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ABSTRACT 

 

GAME THEORETICAL REPLICA PLACEMENT TECHNIQUES FOR LARGE-

SCALE AUTONOMOUS DISTRIBUTED COMPUTING SYSTEMS 

 

Publication No. ______ 

 

Samee Ullah Khan, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Ishfaq Ahmad  

 

Data replication in geographically dispersed servers is an essential technique for 

reducing the user perceived access time in large–scale distributed computing systems. A 

majority of the conventional replica placement techniques lack scalability and solution 

quality. To counteract such issues, this thesis proposes a game theoretical replica 

placement framework, in which autonomous agents compete for the allocation or 

reallocation of replicas onto their representative servers in a self–managed fashion. 

Naturally, each agent’s goal is to maximize its own benefit. However, the framework is 

designed to suppress individualism and to ensure system–wide optimization. Using this 

framework as an environment, several cooperative and non–cooperative low–
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complexity, flexible, and scalable game theoretical replica placement techniques are 

proposed, analytically investigated, and experimentally evaluated. Each of these 

techniques supports different game theoretical (pareto–optimality, catering to agents’ 

interests, deliberate discrimination of allocation, budget balanced, pure Nash 

equilibrium, and Nash equilibrium) and system (link distance, congestion control, 

minimization of communication cost, and memory optimization) related properties. 

Using a detailed test–bed involving eighty various network topologies and two real–

world access logs, each game theoretical technique is also extensively compared with 

conventional replica placement techniques, such as, greedy heuristics, branch–and–

bound techniques and genetic algorithms. The experimental study confirms that in each 

case the proposed techniques outperform other conventional methods. The results can 

be summarized in four ways: 1) The number of replicas in a system self–adjusts to 

reflect the ratio of the number of reads versus writes access; 2) Performance is 

improved by replicating objects to the servers based on the locality of reference; 3) 

Replica allocations are made in a fast algorithmic turn–around time; 4) The complexity 

of the data replication problem is decreased by multifold.  
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CHAPTER 1 

INTRODUCTION 

 

With the exponential growth of the World Wide Web, popular web serves are 

required to handle enormous amount of requests from geographically and 

psychologically diverse users  [1]. These web servers are in constant competition with 

their peers to provide better (faster/reliable) Internet usage. (For instance, over the 

number of years many commercial web hosting services such as Akamai, Exodus, etc. 

have gained popularity  [58].) However, the Internet access simply cannot be improved 

by high performance web servers  [100]. Efficient and sophisticated caching and 

replication techniques are necessary to ensure: up-to-date contents, fast information 

retrieval, reduced web server load, and added reliability.  

Caching was traditionally applied to distributed file systems such as the AFS 

 [79]. Although it is a well-studied problem, yet its application on the Internet gave rise 

to new problems, e.g., where to place a cache, how to make sure cached contents are 

valid, and how to handle dynamic pages. Replication, in contrast, has been commonly 

used in distributed systems to increase availability and fault tolerance, which in turn 

leads to load balancing and increases client-server proximity  [108]. Both techniques 

play complementary roles in the Internet environment  [78]. Caching attempts to store 

the most commonly accessed objects as close to the clients as possible, while replication 
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distributes a site’s contents across multiple mirror servers. Caching can be viewed as a 

special case of replication when mirror servers store only parts of a site’s contents  [1]. 

This analogy leads to some interesting comparisons. For instance, cache replacement 

algorithms are examples of on-line, distributed, locally greedy algorithms for data 

allocation in replicated systems. Furthermore, caches do not have full server capabilities 

and thus can be viewed as a replicated system that sends requests for specific object 

types (e.g., dynamic pages) to a single server. Essentially, every major aspect of a 

caching scheme has its equivalent in replicated systems, but not vice versa. For fault-

tolerant and highly dependable systems, replication is essential, as demonstrated in a 

real world example of Ocean Store  [107]. Replication can be coarse-grained (replication 

of an entire site or server) or fine-grained (replication of individual data items or 

objects). Below we detail these two popular models. 

 

1.1 Coarse-grained replication model 

Similarity to the celebrated distributed file allocation problem  [109], has moved 

the researches to address the problem of data replication on similar lines. We can 

formally state the problem as: “Choose M replicas among N potential sites (N>M) such 

that certain constraints are optimized.” 

These constraints could be memory, reduction in latency, communication cost 

etc. Since the entire site is copied to the location where it is to be replicated, it is termed 

as coarse-grained replication  [79]. 

A majority of the initial work, assumed the coarse-grained replication model. 



 

 19

We detail some of the major works that use the coarse-grained model as follows. 

Authors in  [75] model the Internet as a tree. Being not only unrealistic, the model also 

assumes that the access requests to the proxies by the clients (which reside on the leaves 

of the tree) are always on the direct path(s) towards the servers. Moreover their bound 

of O(N3M2) prevents them to compute real world proxy reallocation. Nevertheless work 

reported in  [75], is the very first of its nature which deals directly with the proxy server 

placement. In  [46], the authors used not only theoretical results, but combined it with 

appropriate heuristics. Their heuristic approach is so strong that it does not require the 

full knowledge of the network topology as assumed in many approaches  [79]. They 

latter improved  [47] their approach by introducing a refined constrained based policy. A 

comprehensive comparison with realistic data from Internet log files is done in  [100], 

where the Greedy approach  [100], outperforms the Dynamic Programming approach 

 [75], Randomized  [100] and Hot Spot  [100]. Although replicating the entire contents of 

the website can reduce the hit-miss ratio by considerable amounts, yet in the context of 

high-performance systems, the coarse-grained replication model is a too simplistic 

approach  [79]. 

 

1.2 Fine-grained replication model 

This model allows the replication of certain objects as apposed to the entire site. 

This approach has many advantages, such as  [100]: it saves the server memory capacity, 

it moves only those objects that are actually required to be reallocated, it reduces the 

network traffic and provides load-balancing. The generalized fine-grained replication is 
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known to be NP-complete not only for the general graphs  [78], but also for the 

partitioned graphs  [52]. We detail some of the major works that use the fine-grained 

model as follows. Authors in  [78] analyzed both static (such as a modified Greedy 

based approach  [83] and an Evolutionary method based on Genetic algorithms  [44]) and 

adaptive (such as a self-configured Genetic approach) replication techniques. 

Experimental results revealed that the static Genetic approach outperformed on every 

occasion. The work was further extended  [77] with comparisons to Linear Programming 

 [12] and Linear Integer Programming  [36]. In  [110], the authors compared a localized 

Greedy, DEJAVU and a genetic algorithm, and found that the genetic algorithm 

outperformed both the heuristics, supporting the results reported in  [77].  

This text focuses on the algorithms for the placement of replicas. Replica 

placement techniques determine where and how many replicas to be placed, so as to 

maximize the system performance. The decision where to place the replicated data must 

trade off the cost of accessing the data, which is reduced by additional copies, against 

the cost of storing and updating the replicas. In general, clients experience reduced 

access latencies provided that data is replicated within their close proximity. However, 

rapid updates (or writes) may counteract the replication benefit because of the overhead 

in maintaining a large number of replicas  [78]. With both reads and updates, the 

locations of the replicas have to be: 1) in close proximity to the client(s), and 2) in close 

proximity to the primary (assuming a broadcast update model) copy  [58]. Therefore, 

efficient and effective replication schemas strongly depend on how many replicas to be 

placed in the system, and more importantly where  [79]. 
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Myriad theoretical approaches are proposed that we classify (and also describe a 

few seminal works) into the following six categories: 

 

1.2.1 Facility Location  

The facility location problem can be defined as: “Find a location that minimizes 

a weighted sum of distances to each of several locations”. 

The generalized facility location problem is NP-complete  [35]. The only known 

work on data replication with similar characteristics as that of the facility location 

problem is reported in  [46]. However, the techniques reported are very tedious, have 

superfluous assumptions, and do not fully capture the concept of replicating a single 

item (object or site) over a fixed number of hosts  [77].   

 

1.2.2 File Allocation  

File allocation has been a popular line of research in: distributed computing 

 [83], distributed databases  [5], multimedia databases  [109], paging algorithms  [33], and 

video server systems  [109]. The generalized file allocation problem for multiple objects 

 [21] has been proven to be NP–complete  [31]. We can formally state the file allocation 

problem with context to the replication problem as  [79]: “For a network of M sites each 

with different storage capacity, replicate N files such that it satisfies the storage 

constraint and also optimizes some performance parameters e.g. network flow and/or 

reduce download speed”. 

File allocation has also been studied in the un–capacitated version  [79]. There 
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the authors provide a guaranteed optimal result, but since the assumption is on 

unlimited capacity, the result is of little practical use  [54]. A rather old but a 

comprehensive survey on file allocation can be found in  [30].  

 

1.2.3 Minimum k-Median 

The celebrated NP-complete minimum k–median problem is formally defined 

as follows  [79]: “Given is a graph G(V,E) with weights on the nodes representing the 

number of requests and lengths on the edges. Satisfy a request, such that it minimizes 

the network cost of traversal and the path from the origin node and a server(s)”.  

A lot of work has been done on k–median and its variants, e.g.,  [45],  [64]. In 

 [75] the authors studied the problem of placing M proxies at N nodes where the 

topology of the network is a tree and proposed an O(N3M2) algorithm. The result was 

further refined in  [115]. Both the results have significant theoretical contributions but 

are impractical since the underlying topology was assumed to be a tree or requires the 

accesses to data be made on a well-defined minimum spanning tree residing inside the 

graph. A similar result with the objectives of minimizing the overall access cost by 

clients to the web sites and minimizing the longest delay can be seen in  [49]. To 

compliment these approaches, a more generalized solution was presented in  [100]. 

There the authors compared various placement techniques and proposed a greedy 

algorithm that outperformed other techniques including the work reported in  [75]. Most 

of the results in this category have already been discussed while describing the coarse-

grained model. 
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1.2.4 Capacity-constrained Optimization  

Constraint optimization is a class of problems that is widely studied in 

Operations Research. In the context of the data replication problem, the capacity-free 

(unlimited storage) version has a better worst-case performance than the capacity-

constrained version  [79], yet it requires a lot of maneuverability in terms of choosing 

the optimization function  [18]. In  [52], the authors use the capacity-constrained version 

of the minimum k-median problem and guarantee a stable performance. However, such 

results are possible only with very conservative assumptions (such as, fixed location of 

the original server, access patterns are to be known before hand, no network failures, 

etc.) as addressed in  [47]  and  [73]; therefore, they can not handle the dynamics of the 

system  [79]. 

 

1.2.5 Bin Packing  

Widely studied in the field of on-line algorithms, the bin packing problem is 

known to be NP-hard  [35]. We can formally state the problem with context to 

replication as  [79]: “Given N various objects of different sizes, partition them into the 

minimum number of disjoint sets such that the cumulative size of each set does not 

exceed a certain threshold”. 

This approach was first studied in  [89], where the authors formulate the problem 

over a cluster of web servers to reduce the server loads, by incorporating the usage of 

dummy replicas. However, their approach performs well only when the network under 

consideration is small. Most recently a more flexible and general approach was 
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undertaken in  [57]. There the authors performed extensive experimental comparisons 

using various network topologies and real access logs.  

 

1.2.6 Knapsack  

To reduce network latency, a proactive web server can decide where to place the 

copies of the objects in a distributed web server, by employing partial replication  [9]. 

Many researchers  [89] have used the partial replication technique with the support of 

content-aware distributors. The primary usage of content-aware distributors is to 

redirect the client’s request to the server that has the copy of the document requested 

 [97]. In all of the above approaches the authors have primarily adopted the knapsack 

problem approach, which can be stated as follows:  

“Given is a network of M nodes with distinguishable capacities and N objects. 

Find a subset of objects whose total size is bounded by the capacities for a site, and the 

total profit is maximized”.  

Here the profit can be to reduce the communication cost or latency etc. If no 

such replica is unassigned the problem is reduced to 0-1 knapsack  [35]. Due to the close 

resemblance of the knapsack problem to the bin packing problem, it is widely studied 

by researchers in the filed of Operations Research  [119], Game Theory  [37] and 

Approximation Algorithms  [123]. Authors in  [20] have proved that minimizing the 

maximum load over all the web server nodes is NP-complete. If the constraint of load 

balancing is removed, the problem of minimizing the communication cost still remains 
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NP-hard  [124]. A rather different approach  [26] using the concept of read-one-write-all 

policy has also been investigated in the context of dynamic data replication within the 

scope of 0-1 knapsack formulation. Some of the significance work in this line of pursuit 

is reported in  [16],  [78] and  [108].  

A number of bibliographies and reading materials for web caching are also 

available online, e.g.,  [26]. An overview of replication and its challenges are provided 

in  [79] and  [100], respectively. Table 1.1 provides an overview of the major work 

reported categorized into the six major theoretical oracles.  

Our aim here is to propose, design and analyze efficient and effective fine-

grained replica placement techniques. Naturally, a stringent conventional benchmark 

needs to be set before one can pursue original thoughts. For this purpose, we first 

Table 1.1: The major work reported in the field of replica placements.  
Problem definition related assumptions Experimental related Information

Access Objects Storage 
C

at
eg

or
y 

Work Topology assumed 
Reads Writes Multiple/Single Constraints 

Access patterns Topologies 

1  [46] General graphs Yes No Single No Synthetic (Zipf) AS, Transit-Stub 
 [5] General, fork graphs Yes Yes Single No N/A N/A 

 [21] Fully connected graphs Yes Yes Single No N/A N/A 
 [31] General graphs Yes No Single No Statistical Flat 
 [33] Uniform cost graphs Yes No Multiple No N/A N/A 
 [70] General graphs Yes Yes Multiple Yes Statistical Flat 
 [83] General graphs Yes Yes Single No N/A N/A 

2 

 [109] General graphs Yes Yes Multiple Yes Statistical Flat 
 [45]  Linear, general graphs Yes No Single No N/A N/A 
 [52] General graphs Yes No Multiple No Synthetic (Zipf) AS 
 [49] Trees Yes No Single No Statistical Trees 
 [64] General graphs Yes No Multiple Yes N/A N/A 
 [75] Trees Yes No Single No Statistical Trees 

3 

 [115] Trees, general graphs Yes No Multiple No Statistical Tress, Flat 
 [18] Linear, general graphs Yes No Multiple No N/A N/A 
 [47] General graphs Yes Yes Multiple No Synthetic (Zipf) AS, Transit-Stub 
 [73] General graphs Yes Yes Multiple Yes Real-time Flat 4 

 [100] Trees, general graphs Yes Yes Multiple Yes Access logs Tress, Flat 
 [57]  General graphs Yes Yes Multiple Yes Access logs Flat 5  [89] Linear graphs Yes Yes Multiple Yes Statistical Flat 
 [16]  General graphs Yes Yes Single No N/A N/A 
 [26] Linear, general graphs Yes Yes Single No N/A N/A 
 [78] General graphs Yes Yes Multiple Yes Synthetic (Zipf) Flat 6 

 [108] General graphs Yes Yes Multiple No N/A N/A 

 



 

 26

propose an infrastructure that close mimics the Internet (an example of large-scale 

distributed computing system) in topology and traffic. This infrastructure is 

benchmarked with ten static heuristic based techniques with various problem 

parameters. This rigorously benchmarked data is recorded for comparisons with 

originally conceived, novel, game theoretical replica placement techniques. 

Our aim (through this study) is to show that game theoretical techniques are per 

se better than conventional centralized techniques because of their flexibility in design, 

distributed control, scalability, and various levels of optimality.  

In the remainder of this document, after a brief survey on the current state of the 

art replica placement techniques in Chapter 2, we will introduce the replica placement 

problem, the underlying system assumptions, parameters, and an experimental 

infrastructure that closely mimics the Internet in topology and traffic in Chapter 3. A set 

of ten static heuristics will be put to test to benchmark conventional replica placement 

techniques in Chapter 4. In Chapter 5, we provide back ground information on game 

theory and design an incentive compatible game theoretical replica placement 

technique. This technique is further extended to capture a few important properties of 

pareto optimality, utility maximization, deliberate discrimination, budget balance, and a 

cooperative technique in Chapters 6, 7, 8, 9, and 10, respectively. Finally, Chapter 11 

provides conceptual views and discusses extension to the work presented here. 
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CHAPTER 2 

STATE OF THE ART REPLICA PLACEMENT TECHNIQUES 

 

The replica placement problem is an extension of the classical file allocation 

problem (FAP). Chu  [21] studied the file allocation problem with respect to multiple 

files in a multiprocessor system. Casey  [15] extended this work by distinguishing 

between updates and read file requests. Eswaran  [31] proved that Casey’s formulation 

was NP complete. In  [82] Mahmoud et al. provide an iterative approach that achieves 

good solution quality when solving the FAP for infinite server capacities. A complete 

although old survey on the FAP can be found in  [30]. Apers in  [5] considered the data 

allocation problem (DAP) in distributed databases where the query execution strategy 

influences allocation decisions. In  [70] the authors proposed several algorithms to solve 

the data allocation problem in distributed multimedia databases (without replication), 

also called as video allocation problem (VAP). Replication algorithms fall into the 

following three categories:  

1. The problem definition does not cater for the user accesses. 

2. The problem definition only accounts for read access.  

3. The problem definition considers both read and write access including consistency 

requirements. 

These categories are further classified into four categories according to whether 
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a problem definition takes into account single or multiple objects, and whether it 

considers storage costs. Table 2.1 shows the categorized outline of the previous work 

reported.  

The main drawback of the problem definition in category 1 is that they place the 

replicas of every object, in the same node. Clearly, this is not practical, when many 

objects are placed in the system. However, they are useful as a substitute of the problem 

definition of category 2, if the objects are accessed uniformly by all the clients in the 

system and utilization of all nodes in the system is not a requirement. In this case 

category 1 algorithms can be orders of magnitude faster than the ones for category 2, 

because the placement is decided once and it applies to all objects. 

Most of the research papers tackle the problem definition of category 2. They 

are applicable to read-only and read-mostly workloads. In particular this category fits 

well in the context of content distribution networks (CDNs). Problem definitions  [42], 

 [54],  [81] and  [111] have all been used in CDNs. The two main differences between 

them are whether they consider single or multiple objects, and whether they consider 

Table 2.1: Summary of related work. 
Category Number of objects Storage constraints References 

 Single object No storage constraint  [46]. 
Category 1:    Storage constraint – 
No object access.  No storage constraint  [42],  [47]. 
 Multiple objects Storage constraint – 
    
     
 Single object No storage constraint  [30],  [42],  [47],  [55],  [64],  [67],  [75],  [100]. 
Category 2:    Storage constraint  [10],  [23],  [54],  [56],  [69]. 
Read accesses only.  No storage constraint  [9],  [52],  [56],  [74],  [82],  [113]. 
 Multiple objects Storage constraint  [21],  [89]. 
    
     
 Single object No storage constraint  [5],  [21],  [26],  [82],  [120],  [121]. 
Category 3:    Storage constraint  [19],  [53],  [65],  [80],  [82],  [110]. 
Read and write accesses.  No storage constraint  [43],  [67],  [100],  [101]. 
 Multiple objects Storage constraint  [8],  [1],  [57],  [58],  [78],  [82],  [87]. 

 



 

 29

storage costs or not. The cost function in  [82] also captures the impact of allocating 

large objects and could possible be used when the object size is highly variable. In  [30] 

the authors tackled a similar problem – the proxy cache placement problem. The 

performance metric used there was the distance parameter, which consisted of the 

distance between the client and the cache, plus the distance between the client and the 

node for all cache misses. It is to be noted that in CDN, the distance is measured 

between the cache and the closest node that has a copy of the object.  

The storage constraint is important since it can be used in order to minimize the 

amount of changes to the previous replica placements. As far as we know only the 

works reported in  [57] and  [78] have evaluated the benefits of taking storage costs into 

consideration. Although there are research papers which consider storage constraints in 

their problem definition, yet they never evaluate this constraint (e.g. see  [31],  [47],  [75] 

and  [100]). 

Considering the impacts of writes, in addition to that of reads, is important, if 

content providers and applications are able to modify documents. This is the main 

characteristic of category 3. Some research papers in this category also incorporate 

consistency protocols – in many different ways. For most of them, the cost is the 

number of writes times the distance between the client and the closest node that has the 

object, plus the cost of distributing these updates to the other replicas of the object. In 

 [46],  [52],  [55] and  [75] the updates are distributed in the system using a minimum 

spanning tree. In  [47] and  [100] one update message is sent from the writer to each 

copy, while in  [57] and  [78] a generalized update mechanism is employed. There a 
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broadcast model is proposed in which any user can update a copy. Next, a message is 

sent to the primary (original) copy holder server which broadcasts it to the rest of the 

replicas. This approach is shown to have lower complexity than any of the above 

mentioned techniques. In  [67] and  [102], it is not specified how updates are propagated. 

The other main difference among the above definitions is that  [52],  [55],  [57],  [75],  [78] 

and  [113] minimize the maximum link congestion, while the rest minimize the average 

client access latency or other client perceived costs. Minimizing the link congestion 

would be useful, if bandwidth is scare.  

Some on-going work is related to dynamic replication of objects in distributed 

systems when the read-write patterns are not known apriori. Awerbuch’s et al. work in 

 [7] is significant from a theoretical point of view, but the adopted strategy for 

commuting updates (object replicas are first deleted), can prove difficult to implement 

in a real-life environment. In  [119] Wolfson et al. proposed an algorithm that leads to 

optimal single file replication in the case of a tree network. The performance of the 

scheme for general network topologies is not clear though. Dynamic replication 

protocols were also considered under the Internet environment. Heddaya et al.  [43] 

proposed protocols that load balance the workload among replicas. In  [100], Rabinovich 

et al. proposed a protocol for dynamically replicating the contents of an Internet service 

provider in order to improve client-server proximity without overloading any of the 

servers. However updates were not considered. 

Recently, game theory has emerged as a popular tool to tackle optimization 

problems especially in the field of distributed computing. However, in the context of 
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data replication it has not received much attention. We briefly elaborate three pinoring 

works that directly or indirectly deal with the replica placement problem using game 

theoretical techniques. The first work  [22] is mainly on caching and uses an empirical 

model to derive Nash equilibrium. The second work  [58] focuses on mechanism design 

issues and derives an incentive compatible auction for replicating data on the Web. The 

third work  [72] deals with identifying Nash strategies derived from synthetic utility 

functions. Our work differs from all the game theoretical techniques in: 1) identifying a 

non-cooperative non-priced based replica allocation method to tackle the data 

replication problem, 2) using game theoretical techniques to study an environment 

where the agents behave in a selfish manner, 3) deriving pure Nash equilibrium and 

pure strategies for the agents, 4) performing extensive experimental comparisons with a 

number of conventional techniques using an experimental setup that is mimicking the 

Web in its infrastructure and access patterns.   
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CHAPTER 3 

THE REPLICA PLACEMENT PROBLEM 

 

3.1 System Model and Assumptions 

The system model under consideration is a large-scale distributed computing 

system, where users access data objects which are held by the sites. Below we elucidate 

the few system related assumptions.  

1. Each site is assigned a unique site identifier. There a total of M sites in the system 

and Si (1≤i≤M) denotes a site identifier. 

2. Each data object is assigned a unique object identifier. There a total of N data 

objects in the system and Ok (1≤k≤N) denotes a data object identifier.  

3. The original copy of an object is held by a particular site in the system called the 

primary site, denoted as Pk. This site also holds the information about where the 

replicas of object Ok reside in the system. 

4. Each site has a limited storage capacity which is denoted by si. 

5. The read and write access frequencies are known a priori (or observed through 

access log). 

6. For updates we assume a “broadcast” or lazy replication model  [58]. In this model 

when an object is updated, the update is sent to the site (Pk) which holds the original 

copy of the object. Pk upon receiving the updated contents broadcasts the updates to  
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the sites which hold the replicas of the object. In this way, we can always guarantee that 

the data contents in the system are up-to-date. 

Based on the above system overview and the underlying assumptions, if we are 

to find an optimal placement of replicas in a large-scale distributed computing system, 

then we must incorporate among others the following parameters in a brute force 

(exhaustive search) method  [77]:  

1. The access frequency of each data object.  

2. The time remaining until each data object is updated next.  

3. The probability that each site functions properly during the lifespan of the system.  

4. The probability that the network will remain connected during the lifespan of the 

system. 

Even if some lopping is possible, the computational complexity is very high, 

and this calculation must be done every time any of the above parameters change. 

Moreover, parameters 3 and 4 cannot be formulated in practice because faults do not 

follow a known phenomenon. For these reasons, we take the following heuristic 

approach:  

1. Replicas are relocated in a specific period (relocation period).  

2. At every relocation period, replica allocation is determined based on the access 

(both read and update) frequency of each data object and the network topology at 

that moment. 
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3.2 Replica Placement Problem Formulation 

Consider a distributed system comprising M sites, with each site having its own 

processing power, memory (primary storage) and media (secondary storage). Let Si and 

si be the name and the total storage capacity (in simple data units e.g. blocks), 

respectively, of site i where 1 ≤ i ≤ M. The M sites of the system are connected by a 

communication network. A link between two sites Si and Sj (if it exists) has a positive 

integer c(i,j) associated with it, giving the communication cost for transferring a data 

unit between sites Si and Sj. If the two sites are not directly connected by a 

communication link then the above cost is given by the sum of the costs of all the links 

in a chosen path from site Si to the site Sj. Without the loss of generality we assume that 

c(i,j) = c(j,i). This is a common assumption e.g. see  [46],  [57],  [78],  [100].  Let there be 

N objects, each identifiable by a unique name Ok and size in simple data unites ok where 

1 ≤ k ≤ N. Let rk
i and wk

i be the total number of reads and writes, respectively, initiated 

from Si for Ok during a certain time period t. This time period t determines when to 

instigate the relocation period so that the replica placement algorithm can be invoked. 

Note that this time period t is the only parameter that requires human intervention. 

However, in this study we use analytical data that will enable us to effectively predict 

the time interval t (in the subsequent text it will be described in detail how this 

relocation period can be identified).  

Our replication policy assumes the existence of one primary copy for each 

object in the network. Let Pk, be the site which holds the primary copy of Ok, i.e., the 

only copy in the network that cannot be de-allocated, hence referred to as primary site 
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of the k-th object. Each primary site Pk, contains information about the whole 

replication scheme Rk of Ok. This can be done by maintaining a list of the sites where 

the k-th object is replicated at, called from now on the replicators of Ok. Moreover, 

every site Si stores a two-field record for each object. The first field is its primary site Pk 

and the second the nearest neighborhood site NNk
i of site Si which holds a replica of 

object k. In other words, NNk
i is the site for which the reads from Si for Ok, if served 

there, would incur the minimum possible communication cost. It is possible that NNk
i = 

Si, if Si is a replicator or the primary site of Ok. Another possibility is that NNk
i = Pk, if 

the primary site is the closest one holding a replica of Ok. When a site Si reads an object, 

it does so by addressing the request to the corresponding NNk
i. For the updates we 

assume that every site can update every object. Updates of an object Ok are performed 

by sending the updated version to its primary site Pk, which afterwards broadcasts it to 

every site in its replication scheme Rk.  

For the DRP under consideration, we are interested in minimizing the total 

replication cost (RC) or the total network transfer cost (NTC) or the total object transfer 

cost (OTC). (We will use the terms RC, NTC and OTC interchangeably. They all point 

to the same measure.) The communication cost of the control messages has minor 

impact to the overall performance of the system  [79], therefore, we do not consider it in 

the transfer cost model, but it is to be noted that incorporation of such a cost would be a 

trivial exercise. There are two components affecting RC. The first component of RC is 

due to the read requests.  Let Rk
i denote the total RC, due to Sis’ reading requests for 

object Ok, addressed to the nearest site NNk
i. This cost is given by the following 
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equation:  

( , )i i i
k k k kR r o c i NN= , (3.1)

where NNk
i = {Site j | j∈Rk ^ min c(I,j)}. The second component of RC is the cost arising 

due to the writes. Let Wk
i be the total RC, due to Sis’ writing requests for object Ok, 

addressed to the primary site Pk. This cost is given by the following equation:  

( ),
( ( , ) ( , ))i i

k k k k k
j R j ik

W w o c i P c P j
∀ ∈ ≠

= + ∑ . (3.2)

Here, we made the indirect assumption that in order to perform a write we need 

to ship the whole updated version of the object. This of course is not always the case, as 

we can move only the updated parts of it (modeling such policies can also be done using 

our framework). The cumulative RC, denoted as Coverall, due to reads and writes is given 

by:  

1 1( )M N i i
overall k ki kC R W= == +∑ ∑ . (3.3)

Let Xik=1 if Si holds a replica of object Ok, and 0 otherwise. Xiks define an M×N 

replication matrix, named X, with boolean elements. Equation 3 is now refined to:  

1 1 1(1 )[ min{ ( , ) | 1} ( , )] (M N Mi i x
ik k k jk k k k ik ki k xX X r o c i j X w o c i P X w= = == − = + +∑ ∑ ∑

. 

 (3.4)

Sites which are not the replicators of object Ok create RC equal to the 

communication cost of their reads from the nearest replicator, plus that of sending their 

writes to the primary site of Ok . Sites belonging to the replication scheme of Ok, are 

associated with the cost of sending/receiving all the updated versions of it. Using the 

above formulation, the DRP can be defined as:  
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“Find the assignment of 0, 1 values in the X matrix that minimizes Coverall, 

subject to the storage capacity constraint: 

1 (1 )N i
ik kk X o s i M= ≤ ∀ ≤ ≤∑ , 

and subject to the primary copies policy:  

1    (1 )P kk
X k N= ∀ ≤ ≤ .” 

The minimization of Coverall has the following two impacts on the distributed 

computing system under consideration. First, it ensures that the object replication is 

done in such a way that it minimizes the maximum distance between the replicas and 

their respective primary objects. Second, it ensures that the maximum distance between 

an object k and the user(s) accessing that object is also minimized. Thus, the solution 

aims for reducing the overall RC of the system. In the generalized case, the replica 

placement problem is proven to be NP-complete  [78]. 

 

3.3 The Simulation Model 

Below we will describe for the curious readers the simulation model that will be 

used in the subsequent text. All the proposed techniques (heuristics and game 

theoretical) are extensively compared using an experimental setup that closely mimics 

the Internet in its infrastructure and user access patterns. GT-ITM  [14] and Inet  [17] 

topology generators are used to obtain 80 well-defined network topologies based on 

flat, link distance, power-law and hierarchical transit-stub models. The user access 

patterns are derived from real access logs collected at the Soccer World Cup 1998 web 

server and NASA Kennedy Space Center web server. The proposed techniques are 
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evaluated by analyzing the system utilization in terms of reducing the communication 

cost incurred due to object transfer(s) under the variance of server capacity, object size, 

read access, write access, number of objects and sites. 

 

3.3.1 Performance Metric 

The solution quality in all cases, was measured according in terms of the RC (or 

OTC or NTC) percentage that was saved under the replication scheme found by the 

algorithms, compared to the initial one, i.e., when only primary copies exist.  

 

3.3.2 Network Topologies 

To establish diversity, the network connectively has to be changed considerably. 

We used four types of network topologies, which we explain below. (All in all we 

employed 80 various topologies.) 

 

3.3.2.1 Flat Methods 

In flat random methods a graph G = (V,E) is built by adding edges to a given set 

of nodes V subject to a probability function P(u,v), where u and v are arbitrary nodes of 

G.  

 

3.3.2.1.1 Pure Random Model 

A random graph G(M,P(edge = p)) with 0 ≤ p ≤ 1 contains all graphs with nodes 

(servers) M in which the edges are chosen independently and with a probability p. 
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Although this approach is extremely simple, yet it fails to capture significant properties 

of Web-like topologies  [41]. The 5 pure random topologies were obtained using GT-

ITM  [122] topology generator with p = {0.4, 0.5, 0.6, 0.7, 0.8}.  

 

3.3.2.1.2 Waxman Model 

The shortcomings of pure random topologies can be overcome by using the 

Waxman model. In this method edges are added between pairs of nodes (u,v) with 

probability P(u,v) that depends on the distance d(u,v) between u and v. The Waxman 

model is given by  [117]: 

( , )
( , )

d u v
LP u v e αβ

−
= , 

where L is the maximum distance between any two nodes and α, β∈(0,1]. β is used to 

control the density of the graph. The larger the value of β the denser is the graph. α is 

used to control the connectively of the graph. The smaller the value of α the larger is the 

number of short edges  [41].  The 12 Waxman topologies were obtained using the GT-

ITM  [122] topology generator with values of α = {0.1, 0.15, 0.2, 0.25} and β = {0.2, 

0.3, 0.4}. 

 

3.3.2.2 Link Distance Models 

In pure random and Waxman Models, there is no direct connection among the 

communication cost and the distance between two arbitrary nodes of the generated 

graph. To compliment these two models, we propose a class of graphs in which the 

distance between two nodes is directly proportional to the communication cost. In such 
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methods, the distance between two serves is reversed mapped to the communication 

cost of transmitting a 1kB of data, assuming that we are given the bandwidth. That is, 

the communication cost is equivalent to the sum of the transmission and propagation 

delay. The propagation speed on a link is assumed to be 2.8×108 m/s (copper wire). 

