
TIME-VARYING FEEDBACK SYSTEMS DESIGN VIA DIOPHANTINE

EQUATION ORDER REDUCTION

by

SHR-HUA WU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2007

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and deepest appreciation to my

supervising professor, Dr. Kai-Shing Yeung, for his enthusiastic guidance and

assistance throughout my doctoral degree studies. My success in this Ph.D. program is

largely due to his time, encouragement, patience and practical insights. I would also like

to thank each member of the dissertation committee, Dr. Raymond R. Shoults, Dr. Wei-

Jen Lee, Dr. Chien-Pai Han and Dr. William E. Dillon for allocating their precious time

in participating in my comprehensive Ph.D. defense examination.

As an engineer of Research In Motion, I would also like to thank the director of

GPRS Firmware, Mike Doub for his administrative help and encouragement.

Furthermore, I would like to share this degree with my father. He always

believes me in doing everything great. Special appreciations go to my mother and my

brother for their love, consideration and everything during my doctoral degree studies.

Finally, I would like to express my most profound love and appreciation to my

dearest wife, Hui-Chun Yang, my son, David Wu, and my daughter, Jessie Wu for their

loves, patience, understandings and full supports. Without them, I won’t be able to

complete my doctoral program in thirteen and a half years. I am grateful to be able to

dedicate this dissertation to all of them.

September 28, 2007

 ii

ABSTRACT

TIME-VARYING FEEDBACK SYSTEMS DESIGN VIA DIOPHANTINE

EQUATION ORDER REDUCTION

Publication No. ______

Shr-Hua Wu, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Kai-Shing Yeung

Diophantine equation plays an important role in the design and synthesis of

feedback compensators. Many methods have been developed to solve the Diophantine

equation. This dissertation develops a new systematic approach of solving a linear time-

varying Diophantine equation. This approach is based upon successively reducing the

order of the Diophantine equation by Euclidean algorithm. Euclidean algorithm for

solving for both time-invariant and time-varying Diophantine equations for directly

determining both the quotient and the remainder associated with the division of one

polynomial by another is presented. The coprimeness (right or left) of two Polynomial

Differential Operators is needed to guarantee, in general, the existence of solutions of

the respective Diophantine equation. The illustrative examples are given.

 iii

This dissertation also develops a procedure of setting up canonical forms for

linear time-varying, single-input single-output systems. The starting point is a

differential equation description of the system. Two canonical forms are considered:

observability and observer forms. Initial condition conversions between the canonical

forms and the differential equation description are also derived.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... ix

LIST OF TABLES... xii

Chapter

 1. INTRODUCTION ... 1

 1.1 Review of Diophantine Equation... 1

 1.2 Review of Euclidean Algorithm .. 2

 1.3 Review of Canonical Form.. 3

 1.4 Outline ... 4

 2. DIOPHANTINE EQUATION ORDER REDUCTION
 USING EUCLIDEAN ALGORITHM .. 6

 2.1 Pole-Placement Feedback Design.. 6

 2.2 Euclidean Algorithm.. 7

 2.3 Order Reduction of Diophantine Equation .. 8

 2.4 Example of Time-Invariant Case .. 15

 2.4.1 Forward Algorithm .. 16

 2.4.2 Backward Algorithm .. 18

 v

 3. ORDER REDUCTION OF TIME-VARYING DIOPHANTINE
 EQUATION USING EUCLIDEAN ALGORITHM..................................... 19

 3.1 Time-Varying Pole-Placement Feedback Design.................................... 19

 3.2 Time-Varying Division Algorithm.. 23

 3.3 Time-Varying Euclidean Algorithm.. 25

 3.4 Order Reduction of Time-Varying Diophantine Equation 26

 3.4.1 Forward Algorithm .. 27

 3.4.2 Backward Algorithm .. 36

 3.5 Example of Time-Varying Case .. 37

 3.5.1 Forward Algorithm .. 39

 3.5.2 Backward Algorithm .. 41

 3.6 Problem of Zero-Crossing ... 42

 4. SETTING UP CANONICAL FORMS FOR LINEAR
 TIME-VARYING SYSTEMS FROM A DIFFERENTIAL
 EQUATION DESCRIPTION... 49

 4.1 Linear Time-Varying Systems Representations 49

 4.2 Observability Canonical Form of Linear Time-Varying Systems........... 50

 4.3 Observer Canonical Form of Linear Time-Varying Systems.................. 54

 4.4 Initial Condition Conversion ... 60

 4.4.1 Initial condition conversion for observability canonical form. 60

 4.4.2 Initial condition conversion for observer canonical form........ 63

 5. CASE STUDY... 66

 5.1 Pole-Placement with Combined Observer-Controller 66

 vi

 5.1.1 Design Procedure for Observability Canonical Form 69

 5.1.2 Design Procedure for Observer Canonical Form...................... 71

 5.2 Input-State Feedback Linearization... 73

 5.3 Input-Output Feedback Linearization.. 74

 5.4 Simulations .. 75

 6. CONCLUSION ... 97

Appendix

 A. SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER

WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1 98

 B. SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED

OBSERVER-CONTROLLER WITH OBSERVABILITY CANONICAL
FORM IN SECTION 5.1.1.. 100

 C. SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED

OBSERVER-CONTROLLER WITH OBSERVABILITY CANONICAL
FORM IN SECTION 5.1.1.. 102

 D. SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED

OBSERVER-CONTROLLER WITH OBSERVABILITY CANONICAL
FORM IN SECTION 5.1.1.. 104

 E. SIMULINK DIAGRAM OF THE EQUIVALENT OVERALL

COMBINED OBSERVER-CONTROLLER WITH OBSERVABILITY
CANONICAL FORM IN SECTION 5.1.1 ... 106

 F. SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER

WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2 108

 G. SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED

OBSERVER-CONTROLLER WITH OBSERVER CANONICAL
FORM IN SECTION 5.1.2.. 110

 H. SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED

OBSERVER-CONTROLLER WITH OBSERVER CANONICAL
FORM IN SECTION 5.1.2.. 112

 vii

 I. SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED

OBSERVER-CONTROLLER WITH OBSERVER CANONICAL
FORM IN SECTION 5.1.2.. 114

J. SIMULINK DIAGRAM OF THE EQUIVALENT OVERALL

COMBINED OBSERVER-CONTROLLER WITH OBSERVER
CANONICAL FORM IN SECTION 5.1.2 ... 116

 K. SIMULINK DIAGRAM OF INPUT-STATE LINEARIZATION IN

SECTION 5.2 .. 118

 L. SIMULINK DIAGRAM OF SUBSYSTEM OF INPUT-STATE

LINEARIZATION IN SECTION 5.2 ... 120

 M. SIMULINK DIAGRAM OF INPUT-OUTPUT LINEARIZATION IN

SECTION 5.3 .. 122

REFERENCES .. 124

BIOGRAPHICAL INFORMATION... 128

 viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Unity feedback control scheme……………………………………………. 6

3.1 Block diagram of combined observer-controller .. 20

3.2 Block diagram of equivalent overall combined observer-controller............... 22

4.1 Observability canonical form.. 53

4.2 Observer canonical form ... 59

4.3 Observability canonical form with initial condition 62

4.4 Observer canonical form with initial condition... 65

5.1 The zero input responses of the combined observer-controller in

observability form with initial conditions: 5.0=y and 0=y& 77

5.2 The zero input responses of the plant state variables in combined

observer-controller in observability form with initial conditions:
5.0)0(_1 =plantx and 0.0)0(_2 =plantx ... 78

5.3 The zero input responses of the state variables in block in combined

observer-controller in observability form.. 79
uH

5.4 The zero input responses of the state variables in block in combined

observer-controller in observability form.. 80
yH

5.5 The zero input responses of the equivalent overall combined observer-

controller in observability form with initial conditions: 5.0)0(=y
and ... 81 0)0(=y&

5.6 The differences of responses between the combined observer-

controller in observability form and its equivalent overall system
with initial conditions: 5.0)0(=y and 0)0(=y& ... 82

 ix

5.7 The zero input responses of the combined observer-controller in

observer form with initial conditions: 5.0=y and 0=y& 83

5.8 The zero input responses of the plant state variables in combined

observer-controller in observer form with initial conditions:
5.0)0(_1 =plantx and 0.1)0(_2 =plantx ... 84

5.9 The zero input responses of the state variables in block in uH

combined observer-controller in observer form .. 85

5.10 The zero input responses of the state variables in block in yH

combined observer-controller in observer form .. 86

5.11 The zero input responses of the equivalent overall combined

observer-controller in observer form with initial conditions:
5.0)0(=y and ... 87 0)0(=y&

5.12 The differences of responses between the combined observer-

controller in observer form and its equivalent overall system
with initial conditions: 5.0)0(=y and 0)0(=y& ... 88

5.13 The differences of output responses between the observability and

observer forms initial conditions: 5.0)0(=y and 0)0(=y& 89

5.14 The differences of responses of the input between the observability

and observer forms initial conditions: 5.0)0(=y and 0)0(=y& 90

5.15 The differences of responses between the two equivalent overall

combined observer-controller systems with initial conditions:
5.0)0(=y and ... 91 0)0(=y&

5.16 The responses of the closed-loop control system using input-state

method with initial conditions: 5.0)0(_1 =−stateinputx and
... 92 5205744614.0)0(_2 =−stateinputx

5.17 The responses of the closed-loop control system using input-output

method with initial conditions: 5.0)0(_1 =−outputinputx and
... 93 5205744614.0)0(_2 =−outputinputx

 x

5.18 The signal responses of the inputs u from four methods: combined
observer-controller in observability and observer forms, input-state
and input-output... 94

5.19 The output responses from four methods: combined observer-controller

in observability and observer forms, input-state and input-output 95

5.20 The output responses from the equivalent overall combined observer-

controller in observer forms, input-state and input-output 96

 xi

LIST OF TABLES

Table Page

 5.1 Simulation cases for example in Section 5.1 .. 75

 xii

CHAPTER 1

INTRODUCTION

1.1 Review of Diophantine Equation

Diophantine equation plays an important role in the design and synthesis of

compensators [1][2]. Solving Diophantine equation is shown to be equivalent to design

a full or reduced-order observer of a linear functional of the state [3].The Diophantine

equation approach is a transfer function-based control theory in which the transfer

functions are viewed and handled as algebraic objects. Solving a system of linear

Diophantine equations is a classical mathematical problem as well. Computing integer

solutions to systems of linear Diophantine equations is a classical mathematical

problem with many interesting applications in number theory [4], group theory [5] and

combinatorics [6].

Many methods have been developed to solve the Diophantine equation. An

indirect method of its solution is the well-known combined observer-controller design

[1]. Another method is the method developed by C.T. Chen [7]. Some of the methods

used involve the state-space approach [8] and [9]. Others utilize the coefficient

matching approach [7], [10] and [11]. [12] generalizes a classical Knuth-Schonhage

algorithm computing two Greatest Common Divisors (GCD) of two polynomials for

solving two arbitrary linear Diophantine systems over polynomials in time, quasi-linear

 1

in the maximal degree for the weighted curve-fitting problem. One popular problem

encountered in the analysis and design of control systems is the solutions of the

Diophantine equations in which the existence of solutions of the Diophantine equations

requires the coprimeness of associated pairs of polynomial matrices [7]. The recursive

algorithm is commonly applied to solve Polynomial Diophantine Equation. Both [13]

and [14] propose a recursive algorithm for coprime fractions and Diophantine equation.

The above-mentioned works are all focused on linear time-invariant systems.

Step forward in extending the Diophantine equation approach is the case of

time-varying linear systems. The field of coefficients is replaced by a differential

polynomial over an interval of time [15][16]. The time-varying coefficients are no

longer commutative, for multiplication and differentiation do not commute. Solving the

Sylvester equation is the most commonly used to solve Diophantine equation with time-

varying coefficient matrices. Sylvester equations have been always the significant tool

in the development of numerical algorithms for various feedback design techniques in

control theory [17][18]19][20][21]. But Sylvester matrix has its limitations in MIMO

system. These limitations can be overcome with Euclidean algorithm.

1.2 Review of Euclidean Algorithm

In this dissertation, Euclidean algorithm is presented for solving for both time-

invariant and time-varying Diophantine equations for directly determining both the

quotient and the remainder associated with the division of one polynomial by another.

The coprimeness (right or left) of two Polynomial Differential Operators is needed to

guarantee, in general, the existence of solutions of the respective Diophantine

 2

equation[22]. The Euclidean algorithm has been used to solve Sylvester matrices [23]

and Diophantine equations [24] in time-invariant. These methods can in principle often

also lead to a GCD. GCD of polynomial matrices plays an important part in the theory

and application of general differential systems as studied extensively by [25][26], and

others. They are useful in obtaining irreducible matrix fraction descriptions (and hence

minimal state-space realizations) of transfer-function matrices, studying decoupling

zeros and uncontrollable and unobservable modes of given systems, and obtaining the

pole-zero structure of given multivariable systems [27].

1.3 Review of Canonical Form

Canonical forms of state variable equations are of importance in the analysis

and synthesis of dynamical systems. To simulate a continuous time system, there is a

fundamental weakness to use differentiator. In practice, all signals are corrupted by

noise. When such signal is differentiated, the derivative of the usually rapidly varying

noise will shout down the derivative of the signal. For system described by a general

differential equation the integrating device can be used as the basic building block for

simulation[28]. Linear time-invariant canonical forms have been extensively researched

and described in several papers and texts (see [1][7][29] and references therein). The

controllability, observability, controller and observer canonical forms are frequently

used. Nevertheless, there are only a few investigations related to time-varying canonical

forms: Zeitz [30] derived observability form of non-linear time-varying systems from

state variable equations, Krener [31] constructed observer forms for those nonlinear

 3

systems which can be transformed into a linear system, and Schaft [32] represented a

nonlinear state space system as a set of higher-order differential equations.

The general formulae relating the initial conditions of a scalar linear time-

invariant differential equation to those of its state variable representation have been

presented many years ago [33]. In this dissertation, a derivation of observer and

observability canonical forms from a differential equation description is developed for

linear time-varying systems. Initial condition conversions between the canonical forms

and the differential equation description are given. With the help of the derived

canonical forms, simulations of systems given by linear time-varying differential

equations are greatly facilitated. This can be done, For example, using MATLAB

software to implement integrators, summers and gains.

