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ABSTRACT

TIME-VARYING FEEDBACK SYSTEMS DESIGN VIA DIOPHANTINE

EQUATION ORDER REDUCTION

Publication No.

Shr-Hua Wu, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Kai-Shing Yeung

Diophantine equation plays an important role in the design and synthesis of
feedback compensators. Many methods have been developed to solve the Diophantine
equation. This dissertation develops a new systematic approach of solving a linear time-
varying Diophantine equation. This approach is based upon successively reducing the
order of the Diophantine equation by Euclidean algorithm. Euclidean algorithm for
solving for both time-invariant and time-varying Diophantine equations for directly
determining both the quotient and the remainder associated with the division of one
polynomial by another is presented. The coprimeness (right or left) of two Polynomial
Differential Operators is needed to guarantee, in general, the existence of solutions of

the respective Diophantine equation. The illustrative examples are given.



This dissertation also develops a procedure of setting up canonical forms for
linear time-varying, single-input single-output systems. The starting point is a
differential equation description of the system. Two canonical forms are considered:
observability and observer forms. Initial condition conversions between the canonical

forms and the differential equation description are also derived.
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CHAPTER 1

INTRODUCTION

1.1 Review of Diophantine Equation

Diophantine equation plays an important role in the design and synthesis of
compensators [1][2]. Solving Diophantine equation is shown to be equivalent to design
a full or reduced-order observer of a linear functional of the state [3].The Diophantine
equation approach is a transfer function-based control theory in which the transfer
functions are viewed and handled as algebraic objects. Solving a system of linear
Diophantine equations is a classical mathematical problem as well. Computing integer
solutions to systems of linear Diophantine equations is a classical mathematical
problem with many interesting applications in number theory [4], group theory [5] and
combinatorics [6].

Many methods have been developed to solve the Diophantine equation. An
indirect method of its solution is the well-known combined observer-controller design
[1]. Another method is the method developed by C.T. Chen [7]. Some of the methods
used involve the state-space approach [8] and [9]. Others utilize the coefficient
matching approach [7], [10] and [11]. [12] generalizes a classical Knuth-Schonhage
algorithm computing two Greatest Common Divisors (GCD) of two polynomials for

solving two arbitrary linear Diophantine systems over polynomials in time, quasi-linear



in the maximal degree for the weighted curve-fitting problem. One popular problem
encountered in the analysis and design of control systems is the solutions of the
Diophantine equations in which the existence of solutions of the Diophantine equations
requires the coprimeness of associated pairs of polynomial matrices [7]. The recursive
algorithm is commonly applied to solve Polynomial Diophantine Equation. Both [13]
and [14] propose a recursive algorithm for coprime fractions and Diophantine equation.
The above-mentioned works are all focused on linear time-invariant systems.

Step forward in extending the Diophantine equation approach is the case of
time-varying linear systems. The field of coefficients is replaced by a differential
polynomial over an interval of time [15][16]. The time-varying coefficients are no
longer commutative, for multiplication and differentiation do not commute. Solving the
Sylvester equation is the most commonly used to solve Diophantine equation with time-
varying coefficient matrices. Sylvester equations have been always the significant tool
in the development of numerical algorithms for various feedback design techniques in
control theory [17][18]19][20][21]. But Sylvester matrix has its limitations in MIMO
system. These limitations can be overcome with Euclidean algorithm.

1.2 Review of Euclidean Algorithm

In this dissertation, Euclidean algorithm is presented for solving for both time-
invariant and time-varying Diophantine equations for directly determining both the
quotient and the remainder associated with the division of one polynomial by another.
The coprimeness (right or left) of two Polynomial Differential Operators is needed to

guarantee, in general, the existence of solutions of the respective Diophantine



equation[22]. The Euclidean algorithm has been used to solve Sylvester matrices [23]
and Diophantine equations [24] in time-invariant. These methods can in principle often
also lead to a GCD. GCD of polynomial matrices plays an important part in the theory
and application of general differential systems as studied extensively by [25][26], and
others. They are useful in obtaining irreducible matrix fraction descriptions (and hence
minimal state-space realizations) of transfer-function matrices, studying decoupling
zeros and uncontrollable and unobservable modes of given systems, and obtaining the
pole-zero structure of given multivariable systems [27].

1.3 Review of Canonical Form

Canonical forms of state variable equations are of importance in the analysis
and synthesis of dynamical systems. To simulate a continuous time system, there is a
fundamental weakness to use differentiator. In practice, all signals are corrupted by
noise. When such signal is differentiated, the derivative of the usually rapidly varying
noise will shout down the derivative of the signal. For system described by a general
differential equation the integrating device can be used as the basic building block for
simulation[28]. Linear time-invariant canonical forms have been extensively researched
and described in several papers and texts (see [1][7][29] and references therein). The
controllability, observability, controller and observer canonical forms are frequently
used. Nevertheless, there are only a few investigations related to time-varying canonical
forms: Zeitz [30] derived observability form of non-linear time-varying systems from

state variable equations, Krener [31] constructed observer forms for those nonlinear



systems which can be transformed into a linear system, and Schaft [32] represented a
nonlinear state space system as a set of higher-order differential equations.

The general formulae relating the initial conditions of a scalar linear time-
invariant differential equation to those of its state variable representation have been
presented many years ago [33]. In this dissertation, a derivation of observer and
observability canonical forms from a differential equation description is developed for
linear time-varying systems. Initial condition conversions between the canonical forms
and the differential equation description are given. With the help of the derived
canonical forms, simulations of systems given by linear time-varying differential
equations are greatly facilitated. This can be done, For example, using MATLAB
software to implement integrators, summers and gains.

1.4 Qutline

This dissertation demonstrates a new systematic approach to tackle both the
time-invariant and time-varying Diophantine equations using an order reduction
method. This method is based on the Euclidean algorithm. The time-invariant case is
presented in chapter 2 and the time-varying case is discussed in chapter 3, we shall
briefly review the pole-placement approaches and the Euclidean algorithm for both
time-invariant and time-varying cases in both chapter 2 and 3, and how they require the
solution of the Diophantine equation. In chapter 3 section 2, the division algorithm in
the time-varying case is illustrated. Then, we shall introduce the Diophantine equation
order reduction process, coupled with the use of the Euclidean algorithm. Examples will

be given to illustrate the order reduction method for both time-invariant and time-



varying cases. Chapter 4 illustrates the basic ideas and procedures of setting up LTV
canonical forms in both observability and observer. Formulas for the associated initial
condition conversion are given as well. Chapter 5 shows case study utilizing
Diophantine equation order reduction, LTV canonical forms and comparisons of
existing input-state and input-output methods. The contribution of this dissertation and

suggestions of future work are discussed in chapter 6.



CHAPTER 2

DIOPHANTINE EQUATION ORDER REDUCTION USING EUCLIDEAN
ALGORITHM

2.1 Pole-Placement Feedback Design

The pole-placement in a closed-loop structure using output feedback can be
done by means of solving the Diophantine equation. The poles of the overall transfer
function are assigned in order to meet some given performance requirements. Consider
a unity feedback control systems as shown in Figure 2.1. This scheme is considered to
be the simplest unity feedback configuration. Given a plant with a rational transfer

function H(s) of order k, with input » and output y and a reference signal r, the
objective is to design a proper controller C(s) of order y, so that the closed-loop poles

will reside at specified locations.

Cis) ™ His)

v

Figure 2.1. Unity feedback control scheme

Let the plant be given as a rational transfer function



H(s) :%, deg [a(s)] > deg [b(s)] (2.1.1)

To design a controller C(s) with a proper transfer function, let

n(s

d(s)’

C(s) = deg [d(s)] > deg [n(s)] (2.1.2)

Then the overall transfer function from r to y is

FESH) 2.1.3)
_ n(s)b(s)
—d(s)a(s)+n(s)b(s)
Let the denominator be
d(s)a(s)+n(s)b(s) = f(s) (2.1.4)

where  f(s) = const.(s — p;)(s —p,)---(s—p,..,,) contains the desired closed-
loop poles p,, i=12,---,(y, +k,), Where y,=deg[d(s)], k,=deg[a(s)] . This
equation is known as the Diophantine equation where a(s), b(s) and f{s) are given
polynomials and d(s) and n(s) are unknown polynomials to be solved. The Diophantine
equation in Eq. (2.1.4) can be solved using Sylvester matrix method [1]. Here we
introduce an alternative method using an order reduction approach employing the
Euclidean algorithm. We shall revisit the Euclidean algorithm first and then proceed on
to the order reduction method.

2.2 Euclidean Algorithm

This section revisits the Euclidean algorithm given in [1]. Euclidean algorithm

is considered to be one of the oldest nontrivial algorithm that has survived to the present



day [34]. Given two polynomials a,(s) and b,(s) with deg[b,(s)]< deg[a,(s)] there
exists a unique quotient polynomial ¢,(s) and a unique remainder polynomial 7, (s)
such that

ay () =qo ()by () +7,(5) deg [, (s)] < deg [b, (s)] (2.2.1)

By successive use of the above polynomial division formula, we obtain

ao(s) =qo(8)by (s) +15(s) , ky <k
a,(s) = q,(s)b,(s) + 1 (s), ks <k,
a,(s) =q,(s)b,(s) +1,(s), ky <kj (2.2.2)

a,1(8)=q,.,(s)b, (s)+7,.,(s), k,,<k,
a,(s)=q,(s)b,(s)+r,(s), deg[r,, (s)] <k,.,

where a,(s)=b,,(s) and b,(s)=7,,(s), i=L1---,m; k, =deg [b,,(s)] ,

The algorithm stops when the remainder r, (s)=0 or deg[r, (s)]=0. In the
former case, r, ,(s) will be the greatest common divisor of a,(s) and b,(s). In the
latter case, a,(s) and b,(s) are coprime.

2.3 Order Reduction of Diophantine Equation

Consider Eq. (2.1.4). Rename the polynomials as
a(s)=a,(s) (2.3.1a)

b(s) = b, (s) (2.3.1b)



d(s)=d,(s) (2.3.1c)
n(s) =ny(s) (2.3.1d)
1) = £o(5) (2.3.1¢)
Then, we have

do (8)ay (s)+ 1o ()b, (5) = £, (s) (23.2)
where subscript “0” is used to indicate the step number in the recursive process

that follows. It is assumed that a,(s) and b,(s) are coprime.

To go through a general discussion, let the degrees of the respective

polynomials satisfy the following conditions:

degla,(s)] =k, (2.3.33)
deg[b, ()] = £, k, < k, (strictly proper plant) (2.3.3b)
degld, (s)1= 75, Yo 2 ko =1 (proper controller) (2.3.3c)
deg[n, (s)] =k, -1 (2.3.3d)
deg[f5(s)] =7, +k, (2.3.3¢)

The choice of these degrees not only ensure a proper controller, but also will
yield an equal number of equations as unknowns as can be seen below.

