the only possibility is that ),()( 12 xx ff = so every 

feasible point of ))((2 1xfC is a solution as well. Since 1x is a feasible to )),((2 1xfC it 

solves )).((2 1xfC  

 

Theorem 3.2.4.2. If 2x solves C2(w) for ,nR∈w then 2x is a solution of C1. 

Proof. Assume that 2x solves C2 for some w. To obtain a contradiction, suppose that 2x

does not solve C1. Then there exists A∈1x such that ),()( 12 xx ff C< i.e., 

{ }.\)()( 21 0xx Cff ∈−  It follows that 1x is a feasible solution of C2(w). Since l is a 

strictly positive linear functional on C, we have .0))()(( 21 >− xx ffl  The linearity of l 

now yields that .0))()(())(())(( 2121 >−=− xxxx fflflfl  Thus ))(())(( 21 xx flfl > in 

contradiction to the optimality of .2x  
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As mentioned in Remark 2.5.20, the dual cone φ=+L  for the lexicographic 

cone L in .nR  Thus we cannot we cannot use Theorems 3.2.4.1 and 3.2.4.2 to construct 

an equivalent scalarization for lexicographic optimization. However, lexicographic 

maximization can be scalarizable via another way as illustrated in the following 

example.  

 

Example 3.2.4.3 (Scalarization for lexicographic maximization).  

Consider the lexicographic maximization  

1 2 3Leximax ( ( ), ( ), ( ))

s.t. n

f f f

A R

⎧ ⎫⎪ ⎪
⎨ ⎬

∈ ⊂⎪ ⎪⎩ ⎭
x

x x x

x  
where RRf n

i →: for 1, 2,3.i =  

This problem can be solved in stages corresponding to the objective functions.  

Step 1: Solve )(max 1 x
x

f
A∈

and denote *
1f the optimal objective value of this problem. 

Step 2: Solve 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
=
A

ff

f

x
x

x
x

*
11

2

)(s.t.

)(max

and denote *
2f the optimal objective value of this 

problem. 

Step 3: Solve .
)(
)(s.t.

)(max

*
22

*
11

3

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
=
=

A
ff
ff

f

x
x
x

x
x

 

Solutions from the scalar problem in Step 3 are solutions for the given lexicographic 

maximization and vice versa. Thus the maximization problem in Step 3 is an equivalent 

multiple-stage scalarization for the given lexicographic maximization. The sequence of 
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steps is critical. While the above three steps involve real-valued maximizations, we 

have defined a scalar equivalence as a single-stage scalarization. In section 3.3.7, we 

collapse the above three stages into a Pareto maximization, which then yields a single-

stage scalar equivalence for lexicographic maximization. Details about a more general 

lexicographic problem can be found in [2]. 

We summarize our previous results by noting that maximin problems, Pareto 

maximization, cone-ordered maximization, and set-valued maximization all have 

equivalent scalarizations. These results are summarized in Figure 3.3.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Scalar equivalence diagram. 

The results of sections 3.2.1 - 3.2.4 demonstrate that all standard non-scalar 

optimization criteria can be scalarizable. We next claim that the equivalent scalarization 

of a standard criterion can be formulated in terms of the equivalent scalarization of any 
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other criterion. Rather than confirm all the cases of this claim, we illustrate the proofs in 

section 3.2.5 by showing the equivalent scalarization of maximin is equivalent to the 

equivalent scalarization of Pareto maximization.  

 

3.2.5. An Example of the Scalar Equivalence of Criteria 

We now indicate how the equivalence between two different criteria can be 

established via their equivalent scalarizations. Again, however, we show this fact only 

for the equivalent scalarizations of maximin problems and Pareto maximization. 

 

3.2.5.1. Maximin Scalarization as Pareto Scalarization 

Let the problem D1 below be the equivalent scalarization to a given maximin 

problem.  

D1: 

,

1

max

s.t. ( )

( )
,

v

n
n

v

v f

v f
A R v R

⎧ ⎫
⎪ ⎪

≤⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪

≤⎪ ⎪
⎪ ⎪∈ ⊂ ∈⎩ ⎭

x

x

x
x

M

 

where RRf n
i →: for 1,...,i n= . 

We write D1 as the equivalent scalarization D2 below of Pareto maximization. For  

,,...,1 ni =  let  
i

i
vvg
λ

=),(x  for all nRA⊂∈x and ,Rv∈ where 0>iλ and .1
1

=∑
=

n

i
iλ  

Define }1 osolution t feasible a is ),(:),{( 1
1 DvRvA n xx +∈= , so the set 1A is exactly the 

feasible region of D1. Now an equivalent scalarization for Pareto maximization of the 

n-objective function of ),...,( 1 ngg is given below as D2. 
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1 1,

1 1
1

1

1

max ( , ) ... ( , )

s.t. ( , )

2( ,..., ) :

( , )

( , )

n nv

n

n n
n

g v g v

vg v y

D y y

vg v y

v A

λ λ

λ

λ

+ +⎧ ⎫
⎪ ⎪
⎪ ⎪= ≥⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪= ≥
⎪ ⎪
⎪ ⎪

∈⎩ ⎭

x
x x

x

x

x

M

 

for all Ryy n ∈,...,1 . 

 

Theorem 3.2.5.1.1. If *)*,( vx solves D1, then *)*,( vx solves D2 for
i

i n
vy
λ
*

= for all 

.,...,1 ni =                         

Proof. Assume that *)*,( vx solves D1. According to the feasibility of *),*,( vx we also 

have .*)*,( 1Av ∈x Moreover, we have ii y
n
vvg ==
λ
**)*,(x for all .,...,1 ni = This 

conclusion implies that *)*,( vx  is a feasible solution to ).,...,(2 1 nyyD  To obtain a 

contradiction, suppose that *)*,( vx does not solve ).,...,(2 1 nyyD  Then there exists 

another feasible solution ),( 11 vx to ),...,(2 1 nyyD such that      

.*...),(...),( 1
1

1

1
1111111 vv

n
v

n
vvgvg

n
nnn >=⋅++⋅=++

λ
λ

λ
λλλ xx  

Since ,),( 111 Av ∈x then ),( 11 vx is feasible to D1. But this contradicts that *)*,( vx is an 

optimal solution of D1.  

 

Theorem 3.2.5.1.2. If *)*,( vx  solves ),...,(2 1 nyyD  for parameters ,,...,1 Ryy n ∈  then  

*)*,( vx solves D1. 
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Proof. Assume that *)*,( vx solves ).,...,(2 1 nyyD  As a member of ,1A the solution *)*,( vx  

of ),...,(2 1 nyyD is also a feasible solution to D1. To obtain a contradiction, suppose that 

*)*,( vx does not solve D1. Then there exists another feasible solution ),( 11 vx to D1 such 

that .* 1vv < Next we will show that ),( 11 vx is a feasible solution to ).,...,(2 1 nyyD  With 

the feasibility to D1, we have .),( 111 Av ∈x In addition, because 1*v v< the conditions  

1
1

1 1

1

*

*
n

n n

v v y
n n

v v y
n n

λ λ

λ λ

⎧ ≥ ≥⎪
⎪⎪
⎨
⎪
⎪ ≥ ≥
⎪⎩

M  

hold. Thus ),( 11 vx is a feasible solution to ).,...,(2 1 nyyD However, we also have 

*...),(...),( 1
1

1

1
1111111 vv

n
v

n
vvgvg

n
nnn >=⋅++⋅=++

λ
λ

λ
λλλ xx  

in contradiction to the optimality of *)*,( vx .  

 

3.2.5.2 Pareto Scalarization as Maximin Scalarization  

Let RRf m
i →: for 1,..., ,i n= where n is a positive integer. We write E1 below 

as the equivalent scalarization of [15] for Pareto maximization.  

1 1

1 1

1

1

max ( ) ... ( )

s.t. ( )
1( ,..., ) :

( )

n n

n

n n
m

f f

f y
E y y

f y
A R

λ λ+ +⎧ ⎫
⎪ ⎪

≥⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪≥⎪ ⎪
⎪ ⎪∈ ⊂⎩ ⎭

x
x x

x

x
x

M

 

for all 1,..., ny y R∈ . 
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Define { }),...,(1 osolution t feasible a is :),...,( 1112 nn yyEAyyA xx∈= for 

Ryy n ∈,...,1 . Obviously, the set ),...,( 12 nyyA is the set of feasible solutions of

),...,(1 1 nyyE for .,...,1 Ryy n ∈  Consider the following n functions    

,)()(
1

1 ∑
=

=
n

i
ii fg xx λ ∑

=

+=
n

i
ii fg

1
2 ,2)()( xx λ …, ,)()(

1
∑
=

+=
n

i
iin nfg xx λ  

for all ).,...,( 1 nyyA∈x  

Notice that )()(...)()( 121 xxxx nn gggg <<<< − for all ).,...,( 1 nyyA∈x  Write the 

equivalent scalarization ),...,(2 1 nyyE below of the maximin of the ).(),...,(1 xx ngg  

,

1

1

2 1

max

s.t. ( )
2( ,..., ) :

( )
( ,..., ),

v

n

n

n

v

v g
E y y

v g
A y y v R

⎧ ⎫
⎪ ⎪

≤⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪≤⎪ ⎪
⎪ ⎪∈ ∈⎩ ⎭

x

x

x
x

M  for all Ryy n ∈,...,1  

The following result is true by definition. 

 

Theorem 3.2.5.2.1. If *x solves ),...,(1 1 nyyE for parameters ,,...,1 Ryy n ∈  then 

*))(**,( 1 xx gv =  solves ).,...,(2 1 nyyE  Moreover, if *)*,( vx solves ),...,(2 1 nyyE for 

parameters ,,...,1 Ryy n ∈  then *x solves ).,...,(1 1 nyyE  

 

In the following Sections 3.3, we directly establish equivalences between the 

standard optimization criteria.  
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3.3. Direct Equivalence between Two Different Criteria 

We establish the equivalence between discrete maximin problem and Pareto 

maximization problem, continuous maximin problem and Pareto maximization, goal 

programming and Pareto maximization, Lexicographic maximization and Pareto 

maximization as well as set-valued maximization and cone-ordered maximization. 

 

3.3.1. Maximin as Pareto Maximization 

Let H1 denote a given maximin problem, where 

{ })(),...,(),(min)( 21 xxxx nfffg =  for all mR∈x and RRf m
i →: for all ni ,...,1= for a 

given positive integer n.  

 
 

H1: )(max x
x

g
mRA⊂∈

 

 

 

H2:
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈∈
=

RvA
gv
v

v

,
)(s.t.

max
,

x
x

x

 

 

H3: 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈∈
≤

≤

RvA
fv

fv
vvv

n

,v

,
)(

)(s.t.
),...,,(Vmax

1

x
x

x
x

M  

 
The problem H2 is obviously equivalent to H1. Moreover, H3 is obviously equivalent to 

H2 because the objective function of H3 is just a replication of the objective function of 

H2. Obviously any single optimization of a real-valued function can be transformed an 

equivalent Pareto optimization in this way.  

 

Example 3.3.1.1. Recall the maximin problem in Example 3.2.15. It was 

{ }1 2max min ( ) , ( ) ,
x R

f x x f x x
∈

= = − with solution is .0* =x We can solve this same 

problem as the Pareto problem 
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,
Vmax ( , )

s.t.

,

x v
v v

v x
v x
x v R

⎧ ⎫
⎪ ⎪
⎪ ⎪≤
⎨ ⎬

≤ −⎪ ⎪
⎪ ⎪∈⎩ ⎭

 

to obtain * 0x = again. 

 

3.3.2. Pareto Maximization as Maximin 

Consider the following problems K1 and K2:  

 
 
 
K1: ))(,),((Vmax 1 xx

x
n

RA
ff

m
L

⊂∈
 K2:

1

1 1

max ( ) ... ( )

s.t. ( )
.

( )

n

n n

f f

f y

f y
A

+ +⎧ ⎫
⎪ ⎪

≥⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪≥⎪ ⎪
⎪ ⎪∈⎩ ⎭

x
x x

x

x
x

M  

for all 1 2, ,..., .ny y y R∈  
 

K1 is a given Pareto maximization problem, and the problem K2 represents an 

equivalent scalarization as in [15]. Consider now the maximin equivalence K3 of K2 

K3:

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈
≥

≥
⎭
⎬
⎫

⎩
⎨
⎧

−++ ∑∑∑
===

A
yf

yf

nfff

nn

n

j
j

n

j
j

n

j
j

x
x

x

xxx
x

)(

)(s.t.

)1()(,...,1)(,)(minmax

11

111

M
 for all 1 2, ,..., .ny y y R∈   

Since the value of ,)()(,...,2)(,)(min
1111
∑∑∑∑
====

=
⎭
⎬
⎫

⎩
⎨
⎧

++
n

j
j

n

j
j

n

j
j

n

j
j fnfff xxxx problem K3 is 

obviously equivalent to K2. Therefore, we can solve K3 instead of K2. Thus Pareto 
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maximization and maximin problem are equivalent. In Section 3.3.4. and 3.3.5., we 

consider the more general maximin formulation. 

 

Example 3.3.2.1. Recall the Pareto maximization in Example 3.2.2.1.  

.
0,
1s.t.

