
GAME THEORETICAL DATA REPLICATION TECHNIQUES FOR LARGE-

SCALE AUTONOMOUS DISTRIBUTED COMPUTING SYSTEMS

by

SAMEE ULLAH KHAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2007

Copyright © by Samee Ullah Khan 2007

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Prof. Ishfaq

Ahmad for his invaluable guidance through these years at UT Arlington. Without his

long-term encouragement, patience, understanding, and persistent support, this

dissertation would not have been completed.

I would also like to appreciate the efforts of my doctoral dissertation committee

members, Drs. Che, Cook, Kung, and Lei for their precious time in reviewing this

dissertation and for their valuable suggestions.

I am especially grateful to Profs. Cook and Shirazi (at the Washington State

University) and Prof. Kreinovich (at UT El-Paso) for their encouragement and

continued support even though they were tens of miles away – thank you.

At UT Arlington the last couple of years were made pleasant by the occasional

conversations with Drs. Huber and Zaruba and Mr. Levine. I have learnt so much from

you, about life, about (ir)rational thinking and almost about everything else.

I dedicate this dissertation, a half-decade effort to my parents, who made every

possible and impossible effort to ensure that there was no hindrance in what I liked to

pursue for education.

May 31, 2007

 iv

ABSTRACT

GAME THEORETICAL REPLICA PLACEMENT TECHNIQUES FOR LARGE-

SCALE AUTONOMOUS DISTRIBUTED COMPUTING SYSTEMS

Publication No. ______

Samee Ullah Khan, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Ishfaq Ahmad

Data replication in geographically dispersed servers is an essential technique for

reducing the user perceived access time in large–scale distributed computing systems. A

majority of the conventional replica placement techniques lack scalability and solution

quality. To counteract such issues, this thesis proposes a game theoretical replica

placement framework, in which autonomous agents compete for the allocation or

reallocation of replicas onto their representative servers in a self–managed fashion.

Naturally, each agent’s goal is to maximize its own benefit. However, the framework is

designed to suppress individualism and to ensure system–wide optimization. Using this

framework as an environment, several cooperative and non–cooperative low–

 v

complexity, flexible, and scalable game theoretical replica placement techniques are

proposed, analytically investigated, and experimentally evaluated. Each of these

techniques supports different game theoretical (pareto–optimality, catering to agents’

interests, deliberate discrimination of allocation, budget balanced, pure Nash

equilibrium, and Nash equilibrium) and system (link distance, congestion control,

minimization of communication cost, and memory optimization) related properties.

Using a detailed test–bed involving eighty various network topologies and two real–

world access logs, each game theoretical technique is also extensively compared with

conventional replica placement techniques, such as, greedy heuristics, branch–and–

bound techniques and genetic algorithms. The experimental study confirms that in each

case the proposed techniques outperform other conventional methods. The results can

be summarized in four ways: 1) The number of replicas in a system self–adjusts to

reflect the ratio of the number of reads versus writes access; 2) Performance is

improved by replicating objects to the servers based on the locality of reference; 3)

Replica allocations are made in a fast algorithmic turn–around time; 4) The complexity

of the data replication problem is decreased by multifold.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... xii

LIST OF TABLES... xv

Chapter

 1. INTRODUCTION… ... 17

 1.1 Coarse-grained replication model.. 18

 1.2 Fine-grained replication model.. 19

 1.2.1 Facility Location .. 21

 1.2.2 File Allocation .. 21

 1.2.3 Minimum k-Median.. 22

 1.2.4 Capacity-constrained Optimization .. 23

 1.2.5 Bin Packing... 23

 1.2.6 Knapsack... 24

 2. STATE OF THE ART REPLICA PLACEMENT TECHNIQUES 27

 3. THE REPLICA PLACEMENT PROBLEM... 32

 3.1 System Model and Assumptions ... 32

 3.2 Replica Placement Problem Formulation .. 34

 vii

 3.3 The Simulation Model ... 37

 3.3.1 Performance Metric .. 38

 3.3.2 Network Topologies ... 38

 3.3.3 Access Patterns ... 43

 3.3.4 Further Clarifications on the Simulation Setup 47

 3.3.5 The Determination of the Relocation Period 47

4. APPROACHING THE REPLICA PLACEMENT
 PROBLEM USING CONVENTIONAL HEURISTICS 50

 4.1 A-Star Based Technique (DRPA-Star).. 50

 4.2 A-Star Based Refinements... 54

 4.2.1 WA-Star.. 55

 4.2.2 Aε-Star .. 56

 4.3 DRPA-Star Based Heuristics (SA1, SA2, and SA3) 57

 4.3.1 SA1 ... 57

 4.3.2 SA2 ... 57

 4.3.3 SA3 ... 58

 4.4 Bin Packing Based Heuristics (LMM and GMM)................................... 58

 4.4.1 Local Min-Min (LMM) ... 58

 4.4.2 Global Min-Min (GMM) .. 59

 4.5 Greedy Based Heuristic (Greedy).. 59

 4.6 Genetic Algorithm Based Heuristic (GRA)... 60

 4.7 Comparative Analysis of Proposed Heuristics .. 61

 4.7.1 Impact of Change in the Number of Sites and Objects 61

 viii

 4.7.2 Impact of Change in System Capacity...................................... 70

 4.7.3 Impact of Change in Read/Write Frequencies.......................... 72

 4.7.4 Running Time ... 76

 4.7.5 Summary of Performance ... 78

 4.7.6 Supplementary Performance Evaluation 79

 4.7.7 Recap of Evaluation.. 81

 4.8 Concluding Remarks .. 82

5. ON DESIGNING GAME THOERETICAL
 REPLICA PLACEMENT TECHNIQUES .. 86

 5.1 Some Essential Background Material.. 88

 5.1.1 Background Material on Game Theory 88

 5.1.2 Game Theoretical Auction Theory, Views, and Extensions..... 92

 5.2 Casting Replica Placement Problem
 into an Incentive Compatible Game Theoretical Auction 95

 5.2.1 The Ingredients ... 96

 5.2.2 The Casting... 99

 5.2.3 Further Discussion on the Casting Process............................... 105

 5.3 Experimental Comparative Analysis ... 107

 5.3.1 Comparative Techniques .. 107

 5.3.2 Comparative Analysis... 109

 5.4 Concluding Remarks .. 116

6. A PARETO OPTIMAL GAME THEORETICAL
 REPLICA PLACEMENT REPLICA PLACEMENT TECHNIQUE......... 119

 6.1 Motivation.. 119

 ix

 6.2 The Mechanism (NPAM) .. 121

 6.3 Experimental Comparative Analysis ... 124

 6.4 Concluding Remarks .. 128

7. A UTILITY MAXIMIZING GAME
THEORETICAL REPLICA PLACEMENT TECHNIQUE........................ 130

 7.1 Introduction.. 131

 7.2 Non-cooperative Replica Allocation Game... 132

 7.2.1 Preliminaries for the NCOR.. 133

 7.2.2 NCOR Structure and Mechanism.. 135

 7.3 Experimental Comparative Analysis ... 143

 7.3.1 Comparative Algorithms .. 143

 7.3.2 Comparative Analysis... 144

 7.4 Concluding Remarks .. 147

8. A DISCRIMINATORY GAME
THEORETICAL REPLICA PLACEMENT TECHNIQUE........................ 149

 8.1 Introductory Remarks .. 150

 8.2 The Proposed Mechanism.. 151

 8.2.1 Discriminatory Mechanism .. 152

 8.2.2 Preliminaries ... 153

 8.3 Mechanism Applied to the Replica Placement Problem 156

 8.3.1 Supergame .. 156

 8.3.2 Game... 157

 8.3.3 Subgame ... 157

 x

 8.3.4 Subgame Nash Equilibrium.. 160

 8.4 Experimental Comparative Analysis ... 167

 8.4.1 Comparative Algorithms .. 167

 8.4.2 Comparative Game Analysis .. 168

 8.4.3 Comparative Supergame Analysis.. 177

 8.5 Concluding Remarks .. 179

9. A BUDGET BALANCED GAME
THEORETICAL REPLICA PLACEMENT TECHNIQUE........................ 181

 9.1 Introductory Views .. 181

 9.2 The Replica Allocation and Management Mechanism (RAMM) 184

 9.2.1 Preliminaries ... 184

 9.2.2 The RAMM .. 188

 9.3 Experimental Comparative Analysis ... 192

 9.3.1 Comparative Algorithms .. 192

 9.3.2 Performance Metric .. 193

 9.3.3 Comparative Analysis... 193

 9.4 Concluding Remarks .. 201

10. A COOPERATIVE REPLICA PLACEMENT TECHNIQUE.................... 203

 10.1 Introductory Views .. 203

 10.2 Cooperative Game Theoretical Replica Placement Game..................... 204

 10.2.1 The Aumann-Shapley Mechanism ... 204

 10.2.2 Replica Placement Game (COOP).. 205

 10.2.3 Aumann-Shapley Replica Placement Game........................... 206

 xi

 10.2.4 Feasibility of the COOP Technique.. 210

 10.2.5 Branching Rules of the COOP Technique.............................. 211

 10.3 Experimental Results ... 212

 10.4 Concluding Remarks ... 218

 11. FUTURE DIRECTIONS, VIEWS AND VISIONS..................................... 220

Appendix

 A. PUBLICATIONS .. 223

REFERENCES .. 228

BIOGRAPHICAL INFORMATION... 242

 xii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Number of requests generated by the Web clusters defined
 by IP address prefixes .. 45

3.2 User access pattern extracted from W-log ... 48

3.3 User access pattern extracted from N-log .. 48

4.1 Pseudo-code for DRPA-Star .. 52

4.2 RC versus number of sites (W-log).. 62

4.3 RC versus number of sites (N-log)... 62

4.4 RC versus relative performance of heuristics (number of sites; W-log)...... 63

4.5 RC versus relative performance of heuristics (number of sites; N-log)....... 63

4.6 RC versus number of objects (W-log) ... 64

4.7 RC versus number of objects (N-log) .. 64

4.8 RC versus relative performance of heuristics (number of objects; W-log).. 66

4.9 RC versus relative performance of heuristics (number of objects; N-log) .. 66

4.10 RC versus system capacity (W-log) ... 67

4.11 RC versus system capacity (N-log).. 67

4.12 RC versus relative performance of heuristics (system capacity; W-log) 69

4.13 RC versus relative performance of heuristics (system capacity; N-log)...... 69

4.14 RC versus R/W ratio (W-log)... 71

 xiii

4.15 RC versus R/W ratio (N-log) ... 71

4.16 RC versus relative performance of heuristics (R/W ratio; W-log)............... 73

4.17 RC versus relative performance of heuristics (R/W ratio; N-log) 73

4.18 Execution time components ... 74

4.19 RC versus variance in R/W ratio.. 77

4.20 RC versus variance in system capacity .. 77

4.21 Search tree node expansion savings of A-Star based heuristics................... 78

5.1 Pseudo-code for an incentive compatible auction mechanism..................... 104

5.2 OTC savings versus number of servers.. 111

5.3 OTC savings versus number of objects.. 111

5.4 OTC savings versus capacity ... 112

5.5 OTC savings versus read/write ratio .. 112

6.1 Pseudo-code for N+1st Price Auction Mechanism (NPAM)....................... 123

6.2 RC savings vs. System Capacity (N = 2000, M = 500, U = 5%)................. 125

6.3 RC savings vs. Reads (N = 2000, M = 500, C = 45%) 126

6.4 RC savings vs. Updates (N = 2000, M = 500, C = 60%)............................. 126

7.1 The Pseudo-code for NCOR Procedure ... 142

7.2 OTC savings versus capacity ... 145

7.3 OTC savings versus read/write ratio .. 145

8.1 The network architecture.. 158

8.2 Read and write patterns .. 158

8.3 Benefits of replication (reads) .. 158

 xiv

8.4 Benefits of replication (writes)... 158

8.5 Mechanism game at instance t ... 165

8.6 OTC savings versus number of sites .. 169

8.7 OTC savings versus number of objects.. 169

8.8 OTC savings versus capacity ... 170

8.9 OTC savings versus reads .. 170

8.10 OTC savings versus updates .. 171

8.11 Execution time components ... 171

8.12 Median load variance ... 173

8.13 Mean load variance .. 173

8.14 Mean capacity variance.. 175

8.15 Mean capacity variance.. 175

9.1 Pseudo-code describing the RAMM .. 191

9.2 OTC savings versus number of sites .. 194

9.3 OTC savings versus number of objects.. 194

9.4 OTC savings versus capacity ... 195

9.5 OTC savings versus reads .. 195

9.6 OTC savings versus updates .. 198

10.1 Pseudo-code for the COOP procedure .. 209

10.2 OTC savings versus capacity ... 216

10.3 OTC savings versus read/write ratio .. 216

 xv

LIST OF TABLES

Table Page

 1.1 The major work reported in the field of replica placements 25

 2.1 Summary of related work.. 28

 4.1 Running time in seconds [C=20%, R/W=0.55]
 (small problem instances). ... 75

 4.2 Running time in seconds [C=45%, R/W=0.85]
 (medium problem instances).. 75

 4.3 Running time in seconds [C=75%, R/W=0.65]
 (large problem instances)... 75

 4.4 Problem instances for recording search tree node expansion savings 78

 4.5 Average RC (%) savings under some problem instances 80

 4.6 Algorithm ranking based on solution quality.. 80

 4.7 Overview of results with suggested utilization ... 80

5.1 Running time of the replica placement methods in seconds
 [C=45%, R/W=0.85]... 115

5.2 Average OTC (%) savings under some randomly chosen problems 115

 6.1 Running time in sec... 125

 6.2 Average savings in percentage.. 127

 7.1 Running time of the replica placement methods in seconds
 for small problem instances [C=20%, R/W=0.45]……........................ 146

 7.2 Running time of the replica placement methods in seconds
 for large problem instances [C=45%, R/W=0.85]……. 146

 xvi

 8.1 Running time in seconds [C=20%, U=25%]... 178

 8.2 Running time in seconds [C=35%, U=35%]... 178

 8.3 Average OTC (%) savings under some problem instances....................... 178

 9.1 Running time (sec.) [C=55%, U=10%]... 198

 9.2 Running time (sec.) [C=15%, U=55%]... 200

 9.3 Average OTC (%) savings .. 200

 10.1 Running time of the replica placement methods in seconds
 for small problem instances [C=20%, R/W=0.45]……. 217

 10.2 Running time of the replica placement methods in seconds
 for large problem instances [C=45%, R/W=0.85]……. 217

 17

CHAPTER 1

INTRODUCTION

With the exponential growth of the World Wide Web, popular web serves are

required to handle enormous amount of requests from geographically and

psychologically diverse users [1]. These web servers are in constant competition with

their peers to provide better (faster/reliable) Internet usage. (For instance, over the

number of years many commercial web hosting services such as Akamai, Exodus, etc.

have gained popularity [58].) However, the Internet access simply cannot be improved

by high performance web servers [100]. Efficient and sophisticated caching and

replication techniques are necessary to ensure: up-to-date contents, fast information

retrieval, reduced web server load, and added reliability.

Caching was traditionally applied to distributed file systems such as the AFS

 [79]. Although it is a well-studied problem, yet its application on the Internet gave rise

to new problems, e.g., where to place a cache, how to make sure cached contents are

valid, and how to handle dynamic pages. Replication, in contrast, has been commonly

used in distributed systems to increase availability and fault tolerance, which in turn

leads to load balancing and increases client-server proximity [108]. Both techniques

play complementary roles in the Internet environment [78]. Caching attempts to store

the most commonly accessed objects as close to the clients as possible, while replication

 18

distributes a site’s contents across multiple mirror servers. Caching can be viewed as a

special case of replication when mirror servers store only parts of a site’s contents [1].

This analogy leads to some interesting comparisons. For instance, cache replacement

algorithms are examples of on-line, distributed, locally greedy algorithms for data

allocation in replicated systems. Furthermore, caches do not have full server capabilities

and thus can be viewed as a replicated system that sends requests for specific object

types (e.g., dynamic pages) to a single server. Essentially, every major aspect of a

caching scheme has its equivalent in replicated systems, but not vice versa. For fault-

tolerant and highly dependable systems, replication is essential, as demonstrated in a

real world example of Ocean Store [107]. Replication can be coarse-grained (replication

of an entire site or server) or fine-grained (replication of individual data items or

objects). Below we detail these two popular models.

1.1 Coarse-grained replication model

Similarity to the celebrated distributed file allocation problem [109], has moved

the researches to address the problem of data replication on similar lines. We can

formally state the problem as: “Choose M replicas among N potential sites (N>M) such

that certain constraints are optimized.”

These constraints could be memory, reduction in latency, communication cost

etc. Since the entire site is copied to the location where it is to be replicated, it is termed

as coarse-grained replication [79].

A majority of the initial work, assumed the coarse-grained replication model.

 19

We detail some of the major works that use the coarse-grained model as follows.

Authors in [75] model the Internet as a tree. Being not only unrealistic, the model also

assumes that the access requests to the proxies by the clients (which reside on the leaves

of the tree) are always on the direct path(s) towards the servers. Moreover their bound

of O(N3M2) prevents them to compute real world proxy reallocation. Nevertheless work

reported in [75], is the very first of its nature which deals directly with the proxy server

placement. In [46], the authors used not only theoretical results, but combined it with

appropriate heuristics. Their heuristic approach is so strong that it does not require the

full knowledge of the network topology as assumed in many approaches [79]. They

latter improved [47] their approach by introducing a refined constrained based policy. A

comprehensive comparison with realistic data from Internet log files is done in [100],

where the Greedy approach [100], outperforms the Dynamic Programming approach

 [75], Randomized [100] and Hot Spot [100]. Although replicating the entire contents of

the website can reduce the hit-miss ratio by considerable amounts, yet in the context of

high-performance systems, the coarse-grained replication model is a too simplistic

approach [79].

1.2 Fine-grained replication model

This model allows the replication of certain objects as apposed to the entire site.

This approach has many advantages, such as [100]: it saves the server memory capacity,

it moves only those objects that are actually required to be reallocated, it reduces the

network traffic and provides load-balancing. The generalized fine-grained replication is

 20

known to be NP-complete not only for the general graphs [78], but also for the

partitioned graphs [52]. We detail some of the major works that use the fine-grained

model as follows. Authors in [78] analyzed both static (such as a modified Greedy

based approach [83] and an Evolutionary method based on Genetic algorithms [44]) and

adaptive (such as a self-configured Genetic approach) replication techniques.

Experimental results revealed that the static Genetic approach outperformed on every

occasion. The work was further extended [77] with comparisons to Linear Programming

 [12] and Linear Integer Programming [36]. In [110], the authors compared a localized

Greedy, DEJAVU and a genetic algorithm, and found that the genetic algorithm

outperformed both the heuristics, supporting the results reported in [77].

This text focuses on the algorithms for the placement of replicas. Replica

placement techniques determine where and how many replicas to be placed, so as to

maximize the system performance. The decision where to place the replicated data must

trade off the cost of accessing the data, which is reduced by additional copies, against

the cost of storing and updating the replicas. In general, clients experience reduced

access latencies provided that data is replicated within their close proximity. However,

rapid updates (or writes) may counteract the replication benefit because of the overhead

in maintaining a large number of replicas [78]. With both reads and updates, the

locations of the replicas have to be: 1) in close proximity to the client(s), and 2) in close

proximity to the primary (assuming a broadcast update model) copy [58]. Therefore,

efficient and effective replication schemas strongly depend on how many replicas to be

placed in the system, and more importantly where [79].

 21

Myriad theoretical approaches are proposed that we classify (and also describe a

few seminal works) into the following six categories:

1.2.1 Facility Location

The facility location problem can be defined as: “Find a location that minimizes

a weighted sum of distances to each of several locations”.

The generalized facility location problem is NP-complete [35]. The only known

work on data replication with similar characteristics as that of the facility location

problem is reported in [46]. However, the techniques reported are very tedious, have

superfluous assumptions, and do not fully capture the concept of replicating a single

item (object or site) over a fixed number of hosts [77].

1.2.2 File Allocation

File allocation has been a popular line of research in: distributed computing

 [83], distributed databases [5], multimedia databases [109], paging algorithms [33], and

video server systems [109]. The generalized file allocation problem for multiple objects

 [21] has been proven to be NP–complete [31]. We can formally state the file allocation

problem with context to the replication problem as [79]: “For a network of M sites each

with different storage capacity, replicate N files such that it satisfies the storage

constraint and also optimizes some performance parameters e.g. network flow and/or

reduce download speed”.

File allocation has also been studied in the un–capacitated version [79]. There

 22

the authors provide a guaranteed optimal result, but since the assumption is on

unlimited capacity, the result is of little practical use [54]. A rather old but a

comprehensive survey on file allocation can be found in [30].

1.2.3 Minimum k-Median

The celebrated NP-complete minimum k–median problem is formally defined

as follows [79]: “Given is a graph G(V,E) with weights on the nodes representing the

number of requests and lengths on the edges. Satisfy a request, such that it minimizes

the network cost of traversal and the path from the origin node and a server(s)”.

A lot of work has been done on k–median and its variants, e.g., [45], [64]. In

 [75] the authors studied the problem of placing M proxies at N nodes where the

topology of the network is a tree and proposed an O(N3M2) algorithm. The result was

further refined in [115]. Both the results have significant theoretical contributions but

are impractical since the underlying topology was assumed to be a tree or requires the

accesses to data be made on a well-defined minimum spanning tree residing inside the

graph. A similar result with the objectives of minimizing the overall access cost by

clients to the web sites and minimizing the longest delay can be seen in [49]. To

compliment these approaches, a more generalized solution was presented in [100].

There the authors compared various placement techniques and proposed a greedy

algorithm that outperformed other techniques including the work reported in [75]. Most

of the results in this category have already been discussed while describing the coarse-

grained model.

 23

1.2.4 Capacity-constrained Optimization

Constraint optimization is a class of problems that is widely studied in

Operations Research. In the context of the data replication problem, the capacity-free

(unlimited storage) version has a better worst-case performance than the capacity-

constrained version [79], yet it requires a lot of maneuverability in terms of choosing

the optimization function [18]. In [52], the authors use the capacity-constrained version

of the minimum k-median problem and guarantee a stable performance. However, such

results are possible only with very conservative assumptions (such as, fixed location of

the original server, access patterns are to be known before hand, no network failures,

etc.) as addressed in [47] and [73]; therefore, they can not handle the dynamics of the

system [79].

1.2.5 Bin Packing

Widely studied in the field of on-line algorithms, the bin packing problem is

known to be NP-hard [35]. We can formally state the problem with context to

replication as [79]: “Given N various objects of different sizes, partition them into the

minimum number of disjoint sets such that the cumulative size of each set does not

exceed a certain threshold”.

This approach was first studied in [89], where the authors formulate the problem

over a cluster of web servers to reduce the server loads, by incorporating the usage of

dummy replicas. However, their approach performs well only when the network under

consideration is small. Most recently a more flexible and general approach was

 24

undertaken in [57]. There the authors performed extensive experimental comparisons

using various network topologies and real access logs.

1.2.6 Knapsack

To reduce network latency, a proactive web server can decide where to place the

copies of the objects in a distributed web server, by employing partial replication [9].

Many researchers [89] have used the partial replication technique with the support of

content-aware distributors. The primary usage of content-aware distributors is to

redirect the client’s request to the server that has the copy of the document requested

 [97]. In all of the above approaches the authors have primarily adopted the knapsack

problem approach, which can be stated as follows:

“Given is a network of M nodes with distinguishable capacities and N objects.

Find a subset of objects whose total size is bounded by the capacities for a site, and the

total profit is maximized”.

Here the profit can be to reduce the communication cost or latency etc. If no

such replica is unassigned the problem is reduced to 0-1 knapsack [35]. Due to the close

resemblance of the knapsack problem to the bin packing problem, it is widely studied

by researchers in the filed of Operations Research [119], Game Theory [37] and

Approximation Algorithms [123]. Authors in [20] have proved that minimizing the

maximum load over all the web server nodes is NP-complete. If the constraint of load

balancing is removed, the problem of minimizing the communication cost still remains

 25

NP-hard [124]. A rather different approach [26] using the concept of read-one-write-all

policy has also been investigated in the context of dynamic data replication within the

scope of 0-1 knapsack formulation. Some of the significance work in this line of pursuit

is reported in [16], [78] and [108].

A number of bibliographies and reading materials for web caching are also

available online, e.g., [26]. An overview of replication and its challenges are provided

in [79] and [100], respectively. Table 1.1 provides an overview of the major work

reported categorized into the six major theoretical oracles.

Our aim here is to propose, design and analyze efficient and effective fine-

grained replica placement techniques. Naturally, a stringent conventional benchmark

needs to be set before one can pursue original thoughts. For this purpose, we first

Table 1.1: The major work reported in the field of replica placements.
Problem definition related assumptions Experimental related Information

Access Objects Storage
C

at
eg

or
y

Work Topology assumed
Reads Writes Multiple/Single Constraints

Access patterns Topologies

1 [46] General graphs Yes No Single No Synthetic (Zipf) AS, Transit-Stub
 [5] General, fork graphs Yes Yes Single No N/A N/A

 [21] Fully connected graphs Yes Yes Single No N/A N/A
 [31] General graphs Yes No Single No Statistical Flat
 [33] Uniform cost graphs Yes No Multiple No N/A N/A
 [70] General graphs Yes Yes Multiple Yes Statistical Flat
 [83] General graphs Yes Yes Single No N/A N/A

2

 [109] General graphs Yes Yes Multiple Yes Statistical Flat
 [45] Linear, general graphs Yes No Single No N/A N/A
 [52] General graphs Yes No Multiple No Synthetic (Zipf) AS
 [49] Trees Yes No Single No Statistical Trees
 [64] General graphs Yes No Multiple Yes N/A N/A
 [75] Trees Yes No Single No Statistical Trees

3

 [115] Trees, general graphs Yes No Multiple No Statistical Tress, Flat
 [18] Linear, general graphs Yes No Multiple No N/A N/A
 [47] General graphs Yes Yes Multiple No Synthetic (Zipf) AS, Transit-Stub
 [73] General graphs Yes Yes Multiple Yes Real-time Flat 4

 [100] Trees, general graphs Yes Yes Multiple Yes Access logs Tress, Flat
 [57] General graphs Yes Yes Multiple Yes Access logs Flat 5 [89] Linear graphs Yes Yes Multiple Yes Statistical Flat
 [16] General graphs Yes Yes Single No N/A N/A
 [26] Linear, general graphs Yes Yes Single No N/A N/A
 [78] General graphs Yes Yes Multiple Yes Synthetic (Zipf) Flat 6

 [108] General graphs Yes Yes Multiple No N/A N/A

 26

propose an infrastructure that close mimics the Internet (an example of large-scale

distributed computing system) in topology and traffic. This infrastructure is

benchmarked with ten static heuristic based techniques with various problem

parameters. This rigorously benchmarked data is recorded for comparisons with

originally conceived, novel, game theoretical replica placement techniques.

Our aim (through this study) is to show that game theoretical techniques are per

se better than conventional centralized techniques because of their flexibility in design,

distributed control, scalability, and various levels of optimality.

In the remainder of this document, after a brief survey on the current state of the

art replica placement techniques in Chapter 2, we will introduce the replica placement

problem, the underlying system assumptions, parameters, and an experimental

infrastructure that closely mimics the Internet in topology and traffic in Chapter 3. A set

of ten static heuristics will be put to test to benchmark conventional replica placement

techniques in Chapter 4. In Chapter 5, we provide back ground information on game

theory and design an incentive compatible game theoretical replica placement

technique. This technique is further extended to capture a few important properties of

pareto optimality, utility maximization, deliberate discrimination, budget balance, and a

cooperative technique in Chapters 6, 7, 8, 9, and 10, respectively. Finally, Chapter 11

provides conceptual views and discusses extension to the work presented here.

 27

CHAPTER 2

STATE OF THE ART REPLICA PLACEMENT TECHNIQUES

The replica placement problem is an extension of the classical file allocation

problem (FAP). Chu [21] studied the file allocation problem with respect to multiple

files in a multiprocessor system. Casey [15] extended this work by distinguishing

between updates and read file requests. Eswaran [31] proved that Casey’s formulation

was NP complete. In [82] Mahmoud et al. provide an iterative approach that achieves

good solution quality when solving the FAP for infinite server capacities. A complete

although old survey on the FAP can be found in [30]. Apers in [5] considered the data

allocation problem (DAP) in distributed databases where the query execution strategy

influences allocation decisions. In [70] the authors proposed several algorithms to solve

the data allocation problem in distributed multimedia databases (without replication),

also called as video allocation problem (VAP). Replication algorithms fall into the

following three categories:

1. The problem definition does not cater for the user accesses.

2. The problem definition only accounts for read access.

3. The problem definition considers both read and write access including consistency

requirements.

These categories are further classified into four categories according to whether

 28

a problem definition takes into account single or multiple objects, and whether it

considers storage costs. Table 2.1 shows the categorized outline of the previous work

reported.

The main drawback of the problem definition in category 1 is that they place the

replicas of every object, in the same node. Clearly, this is not practical, when many

objects are placed in the system. However, they are useful as a substitute of the problem

definition of category 2, if the objects are accessed uniformly by all the clients in the

system and utilization of all nodes in the system is not a requirement. In this case

category 1 algorithms can be orders of magnitude faster than the ones for category 2,

because the placement is decided once and it applies to all objects.

Most of the research papers tackle the problem definition of category 2. They

are applicable to read-only and read-mostly workloads. In particular this category fits

well in the context of content distribution networks (CDNs). Problem definitions [42],

 [54], [81] and [111] have all been used in CDNs. The two main differences between

them are whether they consider single or multiple objects, and whether they consider

Table 2.1: Summary of related work.
Category Number of objects Storage constraints References

 Single object No storage constraint [46].
Category 1: Storage constraint –
No object access. No storage constraint [42], [47].
 Multiple objects Storage constraint –

 Single object No storage constraint [30], [42], [47], [55], [64], [67], [75], [100].
Category 2: Storage constraint [10], [23], [54], [56], [69].
Read accesses only. No storage constraint [9], [52], [56], [74], [82], [113].
 Multiple objects Storage constraint [21], [89].

 Single object No storage constraint [5], [21], [26], [82], [120], [121].
Category 3: Storage constraint [19], [53], [65], [80], [82], [110].
Read and write accesses. No storage constraint [43], [67], [100], [101].
 Multiple objects Storage constraint [8], [1], [57], [58], [78], [82], [87].

 29

storage costs or not. The cost function in [82] also captures the impact of allocating

large objects and could possible be used when the object size is highly variable. In [30]

the authors tackled a similar problem – the proxy cache placement problem. The

performance metric used there was the distance parameter, which consisted of the

distance between the client and the cache, plus the distance between the client and the

node for all cache misses. It is to be noted that in CDN, the distance is measured

between the cache and the closest node that has a copy of the object.

The storage constraint is important since it can be used in order to minimize the

amount of changes to the previous replica placements. As far as we know only the

works reported in [57] and [78] have evaluated the benefits of taking storage costs into

consideration. Although there are research papers which consider storage constraints in

their problem definition, yet they never evaluate this constraint (e.g. see [31], [47], [75]

and [100]).

Considering the impacts of writes, in addition to that of reads, is important, if

content providers and applications are able to modify documents. This is the main

characteristic of category 3. Some research papers in this category also incorporate

consistency protocols – in many different ways. For most of them, the cost is the

number of writes times the distance between the client and the closest node that has the

object, plus the cost of distributing these updates to the other replicas of the object. In

 [46], [52], [55] and [75] the updates are distributed in the system using a minimum

spanning tree. In [47] and [100] one update message is sent from the writer to each

copy, while in [57] and [78] a generalized update mechanism is employed. There a

 30

broadcast model is proposed in which any user can update a copy. Next, a message is

sent to the primary (original) copy holder server which broadcasts it to the rest of the

replicas. This approach is shown to have lower complexity than any of the above

mentioned techniques. In [67] and [102], it is not specified how updates are propagated.

The other main difference among the above definitions is that [52], [55], [57], [75], [78]

and [113] minimize the maximum link congestion, while the rest minimize the average

client access latency or other client perceived costs. Minimizing the link congestion

would be useful, if bandwidth is scare.

Some on-going work is related to dynamic replication of objects in distributed

systems when the read-write patterns are not known apriori. Awerbuch’s et al. work in

 [7] is significant from a theoretical point of view, but the adopted strategy for

commuting updates (object replicas are first deleted), can prove difficult to implement

in a real-life environment. In [119] Wolfson et al. proposed an algorithm that leads to

optimal single file replication in the case of a tree network. The performance of the

scheme for general network topologies is not clear though. Dynamic replication

protocols were also considered under the Internet environment. Heddaya et al. [43]

proposed protocols that load balance the workload among replicas. In [100], Rabinovich

et al. proposed a protocol for dynamically replicating the contents of an Internet service

provider in order to improve client-server proximity without overloading any of the

servers. However updates were not considered.

Recently, game theory has emerged as a popular tool to tackle optimization

problems especially in the field of distributed computing. However, in the context of

 31

data replication it has not received much attention. We briefly elaborate three pinoring

works that directly or indirectly deal with the replica placement problem using game

theoretical techniques. The first work [22] is mainly on caching and uses an empirical

model to derive Nash equilibrium. The second work [58] focuses on mechanism design

issues and derives an incentive compatible auction for replicating data on the Web. The

third work [72] deals with identifying Nash strategies derived from synthetic utility

functions. Our work differs from all the game theoretical techniques in: 1) identifying a

non-cooperative non-priced based replica allocation method to tackle the data

replication problem, 2) using game theoretical techniques to study an environment

where the agents behave in a selfish manner, 3) deriving pure Nash equilibrium and

pure strategies for the agents, 4) performing extensive experimental comparisons with a

number of conventional techniques using an experimental setup that is mimicking the

Web in its infrastructure and access patterns.

 32

CHAPTER 3

THE REPLICA PLACEMENT PROBLEM

3.1 System Model and Assumptions

The system model under consideration is a large-scale distributed computing

system, where users access data objects which are held by the sites. Below we elucidate

the few system related assumptions.

1. Each site is assigned a unique site identifier. There a total of M sites in the system

and Si (1≤i≤M) denotes a site identifier.

2. Each data object is assigned a unique object identifier. There a total of N data

objects in the system and Ok (1≤k≤N) denotes a data object identifier.

3. The original copy of an object is held by a particular site in the system called the

primary site, denoted as Pk. This site also holds the information about where the

replicas of object Ok reside in the system.

4. Each site has a limited storage capacity which is denoted by si.

5. The read and write access frequencies are known a priori (or observed through

access log).

6. For updates we assume a “broadcast” or lazy replication model [58]. In this model

when an object is updated, the update is sent to the site (Pk) which holds the original

copy of the object. Pk upon receiving the updated contents broadcasts the updates to

 33

the sites which hold the replicas of the object. In this way, we can always guarantee that

the data contents in the system are up-to-date.

Based on the above system overview and the underlying assumptions, if we are

to find an optimal placement of replicas in a large-scale distributed computing system,

then we must incorporate among others the following parameters in a brute force

(exhaustive search) method [77]:

1. The access frequency of each data object.

2. The time remaining until each data object is updated next.

3. The probability that each site functions properly during the lifespan of the system.

4. The probability that the network will remain connected during the lifespan of the

system.

Even if some lopping is possible, the computational complexity is very high,

and this calculation must be done every time any of the above parameters change.

Moreover, parameters 3 and 4 cannot be formulated in practice because faults do not

follow a known phenomenon. For these reasons, we take the following heuristic

approach:

1. Replicas are relocated in a specific period (relocation period).

2. At every relocation period, replica allocation is determined based on the access

(both read and update) frequency of each data object and the network topology at

that moment.

 34

3.2 Replica Placement Problem Formulation

Consider a distributed system comprising M sites, with each site having its own

processing power, memory (primary storage) and media (secondary storage). Let Si and

si be the name and the total storage capacity (in simple data units e.g. blocks),

respectively, of site i where 1 ≤ i ≤ M. The M sites of the system are connected by a

communication network. A link between two sites Si and Sj (if it exists) has a positive

integer c(i,j) associated with it, giving the communication cost for transferring a data

unit between sites Si and Sj. If the two sites are not directly connected by a

communication link then the above cost is given by the sum of the costs of all the links

in a chosen path from site Si to the site Sj. Without the loss of generality we assume that

c(i,j) = c(j,i). This is a common assumption e.g. see [46], [57], [78], [100]. Let there be

N objects, each identifiable by a unique name Ok and size in simple data unites ok where

1 ≤ k ≤ N. Let rk
i and wk

i be the total number of reads and writes, respectively, initiated

from Si for Ok during a certain time period t. This time period t determines when to

instigate the relocation period so that the replica placement algorithm can be invoked.

Note that this time period t is the only parameter that requires human intervention.

However, in this study we use analytical data that will enable us to effectively predict

the time interval t (in the subsequent text it will be described in detail how this

relocation period can be identified).

