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ABSTRACT 

 

TIME-VARYING FEEDBACK SYSTEMS DESIGN VIA DIOPHANTINE 

EQUATION ORDER REDUCTION 

 

Publication No. ______ 

 

Shr-Hua Wu, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Kai-Shing Yeung  

Diophantine equation plays an important role in the design and synthesis of 

feedback compensators. Many methods have been developed to solve the Diophantine 

equation. This dissertation develops a new systematic approach of solving a linear time-

varying Diophantine equation. This approach is based upon successively reducing the 

order of the Diophantine equation by Euclidean algorithm. Euclidean algorithm for 

solving for both time-invariant and time-varying Diophantine equations for directly 

determining both the quotient and the remainder associated with the division of one 

polynomial by another is presented. The coprimeness (right or left) of two Polynomial 

Differential Operators is needed to guarantee, in general, the existence of solutions of 

the respective Diophantine equation. The illustrative examples are given.  
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This dissertation also develops a procedure of setting up canonical forms for 

linear time-varying, single-input single-output systems. The starting point is a 

differential equation description of the system. Two canonical forms are considered: 

observability and observer forms. Initial condition conversions between the canonical 

forms and the differential equation description are also derived. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Review of Diophantine Equation 

Diophantine equation plays an important role in the design and synthesis of 

compensators [1][2]. Solving Diophantine equation is shown to be equivalent to design 

a full or reduced-order observer of a linear functional of the state [3].The Diophantine 

equation approach is a transfer function-based control theory in which the transfer 

functions are viewed and handled as algebraic objects. Solving a system of linear 

Diophantine equations is a classical mathematical problem as well. Computing integer 

solutions to systems of linear Diophantine equations is a classical mathematical 

problem with many interesting applications in number theory [4], group theory [5] and 

combinatorics [6].  

Many methods have been developed to solve the Diophantine equation. An 

indirect method of its solution is the well-known combined observer-controller design 

[1]. Another method is the method developed by C.T. Chen [7].  Some of the methods 

used involve the state-space approach [8] and [9]. Others utilize the coefficient 

matching approach [7], [10] and [11]. [12] generalizes a classical Knuth-Schonhage 

algorithm computing two Greatest Common Divisors (GCD) of two polynomials for 

solving two arbitrary linear Diophantine systems over polynomials in time, quasi-linear 
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in the maximal degree for the weighted  curve-fitting problem. One popular problem 

encountered in the analysis and design of control systems is the solutions of the 

Diophantine equations in which the existence of solutions of the Diophantine equations 

requires the coprimeness of associated pairs of polynomial matrices [7]. The recursive 

algorithm is commonly applied to solve Polynomial Diophantine Equation. Both [13] 

and [14] propose a recursive algorithm for coprime fractions and Diophantine equation. 

The above-mentioned works are all focused on linear time-invariant systems.  

Step forward in extending the Diophantine equation approach is the case of 

time-varying linear systems. The field of coefficients is replaced by a differential 

polynomial over an interval of time [15][16]. The time-varying coefficients are no 

longer commutative, for multiplication and differentiation do not commute. Solving the 

Sylvester equation is the most commonly used to solve Diophantine equation with time-

varying coefficient matrices. Sylvester equations have been always the significant tool 

in the development of numerical algorithms for various feedback design techniques in 

control theory [17][18]19][20][21]. But Sylvester matrix has its limitations in MIMO 

system. These limitations can be overcome with Euclidean algorithm. 

1.2 Review of Euclidean Algorithm 

In this dissertation, Euclidean algorithm is presented for solving for both time-

invariant and time-varying Diophantine equations for directly determining both the 

quotient and the remainder associated with the division of one polynomial by another. 

The coprimeness (right or left) of two Polynomial Differential Operators is needed to 

guarantee, in general, the existence of solutions of the respective Diophantine 
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equation[22]. The Euclidean algorithm has been used to solve Sylvester matrices [23] 

and Diophantine equations [24] in time-invariant. These methods can in principle often 

also lead to a GCD. GCD of polynomial matrices plays an important part in the theory 

and application of general differential systems as studied extensively by [25][26], and 

others. They are useful in obtaining irreducible matrix fraction descriptions (and hence 

minimal state-space realizations) of transfer-function matrices, studying decoupling 

zeros and uncontrollable and unobservable modes of given systems, and obtaining the 

pole-zero structure of given multivariable systems [27]. 

1.3 Review of Canonical Form 

Canonical forms of state variable equations are of importance in the analysis 

and synthesis of dynamical systems. To simulate a continuous time system, there is a 

fundamental weakness to use differentiator. In practice, all signals are corrupted by 

noise. When such signal is differentiated, the derivative of the usually rapidly varying 

noise will shout down the derivative of the signal. For system described by a general 

differential equation the integrating device can be used as the basic building block for 

simulation[28]. Linear time-invariant canonical forms have been extensively researched 

and described in several papers and texts (see [1][7][29] and references therein). The 

controllability, observability, controller and observer canonical forms are frequently 

used. Nevertheless, there are only a few investigations related to time-varying canonical 

forms: Zeitz [30] derived observability form of non-linear time-varying systems from 

state variable equations, Krener [31] constructed observer forms for those nonlinear 
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systems which can be transformed into a linear system, and Schaft [32] represented a 

nonlinear state space system as a set of higher-order differential equations.  

The general formulae relating the initial conditions of a scalar linear time-

invariant differential equation to those of its state variable representation have been 

presented many years ago [33].  In this dissertation, a derivation of observer and 

observability canonical forms from a differential equation description is developed for 

linear time-varying systems. Initial condition conversions between the canonical forms 

and the differential equation description are given. With the help of the derived 

canonical forms, simulations of systems given by linear time-varying differential 

equations are greatly facilitated. This can be done, For example, using MATLAB 

software to implement integrators, summers and gains.   

1.4 Outline 

This dissertation demonstrates a new systematic approach to tackle both the 

time-invariant and time-varying Diophantine equations using an order reduction 

method.  This method is based on the Euclidean algorithm.  The time-invariant case is 

presented in chapter 2 and the time-varying case is discussed in chapter 3, we shall 

briefly review the pole-placement approaches and the Euclidean algorithm for both 

time-invariant and time-varying cases in both chapter 2 and 3, and how they require the 

solution of the Diophantine equation. In chapter 3 section 2, the division algorithm in 

the time-varying case is illustrated. Then, we shall introduce the Diophantine equation 

order reduction process, coupled with the use of the Euclidean algorithm. Examples will 

be given to illustrate the order reduction method for both time-invariant and time-
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varying cases. Chapter 4 illustrates the basic ideas and procedures of setting up LTV 

canonical forms in both observability and observer. Formulas for the associated initial 

condition conversion are given as well. Chapter 5 shows case study utilizing 

Diophantine equation order reduction, LTV canonical forms and comparisons of 

existing input-state and input-output methods. The contribution of this dissertation and 

suggestions of future work are discussed in chapter 6. 

 



 

 

 
CHAPTER 2 

DIOPHANTINE EQUATION ORDER REDUCTION USING EUCLIDEAN 
ALGORITHM 

 

2.1 Pole-Placement Feedback Design 

The pole-placement in a closed-loop structure using output feedback can be 

done by means of solving the Diophantine equation. The poles of the overall transfer 

function are assigned in order to meet some given performance requirements. Consider 

a unity feedback control systems as shown in Figure 2.1.  This scheme is considered to 

be the simplest unity feedback configuration.  Given a plant with a rational transfer 

function H(s) of order  with input u and output y and a reference signal r, the 

objective is to design a proper controller C(s) of order 

0k

0γ  so that the closed-loop poles 

will reside at specified locations. 

 

Figure 2.1. Unity feedback control scheme 
 

Let the plant be given as a rational transfer function  
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)(
)()(

sa
sbsH = ,  (2.1.1) )]([deg)]([deg sbsa >

To design a controller C(s) with a proper transfer function, let  

 
)(
)()(

sd
snsC = ,  (2.1.2)  )]([deg)]([deg snsd ≥

Then the overall transfer function from r to y is  

)()()()(
)()(

)()(1
)()()(

sbsnsasd
sbsn

sHSC
sHsCsT

+
=

+
=

 (2.1.3) 

Let the denominator be 

)()()()()( sfsbsnsasd =+   (2.1.4) 

where )())(.()(
0021 kpspspsconstsf +−−−= γL  contains the desired closed-

loop poles , ip )(,,2,1 00 ki += γL , where )]([deg0 sd=γ , )]([deg0 sak = . This 

equation is known as the Diophantine equation where a(s), b(s) and f(s) are given 

polynomials and d(s) and n(s) are unknown polynomials to be solved. The Diophantine 

equation in Eq. (2.1.4) can be solved using Sylvester matrix method [1]. Here we 

introduce an alternative method using an order reduction approach employing the 

Euclidean algorithm. We shall revisit the Euclidean algorithm first and then proceed on 

to the order reduction method. 

2.2 Euclidean Algorithm 

This section revisits the Euclidean algorithm given in [1]. Euclidean algorithm 

is considered to be one of the oldest nontrivial algorithm that has survived to the present 
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day [34]. Given two polynomials  and  with )(0 sa )(0 sb )]([deg)]([deg 00 sasb <  there 

exists a unique quotient polynomial  and a unique remainder polynomial  

such that  

)(0 sq )(0 sr

)()()()( 0000 srsbsqsa +=  , )]([deg)]([deg 00 sbsr <  (2.2.1) 

By successive use of the above polynomial division formula, we obtain 

)()()()( 0000 srsbsqsa += , 12 kk <   

)()()()( 1111 srsbsqsa += , 23 kk <  

)()()()( 2222 srsbsqsa += , 34 kk <  (2.2.2) 

   M M

)()()()( 1111 srsbsqsa mmmm −−−− += , mm kk <+1   

)()()()( srsbsqsa mmmm += ,  1)](deg[ +< mm ksr  

where  and )()( 1 sbsa ii −= )()( 1 srsb ii −= , mi ,,1L= ; )]([deg 1 sbk jj −= , 

. 1,,2,1 += mj L

The algorithm stops when the remainder 0)( =srm  or . In the 

former case,  will be the greatest common divisor of  and . In the 

latter case,   and  are coprime.  