),(Vmax

21

21

21, 21

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≥
≤+

xx
xx

xx
xx

                                                              

 

Figure 3.4 The set of Pareto maxima. 

Figure 3.4 shows the set of all solutions of the Pareto maximization. By the above 

construction, we are also able to solve the Pareto maximization with the maximin 

problem 

{ }

,

0,
1

s.t.

1)(,minmax

:),(

21

21

22

11

2121,

21

21

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥
≤+

≥
≥

+++

xx
xx

yx
yx

xxxx

yyK

xx

for all 1 2, .y y R∈  

For example, select 
3
2,

3
1

21 == yy and solve the associated problem corresponding to 

these parameters. Then )
3
2*,

3
1*( 21 == xx solves the problem. This solution is only a 

single solution of the Pareto maximization problem. To obtain all solutions and only 
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solutions of the Pareto problem, we can theoretically solve the maximin problem

),( 21 yyK for all choices of 1y and .2y In practice, again, we need only solve a sufficient 

number to illustrate the Pareto frontier. 

 

3.3.3. General Maximin as Pareto Maximization   

Consider the problems L1, L2, and L3, where  

 
 
       L1: )(max x

x
g

nRA⊂∈
 

 

 

L2:
⎪
⎭
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Here L1 is the general maximin problem, ),(min)(
)(

yxx
xy

fg
YB ⊂∈

= for all ,nR∈x  and

.: RRRf mn →×  Problem L2 is obviously equivalent to L1. But L3 is also obviously 

equivalent to L2 because the objective function of L3 is just duplicating the objective 

function of L2 into a two-objective function Pareto maximization. 

 

3.3.4. Pareto Maximization as General Maximin 

For the Pareto problem M1, M2 represents its scalar equivalence from [15].  

 

))(,),((Vmax
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1 xx
x

n
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M for .,...,, 21 Ryyy n ∈  
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Define RR =)(x for all A∈x and 2

1

)(),( yfyg
n

j
j +=∑

=

xx for Ax∈ and .)( RRy =∈ x  Then 

the maximin problem M3 below is equivalent to M2. 

( )

1 1

max min ( , )

s.t. ( )
3 :

( )

y RA

n n

g y

f y
M

f y
A

∈∈
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⎨ ⎬
⎪ ⎪
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xx
x

x
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M

 

for all 1 2, ,..., .ny y y R∈  

It is obvious that for each ,A∈x ∑∑
==

∈
=+

n

j
j

n

j
jRy

fyf
11

2 ),())((min xx so the equivalence 

follows. We thus conclude that Pareto maximization and general maximin optimization 

are equivalent. 

 

3.3.5. Goal Programming as Pareto Maximization  

It suffices to show that we can solve any given Pareto maximization with a two-

objective function by solving a goal programming. For a Pareto maximization with 

three or more objective functions, the same technique applies as we show by example.                                 

The problem N1 below denotes a given Pareto maximization with two objective 

functions and N2 the equivalence of N1 in term of goal programming. 

 N1:
 

))(),((Vmax 21 xx
x

ff
A∈
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N2: 

1 2 3 4
1 1 2 2

, , , ,

1 1

2 2

3 3

4 4

1 2 3 4

Vmin ( , , , )

s.t. ( ) 0
( ) 0
( ) 0
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s s s s
s s s s

g s
g s
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where 

 

 

 

 

 

 

Theorem 3.3.5.1. If *x  solves N1, then ),,,*,( 4321
−+−+ ssssx  solve N2,   where      

*),(11 xgs =+ *).( and *),(*),( 443322 xxx gsgsgs −==−= −+−  

Proof. Let *x solves N1. To obtain a contradiction, suppose ),,,*,( 4321
−+−+ ssssx does not 

solve N2. By construction, we have ),,*,( 221
+−− sssx is feasible to N2. There exists a 

feasible solution )ˆ,ˆ,ˆ,ˆ,ˆ( 4321
−+−+ ssssx to N2 such that −−++−−++ ≤≤≤≤ 44332211 ˆ,ˆ,ˆ,ˆ ssssssss and 

the strictly less than sign holds for at least one of them. Since ,ˆ A∈x it is a feasible 

solution to N1. Hence the following four conditions are satisfied with at least one of 

them holding with a strict inequality:  
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1 1 1 1
1 1

1 2 2 2 2 1

3 3 3 3
2 2

2 4 4 4 4 2

1 1ˆ ˆ(1) : ( ) ( *)
ˆ( ) ( *)

ˆ ˆ ˆ(2) : ( ) ( ) ( *) ( *)
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They are equivalent to the following conditions with at least one of them holding for a 

strict inequality:  
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in contradiction to *x solving N1, so the proof is complete.  

 

Theorem 3.3.5.2.  If ),,,*,( 4321
−+−+ ssssx solves N2, then *x solves N1. 

Proof. Assume that ),,,*,( 4321
−+−+ ssssx solve N2. To obtain a contradiction, suppose that

*x does not solve N1. Note that *x is a feasible solution to N1 because .* A∈x Then 

there exists A∈x̂ such that *)()ˆ( 11 xx ff ≥ and *)()ˆ( 22 xx ff ≥ where *)()ˆ( 11 xx ff > or 
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 where strict inequality holds at least once, so a contradiction 

is obtained to the fact that ),,,*,( 4321
−+−+ ssssx solves N2.  

 

Example 3.3.5.3.  Consider the following Pareto maximization with three objective 

functions 

1 2
1 2 2 1 1 3,

1 2 3

1 2 3

Vmax ( , , )
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x x
x x x x x x

x x x
x x x
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By our approach, we can solve the Pareto maximization with the following goal 

programming equivalence. 
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3.3.6. Goal Programming as Pareto Maximization  

Since we have defined a goal programming problem as a Pareto minimization 

problem, it can be solved by the Pareto maximization of the negative of the objective 

function in Pareto minimization. It thus follows that Pareto maximization and goal 

programming are equivalent. 
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3.3.7. Lexicographic Maximization as Pareto Maximization 

Let Q1 denote a given Lexicographic maximization. 
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The problem Q2 is obviously equivalent to Q1 by definition. Moreover, Q3 is 

obviously equivalent to Q2 because the objective function of Q3 is just replication of 

the objective function of Q2. 

 

3.3.8. Pareto Maximization as Lexicographic Maximization 

Let R1 denote a given Pareto maximization problem, and the problem R2 

represent an equivalent scalarization as in [15]. 
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Consider now the maximin equivalence R3 of R2 

1

1 1

Leximax ( , ( ) ... ( ))

s.t. ( )
3 :

( )

n

n n

c f f

f y
R

f y
A

+ +⎧ ⎫
⎪ ⎪

≥⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪≥⎪ ⎪
⎪ ⎪∈⎩ ⎭

x
x x

x

x
x

M  for all 1 2, ,..., .ny y y R∈  

Problem R3 is obviously equivalent to R2 by definition. It follows that we can solve R3 

instead of R2. Thus Pareto maximization and lexicographic maximization problems are 

equivalent. 

 

3.3.9. Set-Valued Maximization as Cone-Ordered Maximization 

Let problem P1 denote a set-valued maximization. We show that P1 is 

equivalent to the cone-ordered maximization P2, where C is a convex cone in nR . 

        

P1: )(max x
x

F
A∈

           
  P2:

max ( , )

s.t. ( , )
A

C

C f

f
∈

=⎧ ⎫⎪ ⎪
⎨ ⎬

= ≥⎪ ⎪⎩ ⎭
x

x y y

x y y w
for all ,nR∈w  

where yyx =),(f for all ).(, xyx FA ∈∈           

  

Theorem 3.3.9.1. If 1x solves P1 then we have that ),( 11 yx solves P2 for 1yw =  and 

).(max)( 11 AFF ∩∈ xy  

Proof.  Suppose 1x solves P1. Then there exists ).(max)( 11 AFF ∩∈ xy  Let ),( 22 yx  be 

any feasible solution of 2P where .1yw =  Then we have 1222 ),( yyyx Cf ≥= , which 
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contradicts the fact that 1y is non-dominated unless .12 yy = Thus any feasible solution of

)(2 1yP is also a solution of ).(2 1yP Since ),( 11 yx is feasible to ),(2 1yP it solves ).(2 1yP   

 

Theorem 3.3.9.2. If ),( 22 yx solves P2 for ,nR∈w  then 2x  is a solution to P1 and 

).(max)( 22 AFF Ixy ∈  

Proof. Assume that ),( 22 yx solves P2 for some .nR∈w  To obtain a contradiction, 

suppose that 2x does not solve P1, i.e., .)(max)( 2 φ=AFF Ix  Hence there must exist 

)(max)(max1 xy
x

FAF
A∈

=∈ U such that 12 yy C< . In particular, there is an element 1x in 

A such that ).( 11 xy F∈  Since 12 yyw CC <≤ and ,1 A∈x with convexity of C, we have

),( 11 yx is feasible to P2(w). However, since ,12 yy C< then ),( 22 yx does not solve 

P2(w), contradicting the optimality of ).,( 22 yx  

 

3.3.10. Cone-Ordered Maximization as Set-Valued Maximization 

To solve the given cone-ordered maximization as a set-valued maximization, we 

simply define the objective value of the set-valued maximization to be a singleton set 

containing only the objective value of the given cone-order maximization.  Thus we 

conclude that cone-ordered maximization and set-valued maximization are equivalent. 

 

Example 3.3.10.1. Given any cone optimization ),(max x
x

fC
mRA⊂∈

where nm RR , are real 

vector spaces and ,: nm RRAf →⊂  define
nRAF 2: → by { })()( xx fF =  for all .A∈x  
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Then the set-valued optimization )(max x
x

F
A

C
∈

is equivalent to the cone maximization,

).(max x
x

fC
mRA⊂∈

 

 

3.4. Summary of all equivalent results 

Having shown that different optimization criteria are directly equivalent, we 

summarize our previous results.  

 

 

 

 

 

Figure 3.5 Equivalent scalarization summary. 
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Figure 3.6 Criterion equivalence summary. 
 

Figure 3.6 depicts our result that all standard non-scalar optimization criteria can 

be scalarized. Moreover, the equivalent scalarization of any such criterion can be 

formulated as the equivalent scalarization of any other. All solutions and only solutions 

of any optimization problem involving a standard criterion can be obtained by solving 

an optimization problem involving any other criterion. 
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CHAPTER 4 

GENERALIZATION AND AXIOMATIZATION  

OF OPTIMIZATION CRITERIA 

  

In this chapter an abstract definition of optimization problem is given under a 

more general concept of preferences. Moreover, a set of axioms for general   

optimization criteria is proposed, and an equivalent scalarization of a general 

optimization criterion is presented. Examples of optimization criteria are then provided. 

These include both the standard optimization criteria, as well as two new optimization 

criteria with applications. Finally, a counterexample is presented, an example of 

decision rule that does not satisfy our axioms.    

 

4.1. Preference Orders 

 To justify one’s preference in quantitative intuition, typically one uses the notion 

of an order. In the previous chapters, we defined orders involving existing standard 

optimization problems by using cones in vector spaces, for example. Now, without 

using cones, we invoke more general orders that subsume all previous ones as special 

cases. 
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4.1.1. Preferences for Vectors 

Define a binary relation strictly order p  on nR  with the requirement:  

Not ., nR∈∀yyy p  

Next define an order relation =p  such that  

.or  either  if ,  where 21212121 yyyyyyyy =∈= pp nR  

The order =p  is called a preference order. In this definition, the strict relation 21 yy p

may not exist. However 21 yy =p can be defined whenever .21 yy =  We say that 2y is 

more preferred than or equal to 1y whenever .21 yy =p  Moreover, if 2y is more preferred 

than 1y , this fact is represented by .21 yy p   

 

4.1.2. Preferences for Sets 

We now extend the concept of preference from a comparison of vectors to one 

of sets. Let ., nRBA ⊂ We consider three different types of comparison between sets A 

and B. 

1. BA u
=p if and only if .,, baba =∈∃∈∀ pBA   

2. BA l
=p if and only if .,, baab =∈∃∈∀ pAB  

3.  BA=p if and only if .,, baba =∈∀∈∀ pBA  
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Notice that the order involving the preference relations here refers to the preference 

order =p , which is more general than an order induced by a cone. For further information 

on ordering sets by cones, see [24 - 27].  

 

4.2. General Optimization Criteria (GOC) 

In this section, we define a general optimization problem on a preference order 

as the problem of seeking all feasible variables for which there are no more preferable 

choices of objective function values among the feasible variables 

 

4.2.1. Optimality Notion 

Given a preference order =p  on nR and ,, 21
nR∈yy  we say that 2y dominates 1y  

if 21 yy =p  and .21 yy ≠ A vector nRA⊂∈1y is said to be non-dominated in A if there 

is no A∈2y such that 21 yy =p and .21 yy ≠  Denote the set Aopt  as the set containing 

all non-dominated vectors in A with respect to the preference order .=p  

A subset A of nR is said to be partially bounded if it contains at least one non-

dominated vector. A subset A of nR  is said to be totally bounded if all chains in A 

containing any vector nRA⊂∈y  have non-dominated vectors. Notice that totally 

bounded implies partially bounded, but the converse is not necessarily true. In 

addition, if nRBA ⊂⊂ and B is totally bounded then BA u
=p and BA l

=p are true by 

definition. 
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4.2.2. Problem Statement 

Consider the following general optimization problem.  

