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In wireless broadcast environment, data can be transmitted to several nodes by a 

single transmission. The nodes in that environment have limited energy resources; 

therefore we need to reduce the energy consumption when they broadcast data to all 

nodes to prolong the lifetime of the networks. We call this problem the MPB (minimum 

power broadcast) problem, and solving the problem has been shown to be an NP-

Complete problem [2], [11]. We focus on finding ‘near-optimal’ solutions for the 

problem.  

 iii



An algorithm for constructing the minimum power broadcast trees, named BIP 

(broadcast incremental power) algorithm, was first proposed by Wieselthier et al. in [1], 

and several other algorithms also have been proposed by researchers so far. They use 

the broadcast nature of the problem to optimize energy consumption. 

We propose an alternate search based paradigm wherein the minimum broadcast 

tree is found using a genetic algorithm, which is used to find an approximate solution to 

avoid the NP-Completeness problems. We start by using the BIP algorithm and the 

MST (Minimum Spanning Tree) algorithm to create an initial search space in our 

genetic algorithm and we evolve the initial broadcast trees in the space to get more 

energy-efficient broadcast tree. 

Through the simulations, the genetic algorithm achieved up to 20.60% 

improvement over the other broadcasting algorithms including the traditional BIP 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 Recent advances in wireless sensor networks have led to the development of 

sensor nodes. Even though these sensor nodes are very tiny and often have short 

distances, they have the capability to communicate with the other sensor nodes which 

are in their radio range and forward the data to the other sensor nodes, until they reach 

their destinations. Although recent sensor nodes have a remarkable improvement over 

the traditional sensor nodes, they still have limited energy resources. Therefore, the 

energy efficiency of routing and data collection becomes critical. On this score, it is 

definitely important to reduce the communication range and amount of data as much as 

we can so that the lifetime of nodes can be prolonged. 

 One common paradigm for communication among the sensor nodes having this 

kind of drawback is broadcasting, and energy-efficiency is a crucial aspect in 

constructing broadcast trees. Here, the MPB (minimum power broadcast) problem is 

addressed, and unfortunately finding an optimal solution to the MPB problem is shown 

to be an NP-Completeness problem in [2] and [11]. Therefore, many studies are devoted 

to find near optimal solutions of the MPB problem. Especially, reducing the number of 

redundant transmissions, and reducing the energy consumed by detecting and receiving 

have been studied to solve the MPB problem.  
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 In this thesis, we use a genetic algorithm to find approximate solutions to 

optimization and search problems. We find several feasible initial solutions for the 

problem, and evolve the solutions to get the ‘near-optimal’ solution which yields less 

power consumption than other known solutions.   

1.2 Goals of the Thesis 

 The contributions of this thesis are: 

 Building a broadcast tree structure over wireless sensor networks which are 

maintained by the base station to reduce the total energy consumption 

 Proposal of techniques for using a genetic algorithm to optimize the initial 

trees and find better minimum power broadcast tree 

 Comparison  with the other algorithms using other kinds of evolutionary 

algorithms  

1.3 Outline of the Thesis 

 The rest of this thesis is organized as follows. In Chapter 2, we overview 

wireless sensor networks and broadcasting in the sensor networks. We also give an 

overview of a genetic algorithm, which is a search technique and one of the 

evolutionary algorithms to find approximate solutions to optimization. In Chapter 3, we 

introduce the procedure of our genetic algorithm used to build broadcast trees in the 

wireless sensor networks. In Chapter 4, we implement and evaluate the genetic 

algorithm, comparing it with the traditional BIP algorithm. In Chapter 5, we compare 

the evaluation result of the genetic algorithm with the other related techniques which 

are also used to build broadcast trees. Finally, Chapter 6 contains the conclusions.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

In this chapter, we discuss the background for our genetic algorithm to build 

broadcast trees, and introduce other algorithms which have been studied and proposed 

by other researchers so far.   

First, we describe what the wireless sensor network is, and we introduce how to 

broadcast data from the source node (sink node) to all the other nodes in the network.  

An important fact is that the building of broadcast trees which broadcast data to 

all the nodes in the network in minimum energy consumption has been shown to be NP-

Complete problem in [2] and [11]. The problem of constructing the tree structures is 

called the MPB (minimum power broadcast) problem. Therefore, we are not able to find 

the best solution for this problem using an efficient algorithm. We are only able to find 

‘near-optimal’ solutions using several methods, which have been proposed to avoid the 

NP-Complete problems like the MPB problem. One of them is to use a genetic 

algorithm, and we briefly introduce the algorithm which we have used and modified to 

solve the MPB problem, later in this chapter.  

2.1 Broadcasting in Wireless Sensor Networks 

2.1.1. Wireless Sensor Networks (WSN) 

Recent advances in wireless communications have led to the development of 

sensor nodes. Wireless sensor networks consist of a large number of these static or 
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mobile sensor nodes. Even though these sensor nodes are very tiny and have short 

communication distance to their vicinity, they have the capability to communicate with 

other sensor nodes which are in their radio ranges and forward the data to the other 

sensor nodes until it reaches their destinations. Newly developed sensor nodes have 

remarkable improvement over the traditional sensor nodes, and are used in wireless 

sensor networks with their properties for sensing, data processing, and communicating.   

One of the features of wireless sensor networks is that the position of the sensor 

nodes doesn’t need to be predetermined. That is why they are deployed in random 

positions. This feature means that the algorithms and protocols related to the sensor 

networks must have self-organizing capabilities. Another feature of wireless sensor 

networks is that the sensor nodes cooperate with each other. Each sensor node partially 

processes the data which the node needs to be responsible for, and forwards the 

processed partial data to the other nodes responsible for aggregation and further 

transmission. 

The sensor networks with these features are applied to a area of applications. 

Examples of the application areas are health, military, home monitoring and so on. In 

health and home monitoring, sensor nodes can be used to monitor disabled patients, and 

in military applications, they can be used for command, control, communication, 

computing, intelligence, surveillance, reconnaissance, and targeting system. In other 

application areas, we can use them to manage inventory, to monitor product quality, 

disaster rescue, or monitor the environment.   
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In general, each sensor node in a sensor network has limited energy resources; 

therefore, the energy efficiency becomes important. On this score, it is definitely 

important to reduce the communication range and amount of data as much as we can so 

that the life of nodes can be prolonged. Consequently, we introduce how to build 

broadcast trees with minimum energy consumption in this thesis. 

2.1.2. Minimum Power Broadcast (MPB) Problem in WSN 

Broadcasting is a method to allow all nodes to share the data efficiently with all 

the other nodes in the wireless sensor networks. Due to the limited energy resources, as 

we mentioned in the previous section, energy-efficiency is a crucial aspect in 

constructing the broadcast tree structures. We call this problem the MPB (minimum 

power broadcast) problem. Given an identified sink node and node constellation, the 

MPB is to minimize the total power consumption when the nodes in the networks are 

connected together, and they communicate with the other remaining nodes. 

So far many studies are devoted to solve the MPB problem. Especially, reducing 

the number of redundant transmissions, and reducing the energy consumed by detecting 

and receiving have been studied to solve the MPB problem. Wieseltheir et al proposed 

the broadcast incremental power (BIP) algorithm by utilizing the so-called WMA 

(wireless broadcast advantage or wireless multicast advantage) [1], [7], [8] to solve the 

problem. This assumes that the nodes are equipped with omnidirectional antennas, and 

if a transmission is directed from node i to node j, then the signal will be received by all 

nodes which are within the transmission range of a communication from node i to node 

j. The BIP algorithm is derived from Prim’s MST (minimum spanning tree) [26] 
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algorithm and it adds one node to the broadcast tree at a time starting from the sink 

node. A node is added only if it has the minimal incremental cost to be connected to 

node of the other nodes that are already in the tree. Even though WMA (wireless 

multicast advantage) [1], [7], [8] provides energy savings, optimal solution of the MPB 

problem is shown to be NP-Complete in [2] and [11]. A number of approximate 

algorithms, therefore, have been proposed. Stojmenovic et al. [12] proposed internal 

nodes based broadcasting, Mark et al. [4] proposed evolutionary approach to building 

broadcast tree using the viability lemma, and Cartigny et al. [13] proposed a localized 

algorithm. The Ant Colony System approach (ACS) algorithm which is compared with 

my algorithm over BIP [1], [8] was also introduced by Mark et al [5], and many 

heuristic approximate methods are described in Das et al. [15], [16]. 