0)](deg[ =srm

)(1 srm− )(0 sa )(0 sb

)(0 sa )(0 sb

2.3 Order Reduction of Diophantine Equation 

Consider Eq. (2.1.4). Rename the polynomials as 

)()( 0 sasa =  (2.3.1a) 

)()( 0 sbsb =  (2.3.1b)  
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)()( 0 sdsd =  (2.3.1c) 

)()( 0 snsn =  (2.3.1d) 

)()( 0 sfsf =  (2.3.1e) 

Then, we have 

)()()()()( 00000 sfsbsnsasd =+  (2.3.2) 

where subscript “0” is used to indicate the step number in the recursive process 

that follows. It is assumed that  and  are coprime. )(0 sa )(0 sb

To go through a general discussion, let the degrees of the respective 

polynomials satisfy the following conditions: 

00 )](deg[ ksa =   (2.3.3a) 

10 )](deg[ ksb = , 01 kk <  (strictly proper plant) (2.3.3b) 

00 )](deg[ γ=&sd , 100 −≥ kγ  (proper controller) (2.3.3c) 

1)](deg[ 00 −= ksn  (2.3.3d) 

000 )](deg[ ksf += γ  (2.3.3e) 

The choice of these degrees not only ensure a proper controller, but also will 

yield an equal number of equations as unknowns as can be seen below. 

Let the polynomials be 
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00

00
,01,0

1
1,00,00 )( kk

kk asasasasa ++++= −
− L , 00,0 ≠a  (2.3.4a) 

11

11
,01,0

1
1,00,00 )( kk

kk bsbsbsbsb ++++= −
− L , 01 kk <  (2.3.4b) 

00

00
,01,0

1
1,00,00 )( γγ

γγ dsdsdsdsd ++++= −
− L , 100 −≥ kγ  (2.3.4c) 

1,02,0
2

1,0
1

0,00 00

00)( −−
−− ++++= kk

kk nsnsnsnsn L  (2.3.4d) 

Let  be any arbitrarily assigned polynomial of degree )(0 sf )( 00 k+γ  given as 

0000

0000
,01,0

1
1,00,00 )( kk

kk fsfsfsfsf +−+
−++ ++++= γγ

γγ L  (2.3.5) 

(We shall from now on refer to the degree of  as the order of the 

Diophantine equation (2.3.2)). 

)(0 sf

Substituting Eqs. (2.3.4) and (2.3.5) into Eq. (2.3.2) and equating terms of like 

powers in  yields the following matrix equation s
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The first )1( 10 +− kγ  coefficients of  can be solved by inverting a 

triangular matrix as 

)(0 sd

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−

−−−−

−−

10

10

101010

10

,0

1,0

1,0

0,0
1

0,01,01,0,0

1,02,0

0,01,0

0,0

,0

1,0

1,0

0,0

0

00

k

k

kkk

k

f
f

f
f

aaaa

aa
aa

a

d
d

d
d

γ

γ

γγγ

γ

M

L

OOOM

MOO

MOO

LL

M  (2.3.7) 

Let  be split into a “known” leading part  consisting of these 

coefficients and an “unknown” remaining part  which is to be determined later 

such that 

)(0 sd )(0 sd H

)(0 sd L

)()()( 000 sdsdsd LH +=  (2.3.8a) 

 where 

1

10

00
,0

1
1,00,00 )( k

kH sdsdsdsd −
− +++= γ

γγ L  (2.3.8b) 

00

1

10

1

10 ,01,0
2

2,0
1

1,00 )( γγγγ dsdsdsdpd k
k

k
kL ++++= −

−
+−

−
+− L  (2.3.8c) 

Substituting Eq. (2.3.8a) into Eq. (2.3.2) yields 

)()()()()]()([ 000000 sfsbsnsasdsd LH =++  (2.3.9) 

Moving all the known parts in Eq. (2.3.9) to the right hand-side gives 

)()()()()()()( 0000000 sasdsfsbsnpasd HL −=+  (2.3.10) 

Denote the right hand-side as 

1,12,1
2

1,1
1

0,1

0001

1010

1010

)()()()(

−+−+
−+−+ ++++=

−=

kkkk
kkkk

H

fsfsfsf

sasdsfsf

L
 (2.3.11) 
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The coefficients of  can be found by substituting Eqs. (2.3.4a), (2.3.5) and 

(2.3.8b) into (2.3.11) so that we have 

)(1 sf

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+−+−

−+−

+

+−

+−

−+

100

0

0

1010

1010

00

10

10

10

,0

1,0

0,0

,0

,0

,0

2,01,02,0

1,0,01,0

,0

2,0

1,0

1,1

1,1

0,1

00

0

0
0

kk

k

k

kk

kk

k

k

k

kk

d

d
d

a

a
a

aaa
aaa

f

f
f

f

f
f

γ

γγ

γγ

γ

γ

γ

M

LL

MOOM

OOM

OOM

MOM

MO

MOO

MOOM

O

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

 (2.3.12) 

With Eq. (2.3.11), Eq. (2.3.10) now becomes 

)()()()()( 10000 sfsbsnsasd L =+  (2.3.13) 

Substituting the Euclidean algorithm Eq. (2.2.1) into Eq. (2.3.13) gives 

)()()()]()()()[( 1000000 sfsbsnsrsbsqsd L =++  (2.3.14) 

Grouping terms containing  yields  )(0 sb

)()()()()]()()([ 1000000 sfsrsdsbsnsqsd LL =++  (2.3.15) 

Renaming the polynomials as 

)()( 01 sbsa =  (2.3.16a) 

)()( 01 srsb =  (2.3.16b) 

)()()()( 0001 snsqsdsd L +=  (2.3.16c) 

)()( 01 sdsn L=  (2.3.16d) 

gives rise to a new Diophantine equation 
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)()()()()( 11111 sfsbsnsasd =+  (2.3.17) 

where the degrees of the respective polynomials are 

11 )]([deg ksa =  (2.3.18a) 

21 )]([deg ksb = , 12 kk <  (2.3.18b) 

1)]([deg 011 −== ksd γ&  (2.3.18c) 

1)]([deg 11 −= ksn  (2.3.18d) 

1)]([deg 101 −+= kksf  (2.3.18e) 

Notice that they satisfy the same degree requirements as in Eq. (2.3.3). 

Consequently, the new Diophantine equation (2.3.17) is of lower order than the original 

one in Eq. (2.3.2). That is,  is of lower degree than , in this case by )(1 sf )(0 sf

)1( 10 +− kγ .  

Repeating the above order reduction process one more time will yield third 

Diophantine equation:  

)()()()()( 22222 sfsbsnsasd =+  (2.3.19) 

Continuing on with this process to a total number of 1+m  steps, where m is the 

number of steps in the Euclidean algorithm in Eq. (2.2.2), we will obtain a sequence of 

Diophantine equations of successively lower orders as 

)()()()()( sfsbsnsasd iiiii =+ , iii ksf += γ)]([deg , mi ,,1,0 L=  (2.3.20) 

where  

)()( 1 sbsa jj −= , mj ,,1 L=  (2.3.21a) 

 13



 

)()( 1 srsb jj −= , mj ,,1 L=  (2.3.21b) 

)()()]()([)( 11)1(1 snsqsdsdsd jjHjjj −−−− +−= , mj ,,1 L=  (2.3.21c) 

)()()( )1(1 sdsdsn Hjjj −− −= , mj ,,1 L=  (2.3.21d) 

)()()()( 1)1(1 sasdsfsf jHjjj −−− −= , mj ,,1 L=  (2.3.21e) 

1

1,
1

1,0,)( +

+−
− +++= i

ii

ii k
kiiiiH sdsdsdsd γ

γγ L , mi ,,1,0 L=  (2.3.21f) 

The coefficients of , )(sdiH mi ,,1,0 L= , are obtained from 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+++

+

−

−−

−

−−−−

−−

1

1

111

1

,

1,

1,

0,
1

0,1,1,,

1,

0,1,

0,

,

1,

1,

0,

0

00

ii

ii

iiiiii

ii

ki

ki

i

i

iikiki

i

ii

i

ki

ki

i

i

f
f

f
f

aaaa

a
aa

a

d
d

d
d

γ

γ

γγγ

γ

M

L

OOOM

MOOM

MOO

LL

M  (2.3.22) 

The degrees of the respective polynomials in Eq. (2.3.21) are given by 

jj ksa =)]([deg  (2.3.23a) 

1)]([deg += jj ksb , jj kk <+1  (2.3.23b) 

1)]([deg 1 −== −jjj ksd γ&  (2.3.23c) 

1)]([deg −= jj ksn  (2.3.23d) 

1)]([deg 1 −+= − jjj kksf  (2.3.23e) 

mj ,,1 L=  

We now turn to the backward process starting with known pair,  and 

. The objective here is to determine the original pair,  and . From Eqs. 

(2.3.21d) and (2.3.21f), we have 

)(sdm

)(snm )(0 sd )(0 sn
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)()()( )1(1 snsdsd mHmm += −−  (2.3.24a) 

The polynomial  can be solved from Eqs. (2.3.21c) and (2.3.21d) as )(1 snm−

)()()()( 11 sqsnsdsn mmmm −− −=  (2.3.24b) 

Continuing on in this way, with the help of Eqs. (2.3.21c), (2.3.21d) and 

(2.3.21f), we have the following backward recursive formulas: 

)()()( )1(1 snsdsd iHii += −− , mi ,,1 L=  (2.3.25a) 

)()()()( 11 sqsnsdsn iiii −− −= , mi ,,1 L=  (2.3.25b) 

2.4 Example of Time-Invariant Case 

Consider a Diophantine equation (2.3.2) with the following polynomials 

343)( 23
0 +++= ssssa   

1)( 2
0 ++= sssb   

3,02,0
2

1,0
3

0,00 ( dsdsdsdsd +++=)   

2,01,0
2

0,00 nsnsnsn ++=)(   

Selecting all six closed-loop poles at 1−=s  leads to 

161520156

)1()(
23456

6
0

++++++=

+=

ssssss

ssf   

Applying the Euclidean algorithm Eq. (2.2.2) on  and  yields )(0 sa )(0 sb

2)(0 += ssq   
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1)(0 += ssr   

A second application of the Euclidean algorithm on  and  gives )(1 sa )(1 sb

ssq =)(1   

1)(1 =sr   

The Euclidean algorithm stops here since 0)](deg[ 1 =sr . Next we proceed to 

reduce the order of the Diophantine equation. 