1.4 Outline

This dissertation demonstrates a new systematic approach to tackle both the

time-invariant and time-varying Diophantine equations using an order reduction

method. This method is based on the Euclidean algorithm. The time-invariant case is

presented in chapter 2 and the time-varying case is discussed in chapter 3, we shall

briefly review the pole-placement approaches and the Euclidean algorithm for both

time-invariant and time-varying cases in both chapter 2 and 3, and how they require the

solution of the Diophantine equation. In chapter 3 section 2, the division algorithm in

the time-varying case is illustrated. Then, we shall introduce the Diophantine equation

order reduction process, coupled with the use of the Euclidean algorithm. Examples will

be given to illustrate the order reduction method for both time-invariant and time-

 4

 5

varying cases. Chapter 4 illustrates the basic ideas and procedures of setting up LTV

canonical forms in both observability and observer. Formulas for the associated initial

condition conversion are given as well. Chapter 5 shows case study utilizing

Diophantine equation order reduction, LTV canonical forms and comparisons of

existing input-state and input-output methods. The contribution of this dissertation and

suggestions of future work are discussed in chapter 6.

CHAPTER 2

DIOPHANTINE EQUATION ORDER REDUCTION USING EUCLIDEAN
ALGORITHM

2.1 Pole-Placement Feedback Design

The pole-placement in a closed-loop structure using output feedback can be

done by means of solving the Diophantine equation. The poles of the overall transfer

function are assigned in order to meet some given performance requirements. Consider

a unity feedback control systems as shown in Figure 2.1. This scheme is considered to

be the simplest unity feedback configuration. Given a plant with a rational transfer

function H(s) of order with input u and output y and a reference signal r, the

objective is to design a proper controller C(s) of order

0k

0γ so that the closed-loop poles

will reside at specified locations.

Figure 2.1. Unity feedback control scheme

Let the plant be given as a rational transfer function

 6

)(
)()(

sa
sbsH = , (2.1.1))]([deg)]([deg sbsa >

To design a controller C(s) with a proper transfer function, let

)(
)()(

sd
snsC = , (2.1.2))]([deg)]([deg snsd ≥

Then the overall transfer function from r to y is

)()()()(
)()(

)()(1
)()()(

sbsnsasd
sbsn

sHSC
sHsCsT

+
=

+
=

 (2.1.3)

Let the denominator be

)()()()()(sfsbsnsasd =+ (2.1.4)

where)())(.()(
0021 kpspspsconstsf +−−−= γL contains the desired closed-

loop poles , ip)(,,2,1 00 ki += γL , where)]([deg0 sd=γ ,)]([deg0 sak = . This

equation is known as the Diophantine equation where a(s), b(s) and f(s) are given

polynomials and d(s) and n(s) are unknown polynomials to be solved. The Diophantine

equation in Eq. (2.1.4) can be solved using Sylvester matrix method [1]. Here we

introduce an alternative method using an order reduction approach employing the

Euclidean algorithm. We shall revisit the Euclidean algorithm first and then proceed on

to the order reduction method.

2.2 Euclidean Algorithm

This section revisits the Euclidean algorithm given in [1]. Euclidean algorithm

is considered to be one of the oldest nontrivial algorithm that has survived to the present

 7

day [34]. Given two polynomials and with)(0 sa)(0 sb)]([deg)]([deg 00 sasb < there

exists a unique quotient polynomial and a unique remainder polynomial

such that

)(0 sq)(0 sr

)()()()(0000 srsbsqsa += ,)]([deg)]([deg 00 sbsr < (2.2.1)

By successive use of the above polynomial division formula, we obtain

)()()()(0000 srsbsqsa += , 12 kk <

)()()()(1111 srsbsqsa += , 23 kk <

)()()()(2222 srsbsqsa += , 34 kk < (2.2.2)

 M M

)()()()(1111 srsbsqsa mmmm −−−− += , mm kk <+1

)()()()(srsbsqsa mmmm += , 1)](deg[+< mm ksr

where and)()(1 sbsa ii −=)()(1 srsb ii −= , mi ,,1L= ;)]([deg 1 sbk jj −= ,

. 1,,2,1 += mj L

The algorithm stops when the remainder 0)(=srm or . In the

former case, will be the greatest common divisor of and . In the

latter case, and are coprime.

0)](deg[=srm

)(1 srm−)(0 sa)(0 sb

)(0 sa)(0 sb

2.3 Order Reduction of Diophantine Equation

Consider Eq. (2.1.4). Rename the polynomials as

)()(0 sasa = (2.3.1a)

)()(0 sbsb = (2.3.1b)

 8

)()(0 sdsd = (2.3.1c)

)()(0 snsn = (2.3.1d)

)()(0 sfsf = (2.3.1e)

Then, we have

)()()()()(00000 sfsbsnsasd =+ (2.3.2)

where subscript “0” is used to indicate the step number in the recursive process

that follows. It is assumed that and are coprime.)(0 sa)(0 sb

To go through a general discussion, let the degrees of the respective

polynomials satisfy the following conditions:

00)](deg[ksa = (2.3.3a)

10)](deg[ksb = , 01 kk < (strictly proper plant) (2.3.3b)

00)](deg[γ=&sd , 100 −≥ kγ (proper controller) (2.3.3c)

1)](deg[00 −= ksn (2.3.3d)

000)](deg[ksf += γ (2.3.3e)

The choice of these degrees not only ensure a proper controller, but also will

yield an equal number of equations as unknowns as can be seen below.

Let the polynomials be

 9

00

00
,01,0

1
1,00,00)(kk

kk asasasasa ++++= −
− L , 00,0 ≠a (2.3.4a)

11

11
,01,0

1
1,00,00)(kk

kk bsbsbsbsb ++++= −
− L , 01 kk < (2.3.4b)

00

00
,01,0

1
1,00,00)(γγ

γγ dsdsdsdsd ++++= −
− L , 100 −≥ kγ (2.3.4c)

1,02,0
2

1,0
1

0,00 00

00)(−−
−− ++++= kk

kk nsnsnsnsn L (2.3.4d)

Let be any arbitrarily assigned polynomial of degree)(0 sf)(00 k+γ given as

0000

0000
,01,0

1
1,00,00)(kk

kk fsfsfsfsf +−+
−++ ++++= γγ

γγ L (2.3.5)

(We shall from now on refer to the degree of as the order of the

Diophantine equation (2.3.2)).

)(0 sf

Substituting Eqs. (2.3.4) and (2.3.5) into Eq. (2.3.2) and equating terms of like

powers in yields the following matrix equation s

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−+−−−−−−−−−−

+

−+

+−

−

−

+−

−

−+−

−−−

00

00

10

10

0

0

10

10

10

0

10

0

0

1010

1010

,0

1,0

1,0

,0

1,0

0,0

1,0

1,0

0,0

,0

1,0

,0

1,0

0,0

,0,0

,0

,0,0

1,0,0

0,01,0,0

0,0

1,01,0

0,00,01,0,01,0

0,01,0,0

0,01,0

0,0

0000|00
|

0|0
|
|0
|0
|

0|
0|

0000|

000|
|0
|

000|00

k

k

k

k

k

k

k

kk

k

kk

k

k

kk

kk

f
f

f

f

f
f

n

n
n
d

d

d

d
d

ba

a
ba

ba
baa

a
ba
baaaa

aaa

aa
a

γ

γ

γ

γ

γ

γ

γ

γγ

γγ

M

M

M

M

M

M

M

M

M

M

M

M

M

M

LLL

MOOMMOOOOOM

MOOMOOOM

MOOMOMOOM

MOOMMOMMOM

OOMMOMMO

OOMOMMOO

OOMOMMOOM

MOOOMOOM

OO

OOLLO

MOOMOOMOOM

MOOMOOMMO

LLLLL

 (2.3.6)

 10

The first)1(10 +− kγ coefficients of can be solved by inverting a

triangular matrix as

)(0 sd

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−

−−−−

−−

10

10

101010

10

,0

1,0

1,0

0,0
1

0,01,01,0,0

1,02,0

0,01,0

0,0

,0

1,0

1,0

0,0

0

00

k

k

kkk

k

f
f

f
f

aaaa

aa
aa

a

d
d

d
d

γ

γ

γγγ

γ

M

L

OOOM

MOO

MOO

LL

M (2.3.7)

Let be split into a “known” leading part consisting of these

coefficients and an “unknown” remaining part which is to be determined later

such that

)(0 sd)(0 sd H

)(0 sd L

)()()(000 sdsdsd LH += (2.3.8a)

 where

1

10

00
,0

1
1,00,00)(k

kH sdsdsdsd −
− +++= γ

γγ L (2.3.8b)

00

1

10

1

10 ,01,0
2

2,0
1

1,00)(γγγγ dsdsdsdpd k
k

k
kL ++++= −

−
+−

−
+− L (2.3.8c)

Substituting Eq. (2.3.8a) into Eq. (2.3.2) yields

)()()()()]()([000000 sfsbsnsasdsd LH =++ (2.3.9)

Moving all the known parts in Eq. (2.3.9) to the right hand-side gives

)()()()()()()(0000000 sasdsfsbsnpasd HL −=+ (2.3.10)

Denote the right hand-side as

1,12,1
2

1,1
1

0,1

0001

1010

1010

)()()()(

−+−+
−+−+ ++++=

−=

kkkk
kkkk

H

fsfsfsf

sasdsfsf

L
 (2.3.11)

 11

The coefficients of can be found by substituting Eqs. (2.3.4a), (2.3.5) and

(2.3.8b) into (2.3.11) so that we have

)(1 sf

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+−+−

−+−

+

+−

+−

−+

100

0

0

1010

1010

00

10

10

10

,0

1,0

0,0

,0

,0

,0

2,01,02,0

1,0,01,0

,0

2,0

1,0

1,1

1,1

0,1

00

0

0
0

kk

k

k

kk

kk

k

k

k

kk

d

d
d

a

a
a

aaa
aaa

f

f
f

f

f
f

γ

γγ

γγ

γ

γ

γ

M

LL

MOOM

OOM

OOM

MOM

MO

MOO

MOOM

O

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

 (2.3.12)

With Eq. (2.3.11), Eq. (2.3.10) now becomes

)()()()()(10000 sfsbsnsasd L =+ (2.3.13)

Substituting the Euclidean algorithm Eq. (2.2.1) into Eq. (2.3.13) gives

)()()()]()()()[(1000000 sfsbsnsrsbsqsd L =++ (2.3.14)

Grouping terms containing yields)(0 sb

)()()()()]()()([1000000 sfsrsdsbsnsqsd LL =++ (2.3.15)

Renaming the polynomials as

)()(01 sbsa = (2.3.16a)

)()(01 srsb = (2.3.16b)

)()()()(0001 snsqsdsd L += (2.3.16c)

)()(01 sdsn L= (2.3.16d)

gives rise to a new Diophantine equation

 12

)()()()()(11111 sfsbsnsasd =+ (2.3.17)

where the degrees of the respective polynomials are

11)]([deg ksa = (2.3.18a)

21)]([deg ksb = , 12 kk < (2.3.18b)

1)]([deg 011 −== ksd γ& (2.3.18c)

1)]([deg 11 −= ksn (2.3.18d)

1)]([deg 101 −+= kksf (2.3.18e)

Notice that they satisfy the same degree requirements as in Eq. (2.3.3).

Consequently, the new Diophantine equation (2.3.17) is of lower order than the original

one in Eq. (2.3.2). That is, is of lower degree than , in this case by)(1 sf)(0 sf

)1(10 +− kγ .

Repeating the above order reduction process one more time will yield third

Diophantine equation:

)()()()()(22222 sfsbsnsasd =+ (2.3.19)

Continuing on with this process to a total number of 1+m steps, where m is the

number of steps in the Euclidean algorithm in Eq. (2.2.2), we will obtain a sequence of

Diophantine equations of successively lower orders as

)()()()()(sfsbsnsasd iiiii =+ , iii ksf += γ)]([deg , mi ,,1,0 L= (2.3.20)

where

)()(1 sbsa jj −= , mj ,,1 L= (2.3.21a)

 13

)()(1 srsb jj −= , mj ,,1 L= (2.3.21b)

)()()]()([)(11)1(1 snsqsdsdsd jjHjjj −−−− +−= , mj ,,1 L= (2.3.21c)

)()()()1(1 sdsdsn Hjjj −− −= , mj ,,1 L= (2.3.21d)

)()()()(1)1(1 sasdsfsf jHjjj −−− −= , mj ,,1 L= (2.3.21e)

1

1,
1

1,0,)(+

+−
− +++= i

ii

ii k
kiiiiH sdsdsdsd γ

γγ L , mi ,,1,0 L= (2.3.21f)

The coefficients of ,)(sdiH mi ,,1,0 L= , are obtained from

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+++

+

−

−−

−

−−−−

−−

1

1

111

1

,

1,

1,

0,
1

0,1,1,,

1,

0,1,

0,

,

1,

1,

0,

0

00

ii

ii

iiiiii

ii

ki

ki

i

i

iikiki

i

ii

i

ki

ki

i

i

f
f

f
f

aaaa

a
aa

a

d
d

d
d

γ

γ

γγγ

γ

M

L

OOOM

MOOM

MOO

LL

M (2.3.22)

The degrees of the respective polynomials in Eq. (2.3.21) are given by

jj ksa =)]([deg (2.3.23a)

1)]([deg += jj ksb , jj kk <+1 (2.3.23b)

1)]([deg 1 −== −jjj ksd γ& (2.3.23c)

1)]([deg −= jj ksn (2.3.23d)

1)]([deg 1 −+= − jjj kksf (2.3.23e)

mj ,,1 L=

We now turn to the backward process starting with known pair, and

. The objective here is to determine the original pair, and . From Eqs.

(2.3.21d) and (2.3.21f), we have

)(sdm

)(snm)(0 sd)(0 sn

 14

)()()()1(1 snsdsd mHmm += −− (2.3.24a)

The polynomial can be solved from Eqs. (2.3.21c) and (2.3.21d) as)(1 snm−

)()()()(11 sqsnsdsn mmmm −− −= (2.3.24b)

Continuing on in this way, with the help of Eqs. (2.3.21c), (2.3.21d) and

(2.3.21f), we have the following backward recursive formulas:

)()()()1(1 snsdsd iHii += −− , mi ,,1 L= (2.3.25a)

)()()()(11 sqsnsdsn iiii −− −= , mi ,,1 L= (2.3.25b)

2.4 Example of Time-Invariant Case

Consider a Diophantine equation (2.3.2) with the following polynomials

343)(23
0 +++= ssssa

1)(2
0 ++= sssb

3,02,0
2

1,0
3

0,00 (dsdsdsdsd +++=)

2,01,0
2

0,00 nsnsnsn ++=)(

Selecting all six closed-loop poles at 1−=s leads to

161520156

)1()(
23456

6
0

++++++=

+=

ssssss

ssf

Applying the Euclidean algorithm Eq. (2.2.2) on and yields)(0 sa)(0 sb

2)(0 += ssq

 15

1)(0 += ssr

A second application of the Euclidean algorithm on and gives)(1 sa)(1 sb

ssq =)(1

1)(1 =sr

The Euclidean algorithm stops here since 0)](deg[1 =sr . Next we proceed to

reduce the order of the Diophantine equation.

