
A CONTEXT-AWARE INFERENCE SYSTEM,

TO CAPTURE DESIGN RATIONALE

FROM LEGACY MCAD

by

GANESHRAM RAMJI IYER

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2007

Copyright © by Ganeshram Ramji Iyer 2007

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would like to first and foremost thank my wife for all her support and

understanding during the entire duration of my doctoral degree. Without her support

and encouragement this degree would not have been possible.

I would also like to specially thank both Dr. Venkat Devarajan and Dr. John

Mills for their guidance, advice and support through the course of research work. I also

need to express gratitude towards my esteemed dissertation committee Dr. Lawrence,

Dr. Subbarao, Dr. Agonafer and Dr. Dogan for their inputs. Gratitude is also due to Dr.

Ram Sriram of NIST for his inputs on the dissertation documentation.

I would also like to thank Aditya Deshmukh and Dr. Sunil Belligundu for the

help they provided with the design rationale capture analysis process.

October 2, 2007

 iv

ABSTRACT

A CONTEXT-AWARE INFERENCE SYSTEM,

TO CAPTURE DESIGN RATIONALE

FROM LEGACY CAD

Publication No. ______

Ganeshram Ramji Iyer, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Venkat Devarajan

There exist numerous design rationale systems that convert captured

information into structured design rationale while providing rationale representation and

retrieval. These systems woefully neglect the design rationale that is present in legacy

CAD such as 2D drawings and 3D models. The dissertation addresses the issues that

arise when dealing with the capture, representation and retrieval of design rationale

from the 2D legacy CAD data, specifically the non-form related data (e.g. text and

symbols). A definition for design rationale in the CAD domain is presented which

forms the basis of the proposed approach. The approach uses a unique context-aware

inference system to capture design rationale from legacy CAD data. A brief explanation

 v

of context is provided along with the advantages of using context for this task. The need

and use of an inference system is detailed. Additionally a prototype system is

implemented to address these issues from a software system point of view. A

verification process is suggested that will validate the design rationale captured by the

system to that captured by human re-designers.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... xiii

LIST OF TABLES... xvi

Chapter

 1. INTRODUCTION …….. 1

 1.1 Background…………….. 1

 1.2 What is MCAD and Legacy MCAD. .. 2

 1.3 Overall Problem……... 5

 1.4 Key Issues and Hypothesis……………………………………………... 7

 1.5 Scope of Research………………………………………………………. 8

 1.6 Outline of Dissertation………………………………………………….. 9

 2. RELATED RESEARCH. .. 11

 2.1 Design Documentation .. 11

 2.1.1 Advantages of Design Documentation 11

 2.1.2 Disadvantages of Design Documentation................................. 12

 2.2 Design Rationale…….. 13

 2.2.1 Advantages of Design Rationale .. 14

 vii

 2.2.2 Disadvantages of Design Rationale .. 15

 2.2.3 Overview of Design Rationale Systems……………………… 15

 2.2.3.1 Approaches to building design
 rationale systems ... 16

 2.2.3.2 Capture of Design Rationale…………………………. 17

 2.2.3.3 Representation of Design Rationale………………….. 18

 2.2.3.4 Retrieval of Design Rationale………………………… 21

 2.3 Legacy MCAD Design Rationale………………………………………. 22

 2.3.1 2D drawings to 3D model conversions..................................... 22

 2.3.2 Drawing interpretation ... 23

 2.3.3 Definition of legacy MCAD Design Rationale........................ 26

 2.3.4 Importance of legacy MCAD design rationale..................... ... 27

 2.3.5 Lack of Design Rationale system deployments 28

 2.3.5.1 Applicability of Capture methods 29

 2.3.5.2 Applicability of Representation methods..................... 30

 2.3.5.3 Applicability of Retrieval methods 30

 2.4 Context…………………………………………………………………. 30

 2.4.1 What is Context?... 31

 2.4.1.1 Context in Patterns ... 31

 2.4.1.2 Context in Search ... 32

 2.4.1.3 Context in Access Control ... 32

 2.4.1.4 Context-aware computing.. 33

 2.4.1.5 Context in Software.. 34

 viii

 2.4.1.6 Context in Communication .. 34

 2.4.1.7 Context in Databases.. 35

 2.4.1.8 Context in Artificial Intelligence 35

 2.4.2 What is the structure of context?.. 38

 2.4.3 Is context important in design and
 does it influence design?.. 41

 2.4.4 How would a designer use context in design?.......................... 44

 2.4.5 How does using context differ from
 other approaches to design modelling?..................................... 48

 2.4.6 What is the impact of context in design? 51

 2.5 Context in legacy MCAD.. 62

 2.6 Conclusion……………………………………………………………… 66

 3. APPROACH TO SOLVING PROBLEM... 67

 3.1 Design Rationale Analysis of Legacy MCAD... 67

 3.1.1 Design Rationale Capture Analysis Process............................. 68

 3.1.2 Results of Design Rationale Analysis....................................... 71

 3.2 Identify context levels in legacy MCAD... 74

 3.2.1 Syntax in legacy MCAD... 74

 3.2.1.1 Notes.. 75

 3.2.1.2 Titleblock... 75

 3.2.1.3 Shape.. 76

 3.2.1.4 Symbols... 76

 3.2.2 Semantics in legacy MCAD.. . 76

 ix

 3.2.2.1 Standards.. 77

 3.2.2.2 Manufacturing.. 77

 3.2.2.3 Alternatives... 78

 3.2.2.4 Materials... 78

 3.2.2.5 UsedOn.. 79

 3.2.2.6 Part and Assembly... 79

 3.2.2.7 PartName... 80

 3.2.2.8 Inspection.. 80

 3.2.2.9 PartsList and Milieu.. 81

 3.2.3 Pragmatics in legacy MCAD.. 81

 3.2.3.1 Function, Flow, Domain and Application.................... 82

 3.2.3.2 DesignEnvironment, QualityInspection,
 Objectives and Constraints.. 82

 3.2.3.3 Constraints, RelativeCost, QualityInspection.............. 83

 3.2.3.4 Objectives and Constraints... 83

 3.2.3.5 Objectives, SpecificProperties, Application
 and RelativeCost... 84

 3.2.3.6 Application and DesignEnvironment........................... 84

 3.2.3.7 Constraints and Application...................................... 85

 3.2.3.8 RelativeCost and QualityInspection.......................... 85

 3.2.3.9 Function and Constraints... 86

 3.2.3.10 Application, DesignEnvironment and Domain........ 86

 3.3 Automated capture of context from legacy MCAD................................ 87

 x

 3.3.1 Need for automated capture of design rationale 87

 3.3.2 Process of automated design rationale capture......................... 87

 3.3.2.1 Extract context from legacy MCAD............................ 89

 3.3.2.2 Infer Design Rationale ... 90

 3.4 Necessary Validation of Automatically Captured Design Rationale 106

 3.5 Conclusion……………………………………………………………… 106

 4. SOFTWARE ARCHITECTURE .. 107

 4.1 Overall Architecture... 107

 4.1.1 Entity Parsing.. 107

 4.1.2 Extract Syntax... 107

 4.1.3 Extract Semantics ... 109

 4.1.4 Extract Pragmatics... 109

 4.1.5 Infer Design Rationale.. 109

 4.2 Detailed Architecture... 109

 4.2.1 Entity parsing.. 109

 4.2.2 Extract Syntax... 110

 4.2.2.1 First layer template... 111

 4.2.2.2 Second layer template.. 113

 4.2.3 Extract Semantics ... 118

 4.2.3.1 Keywords ... 119

 4.2.3.2 Common Patterns... 120

 4.2.4 Infer Pragmatics.. 122

 xi

 4.2.4.1 Infer Domain .. 122

 4.2.4.2 Infer Function... 123

 4.2.4.3 Infer Flow... 125

 4.2.4.4 Retrieve SpecificProperties.. 125

 4.2.4.5 Infer Objectives and Constraints.................................. 125

 4.3 System Implementation ... 129

 4.4 Conclusion……………………………………………………………... 130

5. RESULTS AND VALIDATION ... 131

 5.1 Selecting a Validation Method .. 131

 5.1.1 Validation Method 1 ... 131

 5.1.1.1 Advantages... 132

 5.1.1.2 Disadvantages .. 132

 5.1.2 Validation Method 2 ... 132

 5.1.2.1 Advantages... 133

 5.1.2.2 Disadvantages .. 133

 5.1.3 Selecting a Validation method.. 133

 5.1.3.1 Definition of drawing file’s complexity....................... 134

 5.2 Output Format…………………………………………………...…… 135

 5.3 Design Rationale captured by re-designers ……………………...…… 138

 5.3.1 Sample drawing 1 ... 138

 5.3.2 Sample drawing 2 ... 141

 5.3.3 Sample drawing 3 ... 143

 xii

 5.4 Design Rationale captured by software system …………………...… 146

 5.5 Results of comparison …………………………………………...…… 155

REFERENCES .. 156

BIOGRAPHICAL INFORMATION... 168

 xiii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Representative 2D drawing with relevant elements highlighted............... 3

1.2 Representative 3D model with relevant elements highlighted.................. 3

2.1 General architecture of Design Rationale systems.................................... 16

2.2 Legacy CAD Design Rationale.. 27

2.3 Hierarchy within corporation.. 42

2.4 Function-Context-Structure Model of Design.. 45

2.5 Product matrix for springs.. 62

2.6 Product matrix for gears, belts and pulleys, chains and sprockets and

cables... 63

2.7 Product matrix for motors.. 64

3.1 Sample 2D drawing.. 69

3.2 Syntax level with child classes... 75

3.3 Semantics level with child classes... 76

3.4 Standards class dependent on Notes and Titleblock classes........................ 77

3.5 Manufacturing class dependent on Notes and Symbols classes................... 77

3.6 Alternatives class dependent on Notes, Shape and Symbols classes............ 78

3.7 Materials class dependent on Notes class... 78

3.8 UsedOn class dependent on Titleblock class.. 79

 xiv

3.9 Part and Assembly classes depend on Titleblock, Shape and Symbols
class... 79

3.10 PartName class depends on Titleblock class.. 80

3.11 Inspection class depends on Notes and Symbols classes............................ 80

3.12 PartsList and Milieu classes depend on Titleblock class............................ 81

3.13 Pragmatics level with child classes in legacy MCAD................................. 82

3.14 Function, Flow, Domain and Application inferred from PartName............ 82

3.15 DesignEnvironment, QualityInspection, Objectives and

Constraints inferred from Standards... 83

3.16 Constraints, RelativeCost and QualityInspection inferred from

Manufacturing.. 83

3.17 Objectives and Constraints inferred from Alternatives................................ 84

3.18 Objectives, SpecificProperties, Application and RelativeCost

inferred from Materials... 84

3.19 Application and DesignEnvironment inferred from UsedOn....................... 85

3.20 Constraints and Application inferred from Part and Assembly.................... 85

3.21 QualityInspection and RelativeCost inferred from Inspection..................... 86

3.22 Function and Constraints inferred from PartsList... 86

3.23 Application, DesignEnvironment and Domain inferred from Milieu........... 86

3.24 Overall approach to capture Design Rationale from Legacy MCAD............ 88

3.25 Overall architecture of Inference Engine... 94

3.26 Sample rules from rule-base used by inference engine................................. 98

3.27 Sample rules from rule-base used by inference engine................................. 99

3.28 Rule-base for Aluminum... 102

 xv

4.1 Overall Architecture.. 108

4.2 Read DXF File and store array of GE2D_Entity objects.............................. 110

4.3 Sample Company template... 111

4.4 Sample Sheets template.. 113

4.5 Sample Notes template... 114

4.6 Sample title-block template.. 116

4.7 Surface Finish symbol.. 118

4.8 Geometric Dimension and Tolerance symbol.. 118

4.9 Infer Domain.. 124

4.10 Infer Function... 126

4.11 Sample from the Domain keywords data file... 123

4.12 Infer Domain... 124

4.13 Infer Function.. 126

4.14 Infer Flow.. 127

4.15 Materials Objectives and Constraints Template.. 128

4.16 Infer Objectives and Constraints from Materials (example)........................... 129

 xvi

LIST OF TABLES

Table Page

 2.1 Taxonomy of Engineering Domains... 52

 2.2 Taxonomy of Functions in the Mechanical Domain................................... 54

 2.3 Taxonomy of Functions in the Structures (no motion) domain................... 55

 2.4 Taxonomy of Flows in the Mechanisms Domain.. 57

 2.5 Taxonomy of Flows in Structures (No motion) domain............................... 57

 2.6 Taxonomy of Flows in Motion domain... 58

 2.7 Relationship among Functions and Flows in Structures (No motion)

domain.. 59

 2.8 Context in legacy MCAD... 64

 5.1 Design Rationale Capture Analysis Output Format..................................... 135

 5.2 Design Rationale captured from sample drawing 1 by re-designer.............. 138

 5.3 Design Rationale captured from sample drawing 2 by re-designer.............. 141

 5.4 Design Rationale captured from sample drawing 3 by re-designer.............. 143

 5.5 Design Rationale captured from sample drawing 1 by software................... 146

 5.6 Design Rationale captured from sample drawing 2 by software.................... 149

 5.7 Design Rationale captured from sample drawing 3 by software.................... 152

 1

CHAPTER 1

INTRODUCTION

1.1 Background

The use of CAD/CAE in design documentation and modelling is becoming

ubiquitous [1]. Feature-based CAD systems have demonstrated clear potential for

creating attractive design environments and facilitating geometric reasoning related to

design function, performance evaluation, manufacturing process planning, NC

programming and other engineering tasks. In the last decade, interest in design rationale

systems has grown. Design rationale systems are important tools because they can

include not only the reasons behind a design decision but also the justification for it, the

other alternatives considered, the tradeoffs evaluated, and the argumentation that led to

the decision. The use of a design rationale system - a tool for capturing and making

design rationale easily accessible - can thus improve dependency management,

collaboration, reuse, maintenance, learning, and documentation. On the down side,

while it was expected that solid modelling or design rationale systems would replace

drafting systems in design, this turned out to not be the case. Even today, most CAD

applications are based on two-dimensional drafting. Shah [2] states that the reason for

this failure is the deficiency of the geometric modelling tools. As the design and the

manufacturing process evolve around the geometric shape of the product, the current

 2

generation of CAD systems is based on geometric modelling techniques. These

techniques have proved to be deficient as their usefulness is limited to recording the

embodiment detail of the product. Unfortunately designers no longer merely exchange

geometric data but need to share more general information about the product such as the

design rationale, constraints, specifications and manufacturing knowledge. As design

becomes increasingly knowledge intensive, the need for computational frameworks to

effectively support the formal representation, capture, retrieval and reuse of product

knowledge/design rationale, becomes more critical [3]. Commercial and governmental

entities looking to use design rationale systems to improve their product development

process, have to deal with the bulk of the design rationale that resides in their current

design data, such as the 2-dimensional drawings. This design rationale needs to be

propagated to a more reusable, intelligent and structured format such as those used by

design rationale or knowledge-based systems.

1.2 What is MCAD and legacy MCAD?

Before stating the overall problem section provides the necessary background

on Mechanical Computer-aided Design (MCAD) and legacy MCAD. MCAD normally

refers to geometry authoring tools primarily used to create detailed designs in numerous

mechanical domains such as automotive, aerospace, ship building etc. Legacy MCAD

refers to the two main formats viz. 2-dimensional (2D) drawings and 3-dimensional

(3D) models used by MCAD tools to store detailed designs. 2D drawings contain CAD

entities such as points, lines, arcs, circles, splines etc. in addition to text and symbols.

3D models on the other hand are composed of CAD entities such as edges, surfaces,

 3

solids etc. If the 3D model is parametric then it also contains features, parts and sub-

assemblies which are composed of the lower level CAD entities mentioned previously.

The text contained in the legacy CAD indicate notes, materials, dimensions, tolerances,

company-, project-, design-, designer info, surface finish etc. The geometry indicates

shape, alternatives, dimensions, tolerances etc.

Figure 1.1: Representative 2D drawing with relevant elements highlighted

Figure 1.2: Representative 3D model with relevant elements highlighted

 4

There are numerous CAD systems that support these two formats. Autodesk’s

AutoCAD software is probably the most used 2D drawing product in the market with

Autodesk’s proprietary DWG the most common storage file format. Autodesk has

another file format termed the Drawing Exchange Format (DXF) that is ASCII based.

The 3D market has many players such as Dassault Systemes’ CATIA and SolidWorks,

UGS, PTC’s Pro/Engineer, Autodesk’s Inventor etc.

This dissertation addresses 2D formats, although the methods and hypothesis

stated could easily apply to 3D formats too. With regards to file formats the proposed

approach should work with all the proprietary formats of the commercial systems

though intermediate translators may have to be written to allow entity extraction. The

two file formats directly targeted are the DXF and the DWG. The DXF file primarily

stores 2D drawings and although 3D is also possible in DXF the current dissertation

does not address that specific format. To handle the DWG file format, existing software

provided by Autodesk to convert the DWG file to DXF is used. There is no loss of

necessary information in this conversion process and hence deemed acceptable. In

addition to serving as a storage format for geometry, text and symbols the DXF file also

provides manageability objects such as groups and layers. To provide a brief

explanation of these manageability objects consider the need to separate entities based

on their type i.e. by placing the geometry and text on different layers the user can use

the properties of the layers such as visibility to view either the layer containing

geometry or the layer containing text or both simultaneously.