Thus, if we say that the distance between two nodes is 10-km and has a bandwidth of 

1Mbps, then it means that the cost to communication 1kB of data between the two 

nodes is equivalent to 10-km/(2.8×108 m/s) + 1kB/(1Mbps) = 8.03 ms, and the cost 

would simply be 0.00803.  

 

3.3.2.2.1 Random Graphs 

This method involves generating graphs with random: node degree (d*), 

bandwidth (b) and link distance (d) between the nodes of the graph. We detail the steps 

involved in generating random graphs as follows. First, M (user input) nodes are placed 

in a plane, each with a unique identifier. Second, from the interval d*, each node’s out 

degree is generated. (At this moment the links do not have weights or communication 

costs.) Third, each link is assigned bandwidth (in Mbps) and distance (in kilometers) on 

random. Finally, for each link the transmission and propagation delay is calculated, 

based on the assigned bandwidth and distance. The 12 random topologies were obtained 

using, d* = {10, 15, 20}, b = {1, 10, 100} and d = {5, 10, 15, 20}. 

 

3.3.2.2.2 Fully Connected Random Graphs  

This method is similar to the one used for generating random graphs except that 

now we do not require the node degree since the entire graph is fully connected. The 5 
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random topologies were obtained using, b = {1, 10, 100} and d = {d1 = [1,10], d2 = 

[1,20], d3 = [1,50], d4 = [10,20], d5 = [20,50]}. Notice that d has 5 elements d1,…d5. 

Each element was used to generate a particular graph. For instance, for the first graph, 

we choose the bandwidth randomly from the values of {1, 10, 100}, and the link 

distance randomly from the interval of d1 = [1,10].  

 

3.3.2.2.3 Fully Connected Uniform Graphs  

This method is similar to the one described for generating fully connected 

random graphs except that the bandwidth and link distance are chosen uniformly and 

not randomly. The 5 random topologies were obtained using, b = [1, 100] and d = 

{d1=[1,10], d2=[1,20], d3=[1,50], d4=[10,20], d5=[20,50]}. 

 

3.3.2.2.4 Fully Connected Lognormal Graphs  

This method is similar to the one described for generating fully connected 

random graphs except that link distance is chosen log-normally and not randomly. Note 

that the bandwidth is still assigned on random. (Curious readers are encouraged to see 

 [34] for an insight on the lognormal distribution functions.) The 9 lognormal topologies 

were obtained using, b = {1, 10, 100} and d = {µ = {8.455, 9.345, 9.564}, σ = {1.278, 

1.305, 1.378}}, where µ and σ are the mean and variance parameters of the lognormal 

distribution function, respectively. 
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3.3.2.3 Power-Law Model 

The power-law model  [86] takes its inspiration from the Zipf law  [123], and 

incorporates rank, out-degree and eigen exponents. We used Inet  [17] topology 

generator to obtain the power-law based Internet topologies. Briefly, Inet generates 

Autonomous System (AS) level topologies. These networks have similar if not the exact 

characteristics of the Internet from November 1997 to June 2000. The system takes in 

as input two parameters to generate topologies, namely: 1) the total number of nodes, 

and 2) the fraction (k) of degree-one nodes. Briefly, Inet starts form the total number of 

desired nodes and computes the number of months t it would take to grown the Internet 

from its size in November 1997 (which was 3037 nodes) to the desired number of 

nodes. Using t it calculates the growth frequency and the out-degree of the nodes in the 

network. This information is used to iteratively connect nodes till the required out-

degree of nodes is reached. The 20 power-law topologies were obtained using k = {0.01, 

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 

0.9, 0.95}. 

 

3.3.2.4 Hierarchical Transit-Stub Model 

The Internet model at the autonomous system (AS) level can also be captured 

by using a hierarchical model. Authors in  [122] derived a graph generation method 

using a hierarchical model in order to provide a more adequate router model of the 

Internet than the Waxman model. In their paper, each AS domain in the Internet was 

classified as either a transit domain or a stub domain, hence the name transit-stub 
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model. In a stub domain, traffic between any two nodes u and v goes through that 

domain if and only if either u or v is in that domain. Contrarily, this restriction is 

relaxed in a transit domain. The GT-ITM topology generator  [122] models a three-level 

hierarchy corresponding to transit domains, stub domain, and LANs attached to stub 

domains  [41]. Using the GT-ITM topology generator, we generated 12 random transit-

stub graphs with a total of 3728 nodes each, and then placed the primary site inside a 

randomly selected stub domain. In order to make the topologies as realistic as possible, 

we introduced routing delays to mimic routers’ decision delays inside the core network. 

We set this delay to be equal to 20 ms/hop. In order to have a realistic upper bound on 

the self-injected delays, the maximum hop count between any pair of sites was limited 

to 14 hops.  

  

3.3.3 Access Patterns 

To evaluate the replica placement methods under realistic traffic patterns, we 

used the access logs collected at the Soccer World Cup 1998 website  [6] and NASA 

Kennedy Space Center website  [90]. These two access logs compliment each other in 

many ways. The Soccer World Cup access log has over 1.35 billion requests, making it 

extremely useful to benchmark a given approach over a prolonged high access rate. The 

only drawback with these logs is that the users’ IP addresses (that can potentially give 

us their approximate geographical locations) are replaced with an identifier. Although, 

we can obtain the information as to who were the top, say 500 users of the website, yet 

we cannot determine where the clients were from. To negate this drawback, we used the 
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access logs collected at the NASA Kennedy Space Center website. These logs do not 

hide the IP addresses and thus the spatially skewed workload is preserved. Another 

benefit of the Space Center’s log is that the access requests are very concentrated, i.e., a 

majority of the access request are sent from few clients (or cluster of clients) – 

capturing the temporal diversity of the users. This concentration is useful to benchmark 

the techniques over a spatially and temporally skewed workload. 

An important point to note is that these logs are access (or read) logs; thus, they 

do not relay any information regarding the write requests. However, there is a tedious 

way around this. Each entry of the access logs has among other parameters, the 

information about the size of the object that is being accessed. The logs are processed to 

observe the variance in the object size. For each entry that returns the change in the 

object size, a mock write request is generated for that user for the object that is currently 

being accessed. This variance in the object size generates enough miscellanies to 

benchmark object updates. 

 

3.3.3.1 Soccer World Cup Access Logs 

We used eighty eight days of the Soccer World Cup 1998 access logs, i.e., the 

(24 hours) logs from April 30, 1998 to July 26, 1998. To process the logs, we wrote a 

script that returned: only those objects which were present in all the logs (from this we 

choose 25,000 data objects on random – the maximum workload for our experimental 

evaluations), the total number of requests from a particular client for an object, the 

average and the variance of the object size. From this log we chose the top 3728 clients  
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(maximum experimental setup). A random mapping was then performed of the clients 

to the nodes of the topologies. Note that this mapping is not 1-1, rather 1-M. This gave 

us enough skewed workload to mimic real world scenarios. It is also worthwhile to 

mention that the total amount of requests entertained for each problem instance using 

the Soccer World Cup access logs was in the range of 3-4 million. The primary replicas’ 

original site was mimicked by choosing random locations. The capacities of the sites 

C% were generated randomly with range from Total Primary Object Sizes/2 to 

1.5×Total Primary Object Sizes. The variances in the object size collected from the 

access were used to mimic the object updates. The updates were randomly pushed onto 

different sites, and the total system update load was measured in terms of the percentage 

update requests U% compared that to the initial network with no updates. For simplicity 

were deemed necessary we will refer to Soccer World Cup access logs as W-log. 
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Figure 3.1: Number of requests generated by the Web clusters defined 
by IP address prefixes.  
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3.3.3.2 NASA Kennedy Space Center Access Log 

We used thirty one days of the NASA Kennedy Space Center access logs, i.e., 

the (24 hours) logs from July 1, 1995 to July 31, 1995. The log has close to 1.9 million 

hits and 81,982 unique visitors. To process the logs, we used the same script that was 

used to retrieve information from the W-log, followed by the technique to inject the 

write accesses. The additional information regarding the IP addresses of the clients was 

used in conjunction with the technique proposed in  [68] to map users onto the nodes of 

the topologies. The method described in  [68] clusters the clients that are topologically 

close together, based on the information from the BGP routing table snapshots. (One 

can publicly obtain the BGP routing table information from the Looking Glass Sites 

Project  [76] under the North American Network Operations’ Group (NANOG).) For 

each client IP address in the access log, we find its best matching prefix in the union of 

all the available routing tables. All the clients whose IP addresses have the same best 

prefix match belong to the same cluster. A quick analysis (see Figure 3.1) of this 

procedure shows that, the top 10, 100, 1000, and 3000 clusters accounted for about 

28.98%, 54.34%, 87.03%, and 97.59% requests, respectively. From this clustering, we 

chose the top 3728 clusters and mapped them randomly to the 3728 nodes of the 

topologies. Notice that assigning a cluster, say Ci, to a node Si in the network topology 

means that the all the clients in Ci generate accesses from the node Si. 

Once again the primary replicas’ original site was mimicked by choosing 

random locations. The capacities of the sites C% were generated randomly with range 

from Total Primary Object Sizes/2 to 1.5×Total Primary Object Sizes. The variances in 
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the object size collected from the access were used to mimic the object updates. The 

updates were randomly pushed onto different sites, and the total system update load was 

measured in terms of the percentage update requests U% compared that to the initial 

network with no updates. For simplicity where deemed necessary will refer to NASA 

Kennedy Space Center access logs as N-log. 

 

3.3.4 Further Clarifications on the Simulation Setup 

Since the access logs were of the year 1998 and before, we first used Inet to 

estimate the number of nodes in the network. This number came up to be in the range of 

3718 and 3728, i.e., there were approximately 3728 AS-level nodes in the Internet at the 

time when the Soccer World Cup 1998 was being played. Therefore, we set the upper 

bound on the number of servers in the system to be M = 3728. Since Inet does not work 

for topologies before November 1997, the N-log was forward date by two years so that 

it coincided with the W-log. (We believe that this is a reasonable solution to have fair 

comparisons between the two logs and the underlying topologies.) Moreover, every 

topology model that was used in this study had the network topologies generated for M 

= 3728.  

 

3.3.5 The Determination of the Relocation Period 

As noted previously, the time (interval t) when to initiate the replica placement 

techniques requires high-level human intervention. Here, we will show that this 

parameter if not totally can at least partially be automated. The decision when to initiate 
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the replica placement techniques depends on the past trends of the user access patterns. 

Figures 3.2 and 3.3 show the average (over the entire access log) user access patterns 

extracted from the W-log and N-log. From Figure 3.2 we can clearly see that the Soccer 

World Cup 1998 website incurred soaring and stumpy traffic at various intervals during 
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Figure 3.2: User access pattern extracted from W-log. 
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Figure 3.3: User access pattern extracted from N-log. 
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the 24-hour time period (it is to be noted that the W-log has a time stamp of GMT+1). 

For example, the website records its minimum requests at 0500 hrs. This would be an 

ideal time to invoke the replica placement technique(s), since the traffic is at its 

minimum and fewer users will be affected by the relocation of data objects in the 

network. Another potential time period for invoking the replica placement technique(s) 

is at 1800 hrs. In our experiments we did not use this time period since the volume of 

traffic at 1800 hrs. is enormous and it immediately soars; thus, leaving little buffer time 

for the completion of the replica placement technique(s).   

On the other hand, the analysis of N-log (it is to be noted that the N-log has a 

time stamp of GMT-4) reveals two periods where the traffic drops to minimum, i.e., at 

0400 hrs and at 2000 hrs. This is denoted by the two vertical lines in Figure 3.3. 

Therefore, for the N-log a replica placement algorithm could be initiated twice daily: 1) 

at 0400 hrs and 2) at 2000 hrs. The time interval t for 0400 hrs would be t = (2000-

0400) = 6 hours and for 2000 hrs t = (0400-2200) = 18 hours. For the W-log a replica 

placement algorithm could be initiated once daily at 0500 hrs. The time interval t for 

0500 hrs would be t = (0500-0500) = 24 hours.  
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CHAPTER 4 

APPROACHING THE REPLICA PLACEMENT PROBLEM USING 
CONVENTIONAL HEURISTICS 

 

The unified cost model that captures the minimization of the total object transfer 

cost in the system, which in turn leads to the effective utilization of server side space, 

replica consistency, fault-tolerance, and load balancing, is used to identify replica 

placements using heuristics. The heuristic techniques studied include six A-Star based 

algorithms, two bin packing algorithms, a greedy and a genetic algorithm.  

The heuristics are evaluated by analyzing the system utilization in terms of 

reducing the communication cost incurred due to object transfer(s) under the variance of 

server capacity, object size, read access, write access, number of objects and sites. 

Based on our experimental results, we make suggestive uses of the studied heuristics, 

and identify algorithm(s) that produce optimal and suboptimal replica placements. The 

main objective of performing such a study is to provide a benchmark which is thorough 

and complete in all respects. This benchmark (of conventional heuristics) will be used 

to earmark the performance of game theoretical techniques which is the focus here. 

  

4.1 A-Star Based Technique (DRPA-Star) 

A-Star is a best-first search algorithm based on a µ-ary tree  [99]. It starts from 

the root, called the start node (usually a null solution of the problem). Intermediate tree
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nodes represent the partial solutions, and leaf nodes represent the complete solutions or 

goals. A cost function f computes each node’s associated cost. The value of f for a node 

n, which is the estimated cost of the cheapest solution through n, is computed as: 

f(n)=g(n)+h(n), where g(n) is the search-path cost from the start node to the current 

node n and h(n), called the heuristic, is a lower-bound estimate of the path cost from n 

to the goal node (solution). The A-Star based searching technique for the data 

replication problem (DRPA-Star) starts from an assignment P, and explores all the 

potential options of assigning an object to a site. With proper pruning techniques used 

against the constraint(s) C, only the assignments in the admissible head set are explored. 

If the new solution is consistence with the constraint, it is added to the Expansion Tree 

(ET), otherwise the solution is pruned. In order to avoid memory overflow, we limit the 

ET to 1000 active solution (state) space allocations. This is very common technique 

used for memory bounded A-Star type algorithms (for further details on memory 

bounded A-Star techniques see  [51]). Moreover, the candidate objects assignments are 

ordered (in a linked list termed as the OPEN list), such that the smallest projected cost 

of allocation is expanded first. Thus, we can terminate our expansion when the solution 

for replica placement problem is obtained, or there are no more candidate allocations 

left in the ET. In either case optimality is always guaranteed. DRPA-Star uses the 

following heuristic:  

Let Ok and Si represent the set of objects and sites in the system. Let U be the set 

of unassigned objects and t be the global minimum of an object’s replication cost. Thus, 
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we can define the minimum of such a cost as a set: T = min0≤j≤N-1(t(Ok, Si)), ∀Ok∈U. For 

a node n, let mmk(n) define the maximum element of set T (the max-min replication 

cost). mmk(n) then represents the best possible replica allocation without the unrealistic 

assumption that every object in U can be replicated to a site in M without a conflict. The 

heuristic used thus becomes: h(n) = max(0,[mmk(n)-g(n)]), where g(n) is equivalent to 

the cost of replicating an object onto a site, i.e., g(n) is equivalent to the RC of object Ok 

onto site Si. Pseudo-code for DRPA-Star is shown in Figure 4.1. 

 

DRPA-Star Algorithm 
Inputs: 
Ci (Replication cost matrix) 
si (Array storing size of objects) 
Sk (Array storing size of sites) 
Output: 
Final allocation of replicas 
Initialize: 
OPEN=NULL 
Sol=NULL 
Solution=False 
Compute: 
1. Create Start node s                                                                   /* Initialize the µ-ary tree */ 
2. Insert s into OPEN 
3. while(OPEN != NULL or Solution = true) 
4.  sort(OPEN) 
5.  k ← Remove head of list* 
6.  if k is the solution then  /* k can only be a solution when there is a mapping between objects and sites*/ 
7.   Sol ← k ⊗ Sol 
8.   Update storage constraints 
9.   if no more replications possible         /* because of the storage constraints */ 
10.    Solution=true 
11.   endif 
12.  endif 
13.  Generate the successors of k                   /* Successors can only be generated when k is not an OAS */ 
14.  for every successor n' of k                      /* Construct the µ-ary tree */ 
15.   f(n')=g(n')+h(n') 
16.  if n' satisfies storage constraint 
17.   Insert n' into OPEN 
18.  endif 
19. endw 
20. Output(Solution) 
 
* k is also known as OAS (Objects Assigned to Sites). 

Figure 4.1: Pseudo-code for DRPA-Star. 
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Lemma 4.1: DRPA-Star always identifies a solution, if there exists one. 

Proof: DRPA-Star expands its solution set by choosing the head of the OPEN 

list in the increasing order of the projected cost. Since all the feasible candidates enter 

into the OPEN list, they must eventually expand the solution set to reach a feasible OAS 

solution. This would hold true if there are not infinitely many states with h(x) ≤ h(goal). 

In the DRP solution collection phase since every OAS is an optimal solution on the 

global constraint of storage capacity, an XORed solution of two consecutive OAS's and 

potentially n OAS with cascaded XOR of assignments would eventually result in the 

solution for the DRP.                                                                                                        ■ 

 

Lemma 4.2: DRPA-Star always chooses the best solution, if two or more 

solutions exist. 

Proof: Let u and v be two feasible allocations to OAS. Let cu and cv define the 

replication cost for u and v respectively, and cu ≤ cv. An optimal search will reach the 

solution u before it reaches v. Assume DRPA-Star identifies v prior to u. Thus, when 

DRPA-Star expands v, there would be some solution u not yet explored and that would 

imply hu ≥ hv. Since by definition: hu ≤ hv, the OPEN list ordering would ensure that the 

sorting is done according to the smallest expected cost from the current node to the 

solution, u would have been explored first. Thus, indeed DRPA-Star would reach v 

before u. Moreover, DRPA-Star will eventually identify the best global solution for 

DRP from the above arguments and Lemma 4.1.                                                             ■ 

 



 

 

 

54

Lemma 4.3: DRPA-Star grows and requires sub-exponential time and space, 

respectively. 

Proof: Let P be the expanded paths (partial or complete OAS solution) in the 

search tree, then the space required by the DRPA-star is P and the time required by 

DRPA-star is dP(h+log(P)). Where d is the degree of the network, h is the depth at 

which the OAS's are identified, and the log(P) factor identifies the growth of the search 

tree. Now if error in the heuristic grows no faster than log of the optimal cost of the 

solution. A-star has been proven to be sub-exponential  [99]. Since DRPA-star due to its 

pruning is far more efficient than A-star, DRPA-star will also grow sub-optimally. We 

give the relation of sub-optimality as: OPTcost-Acost≤O(log(OPTcost)), where Acost is the 

admissible cost. We can thus say that P≤Mhd≤dM2. For an average case analysis 

DRPA-star uses space equivalent to Mhd, and thus the running time would be 

Mhd2(h+log(Mhd)).                                   ■ 

 

4.2 A-Star Based Refinements 

Arguably DRPA-Star is an algorithm that goes about the optimization mission 

too seriously. Therefore, we are interested in identifying ways to reach to a quick 

solution though perhaps sub-optimal. One approach to address this predicament is to 

examine the effects of g and h separately. The effect of g is to add a breath-first 

component to the search. Without h, DRPA-Star would reduce to a pure breath-first 

search. On the other hand without g, DRPA-Star would ignore the distance already 

covered and would base its decision entirely on h, the estimate of the remaining 
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proximity to the goal.  

 

4.2.1 WA-Star  

To cater for the two tendencies of A-Star type algorithms, a weighted evaluation 

function is recommended: f(n)=(1-w)×g(n)+w×h(n). Analytical results  [99] have shown 

that w can have three values, i.e., 0, ½, and 1 corresponding to exhaustive, A-Star and 

breath-first search, respectively. Rather than keeping w constant throughout the search, 

it is natural to dynamically change w so as to weigh h less heavily as the search goes 

deeper. Thus, an effective evaluation function would be: f(n) = g(n)+h(n)+ε[1-(d(n)/D)] 

h(n),  where d(n) is the depth of node n and D is the anticipated depth of the desired 

goal node. It is to be noted that shallow levels of the search tree, i.e., when d « D, h is 

given a supportive weight equal to 1+ε, encouraging depth-first excursions. At deep 

levels, however, the search resumes an admissible equal weight, to avoid early 

termination. We call this variation of DRPA-Star as WA-Star. 

 

Lemma 4.4: WA-Star identifies a solution within a range of 1+ ε of DRPA-Star. 

Proof: If h(n) is admissible, then the algorithm is ε-admissible, that is, it finds a 

path from start to the goal node with a cost at most 1+ε. This follows by observing that 

before the termination of the algorithms, the shallowest OPEN node n’ along any 

optimal solution path has its cost (g(n’)) equal to the optimal admissible cost (g*(n’)) 

 [99]. Therefore, we have:  

f(n’) ≤ g*(n’)+h*(n’)+ε[1-(d(n’)/D)] h*(n’)  
 ≤ ε h*(n’) 
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 ≤ 1+ε.                                                                                   ■
 

4.2.2 Aε-Star  

Perhaps a natural way to speedup any searching technique is to focus on a 

solution space that some how can guarantee that search in that particular space would 

not deviate from the optimal solution by a factor of, say ε. Keeping this mind we 

propose an extension of the DRPA-Star technique, called Aε-Star. This technique uses 

two lists: OPEN and FOCAL. The FOCAL list is a sub-list of OPEN, and contains only 

those nodes that do not deviate from the lowest f node by a factor greater than 1+ε. That 

is, we can say that: 

FOCAL = {n | f(n) ≤ (1+ε) minn’∈OPEN f(n’)}. 

The technique works similar to DRPA-Star, with the exception that the node 

selection (lowest h) is done not from the OPEN but from the FOCAL list. The main 

intuition behind Aε-Star is that according to the estimates of f, all nodes in FOCAL 

have roughly equal solution paths. Therefore, rather than spending time on deciding 

which among them is the best, it makes more sense to use the time to compute the 

remaining portion of the solution from within FOCAL. (Notice that when ε = 0, Aε-Star 

reduces to DRPA-Star.) It is easy to see that this approach will never run into the 

problem of memory overflow, moreover, the FOCAL list always ensures that only the 

candidate solutions within a bound of 1+ε of DRPA-Star are expanded.  

 

Lemma 4.5: Aε-Star identifies a solution within a range of 1+ ε of DRPA-Star. 

Proof: Let n’ be a node in OPEN list having the smallest f value, t be the 
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termination node, n be the shallowest OPEN node on an optimal path and f(t) be the 

cost of the solution found. Then we can say:  

f(n’) ≤ f(n) (Since h is admissible and OPEN is f ordered.) 
f(t) ≤ f(n’)(1+ ε) (Since t is chosen from FOCAL.) 

 ≤ f(n)(1+ε)  
 ≤ 1+ε.  ■

 

4.3 DRPA-Star Based Heuristics (SA1, SA2, and SA3) 

We now present three heuristics (suboptimal A-Star) algorithms, referred to 

hereafter as SA1, SA2, SA3. The name SA comes from Suboptimal Assignments. The 

main purpose is to design algorithms that converge to solution faster and overcome the 

high memory requirements associated with A-Star type algorithms  [47]. The basic idea 

in these algorithms is that when the search process reaches a certain depth in the search 

tree, some search path(s) can be avoided (some tree nodes can be discarded) without 

moving far from the optimal solution.  

 

4.3.1 SA1 

In SA1, when the algorithm (DRPA-Star) selects a node that belongs to level R 

or below, it generates only the best successors (lowest expansion cost) of it. All the 

other successors except the best one are discarded.  

 

4.3.2 SA2 

When the depth level R is reached for the very first time, all the successors 

except the minimum cost are discarded among all the nodes marked for expansion.  
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4.3.3 SA3 

In SA3, the discarding is done similar to SA2 except that now the nodes are 

removed from the ET. For instance, if n nodes are generated, then all of them are 

inserted in the ET, and the n-1 high cost nodes are discarded.  

These techniques will not suffer from memory overflow, since at level R, for 

every node taken out of the ET for expansion, only one node is inserted. Also the 

running time is reduced by many folds since the algorithm expands/explores less 

number of nodes when it reaches R. 

 

4.4 Bin Packing Based Heuristics (LMM and GMM) 

The bin packing problem formulation resembles the DRP in many ways; 

therefore, it is natural to see the DRP as a special case of the bin packing problem. In 

such a setup, the sites of the distributed system can be considered as the bins with 

specified storage capacity, and the objects can be considered as the items that need to be 

packed in the bins such that the total storage capacity of the bins is not exceeded and the 

profit brought by packing more items inside the bins is maximized. Here the profit can 

be made equivalent to minimizing the RC cost.  

 

4.4.1 Local Min-Min (LMM) 

Let Ok and Si
 represent the set of objects and sites in the system. Let U be the set 

of unassigned objects to a site Si. Let Umin define the minimum replication cost of the 
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objects to be assigned to a particular site. The assignment is made in the ascending 

order of set U. If there is a tie among two objects, then the tie is broken by the minimum 

object size, hence the name Min-Min. Since we do the assignment iteratively for every 

object and do not consider the effects of the choice of an object to a site with respect to 

other sites, we call it Local Min-Min (LMM). 

 

Lemma 4.6 ( [57]): LMM converges in O(MN(log N)) and requires linear space.          ■ 

 

4.4.2 Global Min-Min (GMM) 

Let Ok and Si
 represent the set of objects and sites in the system. Let U be the set 

of unassigned objects and k be the global minimum of all the replication costs 

associated with an object. The minimum of such cost as a set T = min0≤j≤N-

1(k(Ok,Si),∀Ok∈U. If during the assignment, the minimum replication cost of an object 

is the same for two different sites, the object is chosen on random. For a node n let 

mink(n) define the minimum element of set T. Thus mink(n) represents the best 

minimum replication cost that would occur if object Ok is replicated to a site Si, i.e., 

Global Min-Min (GMM). 

 

Lemma 4.7 ( [57]): GMM requires O(M2N2(log N)) time and Ω(MN) space.     ■ 

 

4.5 Greedy Based Heuristic (Greedy) 

The Greedy algorithm reported in  [100] works in an iterative fashion. In the first 

iteration, all the M sites are investigated to find the replica location(s) of the first among 
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a total of N objects. Consider that we choose an object i for replication. The algorithm 

recursively makes calculations based on the assumption that all the users in the system 

request for object i. Thus, we have to pick a site that yields the lowest cost of replication 

for the object i. In the second iteration, the location for the second site is considered. 

Based on the choice of object i, the algorithm now would identify the second site for 

replication, which, in conjunction with the site already picked, yields the lowest 

replication cost. Observe here that this assignment may or may not be for the same 

object i. The algorithm progresses forward till either one of the DRP constraints are 

violated. Further details about the Greedy algorithm can be obtained from  [100]. 

 

Lemma 4.8 ( [100]): Greedy requires O(M2N) running time.                              ■ 

 

4.6 Genetic Algorithm Based Heuristic (GRA) 

In  [78] the authors proposed a genetic algorithm based heuristic, called Genetic 

Replication Algorithm (GRA). GRA provides good solution quality, but suffers from 

slow termination time. This algorithm is chosen since it was the first work that 

realistically addressed the fine-grained replication on the same problem formulation as 

taken in this article. The technique shows great stability under various scenarios which 

have been experimentally derived. Briefly, the GRA exploits the mix and match 

technique. Chromosomes represent the various replication schemas and each consists of 

M genes (one for each site). Every gene is composed of N bits (one for each object). A 1 

value in the k-th bit of the i-th gene denotes that the i-th site holds a replica of the k-th 
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object, and 0 otherwise. Using this chromosome encoding, crossover, mutation and 

selection operations are performed to report the best chromosome as the final solution. 

Readers are encouraged to see  [78] for further details about the GRA method. 

 

Lemma 4.9 ( [78]): GRA requires O(NgNpM2N+NpMN2) running time.              ■ 

 

4.7 Comparative Analysis of Proposed Heuristics 

We record the performance of the heuristics using the two access logs and 80 

topologies. The plots shown are classified using the two access logs. For instance, for 

W-log, each point represents the average performance of an algorithm over 80 

topologies and 88 days of W-log. Below we detail our findings. 

 

4.7.1 Impact of Change in the Number of Sites and Objects 

We study the behavior of the placement techniques when the number of sites 

increases (Figures 4.2-4.5), by setting the number of objects to 25,000; while in Figures 

4.6-4.7, we study the behavior when the number of objects increase, by setting the 

number of sites to 3718. For the first experiment we fixed C = 15% and R/W = 0.25. 

(The read write ratio R/W reflects the relative number of reads and writes (or updates) 

generated for an object. For instance, R/W = 0.25 means that there are 25% reads and 

75% writes in the system.) We intentionally chose a high workload so as to see if the 

techniques studied successfully handled the extreme cases.  

We first study the performance of the algorithms using the W-log (Figure 
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4.2). The first observation is that WA-Star, Aε-Star and Greedy outperform other 

techniques by considerable amounts. Second, GMM, SA1, SA2, SA3 and DRPA-Star 

fail to converge to a solution with certain problem instance. This failure to completion 

is directly linked to the higher ratio of writes and smaller system capacity. Some 
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Figure 4.2: RC versus number of sites (W-log).  
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Figure 4.3: RC versus number of sites (N-log). 
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interesting observations were also observable, such as, LMM and GMM showed high 

gain with the initial number of site increase in the system, as much as 27% gain was 

recorded in case of GMM with only a 100 site increase. LMM and GMM show high 

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean)
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Figure 4.4: RC versus relative performance of 
heuristics (number of sites; W-log). 
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Figure 4.5: RC versus relative performance of 
heuristics (number of sites; N-log). 

 



 

 

 

64

initial gain since with the increase in the number of sites, the combinations of bins 

increase, but with the further increase in the number of sites, effect is not so observable 

as all the essential objects are already replicated. DRPA-Star as expected outperformed 

every other technique, but failed miserably, as the maximum workload it handled was 
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Figure 4.6: RC versus number of objects (W-log). 
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Figure 4.7: RC versus number of objects (N-log). 
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with M = 301. The top performing techniques (WA-Star, Aε-Star and Greedy) showed 

an almost constant performance. This is because by adding a site (server) in the 

network, we introduce additional traffic (local requests), together with more storage 

capacity available for replication. All three equally cater for the two diverse effects. 

GRA also showed a similar trend but maintained lower RC savings. This was in line 

with the claims presented in  [78]. The observation made by using the N-log (Figure 4.3) 

were similar in features to that of the results obtained from the analysis of the W-log, 

except for the performance of SA2. The increase in the number of sites gradually 

decreased the RC savings of the topologies when W-log was employed; however, when 

N-log was used SA2 gradually increased the RC savings with the increase in the 

number of sites in the system. We can attribute this phenomenon to the fact that SA2 

relies on the pruning of the search tree without any look-ahead technique; thus, when 

pruning was performed by SA2 with W-log as the workload, some useful nodes may 

have been pruned, resulting in the loss of RC savings. The relative performance of the 

algorithms pertaining to the W-log and N-log can be seen from Figure 4.4 and Figure 

4.5, respectively. The plots show the mean performance of the algorithms, with bars at 

the maximum and minimum limits with values of mean + 1.5 times the standard 

deviation and mean - 1.5 times the standard deviation, respectively. The shaded block 

represents the maximum and minimum limits with values of mean + standard deviation 

and mean - standard deviation, respectively. The solid line across the plots is the grand 

mean, the solid block (■) represents the mean, the cross (×) represents the outliers, and 

the asterisks (✳) denotes the extremes. We limit the outliers and extremes to 2 and 3 
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standard deviations, respectively. The plots are self-explanatory and show exactly 

which algorithms provide high (consistent) performance. The performance of the 

techniques based on the RC versus number of sites criteria are ranked as follows: 1) 

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean) 
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Figure 4.8: RC versus relative performance of 
heuristics (number of objects; W-log). 
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Figure 4.9: RC versus relative performance of 
heuristics (number of objects; N-log). 
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DRPA-Star; 2) Aε-Star; 3) WA-Star; 4) Greedy; 5) GRA; 6) SA3; 7) SA1; 8) GMM; 9) 

SA2; 10) LMM. 

To observe the effect of increase in the number of objects in the system, we 

chose a softer workload with C = 45% and R/W = 0.75. The intention was to observe 
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Figure 4.10: RC versus system capacity (W-log). 
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Figure 4.11: RC versus system capacity (N-log). 

 



 

 

 

68

the trends for all the algorithms as much as possible as some techniques failed to yield 

results as observable from Figures 4.6-4.7. Moreover, we want to observe the 

algorithms under various (system) environments. The increase in the number of objects 

has diverse effects on the system as new read/write patterns (users are offered more 

choices) emerge, and also the increase in the strain on the overall capacity of the system 

(increase in the number of replicas). An effective algorithm should incorporate both the 

opposing trends.  

We first observe the performance of the algorithms using the W-log (Figure 

4.6). From the plot, we can observe that the bin packing techniques perform the worst 

with a loss of nearly 32% in case of LMM. The most surprising result came from GRA. 