2.4.1 Forward Algorithm

Step 0:

From Eq. (2.3.22), we can solve for the two leading coefficients of as)sd (0

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

3
1

6
1

13
010 1

1,0

0,0
1

0,01,0

0,0

1,0

0,0

f
f

aa
a

d
d

Then, can be split into a “known” part and an “unknown” part as)sd (0

23
0 3(sssd H +=)

3,02,00 (dsdsd L +=)

From Eqs. (2.3.20) and (2.3.21), with 1=i , the following reduced order

Diophantine equation is obtained

)()()()()(11111 sfsbsnsasd =+

where

 16

1)(2
1 ++= sssa

1)(1 += ssb

16652)(234
1 ++++= sssssf

Step 1:

From Eq. (2.3.22), we can solve for the two leading coefficients in as)sd (1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

3
2

5
2

11
01 1

1,1

0,1

d
d

So that, will be split into a “known” part and an “unknown” part as)sd (1

sssd H 32)(2
1 +=

2,11)(dsd L =

From Eqs. (2.3.20) and (2.3.21), with 2=i , another reduced order Diophantine

equation is generated

)()()()()(22222 sfsbsnsasd =+ (2.4.1)

where

1)(2 += ssa

1)(2 =sb

13)(2
2 ++= sssf

Step 2:

From Eq. (2.3.22) we can obtain , and as follows 0,2d 1,2d 0,2n

 17

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

2
1

3
1

11
01 1

1,2

0,2

d
d

Notice that, in this final step, 2)()(22 +== ssdsd H . With known ,

follows from the Diophantine equation (2.4.1) as

)(2 sd)(2 sn

10,2 −=n

2.4.2 Backward Algorithm

With known and , and can be obtained from Eq.

(2.3.25) as

)(2 sd)(2 sn)(1 sd)(1 sn

132)(2
1 −+= sssd

22)(1 += ssn

Similarly, with and solved, and are found from Eq.

(2.3.25) as

)(1 sd)(1 sn)(0 sd)(0 sn

223)(23
0 +++= ssssd

53)(0 −−= ssn

which is the solution of our original Diophantine equation.

 18

CHAPTER 3

ORDER REDUCTION OF TIME-VARYING DIOPHANTINE EQUATION
USING EUCLIDEAN ALGORITHM

Now we extend the approach described in the previous chapter to time-varying

case.

3.1 Time-Varying Pole-Placement Feedback Design

Pole-placement in a closed-loop structure using output feedback can be carried

out by means of solving the Diophantine equation. The poles of the overall transfer

function operator are assigned in order to meet certain given performance requirements.

Consider a plant described by a linear time-varying differential equation

)()()()(tupBtypA = (3.1.1)

where

)()()()()(
0

000 1
10 taptaptaptapA k

ik
i

kk +++++= −− LL , (3.1.2)

 210 ,0)(tttta <<≠

)()()()()(
1

111 1
10 tbptbptbptbpB k

jk
j

kk +++++= −− LL , 01 kk < (3.1.3)

and p is the differential operator
dt
d . The coefficients ia),,0(0ki L= and

 are continuously differentiable functions of time. In the sequel, the

argument in the coefficients and will be dropped for brevity.

jb),,0(1kj L=

t ia jb

 19

A feedback control system for the plant can be implemented as shown in Figure

3.1 where r is the reference input. This scheme can be viewed as the combined

observer-controller feedback configuration given in [1] (pp.298), which is now

extended to the time-varying case. The objective here is to design and so that

the closed-loop poles would be assigned.

uH yH

+
+

+

-

v

y

PLAN

w

u r

)()()]()([1 pBpnpBpδ y
−

)()()]()([1 pBpnpBpδ u
−

uH yH

)()(1 pBpA−

Figure 3.1. Block diagram of combined observer-controller

In Figure 3.1, the blocks and can be represented as polynomial operator

equations, respectively, as

uH yH

upBpnvpBpδ u)()()()(= (3.1.4)

ypBpnwpBpδ y)()()()(= (3.1.5)

where

 20

00

00

0

1
1

10

210)())(()(

σσ
σσ

σ

δδδδ

δ

++++=

−−−=

−
− ppp

pppppppδ ooo

L

L
 (3.1.6)

The constants oip ,),,1(0σL=i , are the assigned “observer” poles.

Let

12
1

0 00

0)(−−
− +++= σσ

σ γγγ pppnu L (3.1.7)

12
1

0 00

0)(−−
− +++= kk

k
y pppn βββ L , 00 1 σ≤−k (3.1.8)

Then the overall feedback system equation can be derived as follows:

Summing up Eq. (3.1.4) and Eq. (3.1.5) results in

ypBpnupBpnwvpBpδ yu)()()()(])[()(+=+ (3.1.9)

From Figure 3.1, we have urwv −=+ . Eq. (3.1.9) then becomes

ypBpnupBpnurpBpδ yu)()()()(])[()(+=− (3.1.10)

Eliminating u from Eq. (3.1.1) and Eq. (3.1.10) yields the overall closed-loop

equation

rpBpδypBpnpApnpδ yu)()()()()()]()([}{ =++ (3.1.11)

Let the left-hand-side term be

)()()()()()]()([}{ ppδpBpnpApnpδ yu α=++ (3.1.12)

where

00

00

0

1
1

10

210)())(()(

kk
kk

ckcc

ppp

ppppppp

αααα

αα

++++=

−−−=

−
− L

L
,

The constants) are the assigned “controller” poles. cip ,,1(0ki L=

Then, substituting Eq. (3.1.12) into Eq. (3.1.11) gives
 21

rpBpδyppδ)()()()(=α (3.1.13a)

or

0])()()[(=− rpByppδ α (3.1.13b)

Integrating Eq. (3.1.13b) leads to

rpB
trpByp

)(
)()()(

≅
+= ζα

 (3.1.14)

where)(tζ is a transient signal and decays away rapidly by applying

differential polynomial .)(pδ

The equivalent overall feedback system is depicted in Figure 3.2.

yr1)(−pB
r~

)(pα

Figure 3.2. Block diagram of equivalent overall combined observer-controller

Remarks:

(1) With fixed closed-loop poles, , cip)(pα is a time-invariant

polynomial, which governs the behavior of the closed-loop system.

(2) The combined observer-controller approach described above

requires no separate knowledge of the controllability or observability of the

plant, and no state measurement is needed. The only requirement is that

and are right coprime)(pA)(pB [22].

 22

With respect to Eq. (3.1.12), let

00

00
1

1
10

)()(

σσ
σσ

δ

dpdpdpd

pnppD u

++++=

+=

−
− L

)(
 (3.1.15a)

12
1

0 00

0

)(

−−
− +++=

=

kk
k

y

npnpn

pnpN

L

)(
 (3.1.15b)

0000

000000
1

2
2

1
10

)()()(

kk
kkk fpfpfpfpf

ppδpF

+−+
−+−++ +++++=

=

σσ
σσσ

α

L
 (3.1.15c)

Then, Eq. (3.1.12) becomes

)(pFpBpNpApD =+)()()()(. (3.1.16)

Thus, our design goal is reduced to the problem of solving the Diophantine

equation (3.1.16). With given , and , and are to be

solved.

)(pA)(pB)(pF)(pD)(pN

3.2 Time-Varying Division Algorithm

Consider a pair of polynomials and in the Laplace operator . In this

time-invariant case, it is well known

)(sA)(sB s

[1][23] that the division of by uniquely

defines another pair of polynomials, the remainder and the quotient , such

that

)(sA)(sB

)(sR)(sQ

)()()()(sRsBsQsA += (3.2.1)

Extending this to the time-varying case, Eq. (3.2.1) becomes

)()()()(pRpBpQpA += (3.2.2)

Let the polynomials be given by

 23

00

00
1

1
10)(kk

kk apapapapA ++++= −
− L , 0)(0 ≠ta for (3.2.3a) 21 ttt <<

11

11
1

1
10)(kk

kk bpbpbpbpB ++++= −
− L , 0)(0 ≠tb for (3.2.3b) 21 ttt <<

12
2

1
1

0 11

11)(−−
−− ++++= kk

kk rprprprpR L (3.2.3c)

1010

1010
1

1
10)(kkkk

kkkk qpqpqpqpQ −−−
−−− ++++= L , (3.2.3d) 10 kk >

Substituting Eq. (3.2.3) into Eq. (3.2.2) and equating terms of like powers in p

yields the following square triangular systems of equations:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−+−−−−−−−−−−−−−

++
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

−

−−−−

+−

−

1

0

2

1

0

1,0,

11,10,1

2

1

0

01,210,22

00,11

0

1

1

2

1

0

1

10

100

100

0

0

10

10

100|
010|

|
00|
10|

001|

00|
|0
|
|
|0

00|000

k

kk

kkk

kkk

k

k

kk

kk

r

r

q

q
q
q

bbb
bbb

b
b

b

bbbbb
bbb

b

a
a

a

a

a
a
a

M

M

M

M

M

M

LLLLLL

OOOOOO

MOOOOMMOOOOM

MOOOMOOOOM

MOOOOOOOM

LLLOOOOM

LLLLOOOOM

MOOOOMOOOOM

MOOOOMMOOOOM

MOOOOMMOO

MOOOOMMOO

LLLLLL

M

M

M

M

M

 (3.2.4)

The terms jlijb ,++ in Eq. (3.2.4) exist only in the time-varying case and are

defined as

,
10 1

1 0

)(10
, ∑ ∑

−−

= =
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=

jkk

i

k

l

i
ljlij b

i
jkk

b)1(,,1,0 10 −−= kkj L (3.2.5)

 24

where is the combinatorial symbol. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
i

jkk 10

From Eq. (3.2.4), the unknown coefficients ’s and q r ’s can be found uniquely

if the matrix is nonsingular. This is the case since 0)(0 ≠tb , 21 ttt << .

We shall refer to the degree of as)(pR

2)](deg[kpR =& (3.2.6)

if the coefficient 0)(121
≠−− tr kk , 21 ttt << , (1,,1,0 12 −= kk L), and that all

coefficients previous to it are identically equal to zero.

3.3 Time-Varying Euclidean Algorithm

This section revisits the Euclidean algorithm given in [1]. Euclidean algorithm

is considered to be one of the oldest nontrivial algorithm that has survived to the present

day [34]. Given two polynomials and with ,

using the division algorithm in Section 3, we have

)(0 pA)(0 pB)]([deg)]([deg 00 pApB <

)()()()(0000 pRpBpQpA += ,)]([deg)]([deg 00 pBpR < (3.3.1)

By successive use of the polynomial division algorithm, we obtain, for

, 21 ttt <<

)()()()(0000 pRpBpQpA += , 12 kk <

)()()()(1111 pRpBpQpA += , 23 kk <

 25

)()()()(2222 pRpBpQpA += , 34 kk < (3.3.2)

 M M

)()()()(1111 pRpBpQpA mmmm −−−− += , mm kk <+1

)()()()(pRpBpQpA mmmm += , 1)]([deg +< mm kpR

where and)()(1 pBpA ii −=)()(1 pRpB ii −= , mi ,,1L= ;)]([deg 1 pBk jj −= ,

. 1,,2,1 += mj L

The algorithm stops when the remainder 0)(=pRm or, when ,

. In the former case, will be the greatest common right divisor

of and . In the latter case, and are right coprime. The

proof is similar to the time-invariant case and will be omitted.

0)(≠pRm

0)](deg[=pRm)(1 pRm−

)(0 pA)(0 pB)(0 pA)(0 pB

3.4 Order Reduction of Time-Varying Diophantine Equation

Consider Eq. (3.1.16). Rename the polynomials as

)()(0 pApA = (3.4.1a)

)()(0 pBpB = (3.4.1b)

)()(0 pDpD = (3.4.1c)

)()(0 pNpN = (3.4.1d)

)()(0 pFpF = (3.4.1e)

where

00

00
,01,0

1
1,00,00)(kk

kk apapapapA ++++= −
− L , 00,0 ≠a , 21 ttt << (3.4.2a)

11

11
,01,0

1
1,00,00)(kk

kk bpbpbpbpB ++++= −
− L , 01 kk < , 21 ttt << (3.4.2b)

 26

00

00
,01,0

1
1,00,00)(σσ

σσ dpdpdpdpD ++++= −
− L , 100 −≥ kσ (3.4.2c)

1,02,0
2

1,0
1

0,00 00

00)(−−
−− ++++= kk

kk npnpnpnpN L (3.4.2d)

0000

0000
,01,0

1
1,00,00)(kk

kk fpfpfpfpF +−+
−++ ++++= σσ

σσ L (3.4.2e)

Then, we have

)()()()()(00000 pFpBpNpApD =+ (3.4.3)

The subscript “0” is used to indicate the step number in the recursive process

that follows. It is assumed that and are right coprime. We shall from now

on refer to the degree of as the order of the Diophantine equation (3.4.3).

)(0 pA)(0 pB

)(0 pF

Our discussion is divided into two parts, a forward algorithm and a backward

algorithm.

3.4.1 Forward Algorithm

We start with noticing that the degrees of the respective polynomials in Eq.

(3.4.1) satisfy the following conditions:

00)](deg[kpA = (3.4.4a)

10)](deg[kpB = , 01 kk < (because of strictly proper plant) (3.4.4b)

00)](deg[σ=&pD , 100 −≥ kσ (because of proper controller) (3.4.4c)

1)](deg[00 −= kpN (3.4.4d)

1)](deg[000 −+= kpF σ (3.4.4e)

These degrees not only ensure a proper controller, but also will yield an equal

number of equations as unknowns as can be seen below.