Our replication policy assumes the existence of one primary copy for each

object in the network. Let Pk, be the site which holds the primary copy of Ok, i.e., the

only copy in the network that cannot be de-allocated, hence referred to as primary site

 35

of the k-th object. Each primary site Pk, contains information about the whole

replication scheme Rk of Ok. This can be done by maintaining a list of the sites where

the k-th object is replicated at, called from now on the replicators of Ok. Moreover,

every site Si stores a two-field record for each object. The first field is its primary site Pk

and the second the nearest neighborhood site NNk
i of site Si which holds a replica of

object k. In other words, NNk
i is the site for which the reads from Si for Ok, if served

there, would incur the minimum possible communication cost. It is possible that NNk
i =

Si, if Si is a replicator or the primary site of Ok. Another possibility is that NNk
i = Pk, if

the primary site is the closest one holding a replica of Ok. When a site Si reads an object,

it does so by addressing the request to the corresponding NNk
i. For the updates we

assume that every site can update every object. Updates of an object Ok are performed

by sending the updated version to its primary site Pk, which afterwards broadcasts it to

every site in its replication scheme Rk.

For the DRP under consideration, we are interested in minimizing the total

replication cost (RC) or the total network transfer cost (NTC) or the total object transfer

cost (OTC). (We will use the terms RC, NTC and OTC interchangeably. They all point

to the same measure.) The communication cost of the control messages has minor

impact to the overall performance of the system [79], therefore, we do not consider it in

the transfer cost model, but it is to be noted that incorporation of such a cost would be a

trivial exercise. There are two components affecting RC. The first component of RC is

due to the read requests. Let Rk
i denote the total RC, due to Sis’ reading requests for

object Ok, addressed to the nearest site NNk
i. This cost is given by the following

 36

equation:

(,)i i i
k k k kR r o c i NN= , (3.1)

where NNk
i = {Site j | j∈Rk ^ min c(I,j)}. The second component of RC is the cost arising

due to the writes. Let Wk
i be the total RC, due to Sis’ writing requests for object Ok,

addressed to the primary site Pk. This cost is given by the following equation:

(),
((,) (,))i i

k k k k k
j R j ik

W w o c i P c P j
∀ ∈ ≠

= + ∑ . (3.2)

Here, we made the indirect assumption that in order to perform a write we need

to ship the whole updated version of the object. This of course is not always the case, as

we can move only the updated parts of it (modeling such policies can also be done using

our framework). The cumulative RC, denoted as Coverall, due to reads and writes is given

by:

1 1()M N i i
overall k ki kC R W= == +∑ ∑ . (3.3)

Let Xik=1 if Si holds a replica of object Ok, and 0 otherwise. Xiks define an M×N

replication matrix, named X, with boolean elements. Equation 3 is now refined to:

1 1 1(1)[min{ (,) | 1} (,)] (M N Mi i x
ik k k jk k k k ik ki k xX X r o c i j X w o c i P X w= = == − = + +∑ ∑ ∑

.

 (3.4)

Sites which are not the replicators of object Ok create RC equal to the

communication cost of their reads from the nearest replicator, plus that of sending their

writes to the primary site of Ok . Sites belonging to the replication scheme of Ok, are

associated with the cost of sending/receiving all the updated versions of it. Using the

above formulation, the DRP can be defined as:

 37

“Find the assignment of 0, 1 values in the X matrix that minimizes Coverall,

subject to the storage capacity constraint:

1 (1)N i
ik kk X o s i M= ≤ ∀ ≤ ≤∑ ,

and subject to the primary copies policy:

1 (1)P kk
X k N= ∀ ≤ ≤ .”

The minimization of Coverall has the following two impacts on the distributed

computing system under consideration. First, it ensures that the object replication is

done in such a way that it minimizes the maximum distance between the replicas and

their respective primary objects. Second, it ensures that the maximum distance between

an object k and the user(s) accessing that object is also minimized. Thus, the solution

aims for reducing the overall RC of the system. In the generalized case, the replica

placement problem is proven to be NP-complete [78].

3.3 The Simulation Model

Below we will describe for the curious readers the simulation model that will be

used in the subsequent text. All the proposed techniques (heuristics and game

theoretical) are extensively compared using an experimental setup that closely mimics

the Internet in its infrastructure and user access patterns. GT-ITM [14] and Inet [17]

topology generators are used to obtain 80 well-defined network topologies based on

flat, link distance, power-law and hierarchical transit-stub models. The user access

patterns are derived from real access logs collected at the Soccer World Cup 1998 web

server and NASA Kennedy Space Center web server. The proposed techniques are

 38

evaluated by analyzing the system utilization in terms of reducing the communication

cost incurred due to object transfer(s) under the variance of server capacity, object size,

read access, write access, number of objects and sites.

3.3.1 Performance Metric

The solution quality in all cases, was measured according in terms of the RC (or

OTC or NTC) percentage that was saved under the replication scheme found by the

algorithms, compared to the initial one, i.e., when only primary copies exist.

3.3.2 Network Topologies

To establish diversity, the network connectively has to be changed considerably.

We used four types of network topologies, which we explain below. (All in all we

employed 80 various topologies.)

3.3.2.1 Flat Methods

In flat random methods a graph G = (V,E) is built by adding edges to a given set

of nodes V subject to a probability function P(u,v), where u and v are arbitrary nodes of

G.

3.3.2.1.1 Pure Random Model

A random graph G(M,P(edge = p)) with 0 ≤ p ≤ 1 contains all graphs with nodes

(servers) M in which the edges are chosen independently and with a probability p.

 39

Although this approach is extremely simple, yet it fails to capture significant properties

of Web-like topologies [41]. The 5 pure random topologies were obtained using GT-

ITM [122] topology generator with p = {0.4, 0.5, 0.6, 0.7, 0.8}.

3.3.2.1.2 Waxman Model

The shortcomings of pure random topologies can be overcome by using the

Waxman model. In this method edges are added between pairs of nodes (u,v) with

probability P(u,v) that depends on the distance d(u,v) between u and v. The Waxman

model is given by [117]:

(,)
(,)

d u v
LP u v e αβ

−
= ,

where L is the maximum distance between any two nodes and α, β∈(0,1]. β is used to

control the density of the graph. The larger the value of β the denser is the graph. α is

used to control the connectively of the graph. The smaller the value of α the larger is the

number of short edges [41]. The 12 Waxman topologies were obtained using the GT-

ITM [122] topology generator with values of α = {0.1, 0.15, 0.2, 0.25} and β = {0.2,

0.3, 0.4}.

3.3.2.2 Link Distance Models

In pure random and Waxman Models, there is no direct connection among the

communication cost and the distance between two arbitrary nodes of the generated

graph. To compliment these two models, we propose a class of graphs in which the

distance between two nodes is directly proportional to the communication cost. In such

 40

methods, the distance between two serves is reversed mapped to the communication

cost of transmitting a 1kB of data, assuming that we are given the bandwidth. That is,

the communication cost is equivalent to the sum of the transmission and propagation

delay. The propagation speed on a link is assumed to be 2.8×108 m/s (copper wire).

Thus, if we say that the distance between two nodes is 10-km and has a bandwidth of

1Mbps, then it means that the cost to communication 1kB of data between the two

nodes is equivalent to 10-km/(2.8×108 m/s) + 1kB/(1Mbps) = 8.03 ms, and the cost

would simply be 0.00803.

3.3.2.2.1 Random Graphs

This method involves generating graphs with random: node degree (d*),

bandwidth (b) and link distance (d) between the nodes of the graph. We detail the steps

involved in generating random graphs as follows. First, M (user input) nodes are placed

in a plane, each with a unique identifier. Second, from the interval d*, each node’s out

degree is generated. (At this moment the links do not have weights or communication

costs.) Third, each link is assigned bandwidth (in Mbps) and distance (in kilometers) on

random. Finally, for each link the transmission and propagation delay is calculated,

based on the assigned bandwidth and distance. The 12 random topologies were obtained

using, d* = {10, 15, 20}, b = {1, 10, 100} and d = {5, 10, 15, 20}.

3.3.2.2.2 Fully Connected Random Graphs

This method is similar to the one used for generating random graphs except that

now we do not require the node degree since the entire graph is fully connected. The 5

 41

random topologies were obtained using, b = {1, 10, 100} and d = {d1 = [1,10], d2 =

[1,20], d3 = [1,50], d4 = [10,20], d5 = [20,50]}. Notice that d has 5 elements d1,…d5.

Each element was used to generate a particular graph. For instance, for the first graph,

we choose the bandwidth randomly from the values of {1, 10, 100}, and the link

distance randomly from the interval of d1 = [1,10].

3.3.2.2.3 Fully Connected Uniform Graphs

This method is similar to the one described for generating fully connected

random graphs except that the bandwidth and link distance are chosen uniformly and

not randomly. The 5 random topologies were obtained using, b = [1, 100] and d =

{d1=[1,10], d2=[1,20], d3=[1,50], d4=[10,20], d5=[20,50]}.

3.3.2.2.4 Fully Connected Lognormal Graphs

This method is similar to the one described for generating fully connected

random graphs except that link distance is chosen log-normally and not randomly. Note

that the bandwidth is still assigned on random. (Curious readers are encouraged to see

 [34] for an insight on the lognormal distribution functions.) The 9 lognormal topologies

were obtained using, b = {1, 10, 100} and d = {µ = {8.455, 9.345, 9.564}, σ = {1.278,

1.305, 1.378}}, where µ and σ are the mean and variance parameters of the lognormal

distribution function, respectively.

 42

3.3.2.3 Power-Law Model

The power-law model [86] takes its inspiration from the Zipf law [123], and

incorporates rank, out-degree and eigen exponents. We used Inet [17] topology

generator to obtain the power-law based Internet topologies. Briefly, Inet generates

Autonomous System (AS) level topologies. These networks have similar if not the exact

characteristics of the Internet from November 1997 to June 2000. The system takes in

as input two parameters to generate topologies, namely: 1) the total number of nodes,

and 2) the fraction (k) of degree-one nodes. Briefly, Inet starts form the total number of

desired nodes and computes the number of months t it would take to grown the Internet

from its size in November 1997 (which was 3037 nodes) to the desired number of

nodes. Using t it calculates the growth frequency and the out-degree of the nodes in the

network. This information is used to iteratively connect nodes till the required out-

degree of nodes is reached. The 20 power-law topologies were obtained using k = {0.01,

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,

0.9, 0.95}.

3.3.2.4 Hierarchical Transit-Stub Model

The Internet model at the autonomous system (AS) level can also be captured

by using a hierarchical model. Authors in [122] derived a graph generation method

using a hierarchical model in order to provide a more adequate router model of the

Internet than the Waxman model. In their paper, each AS domain in the Internet was

classified as either a transit domain or a stub domain, hence the name transit-stub

 43

model. In a stub domain, traffic between any two nodes u and v goes through that

domain if and only if either u or v is in that domain. Contrarily, this restriction is

relaxed in a transit domain. The GT-ITM topology generator [122] models a three-level

hierarchy corresponding to transit domains, stub domain, and LANs attached to stub

domains [41]. Using the GT-ITM topology generator, we generated 12 random transit-

stub graphs with a total of 3728 nodes each, and then placed the primary site inside a

randomly selected stub domain. In order to make the topologies as realistic as possible,

we introduced routing delays to mimic routers’ decision delays inside the core network.

We set this delay to be equal to 20 ms/hop. In order to have a realistic upper bound on

the self-injected delays, the maximum hop count between any pair of sites was limited

to 14 hops.

3.3.3 Access Patterns

To evaluate the replica placement methods under realistic traffic patterns, we

used the access logs collected at the Soccer World Cup 1998 website [6] and NASA

Kennedy Space Center website [90]. These two access logs compliment each other in

many ways. The Soccer World Cup access log has over 1.35 billion requests, making it

extremely useful to benchmark a given approach over a prolonged high access rate. The

only drawback with these logs is that the users’ IP addresses (that can potentially give

us their approximate geographical locations) are replaced with an identifier. Although,

we can obtain the information as to who were the top, say 500 users of the website, yet

we cannot determine where the clients were from. To negate this drawback, we used the

 44

access logs collected at the NASA Kennedy Space Center website. These logs do not

hide the IP addresses and thus the spatially skewed workload is preserved. Another

benefit of the Space Center’s log is that the access requests are very concentrated, i.e., a

majority of the access request are sent from few clients (or cluster of clients) –

capturing the temporal diversity of the users. This concentration is useful to benchmark

the techniques over a spatially and temporally skewed workload.

An important point to note is that these logs are access (or read) logs; thus, they

do not relay any information regarding the write requests. However, there is a tedious

way around this. Each entry of the access logs has among other parameters, the

information about the size of the object that is being accessed. The logs are processed to

observe the variance in the object size. For each entry that returns the change in the

object size, a mock write request is generated for that user for the object that is currently

being accessed. This variance in the object size generates enough miscellanies to

benchmark object updates.

3.3.3.1 Soccer World Cup Access Logs

We used eighty eight days of the Soccer World Cup 1998 access logs, i.e., the

(24 hours) logs from April 30, 1998 to July 26, 1998. To process the logs, we wrote a

script that returned: only those objects which were present in all the logs (from this we

choose 25,000 data objects on random – the maximum workload for our experimental

evaluations), the total number of requests from a particular client for an object, the

average and the variance of the object size. From this log we chose the top 3728 clients

 45

(maximum experimental setup). A random mapping was then performed of the clients

to the nodes of the topologies. Note that this mapping is not 1-1, rather 1-M. This gave

us enough skewed workload to mimic real world scenarios. It is also worthwhile to

mention that the total amount of requests entertained for each problem instance using

the Soccer World Cup access logs was in the range of 3-4 million. The primary replicas’

original site was mimicked by choosing random locations. The capacities of the sites

C% were generated randomly with range from Total Primary Object Sizes/2 to

1.5×Total Primary Object Sizes. The variances in the object size collected from the

access were used to mimic the object updates. The updates were randomly pushed onto

different sites, and the total system update load was measured in terms of the percentage

update requests U% compared that to the initial network with no updates. For simplicity

were deemed necessary we will refer to Soccer World Cup access logs as W-log.

No. of clusters

R
eq

ue
st

s
ge

ne
ra

te
d

(%
)

N-log

2 3 4 5 67 10 20 30 50 70100 200 500 1000 2000 5000 10000
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.1: Number of requests generated by the Web clusters defined
by IP address prefixes.

 46

3.3.3.2 NASA Kennedy Space Center Access Log

We used thirty one days of the NASA Kennedy Space Center access logs, i.e.,

the (24 hours) logs from July 1, 1995 to July 31, 1995. The log has close to 1.9 million

hits and 81,982 unique visitors. To process the logs, we used the same script that was

used to retrieve information from the W-log, followed by the technique to inject the

write accesses. The additional information regarding the IP addresses of the clients was

used in conjunction with the technique proposed in [68] to map users onto the nodes of

the topologies. The method described in [68] clusters the clients that are topologically

close together, based on the information from the BGP routing table snapshots. (One

can publicly obtain the BGP routing table information from the Looking Glass Sites

Project [76] under the North American Network Operations’ Group (NANOG).) For

each client IP address in the access log, we find its best matching prefix in the union of

all the available routing tables. All the clients whose IP addresses have the same best

prefix match belong to the same cluster. A quick analysis (see Figure 3.1) of this

procedure shows that, the top 10, 100, 1000, and 3000 clusters accounted for about

28.98%, 54.34%, 87.03%, and 97.59% requests, respectively. From this clustering, we

chose the top 3728 clusters and mapped them randomly to the 3728 nodes of the

topologies. Notice that assigning a cluster, say Ci, to a node Si in the network topology

means that the all the clients in Ci generate accesses from the node Si.

Once again the primary replicas’ original site was mimicked by choosing

random locations. The capacities of the sites C% were generated randomly with range

from Total Primary Object Sizes/2 to 1.5×Total Primary Object Sizes. The variances in

 47

the object size collected from the access were used to mimic the object updates. The

updates were randomly pushed onto different sites, and the total system update load was

measured in terms of the percentage update requests U% compared that to the initial

network with no updates. For simplicity where deemed necessary will refer to NASA

Kennedy Space Center access logs as N-log.

3.3.4 Further Clarifications on the Simulation Setup

Since the access logs were of the year 1998 and before, we first used Inet to

estimate the number of nodes in the network. This number came up to be in the range of

3718 and 3728, i.e., there were approximately 3728 AS-level nodes in the Internet at the

time when the Soccer World Cup 1998 was being played. Therefore, we set the upper

bound on the number of servers in the system to be M = 3728. Since Inet does not work

for topologies before November 1997, the N-log was forward date by two years so that

it coincided with the W-log. (We believe that this is a reasonable solution to have fair

comparisons between the two logs and the underlying topologies.) Moreover, every

topology model that was used in this study had the network topologies generated for M

= 3728.

3.3.5 The Determination of the Relocation Period

As noted previously, the time (interval t) when to initiate the replica placement

techniques requires high-level human intervention. Here, we will show that this

parameter if not totally can at least partially be automated. The decision when to initiate

 48

the replica placement techniques depends on the past trends of the user access patterns.

Figures 3.2 and 3.3 show the average (over the entire access log) user access patterns

extracted from the W-log and N-log. From Figure 3.2 we can clearly see that the Soccer

World Cup 1998 website incurred soaring and stumpy traffic at various intervals during

Hours

A
ve

ra
ge

 h
its

 p
er

 h
ou

r

W-log

0000 0200 0400 0600 0800 1000 1200 1400 1600 1800 2000 2200
1.5E+6

3E+6

4.5E+6

6E+6

7.5E+6

9E+6

1.05E+7

1.2E+7

Relocation Period

Figure 3.2: User access pattern extracted from W-log.

Hours

A
ve

ra
ge

 h
its

 p
er

 h
ou

r

N-log

0000 0200 0400 0600 0800 1000 1200 1400 1600 1800 2000 2200
10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

Relocation Period # 1
Relocation Period # 2

Figure 3.3: User access pattern extracted from N-log.

 49

the 24-hour time period (it is to be noted that the W-log has a time stamp of GMT+1).

For example, the website records its minimum requests at 0500 hrs. This would be an

ideal time to invoke the replica placement technique(s), since the traffic is at its

minimum and fewer users will be affected by the relocation of data objects in the

network. Another potential time period for invoking the replica placement technique(s)

is at 1800 hrs. In our experiments we did not use this time period since the volume of

traffic at 1800 hrs. is enormous and it immediately soars; thus, leaving little buffer time

for the completion of the replica placement technique(s).

On the other hand, the analysis of N-log (it is to be noted that the N-log has a

time stamp of GMT-4) reveals two periods where the traffic drops to minimum, i.e., at

0400 hrs and at 2000 hrs. This is denoted by the two vertical lines in Figure 3.3.

Therefore, for the N-log a replica placement algorithm could be initiated twice daily: 1)

at 0400 hrs and 2) at 2000 hrs. The time interval t for 0400 hrs would be t = (2000-

0400) = 6 hours and for 2000 hrs t = (0400-2200) = 18 hours. For the W-log a replica

placement algorithm could be initiated once daily at 0500 hrs. The time interval t for

0500 hrs would be t = (0500-0500) = 24 hours.

50

CHAPTER 4

APPROACHING THE REPLICA PLACEMENT PROBLEM USING
CONVENTIONAL HEURISTICS

The unified cost model that captures the minimization of the total object transfer

cost in the system, which in turn leads to the effective utilization of server side space,

replica consistency, fault-tolerance, and load balancing, is used to identify replica

placements using heuristics. The heuristic techniques studied include six A-Star based

algorithms, two bin packing algorithms, a greedy and a genetic algorithm.

The heuristics are evaluated by analyzing the system utilization in terms of

reducing the communication cost incurred due to object transfer(s) under the variance of

server capacity, object size, read access, write access, number of objects and sites.

Based on our experimental results, we make suggestive uses of the studied heuristics,

and identify algorithm(s) that produce optimal and suboptimal replica placements. The

main objective of performing such a study is to provide a benchmark which is thorough

and complete in all respects. This benchmark (of conventional heuristics) will be used

to earmark the performance of game theoretical techniques which is the focus here.

4.1 A-Star Based Technique (DRPA-Star)

A-Star is a best-first search algorithm based on a µ-ary tree [99]. It starts from

the root, called the start node (usually a null solution of the problem). Intermediate tree

51

nodes represent the partial solutions, and leaf nodes represent the complete solutions or

goals. A cost function f computes each node’s associated cost. The value of f for a node

n, which is the estimated cost of the cheapest solution through n, is computed as:

f(n)=g(n)+h(n), where g(n) is the search-path cost from the start node to the current

node n and h(n), called the heuristic, is a lower-bound estimate of the path cost from n

to the goal node (solution). The A-Star based searching technique for the data

replication problem (DRPA-Star) starts from an assignment P, and explores all the

potential options of assigning an object to a site. With proper pruning techniques used

against the constraint(s) C, only the assignments in the admissible head set are explored.

If the new solution is consistence with the constraint, it is added to the Expansion Tree

(ET), otherwise the solution is pruned. In order to avoid memory overflow, we limit the

ET to 1000 active solution (state) space allocations. This is very common technique

used for memory bounded A-Star type algorithms (for further details on memory

bounded A-Star techniques see [51]). Moreover, the candidate objects assignments are

ordered (in a linked list termed as the OPEN list), such that the smallest projected cost

of allocation is expanded first. Thus, we can terminate our expansion when the solution

for replica placement problem is obtained, or there are no more candidate allocations

left in the ET. In either case optimality is always guaranteed. DRPA-Star uses the

following heuristic:

Let Ok and Si represent the set of objects and sites in the system. Let U be the set

of unassigned objects and t be the global minimum of an object’s replication cost. Thus,

52

we can define the minimum of such a cost as a set: T = min0≤j≤N-1(t(Ok, Si)), ∀Ok∈U. For

a node n, let mmk(n) define the maximum element of set T (the max-min replication

cost). mmk(n) then represents the best possible replica allocation without the unrealistic

assumption that every object in U can be replicated to a site in M without a conflict. The

heuristic used thus becomes: h(n) = max(0,[mmk(n)-g(n)]), where g(n) is equivalent to

the cost of replicating an object onto a site, i.e., g(n) is equivalent to the RC of object Ok

onto site Si. Pseudo-code for DRPA-Star is shown in Figure 4.1.

DRPA-Star Algorithm
Inputs:
Ci (Replication cost matrix)
si (Array storing size of objects)
Sk (Array storing size of sites)
Output:
Final allocation of replicas
Initialize:
OPEN=NULL
Sol=NULL
Solution=False
Compute:
1. Create Start node s /* Initialize the µ-ary tree */
2. Insert s into OPEN
3. while(OPEN != NULL or Solution = true)
4. sort(OPEN)
5. k ← Remove head of list*
6. if k is the solution then /* k can only be a solution when there is a mapping between objects and sites*/
7. Sol ← k ⊗ Sol
8. Update storage constraints
9. if no more replications possible /* because of the storage constraints */
10. Solution=true
11. endif
12. endif
13. Generate the successors of k /* Successors can only be generated when k is not an OAS */
14. for every successor n' of k /* Construct the µ-ary tree */
15. f(n')=g(n')+h(n')
16. if n' satisfies storage constraint
17. Insert n' into OPEN
18. endif
19. endw
20. Output(Solution)

* k is also known as OAS (Objects Assigned to Sites).

Figure 4.1: Pseudo-code for DRPA-Star.

53

Lemma 4.1: DRPA-Star always identifies a solution, if there exists one.

Proof: DRPA-Star expands its solution set by choosing the head of the OPEN

list in the increasing order of the projected cost. Since all the feasible candidates enter

into the OPEN list, they must eventually expand the solution set to reach a feasible OAS

solution. This would hold true if there are not infinitely many states with h(x) ≤ h(goal).

In the DRP solution collection phase since every OAS is an optimal solution on the

global constraint of storage capacity, an XORed solution of two consecutive OAS's and

potentially n OAS with cascaded XOR of assignments would eventually result in the

solution for the DRP. ■

Lemma 4.2: DRPA-Star always chooses the best solution, if two or more

solutions exist.

Proof: Let u and v be two feasible allocations to OAS. Let cu and cv define the

replication cost for u and v respectively, and cu ≤ cv. An optimal search will reach the

solution u before it reaches v. Assume DRPA-Star identifies v prior to u. Thus, when

DRPA-Star expands v, there would be some solution u not yet explored and that would

imply hu ≥ hv. Since by definition: hu ≤ hv, the OPEN list ordering would ensure that the

sorting is done according to the smallest expected cost from the current node to the

solution, u would have been explored first. Thus, indeed DRPA-Star would reach v

before u. Moreover, DRPA-Star will eventually identify the best global solution for

DRP from the above arguments and Lemma 4.1. ■

54

Lemma 4.3: DRPA-Star grows and requires sub-exponential time and space,

respectively.

Proof: Let P be the expanded paths (partial or complete OAS solution) in the

search tree, then the space required by the DRPA-star is P and the time required by

DRPA-star is dP(h+log(P)). Where d is the degree of the network, h is the depth at

which the OAS's are identified, and the log(P) factor identifies the growth of the search

tree. Now if error in the heuristic grows no faster than log of the optimal cost of the

solution. A-star has been proven to be sub-exponential [99]. Since DRPA-star due to its

pruning is far more efficient than A-star, DRPA-star will also grow sub-optimally. We

give the relation of sub-optimality as: OPTcost-Acost≤O(log(OPTcost)), where Acost is the

admissible cost. We can thus say that P≤Mhd≤dM2. For an average case analysis

DRPA-star uses space equivalent to Mhd, and thus the running time would be

Mhd2(h+log(Mhd)). ■

4.2 A-Star Based Refinements

Arguably DRPA-Star is an algorithm that goes about the optimization mission

too seriously. Therefore, we are interested in identifying ways to reach to a quick

solution though perhaps sub-optimal. One approach to address this predicament is to

examine the effects of g and h separately. The effect of g is to add a breath-first

component to the search. Without h, DRPA-Star would reduce to a pure breath-first

search. On the other hand without g, DRPA-Star would ignore the distance already

covered and would base its decision entirely on h, the estimate of the remaining

55

proximity to the goal.

4.2.1 WA-Star

To cater for the two tendencies of A-Star type algorithms, a weighted evaluation

function is recommended: f(n)=(1-w)×g(n)+w×h(n). Analytical results [99] have shown

that w can have three values, i.e., 0, ½, and 1 corresponding to exhaustive, A-Star and

breath-first search, respectively. Rather than keeping w constant throughout the search,

it is natural to dynamically change w so as to weigh h less heavily as the search goes

deeper. Thus, an effective evaluation function would be: f(n) = g(n)+h(n)+ε[1-(d(n)/D)]

h(n), where d(n) is the depth of node n and D is the anticipated depth of the desired

goal node. It is to be noted that shallow levels of the search tree, i.e., when d « D, h is

given a supportive weight equal to 1+ε, encouraging depth-first excursions. At deep

levels, however, the search resumes an admissible equal weight, to avoid early

termination. We call this variation of DRPA-Star as WA-Star.

Lemma 4.4: WA-Star identifies a solution within a range of 1+ ε of DRPA-Star.

Proof: If h(n) is admissible, then the algorithm is ε-admissible, that is, it finds a

path from start to the goal node with a cost at most 1+ε. This follows by observing that

before the termination of the algorithms, the shallowest OPEN node n’ along any

optimal solution path has its cost (g(n’)) equal to the optimal admissible cost (g*(n’))

 [99]. Therefore, we have:

f(n’) ≤ g*(n’)+h*(n’)+ε[1-(d(n’)/D)] h*(n’)
 ≤ ε h*(n’)

56

 ≤ 1+ε. ■

4.2.2 Aε-Star

Perhaps a natural way to speedup any searching technique is to focus on a

solution space that some how can guarantee that search in that particular space would

not deviate from the optimal solution by a factor of, say ε. Keeping this mind we

propose an extension of the DRPA-Star technique, called Aε-Star. This technique uses

two lists: OPEN and FOCAL. The FOCAL list is a sub-list of OPEN, and contains only

those nodes that do not deviate from the lowest f node by a factor greater than 1+ε. That

is, we can say that:

FOCAL = {n | f(n) ≤ (1+ε) minn’∈OPEN f(n’)}.

The technique works similar to DRPA-Star, with the exception that the node

selection (lowest h) is done not from the OPEN but from the FOCAL list. The main

intuition behind Aε-Star is that according to the estimates of f, all nodes in FOCAL

have roughly equal solution paths. Therefore, rather than spending time on deciding

which among them is the best, it makes more sense to use the time to compute the

remaining portion of the solution from within FOCAL. (Notice that when ε = 0, Aε-Star

reduces to DRPA-Star.) It is easy to see that this approach will never run into the

problem of memory overflow, moreover, the FOCAL list always ensures that only the

candidate solutions within a bound of 1+ε of DRPA-Star are expanded.

Lemma 4.5: Aε-Star identifies a solution within a range of 1+ ε of DRPA-Star.

Proof: Let n’ be a node in OPEN list having the smallest f value, t be the

57

termination node, n be the shallowest OPEN node on an optimal path and f(t) be the

cost of the solution found. Then we can say:

f(n’) ≤ f(n) (Since h is admissible and OPEN is f ordered.)
f(t) ≤ f(n’)(1+ ε) (Since t is chosen from FOCAL.)

 ≤ f(n)(1+ε)
 ≤ 1+ε. ■

4.3 DRPA-Star Based Heuristics (SA1, SA2, and SA3)

We now present three heuristics (suboptimal A-Star) algorithms, referred to

hereafter as SA1, SA2, SA3. The name SA comes from Suboptimal Assignments. The

main purpose is to design algorithms that converge to solution faster and overcome the

high memory requirements associated with A-Star type algorithms [47]. The basic idea

in these algorithms is that when the search process reaches a certain depth in the search

tree, some search path(s) can be avoided (some tree nodes can be discarded) without

moving far from the optimal solution.

4.3.1 SA1

In SA1, when the algorithm (DRPA-Star) selects a node that belongs to level R

or below, it generates only the best successors (lowest expansion cost) of it. All the

other successors except the best one are discarded.

4.3.2 SA2

When the depth level R is reached for the very first time, all the successors

except the minimum cost are discarded among all the nodes marked for expansion.

58

4.3.3 SA3

In SA3, the discarding is done similar to SA2 except that now the nodes are

removed from the ET. For instance, if n nodes are generated, then all of them are

inserted in the ET, and the n-1 high cost nodes are discarded.

These techniques will not suffer from memory overflow, since at level R, for

every node taken out of the ET for expansion, only one node is inserted. Also the

running time is reduced by many folds since the algorithm expands/explores less

number of nodes when it reaches R.

4.4 Bin Packing Based Heuristics (LMM and GMM)

The bin packing problem formulation resembles the DRP in many ways;

therefore, it is natural to see the DRP as a special case of the bin packing problem. In

such a setup, the sites of the distributed system can be considered as the bins with

specified storage capacity, and the objects can be considered as the items that need to be

packed in the bins such that the total storage capacity of the bins is not exceeded and the

profit brought by packing more items inside the bins is maximized. Here the profit can

be made equivalent to minimizing the RC cost.

4.4.1 Local Min-Min (LMM)

Let Ok and Si
 represent the set of objects and sites in the system. Let U be the set

of unassigned objects to a site Si. Let Umin define the minimum replication cost of the

59

objects to be assigned to a particular site. The assignment is made in the ascending

order of set U. If there is a tie among two objects, then the tie is broken by the minimum

object size, hence the name Min-Min. Since we do the assignment iteratively for every

object and do not consider the effects of the choice of an object to a site with respect to

other sites, we call it Local Min-Min (LMM).

Lemma 4.6 ([57]): LMM converges in O(MN(log N)) and requires linear space. ■

4.4.2 Global Min-Min (GMM)

Let Ok and Si
 represent the set of objects and sites in the system. Let U be the set

of unassigned objects and k be the global minimum of all the replication costs

associated with an object. The minimum of such cost as a set T = min0≤j≤N-

1(k(Ok,Si),∀Ok∈U. If during the assignment, the minimum replication cost of an object

is the same for two different sites, the object is chosen on random. For a node n let

mink(n) define the minimum element of set T. Thus mink(n) represents the best

minimum replication cost that would occur if object Ok is replicated to a site Si, i.e.,

Global Min-Min (GMM).

Lemma 4.7 ([57]): GMM requires O(M2N2(log N)) time and Ω(MN) space. ■

4.5 Greedy Based Heuristic (Greedy)

The Greedy algorithm reported in [100] works in an iterative fashion. In the first

iteration, all the M sites are investigated to find the replica location(s) of the first among

60

a total of N objects. Consider that we choose an object i for replication. The algorithm

recursively makes calculations based on the assumption that all the users in the system

request for object i. Thus, we have to pick a site that yields the lowest cost of replication

for the object i. In the second iteration, the location for the second site is considered.

Based on the choice of object i, the algorithm now would identify the second site for

replication, which, in conjunction with the site already picked, yields the lowest

replication cost. Observe here that this assignment may or may not be for the same

object i. The algorithm progresses forward till either one of the DRP constraints are

violated. Further details about the Greedy algorithm can be obtained from [100].

Lemma 4.8 ([100]): Greedy requires O(M2N) running time. ■

4.6 Genetic Algorithm Based Heuristic (GRA)

In [78] the authors proposed a genetic algorithm based heuristic, called Genetic

Replication Algorithm (GRA). GRA provides good solution quality, but suffers from

slow termination time. This algorithm is chosen since it was the first work that

realistically addressed the fine-grained replication on the same problem formulation as

taken in this article. The technique shows great stability under various scenarios which

have been experimentally derived. Briefly, the GRA exploits the mix and match

technique. Chromosomes represent the various replication schemas and each consists of

M genes (one for each site). Every gene is composed of N bits (one for each object). A 1

value in the k-th bit of the i-th gene denotes that the i-th site holds a replica of the k-th

61

object, and 0 otherwise. Using this chromosome encoding, crossover, mutation and

selection operations are performed to report the best chromosome as the final solution.

Readers are encouraged to see [78] for further details about the GRA method.

Lemma 4.9 ([78]): GRA requires O(NgNpM2N+NpMN2) running time. ■

4.7 Comparative Analysis of Proposed Heuristics

We record the performance of the heuristics using the two access logs and 80

topologies. The plots shown are classified using the two access logs. For instance, for

W-log, each point represents the average performance of an algorithm over 80

topologies and 88 days of W-log. Below we detail our findings.

4.7.1 Impact of Change in the Number of Sites and Objects

We study the behavior of the placement techniques when the number of sites

increases (Figures 4.2-4.5), by setting the number of objects to 25,000; while in Figures

4.6-4.7, we study the behavior when the number of objects increase, by setting the

number of sites to 3718. For the first experiment we fixed C = 15% and R/W = 0.25.

(The read write ratio R/W reflects the relative number of reads and writes (or updates)

generated for an object. For instance, R/W = 0.25 means that there are 25% reads and

75% writes in the system.) We intentionally chose a high workload so as to see if the

techniques studied successfully handled the extreme cases.

We first study the performance of the algorithms using the W-log (Figure

62

4.2). The first observation is that WA-Star, Aε-Star and Greedy outperform other

techniques by considerable amounts. Second, GMM, SA1, SA2, SA3 and DRPA-Star

fail to converge to a solution with certain problem instance. This failure to completion

is directly linked to the higher ratio of writes and smaller system capacity. Some

No. of sites

R
C

 s
av

in
gs

 (%
)

W-log
N=25,000; C=15%; R/W=0.25

0 466 932 1398 1864 2330 2796 3262 3728
20%

30%

40%

50%

60%

70%

80%

Figure 4.2: RC versus number of sites (W-log).

No. of sites

R
C

 s
av

in
gs

 (%
)

N-log
N=25,000; C=15%; R/W=0.25

0 466 932 1398 1864 2330 2796 3262 3728
20%

30%

40%

50%

60%

70%

80%

Figure 4.3: RC versus number of sites (N-log).

63

interesting observations were also observable, such as, LMM and GMM showed high

gain with the initial number of site increase in the system, as much as 27% gain was

recorded in case of GMM with only a 100 site increase. LMM and GMM show high

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean)

Heuristics

R
C

 s
av

in
gs

 (%
)

W-log
N=25,000; C=15%; R/W=0.25

18%

24%

30%

36%

42%

48%

54%

60%

66%

72%

78%

84%

L to R [DRPA-Star, SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.4: RC versus relative performance of
heuristics (number of sites; W-log).

Heuristics

R
C

 s
av

in
gs

 (%
)

N-log
N=25,000; C=15%; R/W=0.25

18%

24%

30%

36%

42%

48%

54%

60%

66%

72%

78%

84%

L to R [DRPA-Star, SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.5: RC versus relative performance of
heuristics (number of sites; N-log).

64

initial gain since with the increase in the number of sites, the combinations of bins

increase, but with the further increase in the number of sites, effect is not so observable

as all the essential objects are already replicated. DRPA-Star as expected outperformed

every other technique, but failed miserably, as the maximum workload it handled was

No. of objects

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; C=45%; R/W=0.75

500 700 1000 2000 3000 5000 7000 10000 2000025000
0

10%

20%

30%

40%

50%

60%

70%

80%

Figure 4.6: RC versus number of objects (W-log).

No. of objects

R
C

 s
av

in
gs

 (%
)

N-log
M=3728; C=45%; R/W=0.75

500 700 1000 2000 3000 5000 7000 10000 2000025000
0

10%

20%

30%

40%

50%

60%

70%

80%

Figure 4.7: RC versus number of objects (N-log).

65

with M = 301. The top performing techniques (WA-Star, Aε-Star and Greedy) showed

an almost constant performance. This is because by adding a site (server) in the

network, we introduce additional traffic (local requests), together with more storage

capacity available for replication. All three equally cater for the two diverse effects.