It dropped its savings from 62% to 12%. This was contradictory to what was reported in 

 [78]. But there the authors had used a uniformly distributed link cost topology, and their 

traffic was based on the Zipf distribution  [123]. While the traffic access logs of the 

World Cup 1998 are more or less double-Pareto in nature  [58]. In either case the 

exploits and limitations of the technique under discussion are obvious. The plot also 

shows a near identical performance by WA-Star, Aε-Star and Greedy. The relative 

difference among the three techniques is less than 5%. However, Aε-Star did maintain 

its supremacy.  

With N-log (Figure 4.7), the relative performance of the algorithms dropped 

further, this is due to the fact the N-log is highly concentrated An increase in the 

number of objects increases the traffic in the system by multi-folds, and the RC savings 

drop since the algorithms cannot further identify placements for the newly introduced 
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objects. However, this drop in RC savings is not more that 5%-10% compared to that of 

the results obtained from W-log. To better understand this phenomenon, readers are 

encouraged to examine the relative trends observable from Figures 4.8-4.9. The 

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean) 
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Figure 4.12: RC versus relative performance of 
heuristics (system capacity; W-log). 
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Figure 4.13: RC versus relative performance of 
heuristics (system capacity; N-log). 
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performance of the techniques based on the RC versus number of objects criteria are 

ranked as follows: 1) DRPA-Star; 2) Greedy; 3) Aε-Star; 4) WA-Star; 5) SA3; 6) SA1; 

7) SA2; 8) GRA; 9) GMM; 10) LMM. 

From here onwards, we will not report the performance of DRPA-Star, as it is 

only effective and converges to a solution when the problem size is considerably small. 

However, we will log the DRPA-Star algorithm termination timings (on small problem 

instances). Moreover, we will give a default first ranking to the DRPA-Star in the 

subsequent text since it always produces an optimal solution. 

 

4.7.2 Impact of Change in System Capacity 

An increase in the storage capacity means that a large number of objects can be 

replicated. Replicating an object that is already extensively replicated, is unlikely to 

result in significant traffic savings as only a small portion of the servers will be affected 

overall. Moreover, since objects are not equally read intensive, increase in the storage 

capacity would have a great impact at the beginning (initial increase in capacity), but 

has little effect after a certain point, where the most beneficial ones are already 

replicated.  

We first observe the performance of the algorithms using the W-log (Figure 

4.10). LMM and GMM once again performed the worst. The gap between all other 

approaches was reduced to within 12% of each other. WA-Star and Aε-Star showed an 

immediate initial increase (the point after which further replicating objects is 

inefficient) in its RC savings, but afterward showed a near constant performance. GRA 
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observable gained the most RC savings 38% followed by Greedy with 31%.  

Near identical performances were recorded using the N-log (Figure 4.11). One 

interesting observation is that when the system capacity is increased from 28% to 30%, 

the relative performance of almost all the algorithms increase by at most 10%. This 
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Figure 4.14: RC versus R/W ratio (W-log). 
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Figure 4.15: RC versus R/W ratio (N-log). 
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sudden increase in RC savings can be linked to the spatially distributed access of the 

clients in the N-log. That is, the 28% system capacity was marginally small to place the 

needed replicas in the vicinity of the clients so that the relative communication cost is 

minimized; thus, with only an increase of 2%, all the critically required replicas could 

now be placed and hence the sudden surge in RC savings. 

Further experiments with various update ratios (5%, 10%, and 20%) showed 

similar plot trends. It is also noteworthy that the increase in capacity from 10% to 17%, 

resulted in 4 times (on average) more replicas for all the algorithms. The performance 

of the techniques based on the RC versus system capacity criteria (and by observing 

Figures 4.12-4.13) are ranked as follows: 1) DRPA-Star; 2) Aε-Star; 3) Greedy; 4) WA-

Star; 5) GRA; 6) SA3; 7) SA1; 8) SA2; 9) GMM; 10) LMM. 

 

4.7.3 Impact of Change in Read/Write Frequencies 

Since the read and write parameters are complementary to each other, we take 

the liberty to describe them together. In both the setups the number of sites and objects 

were kept constant. Increase in the number of reads in the system would mean that there 

is a need to replicate as many object as possible (closer to the users). However, the 

increase in the number of updates (or writes) in the system requires the replicas be 

placed as close as to the primary site as possible (to reduce the update broadcast). This 

phenomenon is also interrelated with the system capacity, as the update ratio sets an 

upper bound on the possible traffic reduction through replication. Thus, if we consider a 

system with unlimited capacity, the “replicate everywhere anything” policy is strictly 
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inadequate. The read and update parameters indeed help in drawing a line between good 

and marginal algorithms.  

Figure 4.14 and Figure 4.15 show the performance of the algorithms using 

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean) 

Heuristics

R
C

 s
av

in
gs

 (%
)

W-log
M=3728; N=25,000; C=45%

-10%

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L to R [SA1, SA2, SA3, LMM, GMM, Greedy , GRA, WA-Star and Aε-Star]

 
Figure 4.16: RC versus relative performance of 
heuristics (R/W ratio; W-log). 
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Figure 4.17: RC versus relative performance of 
heuristics (R/W ratio; N-log). 
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the W-log and the N-log, respectively. A clear classification can be made between the 

algorithms. WA-Star, Aε-Star and Greedy incorporate the increase in the number of 

reads by replicating more objects and thus savings increase up to 90%. LMM gained the 

least of the RC savings of: up to 39% with the W-log and up to 36% with the N-log. 

However, the performance of LMM and GMM decreased exponentially with the 

increase in R/W ratio. A sub-exponential decrease was also observable in the case of 

GRA. (All algorithms exhibited some sort of decrease in RC savings with R/W ratio of 

0.50 and above.) WA-Star, Aε-Star and Greedy on the other hand showed extreme 

robustness and retained their initial savings. To understand why there is such a gap in 

the performance between the algorithms, we should recall that LMM and GMM 

specifically exploit the capacities of the servers, while the optimization of the RC is a 

secondary consideration. Moreover, they maintain localized network perceptions. 

Increase in updates result in objects having decreased local significance (unless the 

vicinity is in close proximity to the primary location). On the other hand, the suboptimal 

A-star based heuristics suffer from the bound set for their search tree. Thus, by 
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Figure 4.18: Execution time components. 

 



 

 

 

75

definition they tend to optimize local replication. However, WA-Star, Aε-Star and 

Greedy never tend to deviate from their global view of the problem search space. To 

better understand this phenomenon, readers are encouraged to examine the relative 

Table 4.1: Running time in seconds [C = 20%, R/W = 0.55] (small problem 
instances). 

Problem Size DRPA-Star SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star 
M=20, N=50 274.02 95.32 101.96 116.00 67.20 72.07 70.47 92.25 104.63 97.59 
M=20, N=100 315.73 103.32 111.04 120.96 80.31 78.38 77.25 97.66 110.21 104.02 
M=20, N=150 351.55 120.90 122.19 158.14 97.81 90.48 79.67 102.72 134.04 114.49 
M=30, N=50 365.04 136.90 158.61 175.64 100.55 105.25 96.11 128.63 149.15 142.71 
M=30, N=100 389.77 143.27 178.62 198.66 105.23 116.33 109.48 126.25 173.80 149.22 
M=30, N=150 469.23 184.84 206.05 237.70 115.17 130.83 137.65 150.33 210.82 180.66 
M=40, N=50 578.48 185.38 259.89 279.69 117.78 136.16 128.12 155.59 251.95 200.25 
M=40, N=100 706.89 234.98 308.06 325.29 120.81 158.93 135.07 169.17 288.12 237.93 
M=40, N=150 957.41 248.23 359.76 365.57 122.81 165.23 141.92 205.61 325.18 272.43 

 

Table 4.2: Running time in seconds [C = 45%, R/W = 0.85] (medium 
problem instances). 

Problem Size SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star 
M=300, N=1350 292.77 205.13 226.01 177.58 195.17 189.66 243.04 242.02 248.20 
M=300, N=1400 310.17 203.38 247.80 198.26 205.65 206.61 327.70 253.55 280.64 
M=300, N=1450 317.00 236.94 258.35 207.38 234.46 238.80 381.24 270.32 311.64 
M=300, N=1500 328.51 261.78 272.72 248.21 260.18 259.81 410.46 288.71 334.56 
M=300, N=1550 358.53 280.17 289.49 269.18 276.96 276.22 469.88 309.70 370.30 
M=300, N=2000 391.03 297.39 310.84 276.38 306.66 269.19 477.18 333.96 388.16 
M=400, N=1350 405.11 310.38 359.36 306.98 347.67 323.82 494.62 358.66 354.13 
M=400, N=1400 429.54 327.47 404.21 325.15 349.07 349.31 536.83 386.89 369.04 
M=400, N=1450 460.38 361.57 440.94 360.97 370.23 368.19 543.05 421.74 397.92 
M=400, N=1500 487.87 373.85 469.19 376.31 375.98 378.72 560.49 443.86 413.91 
M=400, N=1550 499.61 359.76 496.88 381.46 389.77 389.93 606.75 442.29 415.83 
M=400, N=2000 537.82 390.36 510.35 412.82 392.25 418.78 660.13 479.12 448.45 
M=500, N=1350 560.63 389.90 527.54 429.82 433.42 402.84 661.87 492.33 460.61 
M=500, N=1400 610.79 469.65 610.35 456.25 479.07 454.98 690.45 564.89 513.31 
M=500, N=1450 663.70 584.08 664.18 472.05 486.13 503.05 705.96 637.70 582.85 
M=500, N=1500 707.04 643.08 741.38 498.35 510.96 532.92 736.81 698.34 627.87 
M=500, N=1550 806.50 700.24 809.32 503.97 526.75 584.71 754.96 771.25 646.49 
M=500, N=2000 847.04 725.58 903.17 518.85 539.35 636.19 778.28 826.30 736.46 

 

Table 4.3: Running time in seconds [C = 75%, R/W = 0.65] (large problem 
instances). 

Problem Size SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star 
M=2500, N=15,000 930.52 612.96 744.10 598.33 618.51 622.05 983.82 765.60 842.32 
M=2500, N=20,000 957.44 715.01 779.93 629.17 706.22 724.42 1148.09 814.95 940.19 
M=2500, N=25,000 1178.41 898.60 937.30 836.55 925.40 808.91 1438.01 1006.75 1167.34 
M=3000, N=15,000 1290.70 986.60 1215.96 975.73 1050.77 1049.76 1613.73 1162.22 1109.52 
M=3000, N=20,000 1467.07 1128.04 1412.25 1136.03 1131.15 1139.63 1683.45 1337.60 1248.56 
M=3000, N=25,000 1685.60 1173.15 1584.43 1290.00 1279.38 1209.19 1986.36 1477.87 1382.90 
M=3718, N=15,000 1837.25 1413.91 1836.77 1372.30 1443.06 1370.55 2078.63 1702.54 1544.59 
M=3718, N=20,000 2120.34 1929.82 2224.72 1495.99 1534.47 1601.01 2211.73 2098.41 1886.13 
M=3718, N=25,000 2423.99 2104.62 2432.76 1514.02 1587.18 1760.80 2271.37 2319.41 1945.11 
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trends observable from Figures 4.16-4.17. The performance of the techniques based on 

the RC versus R/W ratio criteria are ranked as follows: 1) DRPA-Star; 2) Aε-Star; 3) 

WA-Star; 4) Greedy; 5) SA3; 6) GRA; 7) SA1; 8) GMM; 9) SA2; 10) LMM. 

 

4.7.4 Running Time 

Before we proceed with the discussion, we would like to clarify our 

measurement of algorithm termination timings. The approach we took was to see if 

these algorithms can be used in dynamic scenarios. Thus, we gather and process data as 

if it was a dynamic system. The average breakdown of the execution time of all the 

algorithms combined is depicted in Figure 4.18. There 68% of all the algorithm 

termination time was taken by the repeated calculation of the shortest paths. Data 

gathering and dispersion, such as reading the read frequencies from the processed log, 

etc. took 7% of the total time. Other miscellaneous operations including input/output 

were recorded to carry 3% of the total execution time. From the plot it is clear that a 

totally static setup would take no less that 21% of the time depicted in Tables 4.1-4.3.  

Various problem instances were recorded with C = 20%, 45%, 75% and R/W = 

0.55, 0.65, 0.85. Each problem instance represents the average recorded time over all 

the 80 topologies and 119 various access logs. The entries in bold represent the fastest 

time recorded over the problem instance. It is observable that LMM terminated faster 

than all the other techniques, followed by Greedy and GMM. If a static environment 

was considered, LMM with the maximum problem instance would have terminated 

approximately in 317.94 seconds (21% of the algorithm termination time). An 
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interesting result is also observable in the cases of SA1 and SA2. With soft problem 

instances, SA1 terminates faster than SA2, but the trend is reversed, when the 

algorithms tackle hard problem instances. This, is because with smaller problem 

instance SA2 has an extra over head of discarding nodes from the OPEN list.  

┬ (Mean+1.5*Std Dev) ┴ (Mean-1.5*Std Dev) ▒ (Mean+Std Dev – Mean-Std Dev) ■ (Mean) × (Outliers) ✳ (Extremes) ▬ (Grand mean) 
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Figure 4.19: RC versus variance in R/W ratio. 
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Figure 4.20: RC versus variance in system capacity. 
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4.7.5 Summary of Performance 

In summary, based on the solution quality alone, the algorithms can be 

classified into four categories: 1) The high performance algorithms that include DRPA-

Star, Aε-Star, WA-Star and Greedy; 2) The medium-high performance algorithms of 

GRA and SA3; 3) The medium performance algorithms of SA1 and SA2); 4) The low 

performance algorithms of GMM and LMM. While considering the termination 

timings, LMM, GMM and Greedy did extremely well, followed by Aε-Star, SA2, WA-

Star, SA1 and SA3. DRPA-Star as expected finished at the bottom of the list courtesy to 

its sub-exponential running time. 
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Figure 4.21: Search tree node expansion savings of A-Star based heuristics. 

 
 

Table 4.4: Problem instances for recording search tree node expansion savings.
Serial No. Problem instance Serial No. Problem instance 
1 M=20, N=50 6 M=30, N=150 
2 M=20, N=100 7 M=40, N=50 
3 M=20, N=150 8 M=40, N=100 
4 M=30, N=50 9 M=40, N=150 
5 M=30, N=100 10 M=50, N=200  

 



 

 

 

79

 

4.7.6 Supplementary Performance Evaluation 

Here, we present some supplementary results that strengthen our comparative 

analysis reported in earlier. The relative performance of the heuristics with variance in 

R/W ratio and system storage capacity are shown in Figure 4.19 and Figure 4.20, 

respectively. The main idea behind these two plots was to show the relative 

performance of all the algorithms over every possible combination over all the 80 

topologies and 119 access logs. In both the cases, we fixed M = 3728 and N =25,000. 

The variance for the R/W ratio was measured between R/W = [0.1-0.90], and the 

variance for the storage capacity was measured between C = [20%-80%]. The plots 

show the mean performance of the algorithms, with bars at the maximum and minimum 

limits with values of mean + 1.5 times the standard deviation and mean - 1.5 times the 

standard deviation, respectively. The shaded block represents the maximum and 

minimum limits with values of mean + standard deviation and mean - standard 

deviation, respectively. The solid line across the plots is the grand mean, the solid block 

(■) represents the mean, the cross (×) represents the outliers, and the asterisks 

(✳)denotes the extremes. The outliers and extremes are limited to 2 and 3 standard 

deviations, respectively. We are mostly interested in measuring the mean interval.  

With R/W variance (Figure 4.19), Aε-Star edges over WA-Star with a savings 

of 78%. Although Greedy recoded the highest RC savings (94%) its mean interval was 

around 76%. Among the suboptimal A-Star heuristics SA2 showed a very stable 

performance but SA3 recorded a higher mean interval. LMM and GMM observably 
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performed the worst. Figure 4.20 depicts the adaptability of the algorithms under the 

variance of the system storage capacity. It can be seen that all the algorithms did well in 

this domain. Unexpectedly, LMM and GMM which basically only exploit the storage 

capacity could not show a performance comparable to their counterparts. We attribute 

Table 4.5: Average RC (%) savings under some problem instances. 
Problem Size DRPA-star SA1 SA2 SA3 LMM GMM Greedy GRA WA-Star Aε-Star 

M=20, N=150 [C=20%,R/W=0.75, W-log] 79.72 75.70 68.20 77.66 50.90 63.38 74.62 73.01 76.96 78.54 
M=50, N=200 [C=20%, R/W =0.80, N-log] 80.59 72.69 73.15 74.17 43.59 59.48 67.44 72.62 77.24 76.75 
M=50, N=300 [C=25%, R/W =0.95, N-log] 77.17 73.47 71.42 72.71 49.88 66.33 75.34 74.36 73.45 71.37 
M=60, N=300 [C=35%, R/W =0.95, W-log] 74.07 67.32 66.08 71.46 45.38 62.70 69.79 70.39 69.04 72.45 
M=100, N=400 [C=25%, R/W =0.75, W-log] X 72.22 68.00 73.91 46.56 67.73 67.44 70.17 73.68 72.37 
M=100, N=500 [C=30%, R/W =0.65, W-log] X 66.68 64.15 69.44 47.70 64.30 69.07 64.95 70.83 70.00 
M=200, N=800 [C=25%, R/W =0.85, W-log] X 73.49 70.93 72.12 50.59 67.85 72.08 69.93 72.80 71.71 
M=100, N=1000 [C=20%, R/W =0.95, W-log] X 76.62 67.98 79.39 54.61 67.60 78.91 71.75 75.68 71.73 
M=300, N=1000 [C=25%, R/W =0.75, N-log] X 69.32 66.06 61.27 58.18 65.53 74.35 65.75 74.23 75.57 
M=400, N=1500 [C=35%, R/W =0.60, N-log] X 68.10 68.08 69.15 53.80 56.86 71.55 64.59 72.19 72.97 
M=200, N=2000 [C=20%, R/W =0.80, W-log] X 72.97 68.53 74.01 53.94 63.50 72.67 71.96 75.71 77.20 
M=500, N=2000 [C=60%, R/W =0.40, N-log] X 69.93 67.48 71.75 47.35 63.73 72.10 77.93 79.50 81.95 
M=500, N=3000 [C=25%, R/W =0.95, W-log] X 73.14 69.34 73.74 50.30 68.10 72.32 71.09 73.35 71.36 
M=1000, N=5000 [C=35%, R/W =0.95, N-log] X 66.20 67.74 67.20 44.94 62.41 70.10 70.43 71.86 71.87 
M=1500, N=10,000 [C=25%, R/W =0.75, N-log] X 75.10 66.59 78.34 44.49 68.00 72.06 69.79 72.93 74.41 
M=2000, N=15,000 [C=30%, R/W =0.65, W-log] X 76.80 73.86 81.22 51.04 68.37 72.84 68.03 73.06 75.64 
M=2500, N=15,000 [C=25%, R/W =0.85, N-log] X 68.13 66.79 70.60 46.61 62.37 69.61 67.44 69.55 67.45 
M=3000, N=20,000 [C=30%, R/W =0.65, W-log] X 74.67 72.19 74.75 51.90 66.63 65.54 70.68 74.49 73.99 
M=3500, N=25,000 [C=35%, R/W =0.50, W-log] X 72.33 69.22 73.22 56.22 62.29 72.70 66.70 72.93 74.20 
M=3718, N=25,000 [C=65%, R/W =0.40, N-log] X 67.07 65.78 68.67 55.56 60.19 70.38 64.29 71.95 71.26 

 

Table 4.6: Algorithm ranking based on solution quality. 
RC savings Algorithm Sites Objects Capacity R/W Overall score Rankings 

DRPA-Star 1 1 1 1 4 1 
SA1 7 6 7 7 27 7 
SA2 9 7 8 9 33 8 
SA3 6 5 6 5 22 5 
LMM 10 10 10 10 40 10 
GMM 8 9 9 8 34 9 
Greedy 4 2 3 4 13 3 
GRA 5 8 5 6 24 6 
WA-Star 3 4 4 3 14 4 
Aε-Star 2 3 2 2 9 2 

 

Table 4.7: Overview of results with suggested utilization. 
Algorithm Running time Memory utilization Solution quality Suggested utilization 

DRPA-Star Very high Very high Optimal Static with optimal quality. (Not practical at all.) 
SA1 Medium-high Medium Medium Static with medium quality. 
SA2 Medium-high Medium Medium Static/dynamic with medium-high quality. 
SA3 High Medium Medium-high Static with medium-high quality. 
LMM Very low Very low Low Fast/dynamic with low quality. 
GMM Low-medium Low Low Fast/dynamic with low-medium quality. 
Greedy Low Low High Fast/dynamic with very high quality. 
GRA Medium Medium Medium-high Static with high quality. 
WA-Star Medium Low-medium High Static/dynamic with very high quality. 
Aε-Star Medium Low-medium High Medium fast/dynamic with very high quality. 
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this fact to the arguments presented earlier – the bin packing algorithms only focus on 

local network optimization and do not have the full picture of the problem domain. 

Once again, Aε-Star edges over WA-Star, which is closely followed by Greedy. 

Lastly, we compare the pruning strength of the A-Star based heuristics. Ten 

problem instances (Table 4.4) were put to test. Figure 4.21 shows the savings in the 

node expansion compared to that of DRPA-Star. Clearly WA-Star prunes more nodes 

than any of the other heuristics, followed by Aε-Star, SA3, SA2 and SA1.  

 

4.7.7 Recap of Evaluation 

Table 4.5 reports the solution quality in terms of RC percentage for 20 randomly 

chosen problem instances, each being a combination of various numbers of sites and 

objects, with varying storage capacity and R/W ratio. For each row, the best result is 

indicated in bold. Entries marked with “X” represent that the algorithm could not 

terminated in a reasonable time. A-Star (DRPA-Star) and A-Star based heuristics (Aε-

Star, WA-Star, SA1, SA2, SA3) steal the show in the context of solution quality, but 

Greedy and GRA do indeed give a good competition, with a savings within a range of 

5%-10% of Aε-Star. 

As we mentioned in the introductory passage, selecting the best heuristic to be 

used in a given environment, is a difficult task, unless through investigation of the 

heuristics under a unifying problem domain is performed. For this purpose we selected 

ten heuristics from literature and extensively compared them under the variance of 

various system parameters. This study gives us the confidence to select a heuristic given 
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a well defined environment. Based on our findings, we are now at a position, where we 

can declare a “winner” among all the studied techniques. We poll our vote in favor of 

the Greedy heuristics which was originally proposed in  [100]. Although, it finished 

second on termination time and third (counting DRPA-Star which is only effective with 

smaller problem instances) in terms of the solution quality, yet its solution quality was 

always within 2%-5% of Aε-Star. Moreover, test results showed that Greedy was 

considerably faster than the other high performing algorithms. Table 4.6 shows the 

numerical ranking of the algorithms based on the solution quality. The overview of 

results and our recommendations on the possible usage of the heuristics studied in this 

study are summarized in Table 4.7. 

 

4.8 Concluding Remarks 

Selecting the best heuristic to be used in a given environment, however, remains 

a difficult task, since comparisons are often clouded by different underlying 

assumptions in the original study of the heuristic. The main purpose of this study was to 

study and compare the above mentioned heuristics on a unifying platform with 

changing system parameters so as to fully understand the capabilities and limitations of 

the methods. The studied heuristics were thoroughly tested using an experimental setup 

that closely mimicked the Internet in its infrastructure and user access patterns. GT-ITM 

and Inet Internet topology generators were employed to obtain 80 well-defined network 

topologies based on flat, link distance, power-law and hierarchical transit-stub models. 

The user access patterns were derived from real access logs collected at the Soccer 
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World Cup 1998 web server and NASA Kennedy Space Center web server. The 

selection of two different access logs was necessary to compliment the pros and cons of 

each access log. The Soccer World Cup 1998 access log had a high volume of traffic 

but did not cater for the geographically distributed access load. On the other hand the 

NASA Kennedy Space Center access log had diverse spatial and temporal access 

requests. Using this setup, the heuristics were evaluated by analyzing the system 

utilization in terms of reducing the communication cost incurred due to object 

transfer(s) under the variance of server capacity, object size, read access, write access, 

number of object and sites. Based on the experimental data, we were able to 

comparatively examine the behavior of each of the techniques. For the cases studied in 

this paper, the relatively simple Greedy heuristic performed extremely well in 

comparison to other, more complex techniques. Based on our observations, we made 

detailed suggestive uses of each and every heuristic and identified the circumstances in 

which they are deemed useful. 

Our main observations are as follows: 

1. Replica placement algorithms should incorporate the knowledge of network 

topology, clients’ access requirements, and possibly the psychological aspects that 

affect the access frequencies. 

2. Care should be taken when to invoke a replica placement algorithm. Studying the 

past user access trends can potentially help the designers to effectively determine 

the (exact) time when to invoke the algorithm. 

3. The relative performance of the replica placement algorithms is not the same across 
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the access logs (Soccer World Cup 1998 and NASA Kennedy Space Center), 

network topologies (flat, link distance, power-law and transit-stub), system 

parameters (capacity, R/W ratio, number of sites and objects). It would be extremely 

useful to identify the environment before the choice of deploying a particular 

algorithm is undertaken.  

4. Each algorithm has its strengths and weaknesses. As demonstrated in this study, 

there is no single replica placement algorithm that can cater for all the possible 

scenarios. This study can be used as a benchmark for selecting algorithms (proposed 

in this study or otherwise) to effectively tackle the underlying system environment. 

Our suggested line of action for the content distributors or network managers 

who would like to incorporate this study in their network management portfolio is as 

follows: 

1. Obtain the approximate (if not the exact) network topology. 

2. Gather all the system parameters such as, system capacity, number of objects and 

sites. 

3. Observe the access patterns of the clients and extract the spatially and temporally 

distributed workload so that R/W ratios in corresponding to the system parameters 

can be obtained. 

4. Based on the system parameters and the access patterns determine the relocation 

time for the replica placement algorithm. If frequent relocations are required, then 

the portfolio should incorporate algorithms that generate replica schemas in fast turn 

around time, such as GMM and LMM. If relocation is required only once in a 24-
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hour, then the Greedy algorithm would be the best choice. However, if relocation is 

required, say once every week, then perhaps Aε-Star or WA-Star can be deployed. 
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CHAPTER 5 

ON DESIGNING GAME THEORETICAL REPLICA PLACEMENT 
TECHNIQUES 

 

Data replication is an essential technique employed to reduce the user perceived 

access time in distributed computing systems. One can find numerous algorithms that 

address the data replication or the replica placement problem, each contributing in its 

own way. These range from the traditional mathematical optimization techniques, such 

as, linear programming, dynamic programming, etc. to the biologically inspired meta-

heuristics. We aim to introduce game theory as a new oracle to tackle the data 

replication problem. The beauty of the game theory lies in its flexibility and distributed 

architecture, which is well-suited to address the replica placement problem. We will 

specifically use action theory (a special branch of game theory) to identify techniques 

that will effectively and efficiently solve the replica placement problem. Game theory 

and its necessary properties are briefly introduced, followed by a through and detailed 

mapping of the possible game theoretical techniques and replica placement problem.  

There are two popular models  [100] to tackle the replica placement problem 1) 

centralized replication model and 2) distributed replication model. In the first model, a 

central body is used to make the decisions about when, where and what to replicate. In 

the second model, geographically distributed entities (servers, program modules, etc.) 

are used to make the decisions. Both the techniques have several pros and cons, for 
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instance, the centralized model is a potential point of failure and overloaded by all the 

computations involved in resolving to a decision. On the other hand, the distributed 

model suffers from the possibility of mediocre optimization due to the localized view of 

the distributed entities  [58]. A natural way to counteract both the extremities is to view 

the decision making process as a “semi-distributed”  [3] procedure, where all the data 

intensive computing is performed at the geographically distributed entities, while the 

final decision on replication is taken by a single entity. This would lessen the burden on 

the decision making entity, make it more fault-tolerant since in case of a failure it can 

easily be replaced. It would also improve the overall solution quality since the 

distributed entities would leverage upon the central body’s ability to provide a global 

snapshot of the system  [59]. 

Game theory has the natural ability to absorb a distributed optimization scenario 

into its realm  [96]. Within the context of the replica placement problem, the 

geographically distributed entities would be termed as the players, and the central 

decision making body as the referee, where the players compete to replicate data objects 

onto their servers so that the users accessing their serves would experience reduced 

access time. A closer look at this process (competing for data objects and refereeing) 

reveals a close resemblance between the replica placement problem and auctions. When 

an object is brought for auction, the bidders in a distributed fashion propose a bid for 

that object, without knowing what the other bidders are bidding, and the object is 

allocated to the bidder only when the auctioneer approves it. Of course there is more 

detail to this process which relies explicitly on the environment, situation, players 
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involved, objects that are up for auction, purpose of the auction. The theory which deals 

with these details is called auction theory, which is a special branch of game theory 

 [95].         

Using game theoretical techniques we can tailor make an auction procedure for 

a given scenario (problem at hand) and guarantee certain performance criteria, for 

instance, we can make sure that the players always project the correct worth of an 

object. This is a difficult problem when the players have to rely on local data, but with 

the help of game theory, this can be achieved without an extra overhead  [61],  [94]. To 

put things into perspective, we will describe how game theory can be used to create 

techniques for the replica placement problem in distributed computing systems. 

 

5.1 Some Essential Background Material 

 

5.1.1 Background Material on Game Theory 

Game theory is widely thought to have originated in the early twentieth century, 

when von Neumann gave a concrete proof of the min-max theorem  [116]. Although, it 

was the first formally stated major work in this field, the roots of game theory can be 

traced back to the ancient Babylonian Talmud. The Talmud is a compilation of the 

ancient laws set forth in the first five centuries A.D. Its traces can be found in various 

religions and the modern civil and criminal laws. One related problem discussed in the 

Talmud is the marriage contract problem: A man has three wives. Their marriage 

contracts specify that in the case of the husband’s death, the wives receive 1:2:3 of his 
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property. The Talmud in all mystery gives self-contradictory recommendations. It states 

that: If the man dies leaving an estate of only 100, there should be an equal division. If 

the estate is worth 300 it recommends proportional division (50,100,150), while for an 

estate of 200, it recommends (50,75,75). In 1985, Aumann and Maschler  [7] reported 

that the marriage contract problem and its weird solution discussed in the Talmud are 

only justifiable via cooperative game theoretical analysis. The foundation of the famous 

min-max theorem is credited to Waldegrave, who on November 13, 1713 wrote a letter 

to de Montmort describing a card game le Her and his solution  [71]. It would take two 

centuries for Waldegrave’s result to be formally acknowledged  [116].  

Some of the most pioneering results were reported within a year, when Nobel 

Laureate John Nash made seminal contributions to both cooperative and non-

cooperative games. In  [91] and  [92], Nash proved the existence of a strategic 

equilibrium for non-cooperative games (Nash Equilibrium). He also proposed that 

cooperative games were reducible to non-cooperative games. In the next two papers 

 [93],  [94] he eventually accomplished that and founded the axiomatic bargaining theory 

and proved the existence of the Nash Bargaining Solution for cooperative games (a 

notion similar to the Nash Equilibrium). The beauty of game theory is in its abstractly 

defined mathematics and notions of optimality. In no other branch of sciences, do we 

find so many understandable definitions and levels of optimality  [96].  

Auction theory is a special branch of game theory that deals with biddings and 

auctions, which have long been an important part of the market mechanisms. Auctions 

allow buyers to opt for prices often lesser than the original market prices, but they have 
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to compete and in doing so they have to realize their needs and constraints. Analysis of 

such games began with the pioneering work of Vickery  [114]. An auction is a market 

institution with an explicit set of rules determining resource allocation and prices on the 

basis of bids from the market participants  [66]. For instance, we can formulate an 

auction as  [27]: 

1. Bidders send bids to indicate their willingness to exchange goods. 

2. The auction may post price quotes to provide summarized information about the 

status of the price-determination process. (Steps 1 and 2 may be iterated.) 

3. The auction determines an allocation and notifies the bidders as to who purchases 

what from whom at what price. (The above sequence may be performed once or 

repeated any number of times.) 

There are four standard types of auctions  [85]: 

1. The English auction (also called the oral, open, or ascending-bid auction).  

2. The Dutch auction (or descending-bid auction).  

3. The first-price sealed-bid auction.  

4. The second-price sealed-bid (or Vickrey) auction.  

It is to be noted that the English and the Dutch auctions are collectively called 

progressive auctions; similarly the first-price sealed-bid and second-price sealed-bid 

auctions are collectively know as sealed-bid auctions. 

The English auction is the auction form most commonly used for the selling of 

goods  [29]. In the English auction the price is successfully raised until only one bidder 

remains. This can be done by having an auctioneer announce prices, or by having 
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bidders call the bids themselves, or by having bids submitted electronically with the 

current best bid posted  [27]. The essential feature of the English auction is that, at any 

point in time, each bidder knows the level of the current best bid. Antiques and artwork, 

for example, are often sold by English auction. 

The Dutch auction is the converse of the English auction  [29]. The auctioneer 

calls an initial high price and then lowers the price until one bidder accepts the current 

price. The Dutch auction is used, for instance, for selling cut flowers in Netherlands, 

fish in Israel and tobacco in Canada. 