 27

Substituting Eq. (3.4.2) into Eq. (3.4.3) and equating terms of like powers in

yields the following block-triangular matrix equation

p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−+−−−

L

H

L

H

2221

11

f

f

v

v

S|S

0|S
 (3.4.5)

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

++
+

=

−−−−−−−− 0,01,1,01,1,00,,0

1,21,00,22,0

0,00,11,0

0,0

101010101010

0

00

aaaaaaa

aaaa
aaa

a

kkkkkk σσσσσσ L

OOOM

MOO

MOO

LL

11S (3.4.6a)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

+
+

++
++

=

−+

−+−+

−−+

−+−

−+−

−−+++

+

++

+−+−+−+−

+−−+−+−

1000

10100

101000

1010

1010

10000000

0

000

00

10101010

10101010

,

,1

,,0

,22,0

,11,0

1,1,0,

1,1

1,1,00,1

0,,0

1,21,00,22,0

1,1,00,11,0

kk

kkk

kkkk

kk

kk

kkkk

k

kkk

kk

kkkk

kkkk

a

a
aa

aa
aa

aaa

a
aaa

aa

aaaa
aaaa

σσ

σσ

σσ

σσ

σσ

σσσσ

σσσσ

σσσσ

M

M

M

M

M

L

OOOM

OOOM

OOOM

OOM

OO

OOO

OOOM

OO

LL

21S

 (3.4.6b)

 28

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++
+

+++
++

=

−
+−+

+++−−+

+−+−

+−+−

1

0

101000

111101000

11

1010

1010

,0
)1(

,0,01,

1,1,00,11,,0

0,,0

1,0

0,01,0

1,21,00,22,00,01,32,0

0,00,11,01,21,0

0,00,0

0
0

0000

k
k

kkkk

kkkkkkk

kk

kk

kk

bbaa

bbbaa
bb

b
ba

bbbbaaa
bbbaa

ba

LLL

MOOMMOM

MOMO

MOOMOM

MOOMMOM

OOMMOM

OOMOM

OO

MOO

L

σσ

σσ

σσ

σσ

22S (3.4.6c)

[T
kddd

10,01,00,0 −= σLHv]

]

]

 (3.4.6d)

[T
kk nnndd 1,01,00,0,01,0 0010 −+−= LL σσLv (3.4.6e)

[T
kk ffff

1010 ,01,01,00,0 −−−= σσLHf (3.4.6f)

[]Tkkkk fffff
000001010 ,01,0,02,01,0 +−++−+−= σσσσσ LLLf (3.4.6g)

The terms jlija ,++ and jlijb ,++ in Eq. (3.4.6) will drop out in the time-invariant

case and are defined by

∑ ∑
−

= =
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

j

i

k

l

i
ljlij a

i
j

a
0 0

1 0

)(0
,

σ σ
,)1(,,1,0 0 −= σLj (3.4.7a)

∑ ∑
−−

= =
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=

jk

i

k

l

i
ljlij b

i
jk

b
1

1 0

)(0
,

0 11
,)2(,,1,0 1 −= kj L (3.4.7b)

Based on the above matrix, one can see that the first)1(10 +− kσ coefficients in

 can be solved by inverting a triangular matrix as)(0 pD

H
1

11H fSv −= (3.4.8)

 29

Let be split into a “known” leading part whose coefficients are

found by Eq. (3.4.8) and an “unknown” remaining part which is to be found

later such that

)(0 pD)(0 pD H

)(0 pD L

)()()(000 pDpDpD LH += (3.4.9)

where

1

10

00
,0

1
1,00,00)(k

kH pdpdpdpD −
− +++= σ

σσ L (3.4.10a)

00

1

10

1

10 ,01,0
2

2,0
1

1,00)(σσσσ dpdpdpdpD k
k

k
kL ++++= −

−
+−

−
+− L (3.4.10b)

Substituting Eq. (3.4.10a) into Eq. (3.3.2) yields

)()()()()]()([000000 pFpBpNpApDpD LH =++ (3.4.11)

Moving all known parts in Eq. (3.4.11) to the right hand-side gives

)()()()()()()(0000000 pApDpFpBpNpApD HL −=+ (3.4.12)

Denote the right hand-side as

1,12,1
2

1,1
1

0,1

0001

1010

1010

)()()()(

−+−+
−+−+ ++++=

−=

kkkk
kkkk

H

fpfpfpf

pApDpFpF

L
 (3.4.13)

The coefficients of can be found by substituting Eqs. (3.4.2a), (3.4.3) and

(3.4.10a) into (3.4.13) as

)(1 pF

 30

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

+++
+++

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−+++

−+−+

−−+

+

++

−+−+−+−+−+−

−+−+−−+−+−

+

+−

+−

−+

10

10000000

10100

101000

0

000

00

101010101010

101010101010

00

10

10

10

,0

1,0

0,0

,1,0,

,1

,,0

1,1

1,1,00,1

0,,0

,22,01,21,00,22,0

,11,01,1,00,11,0

,0

2,0

1,0

1,1

1,1

0,1

k

kkkk

kkk

kkkk

k

kkk

kk

kkkkkk

kkkkkk

k

k

k

kk

d

d
d

aaa

a
aa

a
aaa

aa

aaaaaa
aaaaaa

f

f
f

f

f
f

σ

σσσσ

σσ

σσ

σσσσσσ

σσσσσσ

σ

σ

σ

M

L

MOOM

OOM

OOM

MOM

MO

MOO

MOOM

O

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

 (3.4.14)

With Eq. (3.4.13), Eq. (3.4.12) now becomes

)()()()()(10000 pFpBpNpApD L =+ (3.4.15)

Substituting the Euclidean algorithm Eq. (3.3.1) into Eq. (3.4.15) gives

)()()()]()()()[(1000000 pFpBpNpRpBpQpD L =++ (3.4.16)

Grouping terms containing yields)(0 pB

)()()()()]()()([1000000 pFpRpDpBpNpQpD LL =++ (3.4.17)

Renaming the polynomials as

 31

)()(01 pBpA = (3.4.18a)

)()(01 pRpB = (3.4.18b)

)()()()(0001 pNpQpDpD L += (3.4.18c)

)()(01 pDpN L= (3.4.18d)

gives rise to a new Diophantine equation

)()()()()(11111 pFpBpNpApD =+ (3.4.19)

The degrees of the respective polynomials are given by

11)]([deg kpA = (3.4.20a)

,)]([deg 21 kpB = 12 kk < (3.4.20b)

1)]([deg 011 −== kpD σ& (3.4.20c)

1)]([deg 11 −= kpN (3.4.20d)

1)]([deg 101 −+= kkpF (3.4.20e)

Notice that they satisfy the same degree requirements as in Eq. (3.4.3).

Consequently, the new Diophantine equation (3.4.19) is of lower order than that of the

original one in Eq. (3.4.3). That is, is of lower degree than , specifically by)(1 pF)(0 pF

)1(10 +− kσ .

Repeating the above order reduction process one more time will yield a third

Diophantine equation:

)()()()()(22222 pFpBpNpApD =+ (3.4.21)

 32

Continuing on with this process to a total number of 1+m steps, where m is the

number of steps in the Euclidean algorithm in Eq. (3.3.2), we will obtain a sequence of

Diophantine equations of successively lower orders as

)()()()()(pFpBpNpApD iiiii =+ , (3.4.22)

iii kpF +=σ)]([deg , mi ,,1,0 L=

where

)()(1 pBpA jj −= , mj ,,1 L= (3.4.23a)

)()(1 pRpB jj −= , mj ,,1 L= (3.4.23b)

jj

jj dpdpdpd

pNpQpDpDpD

jjj

jjHjjj

σσ
σσ

,01,
1

1,0,

11)1(1)()()]()([)(

++++=

+−=

−
−

−−−−

L
, mj ,,1 L= (3.4.23c)

1,02,
2

1,
1

0,

)1(1)()()(

−−
−−

−−

++++=

−=

jj

jj
kkj

k
j

k
j

Hjjj

npnpnpn

pDpDpN

L
, mj ,,1 L= (3.4.23d)

jjjj

jjjj
kjkj

k
j

k
j

jHjjj

fpfpfpf

pApDpFpF

+−+
−++

−−−

++++=

−=

σσ
σσ

,1,
1

1,0,

1)1(1)()()()(

L
, mj ,,1 L= (3.4.23e)

1

1,
1

1,0,)(+

+−
− +++= i

ii

ii k
kiiiiH pdpdpdpD σ

σσ L , mi ,,1,0 L= (3.4.23f)

The coefficients of ,)(pFj mj ,,1 L= , in Eq. (3.4.23e) are obtained from

 33

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

+++
+++

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−+++

−+−+

−−+−

+

+−+

−

−+−−+−+−−+−+−−

−+−−+−−−+−+−−

+−

+−−

+−−

+

−

−−−−−−−

−−−

−−−−

−

−−−

−−

−−−−−−

−−−−−−

−−

−

−

jj

jjjjjjjj

jjjjj

jjjjjj

j

jjj

jj

jjjjjjjjjjjj

jjjjjjjjjjjj

jj

jj

jj

jj

kj

j

j

kkkk

kkk

kkkkj

k

kkjk

kkj

kkjkkjkkj

kkjkkjkkj

kj

kj

kj

kj

j

j

d

d
d

aaa

a
aa

a
aaa

aa

aaaaaa
aaaaaa

f

f
f

f

f
f

1

1111111

111

1111

1

111

11

111111

111111

11

1

1

,1

1,1

0,1

,1,0,

,1

,,1

1,1

1,1,10,1

0,,1

,22,11,21,10,22,1

,11,11,1,10,11,1

,1

2,1

1,1

,

1,

0,

σ

σσσσ

σσ

σσ

σσσσσσ

σσσσσσ

σ

σ

σ

σ

M

L

MOOM

OOM

OOM

MOM

MO

MOO

MOOM

O

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

 (3.4.24)

The coefficients of ,)(pDiH mi ,,1,0 L= , in Eq. (3.4.23f) are obtained from

 34

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+
+

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

++++++

+

+

−

−−

−

−−−−−−−−

−

−−

1

1

111111

1

1

,

1,

1,

0,

1

0,1,1,1,1,0,,

1,11,

0,0,11,

0,

,

1,

1,

0,

0

00

ii

ii

iiiiiiiiiiii

ii

ii

ki

ki

i

i

ikkikkikki

i

ii

i

ki

ki

i

i

f
f

f
f

aaaaaaa

aa
aaa

a

d
d

d
d

σ

σ

σσσσσσ

σ

σ

M

L

OOOM

MOOM

MOO

LL

M

 (3.4.25)

The degrees of the respective polynomials in Eq. (3.4.22) are given by

jj kpA =)]([deg (3.4.26a)

1)]([deg += jj kpB , jj kk <+1 (3.4.26b)

1)]([deg 1 −== −jjj kpD σ& (3.4.26c)

1)]([deg −= jj kpN (3.4.26d)

1)]([deg 1 −+= − jjj kkpF (3.4.26e)

mj ,,1 L=

The last Diophantine equation can be solved easily. With mi = ,

, we have 0)]([deg 1 == +mm kpB

 35

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−

+ 1,

,

0,
1

0,0,1

0,

0,11,

0,

0,

,

0,

0

00

m

m

m

m

m

m

m

m

m

m

m

m

m

m

f
f

f

ba
a

aa
a

n
d

d

σ

σ

σ

σ

M

LL

OM

MOO

L

M
 (3.4.27)

3.4.2 Backward Algorithm

Starting with a known pair, and . The objective here is to

determine the original pair, and . From Eqs. (3.4.23d) and (3.4.23f), we

have

)(pDm)(pNm

)(0 pD)(0 pN

)()()()1(1 pNpDpD mHmm += −− (3.4.28a)

The polynomial can be solved from Eqs. (3.4.23c) and (3.4.23d) as)(1 pNm−

)()()()(11 pQpNpDpN mmmm −− −= (3.4.28b)

Continuing on in this way, with the help of Eqs. (3.4.23c), (3.4.23d) and

(3.4.23f), we have the following backward recursive formulas:

)()()()1(1 pNpDpD iHii += −− , mi ,,1 L= (3.4.29a)

1,12,1
2

1,1
1

0,1

11

11

11

)()()()(

−−−−
−

−
−

−

−−

−−

−− ++++=

−=

ii

ii
kiki

k
i

k
i

iiii

npnpnpn

pQpNpDpN

L
, mi ,,1 L= (3.4.29b)

The coefficients of in Eq. (3.4.29b) are given by)(1 pNi−

 36

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
++

++
+

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−−−

−−−−

−−

−−

−+−−−+−

−−−−−−−−

−

−−

−−

−

−−−

−

−

1

111

111

1111

11

,

1,

0,

,11,0,

2,11,1,10,1

1,11,1,10,,1

0,1

1,21,10,22,1

0,10,11,1

0,1

1,

1,

0,

1,1

1,1

0,1

0

00

i

iiii

iiiiii

iiiiiiii

ii

ki

i

i

kkikk

ikkkkikk

ikkkkikkkki

i

ii

ii

i

ki

i

i

ki

i

i

n

n
n

qqq

qqqq
qqqqq
q

qqqq
qqq

q

d

d
d

n

n
n

M

L

MOOM

MOOM

MOOM

O

O

OOM

O

MO

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

 (3.4.30)

where ’s are the coefficients of , i.e. q)(1 pQi−

iiii

iiii
kkikki

kk
i

kk
ii qpqpqpqpQ −−−−−

−−
−

−
−− −−

−− ++++=
11

11
,11,1

1
1,10,11)(L (3.4.31)

3.5 Example of Time-Varying Case

Consider a time-varying plant with input u and output y described as a second-

order time-varying differential equation as

uppyeppp t)12()]1(43[223 ++=++++ −

The associated Diophantine equation reads in this case

))()()(pFpBpNpApD ()(00000 =+

 37

where

)1(43 23
0

teppppA −++++=)(

122
0 ++= pppB)(

3,02,0
2

1,0
3

0,00 (dpdpdpdpD +++=)

2,01,0
2

0,00 npnpnpN ++=)(

Placing the closed-loop poles at 1),1(−±−= js , and the observer poles at

, and , respectively, leads to 1−=s 2−=s 3−=s

)1)(1)(1(+−+++= pjpjpp)(α

)3)(2)(1(+++= pppp)(δ

12467465339
)1)(1)(1)(3)(2)(1(

)()()(

23456

0

++++++=

+−++++++=
=

pppppp
pjpjpppp

pppF αδ

Appling Euclidean algorithm to and yields, according to Eq.

(3.3.2),

)(0 pA)(0 pB

1)(0 += ppQ

teppR −+=)(0

)2()(1
teppQ −−+=

tt eepR 2
1 1)(−− +−=

 38

The Euclidean algorithm stops here since 0)](deg[1 =pR , i.e. in Eq.

(3.3.2). Next we proceed to reduce the order of the Diophantine equation.

1=m

3.5.1 Forward Algorithm

Step 0:

Consider Eq. (3.4.25).