GRA also showed a similar trend but maintained lower RC savings. This was in line

with the claims presented in [78]. The observation made by using the N-log (Figure 4.3)

were similar in features to that of the results obtained from the analysis of the W-log,

except for the performance of SA2. The increase in the number of sites gradually

decreased the RC savings of the topologies when W-log was employed; however, when

N-log was used SA2 gradually increased the RC savings with the increase in the

number of sites in the system. We can attribute this phenomenon to the fact that SA2

relies on the pruning of the search tree without any look-ahead technique; thus, when

pruning was performed by SA2 with W-log as the workload, some useful nodes may

have been pruned, resulting in the loss of RC savings. The relative performance of the

algorithms pertaining to the W-log and N-log can be seen from Figure 4.4 and Figure

4.5, respectively. The plots show the mean performance of the algorithms, with bars at

the maximum and minimum limits with values of mean + 1.5 times the standard

deviation and mean - 1.5 times the standard deviation, respectively. The shaded block

represents the maximum and minimum limits with values of mean + standard deviation

and mean - standard deviation, respectively. The solid line across the plots is the grand

mean, the solid block (■) represents the mean, the cross (×) represents the outliers, and

the asterisks (✳) denotes the extremes. We limit the outliers and extremes to 2 and 3

66

standard deviations, respectively. The plots are self-explanatory and show exactly

which algorithms provide high (consistent) performance. The performance of the

techniques based on the RC versus number of sites criteria are ranked as follows: 1)

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean)

Heuristics

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; C=45%; R/W=0.75

-20%

-10%

0

10%

20%

30%

40%

50%

60%

70%

80%

L to R [DRPA-Star, SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.8: RC versus relative performance of
heuristics (number of objects; W-log).

Heuristics

R
C

 s
av

in
gs

 (%
)

N-log
N=25,000; C=15%; R/W=0.25

18%

24%

30%

36%

42%

48%

54%

60%

66%

72%

78%

84%

L to R [DRPA-Star, SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.9: RC versus relative performance of
heuristics (number of objects; N-log).

67

DRPA-Star; 2) Aε-Star; 3) WA-Star; 4) Greedy; 5) GRA; 6) SA3; 7) SA1; 8) GMM; 9)

SA2; 10) LMM.

To observe the effect of increase in the number of objects in the system, we

chose a softer workload with C = 45% and R/W = 0.75. The intention was to observe

Increase in system storage capacity (%)

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; N=25,000; R/W=0.35

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.10: RC versus system capacity (W-log).

Increase in system storage capacity (%)

R
C

 s
av

in
gs

 (%
)

N-log
M=3728; N=25,000; R/W=0.35

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.11: RC versus system capacity (N-log).

68

the trends for all the algorithms as much as possible as some techniques failed to yield

results as observable from Figures 4.6-4.7. Moreover, we want to observe the

algorithms under various (system) environments. The increase in the number of objects

has diverse effects on the system as new read/write patterns (users are offered more

choices) emerge, and also the increase in the strain on the overall capacity of the system

(increase in the number of replicas). An effective algorithm should incorporate both the

opposing trends.

We first observe the performance of the algorithms using the W-log (Figure

4.6). From the plot, we can observe that the bin packing techniques perform the worst

with a loss of nearly 32% in case of LMM. The most surprising result came from GRA.

It dropped its savings from 62% to 12%. This was contradictory to what was reported in

 [78]. But there the authors had used a uniformly distributed link cost topology, and their

traffic was based on the Zipf distribution [123]. While the traffic access logs of the

World Cup 1998 are more or less double-Pareto in nature [58]. In either case the

exploits and limitations of the technique under discussion are obvious. The plot also

shows a near identical performance by WA-Star, Aε-Star and Greedy. The relative

difference among the three techniques is less than 5%. However, Aε-Star did maintain

its supremacy.

With N-log (Figure 4.7), the relative performance of the algorithms dropped

further, this is due to the fact the N-log is highly concentrated An increase in the

number of objects increases the traffic in the system by multi-folds, and the RC savings

drop since the algorithms cannot further identify placements for the newly introduced

69

objects. However, this drop in RC savings is not more that 5%-10% compared to that of

the results obtained from W-log. To better understand this phenomenon, readers are

encouraged to examine the relative trends observable from Figures 4.8-4.9. The

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean)

Heuristics

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; N=25,000; R/W=0.35

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.12: RC versus relative performance of
heuristics (system capacity; W-log).

Heuristics

R
C

 s
av

in
gs

 (%
)

N-log
M=3728, N=25,000; R/W=0.35

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.13: RC versus relative performance of
heuristics (system capacity; N-log).

70

performance of the techniques based on the RC versus number of objects criteria are

ranked as follows: 1) DRPA-Star; 2) Greedy; 3) Aε-Star; 4) WA-Star; 5) SA3; 6) SA1;

7) SA2; 8) GRA; 9) GMM; 10) LMM.

From here onwards, we will not report the performance of DRPA-Star, as it is

only effective and converges to a solution when the problem size is considerably small.

However, we will log the DRPA-Star algorithm termination timings (on small problem

instances). Moreover, we will give a default first ranking to the DRPA-Star in the

subsequent text since it always produces an optimal solution.

4.7.2 Impact of Change in System Capacity

An increase in the storage capacity means that a large number of objects can be

replicated. Replicating an object that is already extensively replicated, is unlikely to

result in significant traffic savings as only a small portion of the servers will be affected

overall. Moreover, since objects are not equally read intensive, increase in the storage

capacity would have a great impact at the beginning (initial increase in capacity), but

has little effect after a certain point, where the most beneficial ones are already

replicated.

We first observe the performance of the algorithms using the W-log (Figure

4.10). LMM and GMM once again performed the worst. The gap between all other

approaches was reduced to within 12% of each other. WA-Star and Aε-Star showed an

immediate initial increase (the point after which further replicating objects is

inefficient) in its RC savings, but afterward showed a near constant performance. GRA

71

observable gained the most RC savings 38% followed by Greedy with 31%.

Near identical performances were recorded using the N-log (Figure 4.11). One

interesting observation is that when the system capacity is increased from 28% to 30%,

the relative performance of almost all the algorithms increase by at most 10%. This

R/W ratio

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; N=25,000; C=45%

10% 20% 30% 40% 50% 60% 70% 80% 90%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.14: RC versus R/W ratio (W-log).

R/W ratio

R
C

 s
av

in
gs

 (%
)

N-log
M=3728; N=25,000; C=45%

10% 20% 30% 40% 50% 60% 70% 80% 90%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.15: RC versus R/W ratio (N-log).

72

sudden increase in RC savings can be linked to the spatially distributed access of the

clients in the N-log. That is, the 28% system capacity was marginally small to place the

needed replicas in the vicinity of the clients so that the relative communication cost is

minimized; thus, with only an increase of 2%, all the critically required replicas could

now be placed and hence the sudden surge in RC savings.

Further experiments with various update ratios (5%, 10%, and 20%) showed

similar plot trends. It is also noteworthy that the increase in capacity from 10% to 17%,

resulted in 4 times (on average) more replicas for all the algorithms. The performance

of the techniques based on the RC versus system capacity criteria (and by observing

Figures 4.12-4.13) are ranked as follows: 1) DRPA-Star; 2) Aε-Star; 3) Greedy; 4) WA-

Star; 5) GRA; 6) SA3; 7) SA1; 8) SA2; 9) GMM; 10) LMM.

4.7.3 Impact of Change in Read/Write Frequencies

Since the read and write parameters are complementary to each other, we take

the liberty to describe them together. In both the setups the number of sites and objects

were kept constant. Increase in the number of reads in the system would mean that there

is a need to replicate as many object as possible (closer to the users). However, the

increase in the number of updates (or writes) in the system requires the replicas be

placed as close as to the primary site as possible (to reduce the update broadcast). This

phenomenon is also interrelated with the system capacity, as the update ratio sets an

upper bound on the possible traffic reduction through replication. Thus, if we consider a

system with unlimited capacity, the “replicate everywhere anything” policy is strictly

73

inadequate. The read and update parameters indeed help in drawing a line between good

and marginal algorithms.

Figure 4.14 and Figure 4.15 show the performance of the algorithms using

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean)

Heuristics

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; N=25,000; C=45%

-10%

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.16: RC versus relative performance of
heuristics (R/W ratio; W-log).

Heuristics

R
C

 s
av

in
gs

 (%
)

N-log
M=3728; N=25,000; C=45%

-10%

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.17: RC versus relative performance of
heuristics (R/W ratio; N-log).

74

the W-log and the N-log, respectively. A clear classification can be made between the

algorithms. WA-Star, Aε-Star and Greedy incorporate the increase in the number of

reads by replicating more objects and thus savings increase up to 90%. LMM gained the

least of the RC savings of: up to 39% with the W-log and up to 36% with the N-log.

However, the performance of LMM and GMM decreased exponentially with the

increase in R/W ratio. A sub-exponential decrease was also observable in the case of

GRA. (All algorithms exhibited some sort of decrease in RC savings with R/W ratio of

0.50 and above.) WA-Star, Aε-Star and Greedy on the other hand showed extreme

robustness and retained their initial savings. To understand why there is such a gap in

the performance between the algorithms, we should recall that LMM and GMM

specifically exploit the capacities of the servers, while the optimization of the RC is a

secondary consideration. Moreover, they maintain localized network perceptions.

Increase in updates result in objects having decreased local significance (unless the

vicinity is in close proximity to the primary location). On the other hand, the suboptimal

A-star based heuristics suffer from the bound set for their search tree. Thus, by

Execution Time Analysis
7%

68%

21%

3%

Replica
Placement

Shortest Paths

Miscellaneous

Data Gathering

Figure 4.18: Execution time components.

75

definition they tend to optimize local replication. However, WA-Star, Aε-Star and

Greedy never tend to deviate from their global view of the problem search space. To

better understand this phenomenon, readers are encouraged to examine the relative

Table 4.1: Running time in seconds [C = 20%, R/W = 0.55] (small problem
instances).

Problem Size DRPA-Star SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star
M=20, N=50 274.02 95.32 101.96 116.00 67.20 72.07 70.47 92.25 104.63 97.59
M=20, N=100 315.73 103.32 111.04 120.96 80.31 78.38 77.25 97.66 110.21 104.02
M=20, N=150 351.55 120.90 122.19 158.14 97.81 90.48 79.67 102.72 134.04 114.49
M=30, N=50 365.04 136.90 158.61 175.64 100.55 105.25 96.11 128.63 149.15 142.71
M=30, N=100 389.77 143.27 178.62 198.66 105.23 116.33 109.48 126.25 173.80 149.22
M=30, N=150 469.23 184.84 206.05 237.70 115.17 130.83 137.65 150.33 210.82 180.66
M=40, N=50 578.48 185.38 259.89 279.69 117.78 136.16 128.12 155.59 251.95 200.25
M=40, N=100 706.89 234.98 308.06 325.29 120.81 158.93 135.07 169.17 288.12 237.93
M=40, N=150 957.41 248.23 359.76 365.57 122.81 165.23 141.92 205.61 325.18 272.43

Table 4.2: Running time in seconds [C = 45%, R/W = 0.85] (medium
problem instances).

Problem Size SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star
M=300, N=1350 292.77 205.13 226.01 177.58 195.17 189.66 243.04 242.02 248.20
M=300, N=1400 310.17 203.38 247.80 198.26 205.65 206.61 327.70 253.55 280.64
M=300, N=1450 317.00 236.94 258.35 207.38 234.46 238.80 381.24 270.32 311.64
M=300, N=1500 328.51 261.78 272.72 248.21 260.18 259.81 410.46 288.71 334.56
M=300, N=1550 358.53 280.17 289.49 269.18 276.96 276.22 469.88 309.70 370.30
M=300, N=2000 391.03 297.39 310.84 276.38 306.66 269.19 477.18 333.96 388.16
M=400, N=1350 405.11 310.38 359.36 306.98 347.67 323.82 494.62 358.66 354.13
M=400, N=1400 429.54 327.47 404.21 325.15 349.07 349.31 536.83 386.89 369.04
M=400, N=1450 460.38 361.57 440.94 360.97 370.23 368.19 543.05 421.74 397.92
M=400, N=1500 487.87 373.85 469.19 376.31 375.98 378.72 560.49 443.86 413.91
M=400, N=1550 499.61 359.76 496.88 381.46 389.77 389.93 606.75 442.29 415.83
M=400, N=2000 537.82 390.36 510.35 412.82 392.25 418.78 660.13 479.12 448.45
M=500, N=1350 560.63 389.90 527.54 429.82 433.42 402.84 661.87 492.33 460.61
M=500, N=1400 610.79 469.65 610.35 456.25 479.07 454.98 690.45 564.89 513.31
M=500, N=1450 663.70 584.08 664.18 472.05 486.13 503.05 705.96 637.70 582.85
M=500, N=1500 707.04 643.08 741.38 498.35 510.96 532.92 736.81 698.34 627.87
M=500, N=1550 806.50 700.24 809.32 503.97 526.75 584.71 754.96 771.25 646.49
M=500, N=2000 847.04 725.58 903.17 518.85 539.35 636.19 778.28 826.30 736.46

Table 4.3: Running time in seconds [C = 75%, R/W = 0.65] (large problem
instances).

Problem Size SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star
M=2500, N=15,000 930.52 612.96 744.10 598.33 618.51 622.05 983.82 765.60 842.32
M=2500, N=20,000 957.44 715.01 779.93 629.17 706.22 724.42 1148.09 814.95 940.19
M=2500, N=25,000 1178.41 898.60 937.30 836.55 925.40 808.91 1438.01 1006.75 1167.34
M=3000, N=15,000 1290.70 986.60 1215.96 975.73 1050.77 1049.76 1613.73 1162.22 1109.52
M=3000, N=20,000 1467.07 1128.04 1412.25 1136.03 1131.15 1139.63 1683.45 1337.60 1248.56
M=3000, N=25,000 1685.60 1173.15 1584.43 1290.00 1279.38 1209.19 1986.36 1477.87 1382.90
M=3718, N=15,000 1837.25 1413.91 1836.77 1372.30 1443.06 1370.55 2078.63 1702.54 1544.59
M=3718, N=20,000 2120.34 1929.82 2224.72 1495.99 1534.47 1601.01 2211.73 2098.41 1886.13
M=3718, N=25,000 2423.99 2104.62 2432.76 1514.02 1587.18 1760.80 2271.37 2319.41 1945.11

76

trends observable from Figures 4.16-4.17. The performance of the techniques based on

the RC versus R/W ratio criteria are ranked as follows: 1) DRPA-Star; 2) Aε-Star; 3)

WA-Star; 4) Greedy; 5) SA3; 6) GRA; 7) SA1; 8) GMM; 9) SA2; 10) LMM.

4.7.4 Running Time

Before we proceed with the discussion, we would like to clarify our

measurement of algorithm termination timings. The approach we took was to see if

these algorithms can be used in dynamic scenarios. Thus, we gather and process data as

if it was a dynamic system. The average breakdown of the execution time of all the

algorithms combined is depicted in Figure 4.18. There 68% of all the algorithm

termination time was taken by the repeated calculation of the shortest paths. Data

gathering and dispersion, such as reading the read frequencies from the processed log,

etc. took 7% of the total time. Other miscellaneous operations including input/output

were recorded to carry 3% of the total execution time. From the plot it is clear that a

totally static setup would take no less that 21% of the time depicted in Tables 4.1-4.3.

Various problem instances were recorded with C = 20%, 45%, 75% and R/W =

0.55, 0.65, 0.85. Each problem instance represents the average recorded time over all

the 80 topologies and 119 various access logs. The entries in bold represent the fastest

time recorded over the problem instance. It is observable that LMM terminated faster

than all the other techniques, followed by Greedy and GMM. If a static environment

was considered, LMM with the maximum problem instance would have terminated

approximately in 317.94 seconds (21% of the algorithm termination time). An

77

interesting result is also observable in the cases of SA1 and SA2. With soft problem

instances, SA1 terminates faster than SA2, but the trend is reversed, when the

algorithms tackle hard problem instances. This, is because with smaller problem

instance SA2 has an extra over head of discarding nodes from the OPEN list.

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean)

Heuristics

R
C

 s
av

in
gs

 (%
)

Varaince in R/W ratio
M=3728; N=25,000; C=50%

-10%

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.19: RC versus variance in R/W ratio.

Heuristics

R
C

 s
av

in
gs

 (%
)

Variance in system capacity
M= 3728; N=25,000; R/W=0.50

-10%

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

Figure 4.20: RC versus variance in system capacity.

78

4.7.5 Summary of Performance

In summary, based on the solution quality alone, the algorithms can be

classified into four categories: 1) The high performance algorithms that include DRPA-

Star, Aε-Star, WA-Star and Greedy; 2) The medium-high performance algorithms of

GRA and SA3; 3) The medium performance algorithms of SA1 and SA2); 4) The low

performance algorithms of GMM and LMM. While considering the termination

timings, LMM, GMM and Greedy did extremely well, followed by Aε-Star, SA2, WA-

Star, SA1 and SA3. DRPA-Star as expected finished at the bottom of the list courtesy to

its sub-exponential running time.

Problem instances

Sa
vi

ng
s

in
 n

od
e

ex
pa

ns
io

n
(%

)

Savings in search tree expansion

0

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

Figure 4.21: Search tree node expansion savings of A-Star based heuristics.

Table 4.4: Problem instances for recording search tree node expansion savings.
Serial No. Problem instance Serial No. Problem instance
1 M=20, N=50 6 M=30, N=150
2 M=20, N=100 7 M=40, N=50
3 M=20, N=150 8 M=40, N=100
4 M=30, N=50 9 M=40, N=150
5 M=30, N=100 10 M=50, N=200

79

4.7.6 Supplementary Performance Evaluation

Here, we present some supplementary results that strengthen our comparative

analysis reported in earlier. The relative performance of the heuristics with variance in

R/W ratio and system storage capacity are shown in Figure 4.19 and Figure 4.20,

respectively. The main idea behind these two plots was to show the relative

performance of all the algorithms over every possible combination over all the 80

topologies and 119 access logs. In both the cases, we fixed M = 3728 and N =25,000.

The variance for the R/W ratio was measured between R/W = [0.1-0.90], and the

variance for the storage capacity was measured between C = [20%-80%]. The plots

show the mean performance of the algorithms, with bars at the maximum and minimum

limits with values of mean + 1.5 times the standard deviation and mean - 1.5 times the

standard deviation, respectively. The shaded block represents the maximum and

minimum limits with values of mean + standard deviation and mean - standard

deviation, respectively. The solid line across the plots is the grand mean, the solid block

(■) represents the mean, the cross (×) represents the outliers, and the asterisks

(✳)denotes the extremes. The outliers and extremes are limited to 2 and 3 standard

deviations, respectively. We are mostly interested in measuring the mean interval.

With R/W variance (Figure 4.19), Aε-Star edges over WA-Star with a savings

of 78%. Although Greedy recoded the highest RC savings (94%) its mean interval was

around 76%. Among the suboptimal A-Star heuristics SA2 showed a very stable

performance but SA3 recorded a higher mean interval. LMM and GMM observably

80

performed the worst. Figure 4.20 depicts the adaptability of the algorithms under the

variance of the system storage capacity. It can be seen that all the algorithms did well in

this domain. Unexpectedly, LMM and GMM which basically only exploit the storage

capacity could not show a performance comparable to their counterparts. We attribute

Table 4.5: Average RC (%) savings under some problem instances.
Problem Size DRPA-star SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star

M=20, N=150 [C=20%,R/W=0.75, W-log] 79.72 75.70 68.20 77.66 50.90 63.38 74.62 73.01 76.96 78.54
M=50, N=200 [C=20%, R/W =0.80, N-log] 80.59 72.69 73.15 74.17 43.59 59.48 67.44 72.62 77.24 76.75
M=50, N=300 [C=25%, R/W =0.95, N-log] 77.17 73.47 71.42 72.71 49.88 66.33 75.34 74.36 73.45 71.37
M=60, N=300 [C=35%, R/W =0.95, W-log] 74.07 67.32 66.08 71.46 45.38 62.70 69.79 70.39 69.04 72.45
M=100, N=400 [C=25%, R/W =0.75, W-log] X 72.22 68.00 73.91 46.56 67.73 67.44 70.17 73.68 72.37
M=100, N=500 [C=30%, R/W =0.65, W-log] X 66.68 64.15 69.44 47.70 64.30 69.07 64.95 70.83 70.00
M=200, N=800 [C=25%, R/W =0.85, W-log] X 73.49 70.93 72.12 50.59 67.85 72.08 69.93 72.80 71.71
M=100, N=1000 [C=20%, R/W =0.95, W-log] X 76.62 67.98 79.39 54.61 67.60 78.91 71.75 75.68 71.73
M=300, N=1000 [C=25%, R/W =0.75, N-log] X 69.32 66.06 61.27 58.18 65.53 74.35 65.75 74.23 75.57
M=400, N=1500 [C=35%, R/W =0.60, N-log] X 68.10 68.08 69.15 53.80 56.86 71.55 64.59 72.19 72.97
M=200, N=2000 [C=20%, R/W =0.80, W-log] X 72.97 68.53 74.01 53.94 63.50 72.67 71.96 75.71 77.20
M=500, N=2000 [C=60%, R/W =0.40, N-log] X 69.93 67.48 71.75 47.35 63.73 72.10 77.93 79.50 81.95
M=500, N=3000 [C=25%, R/W =0.95, W-log] X 73.14 69.34 73.74 50.30 68.10 72.32 71.09 73.35 71.36
M=1000, N=5000 [C=35%, R/W =0.95, N-log] X 66.20 67.74 67.20 44.94 62.41 70.10 70.43 71.86 71.87
M=1500, N=10,000 [C=25%, R/W =0.75, N-log] X 75.10 66.59 78.34 44.49 68.00 72.06 69.79 72.93 74.41
M=2000, N=15,000 [C=30%, R/W =0.65, W-log] X 76.80 73.86 81.22 51.04 68.37 72.84 68.03 73.06 75.64
M=2500, N=15,000 [C=25%, R/W =0.85, N-log] X 68.13 66.79 70.60 46.61 62.37 69.61 67.44 69.55 67.45
M=3000, N=20,000 [C=30%, R/W =0.65, W-log] X 74.67 72.19 74.75 51.90 66.63 65.54 70.68 74.49 73.99
M=3500, N=25,000 [C=35%, R/W =0.50, W-log] X 72.33 69.22 73.22 56.22 62.29 72.70 66.70 72.93 74.20
M=3718, N=25,000 [C=65%, R/W =0.40, N-log] X 67.07 65.78 68.67 55.56 60.19 70.38 64.29 71.95 71.26

Table 4.6: Algorithm ranking based on solution quality.
RC savings Algorithm Sites Objects Capacity R/W Overall score Rankings

DRPA-Star 1 1 1 1 4 1
SA1 7 6 7 7 27 7
SA2 9 7 8 9 33 8
SA3 6 5 6 5 22 5
LMM 10 10 10 10 40 10
GMM 8 9 9 8 34 9
Greedy 4 2 3 4 13 3
GRA 5 8 5 6 24 6
WA-Star 3 4 4 3 14 4
Aε-Star 2 3 2 2 9 2

Table 4.7: Overview of results with suggested utilization.
Algorithm Running time Memory utilization Solution quality Suggested utilization

DRPA-Star Very high Very high Optimal Static with optimal quality. (Not practical at all.)
SA1 Medium-high Medium Medium Static with medium quality.
SA2 Medium-high Medium Medium Static/dynamic with medium-high quality.
SA3 High Medium Medium-high Static with medium-high quality.
LMM Very low Very low Low Fast/dynamic with low quality.
GMM Low-medium Low Low Fast/dynamic with low-medium quality.
Greedy Low Low High Fast/dynamic with very high quality.
GRA Medium Medium Medium-high Static with high quality.
WA-Star Medium Low-medium High Static/dynamic with very high quality.
Aε-Star Medium Low-medium High Medium fast/dynamic with very high quality.

81

this fact to the arguments presented earlier – the bin packing algorithms only focus on

local network optimization and do not have the full picture of the problem domain.

Once again, Aε-Star edges over WA-Star, which is closely followed by Greedy.

Lastly, we compare the pruning strength of the A-Star based heuristics. Ten

problem instances (Table 4.4) were put to test. Figure 4.21 shows the savings in the

node expansion compared to that of DRPA-Star. Clearly WA-Star prunes more nodes

than any of the other heuristics, followed by Aε-Star, SA3, SA2 and SA1.

4.7.7 Recap of Evaluation

Table 4.5 reports the solution quality in terms of RC percentage for 20 randomly

chosen problem instances, each being a combination of various numbers of sites and

objects, with varying storage capacity and R/W ratio. For each row, the best result is

indicated in bold. Entries marked with “X” represent that the algorithm could not

terminated in a reasonable time. A-Star (DRPA-Star) and A-Star based heuristics (Aε-

Star, WA-Star, SA1, SA2, SA3) steal the show in the context of solution quality, but

Greedy and GRA do indeed give a good competition, with a savings within a range of

5%-10% of Aε-Star.

As we mentioned in the introductory passage, selecting the best heuristic to be

used in a given environment, is a difficult task, unless through investigation of the

heuristics under a unifying problem domain is performed. For this purpose we selected

ten heuristics from literature and extensively compared them under the variance of

various system parameters. This study gives us the confidence to select a heuristic given

82

a well defined environment. Based on our findings, we are now at a position, where we

can declare a “winner” among all the studied techniques. We poll our vote in favor of

the Greedy heuristics which was originally proposed in [100]. Although, it finished

second on termination time and third (counting DRPA-Star which is only effective with

smaller problem instances) in terms of the solution quality, yet its solution quality was

always within 2%-5% of Aε-Star. Moreover, test results showed that Greedy was

considerably faster than the other high performing algorithms. Table 4.6 shows the

numerical ranking of the algorithms based on the solution quality. The overview of

results and our recommendations on the possible usage of the heuristics studied in this

study are summarized in Table 4.7.

4.8 Concluding Remarks

Selecting the best heuristic to be used in a given environment, however, remains

a difficult task, since comparisons are often clouded by different underlying

assumptions in the original study of the heuristic. The main purpose of this study was to

study and compare the above mentioned heuristics on a unifying platform with

changing system parameters so as to fully understand the capabilities and limitations of

the methods. The studied heuristics were thoroughly tested using an experimental setup

that closely mimicked the Internet in its infrastructure and user access patterns. GT-ITM

and Inet Internet topology generators were employed to obtain 80 well-defined network

topologies based on flat, link distance, power-law and hierarchical transit-stub models.

The user access patterns were derived from real access logs collected at the Soccer

83

World Cup 1998 web server and NASA Kennedy Space Center web server. The

selection of two different access logs was necessary to compliment the pros and cons of

each access log. The Soccer World Cup 1998 access log had a high volume of traffic

but did not cater for the geographically distributed access load. On the other hand the

NASA Kennedy Space Center access log had diverse spatial and temporal access

requests. Using this setup, the heuristics were evaluated by analyzing the system

utilization in terms of reducing the communication cost incurred due to object

transfer(s) under the variance of server capacity, object size, read access, write access,

number of object and sites. Based on the experimental data, we were able to

comparatively examine the behavior of each of the techniques. For the cases studied in

this paper, the relatively simple Greedy heuristic performed extremely well in

comparison to other, more complex techniques. Based on our observations, we made

detailed suggestive uses of each and every heuristic and identified the circumstances in

which they are deemed useful.

Our main observations are as follows:

1. Replica placement algorithms should incorporate the knowledge of network

topology, clients’ access requirements, and possibly the psychological aspects that

affect the access frequencies.

2. Care should be taken when to invoke a replica placement algorithm. Studying the

past user access trends can potentially help the designers to effectively determine

the (exact) time when to invoke the algorithm.

3. The relative performance of the replica placement algorithms is not the same across

84

the access logs (Soccer World Cup 1998 and NASA Kennedy Space Center),

network topologies (flat, link distance, power-law and transit-stub), system

parameters (capacity, R/W ratio, number of sites and objects). It would be extremely

useful to identify the environment before the choice of deploying a particular

algorithm is undertaken.

4. Each algorithm has its strengths and weaknesses. As demonstrated in this study,

there is no single replica placement algorithm that can cater for all the possible

scenarios. This study can be used as a benchmark for selecting algorithms (proposed

in this study or otherwise) to effectively tackle the underlying system environment.

Our suggested line of action for the content distributors or network managers

who would like to incorporate this study in their network management portfolio is as

follows:

1. Obtain the approximate (if not the exact) network topology.

2. Gather all the system parameters such as, system capacity, number of objects and

sites.

3. Observe the access patterns of the clients and extract the spatially and temporally

distributed workload so that R/W ratios in corresponding to the system parameters

can be obtained.

4. Based on the system parameters and the access patterns determine the relocation

time for the replica placement algorithm. If frequent relocations are required, then

the portfolio should incorporate algorithms that generate replica schemas in fast turn

around time, such as GMM and LMM. If relocation is required only once in a 24-

85

hour, then the Greedy algorithm would be the best choice. However, if relocation is

required, say once every week, then perhaps Aε-Star or WA-Star can be deployed.

86

CHAPTER 5

ON DESIGNING GAME THEORETICAL REPLICA PLACEMENT
TECHNIQUES

Data replication is an essential technique employed to reduce the user perceived

access time in distributed computing systems. One can find numerous algorithms that

address the data replication or the replica placement problem, each contributing in its

own way. These range from the traditional mathematical optimization techniques, such

as, linear programming, dynamic programming, etc. to the biologically inspired meta-

heuristics. We aim to introduce game theory as a new oracle to tackle the data

replication problem. The beauty of the game theory lies in its flexibility and distributed

architecture, which is well-suited to address the replica placement problem. We will

specifically use action theory (a special branch of game theory) to identify techniques

that will effectively and efficiently solve the replica placement problem. Game theory

and its necessary properties are briefly introduced, followed by a through and detailed

mapping of the possible game theoretical techniques and replica placement problem.

There are two popular models [100] to tackle the replica placement problem 1)

centralized replication model and 2) distributed replication model. In the first model, a

central body is used to make the decisions about when, where and what to replicate. In

the second model, geographically distributed entities (servers, program modules, etc.)

are used to make the decisions. Both the techniques have several pros and cons, for

87

instance, the centralized model is a potential point of failure and overloaded by all the

computations involved in resolving to a decision. On the other hand, the distributed

model suffers from the possibility of mediocre optimization due to the localized view of

the distributed entities [58]. A natural way to counteract both the extremities is to view

the decision making process as a “semi-distributed” [3] procedure, where all the data

intensive computing is performed at the geographically distributed entities, while the

final decision on replication is taken by a single entity. This would lessen the burden on

the decision making entity, make it more fault-tolerant since in case of a failure it can

easily be replaced. It would also improve the overall solution quality since the

distributed entities would leverage upon the central body’s ability to provide a global

snapshot of the system [59].

Game theory has the natural ability to absorb a distributed optimization scenario

into its realm [96]. Within the context of the replica placement problem, the

geographically distributed entities would be termed as the players, and the central

decision making body as the referee, where the players compete to replicate data objects

onto their servers so that the users accessing their serves would experience reduced

access time. A closer look at this process (competing for data objects and refereeing)

reveals a close resemblance between the replica placement problem and auctions. When

an object is brought for auction, the bidders in a distributed fashion propose a bid for

that object, without knowing what the other bidders are bidding, and the object is

allocated to the bidder only when the auctioneer approves it. Of course there is more

detail to this process which relies explicitly on the environment, situation, players

88

involved, objects that are up for auction, purpose of the auction. The theory which deals

with these details is called auction theory, which is a special branch of game theory

 [95].

Using game theoretical techniques we can tailor make an auction procedure for

a given scenario (problem at hand) and guarantee certain performance criteria, for

instance, we can make sure that the players always project the correct worth of an

object. This is a difficult problem when the players have to rely on local data, but with

the help of game theory, this can be achieved without an extra overhead [61], [94]. To

put things into perspective, we will describe how game theory can be used to create

techniques for the replica placement problem in distributed computing systems.

5.1 Some Essential Background Material

5.1.1 Background Material on Game Theory

Game theory is widely thought to have originated in the early twentieth century,

when von Neumann gave a concrete proof of the min-max theorem [116]. Although, it

was the first formally stated major work in this field, the roots of game theory can be

traced back to the ancient Babylonian Talmud. The Talmud is a compilation of the

ancient laws set forth in the first five centuries A.D. Its traces can be found in various

religions and the modern civil and criminal laws. One related problem discussed in the

Talmud is the marriage contract problem: A man has three wives. Their marriage

contracts specify that in the case of the husband’s death, the wives receive 1:2:3 of his

89

property. The Talmud in all mystery gives self-contradictory recommendations. It states

that: If the man dies leaving an estate of only 100, there should be an equal division. If

the estate is worth 300 it recommends proportional division (50,100,150), while for an

estate of 200, it recommends (50,75,75). In 1985, Aumann and Maschler [7] reported

that the marriage contract problem and its weird solution discussed in the Talmud are

only justifiable via cooperative game theoretical analysis. The foundation of the famous

min-max theorem is credited to Waldegrave, who on November 13, 1713 wrote a letter

to de Montmort describing a card game le Her and his solution [71]. It would take two

centuries for Waldegrave’s result to be formally acknowledged [116].

Some of the most pioneering results were reported within a year, when Nobel

Laureate John Nash made seminal contributions to both cooperative and non-

cooperative games. In [91] and [92], Nash proved the existence of a strategic

equilibrium for non-cooperative games (Nash Equilibrium). He also proposed that

cooperative games were reducible to non-cooperative games. In the next two papers

 [93], [94] he eventually accomplished that and founded the axiomatic bargaining theory

and proved the existence of the Nash Bargaining Solution for cooperative games (a

notion similar to the Nash Equilibrium). The beauty of game theory is in its abstractly

defined mathematics and notions of optimality. In no other branch of sciences, do we

find so many understandable definitions and levels of optimality [96].

Auction theory is a special branch of game theory that deals with biddings and

auctions, which have long been an important part of the market mechanisms. Auctions

allow buyers to opt for prices often lesser than the original market prices, but they have

90

to compete and in doing so they have to realize their needs and constraints. Analysis of

such games began with the pioneering work of Vickery [114]. An auction is a market

institution with an explicit set of rules determining resource allocation and prices on the

basis of bids from the market participants [66]. For instance, we can formulate an

auction as [27]:

1. Bidders send bids to indicate their willingness to exchange goods.

2. The auction may post price quotes to provide summarized information about the

status of the price-determination process. (Steps 1 and 2 may be iterated.)

3. The auction determines an allocation and notifies the bidders as to who purchases

what from whom at what price. (The above sequence may be performed once or

repeated any number of times.)

There are four standard types of auctions [85]:

1. The English auction (also called the oral, open, or ascending-bid auction).

2. The Dutch auction (or descending-bid auction).

3. The first-price sealed-bid auction.

4. The second-price sealed-bid (or Vickrey) auction.

It is to be noted that the English and the Dutch auctions are collectively called

progressive auctions; similarly the first-price sealed-bid and second-price sealed-bid

auctions are collectively know as sealed-bid auctions.

The English auction is the auction form most commonly used for the selling of

goods [29]. In the English auction the price is successfully raised until only one bidder

remains. This can be done by having an auctioneer announce prices, or by having

91

bidders call the bids themselves, or by having bids submitted electronically with the

current best bid posted [27]. The essential feature of the English auction is that, at any

point in time, each bidder knows the level of the current best bid. Antiques and artwork,

for example, are often sold by English auction.

The Dutch auction is the converse of the English auction [29]. The auctioneer

calls an initial high price and then lowers the price until one bidder accepts the current

price. The Dutch auction is used, for instance, for selling cut flowers in Netherlands,

fish in Israel and tobacco in Canada.

With the first-price sealed-bid auction, potential buyers submit sealed bids and

the highest bidders are awarded items for the price they bid [85]. The basic difference

between the first-price sealed-bid auction and the English auction is that, with the

English auction, bidders are able to observe their rival’s bids and accordingly, if they

choose, revise their own bids; with the sealed-bid auction, each bidder can submit only

one bid. First-price sealed-bid auctions are used in the auctioning of mineral rights to

U.S. government-owned land; they are also sometimes used in the sales of artwork and

real estate [66]. Of greater quantitative significance is the use, already noted, of sealed-

bid tendering for government procurement contracts [114].

Under the second-price sealed-bid auction, bidders submit sealed bids having

been told that the highest bidder wins the item but pays a price equal not to his own bid

but to the second-highest bid. While this auction has useful theoretical properties, it is

seldom used in practice. The most significant application of this type of auction is found

in the selling of FCC bandwidths [66].

92

5.1.2 Game Theoretical Auction Theory, Views, and Extensions

In contrast with competitive equilibrium theory [48], [118], where players

respond solely to summary signals, for instance, prices for different outcomes, in

auction theory players act in a game theoretic way, thereby modeling effect their actions

will have no other player’s actions. This more detailed modeling facilitates the design of

predictable systems of interacting players. Specifically, auction theory deals with how

to design systems so that certain system-wide criteria, for instance, efficiency, fairness,

and stability, emerge in a game theoretic equilibrium. The most widely exploited use of

auction theory is in its capability to deal with players that behave in a self-interested

(researchers in economic theory often term it as selfish) manner [104], [105]. That is,

when players act in their own interest (local optimization) in contrast to the system-

wide endeavor (global optimization) [27].