 5

1.3 Overall Problem

The origin of the problem addressed in this dissertation comes from the U.S

Army the Tank Automotive Research, Development and Engineering Centre’s

(TARDEC) Tank Automotive and Armaments Command (TACOM) department. It was

claimed that the manufacturing team from TACOM were reluctant to move to 3-

dimensional (3D) solid models from 2-dimensional (2D) drawings. One primary reason

stated was the lack of design rationale in the 3D models that was available in 2D

drawings. The lack of this information in the 3D models may have something to do with

the manner in which these 3D models were created compared with 2D drawings.

2D CAD systems such as AutoCAD primarily provide the drafters with tools to

replicate in digital format the paper and Mylar based blueprints that used to store design

artifact information. These paper and Mylar based blueprints were considered as

storehouses of all design decisions and information with regards to the various artifacts

that were designed. Using a variety of techniques such as scanning of paper blueprints

to digital raster formats and then converting the raster formats to vector formats using

software such as VPHybridCAD©. These vector formats were usually available in

commonly available file formats such as AutoCAD’s proprietary DWG or the DXF

format, which were both primarily 2D. Since the newly created vector-based, digital 2D

drawings were facsimiles of the original paper blueprints these new 2D drawings were

now the storehouses of the design decisions that were contained in the paper blueprints.

But 2D drawings and the CAD tools used to create them e.g. AutoCAD had many

problems viz. possibility of creating ambiguous geometry, non-parametric geometry,

 6

non-associative dimensions etc. To address these problems 3D modeling MCAD

(Mechanical Computer-aided design/drafting) systems were introduced that created

parametric, unambiguous, feature-based models. To take advantage of these new

functionalities designers and corporations began converting their 2D drawings to 3D

models. But 3D MCAD systems use a very different layout of the artifacts as compared

to the 2D drawings. The 3D CAD systems focus primarily on the geometry while

incorporating the non-geometric elements in arbitrary manners. Additionally the process

of converting 2D drawings to 3D models largely ignored the non-geometric information

stored in the 2D drawings.

These two reasons account for the lack of the non-geometric information in the

3D models that was present in the 2D drawings but the claim made by TACOM

manufacturers was that they could capture design rationale from 2D drawings that they

could not from 3D models. To validate this claim and address the need of a method to

move design rationale from 2D drawings to 3D models, a Small Business Innovation

Research (SBIR) proposal was submitted in collaboration with Imagecom Inc, which

was awarded to Imagecom Inc in 2004.

The overall problem that this dissertation addresses stems from this SBIR

proposal i.e. how can we capture design rationale from legacy drawings assuming that a

valid rationale exists behind any information that is included on legacy MCAD ?

 7

1.4 Key Issues and Hypothesis

The previous section (section 1.2) briefly provided the overall problem. From

this overall problem statement we can identify a few questions that need to be answered

which are:

• What is design rationale?

• What is design rationale in the domain of legacy MCAD?

• Why is it important to capture design rationale from legacy MCAD?

These questions are answered in Chapter 2 (Related Research) in section 2.3.

The key issues that are addressed in this dissertation are:

• Existing design rationale capture methods do not address legacy CAD.

• Addressing the primary key issue requires us to address secondary issues

regarding scope when dealing with legacy CAD viz.

o a. What percent of all legacy MCAD can we address?

o b. What percent of design rationale on legacy CAD can we capture?

o c. Does using standard legacy CAD formats (ASME, ISO) aid in

addressing scope?

These key issues are addressed systematically in the subsequent chapters. In an

effort to address these key issues the dissertation describes a new method by proving the

following hypothesis:

“LEGACY CAD DESIGN RATIONALE CAN BE CAPTURED BY

IDENTIFYING THE SURROUNDING CONTEXT.”

 8

The subsequent chapters also detail the steps needed to prove the hypothesis.

Chapter 2 provides the related research regarding the key ideas such as “legacy CAD

design rationale” and “context”.

1.5 Scope of Research

The idea of capturing design rationale from legacy MCAD is not new but is

treated quite differently from the current state of the research in legacy MCAD. Chapter

2 provides the required related research on the definition of design rationale in legacy

MCAD and its relationship to the definition of design rationale in general and why it is

more important to treat design rationale in legacy MCAD in this manner rather than

treat it in a manner consistent with current state of research. The scope can be addressed

by providing the answers to the following questions:

• What percent of all legacy CAD can we address?

This dissertation is limited to Mechanical Engineering and more specifically to

machined piece parts and sub-assemblies. System level CAD is ignored.

• What percent of design rationale on legacy CAD can we capture?

The answer to this lies not in the proposed approach but in comparing the

rationale captured by the suggested method to that captured by an experienced re-

designer. The system that is built with this dissertation cannot capture more rationale

than an experienced re-designer as the system will then have to be rather extensive with

unlimited scope to match the experience and knowledge that the re-designer has access

to. But in general the system will perform better than an inexperienced re-designer if it

has access to well defined rule-bases. Additionally, as detailed later the percent of

 9

design rationale that can be captured will increase with continued input from

experienced re-designers.

• Does using standard legacy CAD formats (ASME, ISO) aid in addressing

scope?

It is generally easier to extract context from well defined CAD formats, rather

than random representation formats. While theoretically the system should be able to

parse CAD candidates at the same level as that possible by a human, in practice the

maturity of the system will decide its accuracy. A well defined format aids in limiting

the scope of applicable legacy CAD to the following:

• Groups of related (by company, project, design) legacy CAD

increases percent of successful context extraction.

• Related, formal legacy CAD increases probability of inference:

The system that is proposed in this dissertation has been

developed to address legacy CAD files belonging to a single

project or company that have standardized layout formats rather

than dealing with individual unrelated CAD files.

1.6 Outline of dissertation

The following is a brief outline of the rest of the chapters in this dissertation.

Chapter 2 provides the required related research. Starting with the need for

design rationale chapter 2 provides the state of the research in design rationale, its

capture, representation and retrieval. With an understanding of design rationale in

general, the chapter then details legacy MCAD design rationale, its definition,

 10

importance and applicability of current suggested capture, representation and retrieval

methods. Chapter 2 also provides the state of the research on the idea of context and

specifically the concepts of context in design and context in legacy MCAD. To better

understand context chapter 2 provides the detail of the nature, structure, importance and

impact of context in both design and legacy MCAD.

Chapter 3 details the approach proposed to address the hypothesis stated in

section 1.4. The first step of the approach is an analysis process to identify the process

and rationale that can be captured by human candidates. The goal of the analysis is to

identify the nature of a software system that is developed as a part of this dissertation to

address the hypothesis in as automated a manner as possible.

Chapter 4 details the software architecture proposed to automate the capture of

design rationale from legacy MCAD. This chapter also briefly describes the system

implementation details such as the programming languages, file formats and databases

used to achieve automation.

 Finally, in chapter 5, a validation approach is proposed to prove that the design

rationale that is captured by such a system is the same as that can be captured by human

candidates. During this validation step the design rationale captured by the two means is

compared to prove the quality of the design rationale captured by the software system.

 11

CHAPTER 2

RELATED RESEARCH

This chapter provides the related research and background required for the rest

of the dissertation. The topics covered in this chapter are design documentation, design

rationale and more specifically design rationale in the domain of legacy MCAD, context

in design and context in legacy MCAD.

2.1 Design Documentation

With any design there is a need for design documentation. Design

documentation is primarily used to store the data/information that is generated during

the design process. Design documentation is a storehouse of the final design or can be

seen as a snapshot of the final decisions of the design process. Re-designers use design

documentation for any required design changes and/or improvements while

manufacturers use the documentation for production purposes, manufacturing

instructions, material selection etc. There are many advantages and disadvantages to

using design documentation methods and tools.

2.1.1 Advantages of Design Documentation

Design documentation and tools that support documentation are rather

ubiquitous and fairly easy to use. Existing, specialized tools such as computer-aided

design (CAD), computer-aided manufacturing (CAM), product data management

 12

(PDM) and product lifecycle management (PLM) in addition to general productivity

tools such as Microsoft Word or Excel support design documentation very well. The

specialized tools focus on advanced geometry representation and manufacturing

simulation and planning while the general tools serve as storehouses of standards,

design tables and calculations etc. Due to the nature and availability of documentation

tools almost all product design tasks are accompanied by the outputs of these tools

providing ad-hoc standards to store design decisions e.g. using spreadsheets for design

calculations.

2.1.2 Disadvantages of Design Documentation

While design documentation is considered very valuable it has some notable

disadvantages. Design documentation tends to get very voluminous and most times has

an unstructured format. The completeness of design documentation relies on the

designer. If the designer does not do a thorough job of providing necessary details the

documentation remains incomplete. If the department or the company does not provide

a formal, standard method for documentation then the documentation format tends to be

rather informal, once again dependent on the designers to define completeness and

consistency. All these reasons make the process of maintaining and querying the

documentation rather expensive both economically and temporally. But the primary

reasons why design documentation is considered insufficient are:

• It does not store the reasons or justifications for a particular design decision

• It does not also store the alternatives that were explored during the design

process and the reasons for their rejection. Even if the designer does state

 13

the justifications for a design decision over an alternative, this information is

not easily available and very rarely stored with the original design itself.

2.2 Design Rationale

To address these disadvantages of design documentation researchers suggest

storing the rationale behind a design decision in addition to the data or information

pertaining to the design decision. This stored rationale is commonly referred to as

design rationale, design intent or design history. Design rationale stores design

decisions along with their reasons and justifications in addition to the alternatives

explored and the reasons and justifications for their rejection. Thus design rationale

provides both argumentation (a way to query for the reason behind a particular

decision) and communication (a way to store the design discourse viz. the design space

explored) in addition to documentation (storing design data/information). Various

design rationale systems have been developed since the early 1980’s. The research has

ranged from basic observations about the design process to different approaches to

capturing design rationale [4]. The results of the research in design rationale have been

to suggest definitions for design rationale in addition to developing, approaches to

design rationale systems, representation schema for design rationale, approaches to

capture design rationale and, design rationale retrieval strategies. Some suggested

definitions include:

“Design rationale expresses elements of the reasoning which has been invested

behind the design of an artifact" [5].

 14

“Design rationale is the reasoning and argument that leads to the final decision

of how the design intent is achieved.” “Design intent is the `expected’ effect or behavior

that the designer intended the design object should achieve to fulfill the required

function.” [6]

“Design rationale means statements of reasoning underlying the design process

that explain, derive, and justify design decisions.” [7]

Design rationale means “information that explains why an artifact is structured

the way that it is and has the behavior that it has” [8].

“Design rationales include not only the reasons behind a design decision but

also the justification for it, the other alternatives considered, the tradeoffs evaluated, and

the argumentation that led to the decision” [9].

Lee’s [9] definition is used as the basis for this entire dissertation.

2.2.1 Advantages of Design Rationale

It is well accepted within the design community that the availability of explicit,

declaratively represented design rationale would be a tremendous asset. Design

rationale would serve as a record of the basic structure of a design, codifying how the

design satisfies specified requirements, as well as key decisions that were made during

the design process. This information would facilitate collaboration among multiple

distributed designers – a tremendous benefit for large-scale design efforts. Rationale

would also provide guidance in exploring alternative designs, whether as part of the

natural evolution of a design or in response to changing requirements. Finally, design

rationale would enable easier maintenance of artifacts over their life cycles and more

 15

effective reuse of designs by making it easier for downstream engineers to understand

how a design works [10].

2.2.2 Disadvantages of Design Rationale

While considerable effort has been put into developing design rationale systems,

none of these systems has been adopted for widespread industrial use [4]. Molavi and

his colleagues state that this failure is above all due to the costs and disruptions

associated with capturing and structuring of the design rationale [33]. They contend that

although there have been some individual success stories of applying design rationale

systems in practice, almost every one of these has been associated with heroic efforts by

a solitary champion of design rationale within the successful project. There are few or

no published indications that significant design rationale projects have been continued

past the pilot project stage [11]. Most design rationale systems are still in the laboratory

stage because further research and development is needed to focus on the advancements

needed to take the science to the level at which it can be effectively deployed in

industry [4].

2.2.3 Overview of Design Rationale Systems

Figure 2.1 [4] shows the flow of data through a general design rationale system.

The next few sub-sections provide a summary of the background on the commonly used

terms with respect to design rationale viz. approaches, capture, representation and

retrieval.

 16

Figure 2.1: General architecture of Design Rationale systems [4]

2.2.3.1 Approaches to building design rationale systems

The main approaches to design rationale systems are process-oriented and

feature-oriented. In dynamic design domains the process-oriented approach is used to

give historical representation of artifacts while in fields with a relatively high degree of

standardization, the feature-oriented approach is used to give logical representation of

artifacts, to follow the rigorous and logical rules of the design process.

• Process-oriented approaches emphasize the design rationale as a history of

the design process. Most design rationale approaches are process-oriented.

The representation schema of process-oriented rationale system is generally

 17

graph-based using nodes and links, with nodes indicating possible issues and

links indicating relationships among the nodes.

• Feature-oriented design rationale systems contain domain knowledge-bases,

which can be used to support automated reasoning and the generation of

design rationale. So representations of design rationale are usually more

formal than in a process-oriented design rationale system. In some systems,

the design rationale is represented with links to the existing knowledge-base.

The retrieval and reuse of design rationale seems very natural in the design

process of later artifacts [4].

2.2.3.2 Capture of Design Rationale

In a design process, capturing design rationale involves recording the

reasonings, decisions, oppositions, trade-offs, etc and constructing a formal or semi-

formal structure so that the design rationale can be used in the decision-making process

during design [4]. There are two main methods to capture design rationale viz.

automatic and user-intervention [12]. The automated method does not require the

designer to input or record design discussions, decisions and reasoning themselves

while the user-intervention method does. These two methods are used to capture design

rationale using either process-oriented or feature-oriented approach. In the process-

oriented approach design rationale is seen as a history of the design process while in the

feature-oriented approach design rationale has a formal, logical structure and is

supported by domain knowledge-bases. Thus in fields with relatively high degree of

standardization the feature-oriented approach is used while the process-oriented

 18

approach is used in dynamic design domains. Lee [13] offers the following

classification for the rationale capture systems:

• Reconstruction [9]

o Captured outside the design process, usually after it has been

performed using information recorded during design.

• Automatic generation [9]

o Generated from an execution history

• Methodological byproduct [9]

o Emerges during the design process.

o Methodology aids design and captures rationale

• Apprentice [9]

o System monitors designers actions and compares with pre-generated

rationale

• Historian [14]

o Similar to Apprentice but does not make suggestions.

2.2.3.3 Representation of Design Rationale

The choice of a representation schema is a critical issue [4] because it

determines how to organize this enormous amount of diverse material and build in into

a usable structure. It also determines how to capture and retrieve the design rationale

[4]. The following are some of the commonly referred representation schema.

• Argumentation-based design rationale representation is the most common

format. With argumentation, designers can easily maintain consistency in

 19

decision-making, keep track of decisions and communicate about design

reasonings. The most common argument structures for selecting and organizing

information are IBIS (Issue-based information system) [15], PHI (Procedural

Hierarchy of Issues) [16], QOC (Questions Options and Criteria) [17] and DRL

(Decision Rationale Language) [18].

o In IBIS the key issues are usually articulated as questions, with each

issue followed by one or more positions that respond to the issue. Each

position can potentially resolve or be rejected from the issue. Arguments

either support or object to a position.

o The Procedural Hierarchy of Issues (PHI) extends IBIS by broadening

the scope of the concept “issue” and by altering the structure that relates

issues, answers and arguments. First, it simplifies relations among issues

by using the “serve” relationship only. Second, it provides two methods

to deal with design issues: deliberation and decomposition i.e., to give

answers to the issue or to break down the issue into a variety of sub-

issues which in turn could be deliberated or decomposed.

o QOC represents the design space using three components viz. questions

identify key issues for structuring the space of alternative; options

provide possible answers to the questions; criteria are the bases for

evaluating and choosing among the options. The QOC representation

emphasizes the systematic development of a space of design options

structured by questions, and the rationale representation in QOC is

 20

created along with the descriptive representation (specification) or the

artifact itself (prototype).

o Decision Rationale Language (DRL) uses design rationale as an account

of how the designed artifact serves or satisfies expected functionalities.

DRL is an expressive language, which represents the space around

decisions. The DRL is used to represent and manage the qualitative

elements of decision making: for example, the alternatives being

considered, their current evaluations, the arguments responsible for these

evaluations, and evaluation criteria.

• Functional representation (FR) is a modified form of argumentation-based

representation. Like DRL, FR uses design rationale as an account of how the

designed artifact serves or satisfies expected functionality. FR takes a top-down

approach to represent a device; the overall function is described first and the

behavior of each component is described in the context of this function. FR

encodes the designer’s account of the causal processes in the device that

culminate in achieving its functions. The Structure-Behavior-Function (SBF)

[19] and KRITIK [20] are examples of FR.