With the first-price sealed-bid auction, potential buyers submit sealed bids and 

the highest bidders are awarded items for the price they bid  [85]. The basic difference 

between the first-price sealed-bid auction and the English auction is that, with the 

English auction, bidders are able to observe their rival’s bids and accordingly, if they 

choose, revise their own bids; with the sealed-bid auction, each bidder can submit only 

one bid. First-price sealed-bid auctions are used in the auctioning of mineral rights to 

U.S. government-owned land; they are also sometimes used in the sales of artwork and 

real estate  [66]. Of greater quantitative significance is the use, already noted, of sealed-

bid tendering for government procurement contracts  [114]. 

Under the second-price sealed-bid auction, bidders submit sealed bids having 

been told that the highest bidder wins the item but pays a price equal not to his own bid 

but to the second-highest bid. While this auction has useful theoretical properties, it is 

seldom used in practice. The most significant application of this type of auction is found 

in the selling of FCC bandwidths  [66]. 
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5.1.2 Game Theoretical Auction Theory, Views, and Extensions 

In contrast with competitive equilibrium theory  [48],  [118], where players 

respond solely to summary signals, for instance, prices for different outcomes, in 

auction theory players act in a game theoretic way, thereby modeling effect their actions 

will have no other player’s actions. This more detailed modeling facilitates the design of 

predictable systems of interacting players. Specifically, auction theory deals with how 

to design systems so that certain system-wide criteria, for instance, efficiency, fairness, 

and stability, emerge in a game theoretic equilibrium. The most widely exploited use of 

auction theory is in its capability to deal with players that behave in a self-interested 

(researchers in economic theory often term it as selfish) manner  [104],  [105]. That is, 

when players act in their own interest (local optimization) in contrast to the system-

wide endeavor (global optimization)  [27].  

It is also assumed that the players are aware of the protocols of interaction and 

abide by them. These assumptions are problematic since in a distributed computing 

environment  [27]: 

1. Players (by this we mean the software code that models the players) do not have an 

unbounded computational power that might be required to compute their 

preferences for all possible equilibria  [27]. 

2. Communication is not necessarily free and can also be prone to errors. 

3. Protocols in an open system vary from machine to machine and thus it is practically 

impossible to equip the players to attain knowledge of every such protocol. 

With this said, game theoretical auctions are probably one of the fewest oracles 
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in computer science and economic theory that are flexible and scalable to alterations of 

extreme nature  [84]. For a designer to ensure an equilibrium implemented auction with 

a certain social choice function, he/she has to predict the strategies players will select. 

In game theory there are several ways one can achieve that, for instance, dominate 

strategy, ex post Nash, Bayesian-Nash, ex interim Nash, etc  [27]. Of all of them, the 

most appealing, natural, and straight-forward is the dominate strategy concept  [66]. 

Each player in a dominant strategy has a best response strategy no matter what strategy 

the other players select  [27]. A dominate strategy equilibrium provides a robust solution 

concept because a player does not need to form beliefs about either other player’s 

rationality or the distribution over the other player types  [27]. However, this is not the 

case when we consider  [96]: ex post Nash equilibrium, which requires common 

knowledge about the player’s rationality, Bayesian-Nash equilibrium, which requires 

the knowledge about the distribution over player types, etc. To bring things into 

perspective  [27]: 

1. An example of a dominant strategy implementation is the second-price auction, 

where the winner always pays the second highest bid’s price. 

2. An example of an ex post Nash implementation is the first-price open-bid auction, 

where all the players know exactly which player bids what. 

3. An example of the Bayesian-Nash implementation is the first-price sealed-bid 

auction, where the winner always pays its bid. 

 As stated previously, the most widely exploited use of auction theory is in its 

capability to deal with players that behave in a selfish manner. That is, if we are given 
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predictive tools (such as dominant strategy, ex post Nash, ex interim Nash, etc.) and a 

social choice function, what possible properties can be expected out of the auction 

designed, given that the players are assumed to be selfish. Recall that we are yet to 

detail the set of desirable properties for any given auction mechanism. However, we did 

briefly talk about the utility maximization property for the social choice function. We 

will soon detail all of them in the subsequent text. For the time being assume we are 

only concentrating on the utility maximization property  [27].  

The “direct revelation principle”  [86] is the central concept in obtaining results 

about whether or not a certain property can be expected from a social choice function. 

The direct revelation principle is a simple reduction technique. For instance, the direct 

revelation equivalent of the English auction is an action in which the bidding structure 

follows the ex post Nash equilibrium  [27],  [84]. That is, the direct revelation 

implementation asks the players to reveal their valuations and then simulates the 

English auction with these ex post Nash strategies on the basis of the revealed 

valuations   [27]. The effect is to sell the object to the player with the highest bid for the 

second highest bid. The beauty of this principle is that any auction mechanism can be 

transformed into an incentive compatible, direct revelation auction mechanism  [62]. By 

direct we mean that the players’ strategy space is restricted to reporting their types and 

by incentive compatible we mean that the equilibrium strategy for players is truth 

telling. This principle is important since it allows a focused view on incentive 

compatible, direct revelation auction mechanisms that can guarantee a certain property. 

One very famous result using this very principle is the Vickrey-Clarke-Groves (VCG) 
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 [24],  [40],  [114] auction mechanism that guarantees the utility maximization property 

 [27].   

To briefly describe the VCG auction mechanism  [27], consider the partitioning 

of the outcome space into a choice δ and payments p. Outcome o = (δ,p) defines a 

choice δ ∈ ∆ in the space of feasible choices ∆ and payments p = (p1, p2, …, pM) by 

players. For instance, the choice set can describe all the feasible object allocations to the 

players, based on the utility function ui(δ,pi,ti) = vi(δ,ti) - pi, where vi(δ,ti) denotes the 

value of allocation δ to player i given its type ti. (It is important to know that the utility 

functions are always of the form of quasilinear.) The VCG auction mechanism receives 

claims ti* from players about their valuations and implements the choice δ* that 

maximizes ∑i vi(δ,ti*). Each player makes payment equal to the second highest bid, i.e., 

vi(δ,ti)* – (V(M) - V(M \ i)), where V(M) is the total reported value of δ* and V(M\i) is 

the total reported value of δ* that would be implemented without the player i. Note that 

the first two terms of the payment align a player’s incentives with that of the auction 

mechanism and make truth revelation a dominant strategy  [27]. In equilibrium every 

player receives as utility the marginal value that it contributes to the system  [58].  

  

5.2 Casting Replica Placement Problem into an Incentive Compatible Game 
Theoretical Auction 

 
To begin we first describe when in the lifespan of the distributed computing 

system a replication algorithm (an incentive compatible auction if we want to use the 

correct term) is to be invoked. The answer to that question depends specifically on the 
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system at hand, but usually the replication algorithms are invoked when the system 

experiences the least amount of queries to access the data objects. This is to ensure that 

the least amount of users would be affected from the movement of data objects in the 

system; furthermore it reduces the workload on the entities to compute their preferences 

towards the objects they prefer to host – remember they are already busy answering all 

the queries directed to them.  

In the subsequent text we will first extract the necessary ingredients from the 

discussion on auction theory and use them to cast the replica placement problem into an 

incentive compatible game theoretical auction. 

 

5.2.1 The Ingredients  

 

5.2.1.1 The Basics 

The auction mechanism contains M players. Each player i has some private 

information ti ∈ ℜ. This data is termed as the player’s type. Only player i has 

knowledge of ti. Everything else in the auction mechanism is public knowledge. Let t 

denote the vector of all the true types t = (t1, t2 , …, tM). 

 

5.2.1.2 Communications 

Since the players are self-interested (selfish) in nature, they do not communicate 

the value ti. The only information that is relayed is the corresponding bid bi. Let b 

denote the vector of all the bids (b = (b1, b2, …, bM), and let b-i denote the vector of bids 
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not including player i, i.e., b-i = (b1, b2, …, bi-1,bi+1, …, bM). It is to be understood that 

we can also write b = (b-i,bi). 

 

5.2.1.3 Components 

The auction mechanism has two components 1) the algorithmic output o(·), and 

2) the payment mapping function p(·).  

 

5.2.1.4 Algorithmic Output 

The auction mechanism allows a set of outputs O, based on the output function 

which takes in as the argument, the bidding vector, i.e., o(b) = {o1(b), o2(b), …, oM(b)}, 

where o(b) ∈ O. This output function relays a unique output given a vector b. That is, 

when o(·) receives b, it generates an output which is of the form of allocations oi(b). 

Intuitively it would mean that the algorithm takes in the vector bid b and then relays to 

each player its allocation.  

 

5.2.1.5 Monetary Cost 

Each player i incurs some monetary cost ci(ti,o), i.e., the cost to accommodate 

the allocation oi(b). This cost is dependent upon output and player’s private information.  

 

5.2.1.6 Payments 

To offset ci, the auction mechanism makes a payment pi(b) to player i. A player 

i always attempts to maximize its profit (utility) ui(ti,b) = pi(b) - ci(ti,o). Each player i 
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cares about the other players’ bid only insofar as they influence the outcome and the 

payment. While ti is only known to player i, the function ci is public. (Note that when 

we were previously describing the properties of auctions, the payments were made by 

the players and not the auction mechanism. That is fine in that context since the 

incentive for the players there was to acquire the object. In the context of the DRP, 

since the players have to conform to the global optimization criteria and host the 

objects, an incentive for the players would be to receive payments for hosting objects 

rather than making payments.) 

 

5.2.1.7 Bids 

Each player i is interested in reporting a bid bi such that it maximizes its profit, 

regardless of what the other players bid (dominant strategy), i.e., ui(ti,(b-i,ti)) ≥  ui(ti,(b-

i,bi)) for all b-i and bi.  

 

5.2.1.8 The incentive Compatible Auction Mechanism 

We now put all the pieces together. An incentive compatible auction mechanism 

consists of a pair (o(b),p(b)), where o(·) is the output function and p(·) is the payment 

mapping function. The objective of the auction mechanism is to select an output o, that 

optimizes a given objective function f(⋅). 

 

5.2.1.9 Desirable Properties 

In essence, we desire our auction to exhibit the utility maximization property. In 

economic theory a utility maximization property is also known as the efficient outcome 
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of the auction mechanism  [26]. In the subsequent text we will consider other properties, 

but for the time being let us limit our discussion to the utility maximization property. 

Remember that a utility maximization property is only attainable when an auction is an 

incentive compatible auction  [64]. 

 

5.2.2 The Casting  

We follow the same pattern as discussed in Section 5.2.1. 

  

5.2.2.1 The Basics  

The distributed system described in Chapter 3 is considered, where each server 

is represented by a player, i.e., the auction mechanism contains M players. In the 

context of the replica placement problem, a player holds two key elements of 

information 1) the available server capacity aci and 2) the access frequencies (both read 

rk
i and write wk

i).  Let us consider what possible cases for information holding there are: 

1. Replica placement problem [π]: Each player i holds the access frequencies {rk
i, wk

i} 

= ti associated with each object k as private information, where as the available 

server capacity aci and everything else (this includes all the auction related 

functions, network and system parameters) is public knowledge. 

2. Replica placement problem [σ]: Each player i holds the available server capacity aci 

= ti as private information, where as the access frequencies {rk
i, wk

i} and everything 

else is public knowledge. 

3. Replica placement problem [π,σ]: Each player i holds both the access frequencies 
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{rk
i, wk

i} and the server capacity aci as private information {aci,{rk
i, wk

i}} = ti, 

where as everything else is public knowledge. 

Intuitively, if players know the available server capacities of other players, that 

gives them no advantage whatsoever. However, if they come about to know their access 

frequencies, then they can modify their valuations and alter the algorithmic output. 

Everything else such as the network topology, latency on communication lines, and 

even the server capacities can be public knowledge. Therefore, replica placement 

problem [π] is the only natural choice.  

 

5.2.2.2 Communications 

The players in the auction mechanism are assumed to be selfish and therefore, 

they project a bid bi to the auction mechanism.  

 

5.2.2.3 Components 

The auction mechanism has two components 1) the algorithmic output o(·), and 

2) the payment mapping function p(·).  

 

5.2.2.4 Algorithmic Output 

In the context of the DRP, the replication algorithm accepts bids from all the 

players, and outputs the maximum beneficial bid, i.e., the bid that incurs the minimum 

cost to place replicas (Equation 3.3). We will give a detailed description of the 

algorithm in the later text. 
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5.2.2.5 Monetary Cost 

When an object is allocated (for replication) to a player i, the player becomes 

responsible to entertain (read and write) requests to that object. For example, assume 

object k is replicated by player i. Then the amount of traffic that the player’s server has 

to entertain due to the replication of object k is exactly equivalent to the replication cost, 

i.e., ci  =  Rk
i + Wk

i. This fact is easily deducible from Equation 3.4.  

 

5.2.2.6 Payments 

To offset ci, the auction mechanism makes a payment pi(b) to player i. This 

payment is chosen by the auction mechanism such that it eliminates incentives for 

misreporting by imposing on each player the cost of any distortion it causes. The 

payment for player i is set so that i’s report cannot effect the total payoff to the set of 

other players (excluding player i), M-i. With this principle in mind, let us derive a 

formula for the payments. To capture the effect of i’s report on the outcome, we 

introduce a hypothetical null report, which corresponds to player i reporting that it is 

indifferent among the possible decisions and cares only about payments. When player i 

makes the null report, the auction optimally chooses the allocation o(t-i). The resulting 

total value of the decision for the set of players M-i would be V(M-i), and the auction 

might also “collect” a payment hi(t-i) from player i. Thus, if i makes a null report, the 

total payoff to the players in set M-i is V(M-i) - hi(t-i). 

The auction is constructed so that this, V(M-i) - hi(t-i), amount is the total payoff 

to those players regardless of i’s report. Thus, suppose that when the reported type is t, 
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i’s payment is pi(t) + hi(t-i), so that pi(t) is i’s additional payment over what i would pay 

if it made the null report. The decision o(t) generally depends on i’s report, and the total 

payoff to members of M-i is then ∑i∈M-ivi(o(t),ti) + pi(t) + hi(t-i). We equate this total 

value with the corresponding total value when player i makes the null report:  

( ) ( ),i i i i i i i
i M iv o t t p t h t V M i h t      

           
− −

∈ − + + = − +∑ . (5.2)

Using Equation 5.2, we solve for the extra payment as: 

( ) ( ),i i i
i M ip t V M i v o t t  

      ∈ −= − −∑ . (5.3)

( ) ( ), ,i i i i i
i M i i M ip t v o M i t v o t t             ∈ − ∈ −= − −∑ ∑ . (5.4)

According to Equation 5.4, if player i’s report leads to a change in the decision 

o, then i’s extra payment pi(t) is specified to compensate the members of M-i for the 

total losses they suffer on the account  [58]. 

The derived payment procedure is in its most general form. A careful 

observation would reveal that its special cases include every possible payment 

procedure. The most famous of them all is the Vickrey payment. To say the least we 

will show the derived payment procedure is equivalent to Vickrey payments. A player’s 

value for any decision depends only on the objects that the player acquires, and not on 

the objects acquired by other players. That is, vi(ti) = 1 if the player acquires the object 

and vi(ti) = 0 otherwise. Since the loosing players are not pivotal  [64] (because their 

presence does not affect the allocation o), they obtain zero payments in our mechanism. 

According to Equation 5.4, the price a winning player pays in the (derived) payment 

procedure is equal to the difference between the two numbers. The first number is the 
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maximum total value of all the other players, when i does not participate, which is 

maxj≠ivi. The second number is the total value of all the other players when i wins, 

which is zero. Thus, when i wins it pays maxj≠ivi, which is equal to the second highest 

valuation. This is exactly the Vickrey payment  [110].  

 

5.2.2.7 Bids 

Each player i reports a bid that is the direct representation of the true data that it 

holds. Therefore, a bid bi is equivalent to 1/{Rk
i+Wk

i }. That is, the lower the replication 

cost the higher is the bid and the higher are the chances for the bid bi to win. 

In essence, the incentive compatible auction mechanism (o(b),p(b)), takes in the 

vector of bids b from all the players, and selects the highest bid. The highest bidder is 

allocated the object k which is added to its allocation set oi. The auction mechanism 

then pays the bidder pi. This payment is equivalent to the Vickrey payments and 

compensates the cost incurred (due to the entertainment of access requests for object k 

by users) by the player to host the object at its server. A pseudo-code for an incentive 

compatible auction mechanism is given in Figure 5.1.  

 

5.2.2.8 Description of Psuedo-code 

We maintain a list Li at each server. This list contains all the objects that can be 

replicated by player i onto server Si. We can obtain this list by examining the two 

constraints of the DRP. List Li would contain all the objects that have their size less then 

the total available space bi. Moreover, if server Si is the primary host of some object k’, 
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then k’ should not be in Li. We also maintain a list LS containing all servers that can 

replicate an object, i.e., Si ∈ LS if Li ≠ NULL. The algorithm works iteratively. In each 

step the auction mechanism asks all the players to send their preferences (first 

PARFOR loop). Each player i recursively calculates the true data of every object in list 

Li. Each player then reports the dominant true data (line 08). The auction mechanism 

receives all the corresponding entries, and then chooses the best dominant true data. 

This is broadcasted to all the players, so that they can update their nearest neighbor 

table NNk
i, which is shown in Line 21 (NNi

OMAX). The object is replicated and payments 

An incentive compatible auction mechanism 
 
Initialize: 
LS, Li, Tk

i, M, MT 
 
01 WHILE LS ≠ NULL DO 
02     OMAX = NULL; MT = NULL; Pi = NULL; 
03            PARFOR each Si∈LS DO 
04                           FOR each Ok∈ Li DO 
05                                     Tk

i = compute (Bk
i);  /*Compute the valuation */ 

06                           ENDFOR 
07                    ti = argmaxk(Tk

i);  
08                    SEND ti to M; RECEIVE at M ti in MT; 
09             ENDPARFOR 
10   OMAX = argmaxk(MT);    /*Choose the global dominate valuation*/ 
11   DELETE k from MT;  
12   Pi = argmaxk(MT);               /*Calculate the Vickrey payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si; RECEIVE at Si       /*Ask the winning agent to pay this amount*/ 
15   SEND Pi to M; RECEIVE at M       /*Send the required payment*/ 
16   Replicate OOMAX;  
17   bi=bi - ok;                           /*Update capacity*/ 
18   Li = Li - Ok;                    /*Update the list*/ 
19   IF Li = NULL THEN SEND info to M to update LS = LS - Si;        /*Update mechanism players*/ 
20           PARFOR each Si∈LS DO  
21                  Update NNi

OMAX                   /*Update the nearest neighbor list*/ 
22           ENDPARFOR                  /*Get ready for the next round*/ 
23 ENDWHILE 

 
 

Figure 5.1: Pseudo-code for an incentive compatible auction mechanism. 
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made to the player. The auction progresses forward till there are no more players 

interested in acquiring any data for replication.   

 

5.2.3 Further discussion on the Casting Process  

The mechanism described in Section 5.2 illustrates the usage of the auction 

theory as a possible solution towards the replica placement problem with the property of 

dominating strategy. This same process with minor modifications can be used to 

guarantee other auction properties applied to the replica placement problem. We give a 

brief description of some of the properties in the subsequent text, but for details, the 

readers are encouraged to see some of the work performed by the authors that explicitly 

detail these properties, and the subsequent Chapters. 

 

5.2.3.1 Pareto Optimality  

Implementing an outcome that is not pareto dominated by any other outcomes, 

so no other outcomes make one player better off while making other players worst  [27]. 

Details on a pareto optimal auction applied to the replica placement problem can be 

found in Chapter 6. 

 

5.2.3.2 Maximum Utility to a Particular Player  

Maximizing the expected utility to a single player, typically the central decision 

making body, across all possible scenarios. This type of setting is very useful when 

considering revenue maximization scenarios. Details on a maximum utility to a 
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particular player auction applied to the replica placement problem can be found in 

Chapter 7. 

 

5.2.3.3 Deliberate Discrimination of Allocation  

Maximize the system utilization by revoking allocations if deemed necessary. 

This type of property is very useful when considering dynamic scenarios, where it often 

warrants revoking a decision since the system parameters may change drastically during 

the computation of a decision  [27]. Details on a deliberate discrimination of allocation 

auction applied to the replica placement problem can be found in Chapter 8. 

 

5.2.3.4 Budget Balance  

A budget balanced auction is when the total payments made or received by the 

players exactly equals zero. This property is important since the money is not injected 

or removed from the system. If the payments made or received by the players equal to 

zero, then the auction is termed as a strict budget balance auction  [27]. On the other 

hand, if the payments made or received by the players does not equal to zero but it is 

non-negative, then the auction is termed as a weak budget balance auction. (In a weak 

budget balance auction, the auction does not run at a loss.) One can also consider an 

exante budget balance auction, in which the auction is balanced on average, and an 

expost budget balance auction, in which the auction is balanced at all times. Details on a 

budget balance auction applied to the replica placement problem can be found in 

Chapter 9. 
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Budget balance is especially important in systems that must be self-sustaining 

and require no external benefactor to input money or central authority to collect 

payments  [26],  [27]. For instance, a distributed system should always be a budget 

balanced system, since money has no literal meaning in the system – it is there just to 

drive the optimization process, not the system as a whole.  

 

5.3 Experimental Comparative Analysis 

We performed experiments on a 440MHz Ultra 10 machine with 512MB 

memory. The experimental evaluations were targeted to benchmark the placement 

policies. The solution quality in all cases, was measured according in terms of the OTC 

(or RC or NTC) percentage that was saved under the replication scheme found by the 

technique, compared to the initial one, i.e., when only primary copies exist.  

 

5.3.1 Comparative Techniques 

For comparison, we selected three various types of replica placement 

techniques. To provide a fair comparison, the assumptions and system parameters were 

kept the same in all the approaches. The techniques studied include efficient branch and 

bound based technique (Aε-Star  [57]). The algorithms proposed in  [58],  [75],  [78], and 

 [100] are the only ones that address the problem domain similar to ours. We select from 

 [100] the greedy approach (Greedy) for comparison because it is shown to be the best 

compared with 4 other approaches (including the proposed technique in  [75]); thus, we 

indirectly compare with 4 additional approaches as well. From  [78] we choose the 
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Genetic based algorithm (GRA), which exhibits extreme robustness under various 

changing scenarios. For rebuttal, we briefly detail the comparative techniques as below: 

1. Aε-Star: In  [57] the authors proposed a 1+ε admissible A-Star based technique 

called Aε-Star. This technique uses two lists: OPEN and FOCAL. The FOCAL list 

is the sub-list of OPEN, and only contains those nodes that do not deviate from the 

lowest f node by a factor greater than 1+ε. The technique works similar to A-Star, 

with the exception that the node selection (lowest h) is done not from the OPEN but 

from the FOCAL list. It is easy to see that this approach will never run into the 

problem of memory overflow, moreover, the FOCAL list always ensures that only 

the candidate solutions within a bound of 1+ε of the A-Star are expanded.  

2. Greedy: We modify the greedy approach reported in  [100], to fit our problem 

formulation. The greedy algorithm works in an iterative fashion. In the first 

iteration, all the M servers are investigated to find the replica location(s) of the first 

among a total of N objects. Consider that we choose an object i for replication. The 

algorithm recursively makes calculations based on the assumption that all the users 

in the system request for object i. Thus, we have to pick a server that yields the 

lowest cost of replication for the object i. In the second iteration, the location for the 

second server is considered. Based on the choice of object i, the algorithm now 

would identify the second server for replication, which, in conjunction with the 

server already picked, yields the lowest replication cost. Observe here that this 

assignment may or may not be for the same object i. The algorithm progresses 

forward till either one of the DRP constraints are violated. The readers will 
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immediately realize that derived incentive compatible auction mechanism works 

similarly to the Greedy algorithm. This is true; however, the Greedy approach does 

not guarantee optimality even if the algorithm is run on the very same problem 

instance. Recall that Greedy relies on making combinations of object assignments 

and therefore, suffers from the initial choice of object selection (which is done 

randomly). This is never the case with the derived auction procedure, which 

identifies optimal allocations in every case. 

3. GRA: In  [78], the authors proposed a genetic algorithm based heuristic called GRA. 

GRA provides good solution quality, but suffers from slow termination time. This 

algorithm was selected since it realistically addressed the fine-grained data 

replication using the same problem formulation as undertaken in this article. 

From here onwards, we will acronym the incentive compatible auction 

mechanism derived exclusively for the replica placement problem as I-CAM.   

 

5.3.2 Comparative Analysis 

We record the performance of the techniques using the access logs and 80 

topologies. Note that each point represents the average performance of an algorithm 

over 80 topologies and 88 days of the access log. (The details on the infrastructure and 

the workload have already been discussed previously.) Below we detail our 

experimental findings. 
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5.3.2.1 Impact of Change in the Number of Servers and Objects 

We study the behavior of the placement techniques when the number of servers 

increase (Figure 5.2), by setting the number of objects to 25,000, while in Figure 5.3, 

we study the behavior when the number of objects increase, by setting the number of 

servers to 3718. For the first experiment we fixed C = 35% and R/W = 0.25. We 

intentionally chose a high workload so as to see if the techniques studied successfully 

handled the extreme cases. By adding a server in the network, we introduce additional 

traffic due to its local requests, together with more storage capacity to be used for 

replication. I-CAM balances and explores these diverse effects, so as to achieve highest 

OTC savings. GRA showed the worst performance along all the techniques. It showed 

an initial gain, since with the increase in the number of servers the population 

permutations increase exponentially, but with the further increase in the number of 

servers this phenomenon is not so observable as all the essential objects are already 

replicated. The top performing techniques (I-CAM, Greedy and Aε-Star) showed an 

almost constant performance increase (after the initial surge in OTC savings). GRA also 

showed a similar trend but maintained lower OTC savings. This was in line with the 

claims presented in  [57] and  [78]. 

To observe the effect of increase in the number of objects in the system, we 

chose a softer workload with C = 65% and R/W = 0.70. The intention was to observe the 

trends for all the techniques under various workloads. The increase in the number of 

objects has diverse effects on the system as new read/write patterns (since the users are 
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offered more choices) emerge, and also the strain on the overall storage capacity of the 

system increases (due to the increase in the number of replicas). An effective replica 

allocation method should incorporate both the opposing trends. From the plot, the most 

surprising result came from GRA. It dropped its savings from 47% to 0.01%. This was 

contradictory to what was reported in  [78]. But there the authors had used a uniformly 

No. of Servers

O
TC

 S
av

in
gs

 (%
)

N=25,000; C=35%; R/W=0.25

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
I-CAM

 
Figure 5.2: OTC savings versus number of servers. 
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Figure 5.3: OTC savings versus number of objects 
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distributed link cost topology, and their traffic was based on the Zipf distribution  [123]. 

While the traffic access logs of the Soccer World Cup 1998 are more or less double-

Pareto in nature  [6]. In either case the exploits and limitations of the technique under 

discussion are obvious. The plot also shows a near identical performance by Aε-Star 
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Figure 5.4: OTC savings versus capacity. 
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Figure 5.5: OTC savings versus read/write ratio. 
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and Greedy. The relative difference among the two techniques was less than 7%. 

However, Greedy did maintain its dominance. From the plots the supremacy of I-CAM 

is observable. (Figure 5.3 is deliberately shown with a log (OTC savings) scale to better 

appreciate the performances of the techniques.) 

 

5.3.2.2 Impact of Change in the system Capacity 

Next, we observe the effects of increase in storage capacity. An increase in the 

storage capacity means that a large number of objects can be replicated. Replicating an 

object that is already extensively replicated, is unlikely to result in significant traffic 

savings as only a small portion of the servers will be affected overall. Moreover, since 

objects are not equally read intensive, increase in the storage capacity would have a 

great impact at the beginning (initial increase in capacity), but has little effect after a 

certain point, where the most beneficial ones are already replicated. This is observable 

in Figure 5.4, which shows the performance of the algorithms. GRA once again 

performed the worst. The gap between all other approaches was reduced to within 15% 

of each other. I-CAM and Greedy showed an immediate initial increase (the point after 

which further replicating objects is inefficient) in its OTC savings, but afterward 

showed a near constant performance. GRA although performed the worst, but 

observably gained the most OTC savings (49%) followed by Greedy with 44%. Further 

experiments with various update ratios (5%, 10%, and 20%) showed similar plot trends. 

It is also noteworthy (plots not shown in this study due to space restrictions) that the 

increase in capacity from 10% to 18%, resulted in 3.75 times (on average) more replicas 
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for all the algorithms.  

 

5.3.2.3 Impact of Change in the Read/Write Frequencies 

Next, we observe the effects of increase in the read and write frequencies. Since 

these two parameters are complementary to each other, we describe them together. To 

observe the system utilization with varying read/write frequencies, we kept the number 

of servers and objects constant. Increase in the number of reads in the system would 

mean that there is a need to replicate as many object as possible (closer to the users). 

However, the increase in the number of updates in the system requires the replicas be 

placed as close as to the primary server as possible (to reduce the update broadcast). 

This phenomenon is also interrelated with the system capacity, as the update ratio sets 

an upper bound on the possible traffic reduction through replication. Thus, if we 

consider a system with unlimited capacity, the “replicate everywhere anything” policy 

is strictly inadequate. The read and update parameters indeed help in drawing a line 

between good and marginal algorithms. The plot in Figure 5.5 shows the results of 

read/write ratio against the OTC savings. A clear classification can be made between 

the algorithms. I-CAM and Greedy incorporate the increase in the number of reads by 

replicating more objects and thus savings increased up to 88%, while GRA gained the 

least of the OTC savings of up to 42%. To understand why there is such a gap in the 

performance between the algorithms, we should recall that GRA specifically depends 

on the initial selection of gene population (for details see  [78]). Moreover, GRA 

maintains a localized network perception. Increase in updates result in objects having 
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decreased local significance (unless the vicinity is in close proximity to the primary 

location). On the other hand, I-CAM, Aε-Star and Greedy never tend to deviate from 

their global (or social) view of the problem. 

 

5.3.2.4 Running Time 

Lastly, we compare the termination time of the algorithms. Various problem 

instances were recorded with C = 45% and R/W = 0.85. The entries in Table 5.1 made 

bold represent the fastest time recorded over the problem instance. It is observable that 

I-CAM terminated faster than all the other techniques, followed by Greedy, Aε-Star, 

Table 5.1: Running time of the replica placement 
methods in seconds [C=45%, R/W=0.85]. 

Problem Size Greedy GRA Aε-Star I-CAM 
M=2500, N=15,000 310.14 491.00 399.63 185.22 
M=2500, N=20,000 330.75 563.25 442.66 201.75 
M=2500, N=25,000 357.74 570.02 465.52 240.13 
M=3000, N=15,000 452.22 671.68 494.60 284.34 
M=3000, N=20,000 467.65 726.75 498.66 282.35 
M=3000, N=25,000 469.86 791.26 537.56 303.32 
M=3718, N=15,000 613.27 883.71 753.87 332.48 
M=3718, N=20,000 630.39 904.20 774.31 390.90 
M=3718, N=25,000 646.98 932.38 882.43 402.23 

 
 
 

Table 5.2: Average OTC (%) savings under some randomly 
chosen problems. 

Problem Size Greedy GRA Aε-Star I-CAM 
M=100, N=1000 [C=20%,R/W=0.75] 71.46 85.77 86.28 89.45 
M=200, N=2000 [C=20%, R/W=0.80] 84.29 78.30 79.02 84.76 
M=500, N=3000 [C=25%, R/W=0.95] 68.50 70.97 67.53 71.43 
M=1000, N=5000 [C=35%, R/W=0.95] 88.09 67.56 78.24 88.30 
M=1500, N=10,000 [C=25%, R/W=0.75] 89.34 52.93 76.11 89.75 
M=2000, N=15,000 [C=30%, R/W=0.65] 67.93 51.02 52.42 75.32 
M=2500, N=15,000 [C=25%, R/W=0.85] 77.35 71.75 73.59 81.12 
M=3000, N=20,000 [C=25%, R/W=0.65] 76.22 65.89 73.04 82.31 
M=3500, N=25,000 [C=35%, R/W=0.50] 66.04 59.04 67.01 71.21 
M=3718, N=25,000 [C=10%, R/W=0.40] 76.34 63.19 76.02 79.21 
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and GRA.   

 

5.3.2.5 Summary of Experimental Results 

Table 5.2 shows the quality of the solution in terms of OTC percentage for 10 

problem instances (randomly chosen), each being a combination of various numbers of 

server and objects, with varying storage capacity and update ratio. For each row, the 

best result is indicated in bold. The proposed I-CAM steals the show in the context of 

solution quality, but Greedy and Aε-Star do indeed give a good competition. 

In summary, based on the solution quality alone, the replica allocation methods 

can be classified into four categories: 1) High performance: I-CAM; 2) Medium-High 

performance: Greedy; 3) Medium performance: Aε-Star; 5) Low performance: GRA. 

Considering the execution time, I-CAM and Greedy did extremely well, followed by 

Aε-Star and GRA. 