With , we can solve for the two leading coefficients of as 0=i)pD (0

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

6
1

9
1

13
01 1

1,0

0,0

d
d

Then, from Eq. (3.4.23f), is given by)pD H (0

23
0 6)(pppD H +=

From Eqs. (3.4.22) and (3.4.23), with 1=i , the following reduced order

Diophantine equation is obtained

)()()()()(11111 pFpBpNpApD =+ (3.5.1)

where

122
1 ++= pppA)(

teppB −+=)(1

4,13,1
2

2,1
3

1,1
4

0,10001)()()()(fpfpfpfpfpApDpFpF H ++++=−=

With the help of Eq. (3.4.13), the coefficients of are given by)(1 pF

 39

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
+−

+
−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−−

−−

−−

−

t

t

t

t

tt

tt

tt

t

e
e
e
e

ee
ee
ee

e

f
f
f
f
f

512
949
368

40
11

6
1

23
13

41
34

12
46
74
65
33

4,1

3,1

2,1

1,1

0,1

Step 1:

Repeating the above procedure and from Eq. (3.4.23), we solve for the two

leading coefficients in as)pD (1

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

−

tt eed
d

18
11

40
11

12
01 1

1,1

0,1

So that will be split into an “known part and an “unknown” part as)(1 pD

peppD t
H)18(11)(2

1
−−+=

2,11)(dpD L =

From Eqs. (3.4.22) and (3.4.23), with 2=i , the following reduced order

Diophantine equation is obtained

)()()()()(22222 pFpBpNpApD =+ (3.5.2)

Where

 40

teppA −+=)(2

tt eepB 2
2 1)(−− +−=

)512()1028()22(
)()()()(

2
1112

ttt
H

epepe
pApDpFpF

−−− −+++−=

−=

Step 2:

Repeating the above procedure and from Eq. (3.4.23), we solve for the two

leading coefficients in as)pD (2

⎥
⎦

⎤
⎢
⎣

⎡

+−
−

=⎥
⎦

⎤
⎢
⎣

⎡

+
−

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

−

−

−−

− tt

t

t

t

t ee
e

e
e

ed
d

2

1

1,2

0,2

1128
21

1028
22

1
01

Notice that, in this final step, 0)(2 =pD L and

)1128()21(
)()(

2
22

ttt
H

eepe
pDpD

−−− +−+−=

=

With known , follows from the Diophantine equation (3.5.2) as)(2 pD)(2 pN

tt

ttt

ee
eeenpN 2

32

0,22 1
101212)(−−

−−−

+−
−+−

==

3.5.2 Backward Algorithm

With known and , and can be obtained from Eq.

(3.4.29) with as

)(2 pD)(2 pN)pD (1)pN (1

2=i

 41

tt

ttt
t

H

ee
eeepep

pNpDpD

2

32
2

211

1
101212)18(11

)()((

−−

−−−
−

+−
−+−

+−+=

+=)

tt

tt

tt

tt

ee
eep

ee
ee

pQpNpDpN

2

2

2

2
1221

1
834

1
12109

)()()((

−−

−−

−−

−−

+−
+−

+
+−
+−

=

−=)

Similarly, with known and , and can be obtained

from Eq. (3.4.29) with as

)(1 pD)(1 pN)pD (0)pN (0

1=i

tt

tt

tt

tt
H

ee
eep

ee
eepp

pNpDpD

2

2

2

2
23

100

1
834

1
121096

)()((

−−

−−

−−

−−

+−
+−

+
+−
+−

++=

+=)

tt

ttt

tt

ttt

tt

tt

ee
eeep

ee
eeep

ee
ee

pQpNpDpN

2

32

2

32
2

2

2
0110

1
298

1
65

1
2

)()()((

−−

−−−

−−

−−−

−−

−−

+−
−+−

+
+−

−+−
+

+−
−−

=

−=)

which is the solution of our original Diophantine equation.

3.6 Problem of Zero-Crossing

Unlike time-invariant case, time-varying systems will have zero-crossing

problem. Here is an example to demonstrate this problem, and also propose a method to

address this issue. Consider a time-varying plant with input u and output y described as

a second-order time-varying differential equation as

upytptp)1(]2cos30)2sin1220([2 +=+++

 The associated Diophantine equation reads in this case

 42

))()()(pFpBpNpApD ()(00000 =+

where

tptppA 2cos30)2sin1220(2
0 +++=)(

10 += ppB)(

2,01,0
2

0,00 (dpdpdpD ++=)

1,00,00 npnpN +=)(

Placing the closed-loop poles at)1(js ±−= and the observer poles at

and , respectively, leads to

2−=s

3−=s

)1)(1(jpjpp −+++=)(α

)3)(2(++= ppp)(δ

1222187
)3)(2)(1)(1(

)()()(

234

0

++++=

++−+++=
=

pppp
ppjpjp

pppF αδ

Appling Euclidean algorithm to and yields, according to Eq.

(3.3.2),

)(0 pA)(0 pB

)192sin12()(0 ++= tppQ

192sin122cos30)(0 −−= ttpR

 43

The Euclidean algorithm stops here since 0)](deg[0 =pR , i.e. in Eq.

(3.3.2). Next we proceed to reduce the order of the Diophantine equation.

0=m

(a) Forward algorithm

Consider Eq. (3.4.25).

With , we can solve for the two leading coefficients of as 0=i)pD (0

⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
−

)2sin(1213
1

7
1

1)2sin(1220
01 1

1,0

0,0

ttd
d

Then, from Eq. (3.4.23f), is given by)pD H (0

ptppD H)]2sin(1213[)(2
0 −−+=

From Eqs. (3.4.22) and (3.4.23), with 1=i , the following reduced order

Diophantine equation is obtained

)()()()()(11111 pFpBpNpApD =+ (3.6.1)

where

11 += ppA)(

192sin122cos30)(1 −−= ttpB

2,11,1
2

0,10001)()()()(fpfpfpApDpFpF H ++=−=

With the help of Eq. (3.4.13), the coefficients of are given by)(1 pF

 44

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−++−
+++
++−

=

⎥
⎦

⎤
⎢
⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

+
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)]2sin(65)4cos(30)2cos(1029[12
)4sin(324)2sin(168)2cos(70222

)2sin(144)2sin(396)2cos(78278

)2sin(1213
1

)2sin(60)2cos(120
)2cos(54)2sin(168

)2sin(1220)2cos(78

12
22
18

2

2,1

1,1

0,1

ttt
ttt

ttt

t
tt

tt
tt

f
f
f

Repeating the above procedure and from Eq. (3.4.23), we solve for the two

leading coefficients in as)pD (1

⎥
⎦

⎤
⎢
⎣

⎡

+−++−
++−

=⎥
⎦

⎤
⎢
⎣

⎡

)4sin(81)2sin(57)4cos(18)2cos(19582(4
)2sin(144)2sin(396)2cos(78278 2

1,1

0,1

tttt
ttt

d
d

Notice that, in this final step, 0)(1 =pD L and

)4sin(81)2sin(57)4cos(18)2cos(19582(4
])2sin(144)2sin(396)2cos(78278[)()(2

11

tttt
ptttpDpD H

+−++−+
++−==

With known , follows from the Diophantine equation (3.6.1) as)(1 pD)(1 pN

)2sin(12)2cos(3019
)]4sin(81)2sin(138)4cos(72)2cos(1655[4)(0,11 tt

ttttnpN
−+−

++−+
−==

(b) Backward algorithm

With known , , and can be obtained from Eq.

(3.4.28) with as

)(1 pD)(1 pN)pD (0)pN (0

0=i

2,01,0
2

0,0100)()((dpdpdpNpDpD H ++=+=)

1,00,00110)()()((npnpQpNpDpN +=−=)

 45

where

10,0 =d

)2sin(12131,0 td −−=

)2sin(12)2cos(3019
)]4sin(81)2sin(138)4cos(72)2cos(1655[4

2,0 tt
ttttd

−+−
++−+

−=

)]2sin(12)2cos(3019/[))]6sin(36)4sin(561
)2sin(967)6cos(90848(2)4cos(381)2cos(1927[60,0

tttt
ttttn

−+−−−

++−+=

)]2sin(12)2cos(3019/[)]6sin(225)4sin(345
)2sin(2168)6cos(90)4cos(15)2cos(9201916[121,0

tttt
ttttn

−+−+−

+++−=

which is the solution of our original Diophantine equation.

Furthermore, the polynomials and in the controller structure can be

obtained from Eqs. (3.1.15) and (3.4.1) as, respectively,

)(pnu)(pny

100)()()(γγδ +=−= pppDpnu

100 ()(ββ +== ppNpny)

where

)2sin(12180 t−−=γ

)Δ t
tttt

(
)]4sin(324)2sin(480)4cos(288)2cos(84094

1
−−+−

=γ

)Δ ttt
tttt

(/))]6sin(36)4sin(561
)2sin(967)6cos(90848(2)4cos(381)2cos(1927[60

−−
++−+=β

 46

)Δ ttt
tttt

(/)]6sin(225)4sin(345
)2sin(2168)6cos(90)4cos(15)2cos(9201916[121

+−
+++−=β

)2sin(12)2cos(3019(ttt −+−=)Δ

In order to avoid division by , we can change the equations for the blocks

 and in Figure 1, Eqs. (3.1.4) and (3.1.5), to

)Δ t(

uH yH

upBpnvpBpδ
t u)()()()(
)(

1
=

Δ
 (3.6.2a)

ypBpnwpBpδ
t y)()()()(
)(

1
=

Δ
 (3.6.2b)

Since both and contain the factor)(pnu)(pny)(
1
tΔ

, it can be cancelled out on

both sides of the equations (3.6.2a) and (3.6.2b), and thus their implementations would

not create a problem.

With the change introduced in Eq. (3.6.2), it can easily be shown that the closed-

loop system equation becomes (instead of Eq. (3.1.13))

rpBpδ
t

yppδ)()(
)(

1)()(
Δ

=α (3.6.3)

To do away with the division by , let the reference input be)(tΔ

)()()()(21 trtrttr += Δ (3.6.4)

Substituting Eq. (3.6.4) into Eq. (3.6.3) yields

)]()()(
)(

1)([)()()(

)]()()()[()(
)(

1)()(

21

21

trpBpδ
t

tgtrpBpδ

trtrtpBpδ
t

yppδ

Δ

Δ
Δ

++=

+=α
 (3.6.5)

 47

where

)]()()(
)(

1)[()(1 tpBpδ
t

trtg Δ
Δ

=

Selecting in such a way that the bracketed term in Eq. (3.6.5) vanishes will

yield the final closed-loop system equation

)(2 tr

)()()()()()(1 trpBpδtyppδ =α (3.6.6)

or

)()()()(1 trpBtyp =α (3.6.7)

)(2 tr can be found from the following differential equation

)()()()()(2 tgttrpBpδ Δ−=

or

)]()()()[()()()(12 tpBttrtrpBpδ Δδ−= (3.6.8)

In our example, Eq. (3.6.8) reads

)]2sin(18276)2cos(1668114)[()()6116(12
23 tttrtrppp +−−−=+++

 48

CHAPTER 4

SETTING UP CANONICAL FORMS FOR LINEAR TIME-VARYING SYSTEMS
FROM A DIFFERENTIAL EQUATION DESCRIPTION

In this chapter, a derivation of the observer and observability canonical forms

starting from a single differential equation description is developed for linear time-

varying systems. Initial condition conversions between the canonical forms and the

differential equation description are given. With the help of the derived canonical

forms, simulations of systems given by linear time-varying differential equations are

greatly facilitated. General formulas for the canonical forms as well as their

corresponding initial condition conversions are given.

4.1 Linear Time-Varying Systems Representations

Consider an nth order linear time-varying differential equation

)()()()()()()()()()(

)()()()()()()()()()(
)0()1(

1
)2(

2
)1(

1
)(

0

)0()1(
1

)2(
2

)1(
1

)(
0

tutbtutbtutbtutbtutb

tytatytatytatytatyta

nn
nnn

nn
nnn

++⋅⋅⋅+++=

++⋅⋅⋅+++

−
−−

−
−−

 (4.1.1)

, 1)(0 =ta

where u(t) is the input, y(t) is the output, the superscript (k), k=0, … , n,

indicates the kth time-derivative, and and , , i=0, … , n, are continuously

differentiable functions of time. The coefficient is assumed to be unity without loss

of generality. This system can be equivalently represented by a state variable

description [29]. (The time argument t is dropped for brevity):

)(tai)(tbi

0a

 49

DuCxy
BuAxx

+=
+=&

 (4.1.2)

where u and y are scalars, x is an n-vector, a dot represents differentiation with

respect to time, and A, B, C, D are n× n, n× 1, 1× n and 1× 1 matrices, respectively.

To obtain a state variable description of Eq. (4.1.2) from the differential

description of Eq. (4.1.1), we propose here two different derivations. The first

derivation is described in Section 4.2 which generates the “observability” canonical

form. The second derivation described in Section 4.3 leads to the “observer” canonical

form. Initial condition conversions for the two derived canonical forms are treated in

Sections 4.4.

4.2 Observability Canonical Form of Linear Time-Varying Systems

The procedure of setting up the observability form is outlined below:

Rename Eq. (4.1.1) as

)0(
0,

)1(
0,1

)2(
0,2

)1(
0,1

)(
0,0

)0()1(
1

)2(
2

)1(
1

)(

ububububub

yayayayay

nn
nnn

nn
nnn

++⋅⋅⋅+++=

++⋅⋅⋅+++

−
−−

−
−−

 (4.2.1)

where

 , i = 0, 1, 2, …, n. (4.2.2) ii bb =0,

The second subscript “0” in the coefficients b’s is used to indicate the step

number in the recursive process that follows.

Step 1 : Let the first state variable be defined as a linear combination of y and

u, i.e.

1x

ubyx 0,01 −= (4.2.3a)

 50

The output equation becomes

ubxy 0,01 += (4.2.3b)

Substituting y in Eq. (4.2.3b) into Eq. (4.2.1) yields

ubububub

xaxaxaxax

nn
nn

nn
nnn

1,
)1(

1,1
)2(

1,2
)1(

1,1

1
)1(

11
)2(

12
)1(

11
)(

1

++++=

+++++

−
−−

−
−−

L

L
 (4.2.4)

where the coefficients of are given by)(iu

)(
0,0

0
0,1,

k
kin

in

k
inin ba

i
ik

bb −−

−

=
−− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−= , i = 0, 1, 2, …, n-1. (4.2.5)

Notice that the order of the highest derivative of u in Eq. (4.2.4) is reduced to n-

1.

Step 2 : Assigning the second state variable as 2x

ubxx 1,1
)1(

12 −= (4.2.6a)

leads to the state variable equation

ubxx 1,12
)1(

1 += (4.2.6b)

Substituting all the derivatives of in Eq. (4.2.4) with the help of Eq. (4.2.6b)

gives rise to

1x

][2,
)1(

2,1
)2(

2,21

21
)2(

21
)1(

2

ubububxa

xaxax

nn
n

n

n
nn

++++−=

+++

−
−

−
−−

L

L
 (4.2.7)

where the coefficients of are given by)(iu

)(
1,11

1

0
1,2,

k
kin

in

k
inin ba

i
ik

bb −−−

−−

=
−− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−= , i = 0, 1, 2, …, n-2. (4.2.8)

 51

Notice that the order of the differential equation (4.2.7) is further reduced by

one.