• Augmenting Design Documentation (ADD) [21] represents design rationale by

documenting the complete design decision path associated with the artifact as

well as the rationale behind each decision presented by the user. Recently a

system called ADD+ was proposed that uses the same basic model as ADD but

 21

stores the wealth of knowledge by organizing it into high-level rhetorical

structures.

• The Core Product Model (CPM) [22] is an object-oriented framework for

representing products. The CPM stores a complete view of a product and hence

contains a Rationale class. The Rationale class along with its sub-classes stores

the justifications and evolution of the product including functions and

constraints.

2.2.3.4 Retrieval of Design Rationale

At different design stages there are various purposes for accessing design

rationale. The reuse of design rationale is made possible by successful retrieval

strategies. The integration of design rationale systems with other design support systems

can greatly improve the retrieval of design rationale. The following are some of

methods proposed for design rationale retrieval:

• Design rationale retrieval shares much in common with case-based reasoning

and retrieval. The goal of most design rationale systems is to store rationale so

that relevant past experiences can be retrieved to aid in current problem solving.

Case-based retrieval methods are thus the most common retrieval methods in

design rationale systems.

• Design rationale Navigators permit the designers to investigate stored rationale

using a graphical interface. The designers traverse between nodes connected by

links to facilitate investigation. Navigators are commonly implemented in most

design rationale systems to provide a graphical interface to the designer.

 22

• Retrieval strategies that retrieve answers to designers’ queries are generally

considered more efficient than navigators. Questions of the type of “what-if” or

“why” provide the designer with ways of exploring alternatives and

justifications of the argumentation or reasoning behind a decision.

• Automatic triggering is another common retrieval method that monitors the

designer’s actions as it checks the design process, compares the decisions made

with the constraints, rules or criteria in a design rationale library or knowledge-

base. If differences are detected the new decision will be stored in the design

rationale library. This type of retrieval is ideal for use during the design process.

2.3 Legacy MCAD Design Rationale

With a general understanding of design rationale and the state of the research in

the areas of approach, capture, representation and retrieval, the following section deals

with design rationale in the limited domain of legacy MCAD. Current attempts to

capture design rationale from legacy MCAD fall largely into two categories 2D

drawings to 3D model conversions and drawing interpretation. The next two sub-

sections present the state of the research and art on design rationale in legacy MCAD.

2.3.1 2D drawings to 3D model conversions

There exists much research to capture the information present on the 2D

drawings and propagate it to an intelligent, parametric, feature-based 3D model. Weiss

and Dori [23] propose an approach that automates the 3D object reconstruction from 2D

engineering drawings by mimicking human intelligence. Dori and Wenyin [24] have

described a complete system that realizes the entire process of understanding

 23

mechanical engineering drawings from scanning to 3D reconstruction. The system

described has the capability of separating geometric entities from non-geometric, such

as text, arrowheads, leaders, dashed lines and hatch lines etc. Tanaka et al [25] describe

a method to automatically convert 2D assembly drawings to 3D part models, generating

a unique solution for designers regardless of the complexity of the original 2D assembly

drawings. They use the dimension lines, part numbers and part lists, usually drawn on

the 2D, to create the 3D assemblies.

On the commercial side too there are numerous proposed solutions. Imagecom

Inc. [26] has a product named FlexiDesign that converts 2D drawings in AutoCAD

DWG and DXF formats to parametric, feature-based 3D models in a variety of target

MCAD systems e.g. PTC’s Pro/Engineer, SolidWorks, Autodesk’s Inventor etc.

FlexiDesign, as it stands, currently handles piece-part drawings but is being extended to

handle assembly drawings. Various MCAD systems such as SolidWorks and

Pro/Engineer also provide the user with basic 2D to 3D conversion tools built into their

system, though these tools are largely manual and are primarily facilitate drawing reuse

rather than conversion.

2.3.2 Drawing interpretation

There are many drawing interpretation solutions also suggested that allow a

designer to query CAD files for required information. Joseph [27] has presented a

methodology for the interpretation of engineering drawings based on a combination of

schemata describing drawing constructs with a library of low-level image analysis

routines and a set of explicit control rules applied by a parser. The resulting system

 24

integrates bottom-up and top-down processing strategies within a single, flexible

framework modelled on the human perception cycle. The system, termed Anon, is a

knowledge based image analysis system intended to extract 2D graphical elements and

symbols from a grey level image of a mechanical engineering drawing. The system

classifies the information on the drawing into appropriate schematic classes such as

solid, dashed and chained lines, solid and dashed curves, cross hatching, text, witness

and leader lines and certain forms of dimensioning. Cheng and Yang [28] propose a

knowledge-based graphic description tool that is used to recognize and understand

engineering drawings. The graphic description tool basically consists of a concept

description network, a graphic description language, a physical description framework,

a set of image processing modules, a matcher, a rule-based inference engine, an

interpreter and blackboard control architecture. The concept description framework,

graphic description language, and physical description framework are designed to

represent domain knowledge, graphic semantic knowledge and physical properties of

engineering drawings in different fields. The matcher recognizes all graphic symbols

and characters that are extracted by the low-level image processing routines. The rule-

based inference engine is built to infer possible relations among graphic symbols and

generate a relational graph. The interpreter is used to generate an acceptable explanation

in terms of traversal of the relational graph. This framework does not attempt to create a

solid model from the captured information but instead builds an engineering drawing

understanding system that could be queried as necessary. Vaxiviere and Tombre [29]

present a knowledge based system named CELESSTIN that extracts technologically

 25

significant entities and analyzes the whole setup with respect to disassembling and

kinematics knowledge. These technologically significant entities allow CELESSTIN to

start using rules referring to the semantics of the represented object itself. The paper

illustrates how to assign a simple syntax on the basic structures to recognize simple

mechanical entities such as shafts or screws.

Almost all solutions, except Cheng’s and Yang’s [28], and Vaxiviere’s and

Tombre’s [29] address the problem of 2D drawings to 3D model conversion as mostly

geometric with possible input from the supporting symbols and text that may be present

on the 2D drawing sheet. Research to identify and separate product geometry from

dimension sets, arrowheads, hatching lines, text and symbols fall short in failing to

recognize that the non-geometric information on the drawing sheet contributes to

engineering knowledge, design intelligence and some design rationale. Tanaka’s [25]

solution is further limited, in that one major requirement for their algorithm to work is

that the original assembly drawings consist of standard parts such as bars and plates.

While Cheng and Yang’s [28] paper describes a rule based system that recognizes,

examines and classifies the graphic symbols in the engineering drawings, their graphic

description language diverges from the current practice of using vectorized geometric

information. The specific domain knowledge of the drawing that their system extracts is

mostly used to examine and classify the graphical symbols in a field. Very little

semantic knowledge is attached to the graphical symbols using the domain knowledge.

Vaxiviere’s and Tombre’s CELESSTIN [29], while able to recognize simple

mechanical entities, will face difficulties when the complexity of the mechanical entities

 26

grows beyond symmetric blocks. CELESSTIN also lacks support for non-geometric

entities, which could pose problems when information is missing from the geometry of

the artefact.

Most importantly it must be noted that none of these solutions capture design

rationale as the reason for the artefact or a part of it. No methods exist that capture the

functions, justifications or alternatives in the same way as traditional design rationale

systems. This is one of the biggest failures of legacy MCAD design rationale systems.

2.3.3 Definition of legacy MCAD Design Rationale

From the summary of related research and background presented in preceding

sub-sections it is clear that there exists no clear understanding of what is meant by

design rationale in legacy MCAD. Based on an extensive literature survey it is

concluded that no researcher has even provided a definition for design rationale in the

domain of legacy MCAD. The definitions stated for generic design rationale in sub-

section 2.2 are not applicable in the domain of legacy MCAD. In an effort to better

understand legacy MCAD design rationale the following definition is suggested:

“Design rationale contained in legacy CAD is the insight into the design

variables implicit in the structural, semantic and practical relationships between the

geometric and textual entities present in the CAD representation” [30].

The design variables are the functions, flows, objectives, constraints, principles,

guidelines and manufacturing that are considered during the design process. It should be

noted, however, that the design rationale that can be captured from legacy CAD will be

limited due to the nature of the information present on it. 2D drawings contain only

 27

unstructured graphic entities such as lines, texts and symbols while 3D models,

although they contain a well structured geometric view, do not provide a comprehensive

view of the product beyond geometry. To better illustrate the definition for legacy

MCAD design rationale refer to Figure 2.2, which shows that design rationale is

implicit from the entities present in the legacy CAD and also from the relationships that

exist between the entities. This dissertation contends that these are the aspects that play

a major role in design rationale capture.

Figure 2.2: Legacy CAD Design Rationale

2.3.4 Importance of legacy MCAD design rationale

Design rationale is considered important for various reasons. Pena-Mora et al.

[31], while they do not attempt to define design rationale, state that the Architecture/

 28

Engineering/Construction industries can benefit from the explicit representation of the

design process rationale in many ways;

• Large and lengthy projects change over time and require certain design

decisions to be modified during the design-construction process. Reasons or

justifications used during the initial design stages can be lost resulting in the

need to define them over and over resulting in increased project costs and

delays. The ability to store and recall these reasons will improve productivity.

• The quality of the project increases as the project rationale is represented

explicitly and is readily accessible for review.

• A model that allows the rationale to be explicitly stated and easily manipulated

leads to a more intelligent use of knowledge and resources.

• Understanding design rationale of designers is also important to achieve

coherent integration of design solutions and transfer design knowledge [32].

2.3.5 Lack of Design Rationale system deployments

While industry increasingly uses more intelligent engineering frameworks to

improve their product development process there is still a lack of design rationale

system use. Hu et al provide a list of reasons for this in [12]. They state that for design

rationale systems to be adopted for widespread industrial use, the systems have to be

advanced enough to be effectively deployed. They claim that there are still open issues

with regards to capture, representation, retrieval and approach that need to be addressed

before any effective deployment. Molavi et al [33] state the reason for the failure of

design rationale systems is due to the costs and disruptions associated with capturing

 29

and structuring of the rationale. The following reasons can be added to the list of

failures. Legacy CAD is still considered as the storehouse of current design data. There

are still a large number of legacy CAD files in use in government and industry and their

use is not decreasing any time soon. While it is generally considered better to use design

rationale systems we cannot ignore the bulk of the design rationale (product knowledge)

that resides in legacy CAD. Some method is needed that captures the design rationale

from legacy CAD and propagates it to the design rationale system. The next few sub-

sections evaluate the applicability and limitations of the capture, representation and

retrieval methods available for generic design rationale systems to the domain of legacy

MCAD.

2.3.5.1 Applicability of Capture methods

When considering legacy MCAD the design process is nearly complete since at

this stage we have a detailed representation of the product. This implies that any design

rationale capture method must be after the completion of the design process. This means

that the methods mentioned previously in section 2.2.3.2 for design rationale capture

viz. Methodological byproduct, Apprentice, Automatic Generation and Historian are not

applicable as they capture design rationale during the design process. The

Reconstruction method is the only one that seems applicable but based on its definition

the Reconstruction method depends on process data captured during design e.g. video,

email discussions, design documents etc. to infer rationale. In the limited domain of

legacy CAD there is little or no access to this data.

 30

2.3.5.2 Applicability of Representation methods

Legacy CAD design rationale representation faces a similar problem as capture

(section 2.3.5.1). The current representation methods suggested in section 2.2.3.3 do not

address legacy CAD. Those representation methods require knowledge of issues,

questions, options, alternatives, functions, evaluation criteria etc., most of which are

unknown in the domain of legacy CAD, where only details of the end product is known.

If we were to use one of the aforementioned representation schemas, it may result in

incomplete representation due to lack of data. As a side note, one representation method

that seems viable is the Core Product Model’s [22] Rationale class. Since the Rationale

class is object-oriented we may be able to modify this class and limit it to legacy CAD.

2.3.5.3 Applicability of Retrieval methods

Unlike capture and representation methods, current retrieval methods mentioned

in section 2.2.3.4 may still be relevant in the domain of legacy CAD. Since retrieval

methods are dependent on capture and representation methods and on the particular use

of design rationale, some modifications may be required but largely still applicable.

2.4 Context

This section presents a survey of literature related to context [34] [35]. This is

primarily to help understand what is context, what is its structure, is it important in

design, does it influence design, how would one use context in design, how does

designing using context differ from other approaches to design modeling and finally

what is the impact of context in design? An excellent survey of context in a wide variety

of fields (Artificial Intelligence, Natural Language Processing, Architecture, Software

 31

Engineering) is presented by Brezillon [36]. The survey presented here is intended to

look at the use of context and to help determine the importance of context in domains

other than those covered by Brezillon [36].

2.4.1 What is Context?

To answer this question the following paragraphs present a survey of the use of

context and definitions provided for it in domains such as patterns, design, user access

control, software etc.

2.4.1.1 Context in Patterns

Alexander [37] defines a pattern (in architectural design) as the description of a

problem that occurs repeatedly in our environment and the core, reusable abstracted

solution in a context. This explicitly means that when creating patterns such as those

described by Alexander one must take into account the context that is relevant to the

design pattern. The introductory paragraph of a pattern explains how the current pattern

fits in or completes the larger patterns and sets the context of the pattern. The context

delineates the situation under which the pattern is applicable. Context often includes

background, discussions of why the current pattern exists, and evidence for generality

[38]. The importance of context in patterns is thus to tie the stated problem to the core

solution described in the pattern. The lack of a well defined context will hamper the re-

usability of the pattern taking away from the basic purpose of patterns. Unfortunately,

Alexander does not define context very clearly. Despite this, his idea of patterns and

contexts in design is finding increasing use in software engineering.

 32

2.4.1.2 Context in Search

Many aspects of design involve search: search for catalogue items such as

bearings and gears, search through a multi-parameter space for an optimum set of

values, etc. Web search engines generally treat search requests in isolation. This is yet

another area where the context will gain importance in next generation search engines

[39]. Glover et al. [40] present a meta-search engine that operates as a layer above

regular search engines. The engine, Inquirus 2, takes the query plus context information

and attempts to use the context information to find relevant documents via regular web

search engines. Budzik [41] present a system that automatically infers the context of the

search request. The system, Watson, does this based on the contents of the document

that the user is editing. Popular, commercial web search engines such as Google [42,

43] and Yahoo [44] also support user context such as the user’s location and

personalization to improve search results. When a user logs into these commercial web

search engines the search systems store the context surrounding the search terms as well

the results. The system may also track the results that the user views. Using an

intelligent ranking system on the captured context of the users search behaviour will

provide search results that are more relevant to the user. No definition is given,

however. If such context based search engines become prevelant and we can define the

context surrounding a specific design problem, design will become easier.

2.4.1.3 Context in Access Control

Mostefaoui and Brezillon [45] propose a conceptual model for context-based

authorizations that offers a fine grained control over access on protected resources. The

 33

context, in this case, is made up of the users and environment’s state and information.

As opposed to a static access policy based on the user’s identity, Mostefaoui and

Brezillon state that a context based policy would respond in a flexible manner in highly

dynamic computing environments due to the dynamic nature of context itself. Context

thus becomes the key to the approach to specify the policies to grant or deny access to

resources. Within global design teams access to protected resources is becoming

important. Such research results will make it easier for the member of such teams to

access the design data and information.

2.4.1.4 Context-aware computing

Dey [46] presents an operational definition of context-aware computing and

discuss the different ways in which context can be used by context-aware applications

such as possibly those used by global design teams. His definition is: a system is

context-aware if it uses context to provide relevant information and/or services to the

user, where relevancy depends on the user’s task. He states that context is a poorly used

source of information in computing environments. As a result we have an impoverished

understanding of what context is and how it can be used. In [46] Dey presents the

Context Toolkit, an architecture that supports the building of context-aware

applications. Dey contends that a new definition of context is required as the existing

definitions do not provide any easy way to determine whether a type of information

listed in the definition is context or not. His new definition, Dey states, makes it easier

for developers to enumerate the context for a given applications scenario. Dey uses this

 34

definition of context as the basis for his Context Toolkit which makes it easy to add the

use of context to existing non-context-aware applications.

2.4.1.5 Context in Software

Software applications used by designers among others need to be deployed on a

variety of platforms and within a variety of contexts in general. Currently platform

independent modelling techniques such as the Unified Modelling Language are used to

model the software applications and these models are then transformed to a refined

model. That means that for each new target platform at least one new model

transformation is needed. Wagelaar [47] proposes a context-driven modelling

framework that models each target context in a context model. The framework can

automatically select appropriate transformation rules for a concrete context and

configure them into a context-optimized transformation. While he does not define

context, this research could have application in design where design models need to be

viewed from different contexts (design, manufacturing, procurement, analysis etc). If

we can define the various design contexts properly, then such a system could

automatically transform the CAD model into the appropriate design context.

2.4.1.6 Context in Communication

Communication is yet another domain where context plays an important role.