,
 .s.t 

)( opt

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⊂∈ mRA

f

x

x
x  

where .: nm RRf →  Let nR  have a preference order =p . The function f is called the 

objective function of the problem. We seek a vector mRA ⊂∈*x for which there is no 

vector A∈x such that ),(*)( xx ff p  or equivalently that )(*)( xx ff =p and ).(*)( xx ff ≠  

Such an mRA ⊂∈*x is called an optimal solution to the problem. Denote )(opt Af as 

the set of all optimal objective values, which could be empty.  

 

Example 4.2.2.1. The cone-ordered maximization, ),(max x
x

fC
A∈

where nm RRf →: and
 

,nRA⊂  is a special case of the general optimization problem where the preference 

order is .C≤  

 

4.2.3. Axioms for General Optimization Criteria 

 Given any optimization problem in nR , “opt” is considered to be a ( =p ) 

optimization criterion on nR  if the problem satisfies the following two axioms. 

 

Axiom 1: Axiom of Partial Order (APO). 

The preference order =p  is a partial order. 
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Axiom 2: Axiom of Scalarizability Property (ASP).  

Any such optimization problem has an equivalent scalarization. 

 

4.2.4. Discussion of Axioms 

 Reasons for choosing Axioms 1 and 2 are now given. It should be noted that the 

goal of these axioms is to provide a consistent framework for making best decisions. In 

practice, people may make preference decisions using methods not satisfying our 

axioms. However, such methods will not regarded as optimization criteria according to 

our general definition. The goal here is to provide a consistent but flexible decision 

making framework that yields identical optimal decisions in identical situations for a 

large class of applications.    

 

4.2.4.1. Axiom of Partial Order (APO) 

No decision choice should be preferred more or less than itself; i.e., xx p . In 

other words, the preference order for a decision should have the reflexive property of a 

partial order. As for the antisymmetric and transitive properties, the following examples 

illustrate the difficulty of making a reasonable choice without them.   

 

Example 4.2.4.1.1. Consider the relation order =p  on the set {3, 5} with 3=3, 5=5, 

53 p  and 35 p . This order lacks the antisymmetric property because 3 does not 

identically equal 5. Also, it is not logical to have 53 p and 35 p  in the same time for a 

decision maker. Moreover, there is no “best” value or values to choose, though each 
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value is compared to each value. Hence, the antisymmetric property seems to be a 

reasonable requirement.          

 

Example 4.2.4.1.2. Consider the relation order =p  on the set of {5, 8, 10} with 5=5, 

8=8, 10=10, 85 p , 108 p , and 510 p . This order lacks transitivity because 5 is 

“better” than 10. Again, there is no best value or values to choose. In this case, the 

reason is that 8 is “better” than 5, 10 is “better” than 8, but 5 is “better” than 10. A 

decision maker using such a preference order would be inconsistent. Actually such 

intransitivity can occur in elections. A voter may prefer candidate A to B, B to C, and C 

to A. The difficulty is that if a selection were conducted by successive pairwise 

comparison, then a different “best” candidate would be chosen for different pairwise 

comparisons. In other words, the simultaneous comparisons of candidates should give 

the same result as sequential pairwise comparisons in a decision framework that 

purports to select a “best” solution. So transitivity is needed for a preference order in an 

optimization criterion. Of course, decisions can be made without this property, but the 

term “optimal” cannot be applied according to our framework.  

 

4.2.4.2. Axiom of Scalarizability Property (ASP) 

 ASP is reasonable since one can always define a utility function on a set of 

choices. Furthermore, all standard criteria are scalarizable, so ASP seems a natural 

extension. The determining reason, though, was that we were unable to construct a 

problem of finding all maximal elements and only maximal elements of a constrained 
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function with respect to a partial order in nR  for which it could be proved that no scalar 

equivalence exists. On the other hand, we did construct such a problem for which no 

single equivalent scalarization was found.  

Recall that lexicographic maximization has both a multiple-stage scalarization 

and a single-stage one. Analogously, we constructed a problem in example 4.2.4.2.1 

below where multiple scalarizations could obtain all maximal elements and only 

maximal elements of a constrained function. However, no single real-valued 

maximization problem was discovered. To maintain the appealing requirement of an 

equivalent scalarization for a general criterion, ASP requires one. It remains an open 

question, though, whether there exists a constrained function in nR  without an 

equivalent scalarization with respect to some partial order. 

 

Example 4.2.4.2.1. (A family of maximizations with different objective functions). 

Let =p  be a partial order relation on .2R  For each ,2R∈x  we define a subset of 2R  to 

have x as the first element,  }.:{:),[)( 2 yxyxx =∈=→= pRI  For each 2R∈x , we create 

a collection )(xC containing all chains in )(xI  to have x as the first element as follows.  

Let { },:)()( )( xxxx ∧∈⊂= iIPC i  where x∧ is an index set, and )( xiP  has the 

following properties: 

1. ,or  ),(, 122121 yyyyxyy ==∈∀ ppiP  

2.  )(xx iP∈ . 
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According to Lemma 4.2.4.2.2 below, we have ).),((),(
)()(

2
2 ===

∈
∈

pUp x
xx

x
i

CP
R

PR

i  

In other 

words, ),( 2
=pR can be decomposed into an uncountable union of chains. 

 

Lemma 4.2.4.2.2. ).),((),(
)()(

2
2 ===

∧∈
∈
∈

pUp x

x

xx
x

i

i
CP
R

PR
i

 

Proof.  By the above construction, 2)()( RIPi ⊂⊂ xx for all ,2R∈x  ,x∧∈i  and 

).,()),(( 2

)()(
2 =⊂=

∧∈
∈
∈

ppU RPi

i
CP
R

i

x

x

xx
x

 For the converse,  let .2R∈y  Since )(yy iP∈ for all ,y∧∈i  

we have that ).()(
)()(

2
xyy

x

xx
x

i

i
CP
R

i PP
i

∧∈
∈
∈

⊂∈ U  We have ).(
)()(

2
2

x
xx

x
i

CP
R

PR

i ∈
∈

⊂ U

 

Let 2( , ) ( , );R∈ ≤x y

i.e., .yx=p  We have )),((),( ≤∈ xyx iP for some x∧∈i by definition. The conclusion now 

follows that ).),((),(
)()(

2
2 =⊂=

∧∈
∈
∈

pUp x

x

xx
x

i

i
CP
R

PR
i

 

 

Consider the following general optimization A1, for which “opt” may not 

represent an axiomatically formal optimization criterion.   

,
 .s.t 

)( opt
:1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⊂∈ mRA

f
A

x

x
x  where ,: 2RRf m → and 2R has a partial order .=p  

We construct a family of uncountable number of scalar maximizations as follows. 
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⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
∈

A
Pf

fl
A i

i

x
wx

xwx
)()(s.t.

))((max
:2 for all ,,2

ww ∧∈∈ iR and ilw  is a real-valued function 

mapping from 2R with the property that if )()( yx ff p for )()(),( wyx iPff ∈ for each

ww ∧∈∈ iR ,2 , then )).(())(( yx ww flfl ii <    

 

Theorem 4.2.4.2.3. If 0x solves A1 then 0x solves A2 for )( 0xw f= and for all .w∧∈i  

Proof. Assume that 0x solves A1. By the choice )( 0xw f= we know that 0x  is a feasible 

solution to A2 for )( 0xw f= and any .w∧∈i  Let 1x  be any feasible solution to A2 for

)( 0xw f= and .w∧∈i  Since 0x solves A1, the only possibility is that ),()( 01 xx ff = so 

every feasible point of )),((2 0 ifA x  is a solution as well. Since 0x is a feasible to

),),((2 0 ifS x it solves ).),((2 0 ifS x  

 

Theorem 4.2.4.2.4. If 0x solves A2 for nR∈w and any ,w∧∈i then 0x solves A1. 

Proof. Assume that 0x solves A2 for nR∈w and .w∧∈i To obtain a contradiction, suppose 

that ).(opt )( 0 Aff ∉x  Then there exists A∈1x such that ),()( 10 xx ff p otherwise 

).(opt )( 0 Aff ∈x  Since )()( 0 wx iPf ∈ and by the definition of ),(wiP  we also have 

that ).()( 1 wx iPf ∈ In another word, 1x is feasible to A2. Since ),()( 10 xx ff p  we have 

that ))(())(( 10 xx ww flfl ii < in contradiction to the optimality of .0x  
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Under the existence of ilw for all i∈∧w and ,2R∈w  problems A2 and A1are 

equivalent according to Theorems 4.2.4.2.3 and 4.2.4.2.4. All solutions and only 

solutions of A1 can be theoretically obtained by A2 and vice versa. The separability in 

the sense of Cantor of all chains )(wiP in 2R guarantees the existence of a strictly 

monotone function .ilw  However, the objective function ))(( xw fl i may obviously be 

different from ))(( xw fl j where w∧∈ji, , or different from ))(( xy fl i where y∧∈i for 

.,, 2R∈zyw  Therefore A2 is not considered as an equivalent scalarization of A1 since 

there is no common objective function for the family.  

 

4.2.5. Elimination of Axioms 

To find appropriate axioms for General Optimization Criteria (GOC), we 

investigated many potential properties of the standard optimization of chapter 2. Two 

ultimately eliminated but potential axioms are discussed in this section. One reasonable 

property is the domination property, in which a rational decision maker cannot gain less 

benefit with more choices. Another is the triangular inequality for optimization, stated 

below. We explain why such properties are not general enough to be axioms.  

 

4.2.5.1. Domination property  

We show that Axiom 1 (APO) implies the domination property.  

 



 

 59

Lemma 4.2.5.1.1. Let =p   be a partial order in nR  and nm RRf →: be an objective 

function for the general optimization problem ).( opt x
x

f
mRA⊂∈

 Then for any )(Af∈y

either  

1. *)(xy fC≤ for some optimal solution *x , or  

2. y  is in some unbounded chain in ).(Af  

Proof.  It suffices to show that if (2) is not true, then (1) is true. Assume that y  is in a 

bounded chain. Since the chain is bounded from above, the maximal element exists 

according to Lemma 2.5.11 (Zorn’s Lemma). Then by the definition of optimality, that 

maximal element equals *)(xf for some optimal solution .*x ■ 

 

Property 4.2.5.1.2 (domination property). Let A and B be subsets of mR such that 

BA⊂ and .: nm RRf → Assume that φ≠
∈

)(opt xf
Ax

and .)(opt φ≠
∈

Bf
Bx  

Then the following 

two statements are true.  

1. If )(Bf  is totally bounded with respect to =p  in nR then ).(opt)(opt Bfxf
B

u

A ∈∈
=

xx

p   

2. If )(Bf  is not totally bounded  with respect to =p  in nR then ).()(opt Bfxf u

A
=

∈

p
x

 

Proof. Let A and B are subsets of mR such that .BA⊂  Assume that φ≠
∈

)(opt xf
Ax

and

φ≠
∈

)(opt Bf
Bx

where .: nm RRf →  Consider the following 2 cases. 
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Case 1: )(Bf  is totally bounded. Let ).(opt)( Aff ∈x  Since A is a subset of B, 

we have ).()()(opt BfAfAf ⊂⊂ Therefore ).()( Bff ∈x By Lemma 4.2.5.1.1, there 

exists some optimal solution B∈*x such that *).()( xx ff =p  
Thus by definition 

).(opt)(opt BfAf u
=p  

Case 2: )(Bf  is not totally bounded. Since ),()()(opt BfAfAf ⊂⊂  then 

again by definition ).()(opt BfAf u
=p ■ 

 

4.2.5.2. Triangle inequality  

It is next shown that domination property for cone-ordered optimizations implies 

the triangle inequality. These properties are first stated in the cone-ordered setting. 

 

Property 4.2.5.2.1. (domination property for cone-ordered maximization). 

. and :  where),( max)( max BARRffCfC nm

RB

u
C

RA nn
⊂→≤

⊂∈⊂∈
xx

xx
 

 

Property 4.2.5.2.2. (triangle inequality for cone-ordered maximization). 

.:,  where),( Cmax)( Cmax))(( Cmax nm

RARA

u
C

RA
RRgfgfgf

mmm
→+≤+

⊂∈⊂∈⊂∈
xxx

xxx
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Lemma 4.2.5.2.3. Let nm RRgf →:, and mRS ⊂ then  

).(Cmax)(Cmax)]()([Cmax
),(

yxyx
yxyx

gfgf
SS

u
CSS ∈∈×∈

+≤+  

Proof. Let nm RRgf →:, and .mRS ⊂  Assume that )],()([maxsolves *)*,(
),(

yxyx
yx

gfC
SS

+
×∈

 

i.e., that )].()([max*)(*)(
),(

yxyx
yx

gfCgf
SS

+∈+
×∈  

We claim that the following two 

statements are true.    