Let the polynomials be



k ko1
ay($) =agos™ +ag, 8+t g 1S+ gy s Ay, #0

k k-1
by (8) = by 8™ + by 8™ 4+ +bg 4,15 + Doy k, <k,
dy(s)=dyos™ + a’oyls“*l et do%fls + afw0 , Vo 2ky—1

_ ko1 k2
no(8) =ng o™ +ny,877 + g, SN,

(2.3.4a)

(2.3.4b)

(2.3.4¢)

(2.3.4d)

Let f,(s) be any arbitrarily assigned polynomial of degree (y, +k,) given as

k ko1
fo (S) = fo,osy0+ ‘4 fo,15y0+ Tt f0,70+k0—1S + f0,70+ko

(2.3.5)

(We shall from now on refer to the degree of f,(s) as the order of the

Diophantine equation (2.3.2)).

Substituting Egs. (2.3.4) and (2.3.5) into Eq. (2.3.2) and equating terms of like

powers in s Yyields the following matrix equation

i dy 0 e T T | PP 0 dy,
o1 Qo o . P : do,
0 | : :
Aoyt Goyia - Goo |0 0 0 | dy, 4
R (S
Aoy ia Yoy Cooay | oa, 0 0 by O -0 0 |d, _—
: . ol oay 0 by E :
| dyy - 0| dy,
ok, | Ay, Do Moo
0 Do, | E Doy Moy
0 | : :
o ag, | byy,
RS 0 | ay, I 0
i 0 0o | 0 0 g, O -0 bo,kl__ Mojoa |

10

- oo -
Joa

f(‘)% —k

ﬁ), Yo—H+1

.fO, Yo+ko—1

L f(),70+k0 B
(2.3.6)



The first (y, —k, +1) coefficients of d,(s) can be solved by inverting a

triangular matrix as

doo Qo0 0 e 0 i Joo
do,l Ay p.0 : fo,l
: =| Qo Aoy . . : : (2.3.7)
dO,;/O—kl—l : - R 0 fO,yo—kl—l
i do i 1 %oyt Qoyp-k-1 7 Do oo | S0t ]

Let d,(s) be splitinto a “known” leading part d,,, (s) consisting of these

coefficients and an “unknown” remaining part d,, (s) which is to be determined later

such that
do(s)=dyy (s)+dy, (s) (2.3.8a)
where
doy () =dy s + dovlsy"_l oot doyyo_klsk1 (2.3.8b)
dy, (p)= doyyo_kﬁlskf1 + a’oyo_kﬁzsk“2 +etd,y, gs+d, (2.3.8c)

Substituting Eq. (2.3.8a) into Eq. (2.3.2) yields

[doy; (8) +doy ($)]ag () + 1o ()b, (s) = fo(s) (2.3.9)
Moving all the known parts in Eq. (2.3.9) to the right hand-side gives

do, (8)ag(p) + 1y ($)by (s) = fo(s) = doyy ()ao (5) (2.3.10)
Denote the right hand-side as

f1(s) = fo(s) = dyy (s)ay (s)

o+~ o+ —2 (2.3.11)
= f108 o + [ o +"’+fl,ko+kl—2s+fl,k0+k1—1

11



The coefficients of f,(s) can be found by substituting Egs. (2.3.4a), (2.3.5) and

(2.3.8b) into (2.3.11) so that we have

I Jio _fov}/o_kﬁl | Qoyo-trr  Qoy—iy, 77 Goa ]
f1,1 f0,707k1+2 Aoyg-tpr2 Aoyy-kypsl Ap,2
Ao, KR dy,
: 0 R d
e Qorg 0 o1 (2.3.12)
: : 0 L :
. aO,ko _doyi’o—/ﬁ
0

_fl,ko+kl—1_ L fO,;/0+k0 1 L 0 0 |
With Eq. (2.3.11), Eg. (2.3.10) now becomes
o, (5)ag (s) + 19 (5)by (5) = £,(s) (2.3.13)
Substituting the Euclidean algorithm Eq. (2.2.1) into Eq. (2.3.13) gives
iy ()0 ()by (5) + 13 ()] + 1 ()4 (5) = £,(s) (2.3.14)
Grouping terms containing b,(s) yields
[, ()5 (5) + 116 ()14 (5) + o, (57 (5) = £ () (2.3.15)
Renaming the polynomials as
a,(s) =by(s) (2.3.16a)
b, (s) =ry(s) (2.3.16b)
dy(s) =dy; (5)go(s) + 1y () (2.3.16c¢)
n,(s)=d,, (s) (2.3.16d)

gives rise to a new Diophantine equation
12



dy(s)a, () + m, ()b, (s) = £i(5)
where the degrees of the respective polynomials are
deg[a,(s)] =k,

deg [b,(s)]=k,, k, <k,

deg [d,(s)] =7, =k, -1

deg[n,(s)]=k -1

deg [f, ()] = ko +k 1

Notice that they satisfy the same degree requirements as in Eq. (2.3.3).

(2.3.17)

(2.3.18a)
(2.3.18b)
(2.3.18¢)
(2.3.18d)

(2.3.18¢)

Consequently, the new Diophantine equation (2.3.17) is of lower order than the original

one in Eq. (2.3.2). That is, f;(s) is of lower degree than f,(s), in this case by

(7/0 —k, +1).

Repeating the above order reduction process one more time will yield third

Diophantine equation:

dy(8)a, () +ny(5)b, (5) = /5 (s)

(2.3.19)

Continuing on with this process to a total number of m +1 steps, where m is the

number of steps in the Euclidean algorithm in Eq. (2.2.2), we will obtain a sequence of

Diophantine equations of successively lower orders as

d;(s)a;(s)+n,(s)b,(s) = fi(s), deglfi(s)]=7,+k ,

where

aj(S)=bj71(S), j:l,---

13

i=0,1-,m (2.3.20)
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b,(s)=r,4(5), j=1-m (2.3.21b)

d;(s)=[d;1(s)—d oy (g, a(s)+n,4(s),  j=L--m (2.3.21c)
n,(s)=d, () —d 1, (s), =1 m (2.3.21d)
Ji ()= f1a(8)=d;pyn (s)a; 4 (s) j=1-m (2.3.21e)
di(s)=d,os" +d, 5" +---4d,, ", i=0,1-,m (2.3.21)

The coefficients of d,,,(s), i=0,1,---, m, are obtained from

[ d, ][ a 0 e o0 TH fio ]
d;y a1 a0 : Jia
: = : a;, T : (2.3.22)
d, 4.1 : “o .0 Jiy ks
i d[,y, I B L L S S e e T f;,;/,-—k,-ﬂ ]

The degrees of the respective polynomials in Eq. (2.3.21) are given by

deg [a, (s)] =k, (2.3.23a)
deg [b, (s)] = k.1, ko <k, (2.3.23b)
deg[d,(s)]=7, =k, -1 (2.3.23c)
deg[n,(s)] =k, -1 (2.3.23d)
deg[f, ()] =k, , +k, -1 (2.3.23¢)

j=1-,m
We now turn to the backward process starting with known pair, &, (s) and
n, (s). The objective here is to determine the original pair, d,(s) and n,(s). From Eqgs.

(2.3.21d) and (2.3.21f), we have
14



d, 1 (s)=d 1y (s)+n,(s) (2.3.24a)

The polynomial », ,(s) can be solved from Egs. (2.3.21c) and (2.3.21d) as

n,.(s)=d,(s)-n,(s)q,(s) (2.3.24b)

Continuing on in this way, with the help of Egs. (2.3.21c), (2.3.21d) and
(2.3.21f), we have the following backward recursive formulas:

diy(s)=d gy, (s)+n(s), i=1-m (2.3.25a)

n,(s)=d,(s)—-n(s)q,(s), i=L--,m (2.3.25b)

2.4 Example of Time-Invariant Case

Consider a Diophantine equation (2.3.2) with the following polynomials
ay(s)=s°+3s” +4s+3

by(s) = s° +s+1

dy(s)=dy o5 +do,5° +d,y,s+dy

ny(s) = no]os2 +ny,8+ng,

Selecting all six closed-loop poles at s =—1 leads to

fo() = (s +1)°

=% +6s° +155* +20s° +1552 + 65 +1

Applying the Euclidean algorithm Eq. (2.2.2) on a,(s) and b,(s) yields

Go(s) = s +2

15



rp(s)=s+1
A second application of the Euclidean algorithm on «,(s) and b,(s) gives

q,(s)=s
n(s)=1

The Euclidean algorithm stops here since deg[r; (s)]=0. Next we proceed to

reduce the order of the Diophantine equation.

2.4.1 Forward Algorithm

Step O:

From Eq. (2.3.22), we can solve for the two leading coefficients of d,(s) as

ol ] Velfs STTa -

dy, o1 Yoo Jos 3 1| 1|6 3
Then, d,(s) can be split into a “known” part and an “unknown” part as
dy, (s)=5°+3s°

dy, (s)= do,zs + do,s

From Eqgs. (2.3.20) and (2.3.21), with i =1, the following reduced order

Diophantine equation is obtained

d,(s)a,(s)+n,(s)b,(s) = f,(s)

where

16



a,(s)=s"+s+1
b (s)=s+1
fi(s)=25" +55° +65° +65+1

Step 1:

From Eqg. (2.3.22), we can solve for the two leading coefficients in d, (s) as

o] [1 0]2] [2

d.| |1 1| |5] |3

So that, d,(s) will be split into a “known” part and an “unknown” part as
d,, (s)=2s*+3s

dy (s)= dl,2

From Egs. (2.3.20) and (2.3.21), with i =2, another reduced order Diophantine

equation is generated
d,(s)a,(s)+n,(s)b,(s) = f5(s) (2.4.1)
where
ay(s)=s+1
b,(s) =1
fy(s) =52 +3s+1

Step 2:

From Eq. (2.3.22) we can obtain d, ,, d,, and n,, as follows
17



do| [1 0771] 1
dy | |1 1) |3] |2
Notice that, in this final step, d,(s) =d,, (s) =s+2. With known d,(s), n,(s)
follows from the Diophantine equation (2.4.1) as
n,,=-1
2.4.2 Backward Algorithm

With known d,(s) and n,(s), d,(s) and n,(s) can be obtained from Eq.

(2.3.25) as
d,(s)=2s"+3s-1

n,(s)=2s+2

Similarly, with d,(s) and n,(s) solved, d,(s) and n,(s) are found from Egq.
(2.3.25) as

dy(s)=s°+3s*+25+2

ny(s)=-3s-5

which is the solution of our original Diophantine equation.

18



CHAPTER 3
ORDER REDUCTION OF TIME-VARYING DIOPHANTINE EQUATION
USING EUCLIDEAN ALGORITHM

Now we extend the approach described in the previous chapter to time-varying

case.

3.1 Time-Varying Pole-Placement Feedback Design

Pole-placement in a closed-loop structure using output feedback can be carried
out by means of solving the Diophantine equation. The poles of the overall transfer

function operator are assigned in order to meet certain given performance requirements.