2.4.1 Forward Algorithm 

Step 0:  

From Eq. (2.3.22), we can solve for the two leading coefficients of  as )sd (0

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

3
1

6
1

13
010 1

1,0

0,0
1

0,01,0

0,0

1,0

0,0

f
f

aa
a

d
d

  

Then,  can be split into a “known” part and an “unknown” part as )sd (0

23
0 3( sssd H +=)   

3,02,00 ( dsdsd L +=)   

From Eqs. (2.3.20) and (2.3.21), with 1=i , the following reduced order 

Diophantine equation is obtained 

)()()()()( 11111 sfsbsnsasd =+  

where 
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1)( 2
1 ++= sssa   

1)(1 += ssb   

16652)( 234
1 ++++= sssssf   

Step 1: 

From Eq. (2.3.22), we can solve for the two leading coefficients in  as )sd (1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

3
2

5
2

11
01 1

1,1

0,1

d
d

  

So that,  will be split into a “known” part and an “unknown” part as )sd (1

sssd H 32)( 2
1 +=   

2,11 )( dsd L =   

From Eqs. (2.3.20) and (2.3.21), with 2=i , another reduced order Diophantine 

equation is generated  

)()()()()( 22222 sfsbsnsasd =+  (2.4.1) 

where 

1)(2 += ssa   

1)(2 =sb   

13)( 2
2 ++= sssf  

Step 2: 

From Eq. (2.3.22) we can obtain ,  and  as follows 0,2d 1,2d 0,2n
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

2
1

3
1

11
01 1

1,2

0,2

d
d

 

Notice that, in this final step, 2)()( 22 +== ssdsd H . With known ,  

follows from the Diophantine equation (2.4.1) as  

)(2 sd )(2 sn

10,2 −=n   

2.4.2 Backward Algorithm 

With known  and ,  and  can be obtained from Eq. 

(2.3.25) as 

)(2 sd )(2 sn )(1 sd )(1 sn

132)( 2
1 −+= sssd  

22)(1 += ssn  

Similarly, with  and  solved,  and  are found from Eq. 

(2.3.25) as 

)(1 sd )(1 sn )(0 sd )(0 sn

223)( 23
0 +++= ssssd  

53)(0 −−= ssn  

which is the solution of our original Diophantine equation.   
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CHAPTER 3 

ORDER REDUCTION OF TIME-VARYING DIOPHANTINE EQUATION 
USING EUCLIDEAN ALGORITHM 

 

Now we extend the approach described in the previous chapter to time-varying 

case. 

3.1 Time-Varying Pole-Placement Feedback Design 

Pole-placement in a closed-loop structure using output feedback can be carried 

out by means of solving the Diophantine equation. The poles of the overall transfer 

function operator are assigned in order to meet certain given performance requirements. 

Consider a plant described by a linear time-varying differential equation 

)()()()( tupBtypA =  (3.1.1) 

where  

)()()()()(
0

000 1
10 taptaptaptapA k

ik
i

kk +++++= −− LL , (3.1.2) 

   210 ,0)( tttta <<≠

)()()()()(
1

111 1
10 tbptbptbptbpB k

jk
j

kk +++++= −− LL , 01 kk <  (3.1.3) 

and p is the differential operator 
dt
d . The coefficients ia ),,0( 0ki L=  and 

 are continuously differentiable functions of time. In the sequel, the 

argument  in the coefficients  and  will be dropped for brevity. 

jb ),,0( 1kj L=

t ia jb
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A feedback control system for the plant can be implemented as shown in Figure 

3.1 where r is the reference input. This scheme can be viewed as the combined 

observer-controller feedback configuration given in [1] (pp.298), which is now 

extended to the time-varying case. The objective here is to design  and  so that 

the closed-loop poles would be assigned. 

uH yH

 

  

 

 

 

 

 

 

 

+ 
+ 

+ 

- 

v 

y 
 

  

PLAN

w 

u r 

)()()]()([ 1 pBpnpBpδ y
−

)()()]()([ 1 pBpnpBpδ u
−

uH yH

)()(1 pBpA−

 

Figure 3.1. Block diagram of combined observer-controller 
  

In Figure 3.1, the blocks  and  can be represented as polynomial operator 

equations, respectively, as  

uH yH

upBpnvpBpδ u )()()()( =  (3.1.4) 

ypBpnwpBpδ y )()()()( =  (3.1.5) 

where 
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00

00

0

1
1

10

210 )())(()(

σσ
σσ

σ

δδδδ

δ

++++=

−−−=

−
− ppp

pppppppδ ooo

L

L
 (3.1.6) 

The constants  oip , ),,1( 0σL=i ,  are the assigned “observer” poles. 

Let 

12
1

0 00

0)( −−
− +++= σσ

σ γγγ pppnu L  (3.1.7) 

12
1

0 00

0)( −−
− +++= kk

k
y pppn βββ L , 00 1 σ≤−k   (3.1.8) 

Then the overall feedback system equation can be derived as follows:   

Summing up Eq. (3.1.4) and Eq. (3.1.5) results in 

ypBpnupBpnwvpBpδ yu )()()()(])[()( +=+  (3.1.9) 

From Figure 3.1, we have urwv −=+ . Eq. (3.1.9) then becomes 

ypBpnupBpnurpBpδ yu )()()()(])[()( +=−   (3.1.10) 

Eliminating u from Eq. (3.1.1) and Eq. (3.1.10) yields the overall closed-loop 

equation 

rpBpδypBpnpApnpδ yu )()()()()()]()([ }{ =++  (3.1.11) 

Let the left-hand-side term be  

)()()()()()]()([ }{ ppδpBpnpApnpδ yu α=++  (3.1.12) 

where 

00

00

0

1
1

10

210 )())(()(

kk
kk

ckcc

ppp

ppppppp

αααα

αα

++++=

−−−=

−
− L

L
, 

The constants  )  are the assigned “controller” poles. cip ,,1( 0ki L=

Then, substituting Eq. (3.1.12) into Eq. (3.1.11) gives 
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rpBpδyppδ )()()()( =α  (3.1.13a) 

or 

0])()()[( =− rpByppδ α  (3.1.13b) 

Integrating Eq. (3.1.13b) leads to 

rpB
trpByp

)(
)()()(

≅
+= ζα

 (3.1.14) 

where )(tζ  is a transient signal and decays away rapidly by applying 

differential polynomial . )( pδ

The equivalent overall feedback system is depicted in Figure 3.2.  

yr1)( −pB
r~

)( pα

 

Figure 3.2. Block diagram of equivalent overall combined observer-controller 

Remarks: 

(1) With fixed closed-loop poles, ,  cip )( pα  is a time-invariant 

polynomial, which governs the behavior of the closed-loop system.  

(2) The combined observer-controller approach described above 

requires no separate knowledge of the controllability or observability of the 

plant, and no state measurement is needed. The only requirement is that 

and  are right coprime )( pA )( pB [22].  

 22



 

With respect to Eq. (3.1.12), let  

00

00
1

1
10

)()(

σσ
σσ

δ

dpdpdpd

pnppD u

++++=

+=

−
− L

)(
 (3.1.15a) 

12
1

0 00

0

)(

−−
− +++=

=

kk
k

y

npnpn

pnpN

L

)(
 (3.1.15b) 

0000

000000
1

2
2

1
10

)()()(

kk
kkk fpfpfpfpf

ppδpF

+−+
−+−++ +++++=

=

σσ
σσσ

α

L
 (3.1.15c) 

Then, Eq. (3.1.12) becomes 

 )( pFpBpNpApD =+ )()()()( . (3.1.16) 

Thus, our design goal is reduced to the problem of solving the Diophantine 

equation (3.1.16). With given ,  and ,  and  are to be 

solved. 

)( pA )( pB )( pF )( pD )( pN

3.2 Time-Varying Division Algorithm 

Consider a pair of polynomials  and  in the Laplace operator . In this 

time-invariant case, it is well known 

)(sA )(sB s

[1][23] that the division of  by  uniquely 

defines another pair of polynomials, the remainder  and the quotient , such 

that 

)(sA )(sB

)(sR )(sQ

)()()()( sRsBsQsA +=  (3.2.1) 

Extending this to the time-varying case, Eq. (3.2.1) becomes  

)()()()( pRpBpQpA +=   (3.2.2) 

Let the polynomials be given by 
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00

00
1

1
10)( kk

kk apapapapA ++++= −
− L , 0)(0 ≠ta  for  (3.2.3a) 21 ttt <<

11

11
1

1
10)( kk

kk bpbpbpbpB ++++= −
− L , 0)(0 ≠tb  for  (3.2.3b) 21 ttt <<

12
2

1
1

0 11

11)( −−
−− ++++= kk

kk rprprprpR L  (3.2.3c) 

1010

1010
1

1
10)( kkkk

kkkk qpqpqpqpQ −−−
−−− ++++= L ,   (3.2.3d) 10 kk >

Substituting Eq. (3.2.3) into Eq. (3.2.2) and equating terms of like powers in p 

yields the following square triangular systems of equations: 
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1

0

2

1

0

1,0,

11,10,1

2

1

0

01,210,22

00,11

0

1

1

2

1

0

1

10

100

100

0

0

10

10

100|
010|

|
00|
10|

001|

00|
|0
|
|
|0

00|000

k

kk

kkk

kkk
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q
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M

M

M
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 (3.2.4) 

The terms jlijb ,++  in Eq. (3.2.4) exist only in the time-varying case and are 

defined as 

,
10 1

1 0

)(10
, ∑ ∑

−−

= =
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=

jkk

i

k

l

i
ljlij b

i
jkk

b  )1(,,1,0 10 −−= kkj L  (3.2.5) 
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where  is the combinatorial symbol. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
i

jkk 10

From Eq. (3.2.4), the unknown coefficients ’s and q r ’s can be found uniquely 

if the matrix is nonsingular. This is the case since 0)(0 ≠tb , 21 ttt << . 

We shall refer to the degree of  as )( pR

2)](deg[ kpR =&  (3.2.6) 

if the coefficient 0)(121
≠−− tr kk , 21 ttt << , ( 1,,1,0 12 −= kk L ), and that all 

coefficients previous to it are identically equal to zero. 

3.3 Time-Varying Euclidean Algorithm 

This section revisits the Euclidean algorithm given in [1]. Euclidean algorithm 

is considered to be one of the oldest nontrivial algorithm that has survived to the present 

day [34]. Given two polynomials and  with , 

using the division algorithm in Section 3, we have  

)(0 pA )(0 pB )]([deg)]([deg 00 pApB <

)()()()( 0000 pRpBpQpA +=  , )]([deg)]([deg 00 pBpR <  (3.3.1) 

By successive use of the polynomial division algorithm, we obtain, for 

, 21 ttt <<

)()()()( 0000 pRpBpQpA += , 12 kk <   

)()()()( 1111 pRpBpQpA +=  , 23 kk <  
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)()()()( 2222 pRpBpQpA +=  , 34 kk <  (3.3.2) 

   M M

)()()()( 1111 pRpBpQpA mmmm −−−− +=  , mm kk <+1   

)()()()( pRpBpQpA mmmm += ,  1)]([deg +< mm kpR  

where  and )()( 1 pBpA ii −= )()( 1 pRpB ii −= , mi ,,1L= ; )]([deg 1 pBk jj −= , 

. 1,,2,1 += mj L

The algorithm stops when the remainder 0)( =pRm  or, when , 

. In the former case,  will be the greatest common right divisor 

of  and . In the latter case,   and  are right coprime. The 

proof is similar to the time-invariant case and will be omitted.  