(1). )(max*)( xx
x

fCf
S∈

∈
 

(2). ).(max*)( xy
x

gCg
S∈

∈  

To obtain (1) by a contradiction, suppose ).~(*)(,~ xxx ffS C<∈∃  Then 

)~(*)( 1 xcx ff =+ for some }.{\1 0c C∈  It now follows that  

*).()~(*)(*)( 1 yxcyx gfgf +=++  

In other words, *),()~(*)(*)( yxyx gfgf C +<+ an inequality that contradicts the 

optimality of *).*,( yx  Thus ).(max*)( xx
x

fCf
S∈

∈  

To obtain (2) by a contradiction, suppose ).~(*)(,~ yyy ggS C<∈∃ Then 

)~(*)( 2 ycy gg =+ for some }.{\2 0c C∈ It follows that  

).~(*)(*)(*)( 2 yxcyx gfgf +=++  

Therefore ),~(*)(*)(*)( yxyx gfgf C +<+  an inequality that contradicts the optimality 

of *).*,( yx  Thus ).(max*)( xx
x

gCg
S∈

∈             

From (1) and (2), we conclude that ).(Cmax)(Cmax*)(*)( yxyx
yx

gfgf
SS ∈∈

+∈+ ■ 
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Theorem 4.2.5.2.4. For a cone-ordered maximization, the domination property implies 

the triangle inequality.  

Proof. Assume the domination property holds. Let nm RRgf →:,  and mRS ⊂  be the 

feasible region of )(max x
x

fC
S∈

and ).(max x
x

gC
S∈  

Define RSSh →×: by 

)()(),( yxyx gfh += for all ., S∈yx  

Let { }.such that  ),( yxyx =×∈= SSL  Equivalently, }.),{( SSL
S

×∈=
∈

xx
x
U

 
It follows 

that .SSL ×⊂  Then by the domination property,  

)1().,(max),(max
),(),(

yxyx
yxyx

hChC
SS

u
CL ×∈∈

≤                                

Since yx = for any ,),( L∈yx )].()([max)]()([max
),(

xxyx
xyx

gfCgfC
SL

+=+
∈∈

 Therefore   

)2().,(max)]()([max)]()([max
),(),(

yxyxxx
yxyxx

hCgfCgfC
LLS ∈∈∈

=+=+  

But by definition 

)3()].()([Cmax),(Cmax
),(),(

yxyx
yxyx

gfh
SSSS

+=
×∈×∈

                              

Lemma 4.2.5.2.3 now gives  

)4().(Cmax)(Cmax)]()([Cmax
),(

yxyx
yxyx

gfgf
SS

u
CSS ∈∈×∈

+≤+               

Combining from (1-4) yields  

).(max)(max),(max),(max)]()([max
),(),(

yxyxyxxx
yxyxyxx

gCfChChCgfC
SS

u
CSS

u
CLS ∈∈×∈∈∈

+≤≤=+  

Hence ).(max)(max)]()([max yxxx
yxx

gCfCgfC
SS

u
CS ∈∈∈

+≤+  
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 4.3. An Equivalent Scalarization for General Optimization Criteria 

 In this section we present an equivalent scalarization for the general 

optimization problem. To summarize the previous development, an equivalent 

scalarization for an optimization problem is described again as follows. All solutions 

and only solutions to an optimization problem involving the original criterion can be 

obtained by certain scalar maximization problems and vice versa. These scalar 

maximization problems must be either (a) a single real-valued maximization subject to 

constraints or (b) a collection of such scalar maximization problems with a common 

real-valued objective function but with parameters in the constraints. In (b) a different 

set of parameters yields a different set of constraints for the common objective function.  

In chapter 3, we developed equivalent scalarizations for standard optimization 

problem such as Pareto maximization and lexicographic maximization. To extend 

scalarizability in a general optimization framework, we present here two methods of 

scalarization. The first scalarization is Corley’s Method (CM) [2, p.63] with 

transformations for solving a general cone-ordered optimization problem. The 

transformation process is explained in section 4.3.1.1. with various examples. Since we 

consider only a partial order, according to the result of Remark 2.5.14 it suffices to 

consider only a cone-ordered optimization for which a cone is pointed and convex. The 

second scalarization is the Lexicographic Hybrid Method (LHM), which incorporates 

features of both Corley’s Method (CM) and the equivalent scalarization for 

lexicographic maximization presented in Example 3.2.4.3. The Lexicographic Hybrid 

Method (LHM) can be considered as an equivalent scalarization for a general 
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optimization problem. LHM is applicable for both cone-ordered optimization and non 

cone-ordered optimization under appropriate assumptions. 

 

4.3.1. CM with Transformations 

CM has been introduced in section 3.2.4. It plays a central role as an equivalent 

scalarization for Pareto maximization without requiring any assumption on both the 

objective function and the set of constraints. CM is an equivalent scalarization to cone-

ordered optimization for which the cone is pointed and convex and for which a strictly 

positive linear functional exists.   

As described in section 3.2.4, the crucial requirement for CM is the existence of 

a strictly positive linear functional for converting the objective function of the original 

problem into a scalar function. For a general cone it is not always easy to construct such 

a strictly positive linear functional except in the case of Pareto maximization. For 

example, one may need to apply Theorem 2.5.18 (cone separation theorem). This 

inconvenience prompts us to create a concept of transformation of a cone-ordered 

maximization into another equivalent cone-ordered maximization for which the strictly 

linear functional is readily available. Moreover, this technique can be applied to 

transform certain cone-order optimizations where a strictly linear functional does not 

exist (lexicographic optimization, for example) into a known scalarizable problem.  

We focus only an optimization problem with a pointed and convex cone because 

of Axiom 1 (APO). Two distinguished types of pointed and convex cones in cone-

ordered optimization are considered as follows.   
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I. C  is pointed.  

II. C  is not pointed. 

 C denotes the closure of C, i.e., the smallest closed superset of C.  

Useful transformation techniques to obtain an equivalent cone-ordered 

optimization for cones of Type I and II are presented in 4.3.1.1 and 4.3.1.2.  

 

4.3.1.1. Type I  Transformation  

Assume that the cone C  is pointed. In addition, the cone C must satisfy the 

following properties: 

• There exists a basis Cn ⊂},...,{ 1 bb of nR . 

• The cone C can be represented in the following manner: 

}, ,0,0:...{ 11 JjIiC jinn ∈∈>≥++= αααα bb , where },...,1{ nI ⊂  is an 

index set indicating nonnegative coefficient and },...,1{ nJ ⊂ is an index set 

indicating positive coefficient. Notice that }.0:...{ 11 ≥++= innC ααα bb   

The set },...,{ 1 nbb is a basis of nR means the following two statements: 

1. n
inn RR =∈++ }:...{ 1 ααα bb1 , and 

2. If 0bb1 =++ nnαα ...1 then .0...1 === nαα  

In other words, any C∈c must be uniquely written as the non-negative linear 

combination of the basis vectors ,ib  where .,...,1 ni =   

We apply transformation to B1 and obtain B2 as an equivalent problem to B1. 
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B1: ))(),...,((max 11 xx
x

n
RA

ffC
m⊂∈

where ,: RRf m
i →  and 1C has the properties  

• There exists a basis 11 },...,{ Cn ⊂bb of .nR  

• The cone }, ,0,0:...{ 111 JjIiC jinn ∈∈>≥++= αααα bb , where 

},...,1{, nJI ⊂  are index sets indicating nonnegative and positive coefficient 

respectively. Notice that }.0:...{ 111 ≥++= innC ααα bb   

 

B2: 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

++=
∈

nnn

n

ff
A

C

bxbxxx
x

xx

)(...)())(),...,((
s.t.

))(),...,((max

111

12

αα

αα
, where  

},  ,0,0:......{ 112 JjIiC jinnii ∈∈>≥++++= ααααα eee  and 
th

(0,...,0, 1,0...,0).
i

i =e

Here },...,1{, nJI ⊂ are index sets indicating nonnegative and positive coefficients of  

.1C  Thus 2C  is a transformation of 1C by simply replacing ib with ie for all .,...,1 ni =  If 

φ=J  then 2C is the Pareto cone in .nR  Note that 2C  is the Pareto cone in .nR  The next 

two theorems establish the equivalence between B1 and B2. 

 

Theorem 4.3.1.1.1. If 0x solves B1, then 0x solves B2. 

Proof. Assume that 0x solves B1. It is then a feasible to B2. We claim that 0x solves B2. 

To obtain a contradiction, suppose 0x does not solve B2. Then there exists A∈1x  such 

that nnnff bxbxxx )(...)())(),...,(( 1111111 αα ++=  where )()( 01 xx ii αα ≥ for all ni ,...,1=   

and )()( 01 xx jj αα > for some j. Therefore 



 

 67

))((),...,(())((),...,(( 001111 xxxx nn ffff −  

                                                  }.{\)]()([...)]()([ 120110111 0bxxbxx Cnn ∈−++−= αααα  

Thus we get ),()( 01 1
xx ff C> which contradicts the optimality of 0x .  

 

Theorem 4.3.1.1.2. If 0x solves B2, then 0x solves B1. 

Proof. Assume that 0x solves B2, so it is feasible to B1. We claim that 0x solves B1. To 

obtain a contradiction, suppose that 0x does not solve B1. Then there exists A∈1x   

such that )).(),...,(())(),...,(( 111001 1
xxxx nCn ffff <  Therefore by definition, we obtain 

}.{\)]()([)]()([))()(),...,()(( 12021210111010111 0bxxbxxxxxx Cffff nn ∈−+−=−− αααα  

Thus )()( 01 xx ii αα ≥ for all ni ,...,1=  and )()( 01 xx jj αα > for some j, a contradiction to 

the optimality of 0x .  

Since we already have a strictly linear functional on 2C for the problem B2, i.e., 

nn xxxxl ++= ...),...,( 11 for ,,...,1 Rxx n ∈  we have the following B3 as an equivalent 

scalarization of B2. 

2

1

1 1

1 2 1 1 2 2

max ( ) ... ( )

s.t. ( ( ),..., ( )) ( ,..., )3 :
( ( ),..., ( )) ( ) ( )

nA

n C ny yB
f f

A

α α

α α

α α

∈
+ +⎧ ⎫

⎪ ⎪
≥⎪ ⎪

⎨ ⎬
= +⎪ ⎪

⎪ ⎪∈⎩ ⎭

x
x x

x x

x x x b x b
x  

for all .,...,1 Ryy n ∈  

Notice that the equivalent scalarization B3 is CM with a transformation. This 

transformation is actually a change of basis of .nR  See [28, p.384] for details about 

changing the basis of finite dimensional vector spaces.  
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Example 4.3.1.1.3. Consider the following cone in .2R  

 
 
 
 
 
 
 
 
 
 

Figure 4.1 The cone C1 for problem D1. 

The cone-ordered maximization is denoted by D1. 

1 1 2
2 2

1 2

1 2

max ( ) ( , )
1: s.t. 1 .

, 0

C f x x
D x x

x x

=⎧ ⎫
⎪ ⎪+ =⎨ ⎬
⎪ ⎪≥⎩ ⎭

x
 

We represent the cone 1C as follows. 

}0,0:{ 2122111 ≥≥+= αααα bbC where .)}1,1(),1,1{(},{ 1121 CCB =⊂−== bb  

Now we will express ))(),(( 21 xx ff in term of the nonnegative linear combination of 1b  

and .2b   

• ,)()(
)(
)(

11
11

)(
)(

2211
2

1

2

1 bxbx
x
x

x
x

αα
α
α

+=⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
f
f

 where ⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
=

1
1

,
1
1

21 bb and 

., 21 R∈αα  

• Solve )(),( 21 xx αα in the following system of equations.  

.
)(
)(

5.05.0
5.05.0

)(
)(

11
11

)(
)(

2

1

2

1
1

2

1
⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

x
x

x
x

x
x

f
f

f
f

α
α

 

• We have )(5.0)(5.0)( 211 xxx ff +=α and ).(5.0)(5.0)( 212 xxx ff +−=α  

1b2b  

1x  

2x

1C  
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• Therefore, .))(5.0)(5.0())(5.0)(5.0())(),(( 22112121 bxxbxxxx ⋅+−+⋅+= ffffff  

An equivalent problem of D1 can now be formulated as D2 as follows.  

,)5.05.0()5.05.0(),())(),((
1s.t.

)5.05.0,5.05.0(max

:2

2

1

2211212121

2
2

2
1

21212

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈
∈

⋅+−+⋅+==
=+

+−+

Rx
Rx

xxxxxxxfxf
xx

xxxxC

D bb  

where ).1,0(),0,1(},0,0:{ 212122112 ==≥≥+= eeee ααααC  Note that the cone C2 is 

the Pareto Cone in .2R Therefore, an equivalent scalarization of P2 can be stated below 

as D3. 

,

,
)5.05.0()5.05.0(),())(),((

5.05.0
5.05.0

1s.t.
)5.05.0()5.05.0(max

:3

21

2211212121

221

121

2
2

2
1

2121

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈
⋅+−+⋅+==

≥+−
≥+

=+
+−++

Rxx
bxxbxxxxxfxf

yxx
yxx

xx
xxxx

D

 

for all ., 21 Ryy ∈  

 

4.3.1.1.1. Examples in 2R . 

 To illustrate the transformation process, five examples of cone-ordered 

maximization in 2R are now presented. For ,nR 3≥n , the transformation process is 

similar. 
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Example 4.3.1.1.1.1. Consider the following cone-ordered maximization E1.  

E1: )),(),((max 211 xx
x

ffC
mRA⊂∈

where ,2,1,: =→ iRRf m
i and 

}.0,0:{ 2122111 ≥≥+= αααα bbC  

 

 

 

 

 

Figure 4.2 The cone C1 for problem E1. 