 

5.4 Concluding Remarks 

Replicating data across a distributed computing system can potentially reduce 

the user perceived access time which in turn reduces latency, adds robustness and 

increases data availability. Our focus here was to show how game theoretical auctions 

can be used to identify techniques for the replica placement problem in distributed 

computing systems. A semi-distributed technique based on a game theoretical auction 

was proposed for the replica placement problem which had the added property that it 

maximized the utility of all the players involved in the system – an incentive compatible 
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auction mechanism (I-CAM). 

I-CAM is a protocol for automatic replication and migration of objects in 

response to demand changes. It aims to place objects in the proximity of a majority of 

requests while ensuring that no servers become overloaded. The infrastructure of I-

CAM was designed such that, each server was required to present a list of data objects 

that if replicated onto that server would bring the communication cost to its minimum. 

These lists were reviewed at the central decision body which gave the final decision as 

to what object are to be replicated onto what servers. This semi-distributed 

infrastructure takes away all the heavy processing from the central decision making 

body and gives it to the individual servers. For each object, the central body is only 

required to make a binary decision: (0) not to replicate or (1) to replicate.  

To compliment our theoretical results, we compared I-CAM with three 

conventional replica allocation methods namely: (1) branch and bound, (2) greedy, and 

(3) genetic. The experimental setups were designed in such a fashion that they 

resembled real world scenarios. We employed GT-ITM and Inet to gather 80 various 

Internet topologies based on flat, link distance, power-law and hierarchical transit-stub 

models, and used the traffic logs collected at the Soccer World Cup 1998 website for 

mimicking user access requests. The experimental study revealed that the proposed I-

CAM technique improved the performance relative to other conventional methods in 

four ways.  

1. The number of replicas in a system was controlled to reflect the ratio of read versus 

write access. To maintain concurrency control, when an object is updated, all of its 
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replicas need to be updated simultaneously. If the write access rate is high, there 

should be few replicas to reduce the update overhead. If the read access rate is 

overwhelming, there should be a high number of replicas to satisfy local accesses. 

2. Performance was improved by replicating objects to the servers based on locality of 

reference. This increases the probability that requests can be satisfied either locally 

or within a desirable amount of time from a neighboring server. 

3. Replica allocations were made in a fast algorithmic turn-around time. 

4. The complexity of the data replication problem was decreased by multifold. I-CAM 

limits the complexity by partitioning the complex global problem of replica 

allocation, into a set of simple independent sub problems. This approach is well 

suited to the large-scale distributed computing systems that are composed of 

autonomous agents which do not necessarily cooperate to improve the system wide 

goals.  

All the above improvements were achieved by a simple, semi-distributed, and 

autonomous I-CAM. 
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CHAPTER 6 

A PARETO OPTIMAL GAME THEORETICAL REPLICA PLACEMENT 
TECHNIQUE 

 

Here we derive a pareto optimal replica placement technique based on the 

extended form of Vickrey auction called the N+1st price auction. Specifically, we 

present an adaptive auction mechanism for replication of objects in a distributed system. 

The mechanism is adaptive in the sense that it changes the replica schema of the objects 

by continuously moving the schema towards an optimal one, while ensuring object 

concurrency control.  

 

6.1 Motivation 

As a rule of thumb, a replica placement technique should pursue the following 

line of action.  

1. Determine the Network topology. 

2. Specify the objects that are to be replicated. 

3. Obtain the access frequencies of the objects. The access frequencies are either 

known apriori or determined using some prediction techniques. 

4. Based on the above information, employ an algorithmic technique to replicate 

objects based on some optimization criteria and constraints. 
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5. Finally, determine a redirection method that sends client requests to the best 

replicator that can satisfy them. 

Based on the above passage, an effective replica placement technique 

determines the replica allocation which gives the highest data accessibility in the whole 

network. If the network topology is comprised of M sites which are connected (directly 

or indirectly) to each other and N denotes the number of data objects that are specified 

for replication, then, the number of possible combinations of replica allocation is 

expressed by the following expression: 

( )
!

!

M

N
N C

 
 
 
 
 

−
, 

where C is the overall memory capacity of M sites.  

In order to determine the optimal allocation among all possible combinations, 

we must analytically find a combination which gives the highest data accessibility 

considering the following parameters: 

1. Access frequencies from each site to each data object. 

2. The probability that each site’s memory capacity remains unchanged. 

3. The probability that the network connectivity remains unchanged. 

Even if some looping is possible the computational complexity is very high, and 

this calculation must be done every time when either of the above three parameters 

change. Moreover, among the above three parameters, the later two cannot be 

formulated in practical because they follow no known phenomenon. 

For these reasons, we take the following approach:  
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1. Replicas are relocated in a specific period (relocation period). 

2. At every relocation period, replica allocation is determined based on the access 

frequency from each site to each data object and the network topology at the 

moment. 

Based on this approach we propose a pareto optimal game theoretical technique 

that effectively and efficiently determines a replica schema that is competitive, scalable 

and simple compared to other conventional (heuristics) techniques. 

 

6.2 The Mechanism (NPAM) 

We term the proposed resource allocation mechanism as NPAM an acronym for 

N+1st Price Auction Mechanism. In the auction setup each primary copy of an object k 

is a player. A player k can perform the necessary computations on its strategy set by 

using the site (where it resides) Pk’s processor. At each given instance a (sub)-auction 

takes place at a particular site i chosen in a round robin fashion from the set of M sites. 

These auctions are performed continuously throughout the system’s life, making it a 

self evolving and self repairing system. However, for simulation purposes (“cold” 

network  [77]) we discrete the continuum solely for the reason to observe the solution 

quality. 

Each player k competes through bidding for memory at a site i. Many would 

argue that memory constraints are no longer important due to the reduced costs of 

memory chips. However, replicated objects (just as cached objects) reside in the 

memory (primary storage) and not in the media (secondary storage)  [100]. Thus, there 
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will always be a need to give priority to objects that have higher access (read and write) 

demands. Moreover, memory space regardless of being primary or secondary is limited. 

Each player k’s strategy is to place a replica at a site i, so that it maximizes its 

(the object’s) benefit function. The benefit function gives more weight to the objects 

that incur reduced RC in the system:  

1 ,Mi i x i
k k k k k kxB R w o c i P W       

== − −∑ . (6.1)

The above value represents the expected benefit (in RC terms), if Ok is 

replicated at Si. This benefit is computed using the difference between the read and 

update cost. Negative values of Bk
i mean that replicating Ok, is inefficient from the 

“local view” of Si (although it might reduce the global RC due to bringing the object 

closer to other servers). The pseudo-code for the N+1st price auction is given in Figure 

6.1. 

We maintain a list Li at each server. The list contains all the objects that can be 

replicated at Si (i.e., the remaining storage capacity bi is sufficient and the benefit value 

is positive). We also maintain a list LS containing all servers that can replicate an 

object. In other words, Si∈LS if and only if Li ≠ NULL. The auction mechanism 

performs in steps. In each step a server Si is chosen from LS in a round-robin fashion. 

Each player k∈O calculates the benefit function of object. The set O represents the 

collection of players that are legible for participation. A player k is legible if and only if 

the benefit function value obtained for site Si is the maximum of among all the other 

benefit function values for sites other than i, i.e., Si ≥ S-i. This is done in order to 
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N+1st Price Auction Mechanism 
Initialize: 
01 LS, Li. 
02 WHILE LS ≠ NULL DO 
03            SELECT Si∈LS                                    /*Round-robin fashion */ 
04                           FOR each k∈O  DO 
05                                     Bk = compute (Bk

i);          /*compute the benefit*/ 
06                                     Report Bk to Si which stores in array B; 
07                           END FOR 
08           WHILE bi ≥ 0 
09              Bk = argmaxk(B);                       /*Choose the best offer*/ 
10              Extract the info from Bk such as Ok and ok; 
11              bi = bi-ok;                                   /*Calculate available space and termination condition*/ 
12              Payment = Bk;                           /* Maintain N+1st price */ 
13              IF bi < 0 THEN EXIT WHILE ELSE 
14              Li = Li - Ok;                                /*Update the list*/ 
15              Update NNi

OMAX                                   /*Update the nearest neighbor list*/ 
16              IF Li = NULL THEN SEND info to M to update LS = LS - Si;         
17              Replicate Ok;  
18         END WHILE 
19         Si asks all successful bidders to pay Bk 
20 END WHILE 

 
Figure 6.1: Pseudo-code for N+1st Price Auction Mechanism (NPAM). 

suppress mediocre bids, which, in turn improves computational complexity. It is to be 

noted that in each step Li together with the corresponding nearest server value NNk
i, are 

updated accordingly.  

Theorem 6.1: NPAM takes O(MN2) time. 

Proof: The worst case execution time of the algorithm is when each server has 

sufficient capacity to store all objects and the update ratios are low enough so that no 

object incurs negative benefit value. In that case, the while-loop (02) performs M 

iterations. The time complexity for each iteration is governed by the for-loop in (04) 

and the while loop in (08) (O(N2) in total). Hence, we conclude that the worst case 

running time of the algorithm is O(MN2).                                                                         ■ 
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6.3 Experimental Comparative Analysis 

We performed experiments on a 440MHz Ultra 10 machine with 512MB 

memory using the setup described in Chapter 3. The experimental evaluations were 

targeted to benchmark the placement policies. The solution quality in all cases, was 

measured according to the RC percentage that was saved under the replication scheme 

found by the algorithms, compared to the initial one, i.e., when only primary copies 

exist.  

For comparisons, we selected three various types of replica placement 

techniques. To provide a fair comparison, the assumptions and system parameters were 

kept the same in all the approaches. We chose 1) from  [57] the efficient branch-and-

bound based technique (Aε-Star), 2) from  [78] the genetic algorithm based technique 

(GRA) which showed excellent adaptability against skewed workload, 3) and from 

 [100] the famous greedy approach (Greedy).  

Table 6.1 (best times shown in bold) shows the algorithm execution times. The 

number of sites was kept constant at 500, and the number of objects was varied from 

1350 to 2000. With maximum load (2000 objects and 500 sites), the proposed technique 

NPAM saved approximately 50 seconds of termination time then the second fastest 

algorithm (Greedy). 

Superiority of execution time comes at the cost of loss in solution quality. 

However, NPAM showed high solution quality. First, we observe the effects of system 

capacity increase. An increase in the storage capacity means that a large number of 

objects can be replicated. Replicating an object that is already extensively replicated, is 
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Table 6.1: Running time in sec. 
Problem Size Greedy GRA Aε-Star NPAM

M= 500, N= 1350 81.69 117.60 110.46 90.09 
M= 500, N= 1400 98.28 127.89 127.89 95.34 
M= 500, N= 1450 122.43 139.02 139.02 98.91 
M= 500, N= 1500 134.61 148.47 155.40 104.37
M= 500, N= 1550 146.58 168.84 169.47 105.63
M= 500, N= 2000 152.25 177.66 189.21 108.57
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Figure 6.2: RC savings vs. System Capacity (N 
= 2000, M = 500, U = 5%). 

unlikely to result in significant traffic savings as only a small portion of the servers will 

be affected overall. Moreover, since objects are not equally read intensive, increase in 

the storage capacity would have a great impact at the beginning (initial increase in 

capacity), but has little effect after a certain point, where the most beneficial ones are 

already replicated. This is observable in Figure 6.2, which shows the performance of the 

algorithms. Greedy and NPAM showed an immediate initial increase (the point after 

which further replicating objects is inefficient) in its RC savings, but afterward showed 

a near constant performance. GRA although performed the worst, but observably gained 

the most RC savings (35%) followed by Greedy with 29%. Further experiments with 
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various update ratios (5%, 10%, and 20%) showed similar plot trends. It is also 

noteworthy (plots not shown in this study due to space restrictions) that the increase in 

capacity from 10% to 17%, resulted in 4 times (on average) more replicas for all the 
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Figure 6.3: RC savings vs. Reads (N = 2000, M 
= 500, C = 45%). 
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Figure 6.4: RC savings vs. Updates (N = 2000, 
M = 500, C = 60%). 
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Table 6.2: Average savings in percentage. 
Problem Size Greedy GRA Aε-Star NPAM 

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 75.70 
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 78.43 
N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 82.25 
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 74.43 
N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 73.89 
N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 75.45 
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 73.68 
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 72.45 
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 74.01 
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 73.15 

 

algorithms. 

Next, we observe the effects of increase in the read and update (write) 

frequencies. Since these two parameters are complementary to each other, we describe 

them together. In both the setups the number of sites and objects were kept constant. 

Increase in the number of reads in the system would mean that there is a need to 

replicate as many object as possible (closer to the users). However, the increase in the 

number of updates in the system requires the replicas be placed as close as to the 

primary site as possible (to reduce the update broadcast). This phenomenon is also 

interrelated with the system capacity, as the update ratio sets an upper bound on the 

possible traffic reduction through replication. Thus, if we consider a system with 

unlimited capacity, the “replicate everywhere anything” policy is strictly inadequate. 

The read and update parameters indeed help in drawing a line between good and 

marginal algorithms. The plots in Figures 6.3 and 6.4 show the results of read and 

update frequencies, respectively. A clear classification can be made between the 

algorithms. Aε-Star, Greedy and NPAM incorporate the increase in the number of reads 

by replicating more objects and thus savings increase up to 89%. GRA gained the least 
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of the RC savings of up to 67%. To understand why there is such a gap in the 

performance between the algorithms, we recall from  [78] that GRA specifically depends 

on the initial population of the candidate solution. Moreover, GRA maintains a 

localized network perception. Increase in updates result in objects having decreased 

local significance (unless the vicinity is in close proximity to the primary location). On 

the other hand, Aε-Star, Greedy and NPAM never tend to deviate from their global 

view of the problem domain. 

In summary, Table 6.2 shows the quality of the solution in terms of RC 

percentage for 10 problem instances (randomly chosen), each being a combination of 

various numbers of sites and objects, with varying storage capacity and update ratio. 

For each row, the best result is indicated in bold. The proposed NPAM steals the show 

in the context of solution quality, but Aε-Star and Greedy do indeed give a good 

competition, with savings within a range of 7%-10% of NPAM. 

 

6.4 Concluding Remarks 

Manual mirroring of data objects is a tedious and time consuming operation. 

This study proposed a game theoretical N+1st price auction mechanism (NPAM) for 

fine-grained data replication in large-scale distributed computing systems such as the 

Internet. NPAM is a protocol for automatic replication and migration of objects in 

response to demand changes. NPAM aims to place objects in the proximity of a 

majority of requests while ensuring that no hosts become overloaded. 

NPAM allows agents to compete for the scarce memory space at sites so that 
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they can acquire the rights to place replicas. To cater for the possibility of cartel type 

behavior of the agents, NPAM uses N+1st price protocol. This leaves the agents with no 

option, then to report truthful valuations of the objects that they represent. 

NPAM was compared against some well-known techniques, such as: greedy, 

branch and bound and genetic algorithms. To provide a fair comparison, the 

assumptions and system parameters were kept the same in all the approaches. The 

experimental setup was designed to mimic a large-scale distributed computing system 

(the Internet), by using several Internet topology generators and World Cup Soccer 

1998 web server access logs. The experimental results revealed that NPAM 

outperformed the three widely cited and powerful techniques in both the execution time 

and solution quality. In summary, NPAM exhibited 7%-10% better solution quality and 

10%-30% savings in the algorithm termination timings. 
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CHAPTER 7 

A UTILITY MAXIMIZING GAME THEORETICAL REPLICA 
PLACEMENT TECHNIQUE 

 

A utility maximizing game theoretical replica placement technique termed as 

NCOR (non-cooperative game theoretical replica allocation technique) to reduce user 

perceived Web access delays is proposed in the subsequent text. NCOR uses distributed 

agents that because of their local knowledge act in a self-interested manner in order to 

enhance the performance of the servers that they represent. This can lead to some 

performance gains for some servers but has the potential to negatively impact the 

overall system’s performance. NCOR uses an effective cost model to guarantee the 

overall system performance gain despite the self-interested actions of these agents. With 

spontaneous and non-deterministic strategies, the system can exhibit Nash equilibrium. 

However, that may or may not guaranteed system-wide performance at a given time. 

Furthermore, their can be multiple Nash equilibria, making it difficult to decide which 

one is the best. Instead, we use the notion of pure Nash equilibrium, which if achieved 

is guaranteed to ensure stable optimal performance. Pure Nash equilibrium can be only 

achieved by deterministic strategies. In general, the existence of a pure Nash 

equilibrium is remarkably hard to achieve; however, we prove the existence of such 

equilibrium in NCOR.  
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7.1 Introduction 

A number of techniques for object-based Web content replication have been 

proposed with the underlying assumption that servers cooperate with one another in 

order to layout a replica schema that optimizes the overall system performance. For 

instance, almost all content distribution networks (CDNs) related replica allocation 

methods ( [41],  [46]) rely on a centralized decision making body which optimizes a 

given objective (such as to reduce the communication cost) regardless of the costs 

incurred by each server  [54]. In reality, servers aim at maximizing their own benefits, 

possibly at the expense of the global optimal  [22].  

To study this self-interested behavior, we make use of game theoretical 

techniques and abstract the Web (or large scale distributed computing system) as an 

agent based model. Each server in the system is represented by an agent which is a 

computational entity that is capable of autonomous behavior in the sense of being aware 

of the options available to it when faced with a decision making task related to its 

domain of interest  [58]. These agents are motivated by their individual interests and 

compete in a non-cooperative replica allocation game (NCOR). In NCOR each agent 

has two possible actions for each object. If an access is made to an object that is located 

at a nearby server, then the agent is better off redirecting the request to that server. On 

the other hand if the object is located at a far off server, then the agent is better off 

replicating that object.  

The goal of this study is to see whether these self-interested agents in NCOR, 

can layout replica schemas that converge to global optimum solution(s) targeted 
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towards reducing the communication cost induced by accessing the objects. Using game 

theory, we show that in the worst-case scenario, the system as a whole resides in a 

social optimum domain, i.e., the solution quality can never be worse than a pareto-

optimal solution. This social optimum domain is used as the basis to prove that NCOR 

indeed converges to global optimum solution(s) that conform to pure Nash 

equilibrium(s) when the self-interested agents play deterministic strategies according to 

NCOR’s cost model. Pure Nash equilibrium is different from the classical Nash 

equilibrium in the sense that the former results when the strategies played are 

deterministic, while the later results when the strategies played are non-deterministic. 

Also, a system will achieve a global optimum solution throughout the lifespan of the 

system once such a pure Nash equilibrium is achieved. This is certainly not the case 

when a system exhibits a classical Nash equilibrium, for the simple reason that there 

could be multiple Nash equilibria, making it difficult to decide which one is the best. 

An elaborate discussion on these two types of Nash equilibria, their properties and 

differences can be found in  [32] and  [112].  

 

7.2 Non-cooperative Replica Allocation Game 

Before we discuss the exact game structure of NCOR (the non-cooperative 

replica allocation game), it is essential to lay down the basis of NCOR. We start by 

defining: 
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7.2.1 Preliminaries for the NCOR 

 

Definition 7.1 (Feasible Strategies):  An agent i’s strategy is termed feasible, 

φi, when the two constraints of the data replication problem (storage and no de-

allocation of the primary copy) are met before a decision to replicate an object Ok can 

be undertaken.  

 

Of all these possibly infinity many feasible strategies, let ςi∈φi be a strategy 

chosen by an agent i, where ςi=1 means object is replicated and ςi=0 means it is not. 

(Note that ςi only focus on a specific object Ok. Therefore it is not necessary to write ςi 

as ςi,k or any other notation that would differentiate any two objects.) Since each agent 

chooses ςi∈φi independently (keeping both the constraints at par), we can look at the 

replication of each object Ok as a separate game, and combine the pure Nash 

equilibrium of these games to obtain a pure Nash equilibrium of the multi-object game, 

NCOR. (This argument would become clearer when Definition 7.3 and Lemma 7.1 are 

reviewed.)  

 

Definition 7.2 (Strategy Profile)  [96]: A strategy profile ς=(ς1,…,ςM) is a set of 

strategies for each agent which fully specifies all of its actions. A strategy profile must 

include one and only one strategy for every agent. 

 

For convenience we can also write ς as (ςi,ς-i), where ςi is the strategy of agent i, 
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and ς-i is the set of strategies of all other agents in NCOR excluding agent i. Given ς one 

can easily find out which agents have opted to replicate Ok.  

 

Definition 7.3 (Pure Nash Equilibrium)  [112]: A situation in a  non-

cooperative game in which agents play using a set of deterministic strategies whereby 

no agent can improve its benefit by changing its strategy unilaterally. 

 

Lemma 7.1 (Combining Pure Nash Equilibriums)  [32]: If two games are 

known to have pure Nash equilibriums, then the union of the games is also guaranteed 

to have a pure Nash equilibrium.                                                                                      ■ 

 

Thus, if we are able to prove that a given ς conforms to a pure Nash equilibrium, 

then ∪ςi also conforms to a pure Nash equilibrium. Conversely, if χ(ς) is the cost 

function associated with ς, then Σχ(ςi) over all N objects is the cost associated with ∪ςi. 

Based on this, we can give a formal mathematical definition of pure Nash equilibrium: 

 

Definition 7.4 (Pure Nash Equilibrium (Mathematically)): Let (ς,χ) be a 

game, where ς is the set of strategy profiles and χ is the cost function. When each agent 

i plays ςi then agent i incurs a cost χi(ς)=χi(ς1,…,ςM). ς* is pure Nash equilibrium if for 

any deviation ςi by an agent i is not beneficial, that is χi(ςi,ς-i
*)≤ χi(ςi

*,ς-i
*). 

 

Definition 7.5 (Stability of a Pure Nash Equilibrium)  [112]: Equilibrium is 
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stable if an infinitesimal small change in the strategy of one agent leads to a situation 

where the following hold: 

(a): The agent who did not change has no better strategy in the new 

circumstance. 

(b): The agent who did change is now playing with a strictly worse strategy. 

 

It is also important that we accentuate on the difference between ς and Rk 

(replica schema of Ok). If we are given Rk, we only know which servers hold a copy of 

Ok, but if ς is given, we can also find out which agents have not opted to replicate Ok 

along with their corresponding cost functions. 

 

Definition 7.6 (Replica Schema): A replica schema, Rk, for object Ok is the set 

of servers that replicates Ok.  

 

7.2.2 NCOR Structure and Mechanism 

We now proceed with describing the game structure of NCOR. 

 

7.2.2.1 The Setup 

The Web (or large scale distributed computing system) is considered, where 

each server is represented by an agent, i.e., NCOR contains M agents. Although NCOR 

is non-cooperative in nature, yet there is no information hiding. That is, the network 

topology, the size of the object and location of replicas are all public knowledge. The 
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only information that is private to each agent is the frequency of reads and writes for 

each object from its server.  

 

7.2.2.2 Cost Model 

We first concentrate on deriving the cost model for a single object. This will be 

expanded later on to fully encapsulate the multi-object replica placement problem.  

Let φi be the set of feasible strategies for an agent i. For Ok, the agent chooses a 

strategy ςi∈φi that describes its desire to replicate or otherwise. Thus, given a strategy 

profile ς, we say that an agent i incurs a cost χi(ς) if it considers replicating object Ok. 

This cost is given as:  

( ) ( )
,

( ) , , ,k k k k
i i i i ik k k k kk ki ij R i jk

w o c P j r o c i NN w o c i Pς ςχ ς
  
      
     ∈ ∉     ∀ ∈ ≠   

   

= + +∑ ∑ ∑ , (7.1)

which implies that if an agent replicates Ok, then the cost incurred due to reads is 0 = 

ri
kokc(i,NNi

k) since NNi
k = i. The cost incurred due to local writes (or updates) is equal to 

zero since the copy resides locally, but whenever Ok is updated anywhere in the 

network, agent i has to continuously update Ok’s contents locally as well. Therefore, the 

aggregate cost of writes is equivalent to wi
kok Σ∀(j∈Rk), i≠j c(Pk,j). On the other hand if an 

agent does not replicate Ok, then the cost incurred due to reads is equal to ri
kokc(i,NNi

k), 

and the cost incurred due to writes is equal to wi
kokc(i,Pk) since it only has to send the 

update to the primary server which then broadcasts the update based on Rk to the agents 

who have replicated the object.   

Equation 7.1 captures the dilemma faced by an agent i when considering 
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replicating Ok. If agent i replicates Ok then it brings down the read cost to zero, but now 

it has to keep the contents of Ok up to date. If agent i does not replicate Ok, then it 

reduces the overhead of keeping the contents up to date, but now it has to redirect the 

read requests to the nearest neighborhood server which holds a copy of Ok. Keeping 

these cost considerations in mind, for an object Ok each agent i has two strategies: (0) 

not to replicate or (1) to replicate; allowing us to rewrite Equation 7.1 in a visually 

appealing form: 

,
, 1 , ,( ) k k k k

i i i i i ik k k k k
j R i jk

i w o c P j r o c i NN w o c i Pχ ς ς ς
                                     

∀ ∈ ≠
− += +∑ . (7.2)

 

7.2.2.3 Discussion on Cost Model 

Each agent i’s cost to replicate an Ok (or otherwise) sturdily relies on the access 

(both read and write) frequencies, the replica locations, and the size of Ok (ok). 

Essentially, NCOR starts with a given (possibly a random) replica schema, and evolves 

it into a replica schema that exhibits pure Nash equilibrium as each agent alters its 

strategy so as to minimize its cost. That is, a pure Nash equilibrium (ς*
i,ς*

-i) for NCOR 

identifies a replica schema Rk such that ∀i∈M, i∈Rk if and only if ς*
i=1. Recall that 

there can be infinitely many feasible strategies, which in turn means that there can be 

infinitely many replica schemas that are identifiable by a pure Nash equilibrium. Let Є 

represent the set of all possible pure Nash equilibrium replica schemas and we say: 

 

Definition 7.7 (Pure Nash Equilibrium Replica Schema): A replica schema 
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belongs to the set of pure Nash equilibrium replica schemas Rk∈Є if and only if each 

agent i∈M chooses a feasible strategy ςi∈φi such that when each agent i plays ςi, it 

cannot improve its cost by changing its strategy unilaterally, that is χi(ςi,ς-i
*)≤ χi(ςi

*,ς-i
*), 

where ς* is a pure Nash equilibrium. 

 

Keeping Definition 7.7 in mind, for NCOR we can straightforwardly deduce the 

following:  

Rk ∈ Є if and only if: 

(a) ∀i∈M, ∃j∈Rk such that c(i,j) is minimum. (7.3)
(b) ∀j∈Rk, ∄ j’∈Rk such that c(j,j’)<c(i,j). (7.4)

 

We observe that for an object Ok’s replica schema to be in a state of pure Nash 

equilibrium, each agent i has placed Ok’s replica at a server that incurs minimum 

possible communication cost from Si. (That is, if the replica is not placed at i, then it is 

replicated at a server j which has the minimum cost of communication from Si, 

compared to any other server in the system.) On the other hand if agent i, has already 

replicated object Ok, then there is no benefit for agent i to drop the replica since the 

location incurs a minimal communication cost to at least one server (which holds the 

replica). Note that what we have just discussed above (Equations 7.3 and 7.4) is 

equivalent to the two conditions ((a) and (b), respectively) of equilibrium stability as 

stated in Definition 7.5. With this said, we now expand this single object replica 

allocation cost model to the multi-object data replication problem. First, let us see what 

is the cost incurred by the society (all M agents) as a whole. 
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Definition 7.8 (Social Optimum)  [96]: The maximum net benefits for 

everybody in society, regardless of who enjoys the benefits. 

Social optimum is the analogous concept of optimum resource allocation  [112]. 

In this study since the resources are replicas, we can say the social optimum is 

equivalent to the optimum replica allocation, and we note that:  

 

Definition 7.9 (Pareto Optimum)  [96]: A pareto optimum is a situation in 

which it is not possible to make any one agent better off without making some other 

agent worse off. 

 

Lemma 7.2 (A Condition for Pareto Optimum)  [96]: A pareto optimum is not 

possible unless the net benefits for every agent in society are maximized.                      ■ 

 

In an ideal price based competitive economy, achieving a social (or pareto) 

optimum is no big deal  [96]. Every agent maximizes its private benefit, but since every 

agent pays for any benefits it receives, and bears only the corresponding costs, the result 

of this private benefit maximization is that social net benefits are maximized. However, 

when pricing is not involved (as is the case in NCOR), it is no longer trivial to guarantee 

social optimum. We write the social cost for NCOR as: 

1
( ) ( )i

M

i
χ ς χ ς

=
= ∑ . (7.5)

Refining Equation 7.5 using the definition of social optimum we say: 
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min min( ) ( )ςχ ς χ ς= . (7.6)

Equation 7.6 encapsulates the notion of cooperation among all agents to layout a 

replica schema that incurs minimum communication cost. But the agents are self-

interested, hence we use χ(ςmin) as an important measure for the solution quality. What 

the agents are trying to achieve in conjunction to χ(ςmin) is: 

1
minimize( ) ( )i

M

i
χ ς χ ς

=
= ∑ . (7.7)

Using Lemma 7.1 we say that: 

11
minimize ( )( )

N M
i

ik
χ ςχ ς

==
= ∑∑ . (7.8)

Expanding Equation 7.8 using Equation 7.1 we obtain: 

( ) ( ) ( )
,11

minimize , , ,( )
N M

k k k k
i i i ik k k k k

j R i jik k
w o c P j r o c i NN w o c i Pχ ς

∀ ∈ ≠==

                  

+ += ∑∑ ∑ . (7.9)

Thus, the pure Nash equilibrium in NCOR may exist when over the set of all 

objects N; all M agents maximize their benefits (by minimizing the communication 

costs). A closer look at Equation 7.9 reveals that it is nothing more than the 

minimization problem described by Equation 3.3. Hence, the following holds: 

 

Theorem 7.1 (Equivalence): The data replication problem and the non-

cooperative replica allocation game are equivalent and have the same objective.          ■ 

 

Based on the above discussion we describe the procedure for NCOR in Figure 

7.1.  
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7.2.2.4 Description of NCOR Procedure 

We maintain a list Li at each server. This list contains all the objects that can be 

replicated by agent i onto server Si. (In other words Li represents the set of feasible 

strategies.) We can obtain this list by examining the two constraints of the data 

replication problem. List Li would contain all the objects that have their size less then 

the total available space bi. Moreover, if server Si is the primary host of some object Ok, 

then Ok would not be in Li. We also maintain a list LS containing all servers that can 

replicate an object, i.e., Si∈LS if Li≠NULL. The algorithm works iteratively. In each 

step the servers calculate the cost of replicating an object Ok using Equation 7.2 (Line 

04). This cost is compared to the current cost incurred by the server. If this new cost is 

less or equal to the current cost, then the server opts to replicate that object. After a 

decision of replication is taken, each server updates the server storage capacity and the 

nearest neighbor list (Lines 8 and 9).  Servers also evict the object from the list Li since 

a decision on it has already been undertaken (Line 12). This procedure continues till the 

list Li becomes empty. When Li becomes empty, a message is sent to the moderator M  

(which is a control thread) to evict the server from the game since it is no longer able to 

undertake any further decisions (Line 14). We would like to clarify that the list Li is 

dynamically update in accordance to with the changes of server capacity. For example, 

if by replicating an object a server exhausts all of its storage capacity, then M 

dynamically adjusts Li to empty.  
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Theorem 7.2 (Existence of Pure Nash Equilibrium): A pure Nash equilibrium 

exists for the self-interested agents, if they play according to the cost model of single 

object NCOR. 

Proof: Let M denoted the set of agents in the system, where each agent 

represents a server. Let c(i,NNi
k) represent the cost of assessing object Ok from server Si 

to replicated at the nearest server from NNi
k. Let M’ represent the set of servers for 

which a server Si incurs the minimum communication cost for all servers m ∈ M’, i.e., 

M’ = {m | c(i,m) ≤ c(i,NNi
k)}. Essentially, NCOR chooses a server m ∈ M’ such that 

c(i,m) ≤ c(i,NNi
k) ∀ i ∈ M to hold the replica. After allocating a replica at m, it is 

removed along with all servers m ∈ M’ from M. This is done because no servers (m) has 

incentive to replicate Ok since it can access m’s replica at a lower or equal cost than 

The NCOR Procedure 
Initialize: 
LS, Li, χ*

i(ς)=∞, M, ς=NULL 
01 WHILE LS ≠ NULL DO 
02    PARFOR each Si∈LS DO 
03               FOR each Ok∈Li DO 
04                   Compute χi(ς)=min{χi(ς)|ςi=1, χi(ς)|ςi=0};                  /* Eq. 7.2 */ 
05                        IF χi(ς)≤χ*

i(ς) THEN       
06                             χ*

i(ς)=χi(ς);                                   /* Update current best cost */  
07                             ςi=1;                                             /* Replicate object Ok */ 
08                             bi=bi - ok;                                     /* Update capacity */ 
09                             Update NNk

i;                              /* Update the nearest neighbors */ 
10                        ELSE  
11                             ςi=0;                                           /* Do not replicate object Ok */ 
12                     Li = Li - Ok;                                        /* Update the list*/ 
13                     IF Li = NULL THEN  
14                            SEND info to M to update LS = LS - Si;      
15               ENDFOR 
16    ENDPARFOR                                                  /*Social cost achieved Equation 7.5 */ 
17 ENDWHILE                                                /* Pure Nash equilibrium achieved Th. 7.2 and 7.3 */  

 
Figure 7.1: The Pseudo-code for NCOR Procedure. 
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NNi
k’s replica. NCOR iteratively chooses a server m till M = ∅. Again, since at each 

iteration m is the remaining server with minimum c(i,m), no other server can be selected 

to replicate Ok such that c(i,NNi
k) ≤ c(i,m). Hence, no agent can gain benefit by 

unilaterally opting to replicate an object without disturbing the equilibrium.                  ■ 

 

Theorem 7.3 (NCOR Pure Nash Equilibrium): A pure Nash equilibrium 

exists for the multi-object NCOR. 