0)( ≠pRm

0)](deg[ =pRm )(1 pRm−

)(0 pA )(0 pB )(0 pA )(0 pB

3.4 Order Reduction of Time-Varying Diophantine Equation 

Consider Eq. (3.1.16). Rename the polynomials as 

)()( 0 pApA =  (3.4.1a) 

)()( 0 pBpB =  (3.4.1b) 

)()( 0 pDpD =  (3.4.1c) 

)()( 0 pNpN =  (3.4.1d) 

)()( 0 pFpF =  (3.4.1e) 

where 

00

00
,01,0

1
1,00,00 )( kk

kk apapapapA ++++= −
− L , 00,0 ≠a , 21 ttt <<  (3.4.2a) 

11

11
,01,0

1
1,00,00 )( kk

kk bpbpbpbpB ++++= −
− L , 01 kk < , 21 ttt <<  (3.4.2b) 
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00

00
,01,0

1
1,00,00 )( σσ

σσ dpdpdpdpD ++++= −
− L , 100 −≥ kσ  (3.4.2c) 

1,02,0
2

1,0
1

0,00 00

00)( −−
−− ++++= kk

kk npnpnpnpN L  (3.4.2d) 

0000

0000
,01,0

1
1,00,00 )( kk

kk fpfpfpfpF +−+
−++ ++++= σσ

σσ L  (3.4.2e) 

Then, we have 

)()()()()( 00000 pFpBpNpApD =+  (3.4.3) 

The subscript “0” is used to indicate the step number in the recursive process 

that follows. It is assumed that  and  are right coprime. We shall from now 

on refer to the degree of  as the order of the Diophantine equation (3.4.3). 

)(0 pA )(0 pB

)(0 pF

Our discussion is divided into two parts, a forward algorithm and a backward 

algorithm.  

3.4.1 Forward Algorithm 

We start with noticing that the degrees of the respective polynomials in Eq. 

(3.4.1) satisfy the following conditions: 

00 )](deg[ kpA =   (3.4.4a) 

10 )](deg[ kpB = , 01 kk <  (because of strictly proper plant) (3.4.4b) 

00 )](deg[ σ=&pD , 100 −≥ kσ  (because of proper controller) (3.4.4c) 

1)](deg[ 00 −= kpN  (3.4.4d) 

1)](deg[ 000 −+= kpF σ  (3.4.4e) 

These degrees not only ensure a proper controller, but also will yield an equal 

number of equations as unknowns as can be seen below. 
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Substituting Eq. (3.4.2) into Eq. (3.4.3) and equating terms of like powers in  

yields the following block-triangular matrix equation 

p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−+−−−

L

H

L

H

2221

11

f

f

v

v

S|S

0|S
 (3.4.5) 

where 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

++
+

=

−−−−−−−− 0,01,1,01,1,00,,0

1,21,00,22,0

0,00,11,0

0,0

101010101010

0

00

aaaaaaa

aaaa
aaa

a

kkkkkk σσσσσσ L

OOOM

MOO

MOO

LL

11S (3.4.6a) 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
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+
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+
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−−+++

+
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+−+−+−+−

+−−+−+−
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10100
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10000000

0

000
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10101010

10101010

,

,1

,,0

,22,0

,11,0

1,1,0,

1,1

1,1,00,1

0,,0

1,21,00,22,0

1,1,00,11,0
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kkkk
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a
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a
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σσ

σσ

σσ

σσ

σσσσ

σσσσ

σσσσ

M

M

M

M

M

L

OOOM

OOOM

OOOM

OOM

OO

OOO

OOOM

OO

LL

21S

 (3.4.6b) 
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⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎡
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+

+++
++

=

−
+−+

+++−−+

+−+−

+−+−

1

0

101000

111101000

11

1010

1010

,0
)1(

,0,01,

1,1,00,11,,0

0,,0

1,0

0,01,0

1,21,00,22,00,01,32,0

0,00,11,01,21,0

0,00,0

0
0

0000

k
k

kkkk

kkkkkkk

kk

kk

kk

bbaa

bbbaa
bb

b
ba

bbbbaaa
bbbaa

ba

LLL

MOOMMOM

MOMO

MOOMOM

MOOMMOM

OOMMOM

OOMOM

OO

MOO

L

σσ

σσ

σσ

σσ

22S  (3.4.6c) 

[ T
kddd

10,01,00,0 −= σLHv ]

]

]

 (3.4.6d) 

[ T
kk nnndd 1,01,00,0,01,0 0010 −+−= LL σσLv  (3.4.6e) 

[ T
kk ffff

1010 ,01,01,00,0 −−−= σσLHf  (3.4.6f) 

[ ]Tkkkk fffff
000001010 ,01,0,02,01,0 +−++−+−= σσσσσ LLLf  (3.4.6g) 

The terms jlija ,++  and jlijb ,++  in Eq. (3.4.6) will drop out in the time-invariant 

case and are defined by  

∑ ∑
−

= =
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

j

i

k

l

i
ljlij a

i
j

a
0 0

1 0

)(0
,

σ σ
, )1(,,1,0 0 −= σLj   (3.4.7a) 

∑ ∑
−−

= =
++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=

jk

i

k

l

i
ljlij b

i
jk

b
1

1 0

)(0
,

0 11
, )2(,,1,0 1 −= kj L  (3.4.7b) 

Based on the above matrix, one can see that the first )1( 10 +− kσ  coefficients in 

 can be solved by inverting a triangular matrix as )(0 pD

H
1

11H fSv −=  (3.4.8) 
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Let  be split into a “known” leading part  whose coefficients are 

found by Eq. (3.4.8) and an “unknown” remaining part  which is to be found 

later such that 

)(0 pD )(0 pD H

)(0 pD L

)()()( 000 pDpDpD LH +=  (3.4.9) 

where 

1

10

00
,0

1
1,00,00 )( k

kH pdpdpdpD −
− +++= σ

σσ L  (3.4.10a) 

00

1

10

1

10 ,01,0
2

2,0
1

1,00 )( σσσσ dpdpdpdpD k
k

k
kL ++++= −

−
+−

−
+− L  (3.4.10b) 

Substituting Eq. (3.4.10a) into Eq. (3.3.2) yields 

)()()()()]()([ 000000 pFpBpNpApDpD LH =++  (3.4.11) 

Moving all known parts in Eq. (3.4.11) to the right hand-side gives 

)()()()()()()( 0000000 pApDpFpBpNpApD HL −=+  (3.4.12) 

Denote the right hand-side as 

1,12,1
2

1,1
1

0,1

0001

1010

1010

)()()()(

−+−+
−+−+ ++++=

−=

kkkk
kkkk

H

fpfpfpf

pApDpFpF

L
 (3.4.13) 

The coefficients of  can be found by substituting Eqs. (3.4.2a), (3.4.3) and 

(3.4.10a) into (3.4.13) as 

)(1 pF
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 (3.4.14) 

With Eq. (3.4.13), Eq. (3.4.12) now becomes 

)()()()()( 10000 pFpBpNpApD L =+  (3.4.15) 

Substituting the Euclidean algorithm Eq. (3.3.1) into Eq. (3.4.15) gives 

)()()()]()()()[( 1000000 pFpBpNpRpBpQpD L =++  (3.4.16) 

Grouping terms containing  yields  )(0 pB

)()()()()]()()([ 1000000 pFpRpDpBpNpQpD LL =++  (3.4.17) 

Renaming the polynomials as 
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)()( 01 pBpA =  (3.4.18a) 

)()( 01 pRpB =  (3.4.18b)  

)()()()( 0001 pNpQpDpD L +=  (3.4.18c) 

)()( 01 pDpN L=  (3.4.18d) 

gives rise to a new Diophantine equation 

)()()()()( 11111 pFpBpNpApD =+  (3.4.19) 

The degrees of the respective polynomials are given by 

11 )]([deg kpA =  (3.4.20a) 

,)]([deg 21 kpB =  12 kk <  (3.4.20b) 

1)]([deg 011 −== kpD σ&  (3.4.20c) 

1)]([deg 11 −= kpN  (3.4.20d) 

1)]([deg 101 −+= kkpF  (3.4.20e) 

Notice that they satisfy the same degree requirements as in Eq. (3.4.3). 

Consequently, the new Diophantine equation (3.4.19) is of lower order than that of the 

original one in Eq. (3.4.3). That is,  is of lower degree than , specifically by )(1 pF )(0 pF

)1( 10 +− kσ .  

Repeating the above order reduction process one more time will yield a third 

Diophantine equation:  

)()()()()( 22222 pFpBpNpApD =+  (3.4.21) 
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Continuing on with this process to a total number of 1+m  steps, where m is the 

number of steps in the Euclidean algorithm in Eq. (3.3.2), we will obtain a sequence of 

Diophantine equations of successively lower orders as 

)()()()()( pFpBpNpApD iiiii =+ ,   (3.4.22) 

iii kpF +=σ)]([deg , mi ,,1,0 L=   

where  

)()( 1 pBpA jj −= , mj ,,1 L=  (3.4.23a) 

)()( 1 pRpB jj −= , mj ,,1 L=  (3.4.23b)  

jj

jj dpdpdpd

pNpQpDpDpD

jjj

jjHjjj

σσ
σσ

,01,
1

1,0,

11)1(1 )()()]()([)(

++++=

+−=

−
−

−−−−

L
, mj ,,1 L=  (3.4.23c) 

1,02,
2

1,
1

0,

)1(1 )()()(

−−
−−

−−

++++=

−=

jj

jj
kkj

k
j

k
j

Hjjj

npnpnpn

pDpDpN

L
, mj ,,1 L=  (3.4.23d) 

jjjj

jjjj
kjkj

k
j

k
j

jHjjj

fpfpfpf

pApDpFpF

+−+
−++

−−−

++++=

−=

σσ
σσ

,1,
1

1,0,

1)1(1 )()()()(

L
, mj ,,1 L=  (3.4.23e) 

1

1,
1

1,0,)( +

+−
− +++= i

ii

ii k
kiiiiH pdpdpdpD σ

σσ L , mi ,,1,0 L=  (3.4.23f) 