The context surrounding a particular communication helps clarify the ambiguity that

may exist with words that may have varying meanings. Fogarty et al [48] present a

study on the usage of a context-aware communication client. The results of the study

show that the users of the client use the context of their colleagues as an indication of

 35

presence rather than the status of availability. Since communication clients that

integrate chat, video and voice is becoming an important tool in communication,

especially among global design teams, the inclusion of the awareness of the users’

context is increasingly found in many commercial clients. No commonly agreed on

definition in this domain exists, however. This research also has possible application in

global design teams since not only do the members of such teams come from different

cultures they also come from different industrial contexts.

2.4.1.7 Context in Databases

Goh et al [49] present an approach for database interoperability, in which the

notion of context is the key to circumvent the problems that arise when dealing with

schematic and semantic incompatibilities of underlying, heterogeneous and autonomous

databases. By context they refer to the implicit assumptions underlying the way in

which an interoperating agent routinely represents or interprets data. Since more and

more companies are using Product Data Managers (PDMs) to manage the data and

information created during design and often different members of the same team use

different PDMs, this is an increasing problem in design.

2.4.1.8 Context in Artificial Intelligence

Turner treats context for intelligent agents as any identifiable configuration of

environmental, mission-related, and agent-related features that has predictive power for

behavior [50]. Bremond and Thonnat deal with contextual information of a process as

the information whose value remains constant during processing and changes when the

process is used for another application [51]. Bigolin and Brezillon state that context

 36

delimits a domain allowing the designer to restrict the possible solution space of a

problem [52]. In their survey of context in problem solving, Pomerol and Brezillon treat

context as a constraint in problem solving that does not intervene in it explicitly [53].

From the above short review, it appears that a clear definition of context has not

yet appeared in the field of context in general although the following definitions for

context have been suggested by various researchers:

“Turner treats context for intelligent agents as any identifiable configuration of

environmental, mission-related, and agent-related features that has predictive power for

behavior [54].”

In addition to this definition, Turner also states that “context is a distinguished

(e.g., named) collection of possible world features that has predictive worth to the agent

[50].”

Bigolin and Brezillon state that “context delimits a domain allowing the

designer to restrict the possible solution space of a problem [55].”

Pomerol and Brezillon state that “context is what constrains a problem solving

without intervening in it explicitly [53].”

Bremond and Thonnat define “contextual information of a process as

information whose value remains constant during processing and changes when the

process is used for another application [51].”

Bigolin and Brezillon define context “as the delimitation of a domain, that

allows to restrict the possible solution-space of a problem [52].”

 37

Dey defines context “as any information that can be used to characterise the

situation of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and applications

themselves [46].”

Mills and Goossenaerts state that “a context surrounding an entity of interest is a

set of properties (with values), that are (a) provided by a set of entities in the same

symbolic or physical space as the entity of interest, (b) relevant to the entity of interest

in that situation of interest during some time interval and (c) added to the properties of

that entity only within that context [56]. Properties can be parameters, rules, behaviors,

principles, filters, objects with their own properties, attributes, etc.”

The definition by Mills and Goossenaerts, which is used in this work, can be

elaborated upon to understand it better. At any point in the design, the focus is on some

entity of interest which exists in a symbolic or physical design space. The surrounding

situation (i.e. the context) adds to that entity of interest a set of relevant properties

which are in the same design space. A change in either the entity of interest or the

surrounding situation would change the context that is applicable. The entity of interest

is suggested by Dey [46] to be a person, place or abstract object. In engineering design

the entity of interest could be the design problem, a design variable (e.g. design

function, solutions etc), or a designer etc.

 38

2.4.2 What is the structure of context?

Sowa has discussed a structure for contexts, based on the linguistics domain

where the idea of context has been studied the most [57]. Sowa has proposed three

levels:

• Syntax: Partial basic meaning of a word or phrase is extracted from the

position of the word in the sentence.

• Semantics: Further meaning of the word or phrase is extracted from its

location in the paragraph(s) surrounding it.

• Pragmatics: The final level of meaning is extracted from the rest of the

surrounding situation in which the document was created: author(s),

milieu, time of day etc.

We apply this idea of a context structure to the context surrounding key aspects

of design; the function to be provided by the artefact and the problem solution. Drawing

a parallel between Sowa’s structure in linguistics and engineering design we have for

design:

• Syntax: Key design constraints (e.g. spatial)

• Semantics: Weighted objectives, other constraints (e.g. safety factors,

weight, stiffness)

• Pragmatics: Design rules, guidelines, standards, domain, environment

The syntax level consists of key constraints, which can identify an expected

behavior. In several domains that we have looked at, such key constraints are often

implicit and need to be made explicit. For e.g. the key constraints for the domain of

 39

Mechanical Structure design are the allowance of external power sources, the presence

or absence of a ground plane and a set of spatial constraints on the force. Consider the

problem of supporting an object in a gravitational field. The function is that of

providing one or more forces which bring the object, acting under the force of gravity,

into equilibrium. This function can be provided by several behaviors including (a) posts

anchored to the ground,(b) ties anchored to a ceiling or to a helicopter, (c) beams

anchored to side supports, (d) arches also anchored to side supports, (e) a rocket motor

pushing up on the weight, etc. Each of these behaviors can be supplied by numerous

shapes, dimensions and materials. In the case of our example, the first key constraint

would be constraint on the application of external physical power sources. This

constrains the use of actively providing the force through the means of artifacts such as

a helicopter or rocket motor and restricts us to passive means of supplying the force

such as reaction forces from a ground plane (i.e. using the earth). If power sources

were allowed, then these solutions would remain active but may be eliminated at

another level (e.g. due to cost constraints). Using similar key constraints we should be

able to identify a few relevant solutions which can then be analyzed for suitability.

The next is the semantic level. The idea here follows that first suggested by

Pahl and Beitz [58] and further amplified by Dym and Little [59] and Dieter [60]. They

use constraints and weighted objectives in general engineering design to evaluate design

concepts. In the semantic level we place the other constraints on the function and the

metrics of the weighted objectives to be fulfilled. In the Mechanical Structures domain

context, other constraints typically include constraints on weight, cost, safety,

 40

durability, etc. The metrics for the weighted objectives also include the same

parameters as the constraints. No parameter however can be both a constraint and an

objective [59]. Constraints are statements about the desired product that limit the

design space. Objectives are statements that enlarge the design space but can be used

later to rank possible solutions. The major difficulty at this contextual level is that

although we know what the metrics for the objectives and the constraints should be, to

filter out unwanted candidates we need to calculate the actual values for equivalent

properties of the physical entities for various solution contexts that could provide a

solution. For these computations we need to know the shape, the dimensions and the

material properties as well as equations for calculating cross sectional areas, volumes,

costs, moments of inertia, stress and deflection. The domain restricts the large possible

set of equations relating the metrics to the properties. The equations for stress and

deflection, etc are further restricted by the syntax level to those associated with

particular structural behavior that the syntax level has identified. That is, as soon as the

syntax level has been built and surrounds the function, the particular equations have

been identified.

The third is the pragmatic level. In the pragmatics level are the design

principles, design guidelines, Governmental and industry regulations. These are applied

to the solution to add refinement. Application of this principle to the solution would

require modifications to the overall design but would most likely not require major

modifications.

 41

2.4.3 Is context important in design and does it influence design?

These questions are treated together since they are interdependent. To be

important, context has to have some use and influence design in some way. The view of

the research conducted during this dissertation is that context contributes implicitly but

strongly to design decisions. Most experienced designers reach a solution to a design

problem much more easily than inexperienced ones. This is because they make use of

context implicitly as discussed below and that making context explicit will enable any

designer to reach an appropriate solution/decision faster, easier and requiring less

experience. Context has an influence on design and the design process primarily

because any design problem exists in a surrounding context. By understanding the

elements of context and their individual influence on design, context can be made

explicit.

Every design problem exists in an overall pragmatics such as the domain of the

design problem, the domain of the design organization, the type of design and other

environmental aspects such as the experience of the designers, their training and the

hierarchy that the designer is a part of (department, design team, projects etc). The

following is a brief explanation of the influence of this pragmatic context.

• Designers attempting to solve design problems implicitly define the domain that

the problem lies in thereby limiting the class of appropriate solutions. Even

when solving multi-domain problems one of the steps is to break down the

problem into its individual domains before design and analysis. This implies that

if the properties of the domain were defined, thereby defining the domain

 42

context, we would essentially limit the list of functions, constraints, objectives

and solutions relevant to the design problem. In my view, one of the reasons

inexperienced designers take longer to create a design is that they spend

considerable time implicitly defining the context surrounding their particular

design problem – the entity of interest.

Figure 2.3: Hierarchy within corporation

 43

• The type of design is an important contextual parameter. The design variables

are dependent to some extent on the type of the design. Well understood design

types such as selection of bearing from a bearing catalogue or choosing

appropriate dimensions in parametric design are easier to characterize than say

novel design where the designer may have to generate new concepts to arrive at

a solution. Thus design types that can be considered as routine may be easier to

automate and may require less experience to solve.

• To understand the influence of the domain of the design organization, consider

the designers and the information related to them. It can be seen from Figure 2.3

that the designer does not exist independently but instead forms an important

part of a design environment. Depending on the company hierarchy the designer

would be a part of one or more design teams, and the design teams would be a

part of departments and so on. Design teams follow standards, guidelines or

good practices. These form a part of the context that influences the designer’s

decision while solving a problem. Similarly if the departments or the parent

company have a different set of standards or guidelines then these too would

form a part of the designer’s context. (Of course it should be noted that in a

stable hierarchy such as this we do not account for conflicting properties being

added to the designer’s context from the different standards. The “standards” is

an example of the context that is external to the designer. Factors internal to the

designer are also equally applicable. For example as already mentioned, the

experience level of the designer suggests the breadth of knowledge possessed by

 44

the designer. This includes knowledge related to design in general such as the

related domains and solutions and more specifically the surrounding context

related to the operational, financial and other goals of the company. To properly

aid the designer or to successfully automate the design process any implemented

knowledge-driven design system needs access to this contextual knowledge that

surrounds the designer (and hence the design problem) to arrive at a solution

more efficiently.

Just as the context that surrounds the design problem influences it, the context

that surrounds and influences design variables viz. function, objectives, constraints,

solutions etc are identified. The following sub-sections detail the identified context, its

influence and its use to simplify design problems.

2.4.4 How would a designer use context in design?

In the course of research a design model was developed that is context-aware

and uses the structure for context suggested by Sowa [57]. The design model is based

on the process model suggested by Pahl and Beitz [61] and furthered by Dym and Little

[62], Fenves et al [63] and Gero and Kannengiesser [64]. The design model uses the

context structure to progressively narrow the relevant list of solutions in a step by step

manner using the three contextual levels (syntax, semantics, pragmatics) suggested

above. The basic premise of this model is: a function in a context defines a solution.

This model is termed the Function-Context-Structure (FCS) model of design and is

shown in Figure 2.4. Like its parent models the FCS model is also function-based but

essentially adds a filter in the form of a structured context to provide a mechanism to

 45

map design function to artifact solution. The FCS design model follows the stages

prescribed by Pahl and Beitz [58] and expanded by Dym and Little [59], Fenves et al

[63], Gero and Kannengiesser [64] and Dieter [60] etc. which are:

i. Problem definition

ii. Conceptual design

iii. Preliminary design

iv. Detailed design

Figure 2.4: Function-Context-Structure Model of Design

All design begins with a problem statement which may merely be a client’s

statement. The first step in any design process is to define the problem clearly. This step

is not unique to the FCS model but is detailed here as it is during this step that the

domain and inner context are defined. The following are the prescribed steps:

 46

• Identify the flows (input and output) both implicit and explicit in the

problem.

• Determine the domains/sub-domains that the design problem lies in. Some

of the domains/sub-domains can be inferred from the flows identified in the

previous step. The domains / sub-domains contribute to the domain context.

• Identify the overall design goal. This goal can be organized into sub-

objectives.

• Identify any design constraints from the problem statement.

• Determine the possible list of design functions that relate the input flow to

the output flow in this domain.

• Recall the designer’s context e.g. design guidelines, principles and standards

pertaining to the corporation (commercial or governmental) etc.

• Having identified these design variables organize them into appropriate

context levels. Constraints can be split into key e.g. spatial and other

constraints e.g. safety etc. Key constraints primarily form syntactic context.

Objectives and other constraints form a part of semantic context. Knowledge

of domain context allows the designer to filter out functions and solution

artefacts that are not relevant in the current design domain. The principles,

standards and guidelines and domain context form the pragmatic context.

Step 2, conceptual design, involves the generation of concepts or schemes of

candidate designs. The main task in this step is to generate design alternatives viz.

identify solutions that can achieve the objective. In typical function based design, the

 47

goal of the designer would be to identify solutions that realize the functions while

satisfying constraints. For this stage Fenves et al’s model [63] relies on a function-to-

form transformation to populate the initial structural solution. Since it is not always

possible to infer functional information from a structural description or vice-versa [65]

the FCS model follows an adaptation of Gero’s and Kannengiesser’s [64] approach of

determining conceptual solutions using the syntactical context surrounding the function.

The syntax is made up of the key constraints that were identified in the ‘Problem

Definition’ step. The design function is filtered through the syntax to arrive at physical

effects. The classes of solutions belonging to the domain identified in the ‘Problem

Definition’ step are then filtered through the combination of the syntax and physical

effects to arrive at the conceptual designs.

Step 3 involves refining the conceptual schemes into preliminary designs. The

semantic context that was identified during ‘Problem Definition’ forms the primary

decision variable. The semantics mainly contain the weighted objectives and other

constraints (not considered key constraints) such as safety, weight, price etc. The

semantics also consist of the equations determined by the relevant physical effects of

the conceptual designs. The designer uses the semantics to decide attributes such as

material and geometry. Ashby [66] provides a detailed methodology to select an

appropriate material along with a way to identify an efficient geometric shape and we

are looking to use his methodology in the FCS model. The semantic filtering requires

the computation of values for equivalent properties of the physical entities for various

solution contexts that could provide a solution.

 48

The fourth step adds an additional level of filter viz. the pragmatic context. The

design principles, design guidelines, governmental and industrial regulations, domain

knowledge, company and designer information form the pragmatic context. The result

of this stage would be a design artefact solution with the level of detail required for

production.

2.4.5 How does using context differ from other approaches to design modelling?

Design models, the results of much design research, are a symbolic

representation of real entities/processes for design, analysis, simulation etc. A model

captures essential parts of a system. Most design models viz. [67, 63, 68, 69, 64]) use

well-understood object representation schemes such as UML, taxonomies, semantic

meta/networks, ontologies, process-oriented schemes, etc. Some of the newer methods

are using knowledge-based frameworks, patterns or context-aware models etc. The

following is a brief description of the various schemes:

• Taxonomies: - Simple hierarchical tree/graph like structures that specify

relationships between the nodes. The nodes represent real world

entities/processes.

• UML: - In UML real world entities or processes are represented using

classes, class properties, use-cases and objects (specific instantiations of

classes).

• Semantic networks: - A semantic network or net is a graphic notation for

representing knowledge in patterns of interconnected nodes and arcs. What

is common to all semantic networks is a declarative graphic representation

 49

that can be used to either represent knowledge or support automated systems

for reasoning about knowledge. Some versions are highly informal, but other

versions are formally defined systems of logic. Following are six of the most

common kinds of formal semantic networks; definitional networks,

assertional networks, implicational networks, executable networks, learning

networks, hybrid networks.

1. Ontologies: - An ontology has been defined as a specification of a

conceptualization [70]. That is, an ontology is a description (like a formal

specification of a program) of the concepts and relationships that can exist

for an agent or a community of agents. An ontology is represented as classes

with slots (properties with/out values and limits), but is not considered

complete without instances (like objects these are specific instantiations of

classes). Unlike UML an ontology describes concepts of a domain

specifically designed for sharing and reuse. On a side note, a shared context

is represented using ontologies [45].

• Patterns: - A pattern describes a problem, which occurs over and over again

in an environment and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice. A pattern is not an isolated entity

(problem-solution-description). It should merely specify the field of

relationships and only the essential parameters to implement (solve) the

problem [71]. The following is the format of a pattern:

 50

� A picture (symbolic representation) showing an archetypal example

of that pattern.

� Introductory paragraph which sets the context of the pattern. This

paragraph explains how the current pattern fits/completes the larger

pattern.

� Headline giving the essence of the problem (problem definition).

� Body of the problem – empirical background, evidence for validity,

range of methods of manifestation (application).

� Solution to problem – contains required field of physical and social

relationships, instructions to build the pattern.

� Parent and child patterns.

Based on the preceding sections and our research on context we can state the

following differences among context-based models and the other schemes:

• Unlike UML or taxonomies, context is not a representation language/method.

One can use these languages/methods to represent context.

• While UML classes are usually static (though flexible) representations of real

world entities/objects/processes, context adds relevance and dynamism to the

entity of interest.

• A context provides the structure, the relationship and the situation (domain/sub-

domain) to define the problem, the solution or the approach to the solution. It

does not merely serve to represent real world entities/processes like the other

methods.