We formulate an equivalent cone-ordered optimization by using the transformation 

technique type I and denote it as E2. 

 

,
)()())(),((

s.t.

))(),((max

:2

221121

212

⎪
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bbff
A

C

E
mRA

xxxx
x

xx
x

αα

αα

where 

}.0,0),1,0(),0,1(:{ 212122112 ≥≥==+= αααα eeeeC  

 

 

 

 

 
Figure 4.3 The cone C2 for problem E2. 
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Notice that E2 is Pareto maximization and E3 below is Corley’s Method (CM) of E2.  

,

)()())(),((

)(
)(s.t.

)()(max

:3

221121

22

11

21

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+=
∈
≥
≥

+
∈

bbff
A

y
y

E

mRx

xxxx
x
x
x

xx

αα

α
α

αα

for all ., 21 Ryy ∈  

 

Example 4.3.1.1.1.2. Consider the following cone-order maximization F1. 

)),(),((max:1 211 xx
x

ffCF
mRA⊂∈

where ,2,1,: 2 =→ iRRfi and 

)}.0,0{(}0,0:{ 2122111 U>≥+= αααα bbC  

 

 

 

 

 

Figure 4.4 The cone C1 for problem F1. 

We formulate an equivalent cone-ordered maximization by using the transformation 

technique and denote it as F2. 

,
)()())(),((

s.t.

))(),((max

:2

221121

212

⎪
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⎪
⎬

⎫

⎪
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⎨

⎧
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∈

⊂∈

bbff
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C

F
mRA

xxxx
x

xx
x

αα

αα

 

where

)}.0,0{(}0,0:{ 2122112 U>≥+= αααα eeC  Notice that 2C is Pareto cone in .2R  

 

1b

2b  

1x  

2x

1C  
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Figure 4.5 The cone C2 for problem F2. 

Since we know that ,)()())(),(( 22121
+∈+= Cl xxxx αααα i.e., l is the required strictly 

positive functional for CM, we will have the equivalent scalarization F3 below. 

1 2

1 1

2 2

1 2 1 1 2 2

max ( ) ( )

s.t. ( )
3 : ( )

( ( ), ( )) ( ) ( )

y
F y

A
f f b b

α α

α
α

α α
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⎨ ⎬>
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x
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x
x x x x

for all ., 21 Ryy ∈  

Example 4.3.1.1.1.3. Consider the following cone-order optimization G1. 

2
1 1 21: max( ( ), ( )),

A R
G C f f

∈ ⊂x
x x

 
where ,2,1,: 2 =→ iRRfi and 

)}.0,0{(}0,0:{ 2122111 U≥>+= αααα bbC  

 

 

 

 

 

Figure 4.6 The cone C1 for problem G1. 
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We formulate an equivalent cone-ordered optimization by using the transformation 

technique and denote it as G2. 

,
)()())(),((

s.t.

))(),((max

:2

221121

212

⎪
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⎪
⎬

⎫

⎪
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⎪
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⎧

+=
∈

bbff
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C

G
xxxx

x

xx
x

αα

αα

where 

)}.0,0{(}0,0),1,0(),0,1(:{ 212122112 U≥>==+= αααα eeeeC  Notice that 2C  is a 

Pareto cone in .2R  

 

 

 

 

 

Figure 4.7 The cone C2 for problem G2. 

Since we know that ,)()())(),(( 22121
+∈+= Cl xxxx αααα according to Corley’s Method 

(CM), we will have an equivalent scalarization G3 below. 

1 2
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4.3.1.2 Type II Transformation  

We present the second transformation for a cone-ordered maximization where 

the closure C  is not pointed. In addition, the cone C must satisfy the followings: 

• C is the closed half space of nR  such that }0:{ ≥= xpx tC where p is a nonzero 

vector in .nR  

We illustrate the Type II transformation with the following two cone-ordered examples 

in .2R  

4.3.1.2.1 Examples in 2R  

We here present 2 examples of type II transformation in .2R  For a case in ,nR

where 3≥n , the similar transformation process can be applied.  

 

Example 4.3.1.2.1.1. 

))(),((max:1 211
2

xx
x

ffCH
RA⊂∈

where ,2,1,: 2 =→ iRRfi and 

)}.0,0{(}0,0or  ,0either :{ 212122111 U>=∈>+= αααααα RC bb  

 

 

 

 

 

 

Figure 4.8 The cone C1 for problem H1. 
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2 1 2

1 2 1 1 2 2

max ( ( ), ( ))

2 : s.t.
( ( ), ( )) ( ) ( )

C

H A
f f b b

α α

α α

⎧ ⎫
⎪ ⎪⎪ ⎪∈⎨ ⎬
⎪ ⎪= +⎪ ⎪⎩ ⎭

x
x x

x
x x x x

where  

)}.1,0(),0,1(  where,0,0or  ,0either :{ 21212122112 ==>=∈>+= eeee αααααα RC  

The cone C2 can be obtained from C1 by replacing b1,b2 with e1 and e2, respectively. 

Notice that C2 is the lexicographic cone in .2R  Therefore, problem H2 can be 

scalarizable by the previous multiple-stage lexicographic scalarization.  

 

 

 

 

 

 

Figure 4.9 The cone C2 for problem H2. 

Since lexicographic maximization and Pareto maximization are equivalent, H2 

is also scalarizable by CM as follows. Recall that  

)}.1,0(),0,1( ,0,0or  ,0either :{ 21212122112 ==>=∈>+= eeee αααααα RC  

Let }0,0:{ 2122113 ≥≥+= αααα eeC and }.0,0:{ 2122114 <≥+= αααα eeC  We have 

now 432 CCC U= , where 3C is the Pareto cone in 2 ,R so there is an equivalent Pareto 

maximization of H2 denoted as H3 below. 
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.

)()())(),((

))(),((maxargs.t.
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It is significant that H3 is a Pareto maximization. The problem max4C  is effectively 

embedded in the constraints of H3, which can be solved by the Type I transformation of 

the previous section. The general proof of equivalence between problems such H2 and 

H3 is given in Theorems 4.3.1.2.1.2. and 4.3.1.2.1.3 below. 

 
 Let nm RRf →: and a cone C in nR which can be written as union of cones 1C

and ,2C i.e., .21 CCC U=  Consider the following problems K1 and K2. 

 

⎭
⎬
⎫

⎩
⎨
⎧

⊂∈ nRA

fC
K

x

x
x

s.t.

)(max
:1  .)(maxargs.t.

)(max

:2 2

1

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈

∈
∈

A

fC

fC

K
A

x

zx

x

z

x
 

 
We show that K1 and K2 are equivalent. 
 
 
 
Theorem 4.3.1.2.1.2. If 0x solves K1, then 0x solves K2. 

Proof. Assume that 0x solves K1. Then, by definition, there is no ).()(, 0 xxx ffA C<∈  

Since ,2 CC ⊂  there must be no ).()(,
20 xxx ffA C<∈  Then ),(maxarg 20 zfC

Az∈
∈x i.e., 

0x is feasible to K2. Since ,1 CC ⊂  there is also no ).()(,
10 xxx ffA C<∈ Thus, 0x

solves K2.  
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Theorem 4.3.1.2.1.3. If 0x solves K2, then 0x solves K1.   

 Proof. Assume that 0x solves P2. By its feasibility we have A∈0x but no other ,A∈x  

with ).()(
20 xx ff C< By its optimality, there is no ).()(),(

10 xxx ffAf C<∈ Since 

,21 CCC U=  there is no ).()(, 0 xxx ffA C<∈  Thus, 0x solves K1.  

 

Example 4.3.1.2.1.4. 

2
1 1 21: max( ( ), ( )),

A R
L C f f

∈ ⊂x
x x where ,2,1,: 2 =→ iRRfi and 

)}.0,0{(},0:{ 2122111 URC ∈>+= αααα bb  

 

 

 

 

 

 

Figure 4.10 The cone C1 for problem L1. 
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⎭
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2x

1C  
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Figure 4.11 The cone C2 for problem L2. 

We have 121 ),( xxxl = for Rxx ∈21, is a strictly monotone functional because 

0)( 12211 >=+= ααα eecl for any .2C∈c  Therefore CM applies to L2 and yields L3 

below. 

2

1x

1 2

1 2 1 1 2 2

max ( )

s.t. ( ( ), ( ))3 :

( ( ), ( )) ( ) ( )

CL
A

f f

α

α α

α α

⎧ ⎫
⎪ ⎪

≥⎪ ⎪
⎨ ⎬

∈⎪ ⎪
⎪ ⎪= +⎩ ⎭

x

x x y

x
x x x b x b  

for all .2R∈y  

 

4.3.2. Lexicographic Hybrid Method 

  We now incorporate features from the equivalent scalarization H3 above of 

lexicographic optimization as well as CM to formulate an equivalent scalarization for a 

general optimization problem. The beneficial feature in CM is its parameterization 

technique for obtaining all solutions and only solutions of the original problem. The 

advantage of the equivalent scalarization for lexicographic optimization is the common 

objective function for the family of parameterized maximizations when the existence of 

a common strictly monotone function is not guaranteed.     

1x  

2x

2C  

e1 

e2 
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 Motivated by the lexicographic scalarization H3, we now develop the idea of 

having a strictly monotone real-valued function corresponding to each of n components 

when the others are fixed. Since we are dealing with a general partial order in nR  rather 

than one induced by a cone, we initially construct n induced orders corresponding to 

each component of nR and utilize the separability in the sense of Cantor to  provide a 

strictly monotone function [Theorem 2.5.13] corresponding to each component in nR

with the other components held fixed.  

  

4.3.2.1. Component Orders  

Consider a partial order =p  in .nR  For each ,1 nm ≤≤ define an induced order 

m
=p on R corresponding to the mth component of vectors in nR as follows. Define  

m
m

m ba =p  if and only if )0,...,,...,0()0,...,,...,0( mm ba =p for ., Rba mm ∈  

We first show that the induced order m
=p is partially ordered. 

 

Theorem 4.3.2.1.1. The induced order m
=p is a partial order in R for any .1 nm ≤≤  

Proof.  Let }.,...,1{ nm∈  We show that m
=p is reflexive, antisymmetric, and transitive. 

(Reflexive). Let .Ram ∈ Since =p  is a reflexive in ,nR we must have 

).0,...,,...,0()0,...,,...,0( mm aa =p  Then, by definition, we obtain .m
m

m aa =p   
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(Antisymmetric).  Let Rba mm ∈, such that m
m

m ba =p and .m
m

m ab =p  By definition, 

we have that )0,...,,...,0()0,...,,...,0( mm ba =p and ).0,...,,...,0()0,...,,...,0( mm ab =p Since =p  is 

antisymmetric, we obtain ).0,...,,...,0()0,...,,...,0( mm ba =  It then follows that .mm ba =  

 (Transitive). Let Rcba mmm ∈,, such that m
m

m ba =p and .m
m

m cb =p We also have 

)0,...,,...,0()0,...,,...,0( mm ba =p and )0,...,,...,0()0,...,,...,0( mm cb =p by definition. Since =p  is 

transitive, we have ).0,...,,...,0()0,...,,...,0( mm ca =p  Thus .m
m

m ca =p   

It follows that m
=p is a partial order in R for any m such that nm ≤≤1 .  

Now we can utilize Theorem 2.5.13. There exists a strictly monotone function 

RRl m →:  with respect to the order m
=p for any ,1 nm ≤≤ because ),( mR =p is separable 

in the sense of Cantor, whereas Rn is not. 

  

4.3.2.2. Assumption and Formulation 

We present the Lexicographic Hybrid Method (LHM) to be an equivalent 

scalarization of a general optimization for which the partial order =p  
satisfies 

Assumption 4.3.2.2.1 below. 

 

Assumption 4.3.2.2.1. Let =p be a partial order in nR and m
=p be an induced component 

order as defined in section 4.3.2.1 for all .1 nm ≤≤  Then the following statements are 

true. 
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If 1 2 1 2( , ,..., ) ( , ,..., ),n na a a b b b=p  
then .1

1
1 ba =p  

If ),...,,(),...,,( 2121 nn bbcaac =p for some 1 ,c R∈  then .2
2

2 ba =p  

If ),...,,,(),...,,,( 321321 nn bbccaacc =p for some 1 2, ,c c R∈  then .3
3

3 ba =p  

M  

If ),,...,,,(),,...,,,( 13211321 nnnn bccccacccc −− =p for some 1 2 1, ,..., ,nc c c R− ∈  then .n
n

n ba =p  

 

Proposition 4.3.2.2.2. The orders induced by the Pareto and lexicographic cones satisfy 

Assumption 4.3.2.2.1. 

 As a consequence of Proposition 4.3.2.2.2, LHM will be an equivalent 

scalarization of a cone-ordered optimization that is equivalent to Pareto maximization 

or lexicographic maximization. 

M1 below denotes a general optimization problem where the partial order =p

satisfies Assumption 4.3.2.2.1. The problem M2 is an equivalent LHM scalarization for 

M1.  