2.1.3. Construction of Minimum-Energy Broadcast Tree 

In this section, we review the well-known traditional broadcasting algorithm, 

BIP (broadcasting incremental power), which is proposed by Wieseltheir et al [1], [8]. It 

has been compared with newer algorithms for the MPB problem by many researchers. 

In this thesis, we also compare our algorithm for building broadcast tree with this 

traditional famous algorithm. 

2.1.3.1 Introduction of Broadcast Incremental Power (BIP) Algorithm 

 The BIP is the algorithm for the formation of energy-efficient broadcast trees 

and the broadcast properties in wireless networks are incorporated in this BIP. The base 

of BIP is the “node-based” nature of wireless networks, because “link-based” models, 

which were previously proposed, do not reflect the properties of the all-wireless 



 

network environment. The tree built by the BIP is rooted at the source node (sink) and 

the final object of the BIP is to let the source node reach all of the desired destinations. 

 During the BIP operation, we assume that the node locations are fixed, and the 

channel conditions don’t change in the wireless network. And the BIP reflects the 

broadcast nature; when omnidirectional antennas are used, every transmission by a node 

can be received by all nodes which are within its communication radio range. Figure 2.1 

shows this broadcast nature. The transmission power required at node i to reach its 

neighbors, j, k, and l, Pi(j,k,l), is the maximum power of Pij, Pik, Pil. In contrast with the 

“link-based” network, so-called wired network in which the Pi(j,k,l) should be the sum of 

the costs to the individual nodes, some  energy can be saved in this broadcast nature. 

 

 

Pi(j,k,l) = max { Pij, Pik, Pil } 

Figure 2.1 Broadcast Nature 
  

 2.1.3.2. The Broadcast Incremental Power (BIP) Algorithm 

 In this section, we briefly introduce the BIP operation with a simple example. 

We construct a minimum-power broadcast tree, rooted at the source. We can not 
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guarantee that it is the best tree for broadcasting; however, we say that it is the near 

optimal solution of the MPB problem. 

Given sensor nodes in a network as shown in Figure 2.2, node 1 is the source 

node, and we start the operation with the node. We start determining the node which the 

source node can reach with the minimum expenditure of power. In Figure 2.2(a), node 2 

is added to the tree because it is the nearest one from the source node. Here, we realize 

that the source node 1 has minimum expenditure of power to reach node 2. 

In step 2 with Figure 2.2(b), we determine which “new” node needs to be added to the 

tree at minimum additional cost. There are two nodes, node 1 and node 2, which we can 

be chosen as the node which increases its broadcast power. If the node 1 is selected, 

then the node 1 should choose node 3, because it is the next nearest node which node 1 

can reach. When node 3 is added as the “new” node to the tree, the transmission power 

of the node 1 is c3, not (c1 + c3) with the WMA. Here is the incremental cost associated 

with increasing power of node 1 from a level sufficient to reach node 2 to a level 

sufficient to reach node 3, and we get the incremental cost of node 1, (c3 – c1). If node 

2 is selected as the node to increase its power, it should choose node 5, which it can 

reach with minimum expenditure of power. In this case, the incremental cost of node 2 

is equal to the power c2, because node 2 has not transmitted yet. Now we compare those 

two incremental costs of the two nodes, and we choose the node whose incremental cost 

is smaller than another one. Node 1 has smaller incremental cost than node 2, and it 

adds node 3 to the tree. 



 

 

 

 

 
(a) (b) 

  
(c) (d) 

Figure 2.2 An Example of BIP Operation 

(a) Step 1: Starting from the source node 
(b) Step 2: Incremental Cost of (Node 1) = c3 – c1, (Node 2) = c2 
(c) Step 3: Incremental Cost of (Node 1) = c4 – c3, (Node 2) = c2, (Node 3) = c5 
(d) Step 4: Final broadcast tree 

 

 In step 3 with Figure 2.2(c), there are three nodes which we consider to operate. 

The incremental cost of node 1 is (c4 – c3), incremental cost of node 2 is c2, and 
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incremental cost of node 3 is c5. Node 1 increases its power to reach the third node in 

its radio range, so it adds node 4 to the tree, because it has the smallest incremental cost. 

 Finally, as shown in Figure 2.2(d), we can get the final broadcast tree by 

repeating this procedure until all nodes are included in the tree. 

 The BIP is motivated from Prim’s algorithm for the MSTs, in the sense that new 

nodes are added to the tree until all the nodes in the network are added to the tree. 

Unlike Prim’s algorithm [26] using unchanging link costs, however, the BIP updates the 

costs at each step dynamically with the fact that the cost to add a new node is the 

incremental cost. 

 We compare the BIP and some other algorithms for the MPB problem with our 

genetic algorithm, and show which algorithm creates more efficient broadcast trees. 

2.2 Genetic Algorithm 

In this section, we describe the basics of the genetic algorithm which can be 

used to find optimal solutions to NP-Complete problems by optimization and search. 

2.2.1 Introduction of the Genetic Algorithm 

 Genetic algorithm is motivated by Darwin’s theory about evolution [20]. This 

algorithm is a particular class of evolutionary algorithm which uses initialization, 

crossover, and mutation operators to solve optimizing problems. Many different 

initialization, crossover, and mutation operators have been proposed so far, and we will 

introduce the most popular operation methods in section 2.2.2, and proposed operations 

for our own genetic algorithm, which we will be proposed here, are going to be 

introduced in Chapter 3. In those operations, there is a population of abstract 
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representations of candidate solutions. The solutions can be represented in binary as 

string of 0s and 1s [21], but there are also many other different ways to represent the 

candidate solutions, and these will be introduced in section 2.2.3. Representation 

methods for our own genetic algorithm also will be presented in Chapter 3. 

 Figure 2.3 and 2.4 shows the high-level processing steps of the genetic 

algorithm. Before we initialize a population, we need one more process, encoding, to 

represent the solutions. Once a population is generated, we evaluate the all the 

candidate solutions, which will be also called initial solutions, in the population. Here, 

we use a fitness function, which is defined over the genetic representation and measures 

the quality of the represented solutions to evaluate the solutions. With these initial 

candidate solutions, we operate selection of parental solutions, crossover of the pairs of 

parental solutions, mutation of the new solution, which will be called offspring, and 

then we evaluate the offspring as to whether it has the capability to be included in the 

population compared with currently existing solutions. If it is evaluated as a better 

solution to be used, then it replaces one of the solutions of the population. We repeat 

this procedure until the termination condition is satisfied.  

2.2.2 Procedures of a Genetic Algorithm 

 We have studied the basics of the genetic algorithm so far. Now we describe the 

procedures of the genetic algorithm in detail. The genetic algorithm process consists of 

the following steps: initialization, evaluation, selection, crossover, mutation, 

replacement, and termination. 

 



 

procedure genetic algorithm; 
begin  

initialize population with randomly generated candidate solutions; 
evaluate each candidate solution; 
while (TERMINATION CONDITION not satisfied) do 

select parents; 
crossover pairs of parents to create a offspring; 
mutate the offspring; 
evaluate the new candidate;  
replace  the new candidate generating a new population 

end while 
end; 

Figure 2.3 The General Pseudo-code for a Genetic Algorithm 
  

 

Figure 2.4 The General Scheme of a Genetic Algorithm 
 

 2.2.2.1 Initialization Phase 

 In the first step, many initial individual candidate solutions are generated 

randomly to form an initial population. Traditionally, the population size, which means 

how many initial candidate solutions are there, is also generated randomly covering the 

entire range of possible solutions [21]. However, it has been studied that a very big size 
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of population usually does not improve the performance of a genetic algorithm. The 

population with 20 to 30 initial candidate solutions has been considered as good 

population sizes [22].   

 2.2.2.2 Evaluation Phase 

 In order to evaluate each individual initial candidate solution, we use an 

evaluation function which is commonly called a fitness function. We are able to decide 

which solution is good or better than the other solutions with this fitness function.  