Step 3 : Assign the third state variable as 3x

ubxx 2,2
)1(

23 −= (4.2.9a)

Then, the state variable equation for becomes 2x

ubxx 2,23
)1(

2 += (4.2.9b)

Substituting all the derivatives of in Eq. (4.2.7) with the help of Eq. (4.2.9b)

results in

2x

][][3,
)1(

3,1
)3(

3,3121

32
)3(

31
)2(

3

ubububxaxa

xaxax

nn
n

nn

n
nn

++++−−=

+++

−
−

−

−
−−

L

L
 (4.2.10)

where the coefficient of are given by)(iu

)(
2,22

2

0
2,3,

k
kin

in

k
inin ba

i
ik

bb −−−

−−

=
−− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−= , i = 0, 1, … , n-3. (4.2.11)

Step 4 : Continue on with the above procedure until the nth state variable is

reached and is defined as

nx

ubxx nnnn 1,1
)1(

1 −−− −= (4.2.12)

Then, the following equation is obtained (similar to Eqs. (4.2.7) and (4.2.10)):

ubxaxaxaxaxa
xax

nnnnnnn

nn

,121322312

1
)1(

][+−−−−−−=
+

−−−− L
 (4.2.13)

Step 5 : Collecting Eqs. (4.2.3b), (4.2.6b), (4.2.9b) on up to (4.2.13) yields the

state variable description in the “observability” form.

 52

u

b
b

b
b

x
x

x
x

aaaax
x

x
x

nn

nn

n

n

nnn

n

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

−

,

1,1

2,2

1,1

1

2

1

121

1

2

1

1000
0

100
0010

MM

L

L

OOMM

MO

L

&

&

M

&

&

 (4.2.14a)

ubxy 0,01 += (4.2.14b)

where , v= 1, 2, … , n (4.2.15))(
1,11

1

0
1,,

k
k

k
ba

n
nk

bb −−−
=

− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

−= νννννν ν
ν

in which the general formula for the coefficients b’s are given by

)(
,

0
,1,

k
jjkijn

ijn

k
jinjin ba

i
ik

bb −−−

−−

=
−+− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−= (4.2.16)

 j = 0, 1, … , n-1 and i = 0, 1, … , n-j-1

The realization block diagram for Eq. (4.2.14) is shown in Figure 4.1, which is

exactly the same structure as in the linear time invariant case.

Figure 4.1. Observability canonical form

 53

4.3 Observer Canonical Form of Linear Time-Varying Systems

The procedure of setting up the observer form is as follows:

Rename Eq. (4.1.1) as

)0(
0,

)1(
0,1

)2(
0,2

)1(
0,1

)(
0,0

)0(
0,

)1(
0,1

)2(
0,2

)1(
0,1

)(

ububububub

yayayayay

nn
nnn

nn
nnn

++⋅⋅⋅+++=

++⋅⋅⋅+++

−
−−

−
−−

 (4.3.1)

where

ii aa =0, , i = 0, 1, 2, …, n (4.3.2a)

ii bb =0, , i = 0, 1, 2, …, n. (4.3.2b)

The second subscript “0” in the coefficients a’s and b’s is used to indicate the

step number in the recursive process that follows.

Step 1 : Let the first state variable be defined as 1x

ubyx 0,01 −= (4.3.3a)

The output equation becomes

ubxy 0,01 += (4.3.3b)

Differentiating Eq. (4.3.3b) n times yields

)()(
0,0

0

)(
1

)(kkn
n

k

nn ub
k
n

xy −

=
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= (4.3.4)

Substituting in Eq. (4.3.4) into Eq. (4.3.1) yields)(ny

∑∑

∑∑∑
−

=
−

−

=
−

=
−

=

−
−

=
−

+−=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

1

0

)(
1,

1

0

)(
1,

0

)(
0,

0

)()(
0,0

1

0

)(
0,

)(
1

n

k

k
kn

n

k

k
kn

n

k

k
kn

n

k

kkn
n

k

k
kn

n

ubya

ubub
k
n

yax
 (4.3.5)

 54

where the coefficients of and are given by)(ky)(ku

)(
0,00,1,

kn
knkn a

k
n

aa −
−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=& , k = 0, 1, 2, …, n-1 (4.3.6a)

)(
0,00,1,

kn
knkn b

k
n

bb −
−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=& , k = 0, 1, 2, …, n-1 (4.3.6b)

Notice that the orders of the derivatives of y and u in Eq. (4.3.5) are reduced by

one in comparison to Eq. (4.3.1), respectively. Rewrite Eq. (4.3.5) as

∑∑
−

=
−

−

=
−

−− +−+−=
2

0

)(
1,

2

0

)(
1,

)1(
1,1

)1(
1,1

)(
1

n

k

k
kn

n

k

k
kn

nnn ubyaubyax (4.3.7)

Consider the first two R.H.S. terms of Eq. (4.3.7), and . They

can be rewritten as

)1(
1,1

−− nya)1(
1,1

−nub

)()1(
1,1

2

0

)1(
1,1

)1(
1,1

1
)(kkn

n

k

nn ya
k

n
yaya −−

−

=

−− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=− (4.3.8a)

)()1(
1,1

2

0

)1(
1,1

)1(
1,1

1
)(kkn

n

k

nn ub
k

n
ubub −−

−

=

−− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= (4.3.8b)

Eliminating and from Eqs. (4.3.7) and (4.3.8) yields)1(
1,1

−− nya)1(
1,1

−nub

]
11

[

)()(

)()1(
1,1

2

0

)()1(
1,1

2

0

2

0

)(
1,

2

0

)(
1,

)1(
1,1

)1(
1,1

)(
1

kkn
n

k

kkn
n

k

n

k

k
kn

n

k

k
kn

nnn

ub
k

n
ya

k
n

ubya

ubyax

−−
−

=

−−
−

=

−

=
−

−

=
−

−−

∑∑∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
++−+

+−=

 (4.3.9)

Let the square bracketed term on the R.H.S. of Eq. (4.3.9) be defined as the (n-

1)th derivative of the second state variable , i.e. 2x

 55

∑∑

∑∑
−

=
−

−

=
−

−

=

−−
−

−

=

−−
−

−

+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−−=

2

0

)(
2,

2

0

)(
2,

2

0

)()1(
1,11,

2

0

)()1(
1,11,

)1(
2

][][

]
1

[]
1

[

n

k

k
kn

n

k

k
kn

n

k

kkn
kn

n

k

kkn
kn

n

ubya

ub
k

n
bya

k
n

ax
 (4.3.10)

where the coefficients of and are given by)(ky)(ku

)1(
1,11,2,

1 kn
knkn a

k
n

aa −−
−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=& , k = 0, 1, 2, …, n-2 (4.3.11a)

)1(
1,11,2,

1 kn
knkn b

k
n

bb −−
−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=& , k = 0, 1, 2, …, n-2 (4.3.11b)

Notice that the orders of derivatives of y and u in Eq. (4.3.10) are further

reduced by one, respectively.

Then, Eq. (4.3.9) becomes

)1(
2

)1(
1,1

)1(
1,1

)(
1)()(−−− ++−= nnnn xubyax (4.3.12)

On integrating Eq. (4.3.12) n-1 times under zero initial conditions, we obtain the

state differential equation for the first state variable

21,11,1
)1(

1 xubyax ++−= (4.3.13a)

Substituting for y from Eq. (4.3.3b) yields

21,10,01,111,1
)1(

1)(xubbaxax ++−+−= (4.3.13b)

Step 2 : Rewrite Eq. (4.3.10) as

∑∑
−

=
−

−

=
−

−−− +−+−=
3

0

)(
2,

3

0

)(
2,

)2(
2,2

)2(
2,2

)1(
2][][

n

k

k
kn

n

k

k
kn

nnn ubyaubyax (4.3.14)

Consider the first two R.H.S. terms of Eq. (4.3.14), and .

They can be rewritten as

)2(
2,2

−− nya)2(
2,2

−nub

 56

)()2(
2,2

3

0

)2(
2,2

)2(
2,2

2
)(kkn

n

k

nn ya
k

n
yaya −−

−

=

−− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=− (4.3.15a)

)()2(
2,2

3

0

)2(
2,2

)2(
2,2

2
)(kkn

n

k

nn ub
k

n
ubub −−

−

=

−− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= (4.3.15b)

Eliminating and from Eqs. (4.3.14) and (4.3.15) yields)2(
2,2

−− nya)2(
2,2

−nub

]
22

[

)()(

)()2(
2,2

3

0

)()2(
2,2

3

0

3

0

)(
2,

3

0

)(
2,

)2(
2,2

)2(
2,2

)1(
2

kkn
n

k

kkn
n

k

n

k

k
kn

n

k

k
kn

nnn

ub
k

n
ya

k
n

ubya

ubyax

−−
−

=

−−
−

=

−

=
−

−

=
−

−−−

∑∑∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
++−+

+−=

 (4.3.16)

Let the square bracketed term from the R.H.S. of Eq. (4.3.16) be defined as the

(n-2)th derivative of the third state variable , i.e. 3x

 (4.3.17)

∑∑

∑∑
−

=
−

−

=
−

−

=

−−
−

−

=

−−
−

−

+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−−=

3

0

)(
3,

3

0

)(
3,

3

0

)()2(
2,22,

3

0

)()2(
2,22,

)2(
3

][][

]
2

[]
2

[

n

k

k
kn

n

k

k
kn

n

k

kkn
kn

n

k

kkn
kn

n

ubya

ub
k

n
bya

k
n

ax

where the coefficients of and are given by)(ky)(ku

)2(
2,22,3,

2 kn
knkn a

k
n

aa −−
−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=& , k = 0, 1, 2, …, n-3 (4.3.18a)

)2(
2,22,3,

2 kn
knkn b

k
n

bb −−
−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=& , k = 0, 1, 2, …, n-3 (4.3.18b)

Again, the order of derivatives of y and u in Eq. (4.3.17) are further reduced by

one, respectively.

Eq. (4.3.16) becomes

 57

)2(
3

)2(
2,2

)2(
2,2

)1(
2)()(−−−− ++−= nnnn xubyax (4.3.19)

Integrating Eq. (4.3.19) n-2 times leads to

32,22,2
)1(

2 xubyax ++−= (4.3.20a)

Utilizing Eq. (4.3.3b) yields the second state differential equation:

32,20,02,212,2
)1(

2)(xubbaxax ++−+−= (4.3.20b)

Step 3 : Continue on with the same process as in Steps 1 and 2 until the

derivative of the (n-1)th state variable is reached (in a pattern similar to Eqs.

(4.3.12) and (4.3.19))

1−nx

)1()1(
1,1

)1(
1,1

)2(
1)()(nnnnnn xubyax ++−= −−−−− (4.3.21)

Integrating Eq. (4.3.21) and utilizing Eq. (4.3.3b) results in

nnnnnnnn xubbaxax ++−+−= −−−−−−−)(1,10,01,111,1
)1(
1 (4.3.22)

Then, the last state variable equation is obtained as

ubbaxax nnnnnnn)(,0,0,1,
)1(+−+−= (4.3.23)

Step 4 : Collecting Eqs. (4.3.3b), (4.3.13b), (4.3.20b) on up to (4.3.23) yields the

sought-after state variable description in the “observer” form.

u

bba
bba

bba
bba

x
x

x
x

a
a

a
a

x
x

x
x

nnnn

nnnn

n

n

nn

nn

n

n

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
+−

+−
+−

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

,0,0,

1,10,01,1

2,20,02,2

1,10,01,1

1

2

1

,

1,1

2,2

1,1

1

2

1

000
10
00

10
001

MM

L

OO

OMM

MO

L

&

&

M

&

&

 (4.3.24a)

ubxy 0,01 += (4.3.24b)

where
 58

)1(
1,11,,

1
−−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+−

−= νννννν ν
ν

a
n

n
aa , v= 1, 2, … , n (4.3.25a)

)1(
1,11,,

1
−−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+−

−= νννννν ν
ν

b
n

n
bb , v= 1, 2, … , n (4.3.25b)

in which the general formulas for the coefficients a’s and b’s are given by

)(
,,1,

kjn
jjjknjkn a

k
jn

aa −−
−+− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−= (4.3.26a)

)(
,,1,

kjn
jjjknjkn b

k
jn

bb −−
−+− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−= (4.3.26b)

 j = 0, 1, … , n-1 and k = 0, 1, … , n-j-1

The realization block diagram of Eq. (4.3.24) is shown in Figure 4.2. , which is

exactly the same structure as in the linear time invariant case.

Figure 4.2. Observer canonical form

 59

4.4 Initial Condition Conversion

4.4.1 Initial condition conversion for observability canonical form

The objective here is to set up the equation

TuOxy += (4.4.1)

where

Tnyyy][)1()1(−= Ly (4.4.2a)

T
nxxx][21 L=x (4.4.2b)

Tnuuu][)1()1(−= Lu (4.4.2c)

The matrices O and T are both n× n. In the time-invariant case, O is the

observability matrix and T is the Toeplitz matrix [1]. To begin with, we differentiate

Eq. (4.2.14b) repeatedly to obtain, with the help of Eq. (4.2.14a),

)1(
0,01,12

)1(
0,0

)1(
1

)1(][][ububxubxy ++=+= (4.4.3a)

)2(
0,0

)1(
1,12,23

)2(
0,0

)1(
1,1

)1(
2

)2(][][][][ubububxububxy +++=++= (4.4.3b)

)3(
0,0

)2(
1,1

)1(
2,23,34

)3(
0,0

)2(
1,1

)1(
2,2

)1(
3

)3(

][][][

][][][

ububububx

ubububxy

++++=

+++=
 (4.4.3c)

 M

∑
−

=
−−−−

− +=
1

0

)(
1,1

)1(][
i

k

k
kikii

i ubxy (4.4.3d)

 M

∑
−

=
−−−−

− +=
1

0

)(
1,1

)1(][
n

k

k
knknn

n ubxy (4.4.3e)

 60

Using binomial expansion for the derivatives of a product, Eq. (4.4.3d) can be

rewritten as

)()(
1,1

1

0 0

)1(jkj
kiki

i

k

k

j
i

i ub
j
k

xy −
−−−−

−

= =

− ∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= , i = 1, 2, …, n (4.4.4)

which can further be simplified to

 (4.4.5))1()(
,

0

)1(1 −−−
−

=

− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

+= jkji
kk

ji

k
i

i ub
kji

ki
xy

i=1, 2, …, n and j=1, 2, …, i

Eq. (4.4.5) can be arranged in matrix form as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−−−

−

−

−

−−−−

−

−

−

)1(

)2(

)1(

,1,2,1,

,11,11,1

,22,21,1

,11,12,11,1

1

2

1

,1,2,1,

,11,11,1

,22,21,2

,11,12,11,1

)1(

)2(

)1(

n

n

nnnnnn

nnnnn

n

nn

n

n

nnnnnn

nnnnn

n

nn

n

n

u
u

u
u

tttt
ttt

ttt
tttt

x
x

x
x

y
y

y
y

M

L

OM

MOOOM

LO

L

M

L

OM

MOOOM

LO

L

M

οοοο
οοο

οοο
οοοο

 (4.4.6)

where

⎩
⎨
⎧

=
≠

=
ji
ji

ji ,1
,0

,ο (4.4.7a)

⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

<
= −−

−

=
∑ jib

kji
ki

ji
t kji

kk

ji

k

ji ,
1

,0
)(

,
0

, (4.4.7b)

 61

Setting t=0 and noting that yields the initial

condition conversion

0)0()0()0()1()1(==== −nuuu L

)0()0(

)0(x
)0(x

)0(x
)0(x

1000
01000

0010
0001

)0(y
)0(y

)0(y
)0(y

)0(

n

1n

2

1

)1n(

)2n(

)1(

xOy =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−

−

M

L

MMOMM

L

L

M (4.4.8)

Remarks :

(a) Matrix O(0) is the identity matrix, which is the same as in the linear

time-invariant case.