The coefficients of , )( pFj mj ,,1 L= , in Eq. (3.4.23e) are obtained from 
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 (3.4.24) 

The coefficients of , )( pDiH mi ,,1,0 L= ,  in Eq. (3.4.23f) are obtained from 
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  (3.4.25) 

The degrees of the respective polynomials in Eq. (3.4.22) are given by 

jj kpA =)]([deg  (3.4.26a) 

1)]([deg += jj kpB , jj kk <+1  (3.4.26b) 

1)]([deg 1 −== −jjj kpD σ&  (3.4.26c) 

1)]([deg −= jj kpN  (3.4.26d) 

1)]([deg 1 −+= − jjj kkpF  (3.4.26e) 

mj ,,1 L=  

The last Diophantine equation can be solved easily. With mi = , 

, we have  0)]([deg 1 == +mm kpB
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3.4.2 Backward Algorithm 

Starting with a known pair,  and . The objective here is to 

determine the original pair,  and . From Eqs. (3.4.23d) and (3.4.23f), we 

have 

)( pDm )( pNm

)(0 pD )(0 pN

)()()( )1(1 pNpDpD mHmm += −−  (3.4.28a) 

The polynomial  can be solved from Eqs. (3.4.23c) and (3.4.23d) as )(1 pNm−

)()()()( 11 pQpNpDpN mmmm −− −=  (3.4.28b) 

Continuing on in this way, with the help of Eqs. (3.4.23c), (3.4.23d) and 

(3.4.23f), we have the following backward recursive formulas: 

)()()( )1(1 pNpDpD iHii += −− , mi ,,1 L=  (3.4.29a) 

1,12,1
2

1,1
1

0,1

11

11

11

)()()()(

−−−−
−

−
−

−

−−

−−

−− ++++=

−=

ii

ii
kiki

k
i

k
i

iiii

npnpnpn

pQpNpDpN

L
, mi ,,1 L=  (3.4.29b) 

The coefficients of  in Eq. (3.4.29b) are given by )(1 pNi−
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 (3.4.30) 

where ’s are the coefficients of , i.e. q )(1 pQi−

iiii

iiii
kkikki

kk
i

kk
ii qpqpqpqpQ −−−−−

−−
−

−
−− −−

−− ++++=
11

11
,11,1

1
1,10,11 )( L  (3.4.31) 

3.5 Example of Time-Varying Case 

Consider a time-varying plant with input u and output y described as a second-

order time-varying differential equation as 

uppyeppp t )12()]1(43[ 223 ++=++++ −   

The associated Diophantine equation reads in this case 

 

))()()( pFpBpNpApD ()( 00000 =+   
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where 

)1(43 23
0

teppppA −++++=)(   

122
0 ++= pppB )(   

3,02,0
2

1,0
3

0,00 ( dpdpdpdpD +++=)   

2,01,0
2

0,00 npnpnpN ++=)(   

Placing the closed-loop poles at 1),1( −±−= js , and the observer poles at 

,  and , respectively, leads to 1−=s 2−=s 3−=s

)1)(1)(1( +−+++= pjpjpp)(α  

)3)(2)(1( +++= pppp)(δ  

12467465339
)1)(1)(1)(3)(2)(1(

)()()(

23456

0

++++++=

+−++++++=
=

pppppp
pjpjpppp

pppF αδ
  

Appling Euclidean algorithm to  and  yields, according to Eq. 

(3.3.2), 

)(0 pA )(0 pB

1)(0 += ppQ   

teppR −+=)(0  

)2()(1
teppQ −−+=   

tt eepR 2
1 1)( −− +−=  
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The Euclidean algorithm stops here since 0)](deg[ 1 =pR , i.e.  in Eq. 

(3.3.2). Next we proceed to reduce the order of the Diophantine equation. 

1=m

3.5.1 Forward Algorithm 

Step 0: 

Consider Eq. (3.4.25).  

With , we can solve for the two leading coefficients of  as 0=i )pD (0

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

6
1

9
1

13
01 1

1,0

0,0

d
d

  

Then, from Eq. (3.4.23f),  is given by )pD H (0

23
0 6)( pppD H +=  

From Eqs. (3.4.22) and (3.4.23), with 1=i , the following reduced order 

Diophantine equation is obtained 

)()()()()( 11111 pFpBpNpApD =+  (3.5.1) 

where 

122
1 ++= pppA )(  

teppB −+=)(1  

4,13,1
2

2,1
3

1,1
4

0,10001 )()()()( fpfpfpfpfpApDpFpF H ++++=−=   

With the help of Eq. (3.4.13), the coefficients of  are given by )(1 pF
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1,1

0,1

  

Step 1: 

Repeating the above procedure and from Eq. (3.4.23), we solve for the two 

leading coefficients in  as )pD (1

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

−

tt eed
d

18
11

40
11

12
01 1

1,1

0,1   

So that  will be split into an “known part and an “unknown” part as )(1 pD

peppD t
H )18(11)( 2

1
−−+=  

2,11 )( dpD L =  

From Eqs. (3.4.22) and (3.4.23), with 2=i , the following reduced order 

Diophantine equation is obtained 

)()()()()( 22222 pFpBpNpApD =+  (3.5.2) 

Where 
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tt eepB 2
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)()()()(

2
1112
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Step 2: 

Repeating the above procedure and from Eq. (3.4.23), we solve for the two 

leading coefficients in  as )pD (2

⎥
⎦

⎤
⎢
⎣

⎡
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1028
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Notice that, in this final step, 0)(2 =pD L  and 

)1128()21(
)()(

2
22

ttt
H

eepe
pDpD

−−− +−+−=

=
  

With known ,  follows from the Diophantine equation (3.5.2) as  )(2 pD )(2 pN

tt

ttt

ee
eeenpN 2

32

0,22 1
101212)( −−

−−−

+−
−+−

==   

3.5.2 Backward Algorithm 

With known  and ,  and  can be obtained from Eq. 

(3.4.29) with  as 

)(2 pD )(2 pN )pD (1 )pN (1

2=i
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Similarly, with known  and ,  and  can be obtained 

from Eq. (3.4.29) with  as 

)(1 pD )(1 pN )pD (0 )pN (0
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which is the solution of our original Diophantine equation. 

3.6 Problem of Zero-Crossing 

Unlike time-invariant case, time-varying systems will have zero-crossing 

problem. Here is an example to demonstrate this problem, and also propose a method to 

address this issue. Consider a time-varying plant with input u and output y described as 

a second-order time-varying differential equation as 

upytptp )1(]2cos30)2sin1220([ 2 +=+++   

 The associated Diophantine equation reads in this case 
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))()()( pFpBpNpApD ()( 00000 =+   

where 

tptppA 2cos30)2sin1220(2
0 +++=)(   

10 += ppB )(   

2,01,0
2

0,00 ( dpdpdpD ++=)   

1,00,00 npnpN +=)(   

Placing the closed-loop poles at )1( js ±−=  and the observer poles at  

and , respectively, leads to 

2−=s

3−=s

)1)(1( jpjpp −+++=)(α  

)3)(2( ++= ppp)(δ  

1222187
)3)(2)(1)(1(

)()()(

234

0

++++=

++−+++=
=

pppp
ppjpjp

pppF αδ
  

Appling Euclidean algorithm to  and  yields, according to Eq. 

(3.3.2), 

)(0 pA )(0 pB

)192sin12()(0 ++= tppQ   

192sin122cos30)(0 −−= ttpR  
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The Euclidean algorithm stops here since 0)](deg[ 0 =pR , i.e.  in Eq. 

(3.3.2). Next we proceed to reduce the order of the Diophantine equation. 

0=m

(a) Forward algorithm 

Consider Eq. (3.4.25).  

With , we can solve for the two leading coefficients of  as 0=i )pD (0
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)2sin(1213
1

7
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1)2sin(1220
01 1

1,0

0,0

ttd
d

  

Then, from Eq. (3.4.23f),  is given by )pD H (0

ptppD H )]2sin(1213[)( 2
0 −−+=  

From Eqs. (3.4.22) and (3.4.23), with 1=i , the following reduced order 

Diophantine equation is obtained 

)()()()()( 11111 pFpBpNpApD =+  (3.6.1) 

where 

11 += ppA )(  

192sin122cos30)(1 −−= ttpB  

2,11,1
2

0,10001 )()()()( fpfpfpApDpFpF H ++=−=   

With the help of Eq. (3.4.13), the coefficients of  are given by )(1 pF
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Repeating the above procedure and from Eq. (3.4.23), we solve for the two 

leading coefficients in  as )pD (1

⎥
⎦
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Notice that, in this final step, 0)(1 =pD L  and 

)4sin(81)2sin(57)4cos(18)2cos(19582(4
])2sin(144)2sin(396)2cos(78278[)()( 2

11

tttt
ptttpDpD H

+−++−+
++−==

  

With known ,  follows from the Diophantine equation (3.6.1) as  )(1 pD )(1 pN

)2sin(12)2cos(3019
)]4sin(81)2sin(138)4cos(72)2cos(1655[4)( 0,11 tt

ttttnpN
−+−

++−+
−==   

(b) Backward algorithm 

With known , ,  and  can be obtained from Eq. 

(3.4.28) with  as 

)(1 pD )(1 pN )pD (0 )pN (0

0=i

2,01,0
2

0,0100 )()(( dpdpdpNpDpD H ++=+=)   

1,00,00110 )()()(( npnpQpNpDpN +=−=)   
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where 

10,0 =d   

)2sin(12131,0 td −−=  

)2sin(12)2cos(3019
)]4sin(81)2sin(138)4cos(72)2cos(1655[4

2,0 tt
ttttd

−+−
++−+

−=  

)]2sin(12)2cos(3019/[))]6sin(36)4sin(561
)2sin(967)6cos(90848(2)4cos(381)2cos(1927[60,0

tttt
ttttn

−+−−−

++−+=
 

)]2sin(12)2cos(3019/[)]6sin(225)4sin(345
)2sin(2168)6cos(90)4cos(15)2cos(9201916[121,0

tttt
ttttn

−+−+−

+++−=
 

which is the solution of our original Diophantine equation. 