 Initial Candidate Solutions Qualities (Fitness values)  
with Fitness Function 

s1 = 1110011101 f(s1) = 7 
s2 = 0101010110 f(s2) = 5 
s3 = 0000111111 f(s3) = 6 
s4 = 1110000010 f(s4) = 4 
s5 = 1011110110 f(s5) = 7 
s6 = 1110011111 f(s6) = 8 

Figure 2.5 An example of initial candidate solutions and fitness function 

 

In Figure 2.5, there are six kinds of initial candidate solutions represented by 

string of 10 binary digits. The fitness function f of a candidate solution is defined as the 

number of 1s in its genetic code. If we are trying to maximize the function, then the 

initial solution s6 will be the best solution of the population, because it has the largest 

value for fitness function f. 

2.2.2.3 Selection Phase 

As we mentioned in the section 2.2.1, candidate solutions are selected from the 

population to be parents for crossover. The individual candidate solutions are selected 
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through a fitness-based process where the solutions whose fitness values are considered 

as fitter than the others are typically more likely to be selected [21]. With the simplest 

example, in Figure 2.5, if we decided to select two solutions from the population whose 

candidate solutions are sorted in descending order of their fitness value, then solutions 

whose fitness is 8 and 7 will be selected as parents. 

The most popular selection method is roulette wheel selection. In this method, 

parents are selected according to their fitness. If one solution has better fitness, then the 

solution has more chances to be selected as parents. Figure 2.6 shows a simple example 

for roulette wheel selection. Imagine that we play marbles and we throw the marble on 

the roulette wheel, which is shown on the Figure 2.6, where each solution is assigned to 

a sector of the roulette wheel proportional to its fitness. Then the solution with bigger 

fitness will be more likely to be selected more times.  

Many other methods about how to select parents are introduced in [23], for 

example, Boltzman selection, tournament selection, rank selection, steady state 

selection, and some others. 

2.2.2.4 Crossover and Mutation Phase 

The next step of the procedures of a genetic algorithm is to generate a new 

offspring by crossover of parental solutions which were selected by a selection method 

and by mutation operators. The new solution, named the offspring above, typically 

shares many of the characteristics of its parental solutions. This is from the Darwin’s 

theory in which a child from parents usually has similar characteriscs of his/her parents,  



 

 

Figure 2.6 Roulette Wheel Selection 
 

therefore, the new offspring may yield better fitness and finally the average fitness will 

have increased. That’s why it is crucial that we need to try to get only good 

characteristics of parents to yield a new offspring whose fitness is better than its parents 

as much as we can. This feature can be called heritability [23] which means that 

offspring by crossover should represent solutions combining substructures of their 

parental solutions. The feature is the most important part of the genetic algorithm.  

In order to show the traditional crossover and mutation method, let us consider 

the initial candidate solutions in Figure 2.5 again. The binary encoding crossover 

method [20], of course, is good for crossover and mutation of the solutions which are 

represented by binary strings. Figure 2.7 introduces two kinds of crossover methods, 

single point crossover and two point crossover. In a single-point crossover as shown in 

Figure 2.7 (a), one crossover point is assigned to each parent solution. The binary 

strings from the beginning of the first parent to the crossover point are copied to the 

offspring, and the binary strings from the crossover point to the end of the second parent  

 15



 

 
(a) 

 

(b) 

Figure 2.7 Examples of Binary Encoding Crossover Methods 

(a) Single-Point Crossover (b) Two-Point Crossover 
 

are copied to the rest of the offspring. In the two-point crossover as shown in Figure 2.7 

(b), two crossover points are assigned to each parent solution. Then the first part of the 

offspring is filled with the binary strings from the beginning of the first parent to the 

crossover, the second part is filled with the binary strings from the first crossover point 
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to the second crossover point of the second parent, and the rest part of the offspring is 

filled with the binary strings from the second crossover point to the rest of the first 

parent solution.  

The binary encoding mutation method [20] is completed with the selected bits 

after the crossover operation. If we do the operation with the offspring which is made 

by the two-point crossover method, and there are selected bits as shown in Figure 2.8, 

then the selected bits are inverted.  

 

Figure 2.8 An example of Binary Encoding Mutation Method (Bit Inversion) 
  

 With these methods for representation of solutions, there are also many other 

crossover and mutation methods using permutation encoding, value encoding, tree 

encoding, and so on [20].  

 As a matter of fact, it is important to note that these operations, crossover and 

mutation, are representation dependent. The methods for crossover and mutation which 

have been introduced so far are suitable only for solutions represented by binary strings. 

If we represent solutions by tree structures which are the method we used to represent 
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solutions, then other kinds of crossover and mutation operators are required. We will 

introduce the tree-based representation of solutions using edge-set which was the 

motivation of representation method of our work in Chapter 2.2.3. 

 There are basic recommendations for crossover and mutation operations in [20]. 

Crossover rate should be high; on the other hand, mutation rate should be very low. It 

would be better to have 80~95% of offspring rates of initial population size by 

crossover. In case of mutation, even though it is used to prevent all solutions in a 

population from falling into a local optimum of the solved problem, the reported best 

rate of offspring generated by mutation is only 0.5~1% of initial population size.  

2.2.2.5 Replacement Phase 

The main role of replacement operator is to place the new offspring, which is 

generated by the crossover and mutation, as a new member of the initial population. To 

decide which currently existing solutions need to be replaced or whether the new 

offspring needs to be replaced or not are based on the finesses of all the solutions. The 

solutions having better qualities, of course, should be kept while the solutions having 

worse qualities need to be replaced by the new offspring having better quality.  

All of the above means that we are able to get a better solution or at least get the 

solution having same value with the parental solutions since we replace the offspring 

only if it has better quality than the qualities of the currently existing solutions in the 

population. Therefore, we guarantee that we can create a better solution, however 

sometimes we get the same solution, after the genetic operations, not a worse solution.  
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2.2.2.6 Termination Conditions 

The process above is repeated until a termination condition is satisfied. There 

are a number of termination conditions proposed in [21], and [24]; 

 When a pre-determined number of generations or time has elapsed 

 When a satisfactory solution has been achieved 

 When no improvement in solution quality has taken place for a pre-

determined number of generations 

 When a solution is found that satisfies minimum criteria 

 Combinations of the above 

2.2.3 Edge-Set Representation of Trees in a Genetic Algorithm (GA) 

 As we mentioned in the previous sections, a standard representation of solutions 

is as an array of bits. However, if we need to use tree-based representation for solutions, 

it is not possible to use bit-string representation method.  

In the GA, the representation of initial candidate solutions in a population is 

crucial in order to operate the algorithm efficiently. The basic representation method 

using bit-string was introduced in the previous chapters, and the other methods of 

representation of the candidate solutions in the GA also have been studied so far. 

Gunther R. Raidl proposed a method, named ‘Edge-Set Representation’ of tree [3], and 

the tree-representation in our GA has been motivated by this technique. Other 

techniques also have been proposed by many researchers. Piggott and Suraweeera 

proposed how to represent a solution using a bit string in [17], the most famous coding 
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of trees, named ‘Prufer coding’, for GA was studied by Prufer in [18], and Kim and Gen 

[19] expended the Prufer coding in a GA. 

In this section, we briefly describe the ‘edge-set representation’ of tree which 

motivated our tree-representation briefly. This representation technique is used to 

represent d-MST, which is the degree-constrained minimum spanning tree. We 

modified this technique for our trees in GA, which do not have any degree constraint, 

and we are going to introduce the modified algorithms of ‘edge-set representation’ in 

Chapter 3. 

2.2.3.1 Initialization 

 In the initialization phase using the edge-set representation, the algorithm of 

‘edge-set representation’ creates random d-STs in the initial population of a GA. Given 

node constellation, as shown in Figure 2.9 [3], first we choose an edge from the list of 

all possible edges to start building a tree with the nodes in random order. When an edge 

is selected, then we check if the selected edge violates the degree-constraint. If it 

doesn’t violate the degree constraint, and it also doesn’t create any cycles with currently 

existing edges in the tree, then the edge is added to the tree. If it does violate the degree 

constraint, or create any cycles, then we discard the edge and choose another edge in 

random order from the list of all possible edges. 