M1: ))(),...,((opt 1 xx n
Ax

ff
∈

where .,,...,1,: mm
i RAniRRf ⊂=→  
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M2(y): 

1
1

1
1 1

2
2 2

2
2 2

1
1 1

max ( ( )) (0,...,0,1) ( ( ( )),..., ( ( )))

s.t. ( )

( ( )) ( )
( ( )) ( )

( ( )) ( )

( ( )) ( )

n T n
n n

n
n n

n
n n

l f l f l f

f

l f a
l f a

l f a

l f a
A

−
− −

−
− −

⎧ ⎫= ⋅
⎪ ⎪
⎪ ⎪=
⎪ ⎪

=⎪ ⎪
⎪ ⎪⎪ ⎪=
⎨ ⎬
⎪ ⎪
⎪ ⎪=⎪ ⎪
⎪ ⎪=
⎪ ⎪

∈⎪ ⎪⎩ ⎭

x
x x x

x y

x y
x y

x y

x y
x

f

M

 

for all ),(Af∈y  

where ,1,...,1),( −= nmam y is the optimal objective values of the following problems. 

⎪
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⎪
⎬
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f
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yx
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y f)(s.t.
))((max

:)1,(
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1

 for m=1 and  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈
=

=

=

−−
−

A
f

afl

afl

fl

mM
mm

m

m
m

x
yx

yx

yx

x

y

x

f)(
)())((

)())((s.t.

))((max

:),(
11

1

11
1

 

for 12 −≤≤ nm . 

 

Lemma 4.3.2.2.3. If 0x solves M1, then 0x is feasible to M2(y) for ).( 0xy f=  

Proof. Let 0x solve M1. By the optimality of 0x , if )()( 0xx ff =f for A∈x , we must 

have ).()( 0xx ff =  Thus 0x solves ),1,(),...,1,( −nMM yy  where ).( 0xy f=  

We conclude that ))(())(( 00 xyx fafl kk
k == for any .11 −≤≤ nk  It is obvious that

0 0( ) ( ),f f=x xf
 
so 0x is feasible to M2(y) for ).( 0xy f= ■ 
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Theorem 4.3.2.2.4. If 0x solves M1, then 0x solves M2(y) for ).( 0xy f=  

Proof. Assume 0x solves M1. By Lemma 4.3.2.2.3, 0x  is feasible to M2( )( 0xf ); i.e.,  

,))((,...,))(( 101
1

101
1

−−
− == nn

n aflafl xx and ).()( 00 xx ff =f  
To obtain a contradiction, 

suppose 0x does not solve ).(2 0xfM Then there exists a feasible solution A∈1x such 

that )).(())(( 01 xx n
n

n
n flfl >  Since 1x is feasible to ),(2 0xfM we have ).()( 01 xx ff =f  

Since )),(())(( 01 xx n
n

n
n flfl > it follows that )( 1xnf does not equal to 0( );nf x  i.e., 

).()( 01 xx ff ≠  Then ),()( 01 xx ff f  an inequality contradicting the optimality of 0x .  

 

Theorem 4.3.2.2.5. If 0x solves M2(y) for )(Af∈y , then 0x solves M1. 

Proof. Assume that 0x solves M2(y) for ).(Af∈y  Then 0x is feasible to M1 and 

)).(),...,(( 001 xxy nff=p  Let 1x be any feasible solution to M1 such that  

1 0 0 1 1 1 ( ( ),..., ( ))  ( ( ),..., ( )).n nf f f f= =y x x x xp p  

By Assumption 4.3.2.2.1, we have that ).()( 11
1

01 xx ff =p Since  

},,)(:))((max{))(( 1
1

01
1 Afflfl ∈== xyxxx f  

we obtain ).()( 1101 xx ff = Again by Assumption 4.3.2.2.1, ).()( 12
2

02 xx ff =p Since  

},)),(())((,)(:))((max{))(( 0
11

2
2

02
2 Aflflfflfl ∈=== xxxyxxx f  

it follows that ).()( 1202 xx ff = Applying a similar argument sequentially, we finally get 

),()(),...,()( 101303 xxxx nn ffff == respectively. Thus 0x  solves M1.■ 
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Example 4.3.2.2.6 

Consider the following Pareto maximization problem. 

),(Vmax 2
2

2
1 xx

Ax∈
s.t. .}1,0,1:),{( 2

21
2

2
2

121 RxxxxxxA ⊂≤≤≤+=  

 

 

 

 

 

 

Figure 4.12 Pareto frontier of example 4.3.2.2.6.  

We solve the Pareto maximization with LHM as follows. Define the induced orders on 

each component by )0,()0,( 1
1

11
1

1 yxyx ParetoPareto ≤↔≤ for ,, 11 Ryx ∈  and 

),0(),0( 2
1

22
2

2 yxyx ParetoPareto ≤↔≤ for ., 22 Ryx ∈  

Formulate LHM scalar equivalence as   

1 2
1 2 2,

1 1

2 2
1 2

1 1 1 2
2 2

1 2

1 2

max (0,1) ( , ) ( )

1( , ) :
( , )

1
0 , 1

T

x x
x x x

x y
x yN y y

x a y y
x x

x x

⎧ ⎫⋅ =
⎪ ⎪
⎪ ⎪≥
⎪ ⎪⎪ ⎪≥⎨ ⎬

=⎪ ⎪
⎪ ⎪+ ≤⎪ ⎪
⎪ ⎪≤ ≤⎩ ⎭

 

for all ),(),( 21 Afyy ∈  

where }.1,0,1:),{()( 21
2

2
2

121 ≤≤≤+= xxxxxxAf  

 In addition, ),( 211 yya is the optimal objective value of the following problem. 

2x  

1x  1

1
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.

1,0
1

s.t.
max

:),(2

21

2
2

2
1

22

11

1

21

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤
≤+

≥
≥

xx
xx

yx
yx

x

yyN   

We select ).5.0,5.0(),( 21 =yy  By solving )5.0,5.0(2N , we obtain =)5.0,5.0(1a 0.866. 

Then we solve )5.0,5.0(1N and obtain the optimal solution ).5.0,866.0(*)*,( 21 =xx

Notice that )5.0,866.0(  is on the Pareto frontier in figure 4.12 above. To obtain all 

solutions, we would need to solve ),( 21 yyS for all values of 1y and .2y  

To show a case where LHM cannot be used to solve an optimization problem, 

we present a non-cone optimization in the next example. 

 

Example 4.3.2.2.8. 

Consider the following Hasse diagram (a diagram representing a partial order relation) 

on the next page. 
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Figure 4.13 Hasse diagram. 

In the diagram, if ),( 11 yx is below and connected to ),,( 22 yx we write  1 1 2 2( , ) ( , )x y x y=p

so )0,7()0,0( =p and (3,3) (3,5),=p for example. This construction is a partial order but not 

induced by a cone. From the diagram, we have the following relations. 

1. ).3,0()5,0()7,0()0,0( === ppp  

2. ).0,3()0,5()0,7()0,0( === ppp  

3. ).7,7()5,5()3,3()0,0( === ppp  

4. ).7,7()5,5()5,3()3,3()0,0( ==== pppp  

 (0,0) 

(7,0) 

 (5,0) 

 (3,0) 

 (0,7) 

 (0,5) 

 (0,3) 

 (3,3) 

 (5,5) 

 (7,7) 

 (5,3) 

 (3,5) 
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5. ).3,5()5,3()3,3()0,0( === ppp  

Now, let .)}7,7(),5,5(),3,5(),5,3(),3,3(),0,3(),0,5(),0,7(),3,0(),5,0(),7,0(),0,0{( 2RA ⊂=  

Define AAf →:  by ),(),( 2121 xxxxf = for all .),( 21 Axx ∈  Therefore we have 

)7,0()7,0( =f , for example. Now consider P1 below.  

P1: }.),(:),({opt 2121 Axxxxf ∈  

We now attempt to find the optimal solutions (non-dominated solutions) by 

LHM. Define )0,()0,( 111
)1(

1 baba =↔= pp  and ).,0(),0( 222
)2(

2 baba =↔= pp  Therefore 

3570 )1()1()1(
=== ppp and .3570 )2()2()2(

=== ppp  

LHM  next yields P2 with identity functions for the strictly monotone functions 21, ll  

2
2 1 2 2 1 2 2

1 1

1 2

1 2

max ( ( , )) ( , )
s.t. ( )

2( ) : ( , )

( , )

l f x x f x x x
x a

P f x x

x x A

⎧ ⎫= =
⎪ ⎪=⎪ ⎪
⎨ ⎬

=⎪ ⎪
⎪ ⎪∈⎩ ⎭

y
y yf  for all ),(Af∈y  

where }.,:),()),((max{)( 1211211
1

1 =∈=== yxxy fAxxxfxxfla  

Notice that )1(max is maximization with respect to )1(
=p and )2(max is maximization with 

respect to (2) .=p  Recall that 3570 )1()1()1(
=== ppp and .3570 )2()2()2(

=== ppp  Let ).3,3(=y  We 

then obtain  ,3))3,3((1 =a  by solving .3)}3,3(),(,:),({max 211211)1( ==∈= fxxAxxxxf

Then )3,3(2P  becomes ,3))3,3((1 =a  
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.

),(
)3,3(),(

3s.t.

max

:)3,3(2

21

21

1

2, 21

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
=

=

Axx
xxf

x

x

P

xx

f
 

We obtain the optimal solution ).3,3(*)*,( 21 =xx However, )3,3( is not an optimal 

solution to the original problem because ).7,7()5,5()5,3()3,3( === ppp Thus LHM provides a 

non-optimal solution to the original optimization problem.  

 

4.3.3 Summary and Diagrams of Equivalent Scalarizations  

 We summarize the equivalent scalarizations of a general optimization below. 

1. Corley’s Method (CM) is an equivalent scalarization for cone-ordered 

optimization where the cone is pointed and convex and transformation 

techniques are applicable. 

2. The Lexicographic Hybrid Method (LHM) is an equivalent scalarization for 

cone-ordered optimization where the cone is pointed and convex, Assumption 

4.3.2.2.1 is satisfied and separability in the sense of Cantor is available for each 

component order. Any cone-ordered optimization that is scalarizable by CM can 

be solved by LHM.  

3. LHM is also an equivalent scalarization for non-cone optimization where 

Assumption 4.3.2.2.1 is satisfied. 

4. A general optimization under a non-cone partial order does not use LHM 

according to example 4.3.2.2.8. However, the problem in example 4.3.2.2.8 is 

scalarizable by other approaches.  
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Figure 4.14 Scalarization diagram for cone optimization. 
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Figure 4.15 Scalarization diagram for non-cone optimization. 

 

4.4. Examples of Optimization Criteria 

 We now verify that standard optimization criteria satisfy the requirements for a 

general optimization criterion.  

   

4.4.1. Standard Optimization Problems 

 Standard optimizations include a cone-ordered optimization, set-valued 

optimization, goal programming, and maximin problem. Lexicographic optimization, 

Pareto optimization, and scalar optimization are special cases of cone-ordered 

optimization.   

 

Non-cone Optimization 
 

Assumption 
4.3.2.2.1 

LHM Scalarizations 
using separability 

in the sense of 
Cantor 

Other unknown 
scalarizations 
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4.4.1.1. Cone-Ordered maximization 

 If a cone is pointed and convex then the order induced the cone is a partial order 

according to Remark 2.5.14. Therefore Axiom 1 (APO) satisfies for the pointed and 

convex cone. In addition, if any cone-ordered optimization is scalarizable, then Axiom 

2 (ASP) is satisfied. From the results in Chapter 3 and the scalarization diagram in 

figure 4.14, an optimization problem with cones such as lexicographic optimization, 

Pareto optimization including scalar case are general optimization criteria. Any 

scalarizable coned-order optimization will be an optimization criterion. 

  

 4.4.1.2. Set-Valued Maximization 

Consider the following set-valued maximization.  

),(max x
x

F
A∈

where
nRmRF 2: → is a point-to-set map, where the order in nR is 

induced by a pointed convex cone C in .nR  According to Remark 2.5.10, the order 

induced by pointed convex cone is a partial order. Therefore Axiom APO satisfies. 

Moreover, the problem is scalarizable according to section 3.2.3. Thus set-valued 

maximization is an optimization criterion. 

 

4.4.1.3. Maximin Problem 

A maximin optimization is a scalar maximization where the objective function is 

a minimization.  Thus it is an optimization criterion. 
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4.4.1.4. Goal Programming 

 Goal programming can be considered as a Pareto maximization which is an 

optimization criterion. 
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CHAPTER 5 

NEW OPTIMIZATION CRITERIA  

WITH APPLICATIONS 

 

In this chapter we develop new optimization criteria including compromise 

problem and randomization.   

5.1. Compromise Criterion 

Let nm RRf →: be a nonnegative objective function for the Pareto 

maximization )).(),...,(( Vmax 1 xx
x

n
RA

ff
m⊂∈

 Assume that )(min x
x iA

f
∈

<∞− and ∞<
∈

)(max x
x iA

f

for all i. Denote )(max x
x iAi fM
∈

= and ).(min x
x iAi fm
∈

=  Now define RAfTCompr →)(: by 

)]
1
1)((...)

1
1)([())(),...,((

11

11
1 +−

+−
××

+−
+−

=
nn

nn
nCompr mM

mf
mM
mfffT xxxx , for all .A∈x  

Define a strictly compromise order on )(Af  as follows.  