It is also assumed that the players are aware of the protocols of interaction and

abide by them. These assumptions are problematic since in a distributed computing

environment [27]:

1. Players (by this we mean the software code that models the players) do not have an

unbounded computational power that might be required to compute their

preferences for all possible equilibria [27].

2. Communication is not necessarily free and can also be prone to errors.

3. Protocols in an open system vary from machine to machine and thus it is practically

impossible to equip the players to attain knowledge of every such protocol.

With this said, game theoretical auctions are probably one of the fewest oracles

93

in computer science and economic theory that are flexible and scalable to alterations of

extreme nature [84]. For a designer to ensure an equilibrium implemented auction with

a certain social choice function, he/she has to predict the strategies players will select.

In game theory there are several ways one can achieve that, for instance, dominate

strategy, ex post Nash, Bayesian-Nash, ex interim Nash, etc [27]. Of all of them, the

most appealing, natural, and straight-forward is the dominate strategy concept [66].

Each player in a dominant strategy has a best response strategy no matter what strategy

the other players select [27]. A dominate strategy equilibrium provides a robust solution

concept because a player does not need to form beliefs about either other player’s

rationality or the distribution over the other player types [27]. However, this is not the

case when we consider [96]: ex post Nash equilibrium, which requires common

knowledge about the player’s rationality, Bayesian-Nash equilibrium, which requires

the knowledge about the distribution over player types, etc. To bring things into

perspective [27]:

1. An example of a dominant strategy implementation is the second-price auction,

where the winner always pays the second highest bid’s price.

2. An example of an ex post Nash implementation is the first-price open-bid auction,

where all the players know exactly which player bids what.

3. An example of the Bayesian-Nash implementation is the first-price sealed-bid

auction, where the winner always pays its bid.

 As stated previously, the most widely exploited use of auction theory is in its

capability to deal with players that behave in a selfish manner. That is, if we are given

94

predictive tools (such as dominant strategy, ex post Nash, ex interim Nash, etc.) and a

social choice function, what possible properties can be expected out of the auction

designed, given that the players are assumed to be selfish. Recall that we are yet to

detail the set of desirable properties for any given auction mechanism. However, we did

briefly talk about the utility maximization property for the social choice function. We

will soon detail all of them in the subsequent text. For the time being assume we are

only concentrating on the utility maximization property [27].

The “direct revelation principle” [86] is the central concept in obtaining results

about whether or not a certain property can be expected from a social choice function.

The direct revelation principle is a simple reduction technique. For instance, the direct

revelation equivalent of the English auction is an action in which the bidding structure

follows the ex post Nash equilibrium [27], [84]. That is, the direct revelation

implementation asks the players to reveal their valuations and then simulates the

English auction with these ex post Nash strategies on the basis of the revealed

valuations [27]. The effect is to sell the object to the player with the highest bid for the

second highest bid. The beauty of this principle is that any auction mechanism can be

transformed into an incentive compatible, direct revelation auction mechanism [62]. By

direct we mean that the players’ strategy space is restricted to reporting their types and

by incentive compatible we mean that the equilibrium strategy for players is truth

telling. This principle is important since it allows a focused view on incentive

compatible, direct revelation auction mechanisms that can guarantee a certain property.

One very famous result using this very principle is the Vickrey-Clarke-Groves (VCG)

95

 [24], [40], [114] auction mechanism that guarantees the utility maximization property

 [27].

To briefly describe the VCG auction mechanism [27], consider the partitioning

of the outcome space into a choice δ and payments p. Outcome o = (δ,p) defines a

choice δ ∈ ∆ in the space of feasible choices ∆ and payments p = (p1, p2, …, pM) by

players. For instance, the choice set can describe all the feasible object allocations to the

players, based on the utility function ui(δ,pi,ti) = vi(δ,ti) - pi, where vi(δ,ti) denotes the

value of allocation δ to player i given its type ti. (It is important to know that the utility

functions are always of the form of quasilinear.) The VCG auction mechanism receives

claims ti* from players about their valuations and implements the choice δ* that

maximizes ∑i vi(δ,ti*). Each player makes payment equal to the second highest bid, i.e.,

vi(δ,ti)* – (V(M) - V(M \ i)), where V(M) is the total reported value of δ* and V(M\i) is

the total reported value of δ* that would be implemented without the player i. Note that

the first two terms of the payment align a player’s incentives with that of the auction

mechanism and make truth revelation a dominant strategy [27]. In equilibrium every

player receives as utility the marginal value that it contributes to the system [58].

5.2 Casting Replica Placement Problem into an Incentive Compatible Game
Theoretical Auction

To begin we first describe when in the lifespan of the distributed computing

system a replication algorithm (an incentive compatible auction if we want to use the

correct term) is to be invoked. The answer to that question depends specifically on the

96

system at hand, but usually the replication algorithms are invoked when the system

experiences the least amount of queries to access the data objects. This is to ensure that

the least amount of users would be affected from the movement of data objects in the

system; furthermore it reduces the workload on the entities to compute their preferences

towards the objects they prefer to host – remember they are already busy answering all

the queries directed to them.

In the subsequent text we will first extract the necessary ingredients from the

discussion on auction theory and use them to cast the replica placement problem into an

incentive compatible game theoretical auction.

5.2.1 The Ingredients

5.2.1.1 The Basics

The auction mechanism contains M players. Each player i has some private

information ti ∈ ℜ. This data is termed as the player’s type. Only player i has

knowledge of ti. Everything else in the auction mechanism is public knowledge. Let t

denote the vector of all the true types t = (t1, t2 , …, tM).

5.2.1.2 Communications

Since the players are self-interested (selfish) in nature, they do not communicate

the value ti. The only information that is relayed is the corresponding bid bi. Let b

denote the vector of all the bids (b = (b1, b2, …, bM), and let b-i denote the vector of bids

97

not including player i, i.e., b-i = (b1, b2, …, bi-1,bi+1, …, bM). It is to be understood that

we can also write b = (b-i,bi).

5.2.1.3 Components

The auction mechanism has two components 1) the algorithmic output o(·), and

2) the payment mapping function p(·).

5.2.1.4 Algorithmic Output

The auction mechanism allows a set of outputs O, based on the output function

which takes in as the argument, the bidding vector, i.e., o(b) = {o1(b), o2(b), …, oM(b)},

where o(b) ∈ O. This output function relays a unique output given a vector b. That is,

when o(·) receives b, it generates an output which is of the form of allocations oi(b).

Intuitively it would mean that the algorithm takes in the vector bid b and then relays to

each player its allocation.

5.2.1.5 Monetary Cost

Each player i incurs some monetary cost ci(ti,o), i.e., the cost to accommodate

the allocation oi(b). This cost is dependent upon output and player’s private information.

5.2.1.6 Payments

To offset ci, the auction mechanism makes a payment pi(b) to player i. A player

i always attempts to maximize its profit (utility) ui(ti,b) = pi(b) - ci(ti,o). Each player i

98

cares about the other players’ bid only insofar as they influence the outcome and the

payment. While ti is only known to player i, the function ci is public. (Note that when

we were previously describing the properties of auctions, the payments were made by

the players and not the auction mechanism. That is fine in that context since the

incentive for the players there was to acquire the object. In the context of the DRP,

since the players have to conform to the global optimization criteria and host the

objects, an incentive for the players would be to receive payments for hosting objects

rather than making payments.)

5.2.1.7 Bids

Each player i is interested in reporting a bid bi such that it maximizes its profit,

regardless of what the other players bid (dominant strategy), i.e., ui(ti,(b-i,ti)) ≥ ui(ti,(b-

i,bi)) for all b-i and bi.

5.2.1.8 The incentive Compatible Auction Mechanism

We now put all the pieces together. An incentive compatible auction mechanism

consists of a pair (o(b),p(b)), where o(·) is the output function and p(·) is the payment

mapping function. The objective of the auction mechanism is to select an output o, that

optimizes a given objective function f(⋅).

5.2.1.9 Desirable Properties

In essence, we desire our auction to exhibit the utility maximization property. In

economic theory a utility maximization property is also known as the efficient outcome

99

of the auction mechanism [26]. In the subsequent text we will consider other properties,

but for the time being let us limit our discussion to the utility maximization property.

Remember that a utility maximization property is only attainable when an auction is an

incentive compatible auction [64].

5.2.2 The Casting

We follow the same pattern as discussed in Section 5.2.1.

5.2.2.1 The Basics

The distributed system described in Chapter 3 is considered, where each server

is represented by a player, i.e., the auction mechanism contains M players. In the

context of the replica placement problem, a player holds two key elements of

information 1) the available server capacity aci and 2) the access frequencies (both read

rk
i and write wk

i). Let us consider what possible cases for information holding there are:

1. Replica placement problem [π]: Each player i holds the access frequencies {rk
i, wk

i}

= ti associated with each object k as private information, where as the available

server capacity aci and everything else (this includes all the auction related

functions, network and system parameters) is public knowledge.

2. Replica placement problem [σ]: Each player i holds the available server capacity aci

= ti as private information, where as the access frequencies {rk
i, wk

i} and everything

else is public knowledge.

3. Replica placement problem [π,σ]: Each player i holds both the access frequencies

100

{rk
i, wk

i} and the server capacity aci as private information {aci,{rk
i, wk

i}} = ti,

where as everything else is public knowledge.

Intuitively, if players know the available server capacities of other players, that

gives them no advantage whatsoever. However, if they come about to know their access

frequencies, then they can modify their valuations and alter the algorithmic output.

Everything else such as the network topology, latency on communication lines, and

even the server capacities can be public knowledge. Therefore, replica placement

problem [π] is the only natural choice.

5.2.2.2 Communications

The players in the auction mechanism are assumed to be selfish and therefore,

they project a bid bi to the auction mechanism.

5.2.2.3 Components

The auction mechanism has two components 1) the algorithmic output o(·), and

2) the payment mapping function p(·).

5.2.2.4 Algorithmic Output

In the context of the DRP, the replication algorithm accepts bids from all the

players, and outputs the maximum beneficial bid, i.e., the bid that incurs the minimum

cost to place replicas (Equation 3.3). We will give a detailed description of the

algorithm in the later text.

101

5.2.2.5 Monetary Cost

When an object is allocated (for replication) to a player i, the player becomes

responsible to entertain (read and write) requests to that object. For example, assume

object k is replicated by player i. Then the amount of traffic that the player’s server has

to entertain due to the replication of object k is exactly equivalent to the replication cost,

i.e., ci = Rk
i + Wk

i. This fact is easily deducible from Equation 3.4.

5.2.2.6 Payments

To offset ci, the auction mechanism makes a payment pi(b) to player i. This

payment is chosen by the auction mechanism such that it eliminates incentives for

misreporting by imposing on each player the cost of any distortion it causes. The

payment for player i is set so that i’s report cannot effect the total payoff to the set of

other players (excluding player i), M-i. With this principle in mind, let us derive a

formula for the payments. To capture the effect of i’s report on the outcome, we

introduce a hypothetical null report, which corresponds to player i reporting that it is

indifferent among the possible decisions and cares only about payments. When player i

makes the null report, the auction optimally chooses the allocation o(t-i). The resulting

total value of the decision for the set of players M-i would be V(M-i), and the auction

might also “collect” a payment hi(t-i) from player i. Thus, if i makes a null report, the

total payoff to the players in set M-i is V(M-i) - hi(t-i).

The auction is constructed so that this, V(M-i) - hi(t-i), amount is the total payoff

to those players regardless of i’s report. Thus, suppose that when the reported type is t,

102

i’s payment is pi(t) + hi(t-i), so that pi(t) is i’s additional payment over what i would pay

if it made the null report. The decision o(t) generally depends on i’s report, and the total

payoff to members of M-i is then ∑i∈M-ivi(o(t),ti) + pi(t) + hi(t-i). We equate this total

value with the corresponding total value when player i makes the null report:

() (),i i i i i i i
i M iv o t t p t h t V M i h t

− −

∈ − + + = − +∑ . (5.2)

Using Equation 5.2, we solve for the extra payment as:

() (),i i i
i M ip t V M i v o t t

 ∈ −= − −∑ . (5.3)

() (), ,i i i i i
i M i i M ip t v o M i t v o t t ∈ − ∈ −= − −∑ ∑ . (5.4)

According to Equation 5.4, if player i’s report leads to a change in the decision

o, then i’s extra payment pi(t) is specified to compensate the members of M-i for the

total losses they suffer on the account [58].

The derived payment procedure is in its most general form. A careful

observation would reveal that its special cases include every possible payment

procedure. The most famous of them all is the Vickrey payment. To say the least we

will show the derived payment procedure is equivalent to Vickrey payments. A player’s

value for any decision depends only on the objects that the player acquires, and not on

the objects acquired by other players. That is, vi(ti) = 1 if the player acquires the object

and vi(ti) = 0 otherwise. Since the loosing players are not pivotal [64] (because their

presence does not affect the allocation o), they obtain zero payments in our mechanism.

According to Equation 5.4, the price a winning player pays in the (derived) payment

procedure is equal to the difference between the two numbers. The first number is the

103

maximum total value of all the other players, when i does not participate, which is

maxj≠ivi. The second number is the total value of all the other players when i wins,

which is zero. Thus, when i wins it pays maxj≠ivi, which is equal to the second highest

valuation. This is exactly the Vickrey payment [110].

5.2.2.7 Bids

Each player i reports a bid that is the direct representation of the true data that it

holds. Therefore, a bid bi is equivalent to 1/{Rk
i+Wk

i }. That is, the lower the replication

cost the higher is the bid and the higher are the chances for the bid bi to win.

In essence, the incentive compatible auction mechanism (o(b),p(b)), takes in the

vector of bids b from all the players, and selects the highest bid. The highest bidder is

allocated the object k which is added to its allocation set oi. The auction mechanism

then pays the bidder pi. This payment is equivalent to the Vickrey payments and

compensates the cost incurred (due to the entertainment of access requests for object k

by users) by the player to host the object at its server. A pseudo-code for an incentive

compatible auction mechanism is given in Figure 5.1.

5.2.2.8 Description of Psuedo-code

We maintain a list Li at each server. This list contains all the objects that can be

replicated by player i onto server Si. We can obtain this list by examining the two

constraints of the DRP. List Li would contain all the objects that have their size less then

the total available space bi. Moreover, if server Si is the primary host of some object k’,

104

then k’ should not be in Li. We also maintain a list LS containing all servers that can

replicate an object, i.e., Si ∈ LS if Li ≠ NULL. The algorithm works iteratively. In each

step the auction mechanism asks all the players to send their preferences (first

PARFOR loop). Each player i recursively calculates the true data of every object in list

Li. Each player then reports the dominant true data (line 08). The auction mechanism

receives all the corresponding entries, and then chooses the best dominant true data.

This is broadcasted to all the players, so that they can update their nearest neighbor

table NNk
i, which is shown in Line 21 (NNi

OMAX). The object is replicated and payments

An incentive compatible auction mechanism

Initialize:
LS, Li, Tk

i, M, MT

01 WHILE LS ≠ NULL DO
02 OMAX = NULL; MT = NULL; Pi = NULL;
03 PARFOR each Si∈LS DO
04 FOR each Ok∈ Li DO
05 Tk

i = compute (Bk
i); /*Compute the valuation */

06 ENDFOR
07 ti = argmaxk(Tk

i);
08 SEND ti to M; RECEIVE at M ti in MT;
09 ENDPARFOR
10 OMAX = argmaxk(MT); /*Choose the global dominate valuation*/
11 DELETE k from MT;
12 Pi = argmaxk(MT); /*Calculate the Vickrey payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; RECEIVE at Si /*Ask the winning agent to pay this amount*/
15 SEND Pi to M; RECEIVE at M /*Send the required payment*/
16 Replicate OOMAX;
17 bi=bi - ok; /*Update capacity*/
18 Li = Li - Ok; /*Update the list*/
19 IF Li = NULL THEN SEND info to M to update LS = LS - Si; /*Update mechanism players*/
20 PARFOR each Si∈LS DO
21 Update NNi

OMAX /*Update the nearest neighbor list*/
22 ENDPARFOR /*Get ready for the next round*/
23 ENDWHILE

Figure 5.1: Pseudo-code for an incentive compatible auction mechanism.

105

made to the player. The auction progresses forward till there are no more players

interested in acquiring any data for replication.

5.2.3 Further discussion on the Casting Process

The mechanism described in Section 5.2 illustrates the usage of the auction

theory as a possible solution towards the replica placement problem with the property of

dominating strategy. This same process with minor modifications can be used to

guarantee other auction properties applied to the replica placement problem. We give a

brief description of some of the properties in the subsequent text, but for details, the

readers are encouraged to see some of the work performed by the authors that explicitly

detail these properties, and the subsequent Chapters.

5.2.3.1 Pareto Optimality

Implementing an outcome that is not pareto dominated by any other outcomes,

so no other outcomes make one player better off while making other players worst [27].

Details on a pareto optimal auction applied to the replica placement problem can be

found in Chapter 6.

5.2.3.2 Maximum Utility to a Particular Player

Maximizing the expected utility to a single player, typically the central decision

making body, across all possible scenarios. This type of setting is very useful when

considering revenue maximization scenarios. Details on a maximum utility to a

106

particular player auction applied to the replica placement problem can be found in

Chapter 7.

5.2.3.3 Deliberate Discrimination of Allocation

Maximize the system utilization by revoking allocations if deemed necessary.

This type of property is very useful when considering dynamic scenarios, where it often

warrants revoking a decision since the system parameters may change drastically during

the computation of a decision [27]. Details on a deliberate discrimination of allocation

auction applied to the replica placement problem can be found in Chapter 8.

5.2.3.4 Budget Balance

A budget balanced auction is when the total payments made or received by the

players exactly equals zero. This property is important since the money is not injected

or removed from the system. If the payments made or received by the players equal to

zero, then the auction is termed as a strict budget balance auction [27]. On the other

hand, if the payments made or received by the players does not equal to zero but it is

non-negative, then the auction is termed as a weak budget balance auction. (In a weak

budget balance auction, the auction does not run at a loss.) One can also consider an

exante budget balance auction, in which the auction is balanced on average, and an

expost budget balance auction, in which the auction is balanced at all times. Details on a

budget balance auction applied to the replica placement problem can be found in

Chapter 9.

107

Budget balance is especially important in systems that must be self-sustaining

and require no external benefactor to input money or central authority to collect

payments [26], [27]. For instance, a distributed system should always be a budget

balanced system, since money has no literal meaning in the system – it is there just to

drive the optimization process, not the system as a whole.

5.3 Experimental Comparative Analysis

We performed experiments on a 440MHz Ultra 10 machine with 512MB

memory. The experimental evaluations were targeted to benchmark the placement

policies. The solution quality in all cases, was measured according in terms of the OTC

(or RC or NTC) percentage that was saved under the replication scheme found by the

technique, compared to the initial one, i.e., when only primary copies exist.

5.3.1 Comparative Techniques

For comparison, we selected three various types of replica placement

techniques. To provide a fair comparison, the assumptions and system parameters were

kept the same in all the approaches. The techniques studied include efficient branch and

bound based technique (Aε-Star [57]). The algorithms proposed in [58], [75], [78], and

 [100] are the only ones that address the problem domain similar to ours. We select from

 [100] the greedy approach (Greedy) for comparison because it is shown to be the best

compared with 4 other approaches (including the proposed technique in [75]); thus, we

indirectly compare with 4 additional approaches as well. From [78] we choose the

108

Genetic based algorithm (GRA), which exhibits extreme robustness under various

changing scenarios. For rebuttal, we briefly detail the comparative techniques as below:

1. Aε-Star: In [57] the authors proposed a 1+ε admissible A-Star based technique

called Aε-Star. This technique uses two lists: OPEN and FOCAL. The FOCAL list

is the sub-list of OPEN, and only contains those nodes that do not deviate from the

lowest f node by a factor greater than 1+ε. The technique works similar to A-Star,

with the exception that the node selection (lowest h) is done not from the OPEN but

from the FOCAL list. It is easy to see that this approach will never run into the

problem of memory overflow, moreover, the FOCAL list always ensures that only

the candidate solutions within a bound of 1+ε of the A-Star are expanded.

2. Greedy: We modify the greedy approach reported in [100], to fit our problem

formulation. The greedy algorithm works in an iterative fashion. In the first

iteration, all the M servers are investigated to find the replica location(s) of the first

among a total of N objects. Consider that we choose an object i for replication. The

algorithm recursively makes calculations based on the assumption that all the users

in the system request for object i. Thus, we have to pick a server that yields the

lowest cost of replication for the object i. In the second iteration, the location for the

second server is considered. Based on the choice of object i, the algorithm now

would identify the second server for replication, which, in conjunction with the

server already picked, yields the lowest replication cost. Observe here that this

assignment may or may not be for the same object i. The algorithm progresses

forward till either one of the DRP constraints are violated. The readers will

109

immediately realize that derived incentive compatible auction mechanism works

similarly to the Greedy algorithm. This is true; however, the Greedy approach does

not guarantee optimality even if the algorithm is run on the very same problem

instance. Recall that Greedy relies on making combinations of object assignments

and therefore, suffers from the initial choice of object selection (which is done

randomly). This is never the case with the derived auction procedure, which

identifies optimal allocations in every case.

3. GRA: In [78], the authors proposed a genetic algorithm based heuristic called GRA.

GRA provides good solution quality, but suffers from slow termination time. This

algorithm was selected since it realistically addressed the fine-grained data

replication using the same problem formulation as undertaken in this article.

From here onwards, we will acronym the incentive compatible auction

mechanism derived exclusively for the replica placement problem as I-CAM.

5.3.2 Comparative Analysis

We record the performance of the techniques using the access logs and 80

topologies. Note that each point represents the average performance of an algorithm

over 80 topologies and 88 days of the access log. (The details on the infrastructure and

the workload have already been discussed previously.) Below we detail our

experimental findings.

110

5.3.2.1 Impact of Change in the Number of Servers and Objects

We study the behavior of the placement techniques when the number of servers

increase (Figure 5.2), by setting the number of objects to 25,000, while in Figure 5.3,

we study the behavior when the number of objects increase, by setting the number of

servers to 3718. For the first experiment we fixed C = 35% and R/W = 0.25. We

intentionally chose a high workload so as to see if the techniques studied successfully

handled the extreme cases. By adding a server in the network, we introduce additional

traffic due to its local requests, together with more storage capacity to be used for

replication. I-CAM balances and explores these diverse effects, so as to achieve highest

OTC savings. GRA showed the worst performance along all the techniques. It showed

an initial gain, since with the increase in the number of servers the population

permutations increase exponentially, but with the further increase in the number of

servers this phenomenon is not so observable as all the essential objects are already

replicated. The top performing techniques (I-CAM, Greedy and Aε-Star) showed an

almost constant performance increase (after the initial surge in OTC savings). GRA also

showed a similar trend but maintained lower OTC savings. This was in line with the

claims presented in [57] and [78].

To observe the effect of increase in the number of objects in the system, we

chose a softer workload with C = 65% and R/W = 0.70. The intention was to observe the

trends for all the techniques under various workloads. The increase in the number of

objects has diverse effects on the system as new read/write patterns (since the users are

111

offered more choices) emerge, and also the strain on the overall storage capacity of the

system increases (due to the increase in the number of replicas). An effective replica

allocation method should incorporate both the opposing trends. From the plot, the most

surprising result came from GRA. It dropped its savings from 47% to 0.01%. This was

contradictory to what was reported in [78]. But there the authors had used a uniformly

No. of Servers

O
TC

 S
av

in
gs

 (%
)

N=25,000; C=35%; R/W=0.25

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
I-CAM

Figure 5.2: OTC savings versus number of servers.

No. of Objects

O
TC

 S
av

in
gs

 (%
)

M=3718; C=65%; R/W=0.70

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
0.01%

0.02%
0.03%
0.05%

0.1%

0.2%

0.5%

1%

2%
3%
5%

10%

20%

50%

100%

Legend
GRA
Aε-Star
Greedy
I-CAM

Figure 5.3: OTC savings versus number of objects

112

distributed link cost topology, and their traffic was based on the Zipf distribution [123].

While the traffic access logs of the Soccer World Cup 1998 are more or less double-

Pareto in nature [6]. In either case the exploits and limitations of the technique under

discussion are obvious. The plot also shows a near identical performance by Aε-Star

Increase in Server Capacity

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; R/W=0.95

10% 15% 20% 25% 30% 35% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
I-CAM

Figure 5.4: OTC savings versus capacity.

R/W (Ratio)

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; C=45%

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
I-CAM

Figure 5.5: OTC savings versus read/write ratio.

113

and Greedy. The relative difference among the two techniques was less than 7%.

However, Greedy did maintain its dominance. From the plots the supremacy of I-CAM

is observable. (Figure 5.3 is deliberately shown with a log (OTC savings) scale to better

appreciate the performances of the techniques.)

5.3.2.2 Impact of Change in the system Capacity

Next, we observe the effects of increase in storage capacity. An increase in the

storage capacity means that a large number of objects can be replicated. Replicating an

object that is already extensively replicated, is unlikely to result in significant traffic

savings as only a small portion of the servers will be affected overall. Moreover, since

objects are not equally read intensive, increase in the storage capacity would have a

great impact at the beginning (initial increase in capacity), but has little effect after a

certain point, where the most beneficial ones are already replicated. This is observable

in Figure 5.4, which shows the performance of the algorithms. GRA once again

performed the worst. The gap between all other approaches was reduced to within 15%

of each other. I-CAM and Greedy showed an immediate initial increase (the point after

which further replicating objects is inefficient) in its OTC savings, but afterward

showed a near constant performance. GRA although performed the worst, but

observably gained the most OTC savings (49%) followed by Greedy with 44%. Further

experiments with various update ratios (5%, 10%, and 20%) showed similar plot trends.

It is also noteworthy (plots not shown in this study due to space restrictions) that the

increase in capacity from 10% to 18%, resulted in 3.75 times (on average) more replicas

114

for all the algorithms.

5.3.2.3 Impact of Change in the Read/Write Frequencies

Next, we observe the effects of increase in the read and write frequencies. Since

these two parameters are complementary to each other, we describe them together. To

observe the system utilization with varying read/write frequencies, we kept the number

of servers and objects constant. Increase in the number of reads in the system would

mean that there is a need to replicate as many object as possible (closer to the users).

However, the increase in the number of updates in the system requires the replicas be

placed as close as to the primary server as possible (to reduce the update broadcast).

This phenomenon is also interrelated with the system capacity, as the update ratio sets

an upper bound on the possible traffic reduction through replication. Thus, if we

consider a system with unlimited capacity, the “replicate everywhere anything” policy

is strictly inadequate. The read and update parameters indeed help in drawing a line

between good and marginal algorithms. The plot in Figure 5.5 shows the results of

read/write ratio against the OTC savings. A clear classification can be made between

the algorithms. I-CAM and Greedy incorporate the increase in the number of reads by

replicating more objects and thus savings increased up to 88%, while GRA gained the

least of the OTC savings of up to 42%. To understand why there is such a gap in the

performance between the algorithms, we should recall that GRA specifically depends

on the initial selection of gene population (for details see [78]). Moreover, GRA

maintains a localized network perception. Increase in updates result in objects having

115

decreased local significance (unless the vicinity is in close proximity to the primary

location). On the other hand, I-CAM, Aε-Star and Greedy never tend to deviate from

their global (or social) view of the problem.

5.3.2.4 Running Time

Lastly, we compare the termination time of the algorithms. Various problem

instances were recorded with C = 45% and R/W = 0.85. The entries in Table 5.1 made

bold represent the fastest time recorded over the problem instance. It is observable that

I-CAM terminated faster than all the other techniques, followed by Greedy, Aε-Star,

Table 5.1: Running time of the replica placement
methods in seconds [C=45%, R/W=0.85].

Problem Size Greedy GRA Aε-Star I-CAM
M=2500, N=15,000 310.14 491.00 399.63 185.22
M=2500, N=20,000 330.75 563.25 442.66 201.75
M=2500, N=25,000 357.74 570.02 465.52 240.13
M=3000, N=15,000 452.22 671.68 494.60 284.34
M=3000, N=20,000 467.65 726.75 498.66 282.35
M=3000, N=25,000 469.86 791.26 537.56 303.32
M=3718, N=15,000 613.27 883.71 753.87 332.48
M=3718, N=20,000 630.39 904.20 774.31 390.90
M=3718, N=25,000 646.98 932.38 882.43 402.23

Table 5.2: Average OTC (%) savings under some randomly
chosen problems.

Problem Size Greedy GRA Aε-Star I-CAM
M=100, N=1000 [C=20%,R/W=0.75] 71.46 85.77 86.28 89.45
M=200, N=2000 [C=20%, R/W=0.80] 84.29 78.30 79.02 84.76
M=500, N=3000 [C=25%, R/W=0.95] 68.50 70.97 67.53 71.43
M=1000, N=5000 [C=35%, R/W=0.95] 88.09 67.56 78.24 88.30
M=1500, N=10,000 [C=25%, R/W=0.75] 89.34 52.93 76.11 89.75
M=2000, N=15,000 [C=30%, R/W=0.65] 67.93 51.02 52.42 75.32
M=2500, N=15,000 [C=25%, R/W=0.85] 77.35 71.75 73.59 81.12
M=3000, N=20,000 [C=25%, R/W=0.65] 76.22 65.89 73.04 82.31
M=3500, N=25,000 [C=35%, R/W=0.50] 66.04 59.04 67.01 71.21
M=3718, N=25,000 [C=10%, R/W=0.40] 76.34 63.19 76.02 79.21

116

and GRA.

5.3.2.5 Summary of Experimental Results

Table 5.2 shows the quality of the solution in terms of OTC percentage for 10

problem instances (randomly chosen), each being a combination of various numbers of

server and objects, with varying storage capacity and update ratio. For each row, the

best result is indicated in bold. The proposed I-CAM steals the show in the context of

solution quality, but Greedy and Aε-Star do indeed give a good competition.

In summary, based on the solution quality alone, the replica allocation methods

can be classified into four categories: 1) High performance: I-CAM; 2) Medium-High

performance: Greedy; 3) Medium performance: Aε-Star; 5) Low performance: GRA.

Considering the execution time, I-CAM and Greedy did extremely well, followed by

Aε-Star and GRA.

5.4 Concluding Remarks

Replicating data across a distributed computing system can potentially reduce

the user perceived access time which in turn reduces latency, adds robustness and

increases data availability. Our focus here was to show how game theoretical auctions

can be used to identify techniques for the replica placement problem in distributed

computing systems. A semi-distributed technique based on a game theoretical auction

was proposed for the replica placement problem which had the added property that it

maximized the utility of all the players involved in the system – an incentive compatible

117

auction mechanism (I-CAM).

I-CAM is a protocol for automatic replication and migration of objects in

response to demand changes. It aims to place objects in the proximity of a majority of

requests while ensuring that no servers become overloaded. The infrastructure of I-

CAM was designed such that, each server was required to present a list of data objects

that if replicated onto that server would bring the communication cost to its minimum.

These lists were reviewed at the central decision body which gave the final decision as

to what object are to be replicated onto what servers. This semi-distributed

infrastructure takes away all the heavy processing from the central decision making

body and gives it to the individual servers. For each object, the central body is only

required to make a binary decision: (0) not to replicate or (1) to replicate.

To compliment our theoretical results, we compared I-CAM with three

conventional replica allocation methods namely: (1) branch and bound, (2) greedy, and

(3) genetic. The experimental setups were designed in such a fashion that they

resembled real world scenarios. We employed GT-ITM and Inet to gather 80 various

Internet topologies based on flat, link distance, power-law and hierarchical transit-stub

models, and used the traffic logs collected at the Soccer World Cup 1998 website for

mimicking user access requests. The experimental study revealed that the proposed I-

CAM technique improved the performance relative to other conventional methods in

four ways.

1. The number of replicas in a system was controlled to reflect the ratio of read versus

write access. To maintain concurrency control, when an object is updated, all of its

118

replicas need to be updated simultaneously. If the write access rate is high, there

should be few replicas to reduce the update overhead. If the read access rate is

overwhelming, there should be a high number of replicas to satisfy local accesses.

2. Performance was improved by replicating objects to the servers based on locality of

reference. This increases the probability that requests can be satisfied either locally

or within a desirable amount of time from a neighboring server.

3. Replica allocations were made in a fast algorithmic turn-around time.

4. The complexity of the data replication problem was decreased by multifold. I-CAM

limits the complexity by partitioning the complex global problem of replica

allocation, into a set of simple independent sub problems. This approach is well

suited to the large-scale distributed computing systems that are composed of

autonomous agents which do not necessarily cooperate to improve the system wide

goals.

All the above improvements were achieved by a simple, semi-distributed, and

autonomous I-CAM.

119

CHAPTER 6

A PARETO OPTIMAL GAME THEORETICAL REPLICA PLACEMENT
TECHNIQUE

Here we derive a pareto optimal replica placement technique based on the

extended form of Vickrey auction called the N+1st price auction. Specifically, we

present an adaptive auction mechanism for replication of objects in a distributed system.

The mechanism is adaptive in the sense that it changes the replica schema of the objects

by continuously moving the schema towards an optimal one, while ensuring object

concurrency control.

6.1 Motivation

As a rule of thumb, a replica placement technique should pursue the following

line of action.

1. Determine the Network topology.

2. Specify the objects that are to be replicated.

3. Obtain the access frequencies of the objects. The access frequencies are either

known apriori or determined using some prediction techniques.

4. Based on the above information, employ an algorithmic technique to replicate

objects based on some optimization criteria and constraints.

120

5. Finally, determine a redirection method that sends client requests to the best

replicator that can satisfy them.

Based on the above passage, an effective replica placement technique

determines the replica allocation which gives the highest data accessibility in the whole

network. If the network topology is comprised of M sites which are connected (directly

or indirectly) to each other and N denotes the number of data objects that are specified

for replication, then, the number of possible combinations of replica allocation is

expressed by the following expression:

()
!

!

M

N
N C

−
,

where C is the overall memory capacity of M sites.

In order to determine the optimal allocation among all possible combinations,

we must analytically find a combination which gives the highest data accessibility

considering the following parameters:

1. Access frequencies from each site to each data object.

2. The probability that each site’s memory capacity remains unchanged.

3. The probability that the network connectivity remains unchanged.

Even if some looping is possible the computational complexity is very high, and

this calculation must be done every time when either of the above three parameters

change. Moreover, among the above three parameters, the later two cannot be

formulated in practical because they follow no known phenomenon.

For these reasons, we take the following approach:

121

1. Replicas are relocated in a specific period (relocation period).

2. At every relocation period, replica allocation is determined based on the access

frequency from each site to each data object and the network topology at the

moment.

Based on this approach we propose a pareto optimal game theoretical technique

that effectively and efficiently determines a replica schema that is competitive, scalable

and simple compared to other conventional (heuristics) techniques.

6.2 The Mechanism (NPAM)

We term the proposed resource allocation mechanism as NPAM an acronym for

N+1st Price Auction Mechanism. In the auction setup each primary copy of an object k

is a player. A player k can perform the necessary computations on its strategy set by

using the site (where it resides) Pk’s processor. At each given instance a (sub)-auction

takes place at a particular site i chosen in a round robin fashion from the set of M sites.

These auctions are performed continuously throughout the system’s life, making it a

self evolving and self repairing system. However, for simulation purposes (“cold”

network [77]) we discrete the continuum solely for the reason to observe the solution

quality.

Each player k competes through bidding for memory at a site i. Many would

argue that memory constraints are no longer important due to the reduced costs of

memory chips. However, replicated objects (just as cached objects) reside in the

memory (primary storage) and not in the media (secondary storage) [100]. Thus, there

122

will always be a need to give priority to objects that have higher access (read and write)

demands. Moreover, memory space regardless of being primary or secondary is limited.

Each player k’s strategy is to place a replica at a site i, so that it maximizes its

(the object’s) benefit function. The benefit function gives more weight to the objects

that incur reduced RC in the system:

1 ,Mi i x i
k k k k k kxB R w o c i P W

== − −∑ . (6.1)

The above value represents the expected benefit (in RC terms), if Ok is

replicated at Si. This benefit is computed using the difference between the read and

update cost. Negative values of Bk
i mean that replicating Ok, is inefficient from the

“local view” of Si (although it might reduce the global RC due to bringing the object

closer to other servers). The pseudo-code for the N+1st price auction is given in Figure

6.1.

We maintain a list Li at each server. The list contains all the objects that can be

replicated at Si (i.e., the remaining storage capacity bi is sufficient and the benefit value

is positive). We also maintain a list LS containing all servers that can replicate an

object. In other words, Si∈LS if and only if Li ≠ NULL. The auction mechanism

performs in steps. In each step a server Si is chosen from LS in a round-robin fashion.

Each player k∈O calculates the benefit function of object. The set O represents the

collection of players that are legible for participation. A player k is legible if and only if

the benefit function value obtained for site Si is the maximum of among all the other

benefit function values for sites other than i, i.e., Si ≥ S-i. This is done in order to

123

N+1st Price Auction Mechanism
Initialize:
01 LS, Li.
02 WHILE LS ≠ NULL DO
03 SELECT Si∈LS /*Round-robin fashion */
04 FOR each k∈O DO
05 Bk = compute (Bk

i); /*compute the benefit*/
06 Report Bk to Si which stores in array B;
07 END FOR
08 WHILE bi ≥ 0
09 Bk = argmaxk(B); /*Choose the best offer*/
10 Extract the info from Bk such as Ok and ok;
11 bi = bi-ok; /*Calculate available space and termination condition*/
12 Payment = Bk; /* Maintain N+1st price */
13 IF bi < 0 THEN EXIT WHILE ELSE
14 Li = Li - Ok; /*Update the list*/
15 Update NNi

OMAX /*Update the nearest neighbor list*/
16 IF Li = NULL THEN SEND info to M to update LS = LS - Si;
17 Replicate Ok;
18 END WHILE
19 Si asks all successful bidders to pay Bk
20 END WHILE

Figure 6.1: Pseudo-code for N+1st Price Auction Mechanism (NPAM).

suppress mediocre bids, which, in turn improves computational complexity. It is to be

noted that in each step Li together with the corresponding nearest server value NNk
i, are

updated accordingly.