We now have a feasible population which consists of a number of initial trees 

built by the above algorithm, and they will yield new offsprings following edge-

crossover and insertion-mutation operators. 
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procedure initialize; 
Begin 

ET ← Ø; 
for all edges (i, j) ∈ E in random order do 

if deg(i) < d and deg(j) < d and not (connected(m, n, ET)) then 
ET ← ET ∪ {(m, n)}; 

if  |ET| = |V| −  1 then 
return ET; 

end; 
Figure 2.9 Creating an initial, random d-ST (Pseudo-code from [3]) 

 

 2.2.3.2 Edge-Crossover 

 In this representation, the edge-crossover operation considers inheriting, which 

is a crucial aspect of the genetic algorithm. It inherits as many edges as possible from 

two parental d-STs. The Figure 2.10 [3] shows the pseudo-code for the edge-crossover 

operation. It starts with parental solutions (we will call these parental solutions parent 

trees from now on.). These are selected from the initial trees in the population which we 

created in the previous initialization phase. In the first step, we find the all edges that 

are in both parent trees and these found edges are going to be included in the new 

offspring tree. In the second step, all edges either in one parent, ET
1, or another parent, 

ET
2, are selected. As same with the initialization phase, the edges which violate degree-

constraint must not be added to the new tree. If a tree can be completed with only these 

two steps, then it is created. However, unfortunately we may not terminate this 

procedure due to the unconnected components, which are partial spanning trees and 

they must be connected together by including edges not contained in the parents. In this 

case, we set V, a set of all vertices, as disjointed sets Uk as shown in Figure 2.9 [3]. 

Then the unconnected components are connected to build a final complete d-ST by 



 

choosing two vertices repeatedly from the set V, and the edge which consists of the 

previously selected vertices must not violate degree constraint. 

2.2.3.3 Edge-Insertion-Mutation 

  In this step, mutation is operated by inserting an edge as shown algorithm in 

Figure 2.11. First, a new edge which doesn’t violate the degree constraint is selected to 

be inserted, and the all edges which lie on the path of the previous selected edge to be 

inserted are also found. Then one edge from the edges lying on the path is selected to be 

deleted. When the edge is selected to be deleted, the degree constraint also needs to be 

checked. 

procedure edge-crossover(ET
1, ET

2); 
Begin 

ET ← ET
1∩  ET

2; 
F ← (ET

1 ∪ET
2)\ET; 

for all edges (i, j) ∈ F in random order do 
if deg(i) < d and deg(j) < d and not (connected(i, j, ET)) then 

ET ← ET ∪ {(i, j)}; 
if |ET| ≠  |V| −  1 then 

return ET; 
(*determine all unconnected components Uk*) 
U ← {Uk} with ∀i,j ∈V, i ≠  j; 

i ∈ Uk∧ connected(i, j, ET) → j ∈ Uk, 
i ∈ Uk∧ not connected(i, j, ET) → j∉Uk,  
∪kUk = V; 

(*connect components randomly*) 
for all Uk ∈ U \ {U1} in random order do 

choose i ∈ U1 | deg(i) < d randomly; 
choose j ∈ Uk | deg(j) < d randomly; 
ET ← ET ∪ {(i, j)}; 
U1 ← U1 ∪ Uk; 

return ET; 
end; 

Figure 2.10 Edge-Crossover (Pseudo-code from [3]) 
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procedure edge-insertion-mutation(ET); 
begin 

(*choose edge (i, j) for insertion*) 
choose i ∈ V randomly; 
choose j ∈ V \ {i} | deg(i) < d ∧ (i, j)∉ET randomly; 
(*choose edge (a, b) for deletion *) 
L ← {(k, l) ∈ ET | (k, l) lies on path from i to j }; 
if deg(i) = d then  

(a, b) ← (a, b) ∈ L | a = i ∨ b = i ; 
Else 

choose (a, b) ∈ L randomly; 
ET ← ET ∪ {(i, j)} \ {(a, b)}; 
return ET; 

end; 
Figure 2.11 Edge-Insertion-Mutation (Pseudo-code figure from [3]) 

 

We modified these tree-representation algorithms for our genetic algorithm to 

build broadcast tree efficiently. As we mentioned in the beginning of this section, we 

now introduce our genetic algorithm with the modified edge representation technique in 

the next chapter. 
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CHAPTER 3 

PROPOSED GENETIC ALGORITHM TO BUILD BROADCAST TREES 

In this section we describe our genetic algorithm to build the minimum-energy 

broadcast trees in the wireless sensor networks.  

First, we describe how to create initial broadcast trees, which are also called 

candidate solutions in a population, and some of these are selected to be parental trees 

that are evolved to yield offsprings having more efficient energy than their parents.  

Second, we present how to evolve the selected parental trees and how to replace 

the children trees (offsprings) in the population to replace existing members of the 

population in the case that we have children having more efficient energy.  

Third, we discuss the mutation method for our genetic algorithm which needs to 

be made to prevent the genetic algorithm from falling into a local extreme. 

Finally, we describe the environment of our genetic algorithm. We present how 

many times we iterate the evolving operation and the termination condition that is used 

in our algorithm.  

3.1 Initialization Phase  

3.1.1. Creating Initial Trees in a Population 

In this phase, we create initial trees which are the candidate solutions in a 

population.  In order to create more feasible initial trees which may yield more efficient 

offspring trees, we put three different kinds of trees in the population.  
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The first initial tree is selected by the BIP algorithm [1], and is based on the idea 

that the genetic algorithm creates offspring trees which have at least the same energy as 

their parent trees. So this provides a good initial solution. 

procedure initialize-MST; 
begin 

ET ← Ø; 
for all edges (i, j) ∈ E do 

ED ← FindDistanceBetweenNode(i, j); 
for all edges (m,n) ∈ ED in ascending order do 

if not (connected(m, n, ET)) then 
ET ← ET ∪ {(m, n)}; 

if  |ET| = |V| −  1 then 
return ET; 

end; 

Figure 3.1. Pseudo-Code for “initialize-MST” 

 

The second initial tree is built on the basis of the d-ST algorithm [3] which is 

derived from Kruskal’s MST (Minimum Spanning Tree) algorithm [9]. Figure 3.1 

shows the modified pseudo-code for the d-ST algorithm. It initializes ET to the empty 

set and finds edges in an ascending order of the distances between nodes from the list of 

all possible edges in the network. After an edge is selected from the list of all possible 

edges in the network, if it doesn’t create any cycles with any edges which currently 

exist in the ET then put the selected edge into the ET. This procedure is continued until 

the size of ET becomes one less then the number of nodes. And we use the union-find 

data structure [10] to test if the edge makes any cycles with currently existing edges in 

ET. In this algorithm, the cost will be the distance between two nodes. 



 

The last trees of the population are randomly created. Figure 3.2 shows the 

procedure to create random trees and they are initialized by selecting edges randomly 

from the list of all possible edges in the network. As shown in the figure, we first 

initialize ET to be the empty set and then find any edges in random order from the list of 

all possible edges and put the selected edges into ET if they don’t make any cycles with 

the currently existing edges.  We also continue this procedure until the size of ET 

becomes one less than the number of nodes. 

procedure initialize-RandomTree; 
begin 

ET ← Ø; 
for all edges (i, j) ∈ E in random order do 

if not (connected(i, j, ET)) then 
ET ← ET ∪ {(i, j)}; 

if  |ET| = |V| −  1 then 
return ET; 

end; 

Figure 3.2 Pseudo-Code for “initialize-RandomTree” 

 

Figure 3.3 shows all initial candidate trees we just created in the population. The 

10 node–network size is 400m x 400m and the initial radio range is 200m. We will find 

new and better trees with these initial trees doing following procedures. 

BIP MST Random Trees 
 

 

  

……… 

 

Figure 3.3 Population (Initial Trees) 
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 3.1.2. Parent Selection 

Before we generate new offspring trees from the initial candidate trees, we need 

to select trees which will be parental trees to create a new offspring tree. Figure 3.4 

shows how we select parental trees from the population. We first sort the initial trees by 

consumed energies of each tree, and get the top 20% of the trees from the list of all the 

sorted initial trees. We choose the tree having smallest energy consumed be one of the 

parental trees, and randomly select one to be another one of the parental trees from the 

list of top 20%. We do this procedure to prevent the same tree from being selected again 

and again. The selected parents are ready to be crossovered. 