 51

• If considered according to Alexander’s pattern, a context represents

relationships among the current design problems (or solutions) and the parent

(or child) problems (or solutions).

• Unlike ontologies which specify concepts, contexts are dynamic filters that

narrow down the relevant information that apply to the current entity of interest

(e.g. to specify the field (domain) of interest of the design problem/solution).

2.4.6 What is the impact of context in design?

Bigolin and Brezillon [72] have stated that context constrains the problem

space. That statement can be extended to mean that it must also delimit the design

domain allowing the designer to restrict the possible solution space of a problem. The

impact of the domain context has been recognized in research but no conclusive results

exist that show how a designer would use the domain context. This section provides the

details on the nature of domain context, its usage and impact on the design process and

the solution. The term “domain” refers essentially to the discplines that are in existence

in society today (e.g. engineering in general. mechanical engineering, electrical

engineering). This dissertation has focussed mainly on the engineering domain and

specifically on mechanical engineering. Table 2.1 illustrates the proposed taxonomy of

domains. The classification of domains is based on the flow that is contained in the

domain. For example if we are talking about money then we are in the finance domain.

Similarly if we are talking forces and torques then we are in the mechanical sub-domain

(sub-domain of engineering). The presence of fluids would either indicate fluid or

thermal sub-domain which can be further broken based on the context of the fluid e.g.

 52

temperature considerations, relevant flow of fluid or heat transfer etc. Since we are

concerned only with the engineering domain, other domains like Finance, Philosophy

etc. have been left out to enhance readability. Further we only sub-classify the

Mechanical domain (as that is our domain of interest) further treating Mechanisms,

Thermal, Fluids, Civil, Aerospace and Hydraulics etc. as sub-domains of the

Mechanical domain.

Table 2.1: Taxonomy of Engineering Domains

Social
 Engineering
 Mechanical
 Structures
 Mechanisms
 Motion Without acceleration
 Motion With acceleration
 Thermal
 Fluids
 Civil
 Structural
 Transportation
 Materials
 Ceramics
 Polymer
 Metallurgical
 Aerospace
 Electronics
 Hydraulics
 Electrical
 Software
 Industrial
 Manufacturing
 Biomedical
 Chemical
 Nuclear
 Petroleum

 53

Next presented is the taxonomy of functions delimited by the Mechanical

Engineering domain. This is not a new taxonomy but is based on the taxonomy

proposed by Szykman et al [73]. This parent taxonomy is used as it is one of the most

complete taxonomy of functions available in research while being sufficiently concise

as they have removed synonyms and specialized functions. Szykman et al’s taxonomy

is not domain-centric. To arrive at the domain-centric taxonomies start with their

taxonomy and eliminate those functions that do not apply to the “Mechanical” domain.

The result of this elimination is all the functions in Szykman’s taxonomy, except for the

division “Assembly-function” and their sub-divisions. The “Assembly-function” and

their sub-divisions are relevant in the “Manufacturing” domain. This condensed

taxonomy is shown in Table 2.2.

The taxonomy shown in Table 2.2 is constrained further by the sub-domains of

“Mechanisms”. To do so identify those functions that are relevant in the “Structures” or

“No motion” sub-domain and those that are relevant in the sub-domain with “Motion”

and further for “Acceleration” and “No acceleration”. For the “Structures” or “No

motion” sub-domain this implies that the “Conveyance-function” and “Signal/Control-

function” sub-divisions are irrelevant. The reason for this is because “Conveyance-

functions” primarily cause motion while “Signal/Control-functions” are applied to

mechanical control elements e.g. mechanical valves.

 54

Table 2.2: Taxonomy of Functions in the Mechanical Domain

Mechanical Functions
Usage-function
 Sink
 Absorb
 Consume
 Dissipate
 Source
 Extract
 Generate
 Supply
 Storage
 Store
Combination/Distribution-function
 Connect
 Couple
 Distribute
 Link
Transformation-function
 Amplify
 Attenuate
 Convert
 Decrease
 Modify
Conveyance-function
 Rotate
 Transfer
 Translate
 Transmit
Signal/Control-function
 Actuate
 Adjust
 Decrease
 Increase
 Indicate
 Inhibit
 Maintain
 Measure
 Resist

 55

Other examples such as “Convert” are generally applicable in conjunction with

motion e.g. conversion of electrical energy to mechanical energy is accompanied by

rotational motion. Functions from other sub-divisions such as the “couple” function are

usually used in reference to the coupling of elements for transfer of motion or energy

etc. The taxonomy of functions in the “Structures” domain is shown in Table 2.3.

Table 2.3: Taxonomy of Functions in the Structures (no motion) domain

Structures Functions (No motion)
Usage-function
 Sink
 Absorb
 Source
 Supply
 Storage
 Store
Combination/Distribution-function
 Distribute
 Link
Transformation-function
 Amplify
 Decrease

Similarly, to prepare a taxonomy of functions for the “Motions” domain all

functions shown in Table 2.2 are relevant but for the “Signal/Control-function” division

and its sub-divisions. While only the Mechanisms domain is discussed the same

principles of classification apply to other sub-domains also. Consider for example the

“Manufacturing” sub-domain. The functions from Szykman et al’s taxonomy that are

applicable in the “Manufacturing” domain are the sub-types of “Assembly-function”.

In a similar manner the taxonomy of flows in the Mechanical Engineering

domain can be prepared. Once again Szykman et al’s taxonomy of flows [73] is used as

 56

a starting point, but do not follow their criteria of classification as is. It has been

modified to ensure uncommon flows such as “Generic-Energy” or “Generic-Power” or

even those that we consider properties of flows such as “Acceleration” or “Jerk” are not

part of my taxonomy of flows. This was done because flows like “Generic-Energy” or

“Generic-Power” cannot be used directly in design problems. These have to be

converted to more useful types such as active “Forces” or “Kinetic-Energy” before they

can be applied. The resulting flow taxonomy is shown in Table 2.4.

The next step is to delimit the flows shown in Table 2.4 further for the sub-

domains of Structures and Mechanisms. This is a similar process as performed the

functions where the irrelevant flows are discarded when considering the “No motion”

sub-domain or the “Motion” sub-domain and its sub-domains. The result of this action

leads us to the taxonomies shown in Table 2.5 and Table 2.6.

Care should be taken in how the taxonomy of flows in “Motion” domain is

used. The sub-domains traditionally dealing with mechanisms in motion such as

kinetics, kinematics and dynamics differ in the properties of the flows such as velocity,

acceleration and their time derivatives but deal with the same flows as that found in the

“No motion” (“Structures”) domain. To better explain this, consider the flow “force” in

the “No motion” domain vs. in the “Motion” domain. The difference would be the

property of the force for e.g. in the “No motion” domain the force does not cause

motion whereas in “Motion” domain the force could be accelerated or could be a jerk,

causing a similar motion.

 57

Table 2.4: Taxonomy of Flows in the Mechanisms Domain

Mechanical Flows
Energy
 Motion
 Translational
 Impedance
 Oscillatory
 Relative
 Rotational
 Impedance
 Oscillatory
 Relative
 Force
 Friction
 Weight
 Spring
 Torque
 Generic
 Kinetic
 Potential
 Gravity
 Spring

Table 2.5: Taxonomy of Flows in Structures (No motion) domain

Structures (No Motion) Flows
Force
 Friction
 Weight
 Spring
Torque
Kinetic
Potential
 Spring
 Weight

 58

Table 2.6: Taxonomy of Flows in Motion domain

Motion Flows
Translational
 Impedance
 Oscillatory
 Relative
Rotational
 Impedance
 Oscillatory
 Relative
Force
 Friction
 Weight
 Spring
Torque
Kinetic
Potential
 Spring
 Weight

With the taxonomies of domains, functions and flows, it has been shown that

identifying the domain allows designers to constrain the design variables such as

functions and flows to a manageable few. But these taxonomies have an implicit

relationship embedded in them: only certain functions are relevant when considering

certain flows in a particular domain [74]. So essentially identifying the domain and the

flows of the design problem allows us to constrain the taxonomy of functions. This is

important because clearly defining the variables applicable to the design problem makes

the process of design more efficient and additionally the fewer choices of design

variables relevant to the current design problem allow for easier design decisions. This

sub-section presents an additional set of taxonomies that define the relationships

between functions and the relevant flows. The taxonomies for the “Structures” (“No

 59

motion”) domain are presented but the same principle may be applied to other domains

in order to prepare complete taxonomies ready for use by design automation systems.

Table 2.7: Relationship among Functions and Flows in Structures (No motion) domain

Absorb
 Kinetic
 Potential
 Spring

Supply
 Force
 Friction
 Spring
 Torque
 Kinetic
 Potential
 Spring

Store
 Potential
 Spring

Distribute
 Force
 Friction
 Weight
 Spring
 Torque
 Potential
 Gravity
 Spring

Link
 Force
 Torque

Amplify
 Force
 Friction
 Spring
 Torque

Decrease
 Force
 Friction
 Spring
 Torque

The taxonomies presented have shown that the impact of the domain on the

design functions and flows is to limit them. The function and flow taxonomies

presented here show that identifying the domain constrains the functions and flows to a

manageable few. The focus is mainly on the “Mechanical” domain for this dissertation

but Function and flow taxonomies for other domains exist and are suggested as future

research. Such delimited taxonomies when used in conjunction with the macroscopic

taxonomies presented by Ullman [75], Dixon et al [76] and Pahl and Beitz [58] etc.

 60

serve to provide a complete view of design. One use of our taxonomies could be as a

tool to educate novice designers. Current design curricula concentrate on results of

numerous analyses of design artefacts as the primary selection criteria. Our delimited

taxonomies could be used to teach designers to select the most appropriate solution

artefact based on design variables that can be identified from the client’s statement such

the design domains, functions and flows. Similarly our taxonomies could be used by

design automation systems to simplify the path to a solution.

To be truly useful to the designer or design automation systems they must be

able to map the function domain to the physical domain. To do so effectively numerous

product matrices are proposed based on the following basic idea:

• There exist various artifacts viz. gears, springs, structures etc which

provide varying functions while meeting varying objectives and

constraints. Designers implicitly group artifacts into classes based on

the functions that the artifacts realize.

• Each artifact class has numerous sub-types, (e.g. (i) worm, helical,

spur and others are sub-types of gears, (ii) flat and V are sub-types of

belts and (iii) torque, conical, barrel, hourglass, torsion are sub-types of

springs) that have further constraints that must be considered when

selecting that particular sub-type.

• Designers select an artifact class based on the function that they can

provide but selecting from the sub-types that exist is usually done

 61

based on certain key constraints. By identifying these key constraints

(or syntactic context) the selection process is formalized.

Using that basic idea the following product matrices are contributed. The

original product matrix was developed by Dr. John Mills who is using this matrix in his

course work to teach design students on using the idea of context based design

selection. The following tables provide the product matrices for gears, springs,

structures and motors. It should be pointed out that these matrices are in an early draft

and further research is required to consider them truly useful. To use the product

matrices presented in Figure 2.5, Figure 2.6 and Figure 2.7 identify the constraints in

your problem and eliminate any selections that have an “X” in the row. The sub-type(s)

that are remaining are the artifacts that will most closely provide your function while

meeting the design constraints.

 62

Figure 2.5: Product matrix for springs

2.5 Context in legacy MCAD

The definition for design rationale in legacy MCAD, stated in section 2.3.3,

gives us the impact of context in legacy CAD. The definition organizes design rationale

into the three levels for context suggested by Sowa. The definition for design rationale

mentions three levels of relationships viz. structural, semantic and practical. The

structural relationship is a synonym for Sowa’s syntactical context, while the practical

relationship is synonymous to Sowa’s pragmatic context. Iyer et al [77] have also

suggested a context-based inference approach to capture design intent from legacy

CAD. They use the three levels of context to classify the raw data that is extracted from

the legacy CAD into syntax, semantics and pragmatics.

 63

Figure 2.6: Product matrix for gears, belts and pulleys, chains and sprockets and
cables (courtesy Dr. John Mills)

 64

Figure 2.7: Product matrix for motors

By comparing Sowa’s levels of context with legacy MCAD we derive the

following context levels:

Table 2.8: Context in legacy MCAD

Syntax Notes, titleblock, shape, symbols

Semantics

Standards, manufacturing, material (with characteristics),

parts list, application, milieu, alternatives, part name,

inspection

 65

Table 2.8 - continued

Pragmatics
Function, flow, domain, objectives, constraints, design

rules, guidelines, designer, project, company info, domain

The following is a sample of the information that is found:

• Syntax:

o The geometry of the drawing to determine overall shape of the part.

o The tolerance values, including number of decimal places, as an

indicator of tight vs. loose tolerances that may be critical for assemblies

and part function.

o The use of firm and relative dimensions to infer the datum plane and

feature dependencies in the resulting 3D model. Use of dimensions, table

data for validating geometry.

o Importance of precise placement of holes for connectivity between

related parts to form assemblies.

• Semantic:

o The part name as an indicator of the part’s function (e.g. bracket, pump,

gear etc).

o The material as an indicator of cost, strength, part thickness,

manufacturing process, etc. of the part.

o The surface finish as an indication of possible exposure to elements,

mating connections, etc.

o Any notes referencing markings and etchings as an indicator that the part

may be a replacement part in the field.

o Correlation of elements in notes and geometry to infer the treatment

and/or manufacturing operations.

 66

o Symbols for manufacturing processes such as finishing, welding,

assembling, etc

o Geometry and attributes of part as an indicator feature objective (i.e. ribs

in a part add strength while pockets make the part lighter.)

• Pragmatic:

o Company and department name along with appropriate knowledge as a

method to infer information such as applicable standards, specifications,

applicable disciplines etc,

o Designer information to gauge project information,

o Date/time information to gauge document revision/completion

information.

2.6 Conclusion

With the required background the next chapters will address how a context-

based approach will address the problem, stated in chapter 1, of capturing design

rationale from legacy MCAD.

 67

CHAPTER 3

APPROACH TO SOLVING PROBLEM

The following chapter details the approach proposed to address the problem

dealt with in this dissertation. In order to do so the first requirement is to understand the

nature of legacy MCAD design rationale. The second requirement is to identify the

process of legacy MCAD design rationale capture itself. Only after meeting those

requirements can we discuss a software architecture that will incorporate the process

identified to satisfying the second requirement. The software architecture is discussed in

the next chapter.

3.1 Design Rationale Analysis of Legacy MCAD

From Chapter 1 we know the claim that the manufacturers were making i.e. that

they are able to capture design rationale from 2D drawings that they are unable to

capture from parametric 3D models. This claim required further investigation and this

section details the approach and the results of the investigation. Legacy MCAD,

specifically 2D drawings, contains only unstructured graphical entities such as

geometry, text and symbols. In order to properly interpret the meaning and significance

of the contents of the legacy file, human re-designers implicitly create associations

between the unstructured entities to identify more meaningful classes of structured

entities. For example by creating associations between relevant geometric entities, the

 68

re-designer identifies the shape of the part. By creating associations between geometry

and text the re-designer could identify dimensions and tolerances or manufacturing

symbols (e.g. surface finish) depending on the properties of the entities and the

associations created. When comparing the contents of a 2D drawing with that of a 3D

model it can be seen that the 3D model has more structured geometric entities but uses a

different layout as compared to 2D drawings to display their content. Most 3D models

do not contain the same text and symbol entities that re-designers expect to see in the

same manner as 2D drawings. This additional text and symbols may be the key to

understanding the validity of the claim that the re-designers could capture design

rationale from the 2D drawings and not 3D models. This reiterates the contention made

in section 2.3.3 on the importance of the information other than geometry that is

contained in the legacy MCAD file.

3.1.1 Design Rationale Capture Analysis Process

To better understand the importance of all the entities to capture design rationale

from legacy MCAD and the process that re-designers use to capture design rationale we

used the method suggested by Stauffer, Ullman and Dietterich published in their paper

titled “Protocol Analysis of Mechanical Engineering Design” [78] and performed

“design rationale capture analysis of legacy MCAD”. We worked with two candidates

for the first stage of analysis, the first an experienced re-designer and the second an

experienced modeler. We identified sample drawings from a repository available with

Imagecom Inc [79]. The two candidates were presented with the same set of sample

drawings to ensure consistency between their findings. A sample drawing is shown in

 69

Figure 3.1. The analysis process required the candidates to verbalize their thought

process when identifying the entities, any relevant associations between the entities and

inferring design rationale.

Figure 3.1: Sample 2D drawing

To provide support to the candidates and to impart a formal order to the

verbalization, the candidates were presented with a list of questions that they needed to

answer. The following is a sample list of questions posed to the interviewees.

• What steps do you take when presented with a MCAD artifact for

redesign?

• How do you rate the importance of entities contained in the legacy

MCAD – geometric, textual etc?

• Please infer the following classes from the drawing:

o Function of part

o Flow related to part

 70

o Domain of part or assembly

o Manufacturing instructions and symbols

o Material

o Standards, principles and guidelines

o Alternatives presented (geometry, material, manufacturing etc)

o Constraints (dimensional, assembly etc)

o Possible objectives of part

• Please state importance of above identified classes for purpose of

redesign of part or assembly contained in drawing.