For any ),()(),( 21 Afff ∈xx  )()( 21 xx ff Compr< if and only if either (1) or (2), where 

1. If )( 1xf  and )( 2xf  are comparable according to the Pareto order, then 

).()( 21 xx ff Pareto<   

2. If )( 1xf  and )( 2xf  are not comparable according to the Pareto order, then 

)).(())(( 21 xx fTfT ComprCompr <  
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If )( 1xf  and )( 2xf  are not comparable according to Pareto order and 

)),(())(( 21 xx fTfT ComprCompr = we say that )( 1xf  and )( 2xf  are not comparable with 

respect to the compromise order. Next, define the compromise order Compr≤ by 

)()( 21 xx ff Compr≤ if and only if )()( 21 xx ff Compr< or ).()( 21 xx ff =   

A compromising problem can be written as )( Compromise x
x

f
A∈

or )( Opt x
x

f
A∈

with respect 

to .Compr≤  The problem is to find a vector XA ⊂∈*x for which there is no vector

A∈x such that ),(*)( xx ff Compr<  or equivalently that )(*)( xx ff Compr≤ and

).(*)( xx ff ≠  

 

Lemma 5.1.1. For any ),()(),( Afff ∈yx  if )()( yx ff Pareto< then  

)).(())(( yx fTfT ComprCompr <  

Proof. Let ),()(),( Afff ∈yx such that ).()( yx ff Pareto< Then, )()(0 yx ii ff ≤≤ for all 

ni ,...,1= and )()(0 yx jj ff <≤ for some index j. Since all elements in )(Af  are 

nonnegative and definition of im and iM , we have  

1
1)(

1
1)(0

+−
+−

≤
+−
+−

≤
ii

ii

ii

ii

mM
mf

mM
mf yx , for all ni ,...,1= , and 

     
1

1
1
1)(

0
+−
+−

<
+−
+−

≤
jj

jj

jj

jj

mM
mb

mM
mf x

for some index j. 

It follows that 
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∏∏
==

=
+−
+−

<
+−
+−

=
n

i
Compr

ii

ii
n

i ii

ii
Compr fT

mM
mf

mM
mffT

11

)).((
1
1)(

1
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Lemma 5.1.2. If )(  Compromise)( Aff ∈x  , then ).(Vmax )( Aff ∈x  

Proof. Assume that ).(  Compromise)( Aff ∈x  To obtain a contradiction, suppose that 

).(Vmax )( Aff ∉x Then there exist )()( Aff ∈y such that ).()( yx ff Pareto< It follows 

that )()( yx ff Compr< which contradicts with optimality of ).(xf  We conclude that 

).(Vmax )( Aff ∈x ■ 

 

Lemma 5.1.3. ).(Vmax )(  Compromise AfAf ⊂  

Proof.  It follows directly from Lemma 5.1.2. ■ 

 

Theorem 5.1.4. The preference order Compr≤ is a partial order on ).(Af  

Proof. We show that Compr≤ is reflexive, transitive, and antisymmetric. 

(Reflexive). Since ),()( xx ff =  we have )()( xx ff Compr≤ for any ).()( Aff ∈x  

(Transitive).Let )()( yx ff Compr≤ and )()( zy ff Compr≤ for .,, A∈zyx  

Case 1: )()( yx ff Pareto≤ and ).()( zy ff Pareto≤  

Since Pareto order is transitive, we have that )(xf  comparable to )(zf  and in 

particular ).()( zx ff Pareto≤  Therefore, ).()( zx ff Compr≤  

Case 2: )()( yx ff Pareto≤ and )(yf  are not Pareto comparable with )(zf  with 

)).(())(( zy fTfT ComprCompr <  
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Case 2.1: )(xf  is Pareto comparable with )(zf .  

We claim that ).()( zx ff Pareto≤  Suppose that ).()( xz ff Pareto<  By Lemma 

5.1.1., we have )).(())(( xz fTfT ComprCompr < Since )()( yx ff Pareto≤ and by Lemma 5.1.1, 

we have )).(())(( yx fTfT ComprCompr < Therefore we obtain ))(())(( yz fTfT ComprCompr < in 

contradiction to the assumption that )).(())(( zy fTfT ComprCompr < We conclude that 

).()( zx ff Pareto≤  Thus ).()( zx ff Compr≤  

Case 2.2: )(xf  is not Pareto comparable with ).(zf  

Since )()( yx ff Pareto≤ by Lemma 5.1.1, we have )).(())(( yx fTfT ComprCompr ≤  

Combining with )),(())(( zy fTfT ComprCompr < we obtain )),(())(( zx fTfT ComprCompr ≤  i.e., 

).()( zx ff Com≤  

Case 2.3: )()( zy ff Pareto≤ and )(xf  are not comparable with )(yf  with 

)).(())(( yx fTfT ComprCompr < The proof is similar to Case 2.1. 

From Case 1 and 2, we obtain ).()( zx ff Compr≤  

(Anti-Symmetric). Let )()( yx ff Compr≤ and ).()( xy ff Compr≤ We must have 

).()( yx ff =  To obtain a contradiction, suppose that ).()( yx ff ≠ Immediately we 

have )()( yx ff Compr< and ).()( xy ff Compr<  

Case 1: )(xf  is Pareto comparable to ).(yf  

Since )()( yx ff Compr< , we obtain ).()( yx ff Pareto<  Since ),()( xy ff Compr<  

we obtain ),()( xy ff Pareto< which contradicts the previous conclusion. 
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Case 2: )(xf  is not comparable to ).(yf  

Since ),()( yx ff Compr< we have )).(())(( yx fTfT ComprCompr <  Also, since 

),()( xy ff Compr<  we have )),(())(( xy fTfT ComprCompr < contradicting the above fact that 

)).(())(( yx fTfT ComprCompr <  

From Case 1 and 2, we conclude that ).()( yx ff =  

Thus we conclude that Compr≤ is a partial order on ).(Af ■ 

 

An equivalent scalarization of the compromise optimization problem is   

.
s.t.

))((max

⎭
⎬
⎫

⎩
⎨
⎧

∈
∈

A
fTComprA

x
x

x  

 

5.1.1. An Application in Multi-objective Optimization  

In a Pareto maximization problem, a decision maker often selects as a solution 

to the problem a non-dominated point satisfying some secondary criteria. More 

generally, after a multi-objective optimization, a secondary criteria is invoked - such as 

choosing the largest summation of the objective function values. The secondary 

criterion here will be to select a solution that attempts to equitably distribute the benefit 

among all objectives. Indeed, the compromise solution applied to the objective function 

can accomplish both the primary and secondary criteria because of Lemma 5.1.2. 

 

Consider the following Pareto maximization  
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The Pareto frontier is shown in Figure 5.1 below. 

 

 

 

 

 

 

Figure 5.1 Pareto frontier. 
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• The compromise transformation function is as follows.  

1 1 2 2
1 2

1 1 2 2

1 2

( ) 1 ( ) 1( ( ), ( )) [( ) ( )]
1 1
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2 2

Compr
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The compromise problem, with the order Compr≤ , can be formulated as follows 

.
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1s.t.
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An equivalent scalarization is as follows. 
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The solution is )707.0,707.0(*)*,( 21 =xx with objective value of 0.729.  

 

 

 

 

 

Figure 5.2 The compromise solution. 

 

5.1.2. An Application in Game Theory 

We next apply the compromise criterion to game theory. Our compromise 

solutions offer a new meaning of “best” in the sense that every player obtains a “fair” 

payoff. As a result, compromise solutions are more sustainable in certain situations than 

some commonly used game-theoretic equilibria. Such a set of strategies for the players 

2x  

1x  

• (0.707,0.707) 

1

1 
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will be call a Compromise Equilibrium (CE), which maximixes the scalar compromise 

transformation among all payoff combinations.  

We now determine CEs for players in some games and compare the results to 

any Regret Equilibria (RE) – the well-known Nash equilibrium - and to the new 

Disappointment Equilibrium (DE) in the following six games. For more details of 

games like Chicken and Prisoner’s Dilemma, as well as REs and DEs, refer to [29].    

GAME 1: THREE-PERSON PAYOFF MATRIX 

 γ1 γ2 

 β1 β2 β1 β2 

α1 (–110, 100, 10) (–60, 40, 10) (–110, 100, 10) (–60, 40, 10) 

α2 (–110, 0, 100) (–110, 10, 100) (–30, 0, 10) (–30, –10, 10) 

Figure 5.3 Payoff matrix of game 1. 

To be able to apply compromising transformation, we first shift all values to be positive 

numbers by adding (111,111,111) to all payoff values without affecting the RE, DE, or 

CE strategy combinations. The new payoff matrix becomes figure 5.4. 

 γ1 γ2 

 β1 β2 β1 β2 

α1 (1, 211, 121) (51, 151, 121) (1, 211, 121) (51,151, 121) 

α2 (1, 111, 211) (1, 121, 211) (81, 111, 121) (81, 101, 121) 

Figure 5.4 Shifted payoff matrix of game 1. 
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Calculate the ),,(max
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},{

21
21
21

γβα

γγγ
βββ
ααα ii fM

∈
∈
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=  and ),,(min
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21
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γβα

γγγ
βββ
ααα ii fm

∈
∈
∈

= where ),,( γβαif is 

the payoff value for player ith, i =1, 2, 3 to give 

• ,81}81,51,1max{1 ==M .1}81,51,1min{1 ==m  

• ,211}101,121,151,111,211max{2 ==M .101}101,121,151,111,211min{2 ==m  

• ,211}211,121max{3 ==M .121}211,121min{3 ==m  

Then we compute the compromise values using the following transformation

]
1

1),,(
[]

1
1),,(

[]
1

1),,(
[),,(

33

33

22

22

11

11

+−
+−

×
+−

+−
×
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=
mM

mf
mM

mf
mM

mf
T kjikjikji

kjiCompr

γβαγβαγβα
γβα

for all .2,1,, =kji  The compromise values are shown in the Compromise Matrix (CM). 

We also calculate the Regret Matrix (RM) and the Disappointment Matrix (DM) as in 

[29]. 

COMPROMISE MATRIX 

 γ1 γ2 

 β1 β2 β1 β2 

α1 0.00013 0.00317 0.000135 0.00317 

α2 0.0012 0.00233 0.00108 0.000009 

Figure 5.5 Compromise matrix of game 1. 
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REGRET MATRIX 

 γ1 γ2 

 β1 β2 β1 β2 

α1 (0, 0, 0) (0, 60, 0) (80, 0, 0) (30, 60, 0) 

α2 (0, 10, 0) (50, 0, 0) (0, 0, 90) (0, 10, 90) 

Figure 5.6 Regret matrix of game 1. 

 

 

DISAPPOINTMENT MATRIX 

 γ1 γ2 

 β1 β2 β1 β2 

α1 (50, 0, 90) (0, 0, 90) (50, 0, 0) (0, 0, 0) 

α2 (80, 100, 0) (80, 30, 0) (0, 100, 0) (0, 50, 0) 

Figure 5.7 Disappointment matrix of game 1. 

Note: the strategy selection combination below does not equal the original payoff. 

In summary,  

• RE and DE at 121). 211, (1,),,( 111 =γβα  

• DE at 121). (51,151,),,( 221 =γβα  

• CEs at ),,( 121 γβα and ),,( 221 γβα with a payoff of 121). (51,151,  

• The DE is a CE, but both CEs are not DEs. 

• No RE (Nash Equilibrium) is a CE. 
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• CEs are fairer than the RE. All players achieve a fair amount of payoff in the 

CE. In the RE, player I gain benefits only 1 unit while players II and III receive 

211 and 121 units, respectively. In the CEs and DE, player I obtains 51 units in 

compromise solution while player II and III receive 151 and 121 units, 

respectively.  

 

GAME 2: PAYOFF MATRIX 

  Player II 

  1t 2t 3t

 1s (3,4) (2,2) (2,1) 

Player I 2s (2,3) (7,1) (7,4) 

 s3 (2,1) (5,6) (6,5) 

Figure 5.8 Payoff matrix of game 2. 

 

Calculate the ),(max
},,{
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321

321

tsfM i
tttt
ssssi
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=  and ),(min
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},,{
321

321

tsfm i
tttt
ssssi

∈
∈

= where ),( tsfi is the pay off 

value for player ith, i =1, 2, as following. 

• ,7}6,5,7,2,3max{1 ==M .2}6,5,7,2,3max{1 ==m  

• ,6}5,6,3,1,2,4max{2 ==M .1}5,6,3,1,2,4min{2 ==m  

We calculate Compromise values using the transformation,  
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COMPROMISE MATRIX 

  Player II 

  1t 2t 3t

 1s 0.2222 0.0555 0.0277 

Player I 2s 0.0833 0.1666 0.6666 

 s3 0.0277 0.6666 0.6944 

Figure 5.9 Compromise matrix of game 2. 

REGRET MATRIX 

  Player II 

  1t 2t 3t

 1s (0,0) (5,2) (5,3) 

Player I 2s (1,1) (0,3) (0,0) 

 s3 (1,5) (2,0) (1,1) 

Figure 5.10 Regret matrix of game 2. 
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DISAPPOINTMENT MATRIX 

 
  Player II 

  1t 2t 3t

 1s (0,0) (1,4) (1,4) 

Player I 2s (5,1) (0,5) (0,1) 

 s3 (4,3) (1,0) (0,0) 

Figure 5.11 Disappointment matrix of game 2. 