Theorem 6.1: NPAM takes O(MN2) time.

Proof: The worst case execution time of the algorithm is when each server has

sufficient capacity to store all objects and the update ratios are low enough so that no

object incurs negative benefit value. In that case, the while-loop (02) performs M

iterations. The time complexity for each iteration is governed by the for-loop in (04)

and the while loop in (08) (O(N2) in total). Hence, we conclude that the worst case

running time of the algorithm is O(MN2). ■

124

6.3 Experimental Comparative Analysis

We performed experiments on a 440MHz Ultra 10 machine with 512MB

memory using the setup described in Chapter 3. The experimental evaluations were

targeted to benchmark the placement policies. The solution quality in all cases, was

measured according to the RC percentage that was saved under the replication scheme

found by the algorithms, compared to the initial one, i.e., when only primary copies

exist.

For comparisons, we selected three various types of replica placement

techniques. To provide a fair comparison, the assumptions and system parameters were

kept the same in all the approaches. We chose 1) from [57] the efficient branch-and-

bound based technique (Aε-Star), 2) from [78] the genetic algorithm based technique

(GRA) which showed excellent adaptability against skewed workload, 3) and from

 [100] the famous greedy approach (Greedy).

Table 6.1 (best times shown in bold) shows the algorithm execution times. The

number of sites was kept constant at 500, and the number of objects was varied from

1350 to 2000. With maximum load (2000 objects and 500 sites), the proposed technique

NPAM saved approximately 50 seconds of termination time then the second fastest

algorithm (Greedy).

Superiority of execution time comes at the cost of loss in solution quality.

However, NPAM showed high solution quality. First, we observe the effects of system

capacity increase. An increase in the storage capacity means that a large number of

objects can be replicated. Replicating an object that is already extensively replicated, is

125

Table 6.1: Running time in sec.
Problem Size Greedy GRA Aε-Star NPAM

M= 500, N= 1350 81.69 117.60 110.46 90.09
M= 500, N= 1400 98.28 127.89 127.89 95.34
M= 500, N= 1450 122.43 139.02 139.02 98.91
M= 500, N= 1500 134.61 148.47 155.40 104.37
M= 500, N= 1550 146.58 168.84 169.47 105.63
M= 500, N= 2000 152.25 177.66 189.21 108.57

Capacity of Sites

R
C

 S
av

in
gs

10% 14% 18% 22% 26% 30% 34% 38%
20%
24%
28%
32%
36%
40%
44%
48%
52%
56%
60%
64%
68%
72%
76%
80%
84%
88%
92%
96%

100%

Legend
Greedy
GRA
Aε-Star
NPAM

Figure 6.2: RC savings vs. System Capacity (N
= 2000, M = 500, U = 5%).

unlikely to result in significant traffic savings as only a small portion of the servers will

be affected overall. Moreover, since objects are not equally read intensive, increase in

the storage capacity would have a great impact at the beginning (initial increase in

capacity), but has little effect after a certain point, where the most beneficial ones are

already replicated. This is observable in Figure 6.2, which shows the performance of the

algorithms. Greedy and NPAM showed an immediate initial increase (the point after

which further replicating objects is inefficient) in its RC savings, but afterward showed

a near constant performance. GRA although performed the worst, but observably gained

the most RC savings (35%) followed by Greedy with 29%. Further experiments with

126

various update ratios (5%, 10%, and 20%) showed similar plot trends. It is also

noteworthy (plots not shown in this study due to space restrictions) that the increase in

capacity from 10% to 17%, resulted in 4 times (on average) more replicas for all the

Reads

R
C

 S
av

in
gs

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
36%

42%

48%

54%

60%

66%

72%

78%

84%

90%

Legend
Greedy
GRA
Aε-Star
NPAM

Figure 6.3: RC savings vs. Reads (N = 2000, M
= 500, C = 45%).

Updates

R
C

 S
av

in
gs

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
NPAM

Figure 6.4: RC savings vs. Updates (N = 2000,
M = 500, C = 60%).

127

Table 6.2: Average savings in percentage.
Problem Size Greedy GRA Aε-Star NPAM

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 75.70
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 78.43
N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 82.25
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 74.43
N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 73.89
N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 75.45
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 73.68
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 72.45
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 74.01
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 73.15

algorithms.

Next, we observe the effects of increase in the read and update (write)

frequencies. Since these two parameters are complementary to each other, we describe

them together. In both the setups the number of sites and objects were kept constant.

Increase in the number of reads in the system would mean that there is a need to

replicate as many object as possible (closer to the users). However, the increase in the

number of updates in the system requires the replicas be placed as close as to the

primary site as possible (to reduce the update broadcast). This phenomenon is also

interrelated with the system capacity, as the update ratio sets an upper bound on the

possible traffic reduction through replication. Thus, if we consider a system with

unlimited capacity, the “replicate everywhere anything” policy is strictly inadequate.

The read and update parameters indeed help in drawing a line between good and

marginal algorithms. The plots in Figures 6.3 and 6.4 show the results of read and

update frequencies, respectively. A clear classification can be made between the

algorithms. Aε-Star, Greedy and NPAM incorporate the increase in the number of reads

by replicating more objects and thus savings increase up to 89%. GRA gained the least

128

of the RC savings of up to 67%. To understand why there is such a gap in the

performance between the algorithms, we recall from [78] that GRA specifically depends

on the initial population of the candidate solution. Moreover, GRA maintains a

localized network perception. Increase in updates result in objects having decreased

local significance (unless the vicinity is in close proximity to the primary location). On

the other hand, Aε-Star, Greedy and NPAM never tend to deviate from their global

view of the problem domain.

In summary, Table 6.2 shows the quality of the solution in terms of RC

percentage for 10 problem instances (randomly chosen), each being a combination of

various numbers of sites and objects, with varying storage capacity and update ratio.

For each row, the best result is indicated in bold. The proposed NPAM steals the show

in the context of solution quality, but Aε-Star and Greedy do indeed give a good

competition, with savings within a range of 7%-10% of NPAM.

6.4 Concluding Remarks

Manual mirroring of data objects is a tedious and time consuming operation.

This study proposed a game theoretical N+1st price auction mechanism (NPAM) for

fine-grained data replication in large-scale distributed computing systems such as the

Internet. NPAM is a protocol for automatic replication and migration of objects in

response to demand changes. NPAM aims to place objects in the proximity of a

majority of requests while ensuring that no hosts become overloaded.

NPAM allows agents to compete for the scarce memory space at sites so that

129

they can acquire the rights to place replicas. To cater for the possibility of cartel type

behavior of the agents, NPAM uses N+1st price protocol. This leaves the agents with no

option, then to report truthful valuations of the objects that they represent.

NPAM was compared against some well-known techniques, such as: greedy,

branch and bound and genetic algorithms. To provide a fair comparison, the

assumptions and system parameters were kept the same in all the approaches. The

experimental setup was designed to mimic a large-scale distributed computing system

(the Internet), by using several Internet topology generators and World Cup Soccer

1998 web server access logs. The experimental results revealed that NPAM

outperformed the three widely cited and powerful techniques in both the execution time

and solution quality. In summary, NPAM exhibited 7%-10% better solution quality and

10%-30% savings in the algorithm termination timings.

130

CHAPTER 7

A UTILITY MAXIMIZING GAME THEORETICAL REPLICA
PLACEMENT TECHNIQUE

A utility maximizing game theoretical replica placement technique termed as

NCOR (non-cooperative game theoretical replica allocation technique) to reduce user

perceived Web access delays is proposed in the subsequent text. NCOR uses distributed

agents that because of their local knowledge act in a self-interested manner in order to

enhance the performance of the servers that they represent. This can lead to some

performance gains for some servers but has the potential to negatively impact the

overall system’s performance. NCOR uses an effective cost model to guarantee the

overall system performance gain despite the self-interested actions of these agents. With

spontaneous and non-deterministic strategies, the system can exhibit Nash equilibrium.

However, that may or may not guaranteed system-wide performance at a given time.

Furthermore, their can be multiple Nash equilibria, making it difficult to decide which

one is the best. Instead, we use the notion of pure Nash equilibrium, which if achieved

is guaranteed to ensure stable optimal performance. Pure Nash equilibrium can be only

achieved by deterministic strategies. In general, the existence of a pure Nash

equilibrium is remarkably hard to achieve; however, we prove the existence of such

equilibrium in NCOR.

131

7.1 Introduction

A number of techniques for object-based Web content replication have been

proposed with the underlying assumption that servers cooperate with one another in

order to layout a replica schema that optimizes the overall system performance. For

instance, almost all content distribution networks (CDNs) related replica allocation

methods ([41], [46]) rely on a centralized decision making body which optimizes a

given objective (such as to reduce the communication cost) regardless of the costs

incurred by each server [54]. In reality, servers aim at maximizing their own benefits,

possibly at the expense of the global optimal [22].

To study this self-interested behavior, we make use of game theoretical

techniques and abstract the Web (or large scale distributed computing system) as an

agent based model. Each server in the system is represented by an agent which is a

computational entity that is capable of autonomous behavior in the sense of being aware

of the options available to it when faced with a decision making task related to its

domain of interest [58]. These agents are motivated by their individual interests and

compete in a non-cooperative replica allocation game (NCOR). In NCOR each agent

has two possible actions for each object. If an access is made to an object that is located

at a nearby server, then the agent is better off redirecting the request to that server. On

the other hand if the object is located at a far off server, then the agent is better off

replicating that object.

The goal of this study is to see whether these self-interested agents in NCOR,

can layout replica schemas that converge to global optimum solution(s) targeted

132

towards reducing the communication cost induced by accessing the objects. Using game

theory, we show that in the worst-case scenario, the system as a whole resides in a

social optimum domain, i.e., the solution quality can never be worse than a pareto-

optimal solution. This social optimum domain is used as the basis to prove that NCOR

indeed converges to global optimum solution(s) that conform to pure Nash

equilibrium(s) when the self-interested agents play deterministic strategies according to

NCOR’s cost model. Pure Nash equilibrium is different from the classical Nash

equilibrium in the sense that the former results when the strategies played are

deterministic, while the later results when the strategies played are non-deterministic.

Also, a system will achieve a global optimum solution throughout the lifespan of the

system once such a pure Nash equilibrium is achieved. This is certainly not the case

when a system exhibits a classical Nash equilibrium, for the simple reason that there

could be multiple Nash equilibria, making it difficult to decide which one is the best.

An elaborate discussion on these two types of Nash equilibria, their properties and

differences can be found in [32] and [112].

7.2 Non-cooperative Replica Allocation Game

Before we discuss the exact game structure of NCOR (the non-cooperative

replica allocation game), it is essential to lay down the basis of NCOR. We start by

defining:

133

7.2.1 Preliminaries for the NCOR

Definition 7.1 (Feasible Strategies): An agent i’s strategy is termed feasible,

φi, when the two constraints of the data replication problem (storage and no de-

allocation of the primary copy) are met before a decision to replicate an object Ok can

be undertaken.

Of all these possibly infinity many feasible strategies, let ςi∈φi be a strategy

chosen by an agent i, where ςi=1 means object is replicated and ςi=0 means it is not.

(Note that ςi only focus on a specific object Ok. Therefore it is not necessary to write ςi

as ςi,k or any other notation that would differentiate any two objects.) Since each agent

chooses ςi∈φi independently (keeping both the constraints at par), we can look at the

replication of each object Ok as a separate game, and combine the pure Nash

equilibrium of these games to obtain a pure Nash equilibrium of the multi-object game,

NCOR. (This argument would become clearer when Definition 7.3 and Lemma 7.1 are

reviewed.)

Definition 7.2 (Strategy Profile) [96]: A strategy profile ς=(ς1,…,ςM) is a set of

strategies for each agent which fully specifies all of its actions. A strategy profile must

include one and only one strategy for every agent.

For convenience we can also write ς as (ςi,ς-i), where ςi is the strategy of agent i,

134

and ς-i is the set of strategies of all other agents in NCOR excluding agent i. Given ς one

can easily find out which agents have opted to replicate Ok.

Definition 7.3 (Pure Nash Equilibrium) [112]: A situation in a non-

cooperative game in which agents play using a set of deterministic strategies whereby

no agent can improve its benefit by changing its strategy unilaterally.

Lemma 7.1 (Combining Pure Nash Equilibriums) [32]: If two games are

known to have pure Nash equilibriums, then the union of the games is also guaranteed

to have a pure Nash equilibrium. ■

Thus, if we are able to prove that a given ς conforms to a pure Nash equilibrium,

then ∪ςi also conforms to a pure Nash equilibrium. Conversely, if χ(ς) is the cost

function associated with ς, then Σχ(ςi) over all N objects is the cost associated with ∪ςi.

Based on this, we can give a formal mathematical definition of pure Nash equilibrium:

Definition 7.4 (Pure Nash Equilibrium (Mathematically)): Let (ς,χ) be a

game, where ς is the set of strategy profiles and χ is the cost function. When each agent

i plays ςi then agent i incurs a cost χi(ς)=χi(ς1,…,ςM). ς* is pure Nash equilibrium if for

any deviation ςi by an agent i is not beneficial, that is χi(ςi,ς-i
*)≤ χi(ςi

*,ς-i
*).

Definition 7.5 (Stability of a Pure Nash Equilibrium) [112]: Equilibrium is

135

stable if an infinitesimal small change in the strategy of one agent leads to a situation

where the following hold:

(a): The agent who did not change has no better strategy in the new

circumstance.

(b): The agent who did change is now playing with a strictly worse strategy.

It is also important that we accentuate on the difference between ς and Rk

(replica schema of Ok). If we are given Rk, we only know which servers hold a copy of

Ok, but if ς is given, we can also find out which agents have not opted to replicate Ok

along with their corresponding cost functions.

Definition 7.6 (Replica Schema): A replica schema, Rk, for object Ok is the set

of servers that replicates Ok.

7.2.2 NCOR Structure and Mechanism

We now proceed with describing the game structure of NCOR.

7.2.2.1 The Setup

The Web (or large scale distributed computing system) is considered, where

each server is represented by an agent, i.e., NCOR contains M agents. Although NCOR

is non-cooperative in nature, yet there is no information hiding. That is, the network

topology, the size of the object and location of replicas are all public knowledge. The

136

only information that is private to each agent is the frequency of reads and writes for

each object from its server.

7.2.2.2 Cost Model

We first concentrate on deriving the cost model for a single object. This will be

expanded later on to fully encapsulate the multi-object replica placement problem.

Let φi be the set of feasible strategies for an agent i. For Ok, the agent chooses a

strategy ςi∈φi that describes its desire to replicate or otherwise. Thus, given a strategy

profile ς, we say that an agent i incurs a cost χi(ς) if it considers replicating object Ok.

This cost is given as:

() ()
,

() , , ,k k k k
i i i i ik k k k kk ki ij R i jk

w o c P j r o c i NN w o c i Pς ςχ ς

 ∈ ∉ ∀ ∈ ≠

= + +∑ ∑ ∑ , (7.1)

which implies that if an agent replicates Ok, then the cost incurred due to reads is 0 =

ri
kokc(i,NNi

k) since NNi
k = i. The cost incurred due to local writes (or updates) is equal to

zero since the copy resides locally, but whenever Ok is updated anywhere in the

network, agent i has to continuously update Ok’s contents locally as well. Therefore, the

aggregate cost of writes is equivalent to wi
kok Σ∀(j∈Rk), i≠j c(Pk,j). On the other hand if an

agent does not replicate Ok, then the cost incurred due to reads is equal to ri
kokc(i,NNi

k),

and the cost incurred due to writes is equal to wi
kokc(i,Pk) since it only has to send the

update to the primary server which then broadcasts the update based on Rk to the agents

who have replicated the object.

Equation 7.1 captures the dilemma faced by an agent i when considering

137

replicating Ok. If agent i replicates Ok then it brings down the read cost to zero, but now

it has to keep the contents of Ok up to date. If agent i does not replicate Ok, then it

reduces the overhead of keeping the contents up to date, but now it has to redirect the

read requests to the nearest neighborhood server which holds a copy of Ok. Keeping

these cost considerations in mind, for an object Ok each agent i has two strategies: (0)

not to replicate or (1) to replicate; allowing us to rewrite Equation 7.1 in a visually

appealing form:

,
, 1 , ,() k k k k

i i i i i ik k k k k
j R i jk

i w o c P j r o c i NN w o c i Pχ ς ς ς

∀ ∈ ≠
− += +∑ . (7.2)

7.2.2.3 Discussion on Cost Model

Each agent i’s cost to replicate an Ok (or otherwise) sturdily relies on the access

(both read and write) frequencies, the replica locations, and the size of Ok (ok).

Essentially, NCOR starts with a given (possibly a random) replica schema, and evolves

it into a replica schema that exhibits pure Nash equilibrium as each agent alters its

strategy so as to minimize its cost. That is, a pure Nash equilibrium (ς*
i,ς*

-i) for NCOR

identifies a replica schema Rk such that ∀i∈M, i∈Rk if and only if ς*
i=1. Recall that

there can be infinitely many feasible strategies, which in turn means that there can be

infinitely many replica schemas that are identifiable by a pure Nash equilibrium. Let Є

represent the set of all possible pure Nash equilibrium replica schemas and we say:

Definition 7.7 (Pure Nash Equilibrium Replica Schema): A replica schema

138

belongs to the set of pure Nash equilibrium replica schemas Rk∈Є if and only if each

agent i∈M chooses a feasible strategy ςi∈φi such that when each agent i plays ςi, it

cannot improve its cost by changing its strategy unilaterally, that is χi(ςi,ς-i
*)≤ χi(ςi

*,ς-i
*),

where ς* is a pure Nash equilibrium.

Keeping Definition 7.7 in mind, for NCOR we can straightforwardly deduce the

following:

Rk ∈ Є if and only if:

(a) ∀i∈M, ∃j∈Rk such that c(i,j) is minimum. (7.3)
(b) ∀j∈Rk, ∄ j’∈Rk such that c(j,j’)<c(i,j). (7.4)

We observe that for an object Ok’s replica schema to be in a state of pure Nash

equilibrium, each agent i has placed Ok’s replica at a server that incurs minimum

possible communication cost from Si. (That is, if the replica is not placed at i, then it is

replicated at a server j which has the minimum cost of communication from Si,

compared to any other server in the system.) On the other hand if agent i, has already

replicated object Ok, then there is no benefit for agent i to drop the replica since the

location incurs a minimal communication cost to at least one server (which holds the

replica). Note that what we have just discussed above (Equations 7.3 and 7.4) is

equivalent to the two conditions ((a) and (b), respectively) of equilibrium stability as

stated in Definition 7.5. With this said, we now expand this single object replica

allocation cost model to the multi-object data replication problem. First, let us see what

is the cost incurred by the society (all M agents) as a whole.

139

Definition 7.8 (Social Optimum) [96]: The maximum net benefits for

everybody in society, regardless of who enjoys the benefits.

Social optimum is the analogous concept of optimum resource allocation [112].

In this study since the resources are replicas, we can say the social optimum is

equivalent to the optimum replica allocation, and we note that:

Definition 7.9 (Pareto Optimum) [96]: A pareto optimum is a situation in

which it is not possible to make any one agent better off without making some other

agent worse off.

Lemma 7.2 (A Condition for Pareto Optimum) [96]: A pareto optimum is not

possible unless the net benefits for every agent in society are maximized. ■

In an ideal price based competitive economy, achieving a social (or pareto)

optimum is no big deal [96]. Every agent maximizes its private benefit, but since every

agent pays for any benefits it receives, and bears only the corresponding costs, the result

of this private benefit maximization is that social net benefits are maximized. However,

when pricing is not involved (as is the case in NCOR), it is no longer trivial to guarantee

social optimum. We write the social cost for NCOR as:

1
() ()i

M

i
χ ς χ ς

=
= ∑ . (7.5)

Refining Equation 7.5 using the definition of social optimum we say:

140

min min() ()ςχ ς χ ς= . (7.6)

Equation 7.6 encapsulates the notion of cooperation among all agents to layout a

replica schema that incurs minimum communication cost. But the agents are self-

interested, hence we use χ(ςmin) as an important measure for the solution quality. What

the agents are trying to achieve in conjunction to χ(ςmin) is:

1
minimize() ()i

M

i
χ ς χ ς

=
= ∑ . (7.7)

Using Lemma 7.1 we say that:

11
minimize ()()

N M
i

ik
χ ςχ ς

==
= ∑∑ . (7.8)

Expanding Equation 7.8 using Equation 7.1 we obtain:

() () ()
,11

minimize , , ,()
N M

k k k k
i i i ik k k k k

j R i jik k
w o c P j r o c i NN w o c i Pχ ς

∀ ∈ ≠==

+ += ∑∑ ∑ . (7.9)

Thus, the pure Nash equilibrium in NCOR may exist when over the set of all

objects N; all M agents maximize their benefits (by minimizing the communication

costs). A closer look at Equation 7.9 reveals that it is nothing more than the

minimization problem described by Equation 3.3. Hence, the following holds:

Theorem 7.1 (Equivalence): The data replication problem and the non-

cooperative replica allocation game are equivalent and have the same objective. ■

Based on the above discussion we describe the procedure for NCOR in Figure

7.1.

141

7.2.2.4 Description of NCOR Procedure

We maintain a list Li at each server. This list contains all the objects that can be

replicated by agent i onto server Si. (In other words Li represents the set of feasible

strategies.) We can obtain this list by examining the two constraints of the data

replication problem. List Li would contain all the objects that have their size less then

the total available space bi. Moreover, if server Si is the primary host of some object Ok,

then Ok would not be in Li. We also maintain a list LS containing all servers that can

replicate an object, i.e., Si∈LS if Li≠NULL. The algorithm works iteratively. In each

step the servers calculate the cost of replicating an object Ok using Equation 7.2 (Line

04). This cost is compared to the current cost incurred by the server. If this new cost is

less or equal to the current cost, then the server opts to replicate that object. After a

decision of replication is taken, each server updates the server storage capacity and the

nearest neighbor list (Lines 8 and 9). Servers also evict the object from the list Li since

a decision on it has already been undertaken (Line 12). This procedure continues till the

list Li becomes empty. When Li becomes empty, a message is sent to the moderator M

(which is a control thread) to evict the server from the game since it is no longer able to

undertake any further decisions (Line 14). We would like to clarify that the list Li is

dynamically update in accordance to with the changes of server capacity. For example,

if by replicating an object a server exhausts all of its storage capacity, then M

dynamically adjusts Li to empty.

142

Theorem 7.2 (Existence of Pure Nash Equilibrium): A pure Nash equilibrium

exists for the self-interested agents, if they play according to the cost model of single

object NCOR.

Proof: Let M denoted the set of agents in the system, where each agent

represents a server. Let c(i,NNi
k) represent the cost of assessing object Ok from server Si

to replicated at the nearest server from NNi
k. Let M’ represent the set of servers for

which a server Si incurs the minimum communication cost for all servers m ∈ M’, i.e.,

M’ = {m | c(i,m) ≤ c(i,NNi
k)}. Essentially, NCOR chooses a server m ∈ M’ such that

c(i,m) ≤ c(i,NNi
k) ∀ i ∈ M to hold the replica. After allocating a replica at m, it is

removed along with all servers m ∈ M’ from M. This is done because no servers (m) has

incentive to replicate Ok since it can access m’s replica at a lower or equal cost than

The NCOR Procedure
Initialize:
LS, Li, χ*

i(ς)=∞, M, ς=NULL
01 WHILE LS ≠ NULL DO
02 PARFOR each Si∈LS DO
03 FOR each Ok∈Li DO
04 Compute χi(ς)=min{χi(ς)|ςi=1, χi(ς)|ςi=0}; /* Eq. 7.2 */
05 IF χi(ς)≤χ*

i(ς) THEN
06 χ*

i(ς)=χi(ς); /* Update current best cost */
07 ςi=1; /* Replicate object Ok */
08 bi=bi - ok; /* Update capacity */
09 Update NNk

i; /* Update the nearest neighbors */
10 ELSE
11 ςi=0; /* Do not replicate object Ok */
12 Li = Li - Ok; /* Update the list*/
13 IF Li = NULL THEN
14 SEND info to M to update LS = LS - Si;
15 ENDFOR
16 ENDPARFOR /*Social cost achieved Equation 7.5 */
17 ENDWHILE /* Pure Nash equilibrium achieved Th. 7.2 and 7.3 */

Figure 7.1: The Pseudo-code for NCOR Procedure.

143

NNi
k’s replica. NCOR iteratively chooses a server m till M = ∅. Again, since at each

iteration m is the remaining server with minimum c(i,m), no other server can be selected

to replicate Ok such that c(i,NNi
k) ≤ c(i,m). Hence, no agent can gain benefit by

unilaterally opting to replicate an object without disturbing the equilibrium. ■

Theorem 7.3 (NCOR Pure Nash Equilibrium): A pure Nash equilibrium

exists for the multi-object NCOR.

Proof: Follows from Lemma 7.1 and Theorem 7.2. ■

7.3 Experimental Comparative Analysis

We performed experiments on a 440MHz Ultra 10 machine with 512MB

memory, using the same experimental infrastructure as described in Chapter 3. The

experimental evaluations were targeted to benchmark the placement policies. NCOR

was implemented using Ada and Ada GNAT’s distributed systems annex GLADE [98].

The solution quality was measured in terms of network communication cost

(OTC percentage) that was saved under the replica scheme found by the replica

allocation methods, compared to the initial one, i.e., when only primary copies exists.

7.3.1 Comparative Algorithms

For comparisons, we chose three types of replica allocation methods. To

provide a fair comparison, the assumptions and system parameters were kept the same

in all the methods. For the data replication problem, the non-game theoretical

techniques proposed in [57], [75], [78] and [100] are the only ones that address the

144

problem domain similar to ours. We select from [100] the greedy approach (Greedy) for

comparison because it is shown to be the best compared with 4 other approaches

(including the proposed technique in [75]); thus, we indirectly compare with 4

additional approaches as well. Algorithms reported in [57] (the efficient branch and

bound based technique Aε-Star) and [78] (the genetic algorithm based method GRA)

are also among the chosen techniques for comparisons.

7.3.2 Comparative Analysis

First, we observe the effects of increase in storage capacity. An increase in the

storage capacity means that a large number of objects can be replicated. Replicating an

object that is already extensively replicated, is unlikely to result in significant traffic

savings as only a small portion of the servers will be affected overall. Moreover, since

objects are not equally read intensive, increase in the storage capacity would have a

great impact at the beginning (initial increase in capacity), but has little effect after a

certain point, where the most beneficial ones are already replicated. This is observable

in Figure 7.2, which shows the performance of the algorithms. The performance

between all approaches except GRA was within 15% of each other. NCOR and Greedy

showed an immediate initial increase (the point after which further replicating objects is

inefficient) in its OTC savings, but afterward showed a near constant performance.

GRA performed the worst, but observably gained the most OTC savings (49%) with

various read/write ratios (0.90, 0.80, and 0.70) showed similar plot trends. It is also

noteworthy (plots not shown in this study due to space restrictions) that the increase in

145

capacity from 10% to 18%, resulted in 4 times more replicas for all the algorithms.

Next, we observe the effects of increase in the read and write frequencies. Since

these two parameters are complementary to each other, we describe them together. To

observe the system utilization with varying read/write frequencies, we kept the number

Increase in Server Capacity

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; R/W=0.95

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
NCOR

Figure 7.2: OTC savings versus capacity.

R/W (Ratio)

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; C=45%

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

20%

40%

60%

80%

100%

Legend
GRA
Aε-Star
Greedy
NCOR

Figure 7.3: OTC savings versus read/write ratio.

146

of servers and objects constant. Increase in the number of reads in the system would

mean that there is a need to replicate as many object as possible (closer to the users).

However, the increase in the number of updates in the system requires the replicas be

placed as close as to the primary server as possible (to reduce the update broadcast).

This phenomenon is also interrelated with the system capacity, as the update ratio sets

an upper bound on the possible traffic reduction through replication. Thus, if we

consider a system with unlimited capacity, the “replicate everywhere anything” policy

is strictly inadequate. The read and update parameters indeed help in drawing a line

between good and marginal algorithms. The plot in Figure 7.3 shows the results of

Table 7.1: Running time of the replica placement methods in
seconds for small problem instances [C=20%, R/W=0.45]

Problem Size Greedy GRA Aε-Star NCOR
M=200, N=500 84.13 111.19 116.61 37.03
M=200, N=1000 91.90 115.68 123.56 43.34
M=200, N=1500 93.91 121.21 136.62 51.85
M=300, N=500 114.28 152.30 168.93 58.81
M=300, N=1000 131.00 150.04 178.59 65.19
M=300, N=1500 162.25 178.30 215.68 70.98
M=400, N=500 151.68 184.95 238.52 76.06
M=400, N=1000 161.58 202.17 284.00 88.27
M=400, N=1500 169.29 245.31 324.75 95.55

Table 7.2: Running time of the replica placement methods in
seconds for large problem instances [C=45%, R/W=0.85]

Problem Size Greedy GRA Aε-Star NCOR
M=2500, N=15,000 310.14 491.00 399.63 188.95
M=2500, N=20,000 330.75 563.25 442.66 205.45
M=2500, N=25,000 357.74 570.02 465.52 233.14
M=3000, N=15,000 452.22 671.68 494.60 286.35
M=3000, N=20,000 467.65 726.75 498.66 290.31
M=3000, N=25,000 469.86 791.26 537.56 303.85
M=3718, N=15,000 613.27 883.71 753.87 372.66
M=3718, N=20,000 630.39 904.20 774.31 390.38
M=3718, N=25,000 646.98 932.38 882.43 401.88

147

read/write ratio against the OTC savings. A clear classification can be made between

the followed by Greedy with 44%. Further experiments algorithms. NCOR, Aε-Star and

Greedy incorporate the increase in the number of reads by replicating more objects and

thus savings increased up to 88%, while GRA gained the least of the OTC savings of up

to 42%. To understand why there is such a gap in the performance between the

algorithms, we should recall that GRA specifically depends on the initial selection of

gene population (for details see [78]). Moreover, GRA maintains a localized network

perception. Increase in updates result in objects having decreased local significance

(unless the vicinity is in close proximity to the primary location). On the other hand,

NCOR, Aε-Star and Greedy never tend to deviate from their global view of the problem.

Lastly, we compare the termination time of the algorithms. Various problem

instances were recorded with C=20%, 45% and R/W=0.45, 0.85. The entries in Tables

7.1 and 7.2 made bold represent the fastest time recorded over the problem instance.

NCOR terminated faster than all the other techniques, followed by Greedy, Aε-Star and

GRA.

7.4 Concluding Remarks

The replica placement problem recognizes the need of simultaneous allocation

of replicas and results in an optimization problem in which the communication cost is

reduced subject to the availability of storage and no de-allocation of primary copy. This

is particularly useful when data is replicated in a large scale distributed computing

148

system such as the Web, which requires the incorporation of “read from the nearest”

and “update through the primary server policies.

We proposed a utility maximizing game theoretical technique, in which the Web

was abstracted as an agent based where each agent represented a server. A detailed

discussion revealed that in a realistic system, agents have no incentive to cooperate and

achieve a social optimum. To this end, we proposed a non-cooperative replica allocation

game (NCOR), in which agents competed to host the replicas of different objects in a

selfish manner, and NCOR exhibited a pure Nash equilibrium. Although in game theory

literature there are very rare occurrences of pure Nash equilibrium, yet we showed that

if agents play using deterministic selfish strategies then NCOR conforms to a pure Nash

equilibrium.

In NCOR each agent had two possible actions for each object. If an access was

made to an object that was located at a nearby server, then the agents was better off

redirecting the request to that server. On the other hand if the object was located at a far

off server, then the agent was better off replicating that object. Essentially for each

object the agent made a binary decision: (0) not to replicate or (1) to replicate.

149

CHAPTER 8

A DISCRIMINATORY GAME THEORETICAL REPLICA PLACEMENT
TECHNIQUE

We propose a unique discriminatory replica placement technique using the

concepts of a supergame. The supergame allows the agents who represent the data

objects to continuously compete for the limited available server memory space, so as to

acquire the rights to place data objects at the servers. At any given instance in time, the

supergame is represented by a game which is a collection of subgames, played

concurrently at each server in the system. We derive a resource allocation mechanism

which acts as a platform at the subgame level for the agents to compete. This approach

allows us to transparently monitor the actions of the agents, who in a non-cooperative

environment strategically place the data objects to reduce the user access time, latency,

which in turn adds reliability and fault-tolerance to the system. We show that this

mechanism exhibits Nash equilibrium at the subgame level which in turn conforms to

games and supergame Nash equilibrium, respectively, guaranteeing the entire system to

be in a continuous self-evolving and self-repairing mode.

150

8.1 Introductory Remarks

Web replication aims to reduce network traffic, server load, and user-perceived

delay by replicating popular content on geographically distributed web servers (sites).

Specifically, a replica placement algorithm aims to strategically select replicas (or

hosting services) among a set of potential sites such that some objective function is

optimized under a given traffic pattern.

One might argue that the ever decreasing price of memory renders the

optimization or fine tuning of replica placement a “moot point”. Such a conclusion is

ill-guided for the following two reasons. First, studies ([4], [13], etc.) have shown that

users’ access hit ratio grows in log-like fashion as a function of the server memory size.

Second, the growth rate of Web content is much higher than the rate with which

memory sizes for the servers are likely to grow. The only way to bridge this widening

gap is through efficient replica placement and management algorithms.

The Internet can be considered as a large-scale distributed computing system.

We abstract this distributed computing system as an agent-based model, where each

agent is responsible for (or represents) a data object. Each agent competes in a non-

cooperative environment for the limited available storage space at each server so as to

acquire the rights to place the data object which they represent. Motivated by their self

interests and the fact that the agents do not have a global view of the distributed system,

they concentrate on local optimization. In such systems there is no a-priori motivation

for cooperation and the agents may manipulate the outcome of the replica placement

algorithm (resource allocation mechanism or simply a mechanism) in their interests by

151

misreporting critical data such as objects’ popularity. To cope with these selfish agents,

new mechanisms are to be conceived. The goal of a mechanism should be to force the

agents not to misreport and always follow the rules.

We use the concepts of game theory to formally specify a mechanism with

selfish agents. Game theory assumes that the participating agents have rational thoughts

that enable them to express their preferences over the set of the possible outcomes of

the mechanism. In a mechanism, each agent’s benefit or loss is quantified by a function

called valuation. This function is private information for each agent and is very much

possible that if the agents act selfishly, they can misreport their valuations. The

mechanism asks the agents to report their valuations, and then it chooses an outcome

that maximizes/minimizes a given objective function. Of course the grand problem is to

stop the agents from misreporting.

In essence we sculpt the replica placement problem as a supergame that is

played infinitely during the entire lifespan of the system. In a discrete time instance t,

the supergame is represented by a game, which is the collection of independent

subgames that are played concurrently at each site of the distributed system. It is in

these subgames that the actual mechanism can be seen to operate.

8.2 The Proposed Mechanism

In game theory, usually mechanisms refer to auctions. Mechanisms are used to

make allocation and pricing decisions in a competitive environment where all involved

parties act strategically in their own best interests. In recent years, many areas of

152

mathematical sciences research started to focus on strategic behavior and, consequently,

we are witnessing the use of mechanisms in areas where pure optimization techniques

were dominant in the past. For example, in the context of distributed systems, such

mechanisms have been applied to the scheduling problems [39], [94], etc.

One has to be careful when incorporating a “one-size-fits-all” mechanism model

as a piece of solution to a problem. Most of the mechanisms were developed and

analyzed in microeconomic theory abstraction. Thus, assumptions underlying desirable

properties of some mechanisms could be oversimplifying or even contradictory to the

assumptions underlying a problem that plans to incorporate such mechanisms in its

solution.

8.2.1 Discriminatory Mechanism

We limit our analysis to one-shot (single round) mechanisms in which every

agent demands a specific entity. Under our replica placement problem formulation we

aim to identify a replica schema that effectively minimizes the OTC. We propose a one-

shot discriminatory mechanism, where the agents compete for memory space at sites so

that they can acquire the rights to place replicas. The mechanism described in this study

is called discriminatory because not all winning agents pay the same amount. In essence

it works as follows: In a discriminatory mechanism, sealed-bids are sorted from high to

low, and rights to the available memory space are awarded at the current highest bid

price until the (memory) supply is exhausted. The most important point to remember is

that the winning agents can (and usually do) pay different prices.

153

It is to be noted that in a discriminatory mechanism, an agent always bids below

its valuation for the entity [38]. If the agent bids at or above its value, then its payment

equals or exceeds its value if it wins, and therefore its expected profit will be zero or

negative. Since bids are below the agents’ value, the discriminatory mechanism is not a

demand reveling mechanism [85].