(b) For implementation, the initial conditions of x(0) can be injected at the

outputs of the integrators as shown in Figure 4.3.

Figure 4.3. Observability canonical form with initial condition

 62

4.4.2 Initial condition conversion for observer canonical form

Differentiating Eq. (4.3.24b) once gives

)1(
0,0

)1(
1

)1(][ubxy += (4.4.9)

Substituting for from the state differential equation (4.3.24a) yields)1(
1x

)1(
0,01,1

)1(
0,00,01,1211,1

)1(][ububbbaxxay +++−++−= (4.4.10)

Differentiate Eq. (4.4.10) one more time and substituting for from Eq.

(4.3.24a) gives

)1(
2x

)2(
0,0

)1()1(
0,01,10,01,1

)2(
0,0

)1(
1,1

)1(
0,0

)1(
1,12,20,02,21,11,10,0

2
1,1

321,112,2
)1(

1,1
2

1,1

)1()1(
0,0

)1(
1,1

)1(
0,00,01,1

)1(
2

)1(
11,1

)2(

]2[

][

][

][}]{[][

ububbba

ubbbabbababa

xxaxaaa

ububbbaxxay

+++−+

+++++−+

+−−−=

+++−++−=

 (4.4.11)

Continue on in this fashion, the (i-1)th derivative, , can be formed as)1(−iy

)1(

1
,

1
,

)1(−

==

− ∑∑ += j
i

j
jij

i

j
ji

i utxy ο (4.4.12)

i=1, 2, …, n and j=1, 2, …, i

where

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−==+

==−

=
<

=

−−−

−

=
−− ∑

1,,3,2,,,3,2,

1,,,3,2,

,1
,0

1,1,1

1

1
,,11,1

,

ijandni

jandnia

ji
ji

jiji

i

k
kkkii

ji

LL&

L&

οο

οο
ο (4.4.13a)

 63

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−==+

==+−+

=
<

=

−−−

−

=
−− ∑

1,,3,2,,,3,2,

1,,,3,2,)(

,
,0

1,1,1

1

1
,0,0,,11,1

0,0

,

ijandnitt

jandnibbat

jib
ji

t

jiji

i

k
kkkkkii

ji

LL&

L& ο

 (4.4.13b)

and and are given by Eq. (4.3.25). kka , kkb ,

Setting t=0 and noting that yields the initial

condition conversion

0)0()0()0()1()1(==== −nuuu L

)0()0(

)0(x
)0(x

)0(x
)0(x

1)0()0()0(
01)0(

001)0(
0001

)0(y
)0(y

)0(y
)0(y

)0(

n

1n

2

1

1n,n2,n1,n

1,1n

1,2

)1n(

)2n(

)1(

xOy =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

οοο
ο

ο

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−
−

−

M

L

OM

MOOOM

O

L

M
 (4.4.14)

where ji,ο are defined in Eq. (4.4.13a).

Remarks :

(a) Notice that matrix O(0) is always invertible. It reduces to the well-

known observability matrix of the “observer” form in the linear time-invariant case

[1].

(b) The initial conditions of x(0) can be injected at the outputs of the

integrators as shown in Figure 4.4.

 64

Figure 4.4. Observer canonical form with initial condition

 65

CHAPTER 5

CASE STUDY

In this Chapter, the methods which were introduced before will be simulated in

MATLAB - including Diophantine equation order reduction, pole-placement with

combined observer-controller and two canonical forms. Since there is no general

systematic approach for LTV systems, for the purpose of comparison, a second-order

nonlinear system plant is selected for demonstration of simulations. In Section 5.1, the

design procedures of pole-placement with combined observer-controller design will be

demonstrated with the help of Diophantine equation order reduction and canonical

forms of observability and observer. Then, the design procedures from existing well-

known methods: input-state feedback linearization and input-output feedback

linearization will be applied to the same plant in Section 5.2 and 5.3, respectively. All

simulation results from Simulink in MATLAB are shown in Section 5.4.

 5.1 Pole-Placement with Combined Observer-Controller

Consider a second-order nonlinear system plant (in p.213 in [35]) having state-

variable equations:

1211 sin2 xxxx ++−=& (5.1.1a)

)2cos(cos 1122 xuxxx +−=& (5.1.1b)

 66

For describing this plant in a single differential equation in Eq. (3.1.1), let

yx =1 (5.1.2a)

yyyx sin22 −+= & , (5.1.2b)

and its corresponding differential equation can be derived as follows:

uyy
y

yyyyy)2cos()cossincos2(2 =−++ &&& (5.1.3)

Comparing with Eq. (4.1.1), all of the coefficients can be found as

10 =a (5.1.4a)

21 =a (5.1.4b)

y
yyya cossincos22 −= (5.1.4c)

00 =b (5.1.4d)

01 =b (5.1.4e)

)2cos(2 yb = (5.1.4f)

Notice that the convention of subscripts in the coefficients a’s and b’s are

different between Eq. (3.1.1) and Eq. (4.1.1). This is caused by the difference in degree

requirements. The convention in Eq. (4.1.1) is adopted here for demonstrating the

simulation.

 67

Placing the closed-loop poles at)1(js ±−= , and the observer poles at

and , respectively, leads

2−=s

3−=s)(pα ,)(pδ and in Eq. (3.1.15c) to)(pF

)1)(1(jpjpp −+++=)(α

)3)(2(++= ppp)(δ

1222187
)1)(1)(3)(2(

)()()(

234 ++++=

−+++++=
=

pppp
jpjppp

pppF αδ

Referencing Eq. (3.4.5), the Diophantine equation can be written in matrix form

as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++
+

12
22
18
7
1

6
5

1

02
002
000
0000

1

0

1

0

22222

212121

0121

01

0

β
β
γ
γ

bbaaa
baaaaa

aaaa
aa

a

&&&&

&&&&

&

Applying Diophantine equation order reduction, the unknowns 0γ , 1γ , 0β and

1β will be solved as

00 =γ

21 2 a−=γ

22220 /)25210(baa γβ −−−= &

211222221 /)6512(bbaaaa βγβ &&&& −−−−−=

 68

5.1.1 Design Procedure for Observability Canonical Form

There are three blocks: plant, and in Figure 3.1. Each block has its own

input and output. The new state variables for each block can be generated by setting up

Observability canonical form as described in Chapter 4.

uH yH

5.1.1.1 Setting up Observability Canonical Form for the Plant

According to Eq. (3.1.1), the differential equation of the plant is

ubyayay 221 =++ &&&

Let plantplant xubxy _10_1 =+=

The state variables in observability canonical form associated to the plant can be

found with the help of Eq. (4.2.14),

plantplant xx _2_1 =& (5.1.5a)

ubxaxax plantplantplant 2_21_12_2 +−−=& (5.1.5b)

When assigning and 5.0)0(=y 0.0)0(=y& the initial values of and

 in Eq. (5.1.5) can be found as

plantx _1

plantx _2

5.0)0()0(_1 == yx plant

0.0)0()0()0(_1_2 === yxx plantplant &&

5.1.1.2 Setting up Observability Canonical Form for uH

From Eq. (3.1.4), the differential equation of is uH

uv
b
b

b
b

v
b
b

v 2
2

2

2

2

2

2)6
5

()5
2

(γ=+++++
&&&

&
&

&&

 69

To find the state variables in observability canonical form associated to ,

first let . Applying Eq. (4.2.14) yields

uH

HuHu xubxv _10_1 =+=

HuHu xx _2_1 =&

ux
b
bx

b
b

b
bx HuHuHu 2_2

2

2
_1

2

2

2

2
_2)52()65(γ++−++−=

&&&&
&

5.1.1.3 Setting up Observability Canonical Form for yH

From Eq. (3.1.5), the differential equation of is yH

y
b
b

yw
b
b

b
b

w
b
b

w)()6
5

()5
2

(2
2

21
1

2

2

2

2

2

2 β
β

β ++=+++++
&

&
&&&

&
&

&&

To find the state variables in observability canonical form associated to , let

. Applying Eq. (4.2.14) leads to

yH

Hyxw _1=

yxx HyHy 1_2_1 β+=&

y
b
b

b
bx

b
bx

b
b

b
bx HyHyHy])52()[()52()65(1

2

2
12

2

21
_2

2

2
_1

2

2

2

2
_2 ββββ

+−−+++−++−=
&

&
&&&&&

&

5.1.1.4 Setting up Observability Canonical Form for Equivalent Overall System

From Eq. (3.1.14), the differential equation of the equivalent overall system is

rbyy 222 =++ &&&

To find the state variables in observability canonical form associated to the

equivalent overall system, let equxy _1= . Applying Eq. (4.2.14) results in

equequ xx _2_1 =&

γ2__2__1_2 22 bxxx equequequ +−−=&

 70

The initial values are

5.0)0()0(_1 == yx equ&

0)0()0()0(_1_2 === yxx equequ &&

5.1.2 Design Procedure for Observer Canonical Form

The state variables for plant, and will be discussed in the following

three sections. Also, the state variables in equivalent overall combined observer-

controller is discussed in Section 5.1.2.4.

uH yH

5.1.2.1 Setting up Observer Canonical Form for the Plant

According to Eq. (3.1.1), the differential equation of the plant is

ubyayay 221 =++ &&&

Let plantplant xubxy _10_1 =+=

The state variables in observer canonical form associated to the plant can be

found, with the help of Eq. (4.3.24), as

plantplantplant xxax _2_11_1 +−=& (5.1.6a)

ubxax plantplant 2_12_2 +−=& (5.1.6b)

When assigning and 5.0)0(=y 0.0)0(=y& the initial values of in Eq.

(5.1.6a) can be found as

plantx _1

5.0)0()0(_1 == yx plant

Knowing 0)0()0()0()0(_2_11_1 =+−== plantplantplant xxaxy && leads to

0.1)0(_2 =plantx

 71

5.1.2.2 Setting up Observer Canonical Form for uH

From Eq. (3.1.4), the differential equation of is uH

uv
b
b

b
bv

b
bv 2

2

2

2

2

2

2)65()52(γ=+++++
&&&

&
&

&&

To find the state variables in observer canonical form associated to , first let

. Applying Eq. (4.3.24) yields

uH

HuHu xubxv _10_1 =+=

HuHuHu xx
b
bx _2_1
2

2
_1)52(++−=

&
&

ux
b
b

b
b

b
bx HuHu 2_1

)1(

2

2

2

2

2

2
_2])52(65[γ++−++−=

&&&&
&

5.1.2.3 Setting up Observer Canonical Form for yH

From Eq. (3.1.5), the differential equation of is yH

y
b
byw

b
b

b
bw

b
bw)()65()52(2

2

21
1

2

2

2

2

2

2 β
β

β ++=+++++
&

&
&&&

&
&

&&

To find the state variables in observer canonical form associated to , let

. Applying Eq. (4.3.24) leads to

yH

Hyxw _1=

yxx
b
bx HyHyHy 1_2_1
2

2
_1)52(β+++−=

&
&

y
b
bx

b
b

b
b

b
bx HyHy)(])52()65[(12

2

21
_1

)1(

2

2

2

2

2

2
_2 βββ &

&&&&&
& −+++−++−=

5.1.2.4 Setting up Observer Canonical Form for Equivalent Overall System

From Eq. (3.1.14), the differential equation of the equivalent overall system is

 72

rbyy 222 =++ &&&

To find the state variables in observer canonical form associated to the

equivalent overall system, let equxy _1= . Applying Eq. (4.3.24) results in

equequequequequ xxxxax _2_1_2_11_1 2 +−=+−=&

γ2__1_2 2 bxx equequ +−=&

The initial values are

5.0)0()0(_1 == yx equ&

0.1)0(2)0()0(_1_1_2 =+= equequequ xxx &

5.2 Input-State Feedback Linearization

Choosing new states from Eq. (5.1.1), with the method of input-state, produces

11 xz =

)sin(2 1212 xxxz ++−=

Their derivatives are

211 zxz == &&

vz
zuzzzzzz

+−=
++−−=

2

1111122

2
)2cos()cos()sin()cos(22&

respectively, where

)2cos()cos()sin()cos(2 11111 zuzzzzv ++−=

Computing the state transformation yields

 73

v
z
z

z
z

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
1
0

20
10

2

1

2

1

&

&

For the purpose of comparison, we can apply the same initial condition and

place the poles as indicated in the Section 5.1.1.1 and 5.1.2.1. The poles are placed at

. The initial condition of and can be derived from Eqs. (5.1.2a) and

(5.1.2b) with t=0 as

)1(js ±−= 1x 2x

5.0)0()0(_1 ==− yx stateinput

5205744614.0))0(sin()0(2)0()0(_2 =−+=− yyyx stateinput &

5.3 Input-Output Feedback Linearization

Considering the state variables in Eq. (5.1.1), we have the choice of

diffeomorphism such that

1xy = (5.3.1a)

1211 sin2 xxxxy ++−== && (5.3.1b)

v
xxxuxxxxy

=
++−−==)cos()2cos()cos(2 1111211 &&&&&& (5.3.1c)

Using the concept of state-feedback linearization, we choose

)]cos()cos(2[
)2cos(

1
11121

1

xxxxxv
x

u && −++=

yyv 22 −−= & when place poles at)1(js ±−=

 74

Assigning the same initial condition in Sections 5.1.1.1 and 5.1.2.1, that is

 and . The initial condition of and can be found in Eqs.

(5.3.1a) and (5.3.1b) with t=0 as

5.0)0(=y 0)0(=y& 1x 2x

5.0)0()0(_1 ==− yx outputinput

5205744614.0)0(_2 =−outputinputx

5.4 Simulations

Figure 5.1 to 5.20 show the signal waveforms of the simulation of the four

methods. Zero input is applied to all simulation cases. The simulation case and their

results for this example are summarized in table 5.1.