 
Figure 3.4 Parent Selection 

Father(Tree 1) : The tree having the smallest energy 
Mother(Tree 6) : The tree selected randomly from the list of top 20% 

 

3.2 Crossover Phase  

In the crossover phase, we evolve the parental trees we selected from the list of 

initial candidate trees. In this operation, the most important thing is not only to find 

better solution from the initial trees but also to maintain the inheritance by letting the 

new offspring have the crucial property of its parents. 
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3.2.1. Modified-Edge-Crossover 

Figure 3.5 shows an example of the modified-edge-crossover, and Figure 3.6 

shows the pseudo-code of modified-edge-crossover algorithm derived from edge-

crossover algorithm [3]. First, we initialize edge set, ET, to have all the edges which are 

in both of the parental trees (the intersection of the parents ET
1and ET

2), and the edge set, 

F, to have all the edges which are in either one of the parental trees or another one of 

the parental trees, but not in both (the difference between (ET
1∪ ET

2) and ET). The 

edges will be used to create a new offspring tree, and we do this procedure for 

inheritance so that the new offspring can have the properies of its parents. Next, we 

choose one vertex in random order from the set of all vertices, V, and find all edges 

which are in both of the radio range of the selected vertex (node) and F, and put the 

found edges into the set, EV. For all edges EV, we select edges in random order. If the 

selected edges do not create any cycles with the currently existing edges in ET, we put 

the edges into the final edge set, ET. The reason why we found all possible edges in 

radio range of the selected vertex is that we would like to exploit the wireless broadcast 

advantage (wireless multicast advantage) [1], [8] which permits all nodes within 

communication range to receive a transmission without additional expenditure of 

transmitter power. Therefore, we may reduce some energy even though it is small. We 

do this procedure until all the vertices are checked and finally return ET. Since we do 

not give the algorithm degree constraint like the original edge-crossover algorithm [3], 

when the above procedure returns ET, we will not get an incomplete tree. We continue 

this procedure until we complete a new offspring tree.  



 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.5 An example of ‘modified-edge-crossover’ 
(a) ET

1 , (b) ET
2 , (c) ET ← ET

1∩  ET
2  , (d) F ← (ET

1 ∪ET
2)\ET  , (e) ET  , (f) ET
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procedure modified-edge-crossover(ET

1, ET
2); 

begin 
ET ← ET

1∩  ET
2; 

F ← (ET
1 ∪ET

2)\ET; 
for all vertices Vk ∈ VT  in random order do 

EV ← FindEdges (k); 
for all edges (i, j) ∈ EV in random order do 

if not (connected(i, j, ET)) then 
ET ← ET ∪ {(i, j)}; 

return ET; 
end; 

Figure 3.6 Pseudo-code for “modified-edge-crossover" 
 

3.2.2. Replacement 

After we get the new offspring tree, we need to decide whether the offspring 

should replace a node in the population or not. In the population, we first find the 

broadcast tree which has the largest energy consumed. If the new offspring has smaller 

energy consumed, then it replaces the tree having the biggest energy as a member of the 

population. 

 

3.3 Mutation Phase 

We use the remaining trees except the trees which are already used for parent 

selection to operate mutation phase. Figure 3.7 shows the modified-edge-insertion-

mutation algorithm which is derived from the edge-insertion-mutation algorithm in [3]. 

First, a new edge is selected to be inserted, and all the edges which lie on path of the 

selected edge to be inserted are also found. Then one edge of the edges we just found is 

selected randomly to be deleted. 



 

procedure modified-edge-insertion-mutation(ET); 
begin 

(*choose edge (i, j) for insertion*) 
choose i ∈ V randomly; 
choose j ∈ V \ {i} ∧ (i, j)∉ET randomly; 
(*choose edge (a, b) for deletion *) 
L ← {(k, l) ∈ ET | (k, l) lies on path from i to j }; 
choose (a, b) ∈ L randomly; 
ET ← ET ∪ {(i, j)} \ {(a, b)}; 
return ET; 

end; 
Figure 3.7 Pseudo-code for “modified-edge-insertion-mutation” 
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CHAPTER 4 

IMPLEMENTATION AND EVALUATION 

We programmed and implemented our genetic algorithm in order to construct 

the minimum-energy broadcast trees in several different networks using Java. In this 

section, we show the implementation result of our genetic algorithm and evaluate our 

technique and also compare the result with the traditional broadcast algorithm, BIP [1] 

which was briefly introduced in Chapter 2.  

4.1 Implementation Environment  

  We considered source-initiated and circuit-switched networks, and generated 10 

different networks whose implementation results are averaged to be evaluated. The 

specified number of nodes, typically 25, 50, and 75 nodes, are randomly deployed and 

they are fixed in the 400m X 400m networks. The initial radio range of each node is 

200m, and a node which resides on the top right hand side of the network was chosen to 

be the source node.  

4.2 Evaluation 

 We implemented our genetic algorithm with three different population sizes, 10, 

20, and 30 with 10,000 iterations. We compared the energy consumptions of the 

broadcast trees which were constructed under our genetic algorithm with the tree under 

BIP algorithm in section 4.2.1. 
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 We also evaluate our genetic algorithm itself according to the number of 

iterations in section 4.3.2. We show how the genetic algorithm improves itself at each 

iteration with several population sizes. Since we can not guarantee how many iterations 

and how many population sizes must be good for a genetic algorithm, we just show the 

energy consumed and improved in each of population size and iteration.  

4.2.1 Comparison of Energy Consumptions of Trees built under BIP and GA 

 Table 4.1 shows the result of implementation of the BIP and GA. In the network 

with 25 nodes, BIP has the largest energy consumption and the GA with 20 initial trees 

has the smallest energy consumption. In the network with 50 nodes, the BIP also has the 

largest energy consumption and the GA with 30 initial trees has the smallest energy 

consumption, and in the network with 75 nodes, the GA with 10 initial trees has the 

smallest energy consumption. 

Table 4.1 Comparison of Energy Consumption between BIP and Genetic Algorithm 

Energy Consumed (Average of 10 networks) 

Genetic Algorithm (Population Size) No. of nodes 
BIP 

(10) (20) (30) 
25 10,600 10,600 8,780 10,600 
50 34,900 27,065 27,420 25,550 
75 86,400 63,715 68,605 65,285 
 

Table 4.2 shows the energy improvements of GAs over the BIP algorithm. In the 

network with 25 nodes, the GA with 10 initial trees and another GA with 30 initial trees 

improve 0% over the BIP algorithm. Only the GA with 20 initial trees improves 17.17% 
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over the BIP in the network. In the network with 50 nodes, the GA with 30 initial trees 

shows the best improvement over the BIP algorithm (26.79%), the GA with 10 initial 

trees has improvement of 22.45% over the BIP, and the smallest improvement of 

21.43% was achieved by the GA with 20 initial trees. In the network with 75 nodes, the 

GA with 10 initial trees has the largest improvement (26.26%) over the BIP, the GA 

with 30 initial trees improves in 24.44% over the BIP, and finally the GA with 20 initial 

trees has the smallest improvement of 20.60% over the BIP algorithm.  

Table 4.2 Energy Improvements of the Genetic Algorithm (%) over BIP 

Energy Improvements over BIP (%) 

(Population Size) No. of nodes 

(10) (20) (30) 
Average 

25 0 % 17.17 % 0 % 5.723 % 
50 22.45 % 21.43 % 26.79 % 23.558 % 
75 26.26 % 20.60 % 26.44 % 23.764 % 

 

 The averages of energy improvements of the GAs over the BIP are also shown 

in Table 2. On average, the GA has improvement of 5.72%, 23.56% and 23.76% in the 

25-node, 50-node, and 75-node network, respectively. Figure 4.1 also shows the data in 

Table 4.1 as a graph. And Figure 4.2 show the percentage improvements of our genetic 

algorithm over the BIP algorithm.  
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Figure 4.1 Energy Consumption (BIP vs. GA) 
 

 

Figure 4.2 Percentage Improvements (%) of GA over BIP 
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4.2.2 Analysis of the Genetic Algorithm used 

 Since the genetic algorithm can be implemented with the different size of 

population and different number of iterations, we evaluate the result of our genetic 

operation itself.  

 As shown in Figure 4.3, we are not able to guarantee how much number of 

iterations is needed to get the near optimal solution. We are just able to know that we 

can eventually reduce the energy consumption if we use more iterations.  

 

Figure 4.3 Energy Consumption at each iteration  
(50-node network and Population size 30) 
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Let us look up the networks which were analyzed in Figure 4.3 in more detail. 

As shown in the graph, we are also able to know that even though we used less than 400 

iterations, we were able to get more efficient trees than the initial best trees. And after 

3,000 iterations, the rates of energy gained according to the iteration are gradually 

decreased.  
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CHAPTER 5 

COMPARISONS WITH OTHER WORKS 

In the previous chapter, we compared our implementation result with the 

traditional BIP algorithm and we were able to get the evaluation result that our genetic 

algorithm is more efficient to build broadcast trees in wireless sensor networks than the 

BIP algorithm.  