The results are includes as follows.  

• REs at 4) (3,),( 11 =ts and 4). (7,),( 32 =ts  

• DEs at 4) (3,),( 11 =ts and 5). (6,),( 33 =ts  

• CE at 5). (6,),( 33 =ts  

• No RE is a CE.   

• The CE is a DE, but one DE is not a CE. Thus only some DEs are fair. 

 

GAME3: PRISONER’S DILEMMA PAYOFF MATRIX 

  Player II 

  Defect Cooperate 

Player I Defect (–3,–3) (0,–5) 

 Cooperate (–5,0) (–1,–1) 

Figure 5.12 Payoff matrix of game 3. 
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We first shift all values to be positive numbers by adding all components by (6,6). The 

payoff matrix becomes as follows. 

  Player II 

  Defect Cooperate 

Player I Defect (3,3) (6,1) 

 Cooperate (1,6) (5,5) 

Figure 5.13 Shifted payoff matrix of game 3. 

• ,6}5,6,1,3max{1 ==M .1}5,6,1,3max{1 ==m  

• ,6}5,61,3max{2 ==M .1}5,61,3max{2 ==m  

COMPROMISE MATRIX 

  Player II 

  Defect Cooperate 

Player I Defect 0.25 0.1666 

 Cooperate 0.1666 0.6944 

Figure 5.14 Compromise matrix of game 3. 

REGRET MATRIX: 
  Player II 

  Defect Cooperate 

Player I Defect (0,0) (0,2) 

 Cooperate (2,0) (1,1) 

Figure 5.15 Regret matrix of game 3. 
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DISAPPOINTMENT MATRIX: 
  Player II 

  Defect Cooperate 

Player I Defect (3,3) (0,4) 

 Cooperate (4,0) (0,0) 

Figure 5.16 Disappointment matrix of game 3. 

Note: the strategy selection combination below does not equal the original payoff. 

We have the following results. 

• RE at (Defect, Defect) with payoff  (3,3). 

• DE at (Cooperate, Cooperate) with payoff (5,5). 

• CE at (Cooperate, Cooperate) with payoff value (5,5). 

• No RE (Nash Equilibrium) is a CE. 

• In Prisoner’s Dilemma, the CE and DE are the same and thus fairer than the RE 

(Nash Equilibrium). 

 

GAME 4: PAYOFF MATRIX WITH NO PURE EQUILBRIUM 

  Player II 

  1t 2t 3t

 1s (10,3) (4,7) (4,6) 

Player I 2s (2,6) (9,5) (5,7) 

 s3 (4,8) (5,6) (7,5) 

Figure 5.17 Payoff matrix of game 4. 
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• Calculate the ),(max
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pay off value for player ith, i =1, 2, as following. 
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COMPROMISE MATRIX 

  Player II 

  1t 2t 3t

 1s 0.1666 0.2777 0.2222 

Player I 2s 0.0741 0.4444 0.3703 

 s3 0.3333 0.2963 0.3333 

Figure 5.18 Compromise matrix of game 4. 

REGRET MATRIX: 
  Player II 

  1t 2t 3t

 1s (0,4) (5,0) (3,1) 

Player I 2s (8,1) (0,2) (2,0) 

 s3 (6,0) (4,2) (0,3) 

Figure 5.19 Regret matrix of game 4. 
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DISAPPOINTMENT MATRIX: 
  Player II 

  1t 2t 3t

 1s (0,5) (6,0) (6,1) 

Player I 2s (7,2) (0,2) (4,0) 

 s3 (3,0) (2,1) (0,2) 

Figure 5.20 Disappointment matrix of game 4. 

Results are listed below. 

• No REs or DEs. 

• CE at ),( 22 ts  with payoff of (9,5). 

• There are many non-dominated strategy pairs yielding payoffs such as (10,3), 

(9,5), and (4,8), but the compromise solution (9,5) is the fairest non-dominated 

payoff.  

 

GAME 5: CHICKEN’S GAME PAYOFF MATRIX 

 

  Player II 

  Dare Chicken out 

Player I Dare (1,1) (7,2) 

 Chicken out (2,7) (6,6) 

Figure 5.21 Payoff matrix of game 5. 
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COMPROMISE MATRIX : 
 
 

  Player II 

  Dare Chicken out 

Player I Dare 0.0204 0.2858 

 Chicken out 0.2858 0.7347 

Figure 5.22 Compromise matrix of game 5. 
 
 
REGRET MATRIX: 
 

  Player II 

  Dare Chicken out 

Player I Dare (1,1) (0,0) 

 Chicken out (0,0) (1,1) 

Figure 5.23 Regret matrix of game 5. 

 

DISAPPOINTMENT MATRIX 

  Player II 

  Dare Chicken out 

Player I Dare (6,6) (0,4) 

 Chicken out (4,0) (0,0) 

Figure 5.24 Disappointment matrix of game 5. 
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Results are explained as follows. 

• RE at (Chicken out, Dare) and (Dare, Chicken Out) with payoffs of (2,7) and 

(7,2), respectively. 

• DE at (Chicken out, Chicken out) with payoff of (6,6). 

• CE at (Chicken out, Chicken out) with payoff of (6,6). 

• The CE and DE are the same in this game and fairer solution than the RE (Nash 

Equilibrium). 

 

GAME 6: PAYOFF MATRIX 

  Player II 

  1t 2t

Player I 1s  (1,1) (2,7) 

 2s (7,2) (6,6) 

Figure 5.25 Payoff matrix of game 6. 

 
COMPROMISE MATRIX : 

  Player II 

  1t 2t

Player I 1s  0.0204 0.2857 

 2s 0.2857 0.7347 

Figure 5.26 Compromise matrix of game 6. 
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REGRET MATRIX: 

  Player II 

  1t 2t

Player I 1s  (6,6) (4,0) 

 2s (0,4) (0,0) 

Figure 5.27 Regret matrix of game 6. 

DISAPPOINTMENT MATRIX: 

  Player II 

  1t 2t

Player I 1s  (1,1) (0,0) 

 2s (0,0) (1,1) 

Figure 5.28 Disappointment matrix of game 6. 

 

Results are listed below. 

• RE at ),( 22 ts with payoff value of (6, 6). 

• DE at ),( 12 ts and ),( 21 ts with payoffs of (7,2) and (2,7), respectively. 

• CE at ),( 22 ts with payoff of (6, 6).  

• RE is a CE.  

• DE is not a CE. 
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5.2. Randomize Criterion 

When simply making any decision choice is perceived as the best action, a 

randomization decision is optimal. Therefore randomization might be interpreted as an 

optimization criterion. We establish this fact below. 

 Consider a relation order on nR defined by yx Random≤ if and only if yx = for 

all ., nR∈yx  This means that any vector x is comparable only to itself.   

Theorem 5.2.1. The preference order Random≤ is a partial order on .nR  

Proof. We show that Random≤ is reflexive, transitivity, and antisymmetric. 

(Reflexive). Since xx = for any ,nR∈x then .xx Random≤   

(Transitive). Let nR∈zyx ,, such that yx Random≤ and .zy Random≤  But yx = and 

.zy = Thus it is clear that .zx =  

(Antisymmetric). Let nR∈yx, such that yx Random≤ and .xy Random≤  Then by 

definition, .yx =  

Therefore, the order Random≤ is a partial order.■ 

  

Since no x is dominated by any other vector, the randomization criterion can be 

scalarized as the following maximization problem.  

,
s.t.

max

⎭
⎬
⎫

⎩
⎨
⎧

≥
∈

yx
x

Random

A
c

 for all )(Af∈y , where c is a constant number. 

5.3. Counterexample 

Not every decision problem can be formalized with an optimization criterion. 

Group decision making with various voting schemes is often one that violates our 

framework of consistency. Two difficulties are explained below.  
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1. Intransitivity 

Consider the well-known Condorcet Paradox [30] and [31] in voting. 

Table 5.1 Condorcet paradox. 

Individual Preference order 

Voter 1 A>B>C 

Voter 2 B>C>A 

Voter 3 C>A>B 

 

In this voting three voters, 1, 2, and 3 are asked to consider three alternatives A, B, and 

C. As shown in Table 5.1, Voter 1 prefers A to B to C; Voter 2 prefers B to C to A; and 

Voter 3 prefer C to A to B. It is obvious that two people prefer A to B, two people 

prefer B to C, and two people prefer C to A. For any majority voting scheme, it 

immediately follows that A < B and B < C, but C < A. Such a group preference order is 

intransitive, so it cannot be a partial order.  

 

2. The preference order cannot be fixed in advance. 

As another voting scheme that also violates our optimization criteria framework, 

consider three candidate, A, B and C, and five voters. Each voter has 10 points to 

distribute to the candidates in integer values among the candidates according to how 

well a candidate is rated by the voter. For example, a voter could award 5 points to A, 3 

to B, and 2 to C.  
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• Let 3
CBA ),,( Raaa nnn ∈ , where nnn aaa CBA ,, represent the distributed points of the nth 

voter to candidate A, B, and C, respectively, for all .5,...,1=n  

• Define the voting order in 5R by  

5 5
1 2 3 4 5 1 2 3 4 5

1 1

( , , , , ) ( , , , , ) iff k k
i i i i i j j j j j i j

k i

a a a a a a a a a a a a
= =

<∑ ∑p for any }.CB,A,{, ∈ji  

• We then define ),,,,(),,,,( 5432154321
jjjjjiiiii aaaaaaaaaa =p if and only if either 

),,,,(),,,,( 5432154321
jjjjjiiiii aaaaaaaaaa p or ).,,,,(),,,,( 5432154321

jjjjjiiiii aaaaaaaaaa =   

• Define 5}C,B,A{: Rf → where )A(f = the total score of candidate A from 5 

voters, )B(f = the total score of candidate B from 5 voters, and )C(f = the total 

score of candidate C from 5 voters. 

• The voting decision could be interpreted as )(opt xf subject to }.,,{ CBAx∈  

One difficulty is that voting depends on a preference order as defined by the 

decision process itself. There is no order until the decision is made, as opposed to the 

decision being made based on an existing order.  

 In addition, the domination property, a necessary condition of an optimization 

criterion, is not satisfied. The domination property says that more choices yield a better 

decision, or at least not worse. In voting, the choices are the candidates. But more 

candidates do not guarantee a winner as “good or better” even in the sense of overall 

voter appeal. For example, more candidates could split the vote. So obviously politics 

does not follow our framework for consistency in decision making. 

 



 

 116

 

CHAPTER 6 

CONCLUSIONS 

 

6.1. Summary 

Scalar equivalences for all standard non-scalar optimization criteria have been 

presented without convexity or concavity requirements. In particular, equivalent 

scalarizations for maximin, Pareto optimization, goal programming, cone-ordered 

optimization, and set-valued optimization have been proposed. In addition, we have 

shown that the equivalences among standard non-scalar optimization criteria can be 

established directly. This result means that all standard optimization criteria are 

essentially equivalent since all solutions and only solutions of one can be directly 

obtained by solving an optimization problem involving any other standard criterion. 

Moreover, we have shown that the equivalent scalarizations of the standard criteria are 

equivalent in that all solutions and only solutions of one scalarization can be determined 

by solving a scalarization of any other standard criterion. Hence any criterion is 

equivalent to a scalar maximization problem in the following sense. All solutions and 

only solutions of a problem involving a criterion can be obtained, at least theoretically, 

as the solutions to a certain real-valued maximization problem of a type common to all 

criteria.  
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We have unified the notion of an optimization criterion within a general 

axiomatic framework to include all standard optimization criteria as special cases. Our 

choices of axioms have been explained, as well as the disqualification of other 

possibilities. One requirement for an optimization criterion is the scalarizability 

property. Hence all optimization criteria are equivalent to solving similar scalar 

maximization problems, and all are equivalent in a significant sense.  

Two methods of scalarization have been proposed for optimization criteria. The 

first is Corley’s Method for transforming a general cone-ordered optimization for which 

the cone is pointed and convex with appropriate assumptions. The second is the 

Lexicographic Hybrid Method for scalarizing a general optimization problem with any 

partial order.    

Finally, we defined a “compromise” criterion for fairness as well as 

“randomize” for simply taking action. In particular, the compromise criterion was 

applied to game theory to obtain new results.  Finally, the group decision making of two 

voting schemes was shown not to represent an optimization criterion in our formal 

framework.  

 

6.2. Contributions of the Research 

We have established a general framework of optimization criteria to cover all 

existing standard criteria into the same set of axioms. Thus all existing criteria are the 

same in the sense that any problem involving one criterion satisfying our definition can 

be formulated as a problem involving any other general criterion. In particular, all 
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solutions and only solutions to one problem can be obtained by solving the other 

problem.  

 Since scalarizability is one requirement of optimization criteria and since all 

standard criteria are scalar equivalent, this work has effectively suggested the following 

hypothesis. People make most individual decisions based on numerical scales, 

regardless of the specific problem, to simplify the complexity of the real world. In other 

words, people devise heuristic metrics to rank choices.  

 

6.3. Future Work 

Future work should concentrate on two areas. First, the scalarizations presented 

here must be numerically solved to make actual decisions. Hence computational 

methods  should be studied. Second, new optimization criteria should be developed to 

provide further models for decision making.    
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