Consider a plant described by a linear time-varying differential equation

A(p)y(t) = B(p)u(t) (3.1.1)
where
A(p) = ay (1) p" +a, () p" ™ +--+a,(O) p"7 +---+a, (1), (3.1.2)

a,(t)#0,t, <t<t,
B(p) :bo (t)p/q +bl(t)pk1—1 ++b} (t)pkl—j +...+bkl (t), kl < kO (313)

and p is the differential operator % . The coefficients a;, (i=0,---, k,) and

b, (j=0,---, k) are continuously differentiable functions of time. In the sequel, the

argument ¢ in the coefficients a, and b, will be dropped for brevity.
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A feedback control system for the plant can be implemented as shown in Figure
3.1 where r is the reference input. This scheme can be viewed as the combined
observer-controller feedback configuration given in [1] (pp.298), which is now

extended to the time-varying case. The objective here is to design #, and H  so that

the closed-loop poles would be assigned.

PLAN
r F u y
1 -1
» A B >
'\‘ ‘J (p)B(p)
y
[6(p)B(p)I'n,(p)B(p) | H, B(p)B(PI ' n,(P)B(p) | H
v w
+
<t
_/

Figure 3.1. Block diagram of combined observer-controller

In Figure 3.1, the blocks /, and H  can be represented as polynomial operator

equations, respectively, as

d(p)B(p)v=n,(p)B(p)u (3.1.4)
o(p)B(p)w=n,(p)B(p)y (3.1.5)
where

20



3(p)=00(P=Pu)P—Ps2)(P— Do)

=8y p™ +6,p% "+ + 8, 4p+6, (316)
The constants p,, (i=1 -, 0,), are the assigned “observer” poles.

Let

n,(P)=7P "+t Vg aPH Vs (3.17)
n,(p)=Bop "+ 4B 0+ B k,-1< o, (3.1.8)
Then the overall feedback system equation can be derived as follows:

Summing up Eqg. (3.1.4) and Eq. (3.1.5) results in
o(p)B(p)lv+wl=n,(p)B(p)u+n,(p)B(p)y (3.1.9)
From Figure 3.1, we have v+ w=r —u. Eq. (3.1.9) then becomes
o(p)B(p)lr—ul=n,(p)B(p)u+n,(p)B(p)y (3.1.10)

Eliminating « from Eq. (3.1.1) and Eq. (3.1.10) yields the overall closed-loop
equation
{16(p) + 1, (2)14(p) + 1, (D)B(P) }y = 6(P) B(p)r (3.1.11)

Let the left-hand-side term be

{15(p) +n,(P)1A(P) +n,(p)B(p)} = (p)a(p) (3.1.12)

where

a(p)=ay(p—p)(P—p.)(P—Pa,)
=qp  +ap T+ pta '

The constants p,, (i=1---, k,) are the assigned “controller” poles.

Then, substituting Eq. (3.1.12) into Eq. (3.1.11) gives
21



d(p)a(p)y =4d(p)B(p)r (3.1.13a)
or

d(p)la(p)y-B(p)r]=0 (3.1.13b)
Integrating Eq. (3.1.13b) leads to

a(p)y =B(p)r+¢(t)
3.1.14
= B(p)r ( )

where £(¢) is a transient signal and decays away rapidly by applying
differential polynomial 6(p).

The equivalent overall feedback system is depicted in Figure 3.2.

L B(p)? a(p) —

Figure 3.2. Block diagram of equivalent overall combined observer-controller
Remarks:

(1)  With fixed closed-loop poles, p.., «a(p) isa time-invariant

polynomial, which governs the behavior of the closed-loop system.

(2)  The combined observer-controller approach described above
requires no separate knowledge of the controllability or observability of the
plant, and no state measurement is needed. The only requirement is that

A(p)and B(p) are right coprime [22].
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With respect to Eq. (3.1.12), let

D(p)=0d(p)+n,(p)

6 o (3.1.15a)
=dyp” +d,p™  +--+d, sp+d,
N(p)=n,(p)

) (3.1.15h)
=mp’ T teetm Pt
F(p)=d(p)a(p)

otk o +ko-1 o +ko-2 (3.1.15¢)
=fop T T A S PTTT A opTT A f P o,
Then, Eq. (3.1.12) becomes
D(p)A(p)+ N(p)B(p)=F(p). (3.1.16)

Thus, our design goal is reduced to the problem of solving the Diophantine

equation (3.1.16). With given A(p), B(p) and F(p), D(p) and N(p) are to be

solved.

3.2 Time-Varying Division Algorithm

Consider a pair of polynomials A4(s) and B(s) in the Laplace operator s . In this

time-invariant case, it is well known [1][23] that the division of A(s) by B(s) uniquely

defines another pair of polynomials, the remainder R(s) and the quotient Q(s), such

that

A(s) = O(s)B(s) + R(s) (3.21)
Extending this to the time-varying case, Eq. (3.2.1) becomes

A(p)=0(p)B(p)+ R(p) (3.2.2)

Let the polynomials be given by
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A (p)=ap®+ap" " ++a,_p+a, . a,()20 for t,<r<t, (3.2.3a)
B(p):bopkl+blpk1—1+___+bkrlp+bkl, by(t)=0 for ¢ <t<t, (3.2.3b)

R(p)=rop" +1p" "+ tn ,p+n (3.2.3¢)

ko—k-1

O(p)=qop" ™ +qp" " 4t g, A ko> K (3.2.3d)

Substituting Eq. (3.2.3) into Eq. (3.2.2) and equating terms of like powers in p

yields the following square triangular systems of equations:

ay b, 0 0 | 0 o v o oo O] g,
a 1 b_l,O o | . : 4
a, b,+b,, b+b,; b | q
. | :
| :
A i, : . . 0 . by |0 0| g,
—_——— = —= == —_—— — — — R + - — — — — — | ===
- : L. b | 100 0| r
i ) . . b | 0 1 :
: | 0 O
|t
) bﬁ] 10 bﬁ) 11 b, 4 | 0
gy | | bio by, 1 by | 0 v o o 0 1) n |
(3.2.4)
The terms ENH’ ; InEq. (3.2.4) exist only in the time-varying case and are
defined as
_ kok=i( |k —k _j ky : )
eirl = [ 0 il JZb}) . J=01 -, (ky—k 1) (3.2.5)
i=1 1=0

24



ky—k, —
where( ¢ ‘]j is the combinatorial symbol.
1

From Eq. (3.2.4), the unknown coefficients ¢ ’s and » ’s can be found uniquely

if the matrix is nonsingular. This is the case since b, (t) #0, t, <t <t,.
We shall refer to the degree of R(p) as
deg[R(p)] =k, (3.2.6)

if the coefficient »_, ,()#0, ¢ <t<t,, (k,=0,1,---, k1), and that all

coefficients previous to it are identically equal to zero.

3.3 Time-Varying Euclidean Algorithm

This section revisits the Euclidean algorithm given in [1]. Euclidean algorithm
is considered to be one of the oldest nontrivial algorithm that has survived to the present

day [34]. Given two polynomials 4,(p)and B,(p) with deg[B,(p)]<deg[4,(p)] ,

using the division algorithm in Section 3, we have

4,(p) = 05 (P)By(P) + Ry (p) deg [R,(p)] < deg[B,(p)] (33.1)

By successive use of the polynomial division algorithm, we obtain, for

L, <t<t,,
A4,(p) =0y (P)By(p)+ Ry (p), k, <k,
4,(p) =0 (p)B,(p)+ R, (p) , ky <k,
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4,(p) =0,(p)B,(p)+ R,(p) , ky <kj (3.3.2)

4,.(p)=0,,(p)B,,(p)+R,,(p) , k,., <k,
4,(p)=0,(p)B,(p)+R,(p), deg[R, (p)I<k,.,

where 4,(p)=B_,(p) and B,(p)=R_,(p), i=1---,m; k, =deg[B,,(p)] ,

The algorithm stops when the remainder R, (p)=0 or, when R (p)#0,
deg[ R, (p)]=0. In the former case, R, ,(p) will be the greatest common right divisor

of 4,(p) and B,(p) . In the latter case, 4,(p) and B,(p) are right coprime. The
proof is similar to the time-invariant case and will be omitted.

3.4 Order Reduction of Time-Varying Diophantine Equation

Consider Eq. (3.1.16). Rename the polynomials as

A(p)=4,(p) (3.4.1a)
B(p)=B,(p) (3.4.1b)
D(p)=Dy(p) (3.4.1c)
N(p)=N,(p) (3.4.1d)
F(p)=F(p) (3.4.1e)
where

4,(p)= ao,opkO + ao,lpko_l totag Pty Qoo F 0, t,<t<t, (3.4.2a)

Bo(p)zboyop’“+b0’lpk1_l+---+bovkrlp+bo’kl, k <k, t,<t<t, (3.4.2b)
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Dy(p) =doop™ +dy p™ +--+d,, p+d o, 2k, -1 (3.4.2c)

0,04 !

Ny(p) = ”0,017]607l + ”o,lpkr2 R (WP 2 [ (3.4.2d)

FO (p) = fo,op%Jrk0 + fO,lpo—OJrkrl +eeet fO,croJrko—lp + fo,cro+k0 (3429)
Then, we have

Dy (p)A4y(p) + Ny (p) B, (p) = Fy(p) (3.4.3)

The subscript “0” is used to indicate the step number in the recursive process
that follows. It is assumed that 4,(p) and B,(p) are right coprime. We shall from now
on refer to the degree of F,(p) as the order of the Diophantine equation (3.4.3).

Our discussion is divided into two parts, a forward algorithm and a backward
algorithm.

3.4.1 Forward Algorithm
We start with noticing that the degrees of the respective polynomials in Eq.

(3.4.1) satisfy the following conditions:

deg[4,(p)] =k, (3.4.4a)
deg[B,(p)]=k,, k, <k, (because of strictly proper plant) (3.4.4b)
deg[D,(p)]=o,, o, =k, —1 (because of proper controller) (3.4.4c)
deg[N,(p)]=k, -1 (3.4.4d)
deg[Fy(p)l=0,+k,—1 (3.4.4e)

These degrees not only ensure a proper controller, but also will yield an equal

number of equations as unknowns as can be seen below.
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Substituting Eq. (3.4.2) into Eq. (3.4.3) and equating terms of like powers in p

yields the following block-triangular matrix equation

| 0 Vu fy
+ ——=|==|=|--
| SZZ VL fL
oo 0
Aoy T a0 o0
Qoo tay, oyt ay,
Aoty T 5y k0 Qooy-i1 T Aoyiy
Aoogtt Topii10 Qoo-ty T Yoyp—iy+11

AQootg+2 TAoypys20  Y0y—tit T Aoypyi21

Ao, T k0
41,0 Ao g, T i1
Q411
Aoty 0 Aoty 1

28

(3.4.5)
0]
(3.4.6a)
0
Qo1+ Ay 4 ot Qo0 |

Ao T g t1,00-k,

Qoo T Qg _t12,00-k,

o S

Aoy vko—ky +l.og—hky

(10_0 +hko,00—k;

(3.4.6b)