In this chapter, we compare our genetic algorithm used to build broadcast trees 

with other related works which have been studied to solve the MPB problem so far.   

5.1 Related Work 

First of all, we introduce two kinds of operations, sweep operation [1] and r-

shrink operation [15], which can be used to improve algorithms. These operations are 

used in some algorithms in related work. The algorithms are an ant colony system 

(ACS) algorithm [5], cluster-merge algorithm [14] and simulated annealing algorithm 

[6] which is used to solve the MPB problem. 

We compare our genetic algorithm with the BIP and the other algorithms 

together. We also apply the sweep operation and the r-shrink operation to the BIP and 

the SA, and the r-shrink operation to the CM algorithm.  

5.1.1 Sweep Operation: Removing Unnecessary Transmissions 

 This operation called “sweep” operation was introduced in [1] to improve the 

BIP algorithm by eliminating unnecessary transmissions. We apply the sweep operation 
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to the final tree generated by a minimum broadcast algorithm. In this operation, we 

examine the relay nodes, but we ignore the leaf nodes because they do not transmit and 

hence they do not effect on the power consumption.  

Figure 5.1 shows an example of the sweep operation. We examine the relay 

nodes, node 2, 5, 8 and 9 which are in ascending ID order. The non-leaf node 2 can also 

reach node 3 without further expenditure of power. Therefore the transmission by node 

1 can reduce its power by reaching only node 2. We continue the examination through 

the non-leaf nodes, and we finally get the tree in Figure 2.2 (b).  

 
Figure 5.1 An Example of “Sweep” operation 

(a) Original Tree, (b) After “Sweep” Operation 
 

5.1.2 r-shrink Operation: r = 1 

 r-shrink procedure which is a heuristic for improving sub-optimal MPB trees in 

wireless networks is introduced in [15]. Given a tree which is generated by the BIP 

algorithm or the other MPB algorithms, the transmission radii of transmitting nodes in 
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the tree are shrunk sequentially. The purpose of the procedure is to reduce the 

transmission power of the node whose radio range is shrunk.  

 Figure 5.2 shows the r-shrink operation of the node j. For r = 1, the farthest node 

from node j which the r-shrink operation is to be applied to will be changed to another 

node k which is the farthest node from j except for the original farthest node i. It means 

that there will be the reduction of the transmission power level of node j by 1 notch. 

Similarly, for r = 2, the transmission power of the node j which is decided to be applied 

to will be reduced by 2 notches. It means the farthest node will be changed to the node l, 

and in the radio range of the node j there were two further nodes than the node l. 

 
(a) (b)  

Figure 5.2 An Example of r-shrink operation of node j 
(a) 1-shrink : node i (the original furthest node of node j) 

node k (the new furthest node of node j) 
(b) 2-shrink : node i (the original furthest node of node j) 

node l (the new furthest node of node j) 
  

As shown in Figure 5.2 (a), if we apply 1-shrink operation to the node j, then the 

node i will be disconnected from the rest of the tree. Then we determine whether the 
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temporarily disconnected child i retains its existing parent j or is assigned a new parent 

from the set of its foster parents by using the incremental costs and decremental costs 

which were used in the BIP algorithm that we explained in Chapter 2. The foster parents 

of a node are the set of the non-descendants, excluding its current parent. 

5.1.3 The Other Algorithms Compared with the Genetic Algorithm  

5.1.3.1 Ant Colony System (ACS) Algorithm 

 The ant colony system (ACS) algorithm was first proposed in [25] and the ACS 

procedure for solving MPB problem is introduced in [5]. The ACS algorithm is based 

on a swarm based optimization procedure.  

 Swarm intelligence approach gives rise to intelligent behavior through complex 

interaction which is from independent swarm members, and the interaction is from 

instincts. Finally, it accomplishes complex forms of the behavior and fulfills a number 

of optimizations.  

5.1.3.2 Cluster – merge (CM) Algorithm 

 The cluster – merge (CM) algorithm is used to solve the MPB problem in two 

phases, cluster phase and merge phase, and is introduced in [14].  

In the cluster phase, it varies the BIP algorithm. The tree will have the clusters 

which represent the partial connected subtrees. If n nodes are divided into m clusters, 

then we have at most m – 1 links to connect the clusterheads. It means the algorithm is 

able to reduce much complexity, and also make the algorithm suitable for use in large 

scale dense networks. In the merge phase, it uses positive reinforcement search 

procedure adopted in swarm intelligence algorithms.  
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5.1.3.3 Simulated Annealing (SA) Algorithm 

 Montemanni et el. [6] introduces a simulated annealing approach to solve the 

MPB problem. The simulated annealing is also related with global optimization like the 

genetic algorithm which we used in this paper, and it travels over the search space by 

testing random mutations on an individual solution. The simulated annealing also 

accepts the new solution having increased fitness values as the genetic algorithm; 

however it accepts lowered fitness values probabilistically based on the difference in the 

fitness.  

5.2 Evaluation 

First of all, Table 5.1 shows the energy consumptions of trees generated by all 

algorithms explained so far. In case of the GA, we evaluate the result with 20 initial 

trees and 10,000 iterations. As shown in the table, in the 25-node network, SA with 

sweep algorithm has the smallest energy consumption, and the GA is the fourth 

algorithm in terms of small energy consumption. In the 50-node network, the GA has 

the most efficient energy consumption, and the SA with sweep algorithm has the second 

best energy efficiency. In the 75-network, the GA also has the best result among the 

algorithms, and also the SA with sweep algorithm has the secondary energy efficiency. 

In the 100-node network, the GA could not produce a result because it ran out of 

memory space; however, the SA with sweep algorithm was able to get the best 

efficiency for energy consumption. Figure 5.3 shows the data in the table as a graph. As 

shown in Figure 5.3, in 50-network and 75-network, the energy-line of the GA is below 

all the other lines of each algorithm.  
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Table 5.1 Energy Consumptions of Trees generated by different algorithms 

No. of 
nodes BIP BIP + 

Sweep 
BIP + 

1-Shrink ACS CM + 
1-Shrink SA SA + 

Sweep GA 

25 10,600  10,328  9,571 8,686 8,703 8,491 8,465  8,780 

50 34,900  34,240  31,940 30,038 29,606 28,918 28,859  27,420 

75 86,400  84,465  79,272 73,397 73,103 72,360  68,605 

100 119,700  117,222  108,867 101,853 102,571 101,338  
 

 

Figure 5.3 Energy Consumptions of Trees generated by each algorithm 
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Table 5.2 Energy Improvements of the different Algorithms (%) over BIP 

No. of 
nodes 

BIP + 
Sweep 

BIP + 
1-Shrink ACS CM + 

1-Shrink SA SA + 
Sweep GA 

25 2.57 % 9.71 % 18.06 % 17.90 % 19.90 % 20.14 % 17.17 % 
50 1.89 % 8.48 % 13.93 % 15.17 % 17.14 % 17.31 % 21.43 % 
75 2.24 % 8.25 % 15.05 % 15.39 % 16.25 % 20.60 %

100 2.07 % 9.05 % 14.91 % 14.31 % 15.34 % 
 

 

Figure 5.4 Percentage Improvements (%) of different algorithms over BIP 
 

Table 5.2 shows the energy improvements of all the algorithms over the BIP 

algorithm. In 25-node network, the SA with sweep algorithm has improvement of 

20.14% over the BIP. It shows the largest improvements among the algorithms, and our 

algorithm, GA, has improvement of 17.17% over the BIP. In 50-node network, our GA 

shows the largest improvement, 21.43%, over the BIP, and the SA with sweep 

algorithm has the second best improvement, 17.31%, over the BIP. In the 75-node 
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network, the GA has the largest improvement again with 20.60%, and the SA with 

sweep algorithm also has the second best energy improvement, 16.25%, over the BIP. 

And in the 100-node network, as we mentioned, the GA ran out of memory, and the SA 

with sweep algorithm shows the largest improvement with 15.34% over the BIP 

algorithm. Figure 5.4 also shows the data in Table 4.4 as a graph. It shows the 

percentage improvements of the various algorithms over the BIP algorithm. 