In a discriminatory mechanism, there is no sequential interaction among agents

 [85]. Therefore, the mechanism environment is non-cooperative in nature. Agents

submit the bids only once. Agents are trading between bidding high and winning for

certain and bidding low and benefiting more if the bid wins. In [24] the authors have

shown that the discriminatory mechanism is a generalization of the first price sealed-bid

auction which is strategically equivalent to the Dutch auction. Unlike in the second

price sealed-bid and the English auctions, it is not a dominant strategy for a bidder in

the first price sealed-bid auction to bid its valuation for the entity. However, the

theoretically optimal bidding strategy in both the first price sealed-bid and the Dutch

auctions is the same for any given bidder. Since discriminatory auctions are

generalization of the first price sealed-bid auctions, the same argument (about the

dominating strategies) holds [40].

8.2.2 Preliminaries

Definition 8.1 (Supergame): Generally a game in which some simple game is

played more than once (often infinitely many times); the simple game is called the

154

“stage” game or the “constituent” game __ a game repeated infinitely is called a

supergame. If Γ represents a game then Γ(∞) represents a supergame.

Definition 8.2 (Stage game (subgame)): Frequently it is the case that a game

naturally decomposes into smaller games. This is formalized by the notion of stage

game (more popularly known as subgames).

Remarks __ We explain this concept using decision trees [85]. Let x be a node

which belongs to the set of all the nodes, X, in a tree, K, and let Kx be the subtree of K

rising at x. If it is the case that ever information set of Γ either is completely contained

in Kx or is disjoint from Kx, then the restriction of Γ to Kx constitutes a game of its own,

to be called subgame Γx starting at x. This decomposition also affects strategies. Let b

represent the strategy set for any player i, then the strategy combination b decomposes

into a pair (b-x, bx) where bx is a strategy combination in Γx and b-x is a strategy

combination for the remaining part of the game (the truncated game). If it is known that

bx will be played in Γx, then, in order to analyze Γ it suffices to analyze the truncated

game Γ-x(bx) which results from Γ.

Interestingly, the concept connecting supergame, games, and subgames is the

Nash equilibrium.

Definition 8.3 (Nash equilibrium): If there is a set of strategies with the

property that no player can benefit by changing her strategy while the other players

155

keep their strategies unchanged, then that set of strategies and the corresponding

payoffs constitute the Nash equilibrium.

Definition 8.4 (Equilibrium path): For a given (Nash) equilibrium an

information set is on the equilibrium path if it will be reached with positive probability

when the game is played according to the equilibrium strategies.

Lemma 8.1 ([40]): Nash equilibrium only depends upon subgame strategy

profiles played along the equilibrium path. ■

Theorem 8.1 ([38]): In Nash equilibrium each player’s repeated game

(supergame) strategy need only be optimal along the equilibrium path. ■

Remarks __ In essence Definitions 8.3 and 8.4 and Lemma 8.1 propose that if a

game Γ is in Nash equilibrium, it is only so because all subgames Γx are in Nash

equilibrium. Extending the same concept, Theorem 8.1 asserts that Nash equilibrium

can be reached in a supergame via the equilibrium path followed by games. Recall that

a supergame is an infinite play of games. In summary, if all the subgames are in Nash

equilibrium, the corresponding game that encapsulates the subgames is also in Nash

equilibrium and so is the supergame which is the collection of infinite games.

156

8.3 Mechanism Applied to the Replica Placement Problem

Form the discussion above, we choose the following line of action.

1. Define the replica placement problem as a supergame.

2. Define an instance of the supergame as a game.

3. Split the game into concurrently played subgames. Each identical to each other in

terms of:

a. Form: A discriminatory mechanism.

b. Valuation: Obtainable via the system parameters.

c. Information: Independent of any other subgame.

4. Establish the fact that subgames conform to Nash equilibrium provided agents play

optimally.

5. Use Lemma 8.1 to establish that the entire game at instance t is in Nash equilibrium.

6. Use Theorem 8.1 to establish that the entire supergame is in Nash equilibrium.

8.3.1 Supergame

A supergame Γ(∞) is defined as a mechanism that is played infinitely during the

lifespan of the distributed system under consideration. The supergame allows the agents

to compete for memory spaces of the sites. The purpose of a supergame is to keep the

system in a self evolving and self repairing mode.

157

8.3.2 Game

At any given instance t, a game Γ is played. It is to be noted that the sole

purpose of defining a game is to observe the solution quality of the replica placements

at a given instance t [78].

8.3.3 Subgame

A game is split into M concurrently played subgames. Each of these subgames

take place at a particular site i. Each agent k competes through bidding for memory at a

site i.

8.3.3.1 Form

Each site i has a finite amount of space si, and available space bi. It is for this

available space bi that the agents compete. In one-shot all the participating agents

submit their bids for the available space. All the bids are sorted in descending order and

the first n agents are awarded the rights to place their objects onto site i. Recall that each

agent represents an object of size ok. Therefore, the decision of the first n agents solely

depends upon 1 ,n i
kk o b n N= ≤ ≤∑ . After the decision is made, the first n agents pay their

respective bids. This is discriminatory for the following two reasons. First, all the

successful agents pay a different amount for their rights to place an object. Second, the

payment is in no relation to the size of the object or the available space at site i. The

only connection that the payments have is the benefit that the object brings if replicated

to that site. This benefit is the valuation of an agent for its object k if replicated at site i.

158

Site 1Site 2

Site 3 Site 4

Site 5
 Figure 8.1: The network architecture.

Site 1Site 2

Site 3 Site 4

Site 5

Reads
Writes

Figure 8.2: Read and write patterns.

Site 1Site 2

Site 3 Site 4

Site 5
Figure 8.3: Benefits of replication (reads).

Site 1Site 2

Site 3 Site 4

Site 5
Figure 8.4: Benefits of replication (writes).

We describe this valuation below.

159

8.3.3.2 Valuation

Each agent k’s policy is to place a replica at a site i, so that it maximizes its

(object’s) benefit function. This benefit is equivalent to the savings that the object k

brings in the total OTC if the object k is replicated at site i. This benefit is given as:

1 ,Mi i x i
xk k k k k kB R w o c i P W

== − −∑ . (8.1)

We illustrate the notion of benefit associated with an object k if it is replicated at

site i. Figure 8.1 depicts the network with four sites. Site 1 has the primary object

represented by ★, while Site 4 has the replica of the same object represented by ☆. If

these are the only copies of object k available in the network, then the read and write

requests are always sent to the nearest neighbors, where Site 4 is the nearest neighbor of

itself (Figure 8.2). Now what would be the benefit of replicating object k at Site 3? In

Figure 8.3, we see that the reads and writes of Site 3 are entertained locally. Moreover,

Site 5 can now redirect its request to its newest nearest neighbor, i.e., Site 3. Therefore,

the replication of object k at Site 3 clearly reduces the OTC by RCk
i = Rk

i + Wk
i.

However (Figure 8.4), this will cause the Site 1 (location of primary object) to

repeatedly send updates of object k to Site 3. Since the local update is already captured

by RCk
i, the increased aggregate updates are given by:

1 (,)M x
x k k kw o c i P=∑ .

From here onwards, for simplicity, we will denote the benefit Bk
i as v

(valuation). It is to be understood that to differentiate the valuations between agents k

160

and j we may denote the valuations as vk and vj, respectively.

8.3.3.3 Information

It is clear that the subgames can operate independently of each other. There is

no critical information that is required and is withheld from a subgame. For instance, 1)

the frequency of reads and writes are obtained locally through the site which hosts the

subgame, 2) the information about network architecture is globally available since

domains can easily pull such information from the routers using the border gate

protocol (BGP) [103], and 3) the locations of the primary sites are also available locally

since the agents represent the objects, (i.e., they have to know where they originated

from,) etc.

8.3.4 Subgame Nash Equilibrium

To understand the bidding behavior in a discriminatory mechanism, we shall,

for simplicity, assume that the agents are ex-ante symmetric. That is, we shall suppose

that for all bidders k = 1,…, N, fk(v) = f(v) for all v ∈ [0,1], where v is the valuation of

an agent k for an object, whereas f translates this valuation into something useful, for

instance, when bids are required for an object, f can take the form of a bidding function

for a valuation v. Note that we only assume that v ∈ [0,1] for underlying the

groundwork for the probabilistic analysis. In reality the valuations are of the form of v ≥

0. Clearly, the main difficulty is in determining how the agents, will bid. But note that a

rational agent k would prefer to win the right to replicate at a lower price rather than a

161

higher one, agent k would bid low when the others are bidding low and would want to

bid higher when the others bid higher. Of course, agent k does not know the bids that

the others submit because of the sealed-bid rule. Yet, agent k’s optimal bid will depend

on how the others bid. Thus, the agents are in a strategic setting in which the optimal

action (bid) of each agent depends on the actions of others.

Let us consider the problem of how to bid from the point of view of agent k.

Suppose that agent k’s value is vk. Given this value; agent k must submit a sealed-bid,

bk. Because bk will in general depend on k’s value, let’s write bk(vk) to denote bidder k’s

bid when his value is vk. Now, because agent k must be prepared to submit a bid bk(vk)

for each of his potential values v ∈ [0,1], we may view agent k’s strategy as a bidding

function bk:[0,1]→ℜ+, mapping each of his values into a (possibly different

nonnegative) bid.

Before we discuss payoffs, it will be helpful to focus our attention on a natural

class of bidding strategies. It seems very natural to expect that agents with higher values

will place higher bids. So, let’s restrict attention to strictly increasing bidding functions.

Next, because the agents are ex-ante symmetric, it is also natural to suppose that agents

with the same value will submit the same bid. With this in mind, we shall focus on

finding a strictly increasing β function, b̂ k:[0,1]→ℜ+, that is optimal for each agent to

employ, given that all other agents employ his bidding function as well. That is, we

wish to find Nash equilibrium in strictly increasing bidding functions.

Now, let us suppose that we find Nash equilibrium given by the strictly

increasing bidding function b̂ (·). By definition it must be payoff-maximizing for an

162

agent, say k, with value v to bid b̂ (v) given that the other agents employ the same

bidding function b̂ (·).

Remarks __ We explain why we assume that all other agents employ the same

bidding function b̂ (·). Imagine that agent k cannot attend the auction and that he sends a

friend to bid for him. The friend knows the equilibrium bidding function b̂ (·) (since it is

a public knowledge), but does not know agent k’s value. Now, if agent k’s value is v,

agent k would like his friend to submit the bid b̂ (v) on his behalf. His friend can do this

for him once agent k calls him and tells his value. Clearly, agent k has no incentive to lie

to his friend about his value. That is, among all the values r ∈ [0,1] that agent k with

value v can report to his friend, his payoff is maximized by reporting his true value, v, to

his friend. This is because reporting the value r results in his friend submitting the bid b̂

(r) on his behalf. But if agent k were there himself he would submit the bid b̂ (v).

Let us calculate agent k’s expected payoff from reporting an arbitrary value, r,

to his friend when his value is v, given that all other agents employ the bidding function

b̂ (·). To calculate this expected payoff, it is necessary to notice just two things. First,

agent k will win only when the bid submitted for him is highest. That is, when b̂ (r) > b̂

(vj) for all agents j ≠ k. Because b̂ (·) is strictly increasing this occurs precisely when r

exceeds the values of all N-1 other agents. Let F denote the distribution function

associated with f, the probability that this occurs is (F(r))N-1 which we will denote FN-

163

1(r). Second, agent k pays only when it wins the right to replicate, and pays its bid, b̂ (r).

Consequently, agent k’s expected payoff from reporting the value r to his friend when

his value is v, given that all other bidders employ the bidding function b̂ (·), can be

written as:

1 ˆ(,) () ()Nu r v F r v b r

−= − . (8.2)

Now, as we have already remarked, because b̂ (·) is an equilibrium, agent k’s

expected payoff-maximizing bid when his value is v must be b̂ (v). Consequently,

Equation 8.2 must be maximized when r = v, i.e., when agent k reports his true value, v,

to his friend. So, we may differentiate the right-hand side with respect to r and set the

derivative equal to zero when r = v. Differentiating yields:

1 2 1ˆ ˆ ˆ() () 1 () () () () '()N N NF r v b r N F r f r v b r F r b rd dr

− − −− = − − − . (8.3)

Setting this equal to zero when r = v and rearranging yields:

2 1 2ˆ ˆ1 () () () () '() 1 () ()N N NN F v f v b v F v b v N vf v F v

− − −− + = − . (8.4)

Looking closely at the left-hand side of Equation 8.4, we see that is just the

derivative of the product FN-1(v) times b̂ (v) with respect to v. With this observation, we

can rewrite Equation 8.4 as:

1 2ˆ() () 1 () ()N NF v b v N vf v F vd dv

− −= − . (8.5)

Now, because Equation 8.5 must hold for every v, it must be the case that:

164

1 2
0

() () 1 () ()vN NF v b v N xf x F x dx constant

− −= − +∫ . (8.6)

Noting that an agent with value zero must bid zero, we conclude that the

constant above must be zero.

Hence, it must be the case that:

2
1 0
1ˆ() () ()
()

v N
N
Nb v xf x F x dx

F v
−

−
−= ∫ , (8.7)

which can be written as:

2
1 0

1ˆ() () ()
()

v N
Nb v xf x F x dx

F v
−

−= ∫ . (8.8)

There are two things to notice about the bidding function in Equation 8.8. First,

as we has assumed, it is strictly increasing in v. Second, it has been uniquely

determined. Now since we assumed that each agent is ex-ante in nature, then F(v) = v

and f(v) = 1. Consequently, if there are N bidders then each employs the bidding

function:

1
1 0

1ˆ() v N
Nb v xdx

v
−

−= ∫ (8.9)

() 2
1 0

1 1v N
N x N x dx

v
−

−= −∫

1
1 1 N

N
N vNv

−

−=

1N vN

−= (8.10)

Hence, in conclusion, we have proven the following:

Theorem 8.2: If N agents have independent private values drawn from the

165

Discriminatory Mechanism

Initialize:
01 LS, Li.
02 WHILE LS ≠ NULL DO
03 PARFOR each Si∈LS DO /* M subgames */
04 FOR each k∈O DO
05 Bk = compute (Bk

i×(N-1)/N); /* Compute benefit */
06 Report Bk to Si which is stored in array B;
07 END FOR
08 Sort array B in descending order.
09 WHILE bi ≥ 0
10 Bk = argmaxk(B); /* Choose the best offer */
11 Extract the info from Bk such as Ok and ok;
12 bi = bi-ok; /* Calculate space and termination condition */
13 Replicate Ok;
14 Payment = Bk; /* Calculate payment */
15 Delete Bk from B; /* Update the list for highest bid */
16 SEND Pi to Si; RECEIVE at Si /* Agent pays the bid */
17 Li = Li - Ok; /* Update the list */
18 Update NNi

OMAX /* Update the nearest neighbor list */
19 IF Li = NULL THEN SEND info to M to update LS = LS - Si; /* Update the player list */
20 END WHILE
21 ENDPARFOR
22 END WHILE

Figure 8.5: Mechanism game at instance t.

common distribution, F, then bidding b̂ (v) = (N-1/N)v whenever one’s value is v

constitutes Nash equilibrium of the discriminatory mechanism, where the nature of the

bids are sealed-bids. ■

So, each agent shades its bid, by bidding less than its valuation. Note that as the

number of agents increases, the agents bid more aggressively. Because FN-1(·) is the

distribution function of the highest value among an agent’s N-1 competitors, the bidding

strategy displayed in Theorem 8.2 says that each agent bids the expectation of the

second highest agent’s value conditional on his value being highest. But, because the

agents use the same strictly increasing bidding function, having the highest value is

166

equivalent to having the highest bid and so equivalent to winning the right to replicate.

Theorem 8.3: If N agents play their bids according to the bidding strategy as:

b̂ (v) = (N-1/N)v, the corresponding game at instance t and eventually the supergame

are in Nash equilibrium.

Proof: It follows from Lemma 8.1 and Theorem 8.1. ■

We are now ready to present the pseudo-code (Figure 8.5) for a game at

instance t.

Briefly, we maintain a list Li at each server. The list contains all the objects that

can be replicated at Si (i.e., the remaining storage capacity bi is sufficient and the benefit

value is positive). We also maintain a list LS containing all servers that can replicate an

object. In other words, Si ∈ LS if and only if Li ≠ NULL. Each player k ∈ O calculates

the benefit function of object (Line 05). The set O represents the collection of players

that are legible for participation. A player k is legible if and only if the benefit function

value obtained for site Si is positive. This is done in order to suppress mediocre bids,

which, in turn improves computational complexity. After receiving (Line 06) all the

bids, the bid vector is sorted in descending order (Line 08). Now, recursively the rights

are assigned to the current highest agent (Line 10) as long as there is available memory

(Line 09 and 12). It is to be noted that in each step Li together with the corresponding

nearest server value NNk
i, are updated accordingly.

The above discussion allows us to deduce the following result about the

167

mechanism.

Theorem 8.4: In the worst case the mechanism takes O(N2logN) time.

Proof: The worst case scenario is when each site has sufficient capacity to store

all objects. In that case, the PARFOR loop (Line 03) performs N iterations. The most

consuming time is to sort the bids in descending order (Line 10). This will take at least

of the order of O(NlogN). Hence, we conclude that the worst case running time of the

mechanism is O(N2logN). ■

8.4 Experimental Comparative Analysis

We performed experiments on a 440MHz Ultra 10 machine with 512MB

memory using the same experimental infrastructure as described in Chapter 3. The

experimental evaluations were targeted to benchmark the placement policies. The

mechanism was implemented using IBM Pthreads.

The solution quality is measured in terms of network communication cost (OTC

percentage) that is saved under the replication scheme found by the algorithms,

compared to the initial one, i.e., when only primary copies exists.

8.4.1 Comparative Algorithms

For comparisons, we selected five various types of replica placement

techniques. To provide a fair comparison, the assumptions and system parameters were

kept the same in all the approaches. The techniques studied include efficient branch-

168

and-bound based technique (Aε-Star [57]). For fine-grained replication, the algorithms

proposed in [75], [78], and [100] are the only ones that address the problem domain

similar to ours. We select from [100] the greedy approach (Greedy) for comparison

because it is shown to be the best compared with four other approaches (including the

proposed technique in [75]); thus, we indirectly compare with four additional

approaches as well. Algorithms reported in [58] (Dutch (DA) and English auctions

(EA)) and [78] (Genetic based algorithm (GRA)) are also among the chosen techniques

for comparisons.

8.4.2 Comparative Game Analysis

First, we concentrate on observing the improvement brought by the

discriminatory mechanism (for short we will refer to it as MECH). To this end we

observe the solution quality at the game level. In the post-ceding text we shall discuss

the results obtained in the supergame setup.

We study the behavior of the placement techniques when the number of sites

increases (Figure 8.6), by setting the number of objects to 2000, while in Figure 8.7, we

study the behavior when the number of objects increase, by setting the number of sites

to 500. We should note here that the space limitations restricted us to include various

other scenarios with varying capacity and update ratio. The plot trends were similar to

the ones reported in this article. For the first experiment we fixed C = 30% and U =

65%. We intentionally chose a high workload so as to see if the techniques studied

successfully handled the extreme cases. The first observation is that MECH and EA

169

No. of Sites

O
TC

 S
av

es

Performance
N=2000, C=30%, U=65%

0 50 100 150 200 250 300 350 400 450 500
50%
52%
54%
56%
58%
60%
62%
64%
66%
68%
70%
72%
74%
76%
78%
80%
82%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 8.6: OTC savings versus number of sites.

No. of Objects

O
TC

 S
av

es

Performance
M=500, C=15%, U=40%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 8.7: OTC savings versus number of objects.

outperformed other techniques by considerable amounts. Second, DA converged to a

better solution quality under certain problem instances than EA. This is inline with the

general trends of DA. It outperforms EA when the agents are bidding aggressively.

Some interesting observations were also recorded, such as, all but GRA and Greedy

170

Capacity of Sites

O
TC

 S
av

es

Performance
N=2000, M=500, U=10%

10% 14% 18% 22% 26% 30% 34% 38%
16%
20%
24%
28%
32%
36%
40%
44%
48%
52%
56%
60%
64%
68%
72%
76%
80%
84%
88%
92%
96%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 8.8: OTC savings versus capacity.

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=30%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 8.9: OTC savings versus reads.

showed initial loss in OTC savings with the initial number of site increase in the system,

as much as 5% loss was recorded in case of MECH with only a 40 site increase. GRA

and Greedy showed an initial gain since with the increase in the number of sites, the

population permutations increase exponentially, but with the further increase in the

171

Updates

O
TC

 S
av

es

Performance
N=2000, M=500, C=70%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 8.10: OTC savings versus updates.

Execution Time Analysis
7%

68%

21%

3%

Replica
Placement

Shortest Paths

Miscellaneous

Data Gathering

Figure 8.11: Execution time components.

number of sites this phenomenon is not so observable as all the essential objects are

already replicated. The top performing techniques (DA, EA, Aε-Star and MECH)

showed an almost constant performance increase (after the initial loss in OTC savings).

This is because by adding a site (server) in the network, we introduce additional traffic

172

(local requests), together with more storage capacity available for replication. All four

equally cater for the two diverse effects. GRA also showed a similar trend but

maintained lower OTC savings. This was in line with the claims presented in [57] and

 [78].

To observe the effect of increase in the number of objects in the system, we

chose a softer workload with C = 15% and U = 40%. The intention was to observe the

trends for all the algorithms under various workloads. The increase in the number of

objects has diverse effects on the system as new read/write patterns (users are offered

more choices) emerge, and also the increase in the strain on the overall capacity of the

system (increase in the number of replicas). An effective algorithm should incorporate

both the opposing trends. From the plot, the most surprising result came from GRA and

Greedy. They dropped their savings from 62% to 2% and 69% to 3%, respectively. This

was contradictory to what was reported in [78] and [100]. But there the authors had

used a uniformly distributed link cost topology, and their traffic was based on the Zipf

distribution [123]. While the traffic access logs of the World Cup 1998 are more or less

double-Pareto in nature. In either case the exploits and limitations of the technique

under discussion are obvious. The plot also shows a near identical performance by Aε-

Star, DA and Greedy. The relative difference among the three techniques is less than

3%. However, Aε-Star did maintain its domination. From the plots the supremacy of

EA and MECH is observable.

Next, we observe the effects of system capacity increase. An increase in the

storage capacity means that a large number of objects can be replicated. Replicating an

173

Algorithms

O
TC

 S
av

es

Load Variance (Median)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median

Figure 8.12: Median load variance.

Algorithms

O
TC

 S
av

es

Load Variance (Mean)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Mean+1.5*Std Dev
Mean-1.5*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes
Grand mean

Figure 8.13: Mean load variance.

object that is already extensively replicated, is unlikely to result in significant traffic

savings as only a small portion of the servers will be affected overall. Moreover, since

objects are not equally read intensive, increase in the storage capacity would have a

great impact at the beginning (initial increase in capacity), but has little effect after a

174

certain point, where the most beneficial ones are already replicated. This is observable

in Figure 8.8, which shows the performance of the algorithms. GRA once again

performed the worst. The gap between all other approaches was reduced to within 15%

of each other. DA and MECH showed an immediate initial increase (the point after

which further replicating objects is inefficient) in its OTC savings, but afterward

showed a near constant performance. GRA although performed the worst, but

observably gained the most OTC savings (53%) followed by Greedy with 34%. Further

experiments with various update ratios (5%, 10%, and 20%) showed similar plot trends.

It is also noteworthy (plots not shown in this study due to space restrictions) that the

increase in capacity from 13% to 24%, resulted in 4.3 times (on average) more replicas

for all the algorithms.

Next, we observe the effects of increase in the read and update (write)

frequencies. Since these two parameters are complementary to each other, we describe

them together. In both the setups the number of sites and objects were kept constant.

Increase in the number of reads in the system would mean that there is a need to

replicate as many object as possible (closer to the users). However, the increase in the

number of updates in the system requires the replicas be placed as close as to the

primary site as possible (to reduce the update broadcast). This phenomenon is also

interrelated with the system capacity, as the update ratio sets an upper bound on the

possible traffic reduction through replication. Thus, if we consider a system with

unlimited capacity, the “replicate everywhere anything” policy is strictly inadequate.

The read and update parameters indeed help in drawing a line between good and

175

Algorithms

O
TC

 S
av

es

Capacity Variance (Median)
N=2000, M=500, U=10%

16%

24%

32%

40%

48%

56%

64%

72%

80%

88%

96%

Greedy GRA Aε-StarDA EA MECH

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median

Figure 8.14: Median capacity variance.

Algorithms

O
TC

 S
av

es

Capacity Variance (Mean)
N=2000, M=500, U=10%

16%

24%

32%

40%

48%

56%

64%

72%

80%

88%

96%

Greedy GRA Aε-StarDA EA MECH

Mean+1.5*Std Dev
Mean-1.5*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes
Grand mean

Figure 8.15: Mean capacity variance.

marginal algorithms. The plots in Figures 8.9 and 8.10 show the results of read and

update frequencies, respectively. A clear classification can be made between the

algorithms. Aε-Star, DA, EA, Greedy and MECH incorporate the increase in the

number of reads by replicating more objects and thus savings increase up to 89%. Aε-

176

Star gained the most of the OTC savings of up to 47%. To understand why there is such

a gap in the performance between the algorithms, we should recall that GRA

specifically depend on the initial population (for details see [78]). Moreover, GRA

maintains a localized network perception. Increase in updates result in objects having

decreased local significance (unless the vicinity is in close proximity to the primary

location). On the other hand, Aε-Star, DA, EA, Greedy never tend to deviate from their

global view of the problem domain.

Lastly, we compare the termination time of the algorithms. Before we proceed,

we would like to clarify our measurement of algorithm termination timings. The

approach we took was to see if these algorithms can be used in dynamic scenarios.

Thus, we gather and process data as if it was a dynamic system. The average breakdown

of the execution time of all the algorithms combined is depicted in Figure 8.11. There

68% of all the algorithm termination time was taken by the repeated calculations of the

shortest paths. Data gathering and dispersion, such as reading the access frequencies

from the processed log, etc. took 7% of the total time. Other miscellaneous operations

including I/O were recorded to carry 3% of the total execution time. From the plot it is

clear that a totally static setup would take no less that 21% of the time depicted in

Tables 8.1 and 8.2.

Various problem instances were recorded with C = 20%, 35% and U = 25%,

35%. Each problem instance represents the average recorded time over all the 45

topologies and 13 various access logs. The entries in bold represent the fastest time

recorded over the problem instance. It is observable that MECH and DA terminated

177

faster than all the other techniques, followed by EA, Greedy, Aε-Star and GRA. If a

static environment was considered, MECH with the maximum problem instance would

have terminated approximately in 55.16 seconds (21% of the algorithm termination

time).

In summary, based on the solution quality alone, the algorithms can be

classified into four categories: 1) Very high performance: EA and MECH, 2) high

performance: Greedy and DA, 3) medium-high performance: Aε-Star, and finally 4)

mediocre performance: GRA. Considering the execution time, MECH and DA did

extremely well, followed by EA, Greedy, Aε-Star, and GRA.

Table 8.3 shows the quality of the solution in terms of OTC percentage for 10

problem instances (randomly chosen), each being a combination of various numbers of

sites and objects, with varying storage capacity and update ratio. For each row, the best

result is indicated in bold. The proposed MECH algorithm steals the show in the context

of solution quality, but Aε-Star, EA and DA do indeed give a good competition, with a

savings within 5%-10% of MECH.

8.4.3 Comparative Supergame Analysis

Here, we present some supplementary results regarding the supergame that

strengthen our comparative analysis claims provided in Section 8.4.2. We show the

relative performance of the techniques with load and storage capacity variance. The

plots in Figures 8.12-8.15 show the recorded performances. All the plots summarize the

measured performance with varying parameters observed over a time period of 86

178

Table 8.1: Running time in seconds [C=20%, U=25%].
Problem Size Greedy GRA Aε-Star DA EA MECH
M=20, N=50 69.76 92.57 97.02 24.66 39.29 25.24
M=20, N=100 76.12 96.31 102.00 26.97 40.91 26.35
M=20, N=150 78.11 100.59 113.79 31.98 53.85 35.64
M=30, N=50 94.33 125.93 139.98 38.20 58.98 38.05
M=30, N=100 108.18 124.20 148.03 38.29 62.97 39.60
M=30, N=150 134.97 148.49 178.84 44.97 67.74 42.02
M=40, N=50 126.25 153.93 198.11 42.34 75.88 44.66
M=40, N=100 134.06 168.09 236.48 43.54 76.27 46.31
M=40, N=150 140.30 204.12 270.10 47.02 82.44 48.41

Table 8.2: Running time in seconds [C=35%, U=35%].
Problem Size Greedy GRA Aε-Star DA EA MECH

M=300, N=1450 206.26 326.82 279.45 95.64 178.9 97.98
M=300, N=1500 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1550 258.45 409.17 333.03 127.1 191.24 124.73
M=300, N=2000 275.63 469.38 368.89 143.94 197.93 142.16
M=400, N=1450 321.6 492.1 353.08 176.51 218.15 176.90
M=400, N=1500 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1550 366.38 541.12 396.96 192.41 221.1 214.55
M=400, N=2000 376.85 559.74 412.17 208.92 245.47 218.73
M=500, N=1450 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1500 402.2 660.86 460.44 246.43 284.63 259.56
M=500, N=1550 478.1 689.44 511.69 257.96 301.72 266.42
M=500, N=2000 485.34 705.07 582.71 269.45 315.13 262.68

Table 8.3: Average OTC (%) savings under some problem instances.

Problem Size Greedy GRA Aε-Star DA EA MECH
N=150, M=20 [C=20%,U=25%] 70.27 69.11 73.96 69.91 72.72 74.40
N=200, M=50 [C=20%,U=20%] 73.49 69.33 76.63 71.90 77.11 75.43
N=300, M=50 [C=25%,U=5%] 69.63 63.45 69.85 67.66 69.80 70.36
N=300, M=60 [C=35%,U=5%] 71.15 64.95 71.51 69.26 70.38 74.03
N=400, M=100 [C=25%,U=25%] 67.24 61.74 71.26 68.67 70.49 73.26
N=500, M=100 [C=30%,U=35%] 65.24 60.77 70.55 69.82 70.87 72.73
N=800, M=200 [C=25%,U=15%] 66.53 65.90 69.33 68.95 70.06 72.95
N=1000, M=300 [C=25%,U=35%] 69.04 63.17 69.98 69.36 71.28 72.44
N=1500, M=400 [C=35%,U=50%] 69.98 62.61 70.41 72.09 72.26 72.78
N=2000, M=500 [C=10%,U=60%] 66.34 62.70 71.33 67.67 68.41 74.06

simulation days (this is the entire time period of the logs that are available for the World

Cup 1998 web server). Notice that the supergame setup is tested over all the available

access logs. We are mostly interested in measuring the median and mean performances

of the algorithms. With load variance MECH edges over EA with a savings of 39%.

The plot also shows that nearly every algorithm performed well with a grand median of

179

15.9%. The graphs are self explanatory in nature, and also capture the outliners and

extreme points. The basic exercise in plotting these results is to see which algorithms

perform consistently over an extended period of time. GRA for example, records the

lowest extremes, and hardly any outliners. On the other hand the proposed MECH’s

performance is captured in a small interval, with high median and mean OTC savings.

The readers may notice the difference in the performance of the algorithms with load

and capacity variances. This is because load variance captures all the possible

combinations of read and update parameters. For example, in a network with 100%

updates there will hardly be any measurable OTC Savings. Thus, Figures 8.12 and 8.13

show mediocre OTC savings, simply because they encapsulated the performance of the

networks where update ratio was extremely high.

8.5 Concluding Remarks

A game theoretical discriminatory mechanism (MECH) for fine-grained data

replication in large-scale distributed computing systems (e.g. the Internet) was

proposed. In MECH we employ agents who represent data objects to compete for the

limited available storage space on web servers to acquire the rights to replicate. MECH

uses a unique concept of supergame in which these agents continuously compete in a

non-cooperative environment. MECH allows the designers the flexibility to monitor the

behavior and strategies of these agents and fine-tune them so as to attain a given

objective. In case of the data replication problem, the object for these agents is to

skillfully replicate data objects so that the total object transfer cost is minimized.

180

MECH was compared against some well-known techniques, such as: greedy,

branch and bound, game theoretical auctions and genetic algorithms. To provide a fair

comparison, the assumptions and system parameters were kept the same in all the

approaches. The experimental results revealed that MECH outperformed the five widely

cited and powerful techniques in both the execution time and solution quality.

In summary, MECH exhibited 5%-10% better solution quality and 25%-35%

savings in the algorithm termination timings.

181

CHAPTER 9

A BUDGET BALANCED GAME THEORETICAL REPLICA PLACEMENT
TECHNIQUE

We introduce an agent-based distributed budget balanced game theoretical

replica placement, allocation, and management technique, where each agent maximizes

its own benefit, such as, user access time, latency and communication cost. The

proposed technique gathers inspiration from market economy and game theoretical

mechanism designs. In such mechanisms the agents do not have a global view of the

system, which makes the optimization process highly localized. This local optimization

may encourage these agents to alter the output of the resource allocation mechanism in

their favor and act selfishly. The proposed technique guarantees a global optimal

solution even though the system acts in a distributed fashion operated by self-motivated

selfish agents.

9.1 Introductory Views

We propose a simple approach to designing resource allocation mechanisms for

autonomous distributed computing systems. The approach draws inspiration from game

theory and the similarities between market economics and large-scale distributed

computing systems.

182

Just like in a market economy, a large-scale distributed computing system has

scarce (computational) resources such as: processing power, memory, network

bandwidth, etc. In market economy resources are managed by decentralized

autonomous agents. We seek to exploit the lessons learnt from the evolved market

economy and effectively apply them to replicate and manage data objects in a large-

scale distributed computing system such as the Internet.

Replicating the data over geographically dispersed locations reduces access

latency, network traffic, and in turn adds reliability, robustness and fault-tolerance to

the system. Discussions in [46], [57], [75], [78] and [100] reveal that client(s)

experience reduced access latencies provided that data is replicated within their close

proximity. However, this is applicable in cases when only read accesses are considered.

If updates of the contents are also under focus, then the locations of the replicas have to

be: 1) in close proximity to the client(s), and 2) in close proximity to the primary

(assuming a broadcast update model) copy. Therefore, efficient and effective replication

schemas strongly depend on how many replicas to be placed in the system, and more

importantly where.

In our game theoretical replica allocation and management mechanism

(RAMM), each site (node) is represented by an agent. We view an agent as part of a

community of similar though heterogeneous agents that are designed to compete for

scarce resources. Motivated by their self interests and the fact that the agents do not

have a global view of the distributed system, they optimize their individual interests,

such as, minimize communication costs, latencies, etc. Each agent defines its goals and

183

utilities, and the rules for max(min)imization. Although no direct attempt is made to

globally improve or optimize the system wide goals, yet the mechanism provides a

platform for self-evolving solution quality. This results in global performance

improvement through an invisible hand.

We evaluate our proposed approach through a simulation study of a large-scale

distributed computing system mimicking the Internet, and compare it with five various

techniques recorded in the literature. Experimental results reveal that our proposed

approach improves performance relative to these techniques in three ways. First, the

number of replicas in a system is controlled to reflect the ratio of read versus write

access. To maintain concurrency control, when an object is updated, all of its replicas

need to be updated simultaneously. If the write access rate is high, there should be few

replicas to reduce the update overhead. If the read access rate is overwhelming, there

should be a high number of replicas to satisfy local accesses. Second, performance is

improved by replicating objects to the sites based on locality of reference. This increase

the probability that object access can be satisfied either locally or within a desirable

amount of time from a neighboring site. Third, replica assignments are made in a fast

algorithmic turn-around time. All the above improvements are achieved by a simple,

decentralized, and autonomous RAMM.

In addition to the performance improvements above, RAMM offers other

benefits. The most important of them all is that the complexity is decreased by

multifold. RAMM limits the complexity by partitioning the complex global problem of

replica allocation, into a set of simple independent sub problems. Each agent

184

independently attempts to optimize its utility. RAMM also unifies the selfish

optimization of the participating agents into a globally effective replica allocation. This

approach is well suited to the large-scale distributed computing systems that are

composed of autonomous agents which do not necessarily cooperate to improve the

system wide goals, but provide a framework for self-stabilization and repair.

9.2 The Replica Allocation and Management Mechanism (RAMM)

According to the definition in [66], an auction is a market institution with an

explicit set of rules determining resource allocation and prices on the basis of bids from

the market participants. This definition allows us to formulate a generalized mechanism

as:

1. Agents send bids to the mechanism to indicate their willingness to exchange goods.

2. The auction may post price quotes to provide summarized information about the

status of the price-determination process.

Steps 1 and 2 may be iterated.

3. The auction determines an allocation and notifies the agents as to who purchases

what from whom at what price.

The above sequence may be performed once or repeated any number of times.

In this paper, the mechanism we discuss is decentralized in the sense that each agent

calculates its own bidding strategy, based on local information.

Unlike the more popular types of auctions such as the English and the Dutch

auctions, the Generalized Vickrey Auction (GVA) is a direct revelation mechanism

185

([24], [40], [114]), and thus is not a price system. Rather, it computes overall payments

for agent’s allocations that sometimes, but not always, translate into meaningful prices.