Aty ok -1



[ ag, 0 O by, 0 e 0]
gy + aao—k1+2,00—k1+1 “0 by, + 111,0 bo,o_ ' :
Qoo + C_lao—k1+3,0'0—k1+l - oo by, by by, +by, “o 0
: Aoy : ' . by o
: boy | (3.4.6C)
Sy = : :
bO,ki +b, 4 3
Ao, +aao+k0—k1,0'0—k1+l 5 bk1+l,0 bo,k1 +0p 1
L Ay sty ogtysl Aoy, bo,kl(ko_l) e e bo,k1
Vu = [do,o doy - dog ]T (3.4.6d)
- [d e d ]’ (3.4.6e)
Vi 0,00k +1 00, Moo Toys Mok,
fy = [fo,o Joi 0 Jooetr Soon ]T (3.4.6f)
fL = [fo,ao—k1+l f0,607k1+2 t fO,o‘O T fo,gwkrl fOYUOJrk0 ]T (3469)
Theterms @, . and Bjﬂw in Eqg. (3.4.6) will drop out in the time-invariant

case and are defined by

_ _G°7j Co—J | ) —0.1 1 347
aj+i+l,j - Zl: i ;a[ ' J =Yl ”'1(60_ ) ( A a)
7 R ko -1-J & (1) .

bj+i+l,j = Z_l: i ;.:b] ) ] :01 1’ Ty (kl _2) (347b)

Based on the above matrix, one can see that the first (o, —k, +1) coefficients in
D,(p) can be solved by inverting a triangular matrix as

Vu = Sll_l fy (3.4.8)
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Let D,(p) be splitinto a “known” leading part D, (p) whose coefficients are

found by Eqg. (3.4.8) and an “unknown” remaining part D,, (p) which is to be found

later such that

Dy(p) = Dy (p) + Dy, (p) (3.4.9)
where

Dy (p)=dyop”™ +dy, p™ 7+ +dy ., " (3.4.10a)
Dy (p)=dy g 4P +dog 2P H e dy, Py, (3.4.10b)
Substituting Eq. (3.4.10a) into Eqg. (3.3.2) yields

[Dos; (P) + Dy, ()14, (P) + No () By (p) = Fo(p) (3.4.11)
Moving all known parts in Eq. (3.4.11) to the right hand-side gives

Dy, (p) A4y (p)+ No(P) B, (p) = Fo(p) = Doy (P) 4, (P) (3.4.12)
Denote the right hand-side as

F(p) =k io _(lp) - DOIZ Ef_)on (») (3.413)
= froP " H Sl A S 2P Sk

The coefficients of £ (p) can be found by substituting Egs. (3.4.2a), (3.4.3) and

(3.4.10a) into (3.4.13) as
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ﬂ,o fO,O‘O —ky+1
Jia fO,o‘o—k1+2
_fl,ko+kl—1_ i f0,0'0+k0 l
Ao.go—ky+1 T Aoyt 410
Ao.gy-ky+2 T Aoyt 42,0
Aok, T 0
Ay 11,0
L og+ky,0

With Eq. (3.4.13), Eq. (3.4.12) now becomes

Aogo—ty T Aoyt 411

Aooo—ty+1 T Aoy p421

Aok, T A 11

Ap 11

og+ky,1

Dy, (p)4,(p) + Ny (p)B,(p) = F(p)

Substituting the Euclidean algorithm Eqg. (3.3.1) into Eq. (3.4.15) gives

a,, +a

og—ki+l,00—k

) +a

og—ki+2,00-ky

Ao, +a

og+ky—ky 09—k,

A

aoo +ky,00—k,

Dy, (P)Oy(P)B,(p) + Ry (p)]+ Ny (p)B, (p) = F1(p)

Grouping terms containing B,(p) yields

[Do, (P)Os (p) + No(P)1B,(p) + Dy, (P) Ry (p) = F1(P)

Renaming the polynomials as
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4,(p)=B,(p) (3.4.18a)

B,(p)=Ry(p) (3.4.18b)
Dy (p) =Dy, (p)Oo (P) + Ny (p) (3.4.18c)
N, (p) =Dy, (p) (3.4.18d)

gives rise to a new Diophantine equation

D, (p)4 (p)+N,(p)B,(p) = F(p) (3.4.19)

The degrees of the respective polynomials are given by

deg [4,(p)] =k, (3.4.20a)
deg [B,(p)] =k, ky <k, (3.4.20b)
deg [D,(p)] =0, =k, -1 (3.4.20¢)
deg [V, (p)] =k, -1 (3.4.20d))
deg [F,(p)] =k, +k, 1 (3.4.20€)

Notice that they satisfy the same degree requirements as in Eq. (3.4.3).
Consequently, the new Diophantine equation (3.4.19) is of lower order than that of the
original one in Eq. (3.4.3). That is, £ (p) is of lower degree than F;(p), specifically by
(0y—k +1).

Repeating the above order reduction process one more time will yield a third

Diophantine equation:

D,(p)A4,(p)+ N,(p)B,(p)=F,(p) (3.4.21)
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Continuing on with this process to a total number of m +1 steps, where m is the
number of steps in the Euclidean algorithm in Eq. (3.3.2), we will obtain a sequence of

Diophantine equations of successively lower orders as

D;(p)4,(p)+N,(p)B,(p)=F,(p), (3.4.22)
deg[F,(p)l=0, +k, , i=0,1,---,m
where
4,(p)=B,,(p), j=1-m (3.4.23a)
B,(p)=R;.(p), j=Ll-m (3.4.23b)
D_/ (p) = [D_/—l (p) - D(jfl)H (p)]Qj—l (p) + Nj—l (P)

o o1 ) j:]-,"‘,m (3423C)
=d,op’ +d; p” +.”+dj,0'/—lp+d0,0'j
Nj (p)= Dj—l(p) _D(j—l)H ()

k-1 k-2 ) ] =1, ey, M (3423d)
=n,,p’ +n,p’ +--+ Mjg,—2P T oy 1
F,(p)=F,1(p)— D4y (P)4,1(P)

o +k oitk.-1 ) j =1-,m (34238)
:.fj,op it +.fj,1p U T j,aj+kj—1p+f‘j,0',+kj
DiH (p) = di,Opo-i + dinpo',v—l 4o +di,o',-—k,.+lpki+l ’ i= O, 1. m (3423f)

The coefficients of F,(p), j=1,---,m, in Eq. (3.4.23¢) are obtained from
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fj,o fj—l,a/-,l—kj+l
f./ll fjfl,aj,l—ijrZ

_fj,0j+k/ |

_fj—l,aj,i-%—kj,l ]

i1 -k T g k410

Aj 1o, —k+2 T o k420

Ak, Tk 0

Jj-1

Ay, 1410

o 1tk; 1,0

Ajre, -k, T

Ao, k411

Ajro, ka1 T Ao k421

Jk ., Tk

kL1

otk )1

gt Ao k10, -k

a2 Y5 k120, -k,

a

. +a
J-Lk; 4 otk —k; 0, 1-k;

a
otk a—k;+lo; 1—k;

a
ojathj1,0;-k;

(3.4.24)

The coefficients of D, (p), i=0,1,---, m, in Eq. (3.4.23f) are obtained from
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di,()
di,l
i,0;=kiy -1
1,0,k
- ~-1
a, 0 0
Ayt o :
. aill + al’l .
0
| Gioikiy T k0 Piobgt Tokgn 0 Ain ook, Do |
Sio
Jia
X :
f‘ivff,‘_knl_l
L ‘fivff,‘_kwl i
(3.4.25)

The degrees of the respective polynomials in Eq. (3.4.22) are given by

deg [4,(p)]=k, (3.4.26a)
deg [B,(p)]=k,.., ko <k, (3.4.26b)
deg[D;(p)l=0, =k, ;-1 (3.4.26¢)
deg [N, (p)]=k, -1 (3.4.26d)
deg [F,(p)l =k, +k, -1 (3.4.26€)
J=lem

The last Diophantine equation can be solved easily. With i = m ,

deg[B,(p)l=k,., =0, we have
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-1

dm,O am,O 0 O fm,O

S I +ay, . : : (3.4.27)
dm,o’,,, - : am,O O f'm,crm -
nm,O ao‘,”Jrl,O .” .” bm,O fm,o'm+1
3.4.2 Backward Algorithm

Starting with a known pair, D, (p) and N, (p). The objective here is to
determine the original pair, D,(p) and N,(p) . From Egs. (3.4.23d) and (3.4.23f), we
have

D, (p)= Dy (p)+ N, (p) (3.4.28a)

The polynomial N, ,(p) can be solved from Egs. (3.4.23c) and (3.4.23d) as

N,.(p)=D,(p)~N,(p)0,.(p) (3.4.28D)

Continuing on in this way, with the help of Egs. (3.4.23c), (3.4.23d) and

(3.4.23f), we have the following backward recursive formulas:

fol(p)=D(,-71)H(P)+N,-(p), i=1--m (3.4.293)

Ni—l(p) = Di (p) _Ni (p)Qi—l(p)

kgl k-2 , i=1--,m (3.4.29b)
=N40P +1,4.P LI TSNS 2y R

The coefficients of N, ,(p) in Eq. (3.4.29b) are given by
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N0 d,
R d;,
| itk 1 | _di,k,-,l—l_
9i10 0 0
9i11 T 410 910
9i12 t 920 9i11+ 921 i 0
: ) qi10 1o
REEYR + qki,l—k,-,o iap, -kt qk,,rk,,,l “ qi11 Ry
q kiy—k;+1,0 9iap -k T aki,l—kﬁrl,l i 41,
: L ik (3.4.30)
L qk,.,l,o ‘71(,,1,1 ik -k |
where ¢ ’s are the coefficients of Q. ,(p), i.e.
(p)= bk bty + (3.4.31)
O.4(p)=4q,10p 911D Divpy kP T Dia i, A

3.5 Example of Time-Varying Case

Consider a time-varying plant with input « and output y described as a second-

order time-varying differential equation as
[P +3p° +4p+(L+e )]y =(p* +2p+Du

The associated Diophantine equation reads in this case

Dy(p)A4,(p)+ No(p)By(p) = Fy(p)
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where

A, (p)=p +3p° +4p+(L+e™)
By(p)=p*+2p+1

Dy(p)=dyop’ +dy,p* +dy,p+dy,

Ny(p) = ”o,op2 +ny,p+1g,

Placing the closed-loop poles at s = (-1+ j), —1, and the observer poles at
s=-1, s=-2 and s =-3, respectively, leads to

a(p)=(p+1+))(p+1-/)(p+1)

5(p)=(p+D(p+2)(p+3)

Fy(p)=6(p)a(p)

=(p+D(p+2)(p+3)(p+1+ j)(p+1-j)(p+1)

=p®+9p° +33p* +65p° +74p* +46p +12

Appling Euclidean algorithm to 4,(p) and B,(p) yields, according to Eq.

(3.3.2),
O(p)=p+1
Ry(p)=p+e”’
O(p)=p+(2-e)
R(p)=1l-e'+e ™
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The Euclidean algorithm stops here since deg[R,(p)]=0, i.e. m=1 in Eq.

(3.3.2). Next we proceed to reduce the order of the Diophantine equation.
3.5.1 Forward Algorithm

Step O:
Consider Eq. (3.4.25).