Table 5.3 Energy Improvements of GA (%) over different algorithms  

No. of 
nodes BIP BIP + 

Sweep 
BIP + 

1-Shrink ACS CM + 
1-Shrink SA SA + 

Sweep 
25 17.17 % 14.98 % 8.26 % 0 % 0 % 0 %  0 % 
50 21.43 %  19.92 % 14.15 % 8.72 % 7.38 % 5.18 %  4.99 % 
75 20.60 %  18.78 % 13.46 %  6.53 % 6.15 %  5.19 % 

 

 We now consider the improvements of our GA over the various algorithms 

introduced above. Table 5.3 shows the energy improvements of our GA over different 

algorithms. In the 25-node network, the GA made 17.17% improvement over the BIP, 

14.98% improvement over the BIP with sweep algorithm, and no improvement over 

ACS, CM with 1-Shrink, SA and SA with sweep algorithm. In the 50-node network, the 

GA achieved 21.43% improvement over the BIP, and achieved the smallest 

improvement over the SA with sweep algorithm with 4.99%. In the 75-node network, 

the GA achieved the largest improvement with 20.60% over the BIP and the smallest 

improvement with 5.19% over the SA with sweep algorithm. Figure 5.5 show the data 

in Table 5.3 as a graph, which shows that the GA has the largest improvements over the 

BIP, and the smallest improvements over the SA with sweep algorithm.  
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Figure 5.5 Energy Improvements of GA (%) over different algorithms 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 In this thesis, we represented a technique to build the minimum-energy 

broadcast trees using a genetic algorithm. The technique provides an efficient way to 

broadcast data to deployed sensors in wireless sensor networks reducing the energy 

consumption. The genetic algorithm we used here creates an initial population of trees 

using random generation, as well as two trees based on the BIP algorithm [1] and the 

MST algorithm [9] to create a search space wherein the near optimal solution to build 

the broadcast trees is found. We implemented the operations of a genetic algorithm, 

which are initialization, replacement, crossover, and mutation, to find more efficient 

broadcast trees. 

 We have evaluated and compared the trees resulting from the genetic algorithm 

with other trees resulting from techniques. The experimental result shows that the 

genetic algorithm improves up to 20.60% over the traditional algorithm and up to 

5.16% over the latest proposed broadcast algorithm, SA.  

 We have identified several opportunities for future research. Since the proposed 

technique using the genetic algorithm is designed for broadcasting problem, as our 

future work, we plan to modify the method to apply to constructing multicasting tree. 

And we also try to advance our genetic algorithm to be available for the larger sizes of 

networks.  
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APPENDIX A 
 
 

ENERGY CONSUMPTIONS OF THE NETWORKS AT EACH OF ITERATION
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* Energy consumption at each iteraton (50-node & Population Size(30)) 
           

Network # 
Iteration 

1 2 3 4 5 6 7 8 9 10 
0  34900 34900 34900 34900 34900 34900 34900 34900 34900 34900

1  34900 34900 28600 34900 34900 33600 34900 34900 34900 34900

2  34900 34750 28600 34900 34900 31850 34900 34900 34900 34900

4  34900 34350 28600 34900 33850 31850 34900 34900 34900 34900

6  34900 32850 28600 34900 33850 31850 34900 34900 34900 34900

8  34900 32850 28600 34900 33850 31850 34900 30400 34900 34900

9  34900 32850 28600 34900 33850 31850 33800 30400 34900 34900

12  34900 32700 28600 34900 33850 31850 33800 30400 32850 34900

13  34900 32700 28600 32600 33850 31850 33800 30400 32850 34900

14  34900 32700 28600 32600 33800 31850 33800 30400 32850 34900

17  34850 32700 28600 32600 33800 31850 33800 30400 32850 34900

19  34850 32700 28600 32600 33800 31850 33800 30400 32850 33150

22  34850 32700 28600 32600 33800 31850 32100 30400 32850 33150

24  34850 32700 28600 32600 33800 31850 31150 30400 32850 33150

25  33650 32700 28600 32600 33800 31850 31150 30400 32850 33150

27  33650 32700 28600 32600 33800 31850 31150 30400 31450 33150

30  33650 32700 28600 32600 33800 31850 31150 30400 30950 33150

42  31950 32700 28600 32600 33300 31850 31150 30400 30950 33150

50  31950 31150 28600 32600 33300 31850 31150 30400 30950 33150

64  31550 31150 28600 32600 33300 31850 31150 30400 30950 33150

72  31550 31150 28600 32600 30350 31850 31150 30400 30950 31250

74  31550 31150 28600 32600 29500 31850 31150 30400 30950 31250

76  31550 31150 28600 32600 29500 31650 31150 30400 30950 31250

100  31550 31150 28600 32600 29500 31650 31150 30400 30950 31250

140  31550 31150 28600 32600 28450 31650 31150 30400 30950 31250

149  31550 31150 28600 31200 28450 31650 31150 30400 30950 31250

156  31550 31150 28600 31200 28450 31550 31150 30400 30950 31250

161  28950 31150 28600 31200 28450 31550 31150 30400 30950 31250

165  28950 31150 28600 30950 28450 31550 31150 30400 30950 31250

171  28950 31150 28600 30950 28450 31550 31150 30400 30950 30150

172  28950 31150 28600 30950 28450 31550 28850 30400 30950 30150

200  28950 31150 28600 30950 28450 31550 28850 30400 30950 30150

228  28950 31150 28600 30950 28450 31550 28850 30400 30950 28050
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Network # 
Iteration 

1 2 3 4 5 6 7 8 9 10 
239  28950 31150 28600 30950 28450 30500 28850 30400 30950 28050

245  28950 30700 28600 30950 28450 30500 28850 30400 30950 28050

264  28950 30700 28600 30950 28450 30500 28850 30400 30700 28050

272  28950 30700 28600 30950 28450 30500 28850 30300 30700 28050

288  28950 30700 28600 30950 28050 30500 28850 30300 30700 28050

300  28950 30700 28600 30950 28050 30500 28850 30300 30700 28050

305  28950 30700 28600 30950 28050 30500 28350 30300 30700 28050

400  28950 30700 28600 30950 28050 30500 28350 30300 30700 28050

426  28950 30700 28600 30950 28050 30500 28350 29350 30700 28050

427  28950 30700 28600 30950 28050 30500 26700 29350 30700 28050

434  28950 30700 28600 30950 27950 30500 26700 29350 30700 28050

460  28350 30700 28600 30950 27950 30500 26700 29350 30700 28050

469  28350 30700 28600 30950 27950 30500 26700 29350 30700 28050

500  28350 30700 28600 30950 27950 30500 26700 29350 30700 28050

561  28350 30700 28600 30950 27950 30500 25950 29350 30700 28050

580  28350 30700 28600 30950 27950 30100 25950 29350 30700 28050

599  28350 30700 28600 30200 27950 30100 25950 29350 30700 28050

600  28350 30700 28600 30200 27950 30100 25950 29350 30700 28050

619  28350 30700 28600 30200 27950 30100 25950 28050 30700 28050

671  28350 30700 28600 30100 27950 30100 25950 28050 30700 28050

700  28350 30700 28600 30100 27950 30100 25950 28050 30700 28050

722  28350 28850 28600 30100 27950 30100 25950 28050 30700 28050

736  28350 28850 28600 30100 27950 30100 25950 28050 30550 28050

768  28350 28850 28600 29650 27950 30100 25950 28050 30550 28050

800  28350 28850 28600 29650 27950 30100 25950 28050 30550 28050

829  28350 28850 28600 29650 27950 30100 25950 28050 30000 28050

900  28350 28850 28600 29650 27950 30100 25950 28050 30000 28050

1,000  28350 28850 28600 29650 27950 30100 25950 28050 30000 28050

1,067  28350 28500 28600 29650 27950 30100 25950 28050 30000 28050

1,100  28350 28500 28600 29650 27950 30100 25950 28050 30000 28050

1,200  28350 28500 28600 29650 27950 30100 25950 28050 30000 28050

1,249  28350 28500 28600 29650 27950 30100 24350 28050 30000 28050

1,300  28350 28500 28600 29650 27950 30100 24350 28050 30000 28050

1,357  28350 27950 28600 29650 27950 30100 24350 28050 30000 28050

1,377  28350 27950 28600 29650 27950 28600 24350 28050 30000 28050
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Network # 
Iteration 