• Do you use sources external to the MCAD representation to identify the

classes mentioned above? If yes, what are these sources – design

databases, engineering dictionaries, previous knowledge or other?

• How do you deal with assembly representations? Is there a need for

individual part drawings to determine assembly constraints?

• Do assembly drawings provide more information about the function,

flow, domain, alternatives, objectives or constraints?

• Do manufacturing instructions included in the legacy CAD provide any

clues to the possible objectives or constraints of the part or assembly?

• How do you deal with alternatives (geometry or otherwise) shown on the

legacy CAD?

• Do the change notes included in the CAD representation provide any

insight into the design evolution of the part or assembly?

 71

3.1.2 Results of Design Rationale Analysis

One result of the design rationale analysis was that the candidates were inferring

a lot of meaning and significance from the legacy file, but each individual assigned

different importance to the identified classes. The experienced re-designer assigned

higher importance to the text and other attributes contained on the legacy MCAD file to

infer design rationale such as function, objectives or constraints. The experienced

modeler on the other hand focused more on the geometry, parts list and assembly

constraints as possible design rationale concerned with the use and application of the

part, represented in the MCAD file. The modeler used the inferred application of the

part as possible reasons for the decisions contained on the MCAD file. On the whole the

candidates could infer information about costs, application, mating surfaces, function,

flow and domain by creating associations between the various classes identified in

chapter 2. This validates the claims made in Chapter 1 by the manufacturers. The

subjects were able to infer design rationale from the legacy CAD beyond the data that is

contained on the legacy CAD.

Additionally with this analysis we are able to establish that design rationale on

legacy MCAD is not explicitly stated. The entities on the MCAD file and the

relationships between those entities i.e. context in legacy MCAD, provide useful

information that someone with the required domain knowledge can use to infer design

rationale about the represented part.

 72

Finally the process employed by the subjects to capture design rationale from

the legacy CAD files was documented. The following are the broad steps that the

subjects were using to infer design rationale.

• Brief review of the legacy MCAD file to identify relevant entities and their

properties e.g. location, dimensions etc.

o This step is comparable to the parsing of the files where the human

candidates spent some time to identify the types of entities contained on

the legacy MCAD file along with their location and relation to other

entities based on certain associated properties such as location, type,

color, annotations etc. The result of this step is that the human candidates

have essentially identified essential entities that are present on the legacy

file.

• Having identified the essential entities the next step the human candidates take is

to identify the relationships that exist between the identified entities. The key to

creating these relationships is their knowledge of the domain. Three types of

relationships are created viz. the context levels – syntax, semantics, pragmatics.

The first relationship to be created is the syntax, which the candidates create by

identifying the properties and attributes of the entities such as location, type,

color etc. By doing so they have created groups of entities that would aid in

identifying further relationships. Examples of such groups are shape, notes,

titleblock, symbols etc. The second relationship created is the semantics.

Starting with the groups of entities identified at the syntax stage the candidates

 73

try and identify common keywords and patterns that exist within the groups.

These identified keywords and patterns provide meaning to the created groups.

Examples of identified keywords would be iron, aluminum, steel (which would

indicate materials), gear, yoke, cover (which would indicate artifact names) and

ASME, DOD, STD (which would indicate standards).

• The final relationship that the candidates infer is the pragmatics. This involves

retrieving valuable information based on their experience and knowledge of the

concerned domain of the legacy MCAD file. The meaning they inferred in the

second relationship step allows the candidates to create links between a

particular meaning and the significance the meaning implies. For example

knowing a particular material would allow us to infer certain significance such

as metal or non-metal, strength, hardness etc. Knowing the part name allows us

to infer for example possible functions and flows. If standards were identified

then possible guidelines and principles could be inferred.

• Having inferred the pragmatics the re-designers use these links to infer possible

design variables and possible reasons in the form of objectives and constraints,

possible alternatives and insights about material choice. All these collectively

form design rationale as we have seen in chapter 2. For example by identifying

the name of the part they could infer the possible function of the part. From the

material, the re-designers could infer possible objectives such as low weight,

high strength or corrosion resistance. From the manufacturing process specified

 74

the re-designers could infer if the part was meant for large or small batch

products.

3.2 Identify context levels in legacy MCAD

Section 2.5 presented an overview of context in legacy MCAD. With the results

of the design rationale analysis presented in section 3.1.2, the following section

provides the details of context in legacy MCAD. The three levels of context that were

identified in section 2.5 are expanded upon to include the entities contained on the

legacy MCAD and numerous other classes that can be inferred based on the

relationships between the entities which are also modeled.

The models were created using Microsoft’s Visio software in UML. The models

are standard UML Class diagrams with Generalization or Dependency relationships.

The Generalization relationship can be simply described as “part-of” where all child

classes are subparts of the parent class. Similarly the Dependency relationship can be

thought of as “depends on” where the properties of the parent class are inherited by the

child classes.

3.2.1 Syntax in legacy MCAD

Since legacy MCAD contains only unstructured geometric and textual entities

the first step taken by the human candidates during the design rationale analysis was to

perform a detailed survey of the entities, their locations, properties, layers and any

structural relationships. Using this data the candidates were able to identify the syntax

level of the context in legacy MCAD which are the unstructured entities in various

related groups. This class typically consists of the shape of the part, dimensions,

 75

tolerances, notes or title-block information. Figure 3.2 shows the syntax level with its

child classes.

Figure 3.2: Syntax level with child classes

The following is a brief explanation of the child classes of syntax, the entities

they contain and the relationships between the entities:

3.2.1.1 Notes

These are typically text with some symbols included. The text can be single-

lined or multi-lined, while the symbols are usually used to indicate surface finish,

tolerances or dimensions. The notes class is made up of numerous single- or multi- line

independent notes that may be numbered or bulleted.

3.2.1.2 Titleblock

Titleblock is typically formed of tables, text and symbols. The tables could be

composed of numerous lines arranged to contains rows and columns forming individual

cells that contain the text and symbols. The text may be single- or multi- line and could

indicate parameter variables with their values, while symbols could be used to indicate

global tolerances and milieu information such as the company name, designer, design

and project information.

 76

3.2.1.3 Shape

The shape is normally only composed of geometry (point, lines, arcs, circles,

splines etc) but could use textual descriptions to indicate details or repeating arrays of

entities or groups of entities.

3.2.1.4 Symbols

Symbols are normally made up of both geometric and textual entities. Symbols

indicate surface finish, manufacturing, dimensions, tolerances, markers etc. Based on

the shape and contents the appropriate symbol is inferred.

3.2.2 Semantics in legacy MCAD

Having identified the syntax classes the next step that the human candidates take

is to identify the semantics level from the syntax classes using a variety of techniques.

By looking for certain patterns and keywords that can be found in the syntax classes the

candidates identify the semantics classes that are shown in Figure 3.3.

Figure 3.3: Semantics level with child classes

The following is a brief explanation of the child classes of semantics, the

entities they contain and the relationships between the entities:

 77

3.2.2.1 Standards

This class, shown in Figure 3.4, typically contains the standards, guidelines and

principles that are composed of text and explicitly stated in the notes or title-block

classes. Some examples of standards are DOD-STD-00100D (AR), ANSI Y14.5M-

1982 etc. Standards are company, project or design specific.

Figure 3.4: Standards class dependent on Notes and Titleblock classes

3.2.2.2 Manufacturing

The manufacturing class is normally composed of text or symbols and contains

instructions for the production of the part represented in the legacy MCAD. Some

examples of text instructions are casting, forging, quench, temper etc. Surface finish

symbols and weld symbols are examples of the manufacturing symbols that contain text

to indicate required values.

Figure 3.5: Manufacturing class dependent on Notes and Symbols classes

 78

3.2.2.3 Alternatives

Alternative shapes, materials or manufacturing instructions are usually

explicitly represented and appropriately labeled as such. They could contain geometry

or text and can be inferred from shape, notes and symbols.

Figure 3.6: Alternatives class dependent on Notes, Shape and Symbols classes

3.2.2.4 Materials

The Materials class is typically composed of text entities and is derived from

Notes class. Some examples are Steel, Aluminum, Al, Bronze, Cu, Sn etc.

Figure 3.7: Materials class dependent on Notes class

 79

3.2.2.5 UsedOn

The UsedOn class is composed of text and depends on the Titleblock class. It

indicates the assembly or the system level artifact of which the currently represented

artifact is a part.

Figure 3.8: UsedOn class dependent on Titleblock class

3.2.2.6 Part and Assembly

The Part and Assembly classes are composed of text entities and depend on the

Titleblock, Shape and Symbol classes. They help identify whether the currently

represented artifact is a piece part of an assembly.

Figure 3.9: Part and Assembly classes depend on Titleblock, Shape and Symbols
class

 80

3.2.2.7 PartName

The PartName class is composed of text entities and depends on the Titleblock

class.

Figure 3.10: PartName class depends on Titleblock class

3.2.2.8 Inspection

The Inspection class is composed typically of symbols and text and depends on

the Symbols and Notes class.

Figure 3.11: Inspection class depends on Notes and Symbols classes

 81

3.2.2.9 PartsList and Milieu

The PartsList and Milieu classes are composed of text and depend on the

Titleblock class.

Figure 3.12: PartsList and Milieu classes depend on Titleblock class

3.2.3 Pragmatics in legacy MCAD

Having identified the semantics classes the human candidates inferred the final

level i.e. the pragmatics level by using their expertise and knowledge of the domain. By

considering each semantics class individually the candidates infer the appropriate

pragmatics class. Figure 3.13 shows the child classes at the pragmatics level.

The following is a brief explanation of the child classes of pragmatics, the

entities they contain and the relationships between the entities:

 82

Figure 3.13: Pragmatics level with child classes in legacy MCAD

3.2.3.1 Function, Flow, Domain and Application

Information about the Function, Flow, Domain and Application can be inferred

from the PartName semantics class.

Figure 3.14: Function, Flow, Domain and Application inferred from PartName

3.2.3.2 DesignEnvironment, QualityInspection, Objectives and Constraints

Information about the DesignEnvironment, QualityInspection, Objectives and

Constraints can be inferred from the Standards semantics class.

 83

Figure 3.15: DesignEnvironment, QualityInspection, Objectives and Constraints
inferred from Standards

3.2.3.3 Constraints, RelativeCost, QualityInspection

We can infer information about Constraints, RelativeCost and QualityInspection

from the Manufacturing semantics class.

Figure 3.16: Constraints, RelativeCost and QualityInspection inferred from
Manufacturing

3.2.3.4 Objectives and Constraints

Information about Objectives and Constraints can be inferred from the

Alternatives semantics class.

 84

Figure 3.17: Objectives and Constraints inferred from Alternatives

3.2.3.5 Objectives, SpecificProperties, Application and RelativeCost

We can infer information about Objectives, SpecificProperties, Application and

RelativeCost from the Materials semantics class.

Figure 3.18: Objectives, SpecificProperties, Application and RelativeCost inferred
from Materials

3.2.3.6 Application and DesignEnvironment

Information about the Application and DesignEnvironment can be inferred from

the UsedOn semantics class.

 85

Figure 3.19: Application and DesignEnvironment inferred from UsedOn

3.2.3.7 Constraints and Application

We can infer information about Constraints and Application from the Part and

Assembly semantics classes.

Figure 3.20: Constraints and Application inferred from Part and Assembly

3.2.3.8 RelativeCost and QualityInspection

Information about the RelativeCost and QualityInspection can be inferred from

the Inspection semantics class.

 86

Figure 3.21: QualityInspection and RelativeCost inferred from Inspection

3.2.3.9 Function and Constraints

Information about the Function and Constraints can be inferred from the

PartsList semantics class.

Figure 3.22: Function and Constraints inferred from PartsList

3.2.3.10 Application, DesignEnvironment and Domain

We can infer information about Application, DesignEnvironment and Domain

from the Milieu semantics class.

Figure 3.23: Application, DesignEnvironment and Domain inferred from Milieu

 87

3.3 Automated capture of context from legacy MCAD

Having provided an understanding of the context that can be captured from

legacy MCAD and the relationships that exist between the context classes at the three

levels, this section describes the need and process of capturing the context from legacy

MCAD using an automated software system.

3.3.1 Need for automated capture of design rationale

One of the results of the design rationale capture analysis stated in section 3.1.2

was the process that the re-designers used to extract context from legacy MCAD and

capture design rationale from the extracted context. If design rationale that is contained

is legacy MCAD is to prove useful i.e. that re-designers looking to modify existing

designs use the rationale contained in these legacy design storehouses, then the design

rationale capture process needs to be simplified by providing an automated and standard

capture method.

3.3.2 Process of automated design rationale capture

The automated capture design rationale from legacy MCAD has two distinct

steps viz.

• Extraction of context from the legacy MCAD

• Inferring design rationale from the extracted context

An illustration of this process is shown in Figure 3.24. The following sub-

sections provide the details on the process emulated by the automated software system.

To be truly useful, the proposed automated system must closely emulate the process

followed by the re-designer and modeler described in section 3.1.2.

 88

Figure 3.24: Overall approach to capture Design Rationale from Legacy MCAD

 89

It should be noted that some steps of the process followed by re-designers may

prove impossible to emulate using software but the number of such steps can be reduced

and the quality of the output of the system can be improved by building a system that

will grow based on input from experienced re-designers. In short by making the system

extensible we can ensure that the output is increasingly closer to that captured by the re-

designer and modeler.

3.3.2.1 Extract context from legacy MCAD

To extract context from legacy MCAD the re-designer and modeler followed a

process that is described in section 3.1.2. For an automated system to capture context in

a similar manner the following are the steps. These steps are analogous to the steps of

the process described in section 3.1.2.

• Read all the raw data contained in the legacy MCAD: At this stage all

entities contained on the legacy CAD are extracted, and, for

simplification, sorted into either geometric or textual entity types. Basic

pattern recognition techniques are used to informally group and

categorize the entities into these types. A temporary data storage is used

for the output of this step. By using an open ASCII based MCAD file

such as DXF the system will be able to read the raw data in addition to

their properties.

• Extract the syntax classes: By identifying the relationships between the

raw data as described in section 3.2.1 the system will extract the syntax

classes. From the Design Rationale Capture Analysis it was observed

 90

that the human candidates used the layout of the raw data to extract

relationships. Using comprehensive pattern search and analysis methods

we categorize the extracted entities. To achieve this in a repeatable

manner the patterns could be pre-determined and stored. By identifying

the common patterns that exist for different situations e.g. company,

project or industry we can create templates that describe the syntax

relationships that exist. Using these templates we then focus on the

extracted entity along with its context (e.g. surrounding entities, entity

type, entity properties) as defined by the template.

• Extract the semantics classes: By using the relationships between the

syntax classes the system can extract the semantics classes as stated in

section 3.2.2. In a manner similar to the process documented during the

design rationale capture analysis the system uses numerous keywords

files and pattern matching algorithms to extract the semantics from the

syntax classes.

• Infer the pragmatics classes: Using the relationships between the

semantics classes as stated in section 3.2.3 the system can infer the

pragmatics classes.

 3.3.2.2 Infer Design Rationale

The final step is to infer design rationale using the extracted contextual

relationships. To do so, an inference engine was implemented as a part of this

dissertation. An inference engine is a software component that is implemented

 91

specifically to separate the data from the logic. Logic is language of reasoning. It

consists of a collection of rules that is used when reasoning. The next section describes

the various types of logic that exist, the type of logic that is implemented through the

proposed inference engine and the reason for choosing that type of logic.

1. Propositional logic: Propositional logic is logic at the sentential level.

The smallest unit of information that has to be dealt with is the sentence

which is called a proposition. The reasoning process assumes each

statement as either true or false. No analysis is performed of the

individual statements. The primary goal of propositional logic is to

identify truth or falsehood of sentences based on preceding sentences.

The following example illustrates propositional logic. Consider the

following statements.

All men are mortals

Socrates is a man

An inference engine treats these statements as true and based on

these propositions can assert the following proposition which is treated

as true for any succeeding propositions that may follow.

Therefore Socrates is a mortal

Propositional logic is not powerful enough to represent all types

of assertions that are used in computer science and mathematics or to

express certain types of relationships between propositions such as

equivalence. For example, the assertion "x is greater than 1", where x is a

 92

variable, is not a proposition because you can not tell whether it is true or

false unless you know the value of x. Thus propositional logic can not

deal with such sentences. However, such assertions appear quite often in

mathematics and we want to perform inference on those assertions. Thus

we need more powerful logic to deal with these and other problems. To

address this need other types of logic exist.

2. Predicate logic: Predicate logic allows us to represent fairly complex

facts about the world, and to derive new facts in a way that guarantees

that, if the initial facts were true then so are the conclusions. It is a well

understood formal language, with well-defined syntax, semantics and

rules of inference [80].

3. Syllogistic logic: Syllogistic logic contains the analysis of the judgments

into propositions consisting of two terms that are related by one of a

fixed number of relations and the expression of inferences by means of

syllogisms that consists of two propositions sharing a common term as

premise, and a conclusion which was a proposition involving the two

unrelated terms from the premises.