With i =0, we can solve for the two leading coefficients of D,(p) as

dyo| [1 0]T1] [1
dy, | |3 1| (9| |6
Then, from Eq. (3.4.23f), D,,, (p) is given by

DOH(p) :P3 +6p2

From Eqgs. (3.4.22) and (3.4.23), with i =1, the following reduced order

Diophantine equation is obtained

D, (p)4 (p)+N,(p)B,(p) = Fi(p) (35.1)
where

A(p)=p*+2p+1

B(p)=p+e’

F(p) = Fy(p) = Doy (P) 4o(P) = fioP" + P + fo2P" + fraP + fra

With the help of Eq. (3.4.13), the coefficients of F;(p) are given by
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fio] [33] [ 4 3
fiu| [5] |1eet 4
Jia |=|T4 |- -3e" 1l+e” }
Jis 46 3e!' —2e' |
Sia] [12] | =€ e’

11
40-¢”
=|68-3e”
49 +9¢™
| 12-5¢™ |

Step 1:

Repeating the above procedure and from Eq. (3.4.23), we solve for the two

leading coefficients in D,(p) as

do| [1 O]T 11 ] [ 1

d.| |2 1| [40-¢"| |18-¢

So that D,(p) will be split into an “known part and an “unknown” part as
Dy, (p)=11p* +(18~e")p

Dy, (p) = d1,2

From Eqgs. (3.4.22) and (3.4.23), with i = 2, the following reduced order

Diophantine equation is obtained

D,(p)4,(p)+N,(p)B,(p) = F,(p) (3.5.2)

Where
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4,(p)=p+e’
B,(p)=1l-e"'+e™

Fy(p) = Fi(p) - Dy, (p) A (p)
=(22—e")p® +(28+10e™) p+(12—5¢7")

Step 2:

Repeating the above procedure and from Eq. (3.4.23), we solve for the two

leading coefficients in D,(p) as

dyo| [1 0] 22-¢" | [ 21-¢"
d,, e’ 1| |28+10e” 28-1le” +e™*

Notice that, in this final step, D,, (p) =0 and

D, (P) =D,y (P)
=(21-e)p+(28-11le” +e )

With known D,(p), N,(p) follows from the Diophantine equation (3.5.2) as

12-12¢7" 410 — ™
l-e”' +e™

N,(p)= Nyo =

3.5.2 Backward Algorithm

With known D,(p) and N,(p), D,(p) and N,(p) can be obtained from Eq.

(3.4.29) with i =2 as
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D,(p) =Dy, (p)+N,(p)
12-12¢ +10e ™ —e™¥
l-e' +e™

=11p*+(18—e)p+

Ni(p)=D,(p)—N,(p)0.(p)
9-10e +12¢7* 4-3¢" +8e7
= —t 2t p + —t -2t
l-e" +e l-e' +e

Similarly, with known D,(p) and N,(p), D,(p) and N,(p) can be obtained

from Eq. (3.4.29) with i =1 as

Do (p) = DOH (p) + Nl(p)
9-10e¢ " +12¢7% .\ 4-3¢" +8e7%

3 2
=p +6p°+ r— ———
l-e'+e? l-e'+e?

No(p)=D,(p)—N.(p)O, ()
2-e¢'—e? , 5-6e'+e e +8—9e”+264t—e4’

= - = P - - p - -
l-e'+e™ l-e' +e™ l-e' +e

which is the solution of our original Diophantine equation.

3.6 Problem of Zero-Crossing

Unlike time-invariant case, time-varying systems will have zero-crossing
problem. Here is an example to demonstrate this problem, and also propose a method to
address this issue. Consider a time-varying plant with input « and output y described as

a second-order time-varying differential equation as
[p? +(20+12sin2t) p +30c0s2t]y = (p +)u

The associated Diophantine equation reads in this case
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Dy(p)A4,(p)+ No(p)By(p) = Fy(p)

where

Ay,(p)= p* + (20 +12sin 2¢) p + 30cos 2¢
By(p)=p+1
D, (p)= do,op2 + dO,lp + do,z

Ny(p)= Noop + 1y,

Placing the closed-loop poles at s = (—1+ ;) and the observer poles at s =-2
and s =-3, respectively, leads to

a(p)=(p+1+ ) (p+1-))

5(p)=(p+2)(p+3)

Fy(p)=6(p)a(p)

=(p+1+ ))(p+1-j)(p+2)(p+3)

=p*+7p* +18p* +22p +12

Appling Euclidean algorithm to 4,(p) and B,(p) yields, according to Eq.

(3.3.2),

0,(p) = p+(12sin2¢ +19)

R,(p) =30cos2r —12sin2¢ -19
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The Euclidean algorithm stops here since deg[R,(p)]=0,i.e. m=0 in Eq.

(3.3.2). Next we proceed to reduce the order of the Diophantine equation.

(a) Forward algorithm
Consider Eq. (3.4.25).

With i =0, we can solve for the two leading coefficients of D,(p) as

dyo| 1 0] 1] 1
do, | |20+12sin(2r) 1| |7| |-13-12sin(20)

Then, from Eq. (3.4.23f), D, (p) is given by
Dy (p) = p* +[-13-12sin(21)]p

From Egs. (3.4.22) and (3.4.23), with i =1, the following reduced order

Diophantine equation is obtained
D,(p)A,(p)+N,(p)B,(p) = F.(p) (3.6.1)
where

A4 (p)=p+1

B,(p)=30co0s2r-12sin 2t -19

Fl(P) =F, (p) =Dy (p)Ao (p)= f1,0P2 + fl,lp "‘fl,z

With the help of Eq. (3.4.13), the coefficients of F;(p) are given by
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fio 18 78cos(2t)  20+12sin(2¢) 1

=|22 |—| —168sin(2¢ 54 cos(2¢
S 20 (20 {—13—123in(21)}
Ji2 12 —120cos(2¢t) —60sin(2¢)

278 —78c0s(2¢) +3965sin(2¢) +144sin(2¢)*
=| 22+702cos(2t) +168sin(2¢) + 324sin(4t)
12[-29 +10cos(2¢) + 30cos(4¢) — 65sin(2¢)]

Repeating the above procedure and from Eq. (3.4.23), we solve for the two

leading coefficients in D,(p) as

dig | 278 —78c0s(2¢) +396sin(2¢) +144sin(21)°
dy, | | 4(-82+195c0s(2t) +18cos(4t) —57sin(2¢) +81sin(4z)

Notice that, in this final step, D,, (p) =0 and

D,(p) = D,, (p) =[278—T78cos(2¢) +396sin(2¢) +144sin(2t)*1p
+ 4(—82+195c0s(2¢) +18cos(4t) —57sin(2¢) + 81sin(4«)

With known D, (p), N,(p) follows from the Diophantine equation (3.6.1) as

_ 4[5+165c0s(2t) — 72cos(4¢) +138sin(2¢) + 81sin(41)]
—19+30cos(2r) —12sin(2¢)

N, (p) = g =

(b) Backward algorithm

With known D, (p), N,(p), D,(p) and N,(p) can be obtained from Eqg.

(3.4.28) with i =0 as
Dy(p) =Dy, (p)+N,(p) = do,op2 +dy,p+d,,

No(p)=D,(p)—N.,(p)Qy(p) =nyop+ny,
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dy, =-13-12sin(2¢)

_ 4[5+165c0s(2¢) — 72 cos(4¢) +138sin(2¢) +81sin(4)]
—19+30cos(2¢) —12sin(2¢)

do,z =

ny o = 6[1927 cos(2t) + 381cos(4¢) — 2(848 + 90 cos(6¢) + 967 sin(2¢)
—561sin(4¢) — 36sin(6¢))]/[-19 + 30cos(2¢) —12sin(2¢)]

ny, =12[1916 — 920 cos(2¢) +15cos(4¢) +90cos(6¢) + 2168sin(2¢)
—345sin(4t) + 225sin(6¢)]/[-19 + 30 cos(2¢) —12sin(2t)]

which is the solution of our original Diophantine equation.

Furthermore, the polynomials »,(p) and =, (p) in the controller structure can be
obtained from Egs. (3.1.15) and (3.4.1) as, respectively,

n,(p)=Dy(p)—-5(p)=rop+n

n,(p)=Ny(p)=PByr+5

where

7, =—18-12sin(2¢)

94 -840cos(2t) + 288cos(4t) —480sin(2t) — 324sin(41)]
A(?)

7

S, =6[1927 cos(2¢) + 381cos(4¢) — 2(848 + 90 cos(6¢) + 967 sin(2¢)
—561sin(4¢) — 36sin(61))]/ A(¢)
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S, =12[1916 — 920 cos(2¢) +15cos(4¢) + 90 cos(6¢) + 2168sin(2¢)
—345sin(4¢) + 225sin(6¢)]/ A(?)

A(t) =-19+30cos(2¢) —12sin(2t)
In order to avoid division by A(z), we can change the equations for the blocks

H, and H  inFigure 1, Egs. (3.1.4) and (3.1.5), to

A DB = (D) (36.22)
ﬁﬂpw(p)wm ()B(p)y (3.6.20)

Since both n,(p) and n (p) contain the factor ﬁ it can be cancelled out on

both sides of the equations (3.6.2a) and (3.6.2b), and thus their implementations would
not create a problem.
With the change introduced in Eq. (3.6.2), it can easily be shown that the closed-

loop system equation becomes (instead of Eqg. (3.1.13))

5(p)a(p)y = ﬁa(mB(p)r (36.3)

To do away with the division by A(z), let the reference input be
r(t) =A@)r () +r,(2) (3.6.4)

Substituting Eq. (3.6.4) into Eq. (3.6.3) yields

a(p)a(p)y=$5(p)3(p)m(r)n(z)+rz 0

=5(p)B(p>q(f)+[g(r)+$a(p)3(p)rz 0

(3.6.5)
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where

g(0) = q(t)[ﬁa(p)B(p)A(r)]

Selecting r,(¢) in such a way that the bracketed term in Eq. (3.6.5) vanishes will

yield the final closed-loop system equation

o(p)a(p)y(t) =o(p)B(p)r (1) (3.6.6)
or
a(p)y(t) = B(p)r(t) (3.6.7)

r,(¢) can be found from the following differential equation

d(p)B(p)r, (1) = -A(1)g (1)

or

o(p)B(p)ry(1) = —n(N[6(1) B(p)A(1)] (3.6.8)
In our example, Eq. (3.6.8) reads

(p° +6p° +11p +6)r, (t) = —r, ()[-114 —1668cos(2¢) +182765sin(21)]
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CHAPTER 4
SETTING UP CANONICAL FORMS FOR LINEAR TIME-VARYING SYSTEMS
FROM A DIFFERENTIAL EQUATION DESCRIPTION
In this chapter, a derivation of the observer and observability canonical forms
starting from a single differential equation description is developed for linear time-
varying systems. Initial condition conversions between the canonical forms and the
differential equation description are given. With the help of the derived canonical
forms, simulations of systems given by linear time-varying differential equations are
greatly facilitated. General formulas for the canonical forms as well as their
corresponding initial condition conversions are given.