1 2 3 4 5 6 7 8 9 10 
1,400  28350 27950 28600 29650 27950 28600 24350 28050 30000 28050

1,500  28350 27950 28600 29650 27950 28600 24350 28050 30000 28050

1,518  28350 27950 28600 29650 27950 28600 24350 28050 29950 28050

1,521  28350 27950 28600 28000 27950 28600 24350 28050 29950 28050

1,540  28350 27950 28600 28000 27950 27400 24350 28050 29950 28050

1,571  28350 27950 28600 28000 27950 27400 24350 28050 29850 28050

1,577  27950 27950 28600 28000 27950 27400 24350 28050 29850 28050

1,592  27950 27950 28600 28000 27950 27400 24350 28050 29500 28050

1,600  27950 27950 28600 28000 27950 27400 24350 28050 29500 28050

1,626  27600 27950 28600 28000 27950 27400 24350 28050 29500 28050

1,700  27600 27950 28600 28000 27950 27400 24350 28050 29500 28050

1,744  27600 27950 28600 28000 27950 25250 24350 28050 29500 28050

1,800  27600 27950 28600 28000 27950 25250 24350 28050 29500 28050

1,871  27350 27950 28600 28000 27950 25250 24350 28050 29500 28050

1,900  27350 27950 28600 28000 27950 25250 24350 28050 29500 28050

1,921  27350 27950 28600 26200 27950 25250 24350 28050 29500 28050

1,940  27350 27950 28600 26200 27950 25250 24350 28050 29350 28050

1,964  27350 27950 28600 25600 27950 25250 24350 28050 29350 28050

2,000  27350 27950 28600 25600 27950 25250 24350 28050 29350 28050

2,100  27350 27950 28600 25600 27950 25250 24350 28050 29350 28050

2,200  27350 27950 28600 25600 27950 25250 24350 28050 29350 28050

2,300  27350 27950 28600 25600 27950 25250 24350 28050 29350 28050

2,371  26350 27950 28600 25600 27950 25250 24350 28050 29350 28050

2,378  26350 27700 28600 25600 27950 25250 24350 28050 29350 28050

2,400  26350 27700 28600 25600 27950 25250 24350 28050 29350 28050

2,500  26350 27700 28600 25600 27950 25250 24350 28050 29350 28050

2,600  26350 27700 28600 25600 27950 25250 24350 28050 29350 28050

2,700  26350 27700 28600 25600 27950 25250 24350 28050 29350 28050

2,800  26350 27700 28600 25600 27950 25250 24350 28050 29350 28050

2,839  26350 27700 28600 25600 26200 25250 24350 28050 29350 28050

2,900  26350 27700 28600 25600 26200 25250 24350 28050 29350 28050

2,908  26350 26550 28600 25600 26200 25250 24350 28050 29350 28050

2,986  26000 26550 28600 25600 26200 25250 24350 28050 29350 28050

3,000  26000 26550 28600 25600 26200 25250 24350 28050 29350 28050

3,007  26000 26550 28600 25600 26200 25250 24350 28050 29250 28050
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Network # 
Iteration 

1 2 3 4 5 6 7 8 9 10 
3,020  26000 26550 28600 25600 26200 25250 24350 28050 28650 28050

3,100  26000 26550 28600 25600 26200 25250 24350 28050 28650 28050

3,200  26000 26550 28600 25600 26200 25250 24350 28050 28650 28050

3,245  26000 26550 28600 25600 25950 25250 24350 28050 28650 28050

3,300  26000 26550 28600 25600 25950 25250 24350 28050 28650 28050

3,326  26000 26550 28600 25600 25950 25250 24350 28050 28600 28050

3,400  26000 26550 28600 25600 25950 25250 24350 28050 28600 28050

2,487  26000 26550 28600 25600 25950 25250 24350 28050 27150 28050

3,500  26000 26550 28600 25600 25950 25250 24350 28050 26850 28050

3,574  26000 26550 28600 25600 25950 25250 24350 28050 26850 27450

3,579  26000 26550 28600 25600 25950 25250 24350 28050 26450 27450

3,600  26000 26550 28600 25600 25950 25250 24350 28050 26450 27450

3,700  26000 26550 28600 25600 25950 25250 24350 28050 26450 27450

3,798  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

3,800  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

3,900  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,000  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,100  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,200  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,300  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,400  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,500  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,600  26000 26000 28600 25600 25950 25250 24350 28050 26450 27450

4,667  26000 26000 28600 25600 25950 25250 24100 28050 26450 27450

4,700  26000 26000 28600 25600 25950 25250 24100 28050 26450 27450

4,800  26000 26000 28600 25600 25950 25250 24100 28050 26450 27450

4,849  26000 26000 28600 25600 25950 25250 24100 28050 26400 27450

4,900  26000 26000 28600 25600 25950 25250 24100 28050 26400 27450

4,933  26000 26000 28600 25600 25950 25250 24100 28050 26400 26950

5,000  26000 26000 28600 25600 25950 25250 24100 28050 26400 26950

5,004  26000 26000 28600 25600 25950 25250 24100 28050 26400 26150

5,100  26000 26000 28600 25600 25950 25250 24100 28050 26400 26150

5,200  26000 26000 28600 25600 25950 25250 24100 28050 26400 26150

5,300  26000 26000 28600 25600 25950 25250 24100 28050 26400 26150

5,332  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150
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Network # 
Iteration 

1 2 3 4 5 6 7 8 9 10 
5,400  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

5,500  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

5,600  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

5,700  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

5,800  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

5,900  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

6,000  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

6,100  26000 26000 28600 25600 25950 25250 22550 28050 26400 26150

6,188  26000 26000 28600 25600 25950 25250 22550 28050 25650 26150

6,200  26000 26000 28600 25600 25950 25250 22550 28050 25650 26150

6,300  26000 26000 28600 25600 25950 25250 22550 28050 25650 26150

6,303  26000 26000 28600 25600 25950 25100 22550 28050 25650 26150

6,400  26000 26000 28600 25600 25950 25100 22550 28050 25650 26150

6,500  26000 26000 28600 25600 25950 25100 22550 28050 25650 26150

6,600  26000 26000 28600 25600 25950 25100 22550 28050 25650 26150

6,700  26000 26000 28600 25600 25950 25100 22550 28050 25650 26150

6,800  26000 26000 28600 25600 25950 25100 22550 28050 25650 26150

6,844  26000 26000 28600 25600 25250 25100 22550 28050 25650 26150

6,900  26000 26000 28600 25600 25250 25100 22550 28050 25650 26150

7,000  26000 26000 28600 25600 25250 25100 22550 28050 25650 26150

7,100  26000 26000 28600 25600 25250 25100 22550 28050 25650 26150

7,200  26000 26000 28600 25600 25250 25100 22550 28050 25650 26150

7,300  26000 26000 28600 25600 25250 25100 22550 28050 25650 26150

7,326  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

7,400  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

7,500  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

7,600  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

7,700  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

7,800  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

7,900  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,000  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,100  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,200  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,300  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,400  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150
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Network # 
Iteration 

1 2 3 4 5 6 7 8 9 10 
8,500  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,600  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,700  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,800  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

8,900  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

9,000  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

9,100  26000 26000 28100 25600 25250 25100 22550 28050 25650 26150

9,154  26000 26000 28100 25600 25250 25100 22550 26650 25650 26150

9,200  26000 26000 28100 25600 25250 25100 22550 26650 25650 26150

9,277  26000 26000 27850 25600 25250 25100 22550 26650 25650 26150

9,300  26000 26000 27850 25600 25250 25100 22550 26650 25650 26150

9,400  26000 26000 27850 25600 25250 25100 22550 26650 25650 26150

9,419  26000 26000 27450 25600 25250 25100 22550 26650 25650 26150

9,500  26000 26000 27450 25600 25250 25100 22550 26650 25650 26150

9,537  26000 26000 26900 25600 25250 25100 22550 26650 25650 26150

9,600  26000 26000 26900 25600 25250 25100 22550 26650 25650 26150

9,700  26000 26000 26900 25600 25250 25100 22550 26650 25650 26150

9,800  26000 26000 26900 25600 25250 25100 22550 26650 25650 26150

9,900  26000 26000 26900 25600 25250 25100 22550 26650 25650 26150

9,904  26000 26000 26900 25600 25250 25100 22550 26300 25650 26150

10,000  26000 26000 26900 25600 25250 25100 22550 26300 25650 26150
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