Furthermore, the polynomials  and in the controller structure can be 

obtained from Eqs. (3.1.15) and (3.4.1) as, respectively, 

)( pnu )( pny

100 )()()( γγδ +=−= pppDpnu  

100 ()( ββ +== ppNpny )  

where 

)2sin(12180 t−−=γ  

)Δ t
tttt

(
)]4sin(324)2sin(480)4cos(288)2cos(84094

1
−−+−

=γ  

)Δ ttt
tttt

(/))]6sin(36)4sin(561
)2sin(967)6cos(90848(2)4cos(381)2cos(1927[60

−−
++−+=β
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)Δ ttt
tttt

(/)]6sin(225)4sin(345
)2sin(2168)6cos(90)4cos(15)2cos(9201916[121

+−
+++−=β

 

)2sin(12)2cos(3019( ttt −+−=)Δ   

In order to avoid division by , we can change the equations for the blocks 

 and  in Figure 1, Eqs. (3.1.4) and (3.1.5), to 

)Δ t(

uH yH

upBpnvpBpδ
t u )()()()(
)(

1
=

Δ
 (3.6.2a) 

ypBpnwpBpδ
t y )()()()(
)(

1
=

Δ
 (3.6.2b) 

Since both  and  contain the factor )( pnu )( pny )(
1
tΔ

, it can be cancelled out on 

both sides of the equations (3.6.2a) and (3.6.2b), and thus their implementations would 

not create a problem.  

With the change introduced in Eq. (3.6.2), it can easily be shown that the closed-

loop system equation becomes (instead of Eq. (3.1.13)) 

rpBpδ
t

yppδ )()(
)(

1)()(
Δ

=α  (3.6.3) 

To do away with the division by , let the reference input be )(tΔ

)()()()( 21 trtrttr += Δ  (3.6.4) 

Substituting Eq. (3.6.4) into Eq. (3.6.3) yields 

)]()()(
)(

1)([)()()(

)]()()()[()(
)(

1)()(

21

21

trpBpδ
t

tgtrpBpδ

trtrtpBpδ
t

yppδ

Δ

Δ
Δ

++=

+=α
 (3.6.5) 
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where 

)]()()(
)(

1)[()( 1 tpBpδ
t

trtg Δ
Δ

=  

Selecting  in such a way that the bracketed term in Eq. (3.6.5) vanishes will 

yield the final closed-loop system equation 

)(2 tr

)()()()()()( 1 trpBpδtyppδ =α  (3.6.6) 

or 

)()()()( 1 trpBtyp =α  (3.6.7) 

)(2 tr  can be found from the following differential equation 

)()()()()( 2 tgttrpBpδ Δ−=  

or 

)]()()()[()()()( 12 tpBttrtrpBpδ Δδ−=  (3.6.8) 

In our example, Eq. (3.6.8) reads 

)]2sin(18276)2cos(1668114)[()()6116( 12
23 tttrtrppp +−−−=+++  
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CHAPTER 4 

SETTING UP CANONICAL FORMS FOR LINEAR TIME-VARYING SYSTEMS 
FROM A DIFFERENTIAL EQUATION DESCRIPTION 

 

In this chapter, a derivation of the observer and observability canonical forms 

starting from a single differential equation description is developed for linear time-

varying systems. Initial condition conversions between the canonical forms and the 

differential equation description are given. With the help of the derived canonical 

forms, simulations of systems given by linear time-varying differential equations are 

greatly facilitated. General formulas for the canonical forms as well as their 

corresponding initial condition conversions are given. 

4.1 Linear Time-Varying Systems Representations 

Consider an nth order linear time-varying differential equation 

)()()()()()()()()()(

)()()()()()()()()()(
)0()1(

1
)2(

2
)1(

1
)(

0

)0()1(
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  (4.1.1) 

,   1)(0 =ta

where u(t) is the input, y(t) is the output, the superscript (k), k=0, … , n,  

indicates the kth time-derivative, and  and , , i=0, … , n,  are continuously 

differentiable functions of time. The coefficient  is assumed to be unity without loss 

of generality. This system can be equivalently represented by a state variable 

description [29]. (The time argument t is dropped for brevity): 

)(tai )(tbi
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DuCxy
BuAxx

+=
+=&

 (4.1.2) 

where u and y are scalars, x is an n-vector, a dot represents differentiation with 

respect to time, and A, B, C, D are n× n, n× 1, 1× n and 1× 1 matrices, respectively. 

To obtain a state variable description of Eq. (4.1.2) from the differential 

description of Eq. (4.1.1), we propose here two different derivations. The first 

derivation is described in Section 4.2 which generates the “observability” canonical 

form. The second derivation described in Section 4.3 leads to the “observer” canonical 

form. Initial condition conversions for the two derived canonical forms are treated in 

Sections 4.4. 

4.2 Observability Canonical Form of Linear Time-Varying Systems 

The procedure of setting up the observability form is outlined below: 

Rename Eq. (4.1.1) as 
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 (4.2.1) 

where 

 ,  i = 0, 1, 2, …, n. (4.2.2) ii bb =0,

The second subscript “0” in the coefficients b’s is used to indicate the step 

number in the recursive process that follows. 

Step 1 : Let the first state variable  be defined as a linear combination of y and 

u, i.e. 

1x

ubyx 0,01 −=  (4.2.3a) 
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The output equation becomes 

ubxy 0,01 +=  (4.2.3b) 

Substituting y in Eq. (4.2.3b) into Eq. (4.2.1) yields 
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where the coefficients of  are given by )(iu
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Notice that the order of the highest derivative of u in Eq. (4.2.4) is reduced to n-

1. 

Step 2 : Assigning the second state variable  as 2x

ubxx 1,1
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leads to the state variable equation 
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)1(
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Substituting all the derivatives of  in Eq. (4.2.4) with the help of Eq. (4.2.6b) 

gives rise to  
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where  the coefficients of  are given by )(iu
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Notice that the order of the differential equation (4.2.7) is further reduced by 

one. 

Step 3 : Assign the third state variable  as 3x

ubxx 2,2
)1(

23 −=  (4.2.9a) 

Then, the state variable equation for  becomes 2x
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Substituting all the derivatives of  in Eq. (4.2.7) with the help of Eq. (4.2.9b) 

results in  

2x

][][ 3,
)1(

3,1
)3(

3,3121

32
)3(

31
)2(

3

ubububxaxa

xaxax

nn
n

nn

n
nn

++++−−=

+++

−
−

−

−
−−

L

L
 (4.2.10) 

where the coefficient of  are given by )(iu
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Step 4 : Continue on with the above procedure until the nth state variable  is 

reached and is defined as 

nx

ubxx nnnn 1,1
)1(

1 −−− −=  (4.2.12) 

Then, the following equation is obtained (similar to Eqs. (4.2.7) and (4.2.10)): 
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 (4.2.13) 

Step 5 : Collecting Eqs. (4.2.3b), (4.2.6b), (4.2.9b) on up to (4.2.13) yields the 

state variable description in the  “observability” form. 
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 (4.2.14a) 

ubxy 0,01 +=  (4.2.14b) 

where ,  v= 1, 2, … , n (4.2.15) )(
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in which the general formula for the coefficients b’s are given by 
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 j = 0, 1, … , n-1 and i = 0, 1, … , n-j-1 

The realization block diagram for Eq. (4.2.14) is shown in Figure 4.1, which is 

exactly the same structure as in the linear time invariant case. 

 

Figure 4.1. Observability canonical form 
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4.3 Observer Canonical Form of Linear Time-Varying Systems 

The procedure of setting up the observer form is as follows: 

Rename Eq. (4.1.1) as 
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 (4.3.1) 

where 

ii aa =0, , i = 0, 1, 2, …, n (4.3.2a) 

ii bb =0, ,  i = 0, 1, 2, …, n. (4.3.2b) 

The second subscript “0” in the coefficients a’s and b’s is used to indicate the 

step number in the recursive process that follows. 

Step 1 : Let the first state variable  be defined as  1x

ubyx 0,01 −=   (4.3.3a) 

The output equation becomes 

ubxy 0,01 +=  (4.3.3b) 

Differentiating Eq. (4.3.3b) n times yields 
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Substituting in Eq. (4.3.4) into Eq. (4.3.1) yields  )(ny
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where the coefficients of  and  are given by )(ky )(ku
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Notice that the orders of the derivatives of y and u in Eq. (4.3.5) are reduced by 

one in comparison to Eq. (4.3.1), respectively. Rewrite Eq. (4.3.5) as 
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Consider the first two R.H.S. terms of Eq. (4.3.7), and . They 

can be rewritten as  
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Let the square bracketed term on the R.H.S. of Eq. (4.3.9) be defined as the (n-

1)th derivative of the second state variable , i.e. 2x
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where the coefficients of  and  are given by )(ky )(ku
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Notice that the orders of derivatives of y and u in Eq. (4.3.10) are further 

reduced by one, respectively. 

Then, Eq. (4.3.9) becomes 
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On integrating Eq. (4.3.12) n-1 times under zero initial conditions, we obtain the 

state differential equation for the first state variable 
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Step 2 : Rewrite Eq. (4.3.10) as 
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Consider the first two R.H.S. terms of Eq. (4.3.14), and . 

They can be rewritten as 
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Let the square bracketed term from the R.H.S. of Eq. (4.3.16) be defined as the 

(n-2)th derivative of the  third state variable , i.e. 3x
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Again, the order of derivatives of y and u in Eq. (4.3.17) are further reduced by 

one, respectively. 

Eq. (4.3.16) becomes 
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Integrating Eq. (4.3.19) n-2 times leads to 
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Utilizing Eq. (4.3.3b) yields the second state differential equation: 
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Step 3 : Continue on with the same process as in Steps 1 and 2 until the 

derivative of the (n-1)th state variable  is reached (in a pattern similar to Eqs. 

(4.3.12) and (4.3.19)) 
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Then, the last state variable equation is obtained as 
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Step 4 : Collecting Eqs. (4.3.3b), (4.3.13b), (4.3.20b) on up to (4.3.23) yields the 

sought-after state variable description in the “observer” form.  

u

bba
bba

bba
bba

x
x

x
x

a
a

a
a

x
x

x
x

nnnn

nnnn

n

n

nn

nn

n

n

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
+−

+−
+−

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

,0,0,

1,10,01,1

2,20,02,2

1,10,01,1

1

2

1

,

1,1

2,2

1,1

1

2

1

000
10
00

10
001

MM

L

OO

OMM

MO

L

&

&

M

&

&

 (4.3.24a) 

ubxy 0,01 +=  (4.3.24b) 

where  
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in which the general formulas for the coefficients a’s  and b’s are given by 
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 j = 0, 1, … , n-1 and k = 0, 1, … , n-j-1 

The realization block diagram of Eq. (4.3.24) is shown in Figure 4.2. , which is 

exactly the same structure as in the linear time invariant case.  