Proof: Follows from Lemma 7.1 and Theorem 7.2.                                            ■ 

 

7.3 Experimental Comparative Analysis 

We performed experiments on a 440MHz Ultra 10 machine with 512MB 

memory, using the same experimental infrastructure as described in Chapter 3. The 

experimental evaluations were targeted to benchmark the placement policies. NCOR 

was implemented using Ada and Ada GNAT’s distributed systems annex GLADE  [98].  

The solution quality was measured in terms of network communication cost 

(OTC percentage) that was saved under the replica scheme found by the replica 

allocation methods, compared to the initial one, i.e., when only primary copies exists. 

7.3.1 Comparative Algorithms 

For comparisons, we chose three types of replica allocation methods. To 

provide a fair comparison, the assumptions and system parameters were kept the same 

in all the methods. For the data replication problem, the non-game theoretical 

techniques proposed in  [57],  [75],  [78] and  [100] are the only ones that address the 
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problem domain similar to ours. We select from  [100] the greedy approach (Greedy) for 

comparison because it is shown to be the best compared with 4 other approaches 

(including the proposed technique in  [75]); thus, we indirectly compare with 4 

additional approaches as well. Algorithms reported in  [57] (the efficient branch and 

bound based technique Aε-Star) and  [78] (the genetic algorithm based method GRA) 

are also among the chosen techniques for comparisons.  

 

7.3.2 Comparative Analysis 

First, we observe the effects of increase in storage capacity. An increase in the 

storage capacity means that a large number of objects can be replicated. Replicating an 

object that is already extensively replicated, is unlikely to result in significant traffic 

savings as only a small portion of the servers will be affected overall. Moreover, since 

objects are not equally read intensive, increase in the storage capacity would have a 

great impact at the beginning (initial increase in capacity), but has little effect after a 

certain point, where the most beneficial ones are already replicated. This is observable 

in Figure 7.2, which shows the performance of the algorithms. The performance 

between all approaches except GRA was within 15% of each other. NCOR and Greedy 

showed an immediate initial increase (the point after which further replicating objects is 

inefficient) in its OTC savings, but afterward showed a near constant performance. 

GRA performed the worst, but observably gained the most OTC savings (49%) with 

various read/write ratios (0.90, 0.80, and 0.70) showed similar plot trends. It is also 

noteworthy (plots not shown in this study due to space restrictions) that the increase in 
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capacity from 10% to 18%, resulted in 4 times more replicas for all the algorithms.  

Next, we observe the effects of increase in the read and write frequencies. Since 

these two parameters are complementary to each other, we describe them together. To 

observe the system utilization with varying read/write frequencies, we kept the number 

Increase in Server Capacity

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; R/W=0.95

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
NCOR

 
Figure 7.2: OTC savings versus capacity. 
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Figure 7.3: OTC savings versus read/write ratio. 
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of servers and objects constant. Increase in the number of reads in the system would 

mean that there is a need to replicate as many object as possible (closer to the users). 

However, the increase in the number of updates in the system requires the replicas be 

placed as close as to the primary server as possible (to reduce the update broadcast). 

This phenomenon is also interrelated with the system capacity, as the update ratio sets 

an upper bound on the possible traffic reduction through replication. Thus, if we 

consider a system with unlimited capacity, the “replicate everywhere anything” policy 

is strictly inadequate. The read and update parameters indeed help in drawing a line 

between good and marginal algorithms. The plot in Figure 7.3 shows the results of 

Table 7.1: Running time of the replica placement methods in 
seconds for small problem instances [C=20%, R/W=0.45] 

Problem Size Greedy GRA Aε-Star NCOR
M=200, N=500 84.13 111.19 116.61 37.03
M=200, N=1000 91.90 115.68 123.56 43.34
M=200, N=1500 93.91 121.21 136.62 51.85
M=300, N=500 114.28 152.30 168.93 58.81
M=300, N=1000 131.00 150.04 178.59 65.19
M=300, N=1500 162.25 178.30 215.68 70.98
M=400, N=500 151.68 184.95 238.52 76.06
M=400, N=1000 161.58 202.17 284.00 88.27
M=400, N=1500 169.29 245.31 324.75 95.55

 
Table 7.2: Running time of the replica placement methods in 
seconds for large problem instances [C=45%, R/W=0.85] 

Problem Size Greedy GRA Aε-Star NCOR
M=2500, N=15,000 310.14 491.00 399.63 188.95
M=2500, N=20,000 330.75 563.25 442.66 205.45
M=2500, N=25,000 357.74 570.02 465.52 233.14
M=3000, N=15,000 452.22 671.68 494.60 286.35
M=3000, N=20,000 467.65 726.75 498.66 290.31
M=3000, N=25,000 469.86 791.26 537.56 303.85
M=3718, N=15,000 613.27 883.71 753.87 372.66
M=3718, N=20,000 630.39 904.20 774.31 390.38
M=3718, N=25,000 646.98 932.38 882.43 401.88
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read/write ratio against the OTC savings. A clear classification can be made between 

the followed by Greedy with 44%. Further experiments algorithms. NCOR, Aε-Star and 

Greedy incorporate the increase in the number of reads by replicating more objects and 

thus savings increased up to 88%, while GRA gained the least of the OTC savings of up 

to 42%. To understand why there is such a gap in the performance between the 

algorithms, we should recall that GRA specifically depends on the initial selection of 

gene population (for details see  [78]). Moreover, GRA maintains a localized network 

perception. Increase in updates result in objects having decreased local significance 

(unless the vicinity is in close proximity to the primary location). On the other hand, 

NCOR, Aε-Star and Greedy never tend to deviate from their global view of the problem. 

Lastly, we compare the termination time of the algorithms. Various problem 

instances were recorded with C=20%, 45% and R/W=0.45, 0.85. The entries in Tables 

7.1 and 7.2 made bold represent the fastest time recorded over the problem instance. 

NCOR terminated faster than all the other techniques, followed by Greedy, Aε-Star and 

GRA.   

 

7.4 Concluding Remarks 

 

The replica placement problem recognizes the need of simultaneous allocation 

of replicas and results in an optimization problem in which the communication cost is 

reduced subject to the availability of storage and no de-allocation of primary copy. This 

is particularly useful when data is replicated in a large scale distributed computing 
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system such as the Web, which requires the incorporation of “read from the nearest” 

and “update through the primary server policies. 

We proposed a utility maximizing game theoretical technique, in which the Web 

was abstracted as an agent based where each agent represented a server. A detailed 

discussion revealed that in a realistic system, agents have no incentive to cooperate and 

achieve a social optimum. To this end, we proposed a non-cooperative replica allocation 

game (NCOR), in which agents competed to host the replicas of different objects in a 

selfish manner, and NCOR exhibited a pure Nash equilibrium. Although in game theory 

literature there are very rare occurrences of pure Nash equilibrium, yet we showed that 

if agents play using deterministic selfish strategies then NCOR conforms to a pure Nash 

equilibrium. 

In NCOR each agent had two possible actions for each object. If an access was 

made to an object that was located at a nearby server, then the agents was better off 

redirecting the request to that server. On the other hand if the object was located at a far 

off server, then the agent was better off replicating that object. Essentially for each 

object the agent made a binary decision: (0) not to replicate or (1) to replicate.  
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CHAPTER 8 

A DISCRIMINATORY GAME THEORETICAL REPLICA PLACEMENT 
TECHNIQUE 

 

We propose a unique discriminatory replica placement technique using the 

concepts of a supergame. The supergame allows the agents who represent the data 

objects to continuously compete for the limited available server memory space, so as to 

acquire the rights to place data objects at the servers. At any given instance in time, the 

supergame is represented by a game which is a collection of subgames, played 

concurrently at each server in the system. We derive a resource allocation mechanism 

which acts as a platform at the subgame level for the agents to compete. This approach 

allows us to transparently monitor the actions of the agents, who in a non-cooperative 

environment strategically place the data objects to reduce the user access time, latency, 

which in turn adds reliability and fault-tolerance to the system. We show that this 

mechanism exhibits Nash equilibrium at the subgame level which in turn conforms to 

games and supergame Nash equilibrium, respectively, guaranteeing the entire system to 

be in a continuous self-evolving and self-repairing mode.  
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8.1 Introductory Remarks 

Web replication aims to reduce network traffic, server load, and user-perceived 

delay by replicating popular content on geographically distributed web servers (sites). 

Specifically, a replica placement algorithm aims to strategically select replicas (or 

hosting services) among a set of potential sites such that some objective function is 

optimized under a given traffic pattern. 

One might argue that the ever decreasing price of memory renders the 

optimization or fine tuning of replica placement a “moot point”. Such a conclusion is 

ill-guided for the following two reasons. First, studies ( [4],  [13], etc.) have shown that 

users’ access hit ratio grows in log-like fashion as a function of the server memory size.  

Second, the growth rate of Web content is much higher than the rate with which 

memory sizes for the servers are likely to grow. The only way to bridge this widening 

gap is through efficient replica placement and management algorithms.  

The Internet can be considered as a large-scale distributed computing system. 

We abstract this distributed computing system as an agent-based model, where each 

agent is responsible for (or represents) a data object. Each agent competes in a non-

cooperative environment for the limited available storage space at each server so as to 

acquire the rights to place the data object which they represent. Motivated by their self 

interests and the fact that the agents do not have a global view of the distributed system, 

they concentrate on local optimization. In such systems there is no a-priori motivation 

for cooperation and the agents may manipulate the outcome of the replica placement 

algorithm (resource allocation mechanism or simply a mechanism) in their interests by 
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misreporting critical data such as objects’ popularity. To cope with these selfish agents, 

new mechanisms are to be conceived. The goal of a mechanism should be to force the 

agents not to misreport and always follow the rules. 

We use the concepts of game theory to formally specify a mechanism with 

selfish agents. Game theory assumes that the participating agents have rational thoughts 

that enable them to express their preferences over the set of the possible outcomes of 

the mechanism. In a mechanism, each agent’s benefit or loss is quantified by a function 

called valuation. This function is private information for each agent and is very much 

possible that if the agents act selfishly, they can misreport their valuations. The 

mechanism asks the agents to report their valuations, and then it chooses an outcome 

that maximizes/minimizes a given objective function. Of course the grand problem is to 

stop the agents from misreporting. 

In essence we sculpt the replica placement problem as a supergame that is 

played infinitely during the entire lifespan of the system. In a discrete time instance t, 

the supergame is represented by a game, which is the collection of independent 

subgames that are played concurrently at each site of the distributed system. It is in 

these subgames that the actual mechanism can be seen to operate.   

 

8.2 The Proposed Mechanism 

In game theory, usually mechanisms refer to auctions. Mechanisms are used to 

make allocation and pricing decisions in a competitive environment where all involved 

parties act strategically in their own best interests. In recent years, many areas of 
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mathematical sciences research started to focus on strategic behavior and, consequently, 

we are witnessing the use of mechanisms in areas where pure optimization techniques 

were dominant in the past. For example, in the context of distributed systems, such 

mechanisms have been applied to the scheduling problems  [39],  [94], etc.  

One has to be careful when incorporating a “one-size-fits-all” mechanism model 

as a piece of solution to a problem. Most of the mechanisms were developed and 

analyzed in microeconomic theory abstraction. Thus, assumptions underlying desirable 

properties of some mechanisms could be oversimplifying or even contradictory to the 

assumptions underlying a problem that plans to incorporate such mechanisms in its 

solution. 

 

8.2.1 Discriminatory Mechanism 

We limit our analysis to one-shot (single round) mechanisms in which every 

agent demands a specific entity. Under our replica placement problem formulation we 

aim to identify a replica schema that effectively minimizes the OTC. We propose a one-

shot discriminatory mechanism, where the agents compete for memory space at sites so 

that they can acquire the rights to place replicas. The mechanism described in this study 

is called discriminatory because not all winning agents pay the same amount. In essence 

it works as follows: In a discriminatory mechanism, sealed-bids are sorted from high to 

low, and rights to the available memory space are awarded at the current highest bid 

price until the (memory) supply is exhausted. The most important point to remember is 

that the winning agents can (and usually do) pay different prices. 
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It is to be noted that in a discriminatory mechanism, an agent always bids below 

its valuation for the entity  [38]. If the agent bids at or above its value, then its payment 

equals or exceeds its value if it wins, and therefore its expected profit will be zero or 

negative. Since bids are below the agents’ value, the discriminatory mechanism is not a 

demand reveling mechanism  [85].  

In a discriminatory mechanism, there is no sequential interaction among agents 

 [85]. Therefore, the mechanism environment is non-cooperative in nature. Agents 

submit the bids only once. Agents are trading between bidding high and winning for 

certain and bidding low and benefiting more if the bid wins. In  [24] the authors have 

shown that the discriminatory mechanism is a generalization of the first price sealed-bid 

auction which is strategically equivalent to the Dutch auction. Unlike in the second 

price sealed-bid and the English auctions, it is not a dominant strategy for a bidder in 

the first price sealed-bid auction to bid its valuation for the entity. However, the 

theoretically optimal bidding strategy in both the first price sealed-bid and the Dutch 

auctions is the same for any given bidder. Since discriminatory auctions are 

generalization of the first price sealed-bid auctions, the same argument (about the 

dominating strategies) holds  [40].  

 

8.2.2 Preliminaries 

 

Definition 8.1 (Supergame): Generally a game in which some simple game is 

played more than once (often infinitely many times); the simple game is called the 
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“stage” game or the “constituent” game __ a game repeated infinitely is called a 

supergame. If Γ represents a game then Γ(∞) represents a supergame.  

 

Definition 8.2 (Stage game (subgame)): Frequently it is the case that a game 

naturally decomposes into smaller games. This is formalized by the notion of stage 

game (more popularly known as subgames).  

 

Remarks __ We explain this concept using decision trees  [85]. Let x be a node 

which belongs to the set of all the nodes, X, in a tree, K, and let Kx be the subtree of K 

rising at x. If it is the case that ever information set of Γ either is completely contained 

in Kx or is disjoint from Kx, then the restriction of Γ to Kx constitutes a game of its own, 

to be called subgame Γx starting at x. This decomposition also affects strategies. Let b 

represent the strategy set for any player i, then the strategy combination b decomposes 

into a pair (b-x, bx) where bx is a strategy combination in Γx and b-x is a strategy 

combination for the remaining part of the game (the truncated game). If it is known that 

bx will be played in Γx, then, in order to analyze Γ it suffices to analyze the truncated 

game Γ-x(bx) which results from Γ. 

Interestingly, the concept connecting supergame, games, and subgames is the 

Nash equilibrium.   

 

Definition 8.3 (Nash equilibrium): If there is a set of strategies with the 

property that no player can benefit by changing her strategy while the other players 
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keep their strategies unchanged, then that set of strategies and the corresponding 

payoffs constitute the Nash equilibrium. 

 

Definition 8.4 (Equilibrium path): For a given (Nash) equilibrium an 

information set is on the equilibrium path if it will be reached with positive probability 

when the game is played according to the equilibrium strategies.  

 

Lemma 8.1 ( [40]): Nash equilibrium only depends upon subgame strategy 

profiles played along the equilibrium path.                                                                     ■ 

 

Theorem 8.1 ( [38]): In Nash equilibrium each player’s repeated game 

(supergame) strategy need only be optimal along the equilibrium path.                         ■ 

 

Remarks __  In essence Definitions 8.3 and 8.4 and Lemma 8.1 propose that if a 

game Γ is in Nash equilibrium, it is only so because all subgames Γx are in Nash 

equilibrium. Extending the same concept, Theorem 8.1 asserts that Nash equilibrium 

can be reached in a supergame via the equilibrium path followed by games. Recall that 

a supergame is an infinite play of games. In summary, if all the subgames are in Nash 

equilibrium, the corresponding game that encapsulates the subgames is also in Nash 

equilibrium and so is the supergame which is the collection of infinite games. 
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8.3 Mechanism Applied to the Replica Placement Problem 

 

Form the discussion above, we choose the following line of action. 

1. Define the replica placement problem as a supergame. 

2. Define an instance of the supergame as a game. 

3. Split the game into concurrently played subgames. Each identical to each other in 

terms of:  

a. Form: A discriminatory mechanism.  

b. Valuation: Obtainable via the system parameters. 

c. Information: Independent of any other subgame. 

4. Establish the fact that subgames conform to Nash equilibrium provided agents play 

optimally. 

5. Use Lemma 8.1 to establish that the entire game at instance t is in Nash equilibrium. 

6. Use Theorem 8.1 to establish that the entire supergame is in Nash equilibrium. 

 

8.3.1 Supergame 

A supergame Γ(∞) is defined as a mechanism that is played infinitely during the 

lifespan of the distributed system under consideration. The supergame allows the agents 

to compete for memory spaces of the sites. The purpose of a supergame is to keep the 

system in a self evolving and self repairing mode. 
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8.3.2 Game 

At any given instance t, a game Γ is played. It is to be noted that the sole 

purpose of defining a game is to observe the solution quality of the replica placements 

at a given instance t  [78]. 

 

8.3.3 Subgame 

A game is split into M concurrently played subgames. Each of these subgames 

take place at a particular site i. Each agent k competes through bidding for memory at a 

site i. 

 

8.3.3.1 Form 

Each site i has a finite amount of space si, and available space bi. It is for this 

available space bi that the agents compete. In one-shot all the participating agents 

submit their bids for the available space. All the bids are sorted in descending order and 

the first n agents are awarded the rights to place their objects onto site i. Recall that each 

agent represents an object of size ok. Therefore, the decision of the first n agents solely 

depends upon 1 ,n i
kk o b n N= ≤ ≤∑ . After the decision is made, the first n agents pay their 

respective bids. This is discriminatory for the following two reasons. First, all the 

successful agents pay a different amount for their rights to place an object. Second, the 

payment is in no relation to the size of the object or the available space at site i. The 

only connection that the payments have is the benefit that the object brings if replicated 

to that site. This benefit is the valuation of an agent for its object k if replicated at site i. 
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 Figure 8.1: The network architecture. 
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Figure 8.2: Read and write patterns. 
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Figure 8.3: Benefits of replication (reads). 
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Figure 8.4: Benefits of replication (writes). 

We describe this valuation below. 

 



 

 

 

159

8.3.3.2 Valuation 

Each agent k’s policy is to place a replica at a site i, so that it maximizes its 

(object’s) benefit function. This benefit is equivalent to the savings that the object k 

brings in the total OTC if the object k is replicated at site i. This benefit is given as: 

 

1 ,Mi i x i
xk k k k k kB R w o c i P W

         
== − −∑ . (8.1)

We illustrate the notion of benefit associated with an object k if it is replicated at 

site i. Figure 8.1 depicts the network with four sites. Site 1 has the primary object 

represented by ★, while Site 4 has the replica of the same object represented by ☆. If 

these are the only copies of object k available in the network, then the read and write 

requests are always sent to the nearest neighbors, where Site 4 is the nearest neighbor of 

itself (Figure 8.2). Now what would be the benefit of replicating object k at Site 3? In 

Figure 8.3, we see that the reads and writes of Site 3 are entertained locally. Moreover, 

Site 5 can now redirect its request to its newest nearest neighbor, i.e., Site 3.  Therefore, 

the replication of object k at Site 3 clearly reduces the OTC by RCk
i = Rk

i + Wk
i. 

However (Figure 8.4), this will cause the Site 1 (location of primary object) to 

repeatedly send updates of object k to Site 3. Since the local update is already captured 

by RCk
i, the increased aggregate updates are given by: 

1 ( , )M x
x k k kw o c i P=∑ . 

From here onwards, for simplicity, we will denote the benefit Bk
i as v 

(valuation). It is to be understood that to differentiate the valuations between agents k 
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and j we may denote the valuations as vk and vj, respectively. 

 

8.3.3.3 Information 

It is clear that the subgames can operate independently of each other. There is 

no critical information that is required and is withheld from a subgame. For instance, 1) 

the frequency of reads and writes are obtained locally through the site which hosts the 

subgame, 2) the information about network architecture is globally available since 

domains can easily pull such information from the routers using the border gate 

protocol (BGP)  [103], and 3) the locations of the primary sites are also available locally 

since the agents represent the objects, (i.e., they have to know where they originated 

from,) etc. 

 

8.3.4 Subgame Nash Equilibrium 

To understand the bidding behavior in a discriminatory mechanism, we shall, 

for simplicity, assume that the agents are ex-ante symmetric. That is, we shall suppose 

that for all bidders k = 1,…, N, fk(v) = f(v) for all v ∈ [0,1], where v is the valuation of 

an agent k for an object, whereas f translates this valuation into something useful, for 

instance, when bids are required for an object, f can take the form of a bidding function 

for a valuation v. Note that we only assume that v ∈ [0,1] for underlying the 

groundwork for the probabilistic analysis. In reality the valuations are of the form of v ≥ 

0. Clearly, the main difficulty is in determining how the agents, will bid. But note that a 

rational agent k would prefer to win the right to replicate at a lower price rather than a 
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higher one, agent k would bid low when the others are bidding low and would want to 

bid higher when the others bid higher. Of course, agent k does not know the bids that 

the others submit because of the sealed-bid rule. Yet, agent k’s optimal bid will depend 

on how the others bid. Thus, the agents are in a strategic setting in which the optimal 

action (bid) of each agent depends on the actions of others.  

Let us consider the problem of how to bid from the point of view of agent k. 

Suppose that agent k’s value is vk. Given this value; agent k must submit a sealed-bid, 

bk. Because bk will in general depend on k’s value, let’s write bk(vk) to denote bidder k’s 

bid when his value is vk. Now, because agent k must be prepared to submit a bid bk(vk) 

for each of his potential values v ∈ [0,1], we may view agent k’s strategy as a bidding 

function bk:[0,1]→ℜ+, mapping each of his values into a (possibly different 

nonnegative) bid. 

Before we discuss payoffs, it will be helpful to focus our attention on a natural 

class of bidding strategies. It seems very natural to expect that agents with higher values 

will place higher bids. So, let’s restrict attention to strictly increasing bidding functions. 

Next, because the agents are ex-ante symmetric, it is also natural to suppose that agents 

with the same value will submit the same bid. With this in mind, we shall focus on 

finding a strictly increasing β function, b̂ k:[0,1]→ℜ+, that is optimal for each agent to 

employ, given that all other agents employ his bidding function as well. That is, we 

wish to find Nash equilibrium in strictly increasing bidding functions. 

Now, let us suppose that we find Nash equilibrium given by the strictly 

increasing bidding function b̂ (·). By definition it must be payoff-maximizing for an 
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agent, say k, with value v to bid b̂ (v) given that the other agents employ the same 

bidding function b̂ (·).  

 

Remarks __ We explain why we assume that all other agents employ the same 

bidding function b̂ (·). Imagine that agent k cannot attend the auction and that he sends a 

friend to bid for him. The friend knows the equilibrium bidding function b̂ (·) (since it is 

a public knowledge), but does not know agent k’s value. Now, if agent k’s value is v, 

agent k would like his friend to submit the bid b̂  (v) on his behalf. His friend can do this 

for him once agent k calls him and tells his value. Clearly, agent k has no incentive to lie 

to his friend about his value. That is, among all the values r ∈ [0,1] that agent k with 

value v can report to his friend, his payoff is maximized by reporting his true value, v, to 

his friend. This is because reporting the value r results in his friend submitting the bid b̂

(r) on his behalf. But if agent k were there himself he would submit the bid b̂ (v). 

Let us calculate agent k’s expected payoff from reporting an arbitrary value, r, 

to his friend when his value is v, given that all other agents employ the bidding function 

b̂ (·). To calculate this expected payoff, it is necessary to notice just two things. First, 

agent k will win only when the bid submitted for him is highest. That is, when b̂ (r) > b̂

(vj) for all agents j ≠ k. Because b̂  (·) is strictly increasing this occurs precisely when r 

exceeds the values of all N-1 other agents. Let F denote the distribution function 

associated with f, the probability that this occurs is (F(r))N-1 which we will denote FN-
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1(r). Second, agent k pays only when it wins the right to replicate, and pays its bid, b̂ (r). 

Consequently, agent k’s expected payoff from reporting the value r to his friend when 

his value is v, given that all other bidders employ the bidding function b̂ (·), can be 

written as: 

1 ˆ( , ) ( ) ( )Nu r v F r v b r
 
 
  
 

−= − . (8.2)

Now, as we have already remarked, because b̂ (·) is an equilibrium, agent k’s 

expected payoff-maximizing bid when his value is v must be b̂ (v). Consequently, 

Equation 8.2 must be maximized when r = v, i.e., when agent k reports his true value, v, 

to his friend. So, we may differentiate the right-hand side with respect to r and set the 

derivative equal to zero when r = v. Differentiating yields: 

1 2 1ˆ ˆ ˆ( ) ( ) 1 ( ) ( ) ( ) ( ) '( )N N NF r v b r N F r f r v b r F r b rd dr
                           

− − −− = − − − . (8.3)

Setting this equal to zero when r = v and rearranging yields: 

2 1 2ˆ ˆ1 ( ) ( ) ( ) ( ) '( ) 1 ( ) ( )N N NN F v f v b v F v b v N vf v F v   
      
   

− − −− + = − . (8.4)

Looking closely at the left-hand side of Equation 8.4, we see that is just the 

derivative of the product FN-1(v) times b̂ (v) with respect to v. With this observation, we 

can rewrite Equation 8.4 as: 

1 2ˆ( ) ( ) 1 ( ) ( )N NF v b v N vf v F vd dv          

− −= − . (8.5)

Now, because Equation 8.5 must hold for every v, it must be the case that: 
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1 2
0

( ) ( ) 1 ( ) ( )vN NF v b v N xf x F x dx constant 
 
 

− −= − +∫ .     (8.6)

Noting that an agent with value zero must bid zero, we conclude that the 

constant above must be zero. 

Hence, it must be the case that: 

2
1 0
1ˆ( ) ( ) ( )
( )

v N
N
Nb v xf x F x dx

F v
−

−
−= ∫ ,               (8.7)

which can be written as: 

2
1 0

1ˆ( ) ( ) ( )
( )

v N
Nb v xf x F x dx

F v
−

−= ∫ .               (8.8)

There are two things to notice about the bidding function in Equation 8.8. First, 

as we has assumed, it is strictly increasing in v. Second, it has been uniquely 

determined. Now since we assumed that each agent is ex-ante in nature, then F(v) = v 

and f(v) = 1. Consequently, if there are N bidders then each employs the bidding 

function: 

1
1 0

1ˆ( ) v N
Nb v xdx

v
−

−= ∫               (8.9)

( ) 2
1 0

1 1v N
N x N x dx

v
−

−= −∫  

1
1 1 N

N
N vNv

  
  

−  
  

−=  

1N vN
 
 
 
 

−=  (8.10)

Hence, in conclusion, we have proven the following: 

 
Theorem 8.2: If N agents have independent private values drawn from the 
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Discriminatory Mechanism 

Initialize: 
01 LS, Li. 
02 WHILE LS ≠ NULL DO 
03     PARFOR each Si∈LS DO                                        /* M subgames */ 
04                FOR each k∈O  DO 
05                          Bk = compute (Bk

i×(N-1)/N);               /* Compute benefit */ 
06                          Report Bk to Si which is stored in array B; 
07                END FOR 
08                Sort array B in descending order. 
09       WHILE bi ≥ 0 
10        Bk = argmaxk(B);                                                /* Choose the best offer */ 
11        Extract the info from Bk such as Ok and ok; 
12         bi = bi-ok;                                                          /* Calculate space and termination condition */ 
13         Replicate Ok; 
14         Payment = Bk;                                                         /* Calculate payment */ 
15         Delete Bk from B;                                                   /* Update the list for highest bid */ 
16         SEND Pi to Si; RECEIVE at Si                             /* Agent pays the bid */ 
17          Li = Li - Ok;                                                            /* Update the list */ 
18          Update NNi

OMAX                                                                                /* Update the nearest neighbor list */ 
19         IF Li = NULL THEN SEND info to M to update LS = LS - Si;      /* Update the player list */     
20       END WHILE 
21    ENDPARFOR 
22 END WHILE 

 
Figure 8.5: Mechanism game at instance t. 

 

common distribution, F, then bidding b̂ (v) = (N-1/N)v whenever one’s value is v 

constitutes Nash equilibrium of the discriminatory mechanism, where the nature of the 

bids are sealed-bids.                                                                                                         ■ 

So, each agent shades its bid, by bidding less than its valuation. Note that as the 

number of agents increases, the agents bid more aggressively. Because FN-1(·) is the 

distribution function of the highest value among an agent’s N-1 competitors, the bidding 

strategy displayed in Theorem 8.2 says that each agent bids the expectation of the 

second highest agent’s value conditional on his value being highest. But, because the 

agents use the same strictly increasing bidding function, having the highest value is 
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equivalent to having the highest bid and so equivalent to winning the right to replicate.  

 
Theorem 8.3: If N agents play their bids according to the bidding strategy as:  

b̂ (v) = (N-1/N)v, the corresponding game at instance t and eventually the supergame 

are in Nash equilibrium. 

Proof: It follows from Lemma 8.1 and Theorem 8.1.                                          ■ 

 

We are now ready to present the pseudo-code (Figure 8.5) for a game at 

instance t. 

Briefly, we maintain a list Li at each server. The list contains all the objects that 

can be replicated at Si (i.e., the remaining storage capacity bi is sufficient and the benefit 

value is positive). We also maintain a list LS containing all servers that can replicate an 

object. In other words, Si ∈ LS if and only if Li ≠ NULL. Each player k ∈ O calculates 

the benefit function of object (Line 05). The set O represents the collection of players 

that are legible for participation. A player k is legible if and only if the benefit function 

value obtained for site Si is positive. This is done in order to suppress mediocre bids, 

which, in turn improves computational complexity. After receiving (Line 06) all the 

bids, the bid vector is sorted in descending order (Line 08). Now, recursively the rights 

are assigned to the current highest agent (Line 10) as long as there is available memory 

(Line 09 and 12). It is to be noted that in each step Li together with the corresponding 

nearest server value NNk
i, are updated accordingly. 

The above discussion allows us to deduce the following result about the 
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mechanism. 

 

Theorem 8.4: In the worst case the mechanism takes O(N2logN) time. 

Proof: The worst case scenario is when each site has sufficient capacity to store 

all objects. In that case, the PARFOR loop (Line 03) performs N iterations. The most 

consuming time is to sort the bids in descending order (Line 10). This will take at least 

of the order of O(NlogN). Hence, we conclude that the worst case running time of the 

mechanism is O(N2logN).                                                                                                 ■ 

 

8.4 Experimental Comparative Analysis 

We performed experiments on a 440MHz Ultra 10 machine with 512MB 

memory using the same experimental infrastructure as described in Chapter 3. The 

experimental evaluations were targeted to benchmark the placement policies. The 

mechanism was implemented using IBM Pthreads.  

The solution quality is measured in terms of network communication cost (OTC 

percentage) that is saved under the replication scheme found by the algorithms, 

compared to the initial one, i.e., when only primary copies exists.  

 

8.4.1 Comparative Algorithms 

For comparisons, we selected five various types of replica placement 

techniques. To provide a fair comparison, the assumptions and system parameters were 

kept the same in all the approaches. The techniques studied include efficient branch-
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and-bound based technique (Aε-Star  [57]). For fine-grained replication, the algorithms 

proposed in   [75],  [78], and  [100] are the only ones that address the problem domain 

similar to ours. We select from  [100] the greedy approach (Greedy) for comparison 

because it is shown to be the best compared with four other approaches (including the 

proposed technique in  [75]); thus, we indirectly compare with four additional 

approaches as well. Algorithms reported in  [58] (Dutch (DA) and English auctions 

(EA)) and  [78] (Genetic based algorithm (GRA)) are also among the chosen techniques 

for comparisons.  

 

8.4.2 Comparative Game Analysis 

First, we concentrate on observing the improvement brought by the 

discriminatory mechanism (for short we will refer to it as MECH). To this end we 

observe the solution quality at the game level. In the post-ceding text we shall discuss 

the results obtained in the supergame setup. 

We study the behavior of the placement techniques when the number of sites 

increases (Figure 8.6), by setting the number of objects to 2000, while in Figure 8.7, we 

study the behavior when the number of objects increase, by setting the number of sites 

to 500. We should note here that the space limitations restricted us to include various 

other scenarios with varying capacity and update ratio. The plot trends were similar to 

the ones reported in this article. For the first experiment we fixed C = 30% and U = 

65%. We intentionally chose a high workload so as to see if the techniques studied 

successfully handled the extreme cases. The first observation is that MECH and EA 
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Figure 8.6: OTC savings versus number of sites. 