 Table 5.1 Simulation cases for example in Section 5.1

Method Initial condition Simulation plots
Figure 5.1
Figure 5.2
Figure 5.3 5.0)0()0(_1 == yx plant

Figure 5.4
Pole-placement using
Observability form 0)0()0(_2 == yx plant &

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

 5.0)0()0(_1 == yx plant

Figure 5.10
Pole-placement using
Observer form

 0)0(=y&

Figure 5.11
 0.1)0(_2 =plantx

Figure 5.12
Figure 5.16 Input-state 5.0)0()0(1 == yx

 5205744614.0)0(2 =x Figure 5.17 Input-output

 75

Figure 5.1 to 5.4 show the results from combined observer-controller in

observability form including the states in all sub block diagrams. The output response

from the equivalent overall system in observability form is plotted in Figure 5.5. Figure

5.6 shows the difference of output responses between observability form and the

equivalent overall system. The difference is caused by the transient signal)(tζ as

indicated in Eq. (3.1.14).

Figure 5.7 to 5.10 illustrate the results from combined observer-controller in

observer form including the states in all sub block diagrams. The output response of the

equivalent overall system in observer form is shown in Figure 5.11. Figure 5.12 shows

the difference of output responses between observer form and the equivalent overall

system which is produced by the transient signal)(tζ as indicated in Eq. (3.1.14).

Figure 5.13 shows the output responses of observability and observer are identical.

Figure 5.15 shows the difference of output responses from two equivalent overall

systems. It is zero as expected.

The signal waveforms from input-state and input-output are plotted in Figure

5.16 and 5.17, respectively. The comparisons of combined observer-controller in two

forms, input-state and input-output are shown in from Figure 5.18 to 5.20. The

difference of output responses among equivalent overall system, input-state and output-

state are zero in Figure 5.20 since they have same pole locations and initial conditions.

 76

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

y

w

v

u

Figure 5.1. The zero input responses of the combined observer-controller in
observability form with initial conditions: and 5.0=y 0=y&

 77

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

x1plant

x2plant

 Figure 5.2. The zero input responses of the plant state variables in combined observer-
controller in observability form with initial conditions: and 5.0)0(_1 =plantx

0.0)0(_2 =plantx

 78

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

x1Hu

x2Hu

Figure 5.3. The zero input responses of the state variables in block in combined
observer-controller in observability form

uH

 79

0 1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

0.5

time in second

x1Hy

x2Hy

Figure 5.4. The zero input responses of the state variables in block in combined
observer-controller in observability form

yH

 80

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

y=x1
equ

x2
equ

Figure 5.5. The zero input responses of the equivalent overall combined observer-
controller in observability form with initial conditions: and 5.0)0(=y 0)0(=y&

 81

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

y

yequ

yequ-y

 Figure 5.6. The differences of responses between the combined observer-controller in
observability form and its equivalent overall system with initial conditions:

and
5.0)0(=y

0)0(=y&

 82

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

w

u

v

y

Figure 5.7. The zero input responses of the combined observer-controller in observer
form with initial conditions: and 5.0=y 0=y&

 83

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

time in second

x1plant

x2plant

 Figure 5.8. The zero input responses of the plant state variables in combined observer-
controller in observer form with initial conditions: and 5.0)0(_1 =plantx 0.1)0(_2 =plantx

 84

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

x1Hu

x2Hu

Figure 5.9. The zero input responses of the state variables in block in combined
observer-controller in observer form

uH

 85

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

time in second

x2Hy

x1Hy

Figure 5.10. The zero input responses of the state variables in block in combined
observer-controller in observer form

yH

 86

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

time in second

x2equ

y=x1equ

Figure 5.11. The zero input responses of the equivalent overall combined observer-
controller in observer form with initial conditions: and 5.0)0(=y 0)0(=y&

 87

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

y

yequ

diff=yequ-y

Figure 5.12. The differences of responses between the combined observer-controller in
observer form and its equivalent overall system with initial conditions: and 5.0)0(=y

0)0(=y&

 88

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

yobserver

yobservability

diff=yobserver-yobservability

Figure 5.13. The differences of output responses between the observability and observer
forms initial conditions: and 5.0)0(=y 0)0(=y&

 89

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

diff=uobserver-uobservability

uobservability

uobserver

Figure 5.14. The differences of responses of the input between the observability and
observer forms initial conditions: and 5.0)0(=y 0)0(=y&

 90

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

yobserver-equ

yobservability-equ

diff=yobservability-equ-yobserver-equ

 Figure 5.15. The differences of responses between the two equivalent overall combined
observer-controller systems with initial conditions: and 5.0)0(=y 0)0(=y&

 91

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time in second

x1input-state

x2input-state

uinput-state

Figure 5.16. The responses of the closed-loop control system using input-state method
with initial conditions: and 5.0)0(_1 =−stateinputx 5205744614.0)0(_2 =−stateinputx

 92

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time in second

x1input-output

x2input-output

uinput-output

Figure 5.17. The responses of the closed-loop control system using input-output method
with initial conditions: and 5.0)0(_1 =−outputinputx 5205744614.0)0(_2 =−outputinputx

 93

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time in second

uobserver

uobservability

uinput-output

uinput-state

Figure 5.18. The signal responses of the inputs u from four methods: combined
observer-controller in observability and observer forms, input-state and input-output

 94

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

x1input-state
x1input-output

yobserver

yobservability

Figure 5.19. The output responses from four methods: combined observer-controller in
observability and observer forms, input-state and input-output

 95

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

x1input-output

x1input-state

yobserver-equ

diff=x1input-state-yobserver-equ

Figure 5.20. The output responses from the equivalent overall combined observer-
controller in observer forms, input-state and input-output

 96

CHAPTER 6

CONCLUSION

A new recursive method to reduce the order of Diophantine equation is

presented. In this method, only inversions of triangular matrices are involved. A

numerical example is given to illustrate the method. Though this approach does not

necessarily offer a computational advantage over the traditional Sylvester matrix

approach, it opens up a possibility of solving a multivariable Diophantine equation in a

systematic manner and involving only the inversion of block triangular matrices.

 The setting up of state-variable description for linear time-varying single-input

single-output systems from an input-output description is also considered. The

derivation of two canonical forms, the observer and the observability canonical forms,

are presented. Formulas for the associated initial condition conversion are given. Block

diagrams for the realization of the state-variable description are the same as those of the

linear time-invariant case, except that the coefficients are time-varying.

 97

APPENDIX A

SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER WITH
OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1

 98

 99

APPENDIX B

SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1

 100

 101

APPENDIX C

SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1

 102

 103

APPENDIX D

SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1

 104

 105

APPENDIX E

SIMULINK DIAGRAM OF EQUIVALENT OVERALL COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1

 106

 107

APPENDIX F

SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER WITH
OBSERVER CANONICAL FORM IN SECTION 5.1.2

 108

 109

APPENDIX G

SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2

 110

 111

APPENDIX H

SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2

 112

 113

APPENDIX I

SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2

 114

 115

APPENDIX J

SIMULINK DIAGRAM OF EQUIVALENT OVERALL COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2

 116

 117

APPENDIX K

SIMULINK DIAGRAM OF INPUT-STATE LINEARIZATION IN SECTION 5.2

 118

 119

APPENDIX L

SIMULINK DIAGRAM OF SUBSYSTEM OF INPUT-STATE LINEARIZATION IN
SECTION 5.2

 120

 121

APPENDIX M

SIMULINK DIAGRAM OF INPUT-OUTPUT LINEARIZATION IN SECTION 5.3

 122

 123

REFERENCES

[1] T. Kailath, Linear systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[2] F.M. Callier and C.A. Desoer, Multivariable feedback systems, New York:

Springer-Verlag, 1982.

[3] P. J. Antsaklis, Proper stable transfer matrix factorizations and internal system

descriptions, IEEE Transactions on Automatic Control, vol. 31, no. 7, pp. 634-638,

July 1986.

[4] H. Cohen. A Course in Computational Number Theory, Springer, 1993.

[5] M. Newman. Integral Matrices. Academic Press (New York), 1972.

[6] P. Gibbons. Computational methods in design theory. In The CRC Handbook of

Combinatorial Designs, edited by C. Colbourn and J. Dinitz, pp. 718-728. CRC

Press, 1996.

[7] C.T. Chen, Linear System Theory and Design, Oxford University Press, NY, 1999.

[8] C.H. Fang, A new method for solving the polynomial generalized Bezout identity.

IEEE Trans. Circuits and Systems, Vol. 39, No. 1, pp.63-65, 1992.

[9] C.H. Fang, A simple approach to solving Diophantine equation. IEEE Trans. on

Automatic Control, 37, pp. 152-155 , 1992.

[10] K.S. Yeung, T.M. Chen, Solving matrix Diophantine equation inverting a square

nonsingular system of equations. IEEE Trans. Circuits and Systems, Vol. 51, No. 9,

pp. 488-495, 2004.
 124

[11] K.S. Yeung, S. Wu and F. Najjar, Diophantine equation order reduction using

Euclidean Algorithm. Journal of Computational Mathematics and Optimization,

Vol. 3, No. 2, pp. 115-128, May 2007.

[12] Michael Alekhnovich, Linear Diophantine equations over polynomials and soft

decoding of Reed-Solomon codes, Proceeding of 43rd annual IEEE Symposium on

Foundations of Computer Science(FOCS’02).

[13] K. H. Plarre, A M Rojas, and R A Rojas, Analytical solution to the Polynomial

Diophantine Equation: Development and Application to Generalized Predictive

Control Analysis, UKACC International Conference on Control ’98, pp. 804-809, 1-

4 Sep. 1998.

[14] Feng Kuo, Chi-Tsong Chen, A Recursive Algorithm for Coprime Fractions and

Diophantine Equation, IEEE Transactions on Automatic Control, vol. 34, no. 12,

pp. 1276-1279, Dec. 1989.

[15] E. W. Kamen, P. P. Khargonekar and K. R. Poola, A transfer-function approach to

linear time-varying discrete-time systems, SIAM J. Control and Optimization, 23,

pp. 550-565, 1985.

[16] J. Jezek and I. Nagy, An algebraic approach to the synthesis of control for linear

time-varying systems on a finite time horizon, Prep. IFAC World, hop on System

Structure and Control, Prague, Czechoslovakia, pp. 63-68, 1989.

[17] V. L. Syrmos and F. L. Lewis, Output feedback eigenstructure assignment using

two Sylvester equations, IEEE Transactions on Automatic Control, vol. 38, no. 3,

pp. 495-499, March 1993.

 125

[18] S. P. Bhattacharrya and E. de Souza, Pole assignment via Sylvester equation,

System Control Letter, vol. 1, pp. 261-263, 1982.

[19] R. K. Cavin, III and S. P. Bhattacharrya, Robust and well-conditioned

eigenstructure assignment via Sylvester equation, in Proc. Amer. Contr. Conf.,

Arlington, VA, pp. 1053-1057, 1982.

[20] P. Van Dooren, A reduced-order observer: A new algorithm and proof, System

Control Letter vol. 4, pp. 243-250, 1984.

[21] C. C. Tsui, An algorithm for computing state feedback in multi-input linear

systems, IEEE Transactions on Automatic Control, vol. AC-31, no. 3, pp. 243-246,

March 1986.

[22] K. S. Tsakalis and P. A. Ioannou, Linear Time-Varying Systems, Prentice-Hall,

N.J., pp.19-25, 1993.

[23] W. A. Wolovich, A Division Algorithm for Polynomial Matrices, IEEE

Transactions on Automatic Control, vol. AC-29. no. 7, pp.656-658, July 1984.

[24] J. S. H. Tsai and S. S. Chen, Generalized Matrix Euclidean Algorithms for Solving

Diophantine Equations and Associated Problems, Computers & Mathematics

Applications, vol. 25, no. 12, pp. 755-757, June 1993.

[25] H. H. Rosenbrock, State-Space and Muhivariable Theory, Nelson, London, 1970.

[26] W. A. Wolovich, Linear Multivariable System. New York: Spnger-Verlag, 1974.

[27] R. R. Bitmead, S.-Y. Kung, B. D. O. Anderson and T. Kailath, Greatest common

divisors via generalized Sylvester and Bezout matrices, IEEE Transactions on

Automatic Control, vol. AC-23, no. 6, pp. 1043-1047, Dec. 1978.

 126

[28] W. Thomson, Mechanical Integration of the General Linear Differential Equation

of Any Order with Variable Coefficients, Proc. Roy. Soc., vol. 24, pp.271-275, 1876.

[29] K. Ogata, State space analysis of control systems, Prentice-Hall, N.J., 1987

[30] M. Zeitz, Observability canonical (phase-variable) form for non-linear time

variable systems, International Journal of Systems Science, vol.15, no. 9, Sep. 1984,

pp. 949-958.

[31] A. J. Krener, A. Isidori, Linearization by output injection and nonlinear observers

Systems & control letters, vol.3, no. 1, pp.47-52, June 1983.

[32] A. J. Schaft, Representing a nonlinear state space system as a set of higher-order

differential equations in the inputs and outputs, Systems & Control letters, vol.12,

pp. 151-160, 1989.

[33] J. A. Heinen, The relationship of initial conditions of a scalar differential equation

to those of its state variable representation, International Journal of Control, vol.

31, no. 4, pp. 705-707, 1980.

[34] D. Knuth, The Art of Computer Programming, Vol. II: Seminumerical Algorithms,

Addison-Wesley, Reading, Mass., P.294, 1969.

[35] J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall, pp. 213, N.J., 1991.

 127

BIOGRAPHICAL INFORMATION

Shr-Hua Wu, also known as Joshua Wu, was born in Taoyuan, Taiwan in 1965.

He received the B.S. degree in Electrical Engineering from the Feng-Chia University,

Taiwan in 1989, and the M.S. degree in Institute of Optical Sciences from National

Central University, Taiwan in 1991. In 1994, he started a doctoral program in Electrical

Engineering at The University of Texas at Arlington. He was awarded a Doctor of

Philosophy degree in Electrical Engineering in 2007.

 From 1992 to 1994, he served as a Lecturer in Electrical Engineering at

Fushin Institute of Technology (now named Nangyang Institute of Technology) of

Taiwan. From 1998 to 2000, he was a DSP software engineer at Garrett Electronics and

built the security Walk-through with digital signal processing technology deployed in

Sidney Olympic. From 2000 to 2007, He was a DSP specialist at Nokia. He served as

DSP and System Integration chiefs for several projects including Nokia 6560 and E62

smart phones. In April 2007, He joined Research in Motion for developing BlackBerry

devices.

 128

	
	