If agents play Bayesian-Nash or dominant strategies, any desirable choice function that

can be implemented by a mechanism is quite powerful. Specifically, the GVA is a direct

revelation mechanism on dominant strategies in the class of Groves [40] and Clark [24]

mechanisms. In [38] authors have shown under rather general conditions that when

agents have quasi-linear preferences, the only efficient social choice functions that are

implemented in dominant strategies are those that are implemented by Groves-Clarke

mechanism.

From above we can conclude that an efficient, optimal and computationally

feasible mechanism should possess the following properties:

1. Agent’s have quasi-linear preferences.

2. Agent’s have dominating strategies.

Under our (data replication) problem formulation, if we can prove the (above)

two properties, than the Groves-Clarke mechanism would be sufficient. In the

subsequent text we shall do exactly the same.

9.2.1 Preliminaries

9.2.1.1 The Basics

The mechanism contains M agents. Each agent i has some private data ti ∈ R.

This data is termed as the agent’s true data or true type. Only agent i has knowledge of

186

ti. Everything else in the mechanism is public knowledge. Let t denote the vector of all

the true types t = (t1…tM).

9.2.1.2 Communications

The only information that is relayed to the mechanism by an agent i is its

corresponding bid bi. Since the agents are selfish in nature, (i.e., localized optimization)

they may (bi = ti) or may not (bi ≠ ti) communicate to the mechanism the value ti. Let b

denote the vector of all the bids ((b = (b1…bM)), and let b-i denote the vector of bids, not

including agent i, i.e., b-i = (b1…bi-1,bi+1,…bM). It is to be understood that we can also

write b = (b-i,bi).

9.2.1.3 Components

The mechanism has two components: 1) the algorithmic output x(·), and 2) the

payment mapping function p(·).

9.2.1.4 Algorithmic Output

The mechanism allows a set of outputs X, based on the output function which

takes in as the argument, the bidding vector, i.e., x(b) = {x1(b),…, xM(b)}, where x(b) ∈

X. This output function relays a unique output given a vector b. That is, when x(·)

receives b, it generates an output which is of the form of allocations xi(b). Intuitively it

would mean that the algorithm takes in the vector bid b and then relays to each agent its

allocation.

187

9.2.1.5 Monetary Cost

Each agent i incurs some monetary cost ci(ti,xi(b)), i.e., the cost to accommodate

the (data) allocation xi(b). This cost is dependent upon the output (of the allocations by

the mechanism xi(b)) and the agent’s private data ti.

9.2.16 Payments

To offset ci, the mechanism makes a payment pi(b) to agent i. An agent i always

attempts to maximize its profit (utility) ui(ti,b) = pi(b) - ci(ti,xi(b)). Each agent i cares

about the other agents’ bid only insofar as they influence the outcome and the payment.

9.2.1.7 Bids

Each agent i is interested in reporting a bid bi such that it maximizes its profit,

regardless of what the other agents bid, i.e., ui(ti,(b-i,ti)) ≥ ui(ti,(b-i,bi)) for all b-i and bi.

It is to be noted that truth telling (bi = ti) brings in more utility to the agents because the

following do not hold:

1. Over projection: Agents in anticipation of more revenue over project their true data,

but this does not help, as the agent who is allocated the object gets the second best

payment. Note that in Groves-Clarke mechanism second best payment is a strong

tool to confine the agents from misreporting.

2. Under projection: If every agent under projects their true data, that does not help

either as the revenue would drop in proportion to the under projection.

3. Random projection: In this case the deserving agent would be at loss. Therefore, it

188

is unlikely that a selfish agent would agree to project random true data.

4. For more details on the optimality of such type of payment procedure see [106]. In

that paper, the authors have identified many such scenarios, all but reporting

truthfully fail to exploit this (second best) payment option.

9.2.2 The RAMM

We now put all the pieces together. A mechanism m consists of a pair m =

(x(b),p(b)), where x(·) is the output function and p(·) is the payment mapping function.

The objective of the mechanism is to select an output x, that optimizes a given objective

function.

9.2.2.1 Objective

The mechanism defined above leaves us with the following two optimization

problems:

1. Identify a strategy that is dominant to each agent i.

2. Identify a payment mapping function that is truthful.

9.2.2.2 The Basic Results

From previous discussion recall that we carry with us the following three

pending questions:

1. Agent’s preferences should be quasi-linear.

2. Agent’s strategies should depict dominance.

189

3. Payments should implement truthfulness. (We answer them below.)

9.2.2.2.1 Quasi-linear Preferences

Quasi-linearity implies that the mechanism is able to make any cash transfer that

exactly compensates any agent for any possible change in outcomes, and that

redistributing wealth among the agents would not change this compensatory transfer. In

such a setup any agent’s payoff (utility) is given by: ui(ti,b) = pi(b) - ci(ti,xi(b)) [40]. This

payoff implies that each agent cares about his own cash (received) payment (from the

mechanism), but not about payments that other agents receive. This is exactly what the

RAMM’s payment functions do.

9.2.2.2.2 Dominating Strategy

The agents in the mechanism value an object k for the benefit that it brings to

the agent’s site i. This benefit is equivalent to the savings that the object k brings in the

total object transfer cost (OTC) if the object k is replicated at site i. This benefit is:

1 (,)Mi i x
k k k k kxB RC w o c i P== −∑ .

We discussed the optimality of the above stated benefit cost function in Chapter

8. We strongly suggest readers to review before proceeding any further.

9.2.2.2.3 Payments

The mechanism eliminates incentives for misreporting by imposing on each

agent the cost of any distortion it causes. The payment for agent i is set so that i’s report

190

cannot effect the total payoff to the set of other agents (excluding agent i), M-i.

To capture the effect of i’s report on the outcome, we introduce a hypothetical

null report, which corresponds to agent i reporting that it is indifferent among the

possible decisions and cares only about payments. When i makes the null report, the

mechanism optimally chooses the decision D(X,M-i,t-i). The resulting total value of the

decision for the set of agents M-i would be V(X,M-i,t-i), and the mechanism might also

provide an agent i with payment equivalent to hi(t-i). Thus, if i makes a null report, the

total payoff to the agents in set M-i is V(X,M-i,t-i) + hi(t-i). This would mean that the

RAMM would choose payments for the M-i agents regardless of what i reports to the

RAMM. For a detailed analysis of the above payment structure, readers are encouraged

to see [58] and [61]. It is to be noted that in economic game theoretical literature this

type of payment is often referred to as Vickrey payments [94].

We have entertained all the pending optimization issues regarding the RAMM,

and are ready to give a pseudo-code (Figure 9.1).

Briefly, we maintain a list Li at each server. This list contains all the objects that

can be replicated by agent i onto site Si. We can obtain this list by examining the two

constraints of the DRP. List Li would contain all the objects that have their size less then

the total available space bi. Moreover, if site Si is the primary host of some object k’,

then k’ should not be in Li. We also maintain a list LS containing all sites that can

replicate an object, i.e., Si∈LS if Li≠NULL. The algorithm works iteratively. In each

step the mechanism asks all the agents to send their preferences (first PARFOR loop).

Each agent i recursively calculates the true data of every object in list Li. Each agent

191

The RAMM Algorithm

Initialize:
LS, Li, Tk

i, M, MT

01 WHILE LS ≠ NULL DO
02 OMAX = NULL; MT = NULL; Pi = NULL;
03 PARFOR each Si∈LS DO
04 FOR each Ok∈ Li DO
05 Tk

i = compute (Bk
i); /*compute the valuations/bids*/

06 ENDFOR
07 ti = argmaxk(Tk

i);
08 SEND ti to M; RECEIVE at M ti in MT;
09 ENDPARFOR
10 OMAX = argmaxk(MT); /*Choose the global dominate valuation/bid*/
11 DELETE k from MT;
12 Pi = argmaxk(MT); /*Calculate the payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; RECEIVE at Si /*Pay the winning agent this amount*/
15 Replicate OOMAX;
16 aci=aci - ok; /*Update capacity*/
17 Li = Li - Ok; /*Update the list*/
18 IF Li = NULL THEN SEND info to M to update LS = LS - Si; /*Update mechanism players*/
19 PARFOR each Si∈LS DO
20 Update NNi

OMAX /*Update the nearest neighbor list*/
21 ENDPARFOR /*Get ready for the next round*/
22 ENDWHILE

Figure 9.1: Pseudo-code describing the RAMM.

then reports the dominant true data (line 08) to the mechanism. The mechanism receives

all the corresponding entries, and then chooses the best dominant true data. This is

broadcasted to all the agents, so that they can update their nearest neighbor table NNk
i,

which is shown in Line 20 (NNi
OMAX). The object is replicated and payments made to

the agent. The mechanism progresses forward till there are no more agents interested in

acquiring any data for replication (Line 18).

The above discussion allows us to deduce the following result about the RAMM

algorithm.

Theorem 9.1: In the worst case the RAMM takes O(MN2) time.

192

Proof: The worst case scenario is when each site has sufficient capacity to store

all objects. In that case, the while loop (Line 02) performs MN iterations. The time

complexity for each iteration is governed by the two PARFOR loops (Lines 04 and 19).

The first loop uses at most N iterations, while the send loop performs the update in

constant time. Hence, we conclude that the worst case running time of the mechanism is

O(MN2). ■

9.3 Experimental Comparative Analysis

We performed experiments on a 440MHz Ultra 10 machine with 512MB

memory using the experimental infrastructure as described in Chapter 3. The

experimental evaluations were targeted to benchmark the placement policies. The

RAMM was implemented using IBM Pthreads.

9.3.1 Comparative Algorithms

For comparison, we selected five various types of replica placement techniques.

To provide a fair comparison, the assumptions and system parameters were kept the

same in all the approaches. The techniques studied include efficient branch-and-bound

based technique (Aε-Star [57]). For fine-grained replication, the algorithms proposed in

 [75], [78], and [100] are the only ones that address the problem domain similar to ours.

We select from [100] the greedy approach (Greedy) for comparison because it is shown

to be the best compared with 4 other approaches (including the proposed technique in

 [75]); thus, we indirectly compare with 4 additional approaches as well. Algorithms

193

reported in [58] (Dutch (DA) and English auctions (EA)) and [78] (Genetic based

algorithm (GRA)) are also among the chosen techniques for comparisons.

9.3.2 Performance Metric

The solution quality is measured in terms of network communication cost (OTC

percentage) that is saved under the replication scheme found by the algorithms,

compared to the initial one, i.e., when only primary copies exists.

9.3.3 Comparative Analysis

We study the behavior of the placement techniques when the number of sites

increases (Figure 9.2), by setting the number of objects to 2000, while in Figure 9.3, we

study the behavior when the number of objects increase, by setting the number of sites

to 500. We should note here that the space limitations restricted us to include various

other scenarios with varying capacity and update ratio. The plot trends were similar to

the ones reported in this article. For the first experiment we fixed C=35% and U=70%.

We intentionally chose a high workload so as to see if the techniques studied

successfully handled the extreme cases. The first observation is that RAMM and EA

outperformed other techniques by considerable amounts. Second, DA converged to a

better solution quality under certain problem instances. Some interesting observations

were also recorded, such as, all but GRA and Greedy showed initial loss in OTC

savings with the initial number of site increase in the system, as much as 5% loss was

recorded in case of Aε-Star with only a 40 site increase. GRA and Greedy showed an

194

No. of Sites

O
TC

 S
av

es

Performance
N=2000, C=35%, U=70%

0 50 100 150 200 250 300 350 400 450 500
50%
52%
54%
56%
58%
60%
62%
64%
66%
68%
70%
72%
74%
76%
78%
80%
82%

Legend
Greedy
GRA
Aε-Star
DA
EA
RAMM

Figure 9.2: OTC savings versus number of sites.

No. of Objects

O
TC

 S
av

es

Performance
M=500, C=15%, U=20%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

4%
8%

12%
16%
20%
24%
28%
32%
36%
40%
44%
48%
52%
56%
60%
64%
68%
72%
76%
80%

Legend
Greedy
GRA
Aε-Star
DA
EA
RAMM

Figure 9.3: OTC savings versus number of objects.

initial gain since with the increase in the number of sites, the population permutations

increase exponentially, but with the further increase in the number of sites this

phenomenon is not so observable as all the essential objects are already replicated. The

top performing techniques (DA, EA, Aε-Star and RAMM) showed an almost constant

195

Capacity of Sites

O
TC

 S
av

es

Performance
N=2000, M=500, U=20%

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
RAMM

Figure 9.4: OTC savings versus capacity.

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=30%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
RAMM

Figure 9.5: OTC savings versus reads.

performance increase (after the initial loss in OTC savings). This is because by adding a

site (server) in the network, we introduce additional traffic (local requests), together

with more storage capacity available for replication. All four equally cater for the two

196

diverse effects. GRA and Greedy also showed a similar trend but maintained lower

OTC savings. This was in line with the claims presented in [57] and [78].

To observe the effect of increase in the number of objects in the system, we

chose a softer workload with C = 15% and U = 20%. The intention was to observe the

trends for all the algorithms under various workloads. The increase in the number of

objects has diverse effects on the system as new read/write patterns (users are offered

more choices) emerge, and also the increase in the strain on the overall capacity of the

system (increase in the number of replicas). An effective algorithm should incorporate

both the opposing trends. From the plot, the most surprising result came from GRA. It

dropped its savings from 63% to 2%. This was contradictory to what Was reported in

 [78]. But there the authors had used a uniformly distributed link cost topology, and their

traffic was based on the Zipf distribution [123]. While the traffic access logs of the

World Cup 1998 are more or less double-Pareto in nature. In either case the exploits and

limitations of the technique under discussion are obvious. The plot also shows a near

identical performance by Aε-Star, DA and EA. The relative difference among the three

techniques is less than 4%. However, EA did maintain its domination. From the plot

(Figure 6) the supremacy of EA and RAMM is observable.

Next, we observe the effects of system capacity increase. An increase in the

storage capacity means that a large number of objects can be replicated. Replicating an

object that is already extensively replicated, is unlikely to result in significant traffic

savings as only a small portion of the servers will be affected overall. Moreover, since

objects are not equally read intensive, increase in the storage capacity would have a

197

great impact at the beginning (initial increase in capacity), but has little effect after a

certain point, where the most beneficial ones are already replicated. This is observable

in Figure 9.4, which shows the performance of the algorithms. GRA once again

performed the worst. The gap between all other approaches was reduced to within 12%

of each other. DA and RAMM showed an immediate initial increase (the point after

which further replicating objects is inefficient) in its OTC savings, but afterward

showed a near constant performance. GRA although performed the worst, but

observably gained the most OTC savings (47%) followed by Greedy with 44%. Further

experiments with various update ratios (5%, 10%, and 20%) showed similar plot trends.

It is also noteworthy (plots not shown in this study due to space restrictions) that the

increase in capacity from 10% to 17%, resulted in 3.7 times (on average) more replicas

for all the algorithms.

Next, we observe the effects of increase in the read and update (write)

frequencies. Since these two parameters are complementary to each other, we describe

them together. In both the setups the number of sites and objects were kept constant.

Increase in the number of reads in the system would mean that there is a need to

replicate as many object as possible (closer to the users). However, the increase in the

number of updates in the system requires the replicas be placed as close as to the

primary site as possible (to reduce the update broadcast). This phenomenon is also

interrelated with the system capacity, as the update ratio sets an upper bound on the

possible traffic reduction through replication. Thus, if we consider a system with

unlimited capacity, the “replicate everywhere anything” policy is strictly inadequate.

198

Updates

O
TC

 S
av

es

Performance
N=2000, M=500, C=70%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 9.6: OTC savings versus updates.

Table 9.1: Running time (sec.) [C=55%, U=10%].
Problem Size Greedy GRA Aε-Star DA EA RAMM

M=300, N=1400 206.26 326.82 279.45 95.64 178.9 97.98
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1500 258.45 409.17 333.03 127.1 191.24 124.73
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1450 366.38 541.12 396.96 192.41 221.1 214.55
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1400 478.1 689.44 511.69 257.96 301.72 266.42
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83
M=500, N=1550 525.33 753.5 645.26 289.64 331.57 304.47
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.60

The read and update parameters indeed help in drawing a line between good and

marginal algorithms. The plots in Figures 9.5 and 9.6 show the results of read and

update frequencies, respectively. A clear classification can be made between the

algorithms. Aε-Star, EA, Greedy and RAMM incorporate the increase in the number of

reads by replicating more objects and thus savings increase up to 86%. GRA gained the

199

least of the OTC savings of up to 13%. To understand why there is such a gap in the

performance between the algorithms, we should recall that GRA specifically depends

on the initial population (for details see [78]). Moreover, GRA maintains a localized

network perception. Increase in updates result in objects having decreased local

significance (unless the vicinity is in close proximity to the primary location). On the

other hand, Aε-Star, EA, Greedy and RAMM never tend to deviate from their global

view of the problem search space.

Lastly, we compare the termination time of the algorithms. Before we proceed,

we would like to clarify our measurement of algorithm termination timings. The

approach we took was to see if these algorithms can be used in dynamic scenarios.

Thus, we gather and process data as if it was a dynamic system. The average breakdown

of the execution time of all the algorithms is as follows. 68% of all the algorithm

termination time was taken by the repeated calculations of the shortest paths. Data

gathering and dispersion, such as reading the access frequencies from the processed log,

etc. took 7% of the total time. Other miscellaneous operations including I/O were

recorded to carry 3% of the total execution time. Therefore, a totally static setup would

take no less that (100-(68+7+3)) = 21% of the time depicted in Tables 9.1 and 9.2.

Various problem instances were recorded with C = 15%, 55% and U = 10%, 55%. The

entries in bold represent the fastest time recorded over the problem instance. It is

observable that RAMM and DA terminated faster than all the other techniques,

followed by EA, Greedy, Aε-Star and GRA. If a static environment was considered,

RAMM with the maximum problem instance would have terminated in 66.69 seconds

200

Table 9.2: Running time (sec.) [C=15%, U=55%].
Problem Size Greedy GRA Aε-Star DA EA RAMM
M=20, N=50 70.06 92.35 96.31 24.35 38.69 26.06
M=20, N=100 76.20 96.31 102.81 26.97 40.39 26.97
M=20, N=150 77.55 100.93 113.25 31.62 53.69 35.98
M=30, N=50 95.00 126.80 140.69 38.31 59.20 38.85
M=30, N=100 108.79 124.55 148.07 39.01 62.73 39.40
M=30, N=150 135.09 147.67 179.27 45.22 67.91 41.21
M=40, N=50 125.55 154.11 198.21 41.79 76.20 45.11
M=40, N=100 134.03 167.56 235.97 43.25 77.16 46.19
M=40, N=150 140.81 203.54 269.88 46.91 81.70 48.39

Table 9.3: Average OTC (%) savings.
Problem Size Greedy GRA Aε-Star DA EA RAMM

N=200, M=50 [C=20%,U=20%] 73.50 70.02 76.45 71.70 76.50 75.47
N=300, M=50 [C=25%,U=5%] 69.16 64.17 70.04 67.72 70.02 70.39

N=400, M=100 [C=25%,U=25%] 66.52 61.51 70.76 68.63 69.96 73.19
N=500, M=100 [C=30%,U=35%] 65.89 61.20 70.71 70.11 70.95 72.92
N=800, M=200 [C=25%,U=15%] 66.72 65.57 69.98 68.46 69.83 72.30
N=1000, M=300 [C=25%,U=35%] 68.40 63.73 69.89 69.80 70.52 72.87
N=1500, M=400 [C=35%,U=50%] 69.79 63.21 69.76 72.23 72.36 73.14
N=2000, M=500 [C=10%,U=60%] 66.14 62.89 72.14 68.03 68.29 73.63

(approximately 21% of the algorithm termination time (Table 9.1 last entry)).

In summary, based on the solution quality alone, the algorithms can be

classified into four categories: 1) The very high performance algorithms that include

RAMM and EA, 2) the high performance algorithms of Greedy and DA, 3) the

medium-high performance Aε-Star, and finally 4) the mediocre performance algorithm

of GRA. While considering the termination timings, RAMM and DA did extremely

well, followed by EA, Greedy, Aε-Star, and GRA.

Table 9.3 shows the quality of the solution in terms of OTC percentage for eight

problem instances (randomly chosen), each being a combination of various numbers of

sites and objects, with varying storage capacity and update ratio. For each row, the best

201

result is indicated in bold. The proposed RAMM algorithm steals the show in the

context of solution quality, but Aε-Star, EA and DA do indeed give a good competition,

with a savings within a range of 5%-10% of RAMM.

9.4 Concluding Remarks

Manual mirroring of data objects is a tedious and time consuming operation.

This study proposed a game theoretical replica allocation and management mechanism

(RAMM) for fine-grained data replication in large-scale distributed computing systems

such as the Internet. RAMM is a protocol for automatic replication and migration of

objects in response to demand changes. RAMM aims to place objects in the proximity

of a majority of requests while ensuring that no hosts become overloaded.

RAMM allows agents to compete for the scarce memory space at sites so that

they can acquire the rights to place replicas. To cater for the possibility of cartel type

behavior of the agents, RAMM uses Vickrey price protocol. This leaves the agents with

no option, then to report truthful valuations of the objects that they represent.

RAMM was compared against some well-known techniques, such as: branch

and bound, greedy, game theoretical auctions, and genetic algorithms. To provide a fair

comparison, the assumptions and system parameters were kept the same in all the

approaches. The experimental setup was designed to mimic a large-scale distributed

computing system (the Internet), by using several Internet topology generators and

World Cup Soccer 1998 web server access logs. The experimental results revealed that

RAMM outperformed the three widely cited and powerful techniques in both the

202

execution time and solution quality. In summary, RAMM exhibited 5%-10% better

solution quality and 10%-30% savings in the algorithm termination timings.

203

CHAPTER 10

A COOPERATIVE REPLICA PLACEMENT TECHNIQUE

10.1 Introductory Views

A number of replica placement techniques for large distributed computing

systems have been proposed with the underlying assumption that the servers cooperate

with one another in order to layout a replica schema that optimizes the overall system

performance. For instance, almost all content distribution networks (CDNs) related

replica placement techniques (e.g. [18], [41], [46], [100]) rely on a centralized decision

making body which optimizes a given objective (e.g. to reduce the communication cost)

regardless of the costs incurred by each server. These previously reported techniques

are plausible as they advance the study of replica placements, however, they are very

tedious and have very high computational complexity [21]. For instance, some

techniques require that the underlying infrastructure be a tree [46], and the best possible

bound (reported in [75]) is of the order of O(M3N2), where M is the number of servers

and N is the number of (data) objects, respectively, in the system.

To study the cooperative behavior of the servers and to derive a scalable replica

placement technique, we make use of game theoretical techniques. Each server in the

system plays a cooperative replica placement game (COOP). In COOP each server has

two possible actions for each object. If an access is made to an object that is located at a

204

nearby server, then the server is better off redirecting the request to that server. On the

other hand if the object is located at a far off server, then the server is better off

replicating that object. These decisions by the servers are not taken individually but

collectively. The goal of this chapter is to see whether these servers in COOP, can

layout replica schemas that converge to global optimum solution(s) targeted towards

reducing the communication cost induced by accessing the objects. A cooperative

game is defined as a game in which players can conclude a binding agreement as to

what outcome will be chosen to exploit the possibility of common interests.

Cooperation in the sense of game theory does not mean that players sacrifice their

interests for the sake of others, only that each communicates and coordinates its actions

for the purpose of furthering their interests. Due to the fact that servers in a large

distributed computing system can share resources, all of them should cooperate to

obtain the best possible benefit. In this chapter, the Aumann-Shapley resource

allocation mechanism of cooperative game theory will be used for the replica placement

problem. The proposed methodology not only ensures that the total communication cost

is globally minimized, but also that the data allocation is fair leading to load balancing.

10.2 Cooperative Game Theoretical Replica Placement Game

10.2.1 The Aumann-Shapley Mechanism

A natural framework for the study of resource allocation problems is game

theory. A game theoretical framework takes into account the strategic aspects of the

205

situation and yields a reasonable concept of unique equilibrium (solution) characterized

by the fairness of the allocations.

In game theory, resource allocation problems can be stated as allocating the

jointly used resources (in our case the allocation of replicas) among participants in a

cooperative game. From game theory point of view, there is only one plausible resource

allocation mechanism that is fully distributive and satisfies the fairness principle in

sharing as a cooperative game, namely, the Aumann-Shapely mechanism:

()
1

0

(`), `i
i

f txf x dtxψ ∂= ∂∫ , (10.1)

where ψi(f,x`) is defined for all possible allocations (f,x`) on some fixed set of

inputs, such that ψi(f,x`) is the allocation associated with i. It is assumed that f has

continuous first partial derivatives on some bounded domain of the form D = D(x`) =

{x∈ℜn : 0 ≤ x ≤ x`}.

Game theoreticians have proven that the Aumann-Shapley mechanism generates

a unique allocation that is continuous, aggregate invariant, fully distributive, and

satisfies the fairness principle. We will see that its application to the data replication

problem will not generate a mismatch of resource allocation which is the one of the

primary reasons for obtaining sub-optimal solutions.

 10.2.2 Replica Placement Game (COOP)

As mentioned before, a cooperative game is a game in which the players can

conclude a binding agreement as to what outcome will be chosen to exploit the

206

possibility of common interests. In game theory a resource allocation game can be state

as dividing the cost of jointly used resources among participants in a cooperative game.

Since reducing the overall communication cost is a resource (replica) allocation game, it

is appropriate to define the optimization of the communication cost as a cooperative

game.

10.2.3 Aumann-Shapley Replica Placement Game

 Suppose there are a fixed number of servers, M, as players of the cooperative

game, (M,f,ψ), where f is the optimization function and ψ is the Aumann-Shapley

mechanism. The target level of f could be state as:

() ()1 1min ik
M N

ik iki kf Z xR W= == +∑ ∑ . (10.2)

The Aumann-Shapley mechanism,ψ, at server i, will be given as:

1

0

()
i

f tZ dtZψ ∂= ∂∫ , (10.3)

which may be interpreted as the communication cost imputed to server i. Full

distribution of the mechanism requires that:

1 ()M
ii f ZZψ= =∑ . (10.4)

Now, each sever would incur a communication cost equal to Zψi due to the

accesses made to the data objects hosted by that server. In order to bring a meaning to

the Aumann-Shapley mechanism, we need to solve DRP in conjunction to the Aumann-

Shapley mechanism. This can be done very efficiently by taking the Lagrangian of RPP.

207

However, the Lagrangian function on DRP in conjunction with the Aumann-Shapley

mechanism using non-linear programming methods would generate multiple solutions,

which is not what we desire. To negate the problem of multiple solutions, we take the

Lagrangian on the dual of RPP, ZD, in conjunction with the Aumann-Shapley

mechanism, ZD(ψ), and we get:

() ()1 1 1 1min M N M N
i iD ik ik ik k iki k i kZ R W x o x sψ ψ= = = =

= + + −∑ ∑ ∑ ∑ . (10.5)

For simplicity, ZD(ψ) can be written as:

() ()1 1 1min N M M
i i iD ik ik k ikk i iZ R W o x sψ ψ ψ= = =

= + + −∑ ∑ ∑ , (10.6)

Then the Lagrangian dual problem is as follows:

0max (())LD DZ Zψ ψ≥= . (10.7)

For a fixed,ψ, (10.5) can be decomposed into sub-problems each of which

corresponds to individual server’s communication cost as illustrated in (10.4). Each

sub-problem is a bounded variable knapsack problem. (This fact is inline with the initial

proof of NP-hardness of the data placement problem, where the authors in [77] showed

a reduction to the binary knapsack problem.) These sub-problems can easily be solved

by a dynamic programming algorithm with a running time O(M3N2) [75]. However, the

algorithm works only when the lower bound on every variable is 0. This is certainly not

the case with DRP and as discussed in earlier the Aumann-Shapley mechanism has

continuous first partial derivatives; therefore, the lower bounds on some variables may

be positive. For this purpose, we need to devise a technique that can cater for the

208

possible positive lower bounds and which is original to this research.

To find ZLD, we need to find a ψ which gives a maximum of ZD(ψ) over all ψi ≥

0. For this purpose we make use of the celebrated sub-gradient method coupled with a

branch-and-bound technique to prune and refine the sub-gradient method. Now suppose

we are given a current ψt at iteration t and an optimal replica placement t
ikx to ZD(ψt),

the next step is decided by:

1
1max 0, Nt t t

ik ikk o x sψ ψ α+
=

= + −∑ , (10.8)

where ()
2

*
1 1

M Nt t
iD k iki kZ Z o x sα ψ = =

= − −∑ ∑ , (10.9)

and Z* is the objective value of the best known feasible solution to DRP. We set

the stopping criteria for the gradient method at iteration t as follows:

After a specified number of iterations, (a)

ZD(ψt) ≥ Z` - 1, (b)

()
1

, , 1
N

k ik ik
i i Mo x s

=
∀ ≤ ≤≤∑ , (c)

1, , , (1)kkp kx P k k N= ∀ ∀ ≤ ≤ , (d)

Note that we have used criterion (b) instead of ZD(ψt) ≥ Z* since the Lagrangian

generated costs are integral. Criteria (c) and (d) represent the optimality conditions. The

whole process of the COOP technique is presented in Figure 10.1.

Now suppose that case (b) does not occur within the iteration limit (50 in our

implementation). If the current solution satisfies (c) we have found a new feasible

209

The COOP Technique
1 0 *

ik ikx x←

2 If ∂ = ∅ then goto step 5
3 Select i ∈ M
4 ∂ ← ∂ - {i}

5 0 0 ()ik ikx x INC i← +

6 Set w = |σ|; Set t = 0
7 Select i ∈ M /* This i is different form the one in Step 3 */
8 t = t + 1

9 0 0 ()ik ikx x DEC i← −

10

If
0

1

N

k ik ik
o x s

=
≤∑ , then σ ← σ - {i}

11 If σ = ∅ then exit /* Solution is found */
12 If t < w the goto step 7
13 If ∂ = ∅ then exit else goto step 5 /* In case of exit the solution is not found */

 INC(i) DEC(i)
1

Set

1

N

i i k ikk
s o xβ

=
= − ∑

1 Set

1

N

i k ik ik
o x sγ

=
= −∑

2 Compute (Rik + Wik) for Ok, ∀k, (1≤k≤N)
and store them in set C

 2 Compute (Rik + Wik) for Ok, ∀k, (1≤k≤N)
and store them in set C

3 Pick Ok from C as argmax{C} and delete Ok from C 3 Pick Ok from C as argmin{C} and delete Ok from C

4

If
1

N

k ik
o β

=
≤∑ then w ← k + 1 else goto step 3

4 If

1

N

k ik
o γ

=
≤∑ then w ← k + 1 else goto step 3

5

Output

0

k

ik i kK w

o k w

x o k w
k w

β
<

<

= − =

>

∑

5 Output

0

k

ik i kk w

o k w

x o k w
k w

γ
<

<

= − =

>

∑

Figure 10.1: The pseudo-code for the COOP procedure.

solution. Then we update Z* and continue the sub-gradient iterations. Suppose (d) as

well as (c) occur, i.e., the optimality conditions hold within the iteration limit. If the

current node is the root node of the branch-and-bound tree, the algorithm ends with the

solution xik, an optimal solution to RPP. Otherwise, Z* is updated and we continue the

sub-gradient iterations. On the other hand, if the optimality conditions do not hold

within the iteration limit, we branch at that node and generate two or more child nodes

to further improve on the result. We set ψ0 = 0 at the root node and use the Lagrangian

210

at the parent node as the initial value at the child node to avoid unnecessary

computations at the child node as suggested in [5]. The selection of the next node to

solve is based on the best bound rule.

10.2.4 Feasibility of the COOP Technique

It rarely happens that the solution to the Lagrangian dual problem is feasible to

the original problem. However, it can often be transformed to a feasible solution by a

minor modification. A solution to ZD(ψ) satisfies all constraints but may violate the

storage constraint. So we modify the solution so that it satisfies the storage constraint.

Let us define:

() *
1, 1 | 0N

ik ikki i M so x=

∂ = ∀ ≤ ≤ − <∑ , (10.10)

() *
1, 1 | 0N

ik ikki i M so xσ =

= ∀ ≤ ≤ − ≥∑ , (10.11)

where x*
ik is the current infeasible replica placement. Note that ∂ and σ are the set of

indices of the storage constraint which are violated by the solution. If we decrease

∑okx*
ik for i ∈ σ, we may be able to make the solution feasible to the problem

represented by the current node. Any decrease of the solution values does not affect the

validity of the storage constraint, but a careless decrease may cause the solution to

violate some of the primary replica constraint and/or the allocation constraint. On the

other hand, if we increase ∑okx*
ik for i ∈ ∂, before we decrease ∑okx*

ik for i ∈ σ, then it

is more likely that the modified solution becomes feasible. So the increment and

211

decrement of solution should be determined carefully.

The COOP procedure is initiated by selecting an element in ∂ and proceeds

iteratively for the rest of the elements in ∂. For each element of ∂, we select elements in

σ iteratively and σ is updated if needed.

We select an element i ∈ ∂ and increase values of the variables that appear in

constraint i while keeping the feasibility for all constraints. We call this procedure

INC(i). Then we select an element i ∈ σ and decrease the values of the variables that

appear in constraint i while keeping feasibility for other constraints. We call this

procedure DEC(i). If INC(i) succeeds in making the constraint i feasible, then we delete

i from ∂. We perform INC(·) for the rest of the elements in ∂. We repeat the process for

the rest of the elements i using DEC(·). The order of selecting elements in ∂ and σ is

arbitrary. The objective of INC(i) is to maximize βi - ∑k<wok. If xik is obtained after

performing INC(i), the solution from x*
ik is changed into xik. On the other hand, the

objective of DEC(i) is to maximize γi - ∑k<wok. If xik is obtained after performing

DEC(i), the solution from x*
ik is changed into xik.

10.2.5 Branching Rules of the COOP Technique

We consider three different branching rules when we branch at a node in the

branch-and-bound tree. Let x*
ik be the solution obtained at the current node of branch-

and-bound tree and let xik be the selected variable for branching. We denote the lower

and upper bounds of the variable xik by lik and uik, respectively.

First, we consider a rule (Rule 1) in which the variable has a fixed value at each

212

generated node. In this rule, (uik + 1) nodes are generated and the values of the selected

variable in the nodes are set to lik (= 0) through uik, respectively. There are no special

priorities in selecting the variables used to branch.

Another branching rule (Rule 2) is based on a dichotomy branching strategy. In

this rule, the variable that has the largest gap between the current upper and lower

bounds is selected. This rule generates two nodes, a node with lik ≤ xik ≤ (uik + lik)/ 2

and the other node with (uik + lik)/ 2 + 1 ≤ xik ≤ uik.

Finally, the third rule (Rule 3) is based on the dichotomy branching strategy

considering the current solution. The variable that has the largest gap between the

current upper and lower bounds in the most violated constraint is selected for branching.

If the selected variable has value xik , uik, this rule generates two nodes, a node with lik ≤

xik ≤ x*
ik and the other node with x*

ik + 1 ≤ xik ≤ uik. In case that we have a solution with

x*
ik = uik, we branch the node with lik ≤ xik ≤ x*

ik - 1 and xik = x*
ik.

10.3 Experimental Results

We performed experiments on a 440MHz Ultra 10 machine with 512MB

memory. COOP was implemented using Ada and Ada GNAT’s distributed systems

annex GLADE [97].

To establish diversity in our experimental setups, the network connectively was

changed considerably. We used GT-ITM for the network topologies, the procedure for

which is as follows: A random graph G(M,P(edge = p)) with 0 ≤ p ≤ 1 contains all

graphs with nodes (servers) M in which the edges are chosen independently and with a

213

probability p. The pure random topologies were obtained with p = {0.4, 0.5, 0.6, 0.7,

0.8}. In each of these topologies the distance between two serves was reversed mapped

to the communication cost of transmitting a 1kB of data and the latency on a link was

assumed to be 2.8×10-8 m/s (copper wire).

To evaluate the replica allocation methods under realistic traffic patterns, we

used the access logs collected at the Soccer World Cup 1998 web server. Each

experimental setup was evaluated thirteen times, i.e., only the Friday (24 hours) logs

from May 1, 1998 to July 24, 1998. (The Friday logs have the heaviest traffic compared

to any other day of the week.) To process the logs, we wrote a script that returned: only

those objects which were present in all the logs (25,000 in our case), the total number of

requests from a particular client for an object, the average and the variance of the object

size. From this log we chose the top five hundred clients (maximum experimental

setup). A random mapping was then performed of the clients to the nodes of the

topologies. Note that this mapping is not 1-1, rather 1-M. This gave us enough skewed

workload to mimic real world scenarios. It is also worthwhile to mention that the total

amount of requests entertained for each problem instance was in the range of 1-2

million. The primary replicas’ original server was mimicked by choosing random

locations. The capacities of the servers C% were generated randomly with range from

Total Primary Object Sizes/2 to 1.5×Total Primary Object Sizes. The variance in the

object size collected from the access logs helped to instill enough miscellanies to

benchmark object updates. The updates were randomly pushed onto different servers,

and the total system update load was measured in terms of the percentage update

214

requests U% compared that to the initial network with no updates.

Since the access logs are of the year 1998, we first use Inet [17] topology

generator to estimate the number of nodes in the network. This number came up to be

3718, i.e., there were 3718 AS-level nodes in the Internet at the time when the Soccer

World Cup 1998 was being played. Therefore, we set the upper bound on the number of

servers in the system at M = 3718.