4.1 Linear Time-Varying Systems Representations

Consider an nth order linear time-varying differential equation

ag (t)y(n) (1) +a (t)y(nil) () +a, (t)y(”’z) @) +-+a,, (t)y(l) () +a, (t)y(o) (t)

= by (6)u™ () + b, ()" (1) + by (E)u " 2 (£) + -+ b, (E)u® () + b, (1) (¢) @10
, a,(t) =1

where u(f) is the input, y(¢) is the output, the superscript (k), k=0, ... , n,
indicates the kth time-derivative, and q,(¢) and b,(¢),, i=0, ... , n, are continuously

differentiable functions of time. The coefficient g, is assumed to be unity without loss

of generality. This system can be equivalently represented by a state variable

description [29]. (The time argument ¢ is dropped for brevity):
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x = Ax + Bu

4.1.2
y=Cx+ Du ( )

where u and y are scalars, x is an n-vector, a dot represents differentiation with
respect to time, and 4, B, C, D are nxn, nx 1, 1 xn and 1 x 1 matrices, respectively.

To obtain a state variable description of Eq. (4.1.2) from the differential
description of Eq. (4.1.1), we propose here two different derivations. The first
derivation is described in Section 4.2 which generates the “observability” canonical
form. The second derivation described in Section 4.3 leads to the “observer” canonical
form. Initial condition conversions for the two derived canonical forms are treated in

Sections 4.4.

4.2 Observability Canonical Form of Linear Time-Varying Systems

The procedure of setting up the observability form is outlined below:
Rename Eq. (4.1.1) as

Y +aytP rayt+ra, Y +a,y?

42.1
= bo’ou(n) + blvou(nil) + bz’ou(nfz) et bn—l,ou(l) + bn,Ou(O) ( )
where

b, =b;, i=0,1,2, ..., n (4.2.2)

The second subscript “0” in the coefficients 4’s is used to indicate the step

number in the recursive process that follows.

Step 1 : Let the first state variable x, be defined as a linear combination of y and

X, =y—byu (4.2.3a)
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The output equation becomes
Y =X, +byou (4.2.3b)

Substituting y in Eq. (4.2.3b) into Eq. (4.2.1) yields

(n-1) (n-2) @)

(n)
X1 +a1x1 +612X1 +---+an_1x1 +anx1

(4.2.4)
= blylu("’l) +b211u("’2) +t b, u M +b,,u
where the coefficients of «” are given by
Sk+i *) .
byin=b, o= . Miiboo s i=0,1,2, ..., n-1 (4.2.5)
=0\ !

Notice that the order of the highest derivative of « in Eq. (4.2.4) is reduced to n-

1.
Step 2 : Assigning the second state variable x, as
x, =x" —bu (4.2.6a)
leads to the state variable equation
xP =x, +bu (4.2.6b)
Substituting all the derivatives of x, in Eq. (4.2.4) with the help of Eq. (4.2.6b)
gives rise to
"V rax,"? +va iy, (4.2.7)
=-a,x + [bzvzu(”’z) .- +bn7112u(1) +b, ,ul
where the coefficients of »“ are given by
b.,=b ., —nf[k:i}n_l_,_kblj“ L i=0,1,2, ..., 2. (4.2.8)
k=0
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Notice that the order of the differential equation (4.2.7) is further reduced by

one.
Step 3 : Assign the third state variable x, as
xy = x5 —b, ,u (4.2.93)
Then, the state variable equation for x, becomes
X = x, +b, ,u (4.2.9b)
Substituting all the derivatives of x, in Eq. (4.2.7) with the help of Eq. (4.2.9b)
results in
xs("_z) + alxg("_a) ot a, X, (4.2.10)
=[-a,.x, —a,x ]+ [y u" > +-+b,_ u® +b, u]

where the coefficient of ) are given by

"k +i " ,
b, i3=b, >~ Z M, oiby, s i=0,1, ., -3 (4.2.11)
k=0 l

Step 4 : Continue on with the above procedure until the nth state variable x, is
reached and is defined as

_ (3]
xn - xn—l - bn—l,n—lu

(4.2.12)
Then, the following equation is obtained (similar to Egs. (4.2.7) and (4.2.10)):

®
X, +tax,

(4.2.13)
= [_aZ‘xn—l - a3xn—2 -t an—2x3 - an—1x2 - anxl] + bn,nu

Step 5 : Collecting Egs. (4.2.3b), (4.2.6b), (4.2.9b) on up to (4.2.13) yields the

state variable description in the “observability” form.
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X, 0 1 0 0 [ x 11
X, 0 0 1 . : X, 22
N P U 0 N (NI S R, (4.2.143)
xn—l 0 O U 0 1 xn—l bnfl,nfl
L xn _ __ an - an—l T aZ - al_ L ‘xn _ L bn,n i
Yy =x;+byou (4.2.14b)
Lik+n—-v )
where b, , =b, ;- wibos v=1,2,...,n (4.2.15)
’ ' =0\ N~V '

in which the general formula for the coefficients s are given by

sk +i “
byija=b, iy = 2 ( ; Jan,-,-kb,-,,- (4.2.16)

k=0
j=0,1,...,n-landi=0,1,...,ny-1
The realization block diagram for Eq. (4.2.14) is shown in Figure 4.1, which is

exactly the same structure as in the linear time invariant case.

3

Figure 4.1. Observability canonical form
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4.3 Observer Canonical Form of Linear Time-Varying Systems

The procedure of setting up the observer form is as follows:

Rename Eq. (4.1.1) as

(n) (n-1) (n-2) @ (0)
Y ra v vay y T et a, 0y +a,,y

(4.3.1)
= boyou(") +b110u("’1) +b2vou("’2) + ---+bn71'0u(1) +bn,o”(0)
where
a,,=a,, i=0,1,2,....,n (4.3.2a)
b, =b,, i=0,1,2, ..., n. (4.3.2b)

The second subscript “0” in the coefficients a’s and 4’s is used to indicate the

step number in the recursive process that follows.
Step 1 : Let the first state variable x, be defined as
X, =y —byou (4.3.33)
The output equation becomes
Yy =x;+byou (4.3.3b)

Differentiating Eq. (4.3.3b) » times yields

y =x"+) " oot u® (4.3.4)
ico\k

Substituting ™ in Eq. (4.3.4) into Eq. (4.3.1) yields

n

n-1 n n
(n) _ (k) (n—k)_ (k) (k)
X = _zan—k,oy _Z(k byy U +zbn—k,0u
k=0 k=0

k=0

) ) (4.3.5)
= _Z an—k,ly(k) + an—k,lu ©
k=0 k=0
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where the coefficients of y* and »* are given by

an—k,l = an—k,O _(Zjao,o(nk) ' k = Ol 1| 2| ey n_l (4.3.63.)
bn—k,l = bn—k,O _(ZJb0,0(n_k) ’ k = Ol 11 2) ey }’l'l (436b)

Notice that the orders of the derivatives of y and u in Eq. (4.3.5) are reduced by

one in comparison to Eq. (4.3.1), respectively. Rewrite Eq. (4.3.5) as

n-2

n—2
xl(n) = _al,ly(nil) +b1,1”(’171) - zan—k,ly(k) + zbn—k,lu(k) (4.3.7)
k=0 k=0

Consider the first two R.H.S. terms of Eq. (4.3.7), —a,,»“ Y and b,,u"™" . They

can be rewritten as

n-2 n_l i
—a,y"™ =(—a1,ly)‘"‘l’+2( i jan‘ 15, (4.3.8a)
k=0
by D = (n-1) G(n-1) ®) b
FAREICFIEREDY L P (4.3.8h)
k=0

Eliminating —a,,»"™ and b,,u"™ from Egs. (4.3.7) and (4.3.8) yields

X" = (_al,ly)(n_l) + (b1,1”)(n_1)
n-2 n—2 n—2 _1 n—2 _1
+ [_Z an—k,ly(k) + zbn—k,lu © 4 2[’1 Jal,l(nlk)y(k) - 2[’1 Jbl,l(”lk)“(k)]
k=0 k=0 i\ k i\ k
(4.3.9)
Let the square bracketed term on the R.H.S. of Eq. (4.3.9) be defined as the (n-

1)th derivative of the second state variable x, , i.e.
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K n=1) ang w8 n=1\ uan w
X, = _Z[an—k,l - k a Iy +Z[bn7k,l - K o Ju
L ,2 - (4.3.10)
= _Z[anfk,Z]y(k) + Z[bn—k,Z]u ®)
k=0 k=0
where the coefficients of y* and »® are given by
-1
4y r=a, —(”k )alvl("_l_k) , k=0,1,2, ..., n2 (4.3.11a)
b ., =b =L, o k=0,1,2 2 4.3.11b
k2 = On-k1 Pt ) -Y L4 0 (4.3.11b)

Notice that the orders of derivatives of y and u in Eq. (4.3.10) are further
reduced by one, respectively.

Then, Eq. (4.3.9) becomes
x" = (—ay, )" + (b)Y + x, " (4.3.12)

On integrating Eq. (4.3.12) n-1 times under zero initial conditions, we obtain the
state differential equation for the first state variable

x® =—a,y+bu+x, (4.3.13a)

Substituting for y from Eq. (4.3.3b) yields

X = —ay, Xy + (=aybo g + by u +x, (4.3.13b)

Step 2 : Rewrite Eq. (4.3.10) as
1 2 2 < k < k
xéni) = _az,zy(ni ) +b2,2”(n7 ) _Z[an—k,z]y( ) +Z[bn—k,2]u( ) (4.3.14)
k=0 k=0

Consider the first two R.H.S. terms of Eq. (4.3.14), —a,,y" 2 and b, ,u"?.

They can be rewritten as
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k=0

- n—3 n_2 2
~a,,9"7 = (=a,,7)" 2’+Z( ) ]az; 24,6 (4.3.15a)

n—3 _ 2
by 1" = (by )" —Z(" L Jbz,z‘”“)u(") (4.3.15D)
k=0

Eliminating —a,,»" and b, ,u"""? from Egs. (4.3.14) and (4.3.15) yields

(n V= =(- a,, 2)’)(” ? +(b “)(n ?

i z ) "3b w [ 2 ) w_ ("2 w2 m
an k2y +Z n— kzu +Z Yy z k 2,2 u ]

k=0
(4.3.16)
Let the square bracketed term from the R.H.S. of Eq. (4.3.16) be defined as the

(n-2)th derivative of the third state variable x,, i.e.

n—2 o =3 n—2 2
(n ? :_Z[an k.2 ( Jaz,z( i k)]y(k) +Z[bn—k,2 _( k ]bz,z( ’ k)]“(k)
k=0

= _Z [anfk,3]y(k) + Z[bn—kﬁ]u(k)
k=0 k=0

(4.3.17)
where the coefficients of y* and »® are given by
_2
4y 3%a, ,, —(" L jazyz("‘“) , k=0,1,2, ..., n-3 (4.3.18a)
b . =b ["_Zjb (r=2-6) k=0,1,2 3 4.3.18b
k3 = On-k2 k 2.2 : =0,142, ...,n- (4.3.18h)

Again, the order of derivatives of y and u in Eq. (4.3.17) are further reduced by
one, respectively.