Figure 4.2. Observer canonical form 
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4.4 Initial Condition Conversion 

4.4.1 Initial condition conversion for observability canonical form  

The objective here is to set up the equation 

TuOxy +=  (4.4.1) 

where 

Tnyyy ][ )1()1( −= Ly  (4.4.2a) 

T
nxxx ][ 21 L=x  (4.4.2b) 

Tnuuu ][ )1()1( −= Lu  (4.4.2c) 

The matrices O and T are both n× n. In the time-invariant case, O is the 

observability matrix and T is the Toeplitz matrix [1]. To begin with, we differentiate 

Eq. (4.2.14b) repeatedly to obtain, with the help of Eq. (4.2.14a),  

)1(
0,01,12

)1(
0,0

)1(
1

)1( ][][ ububxubxy ++=+=  (4.4.3a) 

)2(
0,0

)1(
1,12,23

)2(
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)1(
1,1

)1(
2

)2( ][][][][ ubububxububxy +++=++=  (4.4.3b) 

)3(
0,0
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1,1

)1(
2,23,34

)3(
0,0

)2(
1,1

)1(
2,2

)1(
3

)3(

][][][

][][][

ububububx

ubububxy

++++=

+++=
 (4.4.3c) 

  M
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i ubxy  (4.4.3d) 

  M
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− +=
1
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)(
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)1( ][
n

k

k
knknn

n ubxy  (4.4.3e) 
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Using binomial expansion for the derivatives of a product, Eq. (4.4.3d) can be 

rewritten as 

)()(
1,1

1

0 0

)1( jkj
kiki

i

k

k

j
i

i ub
j
k

xy −
−−−−

−

= =

− ∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= , i = 1, 2, …, n (4.4.4) 

which can further be simplified to 

  (4.4.5) )1()(
,

0

)1( 1 −−−
−

=

− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

+= jkji
kk

ji

k
i

i ub
kji

ki
xy

i=1, 2, …, n and j=1, 2, …, i  

Eq. (4.4.5) can be arranged in matrix form as 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−−−

−

−

−

−−−−

−

−

−

)1(

)2(

)1(

,1,2,1,

,11,11,1

,22,21,1

,11,12,11,1

1

2

1

,1,2,1,

,11,11,1

,22,21,2

,11,12,11,1

)1(

)2(

)1(

n

n

nnnnnn

nnnnn

n

nn

n

n

nnnnnn

nnnnn

n

nn

n

n

u
u

u
u

tttt
ttt

ttt
tttt

x
x

x
x

y
y

y
y

M

L

OM

MOOOM

LO

L

M

L

OM

MOOOM

LO

L

M

οοοο
οοο

οοο
οοοο

 (4.4.6) 

where 
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Setting t=0 and noting that  yields the initial 

condition conversion  

0)0()0()0( )1()1( ==== −nuuu L
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Remarks :  

(a) Matrix O(0) is the identity matrix, which is the same as in the linear 

time-invariant case. 

(b) For implementation, the initial conditions of x(0) can be injected at the 

outputs of the integrators as shown in Figure 4.3. 

Figure 4.3. Observability canonical form with initial condition 
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4.4.2 Initial condition conversion for observer canonical form  

Differentiating Eq. (4.3.24b) once gives 

)1(
0,0

)1(
1

)1( ][ ubxy +=  (4.4.9) 

Substituting for  from the state differential equation (4.3.24a) yields )1(
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Differentiate Eq. (4.4.10) one more time and substituting for  from Eq. 

(4.3.24a) gives 
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Continue on in this fashion, the (i-1)th derivative,  , can be formed as )1( −iy
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1
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1
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i=1, 2, …, n and j=1, 2, …, i  
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and  and  are given by Eq. (4.3.25). kka , kkb ,

Setting t=0 and noting that  yields the initial 

condition conversion  
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where ji,ο are defined in Eq. (4.4.13a). 

Remarks :  

(a) Notice that matrix O(0) is always invertible. It reduces to the well-

known observability matrix of the “observer” form in the linear time-invariant case 

[1]. 

(b) The initial conditions of x(0) can be injected at the outputs of the 

integrators as shown in Figure 4.4. 
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Figure 4.4. Observer canonical form with initial condition 
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CHAPTER 5 

CASE STUDY 

 

In this Chapter, the methods which were introduced before will be simulated in 

MATLAB - including Diophantine equation order reduction, pole-placement with 

combined observer-controller and two canonical forms. Since there is no general 

systematic approach for LTV systems, for the purpose of comparison, a second-order 

nonlinear system plant is selected for demonstration of simulations. In Section 5.1, the 

design procedures of pole-placement with combined observer-controller design will be 

demonstrated with the help of Diophantine equation order reduction and canonical 

forms of observability and observer. Then, the design procedures from existing well-

known methods: input-state feedback linearization and input-output feedback 

linearization will be applied to the same plant in Section 5.2 and 5.3, respectively. All 

simulation results from Simulink in MATLAB are shown in Section 5.4. 

 5.1 Pole-Placement with Combined Observer-Controller 

Consider a second-order nonlinear system plant (in p.213 in [35]) having state-

variable equations: 

1211 sin2 xxxx ++−=&  (5.1.1a) 

)2cos(cos 1122 xuxxx +−=&  (5.1.1b) 
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For describing this plant in a single differential equation in Eq. (3.1.1), let  

yx =1  (5.1.2a) 

yyyx sin22 −+= & , (5.1.2b) 

and its corresponding differential equation can be derived as follows: 

uyy
y

yyyyy )2cos()cossincos2(2 =−++ &&&  (5.1.3) 

Comparing with Eq. (4.1.1), all of the coefficients can be found as 

10 =a  (5.1.4a) 

21 =a  (5.1.4b) 

y
yyya cossincos22 −=  (5.1.4c) 

00 =b  (5.1.4d)  

01 =b  (5.1.4e) 

)2cos(2 yb =  (5.1.4f) 

Notice that the convention of subscripts in the coefficients a’s and b’s are 

different between Eq. (3.1.1) and Eq. (4.1.1). This is caused by the difference in degree 

requirements. The convention in Eq. (4.1.1) is adopted here for demonstrating the 

simulation.   
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Placing the closed-loop poles at )1( js ±−= , and the observer poles at  

and , respectively, leads 

2−=s

3−=s )( pα , )( pδ  and in Eq. (3.1.15c) to )( pF

)1)(1( jpjpp −+++=)(α  

)3)(2( ++= ppp)(δ  

1222187
)1)(1)(3)(2(

)()()(

234 ++++=

−+++++=
=

pppp
jpjppp

pppF αδ
 

Referencing Eq. (3.4.5), the Diophantine equation can be written in matrix form 

as  
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Applying Diophantine equation order reduction, the unknowns 0γ , 1γ , 0β  and 

1β  will be solved as 

00 =γ  

21 2 a−=γ  

22220 /)25210( baa γβ −−−= &  

211222221 /)6512( bbaaaa βγβ &&&& −−−−−=  
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5.1.1  Design Procedure for Observability Canonical Form 

There are three blocks: plant,  and  in Figure 3.1. Each block has its own 

input and output. The new state variables for each block can be generated by setting up 

Observability canonical form as described in Chapter 4.  

uH yH

5.1.1.1 Setting up Observability Canonical Form for the Plant 

According to Eq. (3.1.1), the differential equation of the plant is 

ubyayay 221 =++ &&&  

Let   plantplant xubxy _10_1 =+=

The state variables in observability canonical form associated to the plant can be 

found with the help of Eq. (4.2.14), 

plantplant xx _2_1 =&  (5.1.5a) 

ubxaxax plantplantplant 2_21_12_2 +−−=&  (5.1.5b) 

When assigning  and 5.0)0( =y 0.0)0( =y&  the initial values of   and 

 in Eq. (5.1.5) can be found as 

plantx _1

plantx _2

5.0)0()0(_1 == yx plant  

0.0)0()0()0( _1_2 === yxx plantplant &&  

5.1.1.2 Setting up Observability Canonical Form for  uH

From Eq. (3.1.4), the differential equation of  is uH

uv
b
b

b
b

v
b
b

v 2
2

2

2

2

2

2 )6
5

()5
2

( γ=+++++
&&&

&
&

&&   

 69



 

To find the state variables in observability canonical form associated to , 

first let  . Applying Eq. (4.2.14) yields  

uH

HuHu xubxv _10_1 =+=

HuHu xx _2_1 =&  
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b
bx HuHuHu 2_2
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5.1.1.3 Setting up Observability Canonical Form for  yH

From Eq. (3.1.5), the differential equation of  is yH

y
b
b

yw
b
b

b
b

w
b
b

w )()6
5

()5
2

( 2
2

21
1

2

2

2

2

2

2 β
β

β ++=+++++
&

&
&&&

&
&

&&   

To find the state variables in observability canonical form associated to , let  

. Applying Eq. (4.2.14) leads to 

yH

Hyxw _1=

yxx HyHy 1_2_1 β+=&  

y
b
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b
bx

b
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b

b
bx HyHyHy ])52()[()52()65( 1
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&&&&&
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5.1.1.4 Setting up Observability Canonical Form for Equivalent Overall System 

From Eq. (3.1.14), the differential equation of the equivalent overall system is 

rbyy 222 =++ &&&   

To find the state variables in observability canonical form associated to the 

equivalent overall system, let equxy _1= . Applying Eq. (4.2.14) results in  

equequ xx _2_1 =&  

γ2__2__1_2 22 bxxx equequequ +−−=&  
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The initial values are  

5.0)0()0(_1 == yx equ&  

0)0()0()0( _1_2 === yxx equequ &&  

 
5.1.2 Design Procedure for Observer Canonical Form  

The state variables for plant,  and  will be discussed in the following 

three sections. Also, the state variables in equivalent overall combined observer-

controller is discussed in Section 5.1.2.4.  

uH yH

5.1.2.1 Setting up Observer Canonical Form for the Plant 

According to Eq. (3.1.1), the differential equation of the plant is 

ubyayay 221 =++ &&&  

Let   plantplant xubxy _10_1 =+=

The state variables in observer canonical form associated to the plant can be 

found, with the help of Eq. (4.3.24), as 

plantplantplant xxax _2_11_1 +−=&  (5.1.6a) 

ubxax plantplant 2_12_2 +−=&  (5.1.6b) 

When assigning  and 5.0)0( =y 0.0)0( =y&  the initial values of   in Eq. 