4. Modal logic: Modal logic deals with the phenomenon that subparts of a

sentence may have their semantics modified by special verbs or modal

particles.

5. Mathematical logic: Mathematical logic is a subfield of mathematics that

is concerned with formal systems in relation to the way that they encode

 93

intuitive concepts of mathematical objects such as sets and numbers,

proofs, and computation.

6. Philosophical logic: Philosophical logic is the study of the more

specifically philosophical aspects of logic. It deals with formal

descriptions of natural language. It is concerned only with those entities

— thoughts, sentences, or propositions — that are capable of being true

and false [81].

The inference engine implemented with this dissertation follows propositional

logic. The reason for selecting propositional logic over other types of logic is the format

and nature of the data available in the limited domain of legacy MCAD. As has been

detailed previously, legacy MCAD is typically composed of unstructured graphical

entities such as geometry, text and symbols. This results in the captured contextual

relationships containing identifiable propositions such as the material selected,

manufacturing instructions, part name, individual assembly parts, dimensions,

tolerances and design environment such company name, project name, and designer

name. The resultant propositions are assumed as true by default without further

analysis. This goes back to one of the assumptions of the dissertation that a valid

rationale exists behind any information that is included on legacy MCAD. In the case of

legacy MCAD the individual propositions do not need additional analysis to assert

facts. Since the primary goal of the advanced types of logic is to analyze the

propositions further they would be inapplicable in the specific context of legacy

MCAD.

 94

The overall architecture of the implemented inference engine is shown in Figure

3.24. The input to the system is the information extracted from the legacy MCAD viz.

Assembly, Artifact, Material, Manufacturing conditions and parameters and Geometry.

The inferencing itself is done in numerous sub-modules, also shown in Figure 3.25 viz.

Infer Domain, Infer Function, Infer Flow, Infer Objectives, Infer Constraints, Infer

Material Properties. The details on each of these sub-modules are provided in following

sections. For the implemented inference engine to perform the task of asserting

succeeding propositions based on the input (preceding) propositions it has a collections

of known propositions or rules that is stored in a rule-base, also shown in Figure 3.25

viz. Domains, Functions, Flows and Production Rules. The next section details the rule-

base, its need and format and the difficulties that exist to build and extend the base.

Figure 3.25: Overall architecture of Inference Engine

 95

The rule-base is where the collection of known propositions is stored. An

inference engine needs a rule-base as this helps separate the data from the logic

implemented by the engine to select appropriate rules based on the input. The rule-base

also provides an easy to understand explanation of why a particular rule was selected as

no knowledge of the inference engine code is needed. By implementing the rule-base

using XML we achieve easy editing of existing rules and addition of new rules. Other

formats for rule-bases exist such as the Resource Description Framework which is a

World Wide Web Consortium (W3C) specification for modeling information. The

RuleML open specification also exists that provides a markup language to publish and

share rules on the World Wide Web [82]. The rule-base implemented in this dissertation

implements a format simpler than that suggested by RuleML. The reason for this is the

lack for information that is needed to completely populate the individual rules as

specified by RuleML.

Samples of the rules that were generated with this dissertation are presented in

Figure 3.26 and Figure 3.27. The following is the syntax that was used to create the

individual rules.

• <rule>: Each individual rule is enclosed within this node. The start and

end tags separate individual rules.

• <name>: The name of the individual rule. The value of this entry needs

to be unique for each rule. This entry is required.

 96

• <symbol>: The symbol is usually reserved for materials and is usually

specified as the symbol of the material that the <name> node states. This

entry is optional but must be included when materials are involved.

• <objective>: The objectives that are associated with the rule. This entry

is optional. If provided then the inference engine selects the objectives

for the matched rule. The objective node has two sub-nodes.

o <property>: This entry states the specific objective at the current

sub-node. If the <objective> node is included then at least one

node containing the property is required.

o <value>: This entry states the value for the property at the

current node. If the <objective> node is included then at least one

node containing the value for the stated property is required.

• <constraint>: The constraints that are associated with the rule. This

entry is optional. If provided then the inference engine selects the

constraints for the matched rule. The constraint node has two sub-nodes:

o <property>: This entry states the specific constraint at the

current sub-node. If the <constraint> node is included then at

least one node containing the property is required.

o <value>: This entry states the value for the property at the

current node. If the <constraint> node is included then at least

one node containing the value for the stated property is required.

 97

• <additionalrule>: Specifies any additional rules that are associated to

the current rule. This entry is optional. If provided then the inference

engine processes the rule stated in this node to match and select

additional specific rules. For example if the additional rule stated points

to a second rule-base then the inference engine processes this second

rule-base and matches and selects additional rules from this rule-base.

This is important in cases such as materials that require additional

processing to select all appropriate rules.

With the above description of the need and format of the rule-base this next

section describes the population of the rule-base, the method, the collected propositions

and the problems encountered.

For the inference engine to function the rule-base needs appropriate propositions

to be present in the rule-base. The inference engine uses these initial propositions to

match and select the appropriate rules based on the current input. These propositions

were created manually from various sources such as Tool Manufacturer’s Engineering

Handbook [83], Mechanical Engineering Design [84], Machine Design: An Integrated

Approach [85], Machine Elements in Mechanical Design [86], Mechanics of Materials

[87], and Materials Selection in Mechanical Design [88] among others. A large portion

of the rules have their origins in the output of the Design Rationale Analysis [Section

3.1]. Sample of the rule-base are shown in Figure 3.26 and Figure 3.27. The rule-base

does not differentiate among the various types of proposition being stored. The rule-

 98

base stores propositions on material, manufacturing, company information, functions,

flows, domains etc.

Figure 3.26: Sample rules from rule-base used by inference engine

 99

Figure 3.27: Sample rules from rule-base used by inference engine

 100

The rule-base stores propositions by identifying the object about which the

proposition is predicated. For example consider the rule named “aluminum” in Figure

3.27. This rule asserts the following propositions:

The material is aluminum

Aluminum has symbol Al

Aluminum has objective of low weight

Aluminum has objective of medium to high strength

Aluminum has objective of high corrosion resistance

Aluminum has objective of good workability

Aluminum has additional rule-base located in “aluminum.xml” on disk

This rule is sufficient to handle input that provides very little information to a

lot. For example if the input states just aluminum, the input proposition can be read as:

The Material is Aluminum

Since this is assumed true the following propositions can be asserted about the

subject “Material” by the above described rule:

Material has symbol Al

Material has objective of low weight

Material has objective of medium to high strength

Material has objective of high corrosion resistance

Material has objective of good workability

Material has additional rule-base located in “aluminum.xml” on disk

 101

Thus by using the rule-base we are able to assert the objectives for the input

material (viz. Aluminum) which constitutes design rationale based on the proposed

definition [30].

If in case the input states detailed information such as Aluminum 4140 the input

proposition can be read as follows:

The Material is Aluminum 4140

This allows us to assert the propositions that are asserted above when the

proposition is simply “The Material is Aluminum”. But to assert additional propositions

based on the detailed input “4140” we need to refer to the additional rule-base located

in “aluminum.xml”. A sample of this rule-base is shown in Figure 3.28. From the

detailed input it can be asserted known that the material belongs to the 4000 series of

wrought Aluminum.

This assertion depends on the numbering formats that are employed for

designating the individual alloys. This designation system is completely set forth in the

American National Standard ANSI H35.1 and in various publications issued by The

Aluminum Association [83]. Appropriately the following propositions can be asserted

by selecting the <4000> series node for <wrought> aluminum from the additional rule-

base [Figure 3.28]:

Material has Typical Applications in welding wire, low melting point brazing

alloys and architecture

Material has Objective of low weight

Material has Objective of high electrical conductivity

 102

Material has Objective of high machinability

Material has Objective of low melting point

Figure 3.28: Rule-base for Aluminum

 103

Any asserted propositions that are repeating between the simple and detailed

input can be safely ignored. Thus having detailed input allows for additional

propositions being asserted in terms of typical applications and additional objectives,

which provides design rationale as previously defined. As can be noticed from the

description above the following propositions were also used in addition to the input

proposition to assert the design rationale:

Wrought Aluminum 4000 Series starts with the digit 4

Wrought Aluminum 4000 Series is a 4 digit system

Using these above propositions the following proposition was asserted:

4140 is part of Wrought Aluminum 4000 Series

These propositions are part of rule-base as the material designation systems are

very specific to the material i.e. there is one designation for Aluminum, another for

Copper (the 5 digit Unified Numbering System for Metals and Alloys [83]), another for

Steel (4 digit AISI, ASTM or SAE) and so on for other materials. The <additionalrule>

node specifies the location of the rule-base that stores these propositions for the

individual materials.

But it should be noted that while some designations assist in identifying the

detailed proposition from the additional rule-base this is not the case for all materials.

This next section describes some of the problems that were faced in matching and

selecting the additional rule from the material’s designation. The prime example in this

case is Steel. Steels are available in numerous types viz. carbon, alloy, high-strength

low-alloy, stainless, maraging and cast. The most common type of steel is carbon steel,

 104

which comes in three main groups – low, medium and high. A four-numerical series

adopted by the AISI and the SAO is used to designate standard carbon steels specified

to chemical decomposition ranges [87]. Designers select from among carbon steels

based on the carbon content which provides information regarding the steel properties.

The designations do not provide any way to differentiate between the various groups of

carbon steels if only the 4 digit designation number is known. So no rule can be used to

identify the carbon steel group i.e. no proposition exists similar to the ones stated above

for Aluminum. For example consider the following proposition:

Low carbon steels have low strength

Consider for example that the input provides detailed material information as:

The material is Steel 1018

In order to assert propositions regarding the material then we would need the

following proposition:

Steel 1018 is a low carbon steel

But this proposition is not available and cannot be deduced from the designation

system for Steels. In order to circumvent this problem the proposed and implemented

method is to use open materials database available in digital format such as efunda [89]

and MatWeb [90]. There are no known researches or applications that utilize this idea to

identify propositions for use in an inference engine but the results from the current

implementation suggest that this is a viable method. The basic idea is similar to that

suggested by Google’s Custom Search Engine which is a tailored search engine, which

prioritizes or restricts search results based on websites and pages that are specified, and

 105

which can be tailored to reflect a specific point of view or area of expertise [91]. In the

case of materials the aforementioned websites [89], [90] are the specified websites that

provide materials related information required for generating necessary propositions.

The next section provides a detailed understanding of the implemented

inference engine. The inference engine consists of three distinct parts:

1. Production Rules: The Production Rules are stored in the rule-base.

These describe the condition that has to be matched and also specify the

action that the inference engine must take when the condition is

triggered.

2. Working Memory: Consists of the input that is then treated as a

proposition.

3. Pattern Matcher: This is the main component of the inference engine.

The primary goal of the Matcher is to identify production rules that

closely match the input, select one or at the most few rules by resolving

conflicts occurring due to the selected rules and execute the rules.

The inference engine has three basic processes: Match rules, Select rules and

Execute rules – which it performs to infer the appropriate rule. In Match Rule all the

rules that are similar to the input are retrieved. In Select Rule the rule that is exactly like

the input is selected by eliminating the other rules based on additional processing.

Finally in Execute Rule the rule is executed which may only be displaying the

properties of the selected rule or may be finding additional rules that match the input

thereby repeating the process from Match Rule. Also there are two basic types of

 106

inference engines – forward chaining and backward chaining. Forward chaining is data

based while backward chaining is goal driven. In the delimited context of legacy

MCAD only forward chaining is relevant as there is no appropriate goal that needs to be

achieved which is the basic function of backward chaining.

3.4 Necessary Validation of Automatically Captured Design Rationale

Once the automated system has inferred design rationale the final step is to test

the validity and quality of the captured design rationale. This dissertation proposes to

perform this validation step using human re-designers with varying experience and

knowledge levels. In a manner similar to the design rationale capture analysis described

in section 3.1.1 we conduct validation interviews where human re-designers record the

design rationale that they were able to capture from a sample set of drawings. The

software system is also fed the same sample set and its output is recorded. The two sets

of outputs are compared for validating and checking quality of the output from the

software system. This procedure is dealt with in more detail in chapter 5.

3.5 Conclusion

With this chapter we have seen the approach followed to address the specific

details of design rationale, context in design rationale and capture of design rationale

from legacy MCAD. The next chapter details the software architecture of the system

proposed to perform the automated capture of design rationale from legacy MCAD.

 107

CHAPTER 4

SOFTWARE ARCHITECTURE

The following chapter provides the details of the architecture of the software

system proposed to automate the capture of design rationale from legacy MCAD.

Chapter 3 briefly described the two primary steps that have to be taken by a software

system viz. (i) extract context from legacy MCAD and (ii) use extracted context to infer

design rationale. The following sections expand on these two steps starting with an

overall architecture and then drill deeper into each identified sub-step.

4.1 Overall Architecture

The overall architecture is based on the approach stated in section 3.3.2 in

Chapter 3. An illustration of this overall architecture is shown in Figure 4.1. The

following is a brief overview of the steps in the process:

4.1.1 Entity Parsing

The first step in the legacy MCAD design rationale capture process is the

parsing of entities. In this step we read and parse three basic classes of entities viz.

geometry, text and symbols.

4.1.2 Extract Syntax

Having parsed the three basic entity classes the next step is to extract the syntax.

This is achieved by categorizing the entities parsed in the previous step into the

 108

appropriate syntax class viz. notes, title-block, shape and symbol. This is done by using

templates that describe the class including their location and other properties.

Figure 4.1: Overall Architecture

 109

4.1.3 Extract Semantics

With the syntax available from the previous step, the third step is to extract

semantics from the syntax. This requires the identification of numerous patterns and

keywords contained in the syntax to extract the appropriate semantics class.

4.1.4 Infer Pragmatics

The penultimate step in the process is the inference of the pragmatics classes

which provide the first level of design rationale in the form of values for design

variables viz. function, flow, domain, objectives, constraints, application, relative cost

etc.

4.1.5 Infer Design Rationale

The final step in the process is the combination of the pragmatics classes to infer

the second level of design rationale as specified in section 3.3.2.2.

4.2 Detailed Architecture

With that brief overview of the architecture the following section provides the

details on the methods, algorithms and dictionaries that were used to build the software

system.

4.2.1 Entity parsing

As mentioned in section 1.2 this dissertation primarily deals with the DXF file

format. To read the contents of the DXF file that contains the legacy MCAD the system

uses a set of libraries developed by Imagecom Inc [26]. These libraries were developed

using the Visual C++ language and are deployed as shared dynamic linked libraries

(DLL). This allowed the current software system to call methods and use properties

 110

implemented by Imagecom’s Tools as black box calls in a manner that no

implementation details were known or necessary to read the DXF file. The only method

that was called to read the DXF file was the “Read_DXF” method. This method accepts

as input the path to the DXF file that needs to be processed. The method outputs an

array of GE2D_Entity objects that is contained in the DXF file. The GE2D_Entity is a

custom class implemented by Imagecom Tools to store the geometry, text and symbols

contained in the DXF file. GE2D_Entity stores the entities, their types, location and

other properties and mirrors the entities in the DXF file. The advantage of using the

GE2D_Entity class is that it is object oriented. Each entity sub-type viz. line, arc, circle,

text, symbol is stored as exclusive objects allowing protected access to its properties.

Figure 4.2: Read DXF File and store array of GE2D_Entity objects

4.2.2 Extract Syntax

With all the raw data available from the previous step in the form of an array of

GE2D_Entity objects, the next step is to extract the syntax from this raw data. DXF

files provide little formal structure to the drawings that are generated as a part of design

projects. The syntax that the drawings contain does not have pre-defined locations or

other attributes thus making it difficult to extract. As briefly described in section 3.3.2.1

the syntax extraction can follow a method similar to that employed by human re-

designers i.e. it can be done using situation specific templates. This is advantageous

because with a change in the situation, which may change the syntax attributes, we can

 111

specify a different, more relevant template to use. In this implementation phase a

sample template was implemented as a test case. The template design was performed

with a care to easy extensibility and derivability i.e. if needed the template can be

extended for the current situation and also for new situations we can derive common

elements from an existing template to create the new template for the new situation. The

templates primarily describe the syntax and semantics classes and their attributes. The

software system reads the templates and extracts the syntax from the DXF based on the

template attributes.

To simplify the implementation of the templates it was designed in two specific

layers. The first and topmost layer is a general layer that is specific to the company. The

second layer is specific to each syntax class that is described in the company specific

template.

4.2.2.1 First layer template

The first layer template consists of information that is specific for a single

company (or even project). Figure 4.3 shows the “company.xml” template for a sample

company.

Figure 4.3: Sample Company template

 112

The template is implemented in an XML format. The advantage of doing so is

that it provides an open, easily editable format. If needed users can open the templates

in a text editor and modify the contents. The root node is <company> that has one

attribute “name” that specifies the name of the company that this template belongs to.

The <template_dir> tag has one attributes “location” that points to the location of the

second layer of templates viz. the sheets, materials, manufacturing, standards, titleblock

and notes templates. Different companies or projects may use different values for the

attributes based on their specific situations. The nodes, for the second layer of

templates, have a single attribute “location”. If this attribute does not have any specific

value then it is assumed that they are located in the same directory as that specified in

the <template_dir> node.