 

No. of Objects

O
TC

 S
av

es

Performance
M=500, C=15%, U=40%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

 
Figure 8.7: OTC savings versus number of objects. 

 

outperformed other techniques by considerable amounts. Second, DA converged to a 

better solution quality under certain problem instances than EA. This is inline with the 

general trends of DA. It outperforms EA when the agents are bidding aggressively. 

Some interesting observations were also recorded, such as, all but GRA and Greedy 
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Figure 8.8: OTC savings versus capacity. 
 

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=30%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 8.9: OTC savings versus reads. 
 

showed initial loss in OTC savings with the initial number of site increase in the system, 

as much as 5% loss was recorded in case of MECH with only a 40 site increase. GRA 

and Greedy showed an initial gain since with the increase in the number of sites, the 

population permutations increase exponentially, but with the further increase in the 
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Figure 8.10: OTC savings versus updates. 
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Figure 8.11: Execution time components. 
 

number of sites this phenomenon is not so observable as all the essential objects are 

already replicated. The top performing techniques (DA, EA, Aε-Star and MECH) 

showed an almost constant performance increase (after the initial loss in OTC savings). 

This is because by adding a site (server) in the network, we introduce additional traffic 
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(local requests), together with more storage capacity available for replication. All four 

equally cater for the two diverse effects. GRA also showed a similar trend but 

maintained lower OTC savings. This was in line with the claims presented in  [57] and 

 [78]. 

To observe the effect of increase in the number of objects in the system, we 

chose a softer workload with C = 15% and U = 40%. The intention was to observe the 

trends for all the algorithms under various workloads. The increase in the number of 

objects has diverse effects on the system as new read/write patterns (users are offered 

more choices) emerge, and also the increase in the strain on the overall capacity of the 

system (increase in the number of replicas). An effective algorithm should incorporate 

both the opposing trends. From the plot, the most surprising result came from GRA and 

Greedy. They dropped their savings from 62% to 2% and 69% to 3%, respectively. This 

was contradictory to what was reported in  [78] and  [100]. But there the authors had 

used a uniformly distributed link cost topology, and their traffic was based on the Zipf 

distribution  [123]. While the traffic access logs of the World Cup 1998 are more or less 

double-Pareto in nature. In either case the exploits and limitations of the technique 

under discussion are obvious. The plot also shows a near identical performance by Aε-

Star, DA and Greedy. The relative difference among the three techniques is less than 

3%. However, Aε-Star did maintain its domination. From the plots the supremacy of 

EA and MECH is observable. 

Next, we observe the effects of system capacity increase. An increase in the 

storage capacity means that a large number of objects can be replicated. Replicating an 
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Figure 8.12: Median load variance. 

 

Algorithms

O
TC

 S
av

es

Load Variance (Mean)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Mean+1.5*Std Dev
Mean-1.5*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes
Grand mean

 
Figure 8.13: Mean load variance. 

 

object that is already extensively replicated, is unlikely to result in significant traffic 

savings as only a small portion of the servers will be affected overall. Moreover, since 

objects are not equally read intensive, increase in the storage capacity would have a 

great impact at the beginning (initial increase in capacity), but has little effect after a 
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certain point, where the most beneficial ones are already replicated. This is observable 

in Figure 8.8, which shows the performance of the algorithms. GRA once again 

performed the worst. The gap between all other approaches was reduced to within 15% 

of each other. DA and MECH showed an immediate initial increase (the point after 

which further replicating objects is inefficient) in its OTC savings, but afterward 

showed a near constant performance. GRA although performed the worst, but 

observably gained the most OTC savings (53%) followed by Greedy with 34%. Further 

experiments with various update ratios (5%, 10%, and 20%) showed similar plot trends. 

It is also noteworthy (plots not shown in this study due to space restrictions) that the 

increase in capacity from 13% to 24%, resulted in 4.3 times (on average) more replicas 

for all the algorithms.  

Next, we observe the effects of increase in the read and update (write) 

frequencies. Since these two parameters are complementary to each other, we describe 

them together. In both the setups the number of sites and objects were kept constant. 

Increase in the number of reads in the system would mean that there is a need to 

replicate as many object as possible (closer to the users). However, the increase in the 

number of updates in the system requires the replicas be placed as close as to the 

primary site as possible (to reduce the update broadcast). This phenomenon is also 

interrelated with the system capacity, as the update ratio sets an upper bound on the 

possible traffic reduction through replication. Thus, if we consider a system with 

unlimited capacity, the “replicate everywhere anything” policy is strictly inadequate. 

The read and update parameters indeed help in drawing a line between good and 
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Figure 8.14: Median capacity variance. 
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Figure 8.15: Mean capacity variance. 

 

marginal algorithms. The plots in Figures 8.9 and 8.10 show the results of read and 

update frequencies, respectively. A clear classification can be made between the 

algorithms. Aε-Star, DA, EA, Greedy and MECH incorporate the increase in the 

number of reads by replicating more objects and thus savings  increase up to 89%. Aε-
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Star gained the most of the OTC savings of up to 47%. To understand why there is such 

a gap in the performance between the algorithms, we should recall that GRA 

specifically depend on the initial population (for details see  [78]). Moreover, GRA 

maintains a localized network perception. Increase in updates result in objects having 

decreased local significance (unless the vicinity is in close proximity to the primary 

location). On the other hand, Aε-Star, DA, EA, Greedy never tend to deviate from their 

global view of the problem domain.  

Lastly, we compare the termination time of the algorithms. Before we proceed, 

we would like to clarify our measurement of algorithm termination timings. The 

approach we took was to see if these algorithms can be used in dynamic scenarios. 

Thus, we gather and process data as if it was a dynamic system. The average breakdown 

of the execution time of all the algorithms combined is depicted in Figure 8.11. There 

68% of all the algorithm termination time was taken by the repeated calculations of the 

shortest paths. Data gathering and dispersion, such as reading the access frequencies 

from the processed log, etc. took 7% of the total time. Other miscellaneous operations 

including I/O were recorded to carry 3% of the total execution time. From the plot it is 

clear that a totally static setup would take no less that 21% of the time depicted in 

Tables 8.1 and 8.2.  

Various problem instances were recorded with C = 20%, 35% and U = 25%, 

35%. Each problem instance represents the average recorded time over all the 45 

topologies and 13 various access logs. The entries in bold represent the fastest time 

recorded over the problem instance. It is observable that MECH and DA terminated 
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faster than all the other techniques, followed by EA, Greedy, Aε-Star and GRA. If a 

static environment was considered, MECH with the maximum problem instance would 

have terminated approximately in 55.16 seconds (21% of the algorithm termination 

time).  

In summary, based on the solution quality alone, the algorithms can be 

classified into four categories: 1) Very high performance: EA and MECH, 2) high 

performance: Greedy and DA, 3) medium-high performance: Aε-Star, and finally 4) 

mediocre performance: GRA. Considering the execution time, MECH and DA did 

extremely well, followed by EA, Greedy, Aε-Star, and GRA. 

Table 8.3 shows the quality of the solution in terms of OTC percentage for 10 

problem instances (randomly chosen), each being a combination of various numbers of 

sites and objects, with varying storage capacity and update ratio. For each row, the best 

result is indicated in bold. The proposed MECH algorithm steals the show in the context 

of solution quality, but Aε-Star, EA and DA do indeed give a good competition, with a 

savings within 5%-10% of MECH.  

 

8.4.3 Comparative Supergame Analysis 

Here, we present some supplementary results regarding the supergame that 

strengthen our comparative analysis claims provided in Section 8.4.2. We show the 

relative performance of the techniques with load and storage capacity variance. The 

plots in Figures 8.12-8.15 show the recorded performances. All the plots summarize the 

measured performance with varying parameters observed over a time period of 86 
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Table 8.1: Running time in seconds [C=20%, U=25%]. 
Problem Size Greedy GRA Aε-Star DA EA MECH 
M=20, N=50 69.76 92.57 97.02 24.66 39.29 25.24 
M=20, N=100 76.12 96.31 102.00 26.97 40.91 26.35 
M=20, N=150 78.11 100.59 113.79 31.98 53.85 35.64 
M=30, N=50 94.33 125.93 139.98 38.20 58.98 38.05 
M=30, N=100 108.18 124.20 148.03 38.29 62.97 39.60 
M=30, N=150 134.97 148.49 178.84 44.97 67.74 42.02 
M=40, N=50 126.25 153.93 198.11 42.34 75.88 44.66 
M=40, N=100 134.06 168.09 236.48 43.54 76.27 46.31 
M=40, N=150 140.30 204.12 270.10 47.02 82.44 48.41 

 

Table 8.2: Running time in seconds [C=35%, U=35%]. 
Problem Size Greedy GRA Aε-Star DA EA MECH 

M=300, N=1450 206.26 326.82 279.45 95.64 178.9 97.98 
M=300, N=1500 236.61 379.01 310.12 115.19 185.15 113.65 
M=300, N=1550 258.45 409.17 333.03 127.1 191.24 124.73 
M=300, N=2000 275.63 469.38 368.89 143.94 197.93 142.16 
M=400, N=1450 321.6 492.1 353.08 176.51 218.15 176.90 
M=400, N=1500 348.53 536.96 368.03 187.26 223.56 195.41 
M=400, N=1550 366.38 541.12 396.96 192.41 221.1 214.55 
M=400, N=2000 376.85 559.74 412.17 208.92 245.47 218.73 
M=500, N=1450 391.55 659.39 447.97 224.18 274.24 235.17 
M=500, N=1500 402.2 660.86 460.44 246.43 284.63 259.56 
M=500, N=1550 478.1 689.44 511.69 257.96 301.72 266.42 
M=500, N=2000 485.34 705.07 582.71 269.45 315.13 262.68 

 
Table 8.3: Average OTC (%) savings under some problem instances. 

Problem Size Greedy GRA Aε-Star DA EA MECH 
N=150, M=20 [C=20%,U=25%] 70.27 69.11 73.96 69.91 72.72 74.40 
N=200, M=50 [C=20%,U=20%] 73.49 69.33 76.63 71.90 77.11 75.43 
N=300, M=50 [C=25%,U=5%] 69.63 63.45 69.85 67.66 69.80 70.36 
N=300, M=60 [C=35%,U=5%] 71.15 64.95 71.51 69.26 70.38 74.03 
N=400, M=100 [C=25%,U=25%] 67.24 61.74 71.26 68.67 70.49 73.26 
N=500, M=100 [C=30%,U=35%] 65.24 60.77 70.55 69.82 70.87 72.73 
N=800, M=200 [C=25%,U=15%] 66.53 65.90 69.33 68.95 70.06 72.95 
N=1000, M=300 [C=25%,U=35%] 69.04 63.17 69.98 69.36 71.28 72.44 
N=1500, M=400 [C=35%,U=50%] 69.98 62.61 70.41 72.09 72.26 72.78 
N=2000, M=500 [C=10%,U=60%] 66.34 62.70 71.33 67.67 68.41 74.06 

 

simulation days (this is the entire time period of the logs that are available for the World 

Cup 1998 web server). Notice that the supergame setup is tested over all the available 

access logs. We are mostly interested in measuring the median and mean performances 

of the algorithms. With load variance MECH edges over EA with a savings of 39%. 

The plot also shows that nearly every algorithm performed well with a grand median of 
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15.9%. The graphs are self explanatory in nature, and also capture the outliners and 

extreme points. The basic exercise in plotting these results is to see which algorithms 

perform consistently over an extended period of time. GRA for example, records the 

lowest extremes, and hardly any outliners. On the other hand the proposed MECH’s 

performance is captured in a small interval, with high median and mean OTC savings. 

The readers may notice the difference in the performance of the algorithms with load 

and capacity variances. This is because load variance captures all the possible 

combinations of read and update parameters. For example, in a network with 100% 

updates there will hardly be any measurable OTC Savings. Thus, Figures 8.12 and 8.13 

show mediocre OTC savings, simply because they encapsulated the performance of the 

networks where update ratio was extremely high. 

 

8.5 Concluding Remarks 

A game theoretical discriminatory mechanism (MECH) for fine-grained data 

replication in large-scale distributed computing systems (e.g. the Internet) was 

proposed. In MECH we employ agents who represent data objects to compete for the 

limited available storage space on web servers to acquire the rights to replicate. MECH 

uses a unique concept of supergame in which these agents continuously compete in a 

non-cooperative environment. MECH allows the designers the flexibility to monitor the 

behavior and strategies of these agents and fine-tune them so as to attain a given 

objective. In case of the data replication problem, the object for these agents is to 

skillfully replicate data objects so that the total object transfer cost is minimized. 
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MECH was compared against some well-known techniques, such as: greedy, 

branch and bound, game theoretical auctions and genetic algorithms. To provide a fair 

comparison, the assumptions and system parameters were kept the same in all the 

approaches. The experimental results revealed that MECH outperformed the five widely 

cited and powerful techniques in both the execution time and solution quality. 

In summary, MECH exhibited 5%-10% better solution quality and 25%-35% 

savings in the algorithm termination timings.  
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CHAPTER 9 

A BUDGET BALANCED GAME THEORETICAL REPLICA PLACEMENT 
TECHNIQUE 

 

We introduce an agent-based distributed budget balanced game theoretical 

replica placement, allocation, and management technique, where each agent maximizes 

its own benefit, such as, user access time, latency and communication cost. The 

proposed technique gathers inspiration from market economy and game theoretical 

mechanism designs. In such mechanisms the agents do not have a global view of the 

system, which makes the optimization process highly localized. This local optimization 

may encourage these agents to alter the output of the resource allocation mechanism in 

their favor and act selfishly. The proposed technique guarantees a global optimal 

solution even though the system acts in a distributed fashion operated by self-motivated 

selfish agents.  

 

9.1 Introductory Views 

We propose a simple approach to designing resource allocation mechanisms for 

autonomous distributed computing systems. The approach draws inspiration from game 

theory and the similarities between market economics and large-scale distributed 

computing systems.   



 

 

 

182

Just like in a market economy, a large-scale distributed computing system has 

scarce (computational) resources such as: processing power, memory, network 

bandwidth, etc. In market economy resources are managed by decentralized 

autonomous agents. We seek to exploit the lessons learnt from the evolved market 

economy and effectively apply them to replicate and manage data objects in a large-

scale distributed computing system such as the Internet. 

Replicating the data over geographically dispersed locations reduces access 

latency, network traffic, and in turn adds reliability, robustness and fault-tolerance to 

the system. Discussions in  [46],  [57],  [75],  [78] and  [100] reveal that client(s) 

experience reduced access latencies provided that data is replicated within their close 

proximity. However, this is applicable in cases when only read accesses are considered. 

If updates of the contents are also under focus, then the locations of the replicas have to 

be: 1) in close proximity to the client(s), and 2) in close proximity to the primary 

(assuming a broadcast update model) copy. Therefore, efficient and effective replication 

schemas strongly depend on how many replicas to be placed in the system, and more 

importantly where.  

In our game theoretical replica allocation and management mechanism 

(RAMM), each site (node) is represented by an agent. We view an agent as part of a 

community of similar though heterogeneous agents that are designed to compete for 

scarce resources. Motivated by their self interests and the fact that the agents do not 

have a global view of the distributed system, they optimize their individual interests, 

such as, minimize communication costs, latencies, etc. Each agent defines its goals and 
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utilities, and the rules for max(min)imization. Although no direct attempt is made to 

globally improve or optimize the system wide goals, yet the mechanism provides a 

platform for self-evolving solution quality. This results in global performance 

improvement through an invisible hand.  

We evaluate our proposed approach through a simulation study of a large-scale 

distributed computing system mimicking the Internet, and compare it with five various 

techniques recorded in the literature. Experimental results reveal that our proposed 

approach improves performance relative to these techniques in three ways. First, the 

number of replicas in a system is controlled to reflect the ratio of read versus write 

access. To maintain concurrency control, when an object is updated, all of its replicas 

need to be updated simultaneously. If the write access rate is high, there should be few 

replicas to reduce the update overhead. If the read access rate is overwhelming, there 

should be a high number of replicas to satisfy local accesses. Second, performance is 

improved by replicating objects to the sites based on locality of reference. This increase 

the probability that object access can be satisfied either locally or within a desirable 

amount of time from a neighboring site. Third, replica assignments are made in a fast 

algorithmic turn-around time. All the above improvements are achieved by a simple, 

decentralized, and autonomous RAMM. 

In addition to the performance improvements above, RAMM offers other 

benefits. The most important of them all is that the complexity is decreased by 

multifold. RAMM limits the complexity by partitioning the complex global problem of 

replica allocation, into a set of simple independent sub problems. Each agent 
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independently attempts to optimize its utility. RAMM also unifies the selfish 

optimization of the participating agents into a globally effective replica allocation. This 

approach is well suited to the large-scale distributed computing systems that are 

composed of autonomous agents which do not necessarily cooperate to improve the 

system wide goals, but provide a framework for self-stabilization and repair. 

 

9.2 The Replica Allocation and Management Mechanism (RAMM) 

According to the definition in  [66], an auction is a market institution with an 

explicit set of rules determining resource allocation and prices on the basis of bids from 

the market participants. This definition allows us to formulate a generalized mechanism 

as: 

1. Agents send bids to the mechanism to indicate their willingness to exchange goods. 

2. The auction may post price quotes to provide summarized information about the 

status of the price-determination process. 

Steps 1 and 2 may be iterated. 

3. The auction determines an allocation and notifies the agents as to who purchases 

what from whom at what price. 

The above sequence may be performed once or repeated any number of times. 

In this paper, the mechanism we discuss is decentralized in the sense that each agent 

calculates its own bidding strategy, based on local information.  

Unlike the more popular types of auctions such as the English and the Dutch 

auctions, the Generalized Vickrey Auction (GVA) is a direct revelation mechanism 
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( [24],  [40],  [114]), and thus is not a price system. Rather, it computes overall payments 

for agent’s allocations that sometimes, but not always, translate into meaningful prices. 

If agents play Bayesian-Nash or dominant strategies, any desirable choice function that 

can be implemented by a mechanism is quite powerful. Specifically, the GVA is a direct 

revelation mechanism on dominant strategies in the class of Groves  [40] and Clark  [24] 

mechanisms. In  [38] authors have shown under rather general conditions that when 

agents have quasi-linear preferences, the only efficient social choice functions that are 

implemented in dominant strategies are those that are implemented by Groves-Clarke 

mechanism.  

From above we can conclude that an efficient, optimal and computationally 

feasible mechanism should possess the following properties: 

1. Agent’s have quasi-linear preferences. 

2. Agent’s have dominating strategies. 

Under our (data replication) problem formulation, if we can prove the (above) 

two properties, than the Groves-Clarke mechanism would be sufficient. In the 

subsequent text we shall do exactly the same. 

 

9.2.1 Preliminaries  

 

9.2.1.1 The Basics  

The mechanism contains M agents. Each agent i has some private data ti ∈ R. 

This data is termed as the agent’s true data or true type. Only agent i has knowledge of 
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ti. Everything else in the mechanism is public knowledge. Let t denote the vector of all 

the true types t = (t1…tM). 

 

9.2.1.2 Communications 

The only information that is relayed to the mechanism by an agent i is its 

corresponding bid bi. Since the agents are selfish in nature, (i.e., localized optimization) 

they may (bi = ti) or may not (bi ≠ ti) communicate to the mechanism the value ti. Let b 

denote the vector of all the bids ((b = (b1…bM)), and let b-i denote the vector of bids, not 

including agent i, i.e., b-i = (b1…bi-1,bi+1,…bM). It is to be understood that we can also 

write b = (b-i,bi). 

 

9.2.1.3 Components 

The mechanism has two components: 1) the algorithmic output x(·), and 2) the 

payment mapping function p(·).  

 

9.2.1.4 Algorithmic Output 

The mechanism allows a set of outputs X, based on the output function which 

takes in as the argument, the bidding vector, i.e., x(b) = {x1(b),…, xM(b)}, where x(b) ∈ 

X. This output function relays a unique output given a vector b. That is, when x(·) 

receives b, it generates an output which is of the form of allocations xi(b). Intuitively it 

would mean that the algorithm takes in the vector bid b and then relays to each agent its 

allocation.  



 

 

 

187

9.2.1.5 Monetary Cost 

Each agent i incurs some monetary cost ci(ti,xi(b)), i.e., the cost to accommodate 

the (data) allocation xi(b). This cost is dependent upon the output (of the allocations by 

the mechanism xi(b)) and the agent’s private data ti.  

 

9.2.16 Payments 

To offset ci, the mechanism makes a payment pi(b) to agent i. An agent i always 

attempts to maximize its profit (utility) ui(ti,b) = pi(b) - ci(ti,xi(b)). Each agent i cares 

about the other agents’ bid only insofar as they influence the outcome and the payment. 

 

9.2.1.7 Bids 

Each agent i is interested in reporting a bid bi such that it maximizes its profit, 

regardless of what the other agents bid, i.e., ui(ti,(b-i,ti)) ≥  ui(ti,(b-i,bi)) for all b-i and bi. 

It is to be noted that truth telling (bi = ti) brings in more utility to the agents because the 

following do not hold:  

1. Over projection: Agents in anticipation of more revenue over project their true data, 

but this does not help, as the agent who is allocated the object gets the second best 

payment. Note that in Groves-Clarke mechanism second best payment is a strong 

tool to confine the agents from misreporting.  

2. Under projection: If every agent under projects their true data, that does not help 

either as the revenue would drop in proportion to the under projection.  

3. Random projection: In this case the deserving agent would be at loss. Therefore, it 
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is unlikely that a selfish agent would agree to project random true data. 

4. For more details on the optimality of such type of payment procedure see  [106]. In 

that paper, the authors have identified many such scenarios, all but reporting 

truthfully fail to exploit this (second best) payment option. 

 

9.2.2 The RAMM 

We now put all the pieces together. A mechanism m consists of a pair m = 

(x(b),p(b)), where x(·) is the output function and p(·) is the payment mapping function. 

The objective of the mechanism is to select an output x, that optimizes a given objective 

function. 

 

9.2.2.1 Objective 

The mechanism defined above leaves us with the following two optimization 

problems: 

1. Identify a strategy that is dominant to each agent i. 

2. Identify a payment mapping function that is truthful. 

 

9.2.2.2 The Basic Results 

From previous discussion recall that we carry with us the following three 

pending questions:  

1. Agent’s preferences should be quasi-linear. 

2. Agent’s strategies should depict dominance. 
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3. Payments should implement truthfulness.  (We answer them below.) 

 

9.2.2.2.1 Quasi-linear Preferences 

Quasi-linearity implies that the mechanism is able to make any cash transfer that 

exactly compensates any agent for any possible change in outcomes, and that 

redistributing wealth among the agents would not change this compensatory transfer. In 

such a setup any agent’s payoff (utility) is given by: ui(ti,b) = pi(b) - ci(ti,xi(b))  [40]. This 

payoff implies that each agent cares about his own cash (received) payment (from the 

mechanism), but not about payments that other agents receive. This is exactly what the 

RAMM’s payment functions do.  

 

9.2.2.2.2 Dominating Strategy 

The agents in the mechanism value an object k for the benefit that it brings to 

the agent’s site i. This benefit is equivalent to the savings that the object k brings in the 

total object transfer cost (OTC) if the object k is replicated at site i. This benefit is: 

1 ( , )Mi i x
k k k k kxB RC w o c i P== −∑ . 

We discussed the optimality of the above stated benefit cost function in Chapter 

8. We strongly suggest readers to review before proceeding any further.  

 

9.2.2.2.3 Payments 

The mechanism eliminates incentives for misreporting by imposing on each 

agent the cost of any distortion it causes. The payment for agent i is set so that i’s report 
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cannot effect the total payoff to the set of other agents (excluding agent i), M-i.  

To capture the effect of i’s report on the outcome, we introduce a hypothetical 

null report, which corresponds to agent i reporting that it is indifferent among the 

possible decisions and cares only about payments. When i makes the null report, the 

mechanism optimally chooses the decision D(X,M-i,t-i). The resulting total value of the 

decision for the set of agents M-i would be V(X,M-i,t-i), and the mechanism might also 

provide an agent i with payment equivalent to hi(t-i). Thus, if i makes a null report, the 

total payoff to the agents in set M-i is V(X,M-i,t-i) + hi(t-i). This would mean that the 

RAMM would choose payments for the M-i agents regardless of what i reports to the 

RAMM. For a detailed analysis of the above payment structure, readers are encouraged 

to see  [58] and  [61]. It is to be noted that in economic game theoretical literature this 

type of payment is often referred to as Vickrey payments  [94]. 

We have entertained all the pending optimization issues regarding the RAMM, 

and are ready to give a pseudo-code (Figure 9.1). 

Briefly, we maintain a list Li at each server. This list contains all the objects that 

can be replicated by agent i onto site Si. We can obtain this list by examining the two 

constraints of the DRP. List Li would contain all the objects that have their size less then 

the total available space bi. Moreover, if site Si is the primary host of some object k’, 

then k’ should not be in Li. We also maintain a list LS containing all sites that can 

replicate an object, i.e., Si∈LS if Li≠NULL. The algorithm works iteratively. In each 

step the mechanism asks all the agents to send their preferences (first PARFOR loop). 

Each agent i recursively calculates the true data of every object in list Li. Each agent 
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The RAMM Algorithm 
 
Initialize: 
LS, Li, Tk

i, M, MT 
 
01 WHILE LS ≠ NULL DO 
02     OMAX = NULL; MT = NULL; Pi = NULL; 
03          PARFOR each Si∈LS DO 
04                    FOR each Ok∈ Li DO 
05                              Tk

i = compute (Bk
i);  /*compute the valuations/bids*/ 

06                    ENDFOR 
07                    ti = argmaxk(Tk

i);  
08                    SEND ti to M; RECEIVE at M ti in MT; 
09           ENDPARFOR 
10   OMAX = argmaxk(MT);  /*Choose the global dominate valuation/bid*/ 
11   DELETE k from MT;  
12   Pi = argmaxk(MT);               /*Calculate the payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si; RECEIVE at Si /*Pay the winning agent this amount*/ 
15   Replicate OOMAX;  
16   aci=aci - ok;                        /*Update capacity*/ 
17   Li = Li - Ok;                    /*Update the list*/ 
18 IF Li = NULL THEN SEND info to M to update LS = LS - Si;        /*Update mechanism players*/ 
19          PARFOR each Si∈LS DO  
20                  Update NNi

OMAX                  /*Update the nearest neighbor list*/ 
21          ENDPARFOR                  /*Get ready for the next round*/ 
22 ENDWHILE 

 
Figure 9.1: Pseudo-code describing the RAMM. 

 

then reports the dominant true data (line 08) to the mechanism. The mechanism receives 

all the corresponding entries, and then chooses the best dominant true data. This is 

broadcasted to all the agents, so that they can update their nearest neighbor table NNk
i, 

which is shown in Line 20 (NNi
OMAX). The object is replicated and payments made to 

the agent. The mechanism progresses forward till there are no more agents interested in 

acquiring any data for replication (Line 18).   

The above discussion allows us to deduce the following result about the RAMM 

algorithm. 

Theorem 9.1: In the worst case the RAMM takes O(MN2) time. 
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Proof: The worst case scenario is when each site has sufficient capacity to store 

all objects. In that case, the while loop (Line 02) performs MN iterations. The time 

complexity for each iteration is governed by the two PARFOR loops (Lines 04 and 19). 

The first loop uses at most N iterations, while the send loop performs the update in 

constant time. Hence, we conclude that the worst case running time of the mechanism is 

O(MN2).                                                                                                                             ■ 

 

9.3 Experimental Comparative Analysis 

 
We performed experiments on a 440MHz Ultra 10 machine with 512MB 

memory using the experimental infrastructure as described in Chapter 3. The 

experimental evaluations were targeted to benchmark the placement policies. The 

RAMM was implemented using IBM Pthreads.  

 

9.3.1 Comparative Algorithms 

For comparison, we selected five various types of replica placement techniques. 

To provide a fair comparison, the assumptions and system parameters were kept the 

same in all the approaches. The techniques studied include efficient branch-and-bound 

based technique (Aε-Star  [57]). For fine-grained replication, the algorithms proposed in 

 [75],  [78], and  [100] are the only ones that address the problem domain similar to ours. 

We select from  [100] the greedy approach (Greedy) for comparison because it is shown 

to be the best compared with 4 other approaches (including the proposed technique in 

 [75]); thus, we indirectly compare with 4 additional approaches as well. Algorithms 
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reported in  [58] (Dutch (DA) and English auctions (EA)) and  [78] (Genetic based 

algorithm (GRA)) are also among the chosen techniques for comparisons. 

 

9.3.2 Performance Metric 

The solution quality is measured in terms of network communication cost (OTC 

percentage) that is saved under the replication scheme found by the algorithms, 

compared to the initial one, i.e., when only primary copies exists.  

 

9.3.3 Comparative Analysis 

We study the behavior of the placement techniques when the number of sites 

increases (Figure 9.2), by setting the number of objects to 2000, while in Figure 9.3, we 

study the behavior when the number of objects increase, by setting the number of sites 

to 500. We should note here that the space limitations restricted us to include various 

other scenarios with varying capacity and update ratio. The plot trends were similar to 

the ones reported in this article. For the first experiment we fixed C=35% and U=70%. 

We intentionally chose a high workload so as to see if the techniques studied 

successfully handled the extreme cases. The first observation is that RAMM and EA 

outperformed other techniques by considerable amounts. Second, DA converged to a 

better solution quality under certain problem instances. Some interesting observations 

were also recorded, such as, all but GRA and Greedy showed initial loss in OTC 

savings with the initial number of site increase in the system, as much as 5% loss was 

recorded in case of Aε-Star with only a 40 site increase. GRA and Greedy showed an 
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Figure 9.2: OTC savings versus number of sites. 
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Figure 9.3: OTC savings versus number of objects. 

 

initial gain since with the increase in the number of sites, the population permutations 

increase exponentially, but with the further increase in the number of sites this 

phenomenon is not so observable as all the essential objects are already replicated. The 

top performing techniques (DA, EA, Aε-Star and RAMM) showed an almost constant 
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Figure 9.4: OTC savings versus capacity. 
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Figure 9.5: OTC savings versus reads. 

 

performance increase (after the initial loss in OTC savings). This is because by adding a 

site (server) in the network, we introduce additional traffic (local requests), together 

with more storage capacity available for replication. All four equally cater for the two 
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diverse effects. GRA and Greedy also showed a similar trend but maintained lower 

OTC savings. This was in line with the claims presented in  [57] and  [78]. 

To observe the effect of increase in the number of objects in the system, we 

chose a softer workload with C = 15% and U = 20%. The intention was to observe the 

trends for all the algorithms under various workloads. The increase in the number of 

objects has diverse effects on the system as new read/write patterns (users are offered 

more choices) emerge, and also the increase in the strain on the overall capacity of the 

system (increase in the number of replicas). An effective algorithm should incorporate 

both the opposing trends. From the plot, the most surprising result came from GRA. It 

dropped its savings from 63% to 2%. This was contradictory to what Was reported in 

 [78]. But there the authors had used a uniformly distributed link cost topology, and their 

traffic was based on the Zipf distribution  [123]. While the traffic access logs of the 

World Cup 1998 are more or less double-Pareto in nature. In either case the exploits and 

limitations of the technique under discussion are obvious. The plot also shows a near 

identical performance by Aε-Star, DA and EA. The relative difference among the three 

techniques is less than 4%. However, EA did maintain its domination. From the plot 

(Figure 6) the supremacy of EA and RAMM is observable. 

Next, we observe the effects of system capacity increase. An increase in the 

storage capacity means that a large number of objects can be replicated. Replicating an 

object that is already extensively replicated, is unlikely to result in significant traffic 

savings as only a small portion of the servers will be affected overall. Moreover, since 

objects are not equally read intensive, increase in the storage capacity would have a 
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great impact at the beginning (initial increase in capacity), but has little effect after a 

certain point, where the most beneficial ones are already replicated. This is observable 

in Figure 9.4, which shows the performance of the algorithms. GRA once again 

performed the worst. The gap between all other approaches was reduced to within 12% 

of each other. DA and RAMM showed an immediate initial increase (the point after 

which further replicating objects is inefficient) in its OTC savings, but afterward 

showed a near constant performance. GRA although performed the worst, but 

observably gained the most OTC savings (47%) followed by Greedy with 44%. Further 

experiments with various update ratios (5%, 10%, and 20%) showed similar plot trends. 

It is also noteworthy (plots not shown in this study due to space restrictions) that the 

increase in capacity from 10% to 17%, resulted in 3.7 times (on average) more replicas 

for all the algorithms.   

Next, we observe the effects of increase in the read and update (write) 

frequencies. Since these two parameters are complementary to each other, we describe 

them together. In both the setups the number of sites and objects were kept constant. 

Increase in the number of reads in the system would mean that there is a need to 

replicate as many object as possible (closer to the users). However, the increase in the 

number of updates in the system requires the replicas be placed as close as to the 

primary site as possible (to reduce the update broadcast). This phenomenon is also 

interrelated with the system capacity, as the update ratio sets an upper bound on the 

possible traffic reduction through replication. Thus, if we consider a system with 

unlimited capacity, the “replicate everywhere anything” policy is strictly inadequate. 
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Figure 9.6: OTC savings versus updates. 