Eq. (4.3.16) becomes
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x = (—azvzy)("’z) + (bzvzu)(”’z) + x3("72) (4.3.19)

Integrating Eq. (4.3.19) n-2 times leads to

x$ =—a,,y+b,,u+x, (4.3.20a)

Utilizing Eq. (4.3.3b) yields the second state differential equation:

X =—a, ,x, +(=a,,by o + by, )u + X, (4.3.20b)

Step 3 : Continue on with the same process as in Steps 1 and 2 until the
derivative of the (n-1)th state variable x, , is reached (in a pattern similar to Egs.
(4.3.12) and (4.3.19))

P =(a, ., + (b, 1, )" +x,7 (4.3.21)

Integrating Eq. (4.3.21) and utilizing Eq. (4.3.3b) results in

xO =—a, x4 (=a, ., by + b, Ut X, (4.3.22)

Then, the last state variable equation is obtained as

x® =—a, x +(-a,,by,+b,,)u (4.3.23)

Step 4 : Collecting Egs. (4.3.3b), (4.3.13b), (4.3.20b) on up to (4.3.23) yields the

sought-after state variable description in the “observer” form.

X —ay, 10 0l x, —ay by +byy
X, —a, 01 | X =0, 5b0 +by,
N L0 of : |+ : u  (4.3.24a)
xn—l - an—l,n—l O - . - : 1 xn—l - an—l,n—lb0,0 + bn—l,n—l
L~ n | L _a”x” O O O__ xn ] L _an,nb0,0 +bn,n i
y=x+ bo,ou (4.3.24b)
where
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-v+1
a,, :awl—(”n_v javl,vl(”, v=1,2, ., n (4.3.25a)

n-v+1

bv,v = bv,v—l _[ Jbv—l,v—l(l) ) V= 1; 2; - (4325b)

n—v

in which the general formulas for the coefficients a’s and »’s are given by

an—k,j+l = an—k,j - (n ; ]]aj,j(n_j_k) (4326a)

n-— .] n—j—
by jir=bu; —( i ]b,,,( e (4.3.26b)

j=0,1,...,n-1andk=0,1, ..., no-1

The realization block diagram of Eq. (4.3.24) is shown in Figure 4.2. , which is

exactly the same structure as in the linear time invariant case.

—4a —d;, -4y,

na

" T T

Figure 4.2. Observer canonical form
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4.4 Initial Condition Conversion

4.4.1 Initial condition conversion for observability canonical form

The objective here is to set up the equation

y—Ox+Tu (4.4.0)
where

y=0ly »® - YT (4.4.2a)
x=[x, x, -~ xI (4.4.2b)
w=u u® . uoOY (4.4.2¢)

The matrices O and T are both nxn. In the time-invariant case, O is the
observability matrix and T is the Toeplitz matrix [1]. To begin with, we differentiate

Eq. (4.2.14b) repeatedly to obtain, with the help of Eq. (4.2.14a),

v =x0 +[by qul? = x, + by u+[byu]® (4.4.39)
y@ =xP+ [bl,lu](l) + [bo,o”](Z) =Xy +byu+ [bl,lu](l) + [bo,o”](Z) (4.4.3b)
¥ =x{) +[byu]™ +[byyu]® + [bg gu]® (4.4.3c)
=X, +byu+ [bzvzu](l) + [blvlu](z) + [bo,ou](‘o’)
‘ i-1
y(l_l) =x; + z[bi—l—k,i—l—ku](k) (4.4.3d)
=0
n-1
y(nil) =X, + Z[bn—l—k,n—l—ku](k) (443e)
k=0
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Using binomial expansion for the derivatives of a product, Eqg. (4.4.3d) can be

rewritten as

i—1

A (kY . .
y(lil) = xi +ZZ( 'jbi(jl)k,ilku(kj) 1 i: 1’ 2’ .

J

k=0 j=0

which can further be simplified to

1 (i—j—k) -1
y(l ) _'xi § ( jkak = M(J )

io\i—J—k
i=1,2,...,nand =12, ...,i

EqQ. (4.4.5) can be arranged in matrix form as

y 017 O v Oy O,
() .
y 0,1 0O, 0,5,
(n-2)
! On—l,l On—l,n—l On—l,n
(n-1)
_y ! _ L On,l On,Z On,nfl On,n L
by b, = b, b, u
" (€Y]
ha I . Lyn u
Lo . . . .
: . (n-2)
tn—l,l ° ° tn—l,n—l tn—l,n u !
(n-1)
L tn,l tn,Z tn,n—l tn,n __u ! a
where
0, i#
0, J 1 =
0 , i<
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Setting =0 and noting that «(0)=u®(0)=---=u""(0)=0 yields the initial

condition conversion

[ y@©) 1 [1 0 0 - O] x,(0) ]
y®(0) 01 0 - 0f x,(0)
yO=| © |=[f f it 1=0(0)x(0) (4.4.8)
y™ 2@ |0 0 0 1 0fx,,(0)
y"P©)] [0 0 - 0 1] x,(0) |
Remarks :

(@ Matrix O(0) is the identity matrix, which is the same as in the linear
time-invariant case.
(b) For implementation, the initial conditions of x(0) can be injected at the

outputs of the integrators as shown in Figure 4.3.

—d

Figure 4.3. Observability canonical form with initial condition
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4.4.2 Initial condition conversion for observer canonical form

Differentiating Eq. (4.3.24b) once gives

yO =x0 +[by u]® (4.4.9)

Substituting for x® from the state differential equation (4.3.24a) yields

y® = —ay, %, + X, +[—ay,by o + boyo(l) +byyJu+ bovou(l) (4.4.10)

Differentiate Eq. (4.4.10) one more time and substituting for x{" from Eq.
(4.3.24a) gives

@
y(z) = [_al,lxl](l) + xél) +{[~a,,b0 + by +b1,1]“}(1) + [bo,ou(l)](l)

_ 2 (€]
= [al,l —dy

2 () (€] (€} (2)
+ [al,l Do —@u1byy +a,,000 by, +ayy by by by, Ju

+[~ay1Dg o +byy + 2by oV Ju® + by gu?

—a,,]x —ay,x, + X, (4.4.11)

Continue on in this fashion, the (i-1)th derivative, % | can be formed as

y(ifl) _ Z 0,,%, + Z tl.’ju(H) (4.4.12)
~ ~

i=1,2,...,nand;j=1,2, ...,i
where

0 , I<]j
1 , Q=]

A = 4.4.13a
I 0,4, —Zoi_lvkak’k , 1=2,3,--,n,and j=1 ( )
k=1

04,104, , 1=2,3,--,n,and j=2,3,---,i-1
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0 y 1<
bo,o , =]
t..=<. -1
A A +20H’k (=a, boo+b.y) » i=2,3,-,n,and j=1
k=1
figjttinia , =23, n,and j=2,3,---,i—1
(4.4.13b)
and a,, and b, , are given by Eq. (4.3.25).
Setting =0 and noting that «(0)=u®(0)=---=u""(0)=0 yields the initial
condition conversion
Cyo) ][ 1 0 0 0 x,(0) |
y(l) 0) 0,,(0) 1 0 0] x,(0)
. "~ ) ) ) ) : 4.4.14
y(0) = : = : . . . : : =0(0)x(0) ( )
y(n_Z) (0) On11 (0) 1 0 Xna 0)
_y(n_l) (O)_ L On,l(o) On2 (O) On,n—l(o) l__ X, (O) ]

where o, ;are defined in Eq. (4.4.13a).

Remarks :

(a) Notice that matrix O(0) is always invertible. It reduces to the well-
known observability matrix of the “observer” form in the linear time-invariant case
[1].

(b) The initial conditions of x(0) can be injected at the outputs of the

integrators as shown in Figure 4.4.
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x, (0

Figure 4.4. Observer canonical form with initial condition
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CHAPTER 5

CASE STUDY

In this Chapter, the methods which were introduced before will be simulated in
MATLAB - including Diophantine equation order reduction, pole-placement with
combined observer-controller and two canonical forms. Since there is no general
systematic approach for LTV systems, for the purpose of comparison, a second-order
nonlinear system plant is selected for demonstration of simulations. In Section 5.1, the
design procedures of pole-placement with combined observer-controller design will be
demonstrated with the help of Diophantine equation order reduction and canonical
forms of observability and observer. Then, the design procedures from existing well-
known methods: input-state feedback linearization and input-output feedback
linearization will be applied to the same plant in Section 5.2 and 5.3, respectively. All
simulation results from Simulink in MATLAB are shown in Section 5.4.

5.1 Pole-Placement with Combined Observer-Controller

Consider a second-order nonlinear system plant (in p.213 in [35]) having state-

variable equations:
X, =—2x, +x, +Sinx, (5.1.13)

X, = —Xx, COS X, + u C0S(2x,) (5.1.1b)
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For describing this plant in a single differential equation in Eq. (3.1.1), let
X, =y (5.1.2a)
X, =y+2y-siny, (5.1.2b)

and its corresponding differential equation can be derived as follows:

j}+2y+(2005y—w)y:cos(2y)u (5.1.3)
Y

Comparing with Eq. (4.1.1), all of the coefficients can be found as

a, =1 (5.1.4a)

a, =2 (5.1.4b)

a, =2C0Sy _Sycosy (5.1.4c)
Y

b, =0 (5.1.4d)

b =0 (5.1.4e)

b, =cos(2y) (5.1.41)

Notice that the convention of subscripts in the coefficients «’s and b’s are
different between Eq. (3.1.1) and Eq. (4.1.1). This is caused by the difference in degree
requirements. The convention in Eq. (4.1.1) is adopted here for demonstrating the

simulation.
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Placing the closed-loop poles at s = (-1+ j), and the observer poles at s =-2
and s =-3, respectively, leads a(p), o(p) and F(p)in Eq. (3.1.15c) to

a(p)=(p+1+j)(p+1-))

5(p)=(p+2)(p+3)

F(p) =d(p)a(p)

=(p+2)(p+3)(p+1+ )(p+1-))

=p' +7p®+18p* +22p +12

Referencing Eq. (3.4.5), the Diophantine equation can be written in matrix form

as
[ q, 0 0 0 Oof 1 | [1]
a, a, 0 0 O|5+y,
2a, +a, a, a, 0 O0|6+y, |=|18
da,+2a, a,+a, a b, 0| fB, 22
4, a, a, b, b B | |12]

Applying Diophantine equation order reduction, the unknowns y,, 7,, £, and

S, will be solved as
7o =0
N=2-a
Py =0@0-24, —5a, -2y,)1b,

B =012-d,-5a,—6a, —a,y, _61ﬁ1)/b2
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5.1.1 Design Procedure for Observability Canonical Form

There are three blocks: plant, /#, and H , in Figure 3.1. Each block has its own

input and output. The new state variables for each block can be generated by setting up
Observability canonical form as described in Chapter 4.