(5.1.6a) can be found as  

plantx _1

5.0)0()0(_1 == yx plant  

Knowing 0)0()0()0()0( _2_11_1 =+−== plantplantplant xxaxy &&  leads to 

0.1)0(_2 =plantx  
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5.1.2.2 Setting up Observer Canonical Form for  uH

From Eq. (3.1.4), the differential equation of  is uH

uv
b
b

b
bv

b
bv 2
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2

2

2

2 )65()52( γ=+++++
&&&

&
&

&&   

To find the state variables in observer canonical form associated to , first let  

. Applying Eq. (4.3.24) yields  

uH

HuHu xubxv _10_1 =+=

HuHuHu xx
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5.1.2.3 Setting up Observer Canonical Form for  yH

From Eq. (3.1.5), the differential equation of  is yH
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b
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To find the state variables in observer canonical form associated to , let  

. Applying Eq. (4.3.24) leads to 

yH

Hyxw _1=

yxx
b
bx HyHyHy 1_2_1
2

2
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2
_2 βββ &

&&&&&
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5.1.2.4 Setting up Observer Canonical Form  for Equivalent Overall System  

From Eq. (3.1.14), the differential equation of the equivalent overall system is 
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rbyy 222 =++ &&&   

To find the state variables in observer canonical form associated to the 

equivalent overall system, let equxy _1= . Applying Eq. (4.3.24) results in  

equequequequequ xxxxax _2_1_2_11_1 2 +−=+−=&  

γ2__1_2 2 bxx equequ +−=&  

The initial values are  

5.0)0()0(_1 == yx equ&  

0.1)0(2)0()0( _1_1_2 =+= equequequ xxx &  

5.2 Input-State Feedback Linearization 

Choosing new states from Eq. (5.1.1), with the method of input-state, produces 

11 xz =  

)sin(2 1212 xxxz ++−=  

Their derivatives are 

211 zxz == &&  

vz
zuzzzzzz

+−=
++−−=

2

1111122

2
)2cos()cos()sin()cos(22&

 

respectively, where  

)2cos()cos()sin()cos(2 11111 zuzzzzv ++−=  

Computing the state transformation yields 
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For the purpose of comparison, we can apply the same initial condition and 

place the poles as indicated in the Section 5.1.1.1 and 5.1.2.1. The poles are placed at 

. The initial condition of  and  can be derived from Eqs. (5.1.2a) and 

(5.1.2b) with t=0 as 

)1( js ±−= 1x 2x

5.0)0()0(_1 ==− yx stateinput  

5205744614.0))0(sin()0(2)0()0(_2 =−+=− yyyx stateinput &  

5.3 Input-Output Feedback Linearization 

Considering the state variables in Eq. (5.1.1), we have the choice of 

diffeomorphism such that  

1xy =  (5.3.1a) 

1211 sin2 xxxxy ++−== &&  (5.3.1b) 

v
xxxuxxxxy

=
++−−== )cos()2cos()cos(2 1111211 &&&&&&  (5.3.1c) 

Using the concept of state-feedback linearization, we choose  

)]cos()cos(2[
)2cos(

1
11121

1

xxxxxv
x

u && −++=   

yyv 22 −−= &  when place poles at )1( js ±−=  
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Assigning the same initial condition in Sections 5.1.1.1 and 5.1.2.1, that is 

 and . The initial condition of  and  can be found in Eqs. 

(5.3.1a) and (5.3.1b) with t=0 as 

5.0)0( =y 0)0( =y& 1x 2x

5.0)0()0(_1 ==− yx outputinput  

5205744614.0)0(_2 =−outputinputx  

5.4 Simulations 

Figure 5.1 to 5.20 show the signal waveforms of the simulation of the four 

methods. Zero input is applied to all simulation cases.  The simulation case and their 

results for this example are summarized in table 5.1. 

 Table 5.1 Simulation cases for example in Section 5.1 

Method Initial condition Simulation plots 
Figure 5.1 
Figure 5.2 
Figure 5.3  5.0)0()0(_1 == yx plant

Figure 5.4 
Pole-placement using 
Observability form  0)0()0(_2 == yx plant &

Figure 5.5 
Figure 5.6 
Figure 5.7 
Figure 5.8 
Figure 5.9 

 5.0)0()0(_1 == yx plant

Figure 5.10 
Pole-placement using 
Observer form 

 0)0( =y&

Figure 5.11 
 0.1)0(_2 =plantx

Figure 5.12 
Figure 5.16 Input-state  5.0)0()0(1 == yx

 5205744614.0)0(2 =x Figure 5.17 Input-output 
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Figure 5.1 to 5.4 show the results from combined observer-controller in 

observability form including the states in all sub block diagrams. The output response 

from the equivalent overall system in observability form is plotted in Figure 5.5. Figure 

5.6 shows the difference of output responses between observability form and the 

equivalent overall system. The difference is caused by the transient signal )(tζ  as 

indicated in Eq. (3.1.14).  

Figure 5.7 to 5.10 illustrate the results from combined observer-controller in 

observer form including the states in all sub block diagrams. The output response of the 

equivalent overall system in observer form is shown in Figure 5.11. Figure 5.12 shows 

the difference of output responses between observer form and the equivalent overall 

system which is produced by the transient signal )(tζ  as indicated in Eq. (3.1.14). 

Figure 5.13 shows the output responses of observability and observer are identical. 

Figure 5.15 shows the difference of output responses from two equivalent overall 

systems. It is zero as expected. 

The signal waveforms from input-state and input-output are plotted in Figure 

5.16 and 5.17, respectively. The comparisons of combined observer-controller in two 

forms, input-state and input-output are shown in from Figure 5.18 to 5.20. The 

difference of output responses among equivalent overall system, input-state and output-

state are zero in Figure 5.20 since they have same pole locations and initial conditions. 

  

 76



 

 

 

 

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

y

w

v

u

  

Figure 5.1. The zero input responses of the combined observer-controller in 
observability form with initial conditions:  and 5.0=y 0=y&

 77



 

 

 

 

0 1 2 3 4 5 6 7 8 9 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time in second

x1plant

x2plant

 
 

 Figure 5.2. The zero input responses of the plant state variables in combined observer-
controller in observability form with initial conditions:  and 5.0)0(_1 =plantx

0.0)0(_2 =plantx
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Figure 5.3. The zero input responses of the state variables in  block in combined 
observer-controller in observability form

uH
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Figure 5.4. The zero input responses of the state variables in  block in combined 
observer-controller in observability form

yH
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Figure 5.5. The zero input responses of the equivalent overall combined observer-
controller in observability form with initial conditions:  and 5.0)0( =y 0)0( =y&
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 Figure 5.6. The differences of responses between the combined observer-controller in 
observability form and its equivalent overall system with initial conditions:  

and 
5.0)0( =y

0)0( =y&
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Figure 5.7. The zero input responses of the combined observer-controller in observer 
form with initial conditions:  and 5.0=y 0=y&
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 Figure 5.8. The zero input responses of the plant state variables in combined observer-
controller in observer form with initial conditions:  and 5.0)0(_1 =plantx 0.1)0(_2 =plantx
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Figure 5.9. The zero input responses of the state variables in  block in combined 
observer-controller in observer form

uH
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Figure 5.10. The zero input responses of the state variables in  block in combined 
observer-controller in observer form

yH
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Figure 5.11. The zero input responses of the equivalent overall combined observer-
controller in observer form with initial conditions:  and 5.0)0( =y 0)0( =y&
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Figure 5.12. The differences of responses between the combined observer-controller in 
observer form and its equivalent overall system with initial conditions:  and 5.0)0( =y

0)0( =y&
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Figure 5.13. The differences of output responses between the observability and observer 
forms initial conditions:  and 5.0)0( =y 0)0( =y&
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Figure 5.14. The differences of responses of the input between the observability and 
observer forms initial conditions:  and 5.0)0( =y 0)0( =y&
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 Figure 5.15. The differences of responses between the two equivalent overall combined 
observer-controller systems with initial conditions:  and 5.0)0( =y 0)0( =y&
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Figure 5.16. The responses of the closed-loop control system using input-state method 
with initial conditions:  and 5.0)0(_1 =−stateinputx 5205744614.0)0(_2 =−stateinputx

 92



 

 

 

0 1 2 3 4 5 6 7 8 9 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time in second

x1input-output

x2input-output

uinput-output

  

Figure 5.17. The responses of the closed-loop control system using input-output method 
with initial conditions:  and 5.0)0(_1 =−outputinputx 5205744614.0)0(_2 =−outputinputx
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Figure 5.18. The signal responses of the inputs u from four methods: combined 
observer-controller in observability and observer forms, input-state and input-output
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Figure 5.19. The output responses from four methods: combined observer-controller in 
observability and observer forms, input-state and input-output
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Figure 5.20. The output responses from the equivalent overall combined observer-
controller in observer forms, input-state and input-output
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CHAPTER 6 

CONCLUSION 

 

A new recursive method to reduce the order of Diophantine equation is 

presented. In this method, only inversions of triangular matrices are involved. A 

numerical example is given to illustrate the method. Though this approach does not 

necessarily offer a computational advantage over the traditional Sylvester matrix 

approach, it opens up a possibility of solving a multivariable Diophantine equation in a 

systematic manner and involving only the inversion of block triangular matrices. 

  The setting up of state-variable description for linear time-varying single-input 

single-output systems from an input-output description is also considered. The 

derivation of two canonical forms, the observer and the observability canonical forms, 

are presented. Formulas for the associated initial condition conversion are given. Block 

diagrams for the realization of the state-variable description are the same as those of the 

linear time-invariant case, except that the coefficients are time-varying. 
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APPENDIX A 
 
 

SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER WITH 
OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX B 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX C 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1 
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APPENDIX D 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX E 
 
 

SIMULINK DIAGRAM OF EQUIVALENT OVERALL COMBINED OBSERVER-
CONTROLLER WITH OBSERVABILITY CANONICAL FORM IN SECTION 5.1.1
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APPENDIX F 
 
 

SIMULINK DIAGRAM OF COMBINED OBSERVER-CONTROLLER WITH 
OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX G 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM PLANT IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2

 110



 

 111



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX H 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM Hu IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX I 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM Hy IN COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX J 
 
 

SIMULINK DIAGRAM OF EQUIVALENT OVERALL COMBINED OBSERVER-
CONTROLLER WITH OBSERVER CANONICAL FORM IN SECTION 5.1.2
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APPENDIX K 
 
 

SIMULINK DIAGRAM OF INPUT-STATE LINEARIZATION IN SECTION 5.2
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APPENDIX L 
 
 

SIMULINK DIAGRAM OF SUBSYSTEM OF INPUT-STATE LINEARIZATION IN 
SECTION 5.2
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APPENDIX M 
 
 

SIMULINK DIAGRAM OF INPUT-OUTPUT LINEARIZATION IN SECTION 5.3
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