 

Table 9.1: Running time (sec.) [C=55%, U=10%]. 
Problem Size Greedy GRA Aε-Star DA EA RAMM 

M=300, N=1400 206.26 326.82 279.45 95.64 178.9 97.98 
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65 
M=300, N=1500 258.45 409.17 333.03 127.1 191.24 124.73 
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16 
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12 
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41 
M=400, N=1450 366.38 541.12 396.96 192.41 221.1 214.55 
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73 
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92 
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17 
M=500, N=1400 478.1 689.44 511.69 257.96 301.72 266.42 
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68 
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83 
M=500, N=1550 525.33 753.5 645.26 289.64 331.57 304.47 
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.60 

 

The read and update parameters indeed help in drawing a line between good and 

marginal algorithms. The plots in Figures 9.5 and 9.6 show the results of read and 

update frequencies, respectively. A clear classification can be made between the 

algorithms. Aε-Star, EA, Greedy and RAMM incorporate the increase in the number of 

reads by replicating more objects and thus savings increase up to 86%. GRA gained the 
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least of the OTC savings of up to 13%. To understand why there is such a gap in the 

performance between the algorithms, we should recall that GRA specifically depends 

on the initial population (for details see  [78]). Moreover, GRA maintains a localized 

network perception. Increase in updates result in objects having decreased local 

significance (unless the vicinity is in close proximity to the primary location). On the 

other hand, Aε-Star, EA, Greedy and RAMM never tend to deviate from their global 

view of the problem search space.  

Lastly, we compare the termination time of the algorithms. Before we proceed, 

we would like to clarify our measurement of algorithm termination timings. The 

approach we took was to see if these algorithms can be used in dynamic scenarios. 

Thus, we gather and process data as if it was a dynamic system. The average breakdown 

of the execution time of all the algorithms is as follows. 68% of all the algorithm 

termination time was taken by the repeated calculations of the shortest paths. Data 

gathering and dispersion, such as reading the access frequencies from the processed log, 

etc. took 7% of the total time. Other miscellaneous operations including I/O were 

recorded to carry 3% of the total execution time. Therefore, a totally static setup would 

take no less that (100-(68+7+3)) = 21% of the time depicted in Tables 9.1 and 9.2. 

Various problem instances were recorded with C = 15%, 55% and U = 10%, 55%. The 

entries in bold represent the fastest time recorded over the problem instance.  It is 

observable that RAMM and DA terminated faster than all the other techniques, 

followed by EA, Greedy, Aε-Star and GRA. If a static environment was considered, 

RAMM with the maximum problem instance would have terminated in 66.69 seconds 
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Table 9.2: Running time (sec.) [C=15%, U=55%]. 
Problem Size Greedy GRA Aε-Star DA EA RAMM 
M=20, N=50 70.06 92.35 96.31 24.35 38.69 26.06 
M=20, N=100 76.20 96.31 102.81 26.97 40.39 26.97 
M=20, N=150 77.55 100.93 113.25 31.62 53.69 35.98 
M=30, N=50 95.00 126.80 140.69 38.31 59.20 38.85 
M=30, N=100 108.79 124.55 148.07 39.01 62.73 39.40 
M=30, N=150 135.09 147.67 179.27 45.22 67.91 41.21 
M=40, N=50 125.55 154.11 198.21 41.79 76.20 45.11 
M=40, N=100 134.03 167.56 235.97 43.25 77.16 46.19 
M=40, N=150 140.81 203.54 269.88 46.91 81.70 48.39 

 

Table 9.3: Average OTC (%) savings. 
Problem Size Greedy GRA Aε-Star DA EA RAMM

N=200, M=50 [C=20%,U=20%] 73.50 70.02 76.45 71.70 76.50 75.47 
N=300, M=50 [C=25%,U=5%] 69.16 64.17 70.04 67.72 70.02 70.39 

N=400, M=100 [C=25%,U=25%] 66.52 61.51 70.76 68.63 69.96 73.19 
N=500, M=100 [C=30%,U=35%] 65.89 61.20 70.71 70.11 70.95 72.92 
N=800, M=200 [C=25%,U=15%] 66.72 65.57 69.98 68.46 69.83 72.30 
N=1000, M=300 [C=25%,U=35%] 68.40 63.73 69.89 69.80 70.52 72.87 
N=1500, M=400 [C=35%,U=50%] 69.79 63.21 69.76 72.23 72.36 73.14 
N=2000, M=500 [C=10%,U=60%] 66.14 62.89 72.14 68.03 68.29 73.63 

 

(approximately 21% of the algorithm termination time (Table 9.1 last entry)).  

In summary, based on the solution quality alone, the algorithms can be 

classified into four categories: 1) The very high performance algorithms that include 

RAMM and EA, 2) the high performance algorithms of Greedy and DA, 3) the 

medium-high performance Aε-Star, and finally 4) the mediocre performance algorithm 

of GRA. While considering the termination timings, RAMM and DA did extremely 

well, followed by EA, Greedy, Aε-Star, and GRA. 

Table 9.3 shows the quality of the solution in terms of OTC percentage for eight 

problem instances (randomly chosen), each being a combination of various numbers of 

sites and objects, with varying storage capacity and update ratio. For each row, the best 
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result is indicated in bold. The proposed RAMM algorithm steals the show in the 

context of solution quality, but Aε-Star, EA and DA do indeed give a good competition, 

with a savings within a range of 5%-10% of RAMM.  

 

9.4 Concluding Remarks 

Manual mirroring of data objects is a tedious and time consuming operation. 

This study proposed a game theoretical replica allocation and management mechanism 

(RAMM) for fine-grained data replication in large-scale distributed computing systems 

such as the Internet. RAMM is a protocol for automatic replication and migration of 

objects in response to demand changes. RAMM aims to place objects in the proximity 

of a majority of requests while ensuring that no hosts become overloaded. 

RAMM allows agents to compete for the scarce memory space at sites so that 

they can acquire the rights to place replicas. To cater for the possibility of cartel type 

behavior of the agents, RAMM uses Vickrey price protocol. This leaves the agents with 

no option, then to report truthful valuations of the objects that they represent. 

RAMM was compared against some well-known techniques, such as: branch 

and bound, greedy, game theoretical auctions, and genetic algorithms. To provide a fair 

comparison, the assumptions and system parameters were kept the same in all the 

approaches. The experimental setup was designed to mimic a large-scale distributed 

computing system (the Internet), by using several Internet topology generators and 

World Cup Soccer 1998 web server access logs. The experimental results revealed that 

RAMM outperformed the three widely cited and powerful techniques in both the 
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execution time and solution quality. In summary, RAMM exhibited 5%-10% better 

solution quality and 10%-30% savings in the algorithm termination timings. 
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CHAPTER 10 

A COOPERATIVE REPLICA PLACEMENT TECHNIQUE 
 

10.1 Introductory Views 

A number of replica placement techniques for large distributed computing 

systems have been proposed with the underlying assumption that the servers cooperate 

with one another in order to layout a replica schema that optimizes the overall system 

performance. For instance, almost all content distribution networks (CDNs) related 

replica placement techniques (e.g.  [18],  [41],  [46],  [100]) rely on a centralized decision 

making body which optimizes a given objective (e.g. to reduce the communication cost) 

regardless of the costs incurred by each server. These previously reported techniques 

are plausible as they advance the study of replica placements, however, they are very 

tedious and have very high computational complexity  [21]. For instance, some 

techniques require that the underlying infrastructure be a tree  [46], and the best possible 

bound (reported in  [75]) is of the order of O(M3N2), where M is the number of servers 

and N is the number of (data) objects, respectively, in the system. 

To study the cooperative behavior of the servers and to derive a scalable replica 

placement technique, we make use of game theoretical techniques. Each server in the 

system plays a cooperative replica placement game (COOP). In COOP each server has 

two possible actions for each object. If an access is made to an object that is located at a 
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nearby server, then the server is better off redirecting the request to that server. On the 

other hand if the object is located at a far off server, then the server is better off 

replicating that object. These decisions by the servers are not taken individually but 

collectively. The goal of this chapter is to see whether these servers in COOP, can 

layout replica schemas that converge to global optimum solution(s) targeted towards 

reducing the communication cost induced by accessing the objects.  A cooperative 

game is defined as a game in which players can conclude a binding agreement as to 

what outcome will be chosen to exploit the possibility of common interests. 

Cooperation in the sense of game theory does not mean that players sacrifice their 

interests for the sake of others, only that each communicates and coordinates its actions 

for the purpose of furthering their interests. Due to the fact that servers in a large 

distributed computing system can share resources, all of them should cooperate to 

obtain the best possible benefit. In this chapter, the Aumann-Shapley resource 

allocation mechanism of cooperative game theory will be used for the replica placement 

problem. The proposed methodology not only ensures that the total communication cost 

is globally minimized, but also that the data allocation is fair leading to load balancing.   

 

10.2 Cooperative Game Theoretical Replica Placement Game 

 

10.2.1 The Aumann-Shapley Mechanism 

A natural framework for the study of resource allocation problems is game 

theory. A game theoretical framework takes into account the strategic aspects of the 
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situation and yields a reasonable concept of unique equilibrium (solution) characterized 

by the fairness of the allocations. 

In game theory, resource allocation problems can be stated as allocating the 

jointly used resources (in our case the allocation of replicas) among participants in a 

cooperative game. From game theory point of view, there is only one plausible resource 

allocation mechanism that is fully distributive and satisfies the fairness principle in 

sharing as a cooperative game, namely, the Aumann-Shapely mechanism: 

( )
1

0

( `), `i
i

f txf x dtxψ ∂= ∂∫ ,                                                                         (10.1) 

where  ψi(f,x`) is defined for all possible allocations (f,x`) on some fixed set of 

inputs, such that ψi(f,x`) is the allocation associated with i. It is assumed that f has 

continuous first partial derivatives on some bounded domain of the form D = D(x`) = 

{x∈ℜn : 0 ≤ x ≤ x`}.  

Game theoreticians have proven that the Aumann-Shapley mechanism generates 

a unique allocation that is continuous, aggregate invariant, fully distributive, and 

satisfies the fairness principle. We will see that its application to the data replication 

problem will not generate a mismatch of resource allocation which is the one of the 

primary reasons for obtaining sub-optimal solutions. 

 

 10.2.2 Replica Placement Game (COOP) 

As mentioned before, a cooperative game is a game in which the players can 

conclude a binding agreement as to what outcome will be chosen to exploit the 
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possibility of common interests. In game theory a resource allocation game can be state 

as dividing the cost of jointly used resources among participants in a cooperative game. 

Since reducing the overall communication cost is a resource (replica) allocation game, it 

is appropriate to define the optimization of the communication cost as a cooperative 

game. 

 

10.2.3 Aumann-Shapley Replica Placement Game 

 Suppose there are a fixed number of servers, M, as players of the cooperative 

game, (M,f,ψ), where f is the optimization function and ψ is the Aumann-Shapley 

mechanism.  The target level of f could be state as: 

( ) ( )1 1min ik
M N

ik iki kf Z xR W= == +∑ ∑ .                                             (10.2) 

The Aumann-Shapley mechanism,ψ, at server i, will be given as: 

1

0

( )
i

f tZ dtZψ ∂= ∂∫ ,                                                                                      (10.3) 

which may be interpreted as the communication cost imputed to server i. Full 

distribution of the mechanism requires that: 

1 ( )M
ii f ZZψ= =∑ .                                                                                   (10.4) 

Now, each sever would incur a communication cost equal to Zψi due to the 

accesses made to the data objects hosted by that server. In order to bring a meaning to 

the Aumann-Shapley mechanism, we need to solve DRP in conjunction to the Aumann-

Shapley mechanism. This can be done very efficiently by taking the Lagrangian of RPP. 
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However, the Lagrangian function on DRP in conjunction with the Aumann-Shapley 

mechanism using non-linear programming methods would generate multiple solutions, 

which is not what we desire. To negate the problem of multiple solutions, we take the 

Lagrangian on the dual of RPP, ZD, in conjunction with the Aumann-Shapley 

mechanism, ZD(ψ), and we get: 

( ) ( )1 1 1 1min M N M N
i iD ik ik ik k iki k i kZ R W x o x sψ ψ= = = =
 
 
 

= + + −∑ ∑ ∑ ∑ .  (10.5) 

For simplicity, ZD(ψ) can be written as: 

( ) ( )1 1 1min N M M
i i iD ik ik k ikk i iZ R W o x sψ ψ ψ= = =

  
     

= + + −∑ ∑ ∑ ,           (10.6) 

Then the Lagrangian dual problem is as follows: 

0max ( ( ))LD DZ Zψ ψ≥= .                                                                  (10.7) 

For a fixed,ψ, (10.5) can be decomposed into sub-problems each of which 

corresponds to individual server’s communication cost as illustrated in (10.4). Each 

sub-problem is a bounded variable knapsack problem. (This fact is inline with the initial 

proof of NP-hardness of the data placement problem, where the authors in  [77] showed 

a reduction to the binary knapsack problem.) These sub-problems can easily be solved 

by a dynamic programming algorithm with a running time O(M3N2)  [75]. However, the 

algorithm works only when the lower bound on every variable is 0. This is certainly not 

the case with DRP and as discussed in earlier the Aumann-Shapley mechanism has 

continuous first partial derivatives; therefore, the lower bounds on some variables may 

be positive. For this purpose, we need to devise a technique that can cater for the 
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possible positive lower bounds and which is original to this research. 

To find ZLD, we need to find a ψ which gives a maximum of ZD(ψ) over all ψi ≥ 

0. For this purpose we make use of the celebrated sub-gradient method coupled with a 

branch-and-bound technique to prune and refine the sub-gradient method. Now suppose 

we are given a current ψt at iteration t and an optimal replica placement t
ikx  to ZD(ψt), 

the next step is decided by: 

1
1max 0, Nt t t

ik ikk o x sψ ψ α+
=

   
  
   

= + −∑ ,                                    (10.8) 

where ( )
2

*
1 1

M Nt t
iD k iki kZ Z o x sα ψ = =

  
  

   
= − −∑ ∑ ,                   (10.9) 

and Z* is the objective value of the best known feasible solution to DRP. We set 

the stopping criteria for the gradient method at iteration t as follows: 

After a specified number of iterations,                                                              (a) 

ZD(ψt) ≥ Z` - 1,                                                                                                    (b) 

( )
1

, , 1
N

k ik ik
i i Mo x s

=
∀ ≤ ≤≤∑ ,                                                                              (c) 

1, , , (1 )kkp kx P k k N= ∀ ∀ ≤ ≤ ,                                                                                   (d) 

Note that we have used criterion (b) instead of ZD(ψt) ≥ Z* since the Lagrangian 

generated costs are integral. Criteria (c) and (d) represent the optimality conditions. The 

whole process of the COOP technique is presented in Figure 10.1. 

Now suppose that case (b) does not occur within the iteration limit (50 in our 

implementation). If the current solution satisfies (c) we have found a new feasible 
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The COOP Technique 
1  0 *

ik ikx x←  
   

2  If ∂ = ∅ then goto step 5    
3  Select i ∈ M    
4  ∂ ← ∂ - {i}    

5  0 0 ( )ik ikx x INC i← +  
   

6  Set w = |σ|; Set t = 0    
7  Select i ∈ M         /* This i is different form the one in Step 3 */ 
8  t = t + 1    

9  0 0 ( )ik ikx x DEC i← −  
   

10 
 

If 
0

1

N

k ik ik
o x s

=
≤∑ , then σ ← σ - {i} 

  
 

11  If σ = ∅ then exit          /* Solution is found */ 
12  If t < w  the goto step 7    
13  If ∂ = ∅ then exit else goto step 5      /* In case of exit the solution is not found */ 
      

  INC(i)   DEC(i) 
1 

 
Set 

1

N

i i k ikk
s o xβ

=
= − ∑  

 
1 Set 

1

N

i k ik ik
o x sγ

=
= −∑  

2  Compute (Rik + Wik) for Ok, ∀k, (1≤k≤N)  
and store them in set C 

 2 Compute (Rik + Wik) for Ok, ∀k, (1≤k≤N)  
and store them in set C 

3  Pick Ok from C as argmax{C} and delete Ok from C  3 Pick Ok from C as argmin{C} and delete Ok from C 

4 
 

If 
1

N

k ik
o β

=
≤∑ then w ← k + 1 else goto step 3 

 
4 If 

1

N

k ik
o γ

=
≤∑ then w ← k + 1 else goto step 3 

5 

 

Output 

0

k

ik i kK w

o k w

x o k w
k w

β
<

<

= − =

>







∑  

 

5 Output 

0

k

ik i kk w

o k w

x o k w
k w

γ
<

<

= − =

>







∑  

 
Figure 10.1: The pseudo-code for the COOP procedure. 

 

solution. Then we update Z* and continue the sub-gradient iterations. Suppose (d) as 

well as (c) occur, i.e., the optimality conditions hold within the iteration limit. If the 

current node is the root node of the branch-and-bound tree, the algorithm ends with the 

solution xik, an optimal solution to RPP. Otherwise, Z* is updated and we continue the 

sub-gradient iterations. On the other hand, if the optimality conditions do not hold 

within the iteration limit, we branch at that node and generate two or more child nodes 

to further improve on the result. We set ψ0 = 0 at the root node and use the Lagrangian 
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at the parent node as the initial value at the child node to avoid unnecessary 

computations at the child node as suggested in [5]. The selection of the next node to 

solve is based on the best bound rule. 

 

10.2.4 Feasibility of the COOP Technique 

It rarely happens that the solution to the Lagrangian dual problem is feasible to 

the original problem. However, it can often be transformed to a feasible solution by a 

minor modification. A solution to ZD(ψ) satisfies all constraints but may violate the 

storage constraint. So we modify the solution so that it satisfies the storage constraint. 

Let us define: 

( ) *
1, 1 | 0N

ik ikki i M so x=
  
 
  

∂ = ∀ ≤ ≤ − <∑ ,                                     (10.10) 

( ) *
1, 1 | 0N

ik ikki i M so xσ =
  
 
  

= ∀ ≤ ≤ − ≥∑ ,                                     (10.11) 

where x*
ik is the current infeasible replica placement. Note that ∂ and σ are the set of 

indices of the storage constraint which are violated by the solution. If we decrease 

∑okx*
ik for i ∈ σ, we may be able to make the solution feasible to the problem 

represented by the current node. Any decrease of the solution values does not affect the 

validity of the storage constraint, but a careless decrease may cause the solution to 

violate some of the primary replica constraint and/or the allocation constraint. On the 

other hand, if we increase ∑okx*
ik for i ∈ ∂, before we decrease ∑okx*

ik for i ∈ σ, then it 

is more likely that the modified solution becomes feasible. So the increment and 
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decrement of solution should be determined carefully. 

The COOP procedure is initiated by selecting an element in ∂ and proceeds 

iteratively for the rest of the elements in ∂. For each element of ∂, we select elements in 

σ iteratively and σ is updated if needed.  

We select an element i ∈ ∂ and increase values of the variables that appear in 

constraint i while keeping the feasibility for all constraints. We call this procedure 

INC(i). Then we select an element i ∈ σ and decrease the values of the variables that 

appear in constraint i while keeping feasibility for other constraints. We call this 

procedure DEC(i). If INC(i) succeeds in making the constraint i feasible, then we delete 

i from ∂. We perform INC(·) for the rest of the elements in ∂. We repeat the process for 

the rest of the elements i using DEC(·). The order of selecting elements in ∂ and σ is 

arbitrary. The objective of INC(i) is to maximize βi - ∑k<wok. If xik is obtained after 

performing INC(i), the solution from x*
ik is changed into xik. On the other hand, the 

objective of DEC(i) is to maximize γi - ∑k<wok. If xik is obtained after performing 

DEC(i), the solution from x*
ik is changed into xik. 

 

10.2.5 Branching Rules of the COOP Technique 

We consider three different branching rules when we branch at a node in the 

branch-and-bound tree. Let x*
ik be the solution obtained at the current node of branch-

and-bound tree and let xik be the selected variable for branching. We denote the lower 

and upper bounds of the variable xik by lik and uik, respectively. 

First, we consider a rule (Rule 1) in which the variable has a fixed value at each 
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generated node. In this rule, (uik + 1) nodes are generated and the values of the selected 

variable in the nodes are set to lik (= 0) through uik, respectively. There are no special 

priorities in selecting the variables used to branch.  

Another branching rule (Rule 2) is based on a dichotomy branching strategy. In 

this rule, the variable that has the largest gap between the current upper and lower 

bounds is selected. This rule generates two nodes, a node with lik ≤ xik ≤  (uik + lik)/ 2 

and the other node with (uik + lik)/ 2 + 1 ≤ xik ≤ uik.  

Finally, the third rule (Rule 3) is based on the dichotomy branching strategy 

considering the current solution. The variable that has the largest gap between the 

current upper and lower bounds in the most violated constraint is selected for branching. 

If the selected variable has value xik , uik, this rule generates two nodes, a node with lik ≤ 

xik ≤ x*
ik and the other node with x*

ik + 1 ≤ xik ≤ uik. In case that we have a solution with 

x*
ik = uik, we branch the node with lik ≤ xik ≤ x*

ik - 1 and xik = x*
ik. 

 

10.3 Experimental Results 

We performed experiments on a 440MHz Ultra 10 machine with 512MB 

memory. COOP was implemented using Ada and Ada GNAT’s distributed systems 

annex GLADE  [97].  

To establish diversity in our experimental setups, the network connectively was 

changed considerably. We used GT-ITM for the network topologies, the procedure for 

which is as follows: A random graph G(M,P(edge = p)) with 0 ≤ p ≤ 1 contains all 

graphs with nodes (servers) M in which the edges are chosen independently and with a 



 

 

 

213

probability p. The pure random topologies were obtained with p = {0.4, 0.5, 0.6, 0.7, 

0.8}. In each of these topologies the distance between two serves was reversed mapped 

to the communication cost of transmitting a 1kB of data and the latency on a link was 

assumed to be 2.8×10-8 m/s (copper wire).  

To evaluate the replica allocation methods under realistic traffic patterns, we 

used the access logs collected at the Soccer World Cup 1998 web server. Each 

experimental setup was evaluated thirteen times, i.e., only the Friday (24 hours) logs 

from May 1, 1998 to July 24, 1998. (The Friday logs have the heaviest traffic compared 

to any other day of the week.) To process the logs, we wrote a script that returned: only 

those objects which were present in all the logs (25,000 in our case), the total number of 

requests from a particular client for an object, the average and the variance of the object 

size. From this log we chose the top five hundred clients (maximum experimental 

setup). A random mapping was then performed of the clients to the nodes of the 

topologies. Note that this mapping is not 1-1, rather 1-M. This gave us enough skewed 

workload to mimic real world scenarios. It is also worthwhile to mention that the total 

amount of requests entertained for each problem instance was in the range of 1-2 

million. The primary replicas’ original server was mimicked by choosing random 

locations. The capacities of the servers C% were generated randomly with range from 

Total Primary Object Sizes/2 to 1.5×Total Primary Object Sizes. The variance in the 

object size collected from the access logs helped to instill enough miscellanies to 

benchmark object updates. The updates were randomly pushed onto different servers, 

and the total system update load was measured in terms of the percentage update 
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requests U% compared that to the initial network with no updates. 

Since the access logs are of the year 1998, we first use Inet  [17] topology 

generator to estimate the number of nodes in the network. This number came up to be 

3718, i.e., there were 3718 AS-level nodes in the Internet at the time when the Soccer 

World Cup 1998 was being played. Therefore, we set the upper bound on the number of 

servers in the system at M = 3718.  

Comparative algorithms: For comparison, we chose three types of replica 

allocation methods. To provide a fair comparison, the assumptions and system 

parameters were kept the same in all the methods. For the data replication problem, the 

techniques proposed in  [57],  [75],  [78] and  [100] are the only ones that address the 

problem domain similar to ours. We select from  [100] the greedy approach (Greedy) for 

comparison because it is shown to be the best compared with 4 other approaches 

(including the proposed technique in  [75]); thus, we indirectly compare with 4 

additional approaches as well. Algorithms reported in  [63] (the efficient branch and 

bound based technique Aε-Star) and  [78] (the genetic algorithm based method GRA) 

are also among the chosen techniques for comparisons. We encourage the readers to 

obtain an insight on the comparative techniques from the referenced papers.  

Performance metric: The solution quality was measured in terms of total 

communication cost (OTC percentage) that was saved under the replica scheme found 

by the replica placement methods, compared to the initial one, i.e., when only primary 

copies exists.  

Comparative analysis: We observe the effects of increase in storage capacity. 
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An increase in the storage capacity means that a large number of objects can be 

replicated. Replicating an object that is already extensively replicated, is unlikely to 

result in significant traffic savings as only a small portion of the servers will be affected 

overall. Moreover, since objects are not equally read intensive, increase in the storage 

capacity would have a great impact at the beginning (initial increase in capacity), but 

has little effect after a certain point, where the most beneficial ones are already 

replicated. This is observable in Figure 10.2, which shows the performance of the 

algorithms. GRA performed the worst. COOP and Greedy showed an immediate initial 

increase (the point after which further replicating objects is inefficient) in its OTC 

savings, but afterward showed a near constant performance. GRA although performed 

the worst, but observably gained the most OTC savings (57%) followed by Greedy with 

44%. Further experiments with various update ratios (5%, 10%, and 20%) showed 

similar plot trends. It is also noteworthy (plots not shown in this study due to space 

restrictions) that the increase in capacity from 10% to 19%, resulted in 4.7 times (on 

average) more replicas for all the algorithms. 

Next, we observe the effects of increase in the read and write frequencies. Since 

these two parameters are complementary to each other, we describe them together. To 

observe the system utilization with varying read/write frequencies, we kept the number 

of servers and objects constant. Increase in the number of reads in the system would 

mean that there is a need to replicate as many object as possible (closer to the users). 

However, the increase in the number of updates in the system requires the replicas be 

placed as close as to the primary server as possible (to reduce the update broadcast). 
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Figure 10.2: OTC savings versus capacity. 
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Figure 10.3: OTC savings versus read/write ratio. 

 
This phenomenon is also interrelated with the system capacity, as the update ratio sets 

an upper bound on the possible traffic reduction through replication. Thus, if we 

consider a system with unlimited capacity, the “replicate everywhere anything” policy 

is strictly inadequate. The read and update parameters indeed help in drawing a line 
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Table 10.1: Running time of the replica placement methods in 
seconds for small problem instances [C=20%, R/W=0.45] 

Problem Size Greedy GRA Aε-Star COOP 
M=200, N=500 84.13 111.19 116.61 64.59 

M=200, N=1000 91.90 115.68 123.56 58.30 
M=200, N=1500 93.91 121.21 136.62 60.87 
M=300, N=500 114.28 152.30 168.93 118.14 

M=300, N=1000 131.00 150.04 178.59 134.61 
M=300, N=1500 162.25 178.30 215.68 196.75 
M=400, N=500 151.68 184.95 238.52 149.92 

M=400, N=1000 161.58 202.17 284.00 196.81 
M=400, N=1500 169.29 245.31 324.75 175.65 

 
 
 

Table 10.2: Running time of the replica placement methods in 
seconds for large problem instances [C=45%, R/W=0.85] 

Problem Size Greedy GRA Aε-Star COOP 
M=2500, N=15,000 310.14 491.00 399.63 211.64 
M=2500, N=20,000 330.75 563.25 442.66 339.12 
M=2500, N=25,000 357.74 570.02 465.52 370.38 
M=3000, N=15,000 452.22 671.68 494.60 556.98 
M=3000, N=20,000 467.65 726.75 498.66 341.61 
M=3000, N=25,000 469.86 791.26 537.56 549.38 
M=3718, N=15,000 613.27 883.71 753.87 742.70 
M=3718, N=20,000 630.39 904.20 774.31 629.67 
M=3718, N=25,000 646.98 932.38 882.43 654.33 

 

between good and marginal algorithms. The plot in Figure 10.3 shows the results of 

read/write ratio against the OTC savings. A clear classification can be made between 

the algorithms. COOP and Greedy incorporate the increase in the number of reads by 

replicating more objects and thus savings increased up to 92%, while GRA gained the 

least of the OTC savings of up to 42%. To understand why there is such a gap in the 

performance between the algorithms, we should recall that GRA specifically depends 

on the initial selection of gene population (for details see  [78]). Moreover, GRA 

maintains a localized network perception. Increase in updates result in objects having 
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decreased local significance (unless the vicinity is in close proximity to the primary 

location). On the other hand, COOP, Aε-Star and Greedy never tend to deviate from 

their global view of the problem. 

Lastly, we compare the termination time of the algorithms. Various problem 

instances were recorded with C = 20%, 45% and R/W = 0.45, 0.85. The entries in 

Tables 10.1 and 10.2 made bold represent the fastest time recorded over the problem 

instance. It is observable that Greedy terminated faster than all the other techniques, 

followed by COOP, Aε-Star, and GRA.   

In summary, based on the solution quality alone, the replica allocation methods 

can be classified into four categories: 1) High performance: COOP; 2) Medium-High 

performance: Greedy; 3) Medium performance: Aε-Star; 5) Low performance: GRA. 

Considering the execution time, Greedy and COOP did extremely well, followed by Aε-

Star and GRA. 

 

10.4 Concluding Remarks 

This chapter proposed a cooperative game theoretical replica placement 

technique (COOP) for object based data replication in large distributed computing 

systems. COOP is a protocol for automatic replication of objects in response to demand 

changes. It aims to place objects in the proximity of a majority of requests while 

ensuring that no hosts become overloaded. 

The proposed COOP technique improved the performance relative to other 

conventional methods in four ways. First, the number of replicas in a system was 
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controlled to reflect the ratio of read versus write access. To maintain concurrency 

control, when an object is updated, all of its replicas need to be updated simultaneously. 

If the write access rate is high, there should be few replicas to reduce the update 

overhead. If the read access rate is overwhelming, there should be a high number of 

replicas to satisfy local accesses. Second, performance was improved by replicating 

objects to the servers based on locality of reference. This increases the probability that 

requests can be satisfied either locally or within a desirable amount of time from a 

neighboring server. Third, replica allocations were made in a fast algorithmic turn-

around time.  
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CHAPTER 11 

FUTURE DIRECTIONS, VIEWS, AND VISIONS 
 

Our discussion only encircled the game theoretical auctions that had a central 

body to collect the information from the players, and based on that conclude a decision. 

However, there maybe systems, such as, grid computing and P2P system, that explicitly 

require a fully distributed mechanism. For instance, consider grid computing, which is 

predominately concerned with coordinated resource sharing in a dynamic, and 

sometimes in multi-organization structure. Consider also the P2P systems, which are 

similar to the Grids but characteristically have more users with a wide spectrum of 

capabilities. Grids and P2P systems have distinct characteristics and stakeholders that 

require very efficient and effective resource allocation mechanisms, but there is no one 

central decision making body. Thus, we need to consider applying distributed game 

theoretical auction mechanism, or the likes of it which can consider to implement a 

social choice function under the constraint that no central decision making body 

computes the outcome. This need can be due to: 

1. The system has a structure which does not allow a central resource manager. 

2. The system requires every entity to be a self sufficient.  

A distributed game theoretical auction mechanism would exhibit among others 

the following advantages over an ordinary game theoretical auction mechanism, and is a 
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strong candidate for resource allocation and management techniques in grid and P2P 

computing: 

1. A distributed game theoretical auction mechanism would transfer the computational 

workload from a central decision making body in the mechanism to the players.  

2. A distributed game theoretical auction mechanism would bring in robustness to the 

system, since in an ordinary game theoretical auction mechanism the 

communications between the players and the central decision making body are 

critical, and their malfunctioning may incapacitate the system. In distributed game 

theoretical auction mechanism this communication structure simply does not exist, 

but at a cost – the system may only be able to attain suboptimal results. 

3. Since in a distributed game theoretical auction mechanism no single entity would 

compute the outcome, a higher degree of trust would exist in the system. 

4. Due to its distributed nature, the communication would never converge to a single 

point, thus, there would be no bottlenecks.  

Briefly, a distributed game theoretical auction mechanism would distribute the 

mechanism’s rules across the players so that they can perform computations (and 

eventually reach to an outcome) based on the message sent and received from players in 

the system. Although, this setting is intriguing, yet it posses several challenges, which 

we enumerate as follows: 

1. The grand challenge here would be to make these players play in a selfless manner, 

since they now have a firm control over the distributed structure of the underlying 

auction mechanism.  
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2. Another grand problem would be to reduce the complexity of messages passing in 

the communication network.  

3. Computationally, we would seek to find social choice functions that can actually 

converge to solutions in a fully distributed fashion – something on the line of the 

distributed Vickrey auction implementation, which is a classical example of a 

canonically distributed convergence. 

4. Theoretically, one needs to seek that the strategies applied by the players cater for 

cartel type behaviors. For instance, imagine a P2P system in which some serves 

only selectively (on personal preference) allow the sharing or resources. That kind 

of behavior has to be suppressed at all costs.   
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