Comparative algorithms: For comparison, we chose three types of replica

allocation methods. To provide a fair comparison, the assumptions and system

parameters were kept the same in all the methods. For the data replication problem, the

techniques proposed in [57], [75], [78] and [100] are the only ones that address the

problem domain similar to ours. We select from [100] the greedy approach (Greedy) for

comparison because it is shown to be the best compared with 4 other approaches

(including the proposed technique in [75]); thus, we indirectly compare with 4

additional approaches as well. Algorithms reported in [63] (the efficient branch and

bound based technique Aε-Star) and [78] (the genetic algorithm based method GRA)

are also among the chosen techniques for comparisons. We encourage the readers to

obtain an insight on the comparative techniques from the referenced papers.

Performance metric: The solution quality was measured in terms of total

communication cost (OTC percentage) that was saved under the replica scheme found

by the replica placement methods, compared to the initial one, i.e., when only primary

copies exists.

Comparative analysis: We observe the effects of increase in storage capacity.

215

An increase in the storage capacity means that a large number of objects can be

replicated. Replicating an object that is already extensively replicated, is unlikely to

result in significant traffic savings as only a small portion of the servers will be affected

overall. Moreover, since objects are not equally read intensive, increase in the storage

capacity would have a great impact at the beginning (initial increase in capacity), but

has little effect after a certain point, where the most beneficial ones are already

replicated. This is observable in Figure 10.2, which shows the performance of the

algorithms. GRA performed the worst. COOP and Greedy showed an immediate initial

increase (the point after which further replicating objects is inefficient) in its OTC

savings, but afterward showed a near constant performance. GRA although performed

the worst, but observably gained the most OTC savings (57%) followed by Greedy with

44%. Further experiments with various update ratios (5%, 10%, and 20%) showed

similar plot trends. It is also noteworthy (plots not shown in this study due to space

restrictions) that the increase in capacity from 10% to 19%, resulted in 4.7 times (on

average) more replicas for all the algorithms.

Next, we observe the effects of increase in the read and write frequencies. Since

these two parameters are complementary to each other, we describe them together. To

observe the system utilization with varying read/write frequencies, we kept the number

of servers and objects constant. Increase in the number of reads in the system would

mean that there is a need to replicate as many object as possible (closer to the users).

However, the increase in the number of updates in the system requires the replicas be

placed as close as to the primary server as possible (to reduce the update broadcast).

216

Increase in Server Capacity

TC
C

 S
av

in
gs

 (%
)

M=3718; N=25,000; R/W=0.95

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
GRA
Aε-Star
Greedy
COOP

Figure 10.2: OTC savings versus capacity.

R/W (Ratio)

TC
C

 S
av

in
gs

 (%
)

M=3718; N=25,000; C=45%

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

20%

40%

60%

80%

100%

Legend
GRA
Aε-Star
Greedy
COOP

Figure 10.3: OTC savings versus read/write ratio.

This phenomenon is also interrelated with the system capacity, as the update ratio sets

an upper bound on the possible traffic reduction through replication. Thus, if we

consider a system with unlimited capacity, the “replicate everywhere anything” policy

is strictly inadequate. The read and update parameters indeed help in drawing a line

217

Table 10.1: Running time of the replica placement methods in
seconds for small problem instances [C=20%, R/W=0.45]

Problem Size Greedy GRA Aε-Star COOP
M=200, N=500 84.13 111.19 116.61 64.59

M=200, N=1000 91.90 115.68 123.56 58.30
M=200, N=1500 93.91 121.21 136.62 60.87
M=300, N=500 114.28 152.30 168.93 118.14

M=300, N=1000 131.00 150.04 178.59 134.61
M=300, N=1500 162.25 178.30 215.68 196.75
M=400, N=500 151.68 184.95 238.52 149.92

M=400, N=1000 161.58 202.17 284.00 196.81
M=400, N=1500 169.29 245.31 324.75 175.65

Table 10.2: Running time of the replica placement methods in
seconds for large problem instances [C=45%, R/W=0.85]

Problem Size Greedy GRA Aε-Star COOP
M=2500, N=15,000 310.14 491.00 399.63 211.64
M=2500, N=20,000 330.75 563.25 442.66 339.12
M=2500, N=25,000 357.74 570.02 465.52 370.38
M=3000, N=15,000 452.22 671.68 494.60 556.98
M=3000, N=20,000 467.65 726.75 498.66 341.61
M=3000, N=25,000 469.86 791.26 537.56 549.38
M=3718, N=15,000 613.27 883.71 753.87 742.70
M=3718, N=20,000 630.39 904.20 774.31 629.67
M=3718, N=25,000 646.98 932.38 882.43 654.33

between good and marginal algorithms. The plot in Figure 10.3 shows the results of

read/write ratio against the OTC savings. A clear classification can be made between

the algorithms. COOP and Greedy incorporate the increase in the number of reads by

replicating more objects and thus savings increased up to 92%, while GRA gained the

least of the OTC savings of up to 42%. To understand why there is such a gap in the

performance between the algorithms, we should recall that GRA specifically depends

on the initial selection of gene population (for details see [78]). Moreover, GRA

maintains a localized network perception. Increase in updates result in objects having

218

decreased local significance (unless the vicinity is in close proximity to the primary

location). On the other hand, COOP, Aε-Star and Greedy never tend to deviate from

their global view of the problem.

Lastly, we compare the termination time of the algorithms. Various problem

instances were recorded with C = 20%, 45% and R/W = 0.45, 0.85. The entries in

Tables 10.1 and 10.2 made bold represent the fastest time recorded over the problem

instance. It is observable that Greedy terminated faster than all the other techniques,

followed by COOP, Aε-Star, and GRA.

In summary, based on the solution quality alone, the replica allocation methods

can be classified into four categories: 1) High performance: COOP; 2) Medium-High

performance: Greedy; 3) Medium performance: Aε-Star; 5) Low performance: GRA.

Considering the execution time, Greedy and COOP did extremely well, followed by Aε-

Star and GRA.

10.4 Concluding Remarks

This chapter proposed a cooperative game theoretical replica placement

technique (COOP) for object based data replication in large distributed computing

systems. COOP is a protocol for automatic replication of objects in response to demand

changes. It aims to place objects in the proximity of a majority of requests while

ensuring that no hosts become overloaded.

The proposed COOP technique improved the performance relative to other

conventional methods in four ways. First, the number of replicas in a system was

219

controlled to reflect the ratio of read versus write access. To maintain concurrency

control, when an object is updated, all of its replicas need to be updated simultaneously.

If the write access rate is high, there should be few replicas to reduce the update

overhead. If the read access rate is overwhelming, there should be a high number of

replicas to satisfy local accesses. Second, performance was improved by replicating

objects to the servers based on locality of reference. This increases the probability that

requests can be satisfied either locally or within a desirable amount of time from a

neighboring server. Third, replica allocations were made in a fast algorithmic turn-

around time.

220

CHAPTER 11

FUTURE DIRECTIONS, VIEWS, AND VISIONS

Our discussion only encircled the game theoretical auctions that had a central

body to collect the information from the players, and based on that conclude a decision.

However, there maybe systems, such as, grid computing and P2P system, that explicitly

require a fully distributed mechanism. For instance, consider grid computing, which is

predominately concerned with coordinated resource sharing in a dynamic, and

sometimes in multi-organization structure. Consider also the P2P systems, which are

similar to the Grids but characteristically have more users with a wide spectrum of

capabilities. Grids and P2P systems have distinct characteristics and stakeholders that

require very efficient and effective resource allocation mechanisms, but there is no one

central decision making body. Thus, we need to consider applying distributed game

theoretical auction mechanism, or the likes of it which can consider to implement a

social choice function under the constraint that no central decision making body

computes the outcome. This need can be due to:

1. The system has a structure which does not allow a central resource manager.

2. The system requires every entity to be a self sufficient.

A distributed game theoretical auction mechanism would exhibit among others

the following advantages over an ordinary game theoretical auction mechanism, and is a

221

strong candidate for resource allocation and management techniques in grid and P2P

computing:

1. A distributed game theoretical auction mechanism would transfer the computational

workload from a central decision making body in the mechanism to the players.

2. A distributed game theoretical auction mechanism would bring in robustness to the

system, since in an ordinary game theoretical auction mechanism the

communications between the players and the central decision making body are

critical, and their malfunctioning may incapacitate the system. In distributed game

theoretical auction mechanism this communication structure simply does not exist,

but at a cost – the system may only be able to attain suboptimal results.

3. Since in a distributed game theoretical auction mechanism no single entity would

compute the outcome, a higher degree of trust would exist in the system.

4. Due to its distributed nature, the communication would never converge to a single

point, thus, there would be no bottlenecks.

Briefly, a distributed game theoretical auction mechanism would distribute the

mechanism’s rules across the players so that they can perform computations (and

eventually reach to an outcome) based on the message sent and received from players in

the system. Although, this setting is intriguing, yet it posses several challenges, which

we enumerate as follows:

1. The grand challenge here would be to make these players play in a selfless manner,

since they now have a firm control over the distributed structure of the underlying

auction mechanism.

222

2. Another grand problem would be to reduce the complexity of messages passing in

the communication network.

3. Computationally, we would seek to find social choice functions that can actually

converge to solutions in a fully distributed fashion – something on the line of the

distributed Vickrey auction implementation, which is a classical example of a

canonically distributed convergence.

4. Theoretically, one needs to seek that the strategies applied by the players cater for

cartel type behaviors. For instance, imagine a P2P system in which some serves

only selectively (on personal preference) allow the sharing or resources. That kind

of behavior has to be suppressed at all costs.

223

APPENDIX A

PUBLICATIONS

224

PUBLICATIONS

Book Chapters

S. U. Khan and I. Ahmad, "Game Theoretical Solutions for Data Replication in

Distributed Computing Systems," in Handbook of Parallel Computing: Models,

Algorithms, and Applications, S. Rajasekaran and J. Reif, Eds., Chapman & Hall/CRC

Press, Boca Raton, FL, USA, 2007, ISBN 1-584-88623-4. (In press.)

Journal Papers

S. U. Khan and I. Ahmad, “Replicating Data Objects in Large Distributed Computing

Systems: An Axiomatic Game Theoretical Mechanism Design Approach,” IEEE

Transactions on Parallel and Distributed Systems, 2007. (Submitted.)

S. U. Khan and I. Ahmad, “Replicating Data Objects in Large-scale Distributed

Computing Systems using Game Theoretical Auctions,” Journal of Parallel and

Distributed Computing, 2007. (Submitted.)

S. U. Khan and I. Ahmad, “A Game Theoretic Perturbation Mechanism for Object

Replication in Large Distributed Systems,” Journal of Parallel and Distributed

Computing, 2007. (Submitted .)

S. U. Khan and I. Ahmad, “Comparison and Analysis of Ten Static Heuristics-based

225

Internet Data Replication Techniques,” Journal of Parallel and Distributed Computing,

2007. (Accepted subject to minor revision.)

S. U. Khan and I. Ahmad, “Discriminatory Algorithmic Mechanism Design Based

WWW Content Replication,” Informatica, vol. 31, no. 1, pp. 105-119, 2007.

S. U. Khan and I. Ahmad, “Replicating Data Objects in Large-scale Distributed

Computing Systems using Extended Vickery Auction,” International Journal of

Computational Intelligence, vol. 3, no. 1, pp. 14-22, 2006.

Conference Papers

S. U. Khan and I. Ahmad, “A Cooperative Game Theoretical Replica Placement

Technique,” in 13th International Conference on Parallel and Distributed Systems

(ICPADS), Hsinchu, Taiwan, December 2007. (Submitted.)

S. U. Khan and I. Ahmad, “A Semi-Distributed Axiomatic Game Theoretical

Mechanism for Replicating Data Objects in Large Distributed Computing Systems,” in

21th IEEE International Parallel and Distributed Processing Symposium (IPDPS),

Long Beach, CA, USA, March 2007.

S. U. Khan and I. Ahmad, “A Pure Nash Equilibrium Guaranteeing Game Theoretical

Replica Allocation Method for Reducing Web Access Time,” in 12th International

Conference on Parallel and Distributed Systems (ICPADS), Minneapolis, MN, USA,

July 2006, pp. 169-176.

226

S. U. Khan and I. Ahmad, “Data Replication in Large Distributed Computing Systems

using Supergames,” in The 2006 International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), Las Vegas, NV, USA, June 2006,

pp. 38-44.

S. U. Khan and I. Ahmad, “RAMM: A Game Theoretical Replica Allocation and

Management Mechanism,” in 8th International Symposium on Parallel Architectures,

Algorithms, and Networks (I-SPAN), Las Vegas, NV, USA, December 2005, pp. 160-

165.

S. U. Khan and I. Ahmad, “Data Replication in Large Distributed Computing Systems

using Discriminatory Game Theoretic Mechanism Design,” in 8th International

Conference on Parallel Computing Technologies (PaCT), Krasnoyarsk, Russia,

September 2005.

S. U. Khan and I. Ahmad, “A Game Theoretical Extended Vickery Auction Mechanism

for Replicating Data in Large-scale Distributed Computing Systems,” in The 2005

International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA), Las Vegas, NV, USA, June 2005, pp. 904-910.

S. U. Khan and I. Ahmad, “A Powerful Direct Mechanism for Optimal WWW Content

Replication,” in 19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS), Denver, CO, USA, April 2005, p. 86.

227

S. U. Khan and I. Ahmad, “N+1st Price Auction Based Replica Schemas,” in 1st

International Conference on Computational Intelligence, Istanbul, Turkey, December

2004, pp. 256-259.

S. U. Khan and I. Ahmad, “Heuristics-based Replication Schemas for Fast Information

Retrieval over the Internet,” in 17th International Conference on Parallel and

Distributed Computing Systems (PDCS), San Francisco, CA, USA, September 2004, pp.

278-283.

228

REFERENCES

[1] G. Abdulla, Analysis and Modeling of World Wide Web Traffic, PhD thesis,

Virginia Polytechnic Institute and State University, Virginia, USA, 1998.

[2] T. Abdelzaher and N. Bhatti, “Web Content Adaptation to Improve Sever

Workload Behavior,” Computer Networks, 21(11), pp. 1536-1577, 1999.

[3] I. Ahmad and A. Ghafoor, “Semi-Distributed Load Balancing for Massively

Parallel Multicomputer Systems,” IEEE Trans. Software Engineering, vol. 17, no. 10,

pp. 987-1004, 1991.

[4] V. Almeida, A. Bestavros, M. Crovella and A. de Oliveria, “Characterizing

reference locality in the WWW,” in Proc. of International Conference on Parallel and

Distributed Information Systems, 1996, pp. 92-103.

[5] P. Apers, “Data Allocation in Distributed Database Systems,” ACM Transactions

on Database Systems, vol. 13, no. 3, pp. 263-304, 1988.

[6] M. Arlitt and T. Jin, “Workload Characterization of the 1998 World Cup Web

Site,” Technical report, Hewlett Packard Laboratory, Palo Alto, CA, USA, HPL-1999-

35(R.1), 1999.

[7] R. Aumann and M. Maschler, “Game Theoretic analysis of a Bankruptcy Problem

from the Talmud,” Journal of Economic Theory vol. 36, pp. 195-213, 1985.

[8] B. Awerbuch, Y. Bartal and A. Fiat, “Competitive Distributed File allocation,” in

Proc. 25th ACM STOC, Victoria, B.C., Canada, 1993, pp. 164-173.

229

[9] B. Awerbuch, Y. Bartal, and A. Fiat, “Distributed Paging for General Networks,”

Journal of Algorithms, vol. 28, no. 1, pp. 67–104, 1998.

[10] I. Baev and R. Rajaraman, “Approximation Algorithms for Data Placement in

Arbitrary Networks,” in Proc. of the 12th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2001, pp. 661-670.

[11] S. Baker and B. Moon, “Scalable Web Server Design for Distributed Data

Management,” in Proceedings of the 15th International Conference on Data

Engineering, 1999, p. 86.

[12] S. Bradley, A. Hax, and T. Magnanti, Applied Mathematical Programming,

Addison-Wesley, Reading, Massachusetts, USA, 1977.

[13] L. Breslau, P. Cao, L. Fan, G. Philips and S. Shenker, “Web caching and Zipf-like

distributions: Evidence and implications,” in Proc. of IEEE INFOCOM, 1999, pp. 126-

134.

[14] K. Calvert, M. Doar, E. Zegura, “Modeling Internet Topology,” IEEE

Communications Magazine, vol. 35, no. 6, pp. 160-163, 1997.

[15] R. Casey, “Allocation of Copies of a File in an Information Network,” in Proc.

Spring Joint Computer Conf., IFIPS, 1972, pp. 617-625.

[16] C. Ceri, G. Pelagatti, and G. Martella, “Optimal File Allocation in a Computer

Network: A Solution based on Knapsack Problem,” Computer Networks, vol. 6, pp.

345-357, 1982.

[17] H. Chang, R. Govindan, S. Jamin and S. Shenker, "Towards Capturing

Representative AS-Level Internet Topologies," Computer Networks Journal, vol. 44,

230

no. 6, pp 737-755, 2004.

[18] M. Charikar, S. Guha, E. Tardos and D. Shmoys, “A Constant-Factor

Approximation Algorithm for the K-Median Problem,” in Proceedings of the 31st

Annual ACM Symposium on the Theory of Computation, 1999, pp. 1-10.

[19] K. Chandy and J. Hewes, “File Allocation in Distributed Systems,” in Proc. of the

International Symposium on Computer Performance Modeling, Measurement and

Evaluation, 1976, pp. 10-13.

[20] L. Chen and H. Choi, “Approximation Algorithms for Data Distribution with

Load Balancing of Web Servers,” in Proceedings of the 3rd IEEE International

Conference on Cluster Computing, 2001, pp. 274-281.

[21] W. Chu, “Optimal File Allocation in a Multiple Computer System,” IEEE

Transactions on Computers, vol. 18, no. 10, pp. 885-889, 1969.

[22] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou and J.

Kubiatowicz, “Selfish Caching in Distributed Systems: A Game-Theoretic Analysis,” in

Proc. of 23rd ACM Symposium on Principles of Distributed Computing, 2004, pp. 21-

30.

[23] I. Cidon, S. Kutten, and R. Soffer, “Optimal Allocation of Electronic Content,” in

Proc. of IEEE INFOCOM, April 2001,pp. 1773-1780.

[24] E. Clarke, “Multipart Pricing of Public Goods,” Public Choice, vol. 11, pp. 17-33,

1971.

[25] V. Conitzer and T. Sandholm, “Complexity of Mechanism Design,” in Proc. of

International Conference on Uncertainty in Artificial Intelligence, 2002, pp. 103-110.

231

[26] S. Cook, J. Pachl, and I. Pressman, “The Optimal Location of Replicas in a

Network using a READ-ONE-WRITE-ALL Policy,” Distributed Computing, vol. 15,

no. 1, pp. 57-66, 2002.

[27] R. Dash, N. Jennings, and D. Parkers, “Computational Mechanism Design: A Call

to Arms,” IEEE Intelligent Systems, vol. 18, no. 6, pp. 40-47, 2003.

[28] B. Davison, “A Survey of Proxy Cache Evaluation Techniques,” in Proceedings

of the 4th International Web Caching Workshop, 1999, pp. 67-77.

[29] G. Demange, D. Gale and M. Sotomayor, “Multi-item auctions,” Journal of

Political Economy , no. 94, 1986, pp. 836-872.

[30] L. Dowdy and D. Foster, “Comparative Models of the File Allocation Problem,”

ACM Computing Surveys, vol. 14, no. 2, pp. 287-313, 1982.

[31] K. Eswaran, “Placement of Records in a File and File Allocation in a Computer

Network,” in Proceedings of IFIP Congress, 1974, pp. 304-307.

[32] A. Fabrikant, C. Papadimitriou and K. Talwar, "The Complexity of Pure Nash

Equilibria," in Proc. of 36th ACM SToC, 2004, pp. 604-612.

[33] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator and N. Young, “Competitive

Paging Algorithms,” Journal of Algorithms, vol. 12, no. 4, pp. 685-699, 1991.

[34] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,” IEEE/ACM

Transactions on Networking, vol. 9, no. 4, pp. 253-285, 2001.

[35] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman and Co.,

Murray Hills, New Jersey, USA, 1979.

[36] N. Gautam, “An Integer Programming Formulation of the Web Server Location

232

Problem,” Available at: http://ie.tamu.edu/people/faculty/Gautam/papers/gweb.pdf.

[37] R. Gonen and D. Lehmann, “Optimal Solutions for Multi-unit Combinatorial

Auctions: Branch and Bound Heuristics,” in Proceedings of the 2nd ACM Conference

on Electronic Commerce, 2000, pp. 13-20.

[38] J. Green and J. Laffont, “Characterization of Satisfactory Mechanisms for the

revelation of Preferences for Public Goods,” Econometrica, pp. 427-438, 1977.

[39] D. Grosu and A. Chronopoulos, “Algorithmic Mechanism Design for Load

Balancing in Distributed Systems,” IEEE Trans. Systems, Man and Cybernatics B,

34(1), pp. 77-84, 2004.

[40] T. Groves, “Incentives in Teams,” Econometrica, vol. 41, pp. 617-631, 1973.

[41] P. Habegger and H. Bieri, "Modeling the Topology of the Internet: An

Assessment," Technical report, Institut für Informatik und angewandte Mathematik,

Universität Bern, Bern, Switzerland, IM-02-2002.

[42] S. Hakimi, “Optimum Location of Switching Centers and the Absolute Centers and

Medians of a Graph,” Operations Research, vol. 12, pp. 450–459, 1964.

[43] A. Heddaya and S. Mirdad, “WebWave: Globally Load Balanced Fully Distributed

Caching of Hot Published Documents,” in Proc. 17th International Conference on

Distributed Computing Systems, Baltimore, Maryland, 1997, pp. 160-168.

[44] J. Holland. Adaptation in Natural and Artificial Systems. The University of

Michigan Press, Ann Arbor, Michigan, USA, 1975.

[45] K. Jain and V. Vazirani, “Primal-dual Approximation Algorithms for Metric

Facility location and k-median Problems,” in Proceedings of the 40th IEEE Symposium

233

on Foundations of Computer Science, 1999, pp. 2-13.

[46] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L. Zhang, “On the Placement of

Internet Instrumentation,” in Proceedings of the IEEE INFOCOM, 2000, pp. 295-304.

[47] S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt, “Constrained Mirror Placement

on the Internet,” in Proceedings of the IEEE INFOCOM, 2001, pp. 31-40.

[48] N. Jennings and S. Bussmann, “Agent-Based Control Systems,” IEEE Control

Systems Magazine, vol. 23, no. 3, pp. 61-74, 2003.

[49] X. Jia, D. Li, X. Hu, and D. Du, “Optimal Placement of Web Proxies for

Replicated Web Servers in the Internet,” The Computer Journal, vol. 44, no. 5, pp. 329-

339, 2001.

[50] S. Jin and A. Bestavros, “Greedydual* Web Caching Algorithm: Exploiting the

two sources of Temporal Locality in Web Request Streams,” Computer

Communiations, vol. 24, no. 2, pp. 174-183, 2001.

[51] M. Kafil and I. Ahmad, “Optimal Task Assignment in Heterogeneous Computing

Systems,” IEEE Concurrency, vol. 6, no. 3, pp. 42-51, 1998.

[52] J. Kangasharju, J. Roberts and K. Ross, “Object Replication Strategies in Content

Distribution Networks,” in Proceedings of the 6th International Web Caching and

Content Distribution Workshop, 2001, pp. 455-456.

[53] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal Placement of Replicas in

Trees with Read, Write, and Storage Costs,” IEEE Transactions on Parallel and

Distributed Systems, vol. 12, no. 6, pp. 628–637, 2001.

[54] M. Karlsson and M. Mahalingam, “Do we need replica placement algorithms in

234

content delivery networks?” in Proceedings of the 7th International Workshop on Web

Content Caching and Distribution, 2002, pp. 516-525.

[55] M. O’ Kelly, “The Location of Interacting Hub Facilities,” Transportation

Science, vol. 20, pp. 92–106, 1986.

[56] M. Korupolu and C. Plaxton, “Analysis of a Local Search Heuristic for Facility

Location Problems,” Journal of Algorithms, vol.37, no. 1, pp. 146-188, October 2000.

[57] S. Khan and I. Ahmad, “Heuristic-based Replication Schemas for Fast

Information Retrevial over the Internet,” in Proceedings of the 17th International

Conference on Parallel and Distributed Computing Systems, 2004, pp. 278-283.

[58] S. Khan and I. Ahmad, “A Powerful Direct Mechanism for Optimal WWW

Content Replication,” in Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium, 2005, p. 86.

[59] S. Khan and I. Ahmad, "A Game Theoretical Extended Vickery Auction

Mechanism for Replicating Data in Large-scale Distributed Computing Systems," in

Proc. of International Conference on Parallel and Distributed Processing Techniques

and Applications, 2005, pp. 904-910.

[60] S. Khan and I. Ahmad, "Data Replication in Large Distributed Computing

Systems using Discriminatory Game Theoretic Mechanism Design," in Proc of 8th

International Conference on Parallel Computing Technologies, 2005.

[61] S. Khan and I. Ahmad, "RAMM: A Game Theoretical Replica Allocation and

Management Mechanism," in Proc. 8th International Symposium on Parallel

Architectures, Algorithms, and Networks, 2005, pp. 160-165.

235

[62] S. Khan and I. Ahmad, "A Pure Nash Equilibrium Guaranteeing Game Theoretical

Replica Allocation Method for Reducing Web Access Time," in Proc. of 12th

International Conference on Parallel and Distributed Systems, 2006.

[63] S. Khan and I. Ahmad, "Replicating Data Objects in Large-scale Distributed

Computing Systems using Extended Vickrey Auction," International Journal of

Computational Intelligence, vol. 3, no. 1, pp. 14-22, 2006.

[64] M. Korupolu, C. Plaxton and L. Rajaraman, “Analysis of a Local Search Heuristic

for Facility Location Problems, in Proc. of the 9th Annual ACM/SIAM Symposium on

Discrete Algorithms, 1998, pp. 1-10.

[65] C. Krick, H. Racke, and M. Westermann, “Approximation Algorithms for Data

Management in Networks,” in Proc. of the Symposium on Parallel Algorithms and

Architecture, 2001, pp. 237–246.

[66] V. Krishna. Auction Theory, Academic Press, San Diego, U.S.A., 2002.

[67] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Problem,” IEEE/ACM

Transactions on Networking, vol. 8, no. 5, pp.568-582, October 2000.

[68] B. Krishnamurthy and J. Wang, “On Network-aware Clustering of Web Clients,”

in Proceedings of the ACM SIGCOMM, 2000, pp. 97-110.

[69] J. Kurose and R. Simha, “A Microeconomic Approach to Optimal Resource

Allocation in Distributed Computer Systems,” IEEE Transactions on Computers, vol.

38, no. 5, pp. 705-717, 1989.

[70] Y.-K. Kwok, K. Karlapalem, I. Ahmad and N. Pun, “Design and Evaluation of

Data Allocation Algorithms for Distributed Database Systems,” IEEE Journal on

236

Selected areas in Communication, vol. 14, no. 7, pp. 1332-1348, 1996.

[71] H. Kuhn, “Excerpt from Montmort's Letter to Nicholas Bernoulli,” in Precursors

in Mathematical Economics: An Anthology, ser. Reprints of Scarce Works on Political

Economy, W. Baumol and S. Goldfeld, eds., vol. 19, pp. 3-6, 1968.

[72] N. Laoutaris, O. Telelis, V. Zissimopoulos and I. Stavrakakis, “Local Utility

Aware Content Replication,” to appear in IFIP Networking Conference, 2005.

[73] B. Lee and J. Weissman, “Dynamic Replica Management in the Service Grid,” in

Proceedings of the 10th IEEE International Symposium on High Performance

Distributed Computing, 2001, pp. 433-434.

[74] A. Leff, J. Wolf, and P. Yu, “Replication Algorithms in a Remote Caching

Architecture,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 11,

pp. 1185-1204, 1993.

[75] B. Li, M. Golin, G. Italiano and X. Deng, “On the Optimal Placement of Web

Proxies in the Internet,” in Proceedings of the IEEE INFOCOM, 1999, pp. 1282-1290.

[76] Looking Glass Sites Project, Available at:

http://www.nanog.org/lookingglass.html.

[77] T. Loukopoulos, Caching and Replication Schemes on the Internet, PhD thesis,

Hong Kong University of Science and Technology, Hong Kong, China, 2002.

[78] T. Loukopoulos, and I. Ahmad, “Static and Adaptive Distributed Data Replication

using Genetic Algorithms,” Journal of Parallel and Distributed Computing, vol. 64, no.

11, pp. 1270-1285, 2004.

[79] T. Loukopoulos, I. Ahmad, and D. Papadias, “An Overview of Data Replication

237

on the Internet,” in Proceedings of the 6th International Symposium on Parallel

Architectures Algorithms, and Networks, pp. 31-36, 2002.

[80] C. Lund, N. Reingold, J. Westbrook, and D. Yan, “Competitive On-Line

Algorithms for Distributed Data Management,” SIAM Journal of Computing, vol. 28,

no. 3, pp. 1086–1111, 1999.

[81] B. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann, “Exploiting

Locality for Data Management in Systemsof Limited Bandwidth,” in Proc. of the

Symposium on Foundations of Computer Science, 1997, pp. 284-293.

[82] S. Mahmoud and J. Riordon, “Optimal Allocation of Resources in Distributed

Information Networks,” ACM Transactions on Database Systems, vol. 1, no. 1, pp. 66-

78, 1976.

[83] S. March and S. Rho, “Allocating Data and Operations to Nodes in Distributed

Database Design,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, no.

2, pp.305-317, 1995.

[84] A. Mascolell, M. Whinston, and J. Green, Microeconomic Theory, Oxford

University Press, 1995.

[85] R. McAfee and J. McMillan, “Actions and Bidding,” Journal of Economics

Literature, vol. 25, pp. 699-738, 1987.

[86] A. Medina, I. Matta and J. Byers, “On the Origin of Power Laws in Internet

Topologies,” ACM Computer Communication Review, vol. 30, no. 2, pp. 18-28, 2000.

[87] F. Meyer auf der Heide, B. Vocking, and M. Westermann,“Caching in Networks,”

in Proc. of the 11th ACM-SIAM Symposium On Discrete Algorithms, 2000, pp. 430–

238

439.

[88] R. Myerson, Game Theory: Analysis of Conflict, Harvard University Press, 1997.

[89] B. Narebdran, S. Rangarajan and S. Yajnik, “Data Distribution Algorithms for

Load Balancing Fault-Tolerant Web Access,” in Proceedings of the 16th Symposium on

Reliable Distributed Systems, 1997, pp. 97-106.

[90] NASA Keneddy Space Center access log, Available at:

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.

[91] J. Nash, "The Bargaining Problem," Econometrica, vol. 18, pp. 155–162, 1950.

[92] J. Nash, “Non-Cooperative Games,” Annals of Mathematics, vol. 54, pp. 286-295,

1951.

[93] J. Nash, "Equilibrium Points in N-person Games," in Proc. of the National

Academy of Sciences, vol. 36, pp. 48-49, 1950.

[94] J. Nash and L. Shapley, "A Simple Three-person Poker Game," Annals of

Mathematical Studies, vol. 24, pp. 105-106, 1950.

[95] N. Nisan and A. Ronen, “Algorithmic Mechanism Design,” in Proc. of 31st ACM

STOC, 1999, pp. 129-140.

[96] M. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 2002.

[97] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel and E. M.

Nahum, “Locality-aware Request Distribution in Cluster-based Network Servers,” in

Proceedings of the 8th International Conference on Architectural Support for

Programming Languages and Operating Systems, 1998, pp. 205-216.

[98] L. Pautet and S. Tardieu, “GLADE: A Framework for Building Large Object-

239

Oriented Real-Time Distributed Systems,” in 3rd International Symposium on Object-

Oriented Real-Time Distributed Systems, 2000, pp. 244-251.

[99] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,

Addison-Wesley, Reading, Massachusetts, USA, 1984.

[100] L. Qiu, V. Padmanabhan and G. Voelker, “On the Placement of Web Server

Replicas,” in Proc. of the IEEE INFOCOM, 2001, pp. 1587-1596.

[101] M. Rabinovich, “Issues in Web Content Replication,” Data Engineering Bulletin,

vol. 21, no. 4, pp. 21-29, 1998.

[102] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-Informed Internet Replica

Placement,” Computer Communications, vol.25, no. 4, pp. 384–392, March 2002.

[103] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” Internet

Engineering Task Force, RFC 1771, 1995.

[104] J. Rosenchein and G. Zolotkin, Rules of Encounter, MIT Press, 1994.

[105] T. Sandholm, “Distributed Rational Decision Making,” Multiagent Systems: A

modern Approach to Distributed Artificial Intelligence, G. Weiss, ed., MIT Press, p.

201, 1999.

[106] S. Saurabh and D. Parkes, “Hard-to-Manupilate VCG-Based Auctions,”

Avaialable at: http://www .eecs. harvard.edu/econcs/pubs/hard_to_manipulate.pdf

[107] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, J. Kubiatowicz,

“Maintenance-free Global Storage,” IEEE Internet Computing, vol. 5, no. 5, pp. 40-49,

2001.

[108] M. Sayal, Y. Breitbart, P. Scheuermann and R. Vingralek, “Selection Algorithms

240

for Replicated Web Servers,” ACM Performance Evaluation Review, vol. 26, no. 3, pp.

44-50, 1998.

[109] S. So, I. Ahmad and K. Karlapalem, “Response Time Driven Multimedia Data

Objects Allocation for Browsing Documents in Distributed Environments,” IEEE

Transactions on Knowledge and Data Engineering, vol. 11, no. 3, pp. 386-405, 1999.

[110] G. Srinivasan and N. Gautam, “Optimal Location of Web Servers, in Proc. of the

Industrial Engineering Research Conference, 2002.

[111] R. Tewari and N. Adam, “Distributed File Allocation with Consistency

Constraints,” in Proc. of the International Conference on Distributed Computing

Systems, 1992, pp. 408–415.

[112] E. van Damme, Stability and Perfection of Nash Equilibia, Springer-Verlag, 1996.

[113] A. Venkataramanj, P. Weidmann, and M. Dahlin, “Bandwidth Constrained

Placement in a WAN,” in Proc. ACM Symposium on Principles of Distributed

Computing, August 2001.

[114] W. Vickrey, “Counterspeculation, Auctions and Competitive Sealed Tenders,”

Journal of Finance, pp. 8-37, 1961.

[115] A. Vigneron, L. Gao, M. Golin, G. Italiano and B. Li, “An Algorithm for Finding

a k-median in a Directed Tree,” Information Processing Letters, vol. 74 , pp. 81-88,

2000.

[116] J. von Neumann, “Zur Theorie der Gesellschaftsspiele,” Mathematische Annalen,

vol. 100, pp. 295-320, 1928.

[117] B. Waxman, “Routing of Multipoint Connections,” IEEE Journal of Selected

241

Areas of Communications, vol. 6, no. 9, pp. 1617-1622, 1988.

[118] M. Wellman, “A Market-Oriented Programming Environment and its Application

to Distributed Multicommodity Flow Problem,” Journal of Artificial Intelligence

Research, vol. 1, pp. 1-23, 1993.

[119] D. White, “An Extension of a Greedy Heuristic for the Knapsack Problem,”

European Journal of Operational Research, vol. 51, pp. 387-399, 1991.

[120] O. Wolfson and S. Jajodia, “Distributed algorithms for dynamic replication of

data,” in Proc. ACM Symposium on Principles of Database Systems, June 1992, pp.

149-163.

[121] O. Wolfson, S. Jajodia and Y. Hang, “An Adaptive Data Replication Algorithm,”

ACM Trans. on Database Systems, 22(4), pp. 255-314, 1997.

[122] E. Zegura, K. Calvert and M. Donahoo, “A Quantitative Comparison of Graph-

based Models for Internet Topology,” IEEE/ACM Transactions on Networking, vol. 5,

no. 6, pp. 770-783, 1997.

[123] G. Zipf, Human Behavior and the Principle of Least-Effort, Addison-Wesley,

Reading, Massachusetts, USA, 1949.

[124] L. Zhuo, C. Wang and F. C. M. Lau, “Load Balancing in Distributed Web Server

Systems with Partial Document Replication,” in Proceedings of the 31st International

Conference on Parallel Processing, 2002, pp. 305-314.

[125] A. Zoltners, “A Direct Descent Binary Knapsack Algorithm,” Journal of the

ACM, vol. 25, no. 2, pp. 304-311, 1978.

242

BIOGRAPHICAL INFORMATION

Samee U. Khan received his BS in Computer Systems Engineering from the

Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan,

in May 1999. He is currently a doctoral candidate in the Computer Science and

Engineering Department of the University of Texas, Arlington, TX, USA. His research

interests include designing, building, analyzing, and measuring large-scale autonomous

distributed computing systems using game theoretical and algorithmic mechanism

design techniques, passive optical network layouts, designing secure systems,

combinatorial games, and combinatorial optimization. Mr. Khan is a member of the

European Association of Theoretical Computer Science, the Game Theory Society, the

IEEE Communications Society, the IEEE Computer Society, and the Society of Photo-

Optical Instrumentation Engineers.