5.1.1.1 Setting up Observability Canonical Form for the Plant

According to Eq. (3.1.1), the differential equation of the plant is

V+a,y+a,y=>bu

Let y= X1 ptam bou = X1 plant

The state variables in observability canonical form associated to the plant can be
found with the help of Eq. (4.2.14),

‘xl_ plant = x2_p/cmt (5 l 5a)
x2_planl = _a2xl_ plant — alx2_plant + qu (5 15b)

When assigning y(0)=0.5 and y(0)=0.0 the initial values of x, and

plant
X, e 1N EQ. (5.1.5) can be found as

X1 plant (0)=y(0)=0.5

X2_ ptan(0) = %1_ 110 (0) = (0) = 0.0

5.1.1.2 Setting up Observability Canonical Form for H

From Eq. (3.1.4), the differential equation of H, is
b,

\'z'+(2bﬂ+5)\>+(—+%+6)v=y2u

2 2 2
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To find the state variables in observability canonical form associated to H ,
firstlet v=x, ,, +byu=x, ,, . Applying Eq. (4.2.14) yields

xl_Hu = 'x2_Hu

xZ_Hu = _(b_2+ 5b2 + 6)xl_Hu - (&_‘_S)xZ_Hu + 72“
b2 b2

2

5.1.1.3 Setting up Observability Canonical Form for H

From Eq. (3.1.5), the differential equation of # | is

v'{H—(g)iJrS)viw(1—92—+g)i+6)w=/)’1)';+(ﬂlb2
bZ 2 bZ bZ

+ )y

To find the state variables in observability canonical form associated to # , let
w=x, , - Applying Eg. (4.2.14) leads to

)'cl_Hy =X, u + By

. b, 5b 2b b . 2b
Xo gy = _(b_2 + b_2 + 6)xl_Hy - (b_2 + 5)x2_Hy + [(ﬂ[; 2+ Bo)— B — (b_2 +5)4 1y
2 2 2 2 2

5.1.1.4 Setting up Observability Canonical Form for Equivalent Overall System

From Eq. (3.1.14), the differential equation of the equivalent overall system is

V+2y+2=>b,r

To find the state variables in observability canonical form associated to the
equivalent overall system, let y = x,_, . Applying Eq. (4.2.14) results in
xl_equ = x2_equ
xZ_equ = _2xl_equ - 2'x2_equ +b27/
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The initial values are
xl_equ (0) = y(o) = 05

xZ_equ (0) = ).Cl_equ (0) = y(O) = O

5.1.2 Design Procedure for Observer Canonical Form

The state variables for plant, H#, and A will be discussed in the following

three sections. Also, the state variables in equivalent overall combined observer-
controller is discussed in Section 5.1.2.4.
5.1.2.1 Setting up Observer Canonical Form for the Plant
According to Eq. (3.1.1), the differential equation of the plant is
V+a,y+a,y=>bu
Let y= X1 ptamt byu = X1 plant

The state variables in observer canonical form associated to the plant can be

found, with the help of Eq. (4.3.24), as
X1 ptant = =Xy i F X5t (5.1.6a)
X2 ptant = 2%y pjan + Dol (5.1.6b)
When assigning y(0)=0.5 and y(0)=0.0 the initial values of x, , . in Eq.
(5.1.6a) can be found as
X1 plant 0)=y(0)=0.5
Knowing y(0) =%, ., (0)=-a,x; .., (0)+x, ,,,(0)=0 leadsto

xZ_plant (O) = 10
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5.1.2.2 Setting up Observer Canonical Form for H,
From Eq. (3.1.4), the differential equation of A, is

ii+(%+5)\>+(b—2+5bﬁ+6)v=y2u

2 2 2

To find the state variables in observer canonical form associated to H , first let
V=X, +hou=x, 4, . Applying Eq. (4.3.24) yields

. 2b
X1 = _(_2+5)xl_1-[u X 1
b,
. b, 5b, 2b, v
X =]=+—=+6-(—=+5)"]x; ,, +7,u
2_ Hu [b2 b, (b2 ) ]1_Hu Va2

5.1.2.3 Setting up Observer Canonical Form for H |
From Eq. (3.1.5), the differential equation of # | is
b, )

v'{/+(2bﬁ+5)w+(—+Sbﬁ+6)w:ﬁljz+('81b2

2 2 2 b2

+5,)y

To find the state variables in observer canonical form associated to H, let
w=x, , - Applying Eq. (4.3.24) leads to

: 2b
X gy = _(b_z + 5)xl_Hy X gyt By
p

: b, 5b 2b b .
Xo my = _[(_2 +—=+ 6) - (_2+ 5) ® ]‘xl_Hy + (L + 182 - ﬁl)y
b, b, b, b,

5.1.2.4 Setting up Observer Canonical Form for Equivalent Overall System

From Eq. (3.1.14), the differential equation of the equivalent overall system is
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V+2y+2=>b,r
To find the state variables in observer canonical form associated to the

equivalent overall system, let y = x,_, . Applying Eq. (4.3.24) results in

xl_equ = _alxl_equ + x2_ = _2xl_equ + xZ_equ

equ

Xy eu = —2x1_equ +b,y

The initial values are

% 00u(0) = $(0) =05

Xp_equ(0) =%;_o,, (0)+2x,_,,,(0)=1.0

5.2 Input-State Feedback Linearization

Choosing new states from Eq. (5.1.1), with the method of input-state, produces

=X

z, = —=2x; +x, +sin(x,)

Their derivatives are

Z1=X =2

z,=—2z,—2z,€05(z,) +Sin(z,)cos(z,) +ucos(2z,)
=-2z,+v

respectively, where

v =-2z,€08(z,) +5sin(z,)cos(z,) +ucos(2z,)

Computing the state transformation yields
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HEENEN

For the purpose of comparison, we can apply the same initial condition and
place the poles as indicated in the Section 5.1.1.1 and 5.1.2.1. The poles are placed at

s =(=1% j). The initial condition of x;, and x, can be derived from Egs. (5.1.2a) and

(5.1.2b) with =0 as

xl_input—state (0) = y(O) =0.5
(0) = 7(0) + 2)(0) —sin(y(0)) = 0.5205744614

x2 _ input—state

5.3 Input-Output Feedback Linearization

Considering the state variables in Eqg. (5.1.1), we have the choice of

diffeomorphism such that
y=x (5.3.1a)
y=Xx =-2x +x,+sinx; (5.3.1b)

y =%, =—-2x, —x, C0S(x,) +u C0S(2x, ) + X, COS(x,) (5.3.1¢c)

=V
Using the concept of state-feedback linearization, we choose

1
u=
cos(2x;,)

[v+2x, + x, cos(x,) — x, cos(x,)]

v=-2y—2y when place poles at s = (-1 })
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Assigning the same initial condition in Sections 5.1.1.1 and 5.1.2.1, that is

»(0)=0.5 and y»(0)=0. The initial condition of x, and x, can be found in Egs.

(5.3.1a) and (5.3.1b) with =0 as
xl_input—output (0) = y(O) = 05
X3 imput—ouput (0) = 0.5205744614

5.4 Simulations

Figure 5.1 to 5.20 show the signal waveforms of the simulation of the four
methods. Zero input is applied to all simulation cases. The simulation case and their

results for this example are summarized in table 5.1.

Table 5.1 Simulation cases for example in Section 5.1

Method Initial condition Simulation plots
Figure 5.1
Figure 5.2
Pole-placement using | 1_pian (0) = 1(0) =0.5 Figure 5.3
Observability form X i (0)=(0)=0 Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
(0)= y(0)=05 Figure 5.8
X1_ plant =y =V -
Pole-placement using '1(_0,;)1 _0 Figure 5.9
Observer form Y Figure 5.10
x2 plant (O) = 10 <
- Figure 5.11
Figure 5.12
Input-state x,(0)=y(0)=0.5 Figure 5.16
Input-output x,(0) = 0.5205744614 Figure 5.17
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Figure 5.1 to 5.4 show the results from combined observer-controller in
observability form including the states in all sub block diagrams. The output response
from the equivalent overall system in observability form is plotted in Figure 5.5. Figure
5.6 shows the difference of output responses between observability form and the

equivalent overall system. The difference is caused by the transient signal £(¢) as

indicated in Eq. (3.1.14).

Figure 5.7 to 5.10 illustrate the results from combined observer-controller in
observer form including the states in all sub block diagrams. The output response of the
equivalent overall system in observer form is shown in Figure 5.11. Figure 5.12 shows
the difference of output responses between observer form and the equivalent overall

system which is produced by the transient signal £(¢) as indicated in Eq. (3.1.14).

Figure 5.13 shows the output responses of observability and observer are identical.
Figure 5.15 shows the difference of output responses from two equivalent overall
systems. It is zero as expected.

The signal waveforms from input-state and input-output are plotted in Figure
5.16 and 5.17, respectively. The comparisons of combined observer-controller in two
forms, input-state and input-output are shown in from Figure 5.18 to 5.20. The
difference of output responses among equivalent overall system, input-state and output-

state are zero in Figure 5.20 since they have same pole locations and initial conditions.
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Figure 5.1. The zero input responses of the combined observer-controller in
observability form with initial conditions: y
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Figure 5.8. The zero input responses of the plant state variables in combined observer-

controller in observer form with initial conditions: x,
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Figure 5.15. The differences of responses between the two equivalent overall combined
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observer-controller systems with initial conditions: y(0)
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Figure 5.16. The responses of the closed-loop control system using input-state method
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Figure 5.17. The responses of the closed-loop control system using input-output method
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Figure 5.18. The signal responses of the inputs « from four methods: combined
observer-controller in observability and observer forms, input-state and input-output
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Figure 5.19. The output responses from four methods: combined observer-controller in

observability and observer forms, input-state and input-output
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CHAPTER 6

CONCLUSION

A new recursive method to reduce the order of Diophantine equation is
presented. In this method, only inversions of triangular matrices are involved. A
numerical example is given to illustrate the method. Though this approach does not
necessarily offer a computational advantage over the traditional Sylvester matrix
approach, it opens up a possibility of solving a multivariable Diophantine equation in a
systematic manner and involving only the inversion of block triangular matrices.

The setting up of state-variable description for linear time-varying single-input
single-output systems from an input-output description is also considered. The
derivation of two canonical forms, the observer and the observability canonical forms,
are presented. Formulas for the associated initial condition conversion are given. Block
diagrams for the realization of the state-variable description are the same as those of the

linear time-invariant case, except that the coefficients are time-varying.
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APPENDIX A

SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER WITH
OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX B

SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX C

SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX D

SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX E

SIMULINK DIAGRAM OF EQUIVALENT OVERALL COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX F

SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER WITH
OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX G

SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX H

SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX |

SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIXJ

SIMULINK DIAGRAM OF EQUIVALENT OVERALL COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX K

SIMULINK DIAGRAM OF INPUT-STATE LINEARIZATION IN SECTION 5.2
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APPENDIX L

SIMULINK DIAGRAM OF SUBSYSTEM OF INPUT-STATE LINEARIZATION IN
SECTION 5.2
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APPENDIX M

SIMULINK DIAGRAM OF INPUT-OUTPUT LINEARIZATION IN SECTION 5.3
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