The second template in this layer is the sheets.xml template shown in Figure

4.4. This template is drawing sheet specific but could also vary from company (or

project) to company.

The sheets.xml template describes the sizes of the standard drawing sheet sizes

typically identified by alphabets viz. C, D, E, K etc. The sheets.xml template describes

the dimensions of the individual sheet itself along with the location and dimensions of

the notes and title-block syntax classes. The location and dimensions of the shape

classes can be inferred from the location and dimensions of the notes and title-block

classes and hence has been ignored in the template. If deemed necessary in the future

the sheets.xml template can be extended to include that information.

 113

Figure 4.4: Sample Sheets template

The sheets.xml template is useful to the software system as it provides the

system with data necessary to locate and extract the various syntax classes. To use the

sheets template for other situations it can be extended to describe the location and

dimensions of the syntax classes.

4.2.2.2 Second layer template

The second layer templates are similarly stored in XML format. There are four

second layer templates that describe the syntax classes viz. notes, title-block, shape,

symbols.

 114

Figure 4.5 shows the “notes.xml” template. The Notes class is extracted by the

software system using the “sheets.xml” template that specifies the location and

dimensions of the notes. But having extract the Notes class, the system still needs to

recognize any patterns that exist to process the Notes. This is where the “notes.xml”

template helps. The notes template has four child nodes. The <layer> node specifies on

which drawing sheet layer the Notes are located. If this is a blank value then the system

assumes the default drawing sheet layer as location of Notes. It is common to provide a

title for the Notes section on the drawing file. If one is provide then the value for that

title is specified in the <title> node of the “notes.xml” template. If each individual Note

is numbered then their presence and the style of number of each Note and each sub-

Note is indicated using attributes “value” and “style” of the <numbering> node. The

first value of the “style” attribute indicates the numbering style of each Note while the

second value indicates the numbering style of each sub-Note. It is also common to find

Notes that are broken into multiple sentences. The <lines> node describes whether the

Notes are “single” or “multi” sentence and if they are multi- sentence the “ydist”

attribute specifies the distance between two multi- sentence Note.

Figure 4.5: Sample Notes template

 115

Next is the title-block.xml template. Figure 4.6 shows the title-block.xml

template. The title-block on a drawing sheet is typically laid out in a grid format with

each cell of the grid containing parameters with the respective values. The title-block

template describes the contents of the title-block by providing an identifier that qualifies

the content of each cell. For example a standard drawing sheet title-block may contain

the name of the company to which the drawing belongs. In order to name the company

the title-block would contain either just the name or may contain an identifier such as

“Name of Company” with a value in front of that identifier that names the company.

Other possible parameters may be the name of the part that is contained in the

drawings, a part number, designer information e.g. name, group etc, design information

e.g. date etc. The title-block.xml file contains numerous <cell> nodes that identify the

various cells of the grid along with the parameter that is located at that particular cell

number. The numbering of the cell is dynamic and can be changed based on various

criteria. Currently the numbering is done based on the relative horizontal and vertical

locations of the cell in the grid. For a particular situation e.g. drawings belonging to the

same company, the title-block may be pre-defined and the cell numbers may remain

constant. When the situation changes i.e. a different company or project, a different

title-block template may be needed.

The third template in this layer is the shape template. This dissertation does not

delve into extracting the shape of the artifact contained in the legacy MCAD.

 116

Figure 4.6: Sample title-block template

 117

This task is passed to Imagecom’s FlexiDesign technology and is not addressed

in this current dissertation. The shape template is primarily geared toward identifying

the information required by FlexiDesign such as the location of the geometry describing

the shape. At this time the shape template is inferred from the sheets.xml template based

on the location of the Notes and Title-block. Since overlapping elements are not

considered good design the area of the drawing sheet not occupied by the Notes and

Title-block is considered to belong to the Shape.

The last template in this layer is the symbols template. Currently this template

does not exist in an open format. The system uses Imagecom’s toolset to identify the

symbols that are contained on the drawing file. Current drawing sample files contain

exploded types of symbols that are composed of simpler geometric and textual entities.

Numerous algorithms have been developed to extract these related geometric and

textual entities to group them to identify the symbol based on certain commonly known

patterns. For example to identify the surface finish symbol the system tries to identify

two angular lines that intersect each other at one endpoint with an appropriate angle

between them (the angle between them is a pattern value depending on different

companies or projects or designers) with one line shorter than the other. Other shapes

and variation of the surface finish symbol can also be extracted based on the standards

of surface finish representation. A sample illustration of this symbol is shown in Figure

4.7.

 118

Figure 4.7: Surface Finish symbol

Another example of symbols that are extracted by the system is the geometric

dimensions and tolerance (or commonly known as GDT). These are typically

represented as shown in Figure 4.8. The GDT is also extracted using Imagecom’s

toolset and libraries with the extraction algorithms designed and implemented in the

system currently being described. The GDT is primarily used for inspection after the

artifact has been manufactured to confirm the quality of the part.

Figure 4.8: Geometric Dimension and Tolerance symbol

4.2.3 Extract Semantics

After the system has extracted the syntax from the legacy MCAD file the next

step is to extract semantics from the syntax classes based on the relationships between

the syntax and semantics classes as shown in section 3.2.2. To find the semantics

classes from the syntax the system uses numerous keywords files and pattern matching

 119

algorithms. These keywords store the vocabularies used by re-designers that are used in

various specific situations viz. specific domain, sub-domain or company. The current

implementation of the keywords files uses flat text files with keywords separated by a

new line characters. The patterns that the system uses is stored in terms of the identifiers

stored in the template files described in sections 4.2.2.1 and 4.2.2.2.

4.2.3.1 Keywords

Based on the type of information that needs to be accessed, the corresponding

keywords are stored with the rules database. Various portions of the rules are used as

keywords e.g. the rule name or symbol are commonly used as keywords to match and

select the appropriate rules. This allows a common location for the keywords that are

identified throughout the data set and additionally provides a common store to relate the

keywords with the information inferred about the keyword.

To understand how the system uses the keywords to extract the semantics

classes consider the materials keywords. The Materials semantics class depends on the

Notes syntax class as shown in section 3.2.2. Once the system has extracted the Notes

syntax class along with the text that is contained within the Notes, the next step is to run

a comprehensive search for the material keywords within that text. All search results are

stored and marked as possible materials that were stated for the particular drawing.

Once a material keyword is found the system also reads the text that surround this

material to identify more specific detail about the material. A similar process is

performed for the manufacturing and standards keywords.

 120

4.2.3.2 Common Patterns

The templates described in sections 4.2.2.1 and 4.2.2.2 are used by the system to

not only extract syntax but to also extract semantics.

The title-block template for example stores the identifiers that help the system

identify specific semantics classes. The complete listing of the semantics classes and the

syntax classes from which they are extracted is recorded in section 3.2.2. The following

is a description of how the system uses the title-block template to identify the following

semantics classes – Standards, UsedOn, Part, Assembly, PartName, PartsList and

Milieu. The title-block on a drawing is normally used as the placeholder for this kind of

information. But unlike a human re-designer the system would need additional

information to identify these classes merely from the text that is contained in the title-

block cells. To aid the system the title-block template stores identifiers that provide

meaning for the content of the title-block cell. For example, cell number 1 from the

title-block template contains the company information; cell number 2 contains the part

name etc. Once the system has extracted the TitleBlock syntax class by using these

identifiers from the title-block template the system extracts the semantics.

In a similar manner the system also extracts the Inspection class by identifying

meaning that surround the Symbols class. The system searches for texts that accompany

the symbols that were extracted as part of the syntax. This is done based on a

neighborhood algorithm depending on the orientation of the symbol. Currently the

system can extract the texts that are oriented in the four regular, orthogonal quadrants

and are present in a specific location near the symbol. For example consider the surface

 121

finish symbol. The simplest form of the symbol is represented as shown in Figure 4.7

but may also have a text value contained near the shorter leg. Figure 4.9 and Figure 4.10

show two sample orientations of the surface finish symbols in the 1st and 3rd quadrant

that the system can extract along with the surface finish value.

Figure 4.9: Surface Finish symbol in the 1st quadrant

Figure 4.10: Surface Finish symbol in the 3rd quadrant

 122

4.2.4 Infer Pragmatics

Having extracted the semantics classes the penultimate step that the system

takes is to infer the pragmatics. The system employs numerous heuristic and retrieval

methods to infer the pragmatics classes. These methods are described in the following

sub-sections. The system uses heuristic algorithms to infer the Function, Flow,

Application and Constraints classes and it uses retrieval methods to find the Domain,

RelativeCost, QualityInspection, DesignEnvironment, Objectives, Constraints,

SpecificProperties and Application classes. In the following sub-sections the method

used to infer the specific pragmatics class is detailed.

4.2.4.1 Infer Domain

The system infers the domain to which the current drawing belongs to. It was

documented in the design rationale capture analysis process that human re-designers use

their existing knowledge and expertise to make such determinations. For the software

system to make this determination in a similar manner requires access to similar

knowledge. At the time of current implementation a data file, shown in Figure 4.11, is

developed that allows the system to infer the Domain based on the PartName. The data

file is implemented as a flat XML file. By using the definitions for the PartName from

resources such as WordNet [92] and even common search engines such as Google [91],

the system identifies the domain keywords within the search results. This overall

methodology is shown in Figure 4.12. Using these identified keywords, the system then

calculates probabilities for each domain and selects the domain with higher probability

for further processing as the domain of the Part contained in the legacy CAD file.

 123

Currently this data file is built manually but methods exist to automate building

such a data file in an automated manner. This requires access to a dictionary such as the

Dictionary of Mechanical Engineering by G. H. F. Nayler in digital form. The system

could run heuristic searches on such a digital dictionary to determine the specific

PartNames that belong in the Mechanical Engineering domain and use that to build the

data file. Similar techniques with the relevant dictionaries for other domains could be

used to build data files for all domains. This suggested automated method is out of

scope of this dissertation due to lack of data needed.

Figure 4.11: Sample from the Domain keywords data file

4.2.4.2 Infer Function

As detailed in section 3.2.3 the function can be inferred from the PartName and

PartsList class. The system accomplishes this by applying heuristics on definitions

retrieved from a lexical reference system. The lexical reference systems that are

currently being used is the WordNet [92] database developed by Cognitive Science

Laboratory at the Princeton University and the Google [91] search engine. The system

accesses the WordNet database through COM (Component Object Model) interfaces,

while access to the Google search engine is through simple internet access using an

idealized web client. The methodology used by the system to infer the function of the

 124

artifact contained in the drawing file is shown in Figure 4.13. It should be noted that the

“Domain Function Taxonomy” data set that is shown in the Figure 4.13 is filtered to

only include those functions that are relevant to the Domain that was retrieved in step

4.2.4.1.

Figure 4.12: Infer Domain

 125

4.2.4.3 Infer Flow

Similar to inferring function the system infers Flow from the PartName. The

only difference for inferring Flow is that the system depends more on synonyms defined

in the Domain Flow Taxonomy. This is because of the limited occurrence of the flows

from the taxonomy in the PartName definition. This inference module is shown in

Figure 4.14.

4.2.4.4 Retrieve SpecificProperties

By using the Materials class the system can retrieve SpecificProperties for the

specific material. To retrieve the SpecificProperties the system uses a materials

handbook that is available in digital format [93]. The system uses a wrapper around the

data provided over the internet by [93] to extract the required properties. For example if

the Material extract is Steel FS1025 then from [93] the system retrieves the web page

that provides the material properties for FS1025. The implemented wrapper then

extracts the SpecificProperties from this retrieved web page viz. Low Carbon Steel,

Density, Modulus of Elasticity, Tensile Strength both Yield and Ultimate and Brinell

Hardness.

4.2.4.5 Infer Objectives and Constraints

The system infers Objectives from the Materials class, the Company Name and

the Manufacturing instructions. By using information from a Materials handbook

provided in print format [94] copied over to a digital representation for easy access the

system infers the Objective for the extracted Materials class. Inferences from the

Company name are available from the Design Rationale Analysis process that was

 126

detailed earlier, whereas inferences from Manufacturing instructions were gleaned from

previously stated sources [88, 87, 86, 94].

Figure 4.13: Infer Function

 127

Figure 4.14: Infer Flow

The inferred Objectives typically describe key material properties such as

weldability, machinability, formability, strength and hardness which are the selection

 128

criteria for selecting the specific Material. To deal with the print format of data a

simplified version is created in a template format illustrated in Figure 4.15. From the

Materials class the system retrieves the SpecificProperties from section 4.2.4.4 and

using the information from the SpecificProperties the system infers the Objectives from

the template file. This inference module is shown in Figure 4.16.

Figure 4.15: Materials Objectives and Constraints Template

 129

Figure 4.16: Infer Objectives and Constraints from Materials (example)

4.3 System Implementation

The system was implemented using the Visual C++ programming language. The

extraction, inference and retrieval modules were written as components, primarily

libraries. Additionally in an order to take advantage of the digital dictionaries and online

materials handbook the Visual C# language was used. Visual C# allows easy access to

COM objects and is portable across operating systems though the current system was

developed, deployed and tested only on the Windows Operating System.

 130

To ensure that the data generated and used by the system is re-usable in other

systems and projects most of the data was saved as text files or XML templates. The

design of this data store was done using the Visual Studio Integrated Development

Environment (IDE) 2005. Since the data store are open formats any text editor can be

used to modify these files.

Additionally the extraction process depended on the libraries and toolset

provided by Imagecom. Imagecom also provided the functionality to read the DXF

files. Imagecom’s toolset are implemented as libraries and the current system calls the

methods and uses the properties by dynamically linking to the libraries.

4.4 Conclusion

This chapter has provided the algorithms required to extract the context and

infer the design rationale from the entities on the drawing file, specifically the DXF file.

The system is implemented as libraries allowing multiple client access. Currently the

design rationale is stored as objects but output as text so the results need to be collected

for the validation that is detailed in chapter 5.

 131

CHAPTER 5

RESULTS AND VALIDATION

Having provided in detail the approach and the software architecture of the

system developed to automate the capture process, this chapter provides the output of

the system and also the output recorded during the design rationale capture analysis

process described in section 3.1.1. The two sets of outputs are used to validate the stated

approach and also the effectiveness of the system. Also described is the rationale behind

choosing this proposed validation method as opposed to other possible validation

techniques.

5.1 Selecting a Validation Method

Two relevant validation methods were suggested during the course of the

development of the software system. Of these one method was finalized upon based on

the advantages it offered. The following sub-sections details these two methods, their

respective advantages and disadvantages and finally selects one of these methods.

5.1.1 Validation Method 1

The first validation method suggested requires a large sample set of more than a

100 drawing files. This sample set needs to be analyzed by human re-designers and the

software system. The results of both analyses are collected using the output format

detailed later. These results are then compared for quality and accuracy to validate the

 132

effectiveness of the proposed approach and developed software system. The following

are the advantages and disadvantages of using this validation method.

5.1.1.1 Advantages

The large sample set will prove that the approach and developed software

system do indeed work as proposed. By ensuring random selection process of the

drawings it can be shown that the software system is capable of handling parts of

varying complexity and is as effective as a human re-designer in capturing design

rationale.

5.1.1.2 Disadvantages

Since the system needs to handle a large sample set of drawing files with

varying complexity, it needs to be an extensive system with numerous templates and

keywords and large amounts of inference information. Such monolithic systems are

difficult to develop as part of an individual’s dissertation as this normally requires

access to large amounts of resources. Additionally such an approach would be a hit or

miss one, where the results of the human re-designers are used to merely validate the

software system. The system does not have access to design rationale captured by the

human re-designers and analyzing larger number of parts will not serve to improve the

effectiveness of the system.

5.1.2 Validation Method 2

The second validation method suggested requires an initial categorization of the

drawing files based on their complexity. The development of software system should

take this categorization into account. The proposed system should be developed by

 133

starting with the lowest level of complexity and become progressively able to handle

more complex drawings. This requires that the system be extensible.

5.1.2.1 Advantages

The focus is not analyzing a large sample set of drawing files but instead on the

quality and effectiveness of the design rationale captured by the software system. This

provides an easier method to determine success of the system, as by developing a

system that can address a majority of the drawings at the lowest level of complexity we

can ensure that the output of the system can rival that of a human re-designer. There is

no need to develop a monolith system as by developing an extensible system we can

ensure that the system can progressively handle higher levels of complexity.

Additionally by developing a system that can take advantage of the design rationale

captured by the re-designers the quality of the system will continue to grow.

5.1.2.2 Disadvantages

The disadvantage of selecting the second validation method lies in the

development of an extensible system. To take advantage of the design rationale

captured by the re-designers the system must be able to take advantage of both the

increasing database that the re-designer has access in terms of experience and

knowledge as well as the inference techniques that the re-designer employs.

5.1.3 Selecting a Validation method

This dissertation suggest selecting the second validation method over the first

and effectively addressing the issues related to the second validation method as follows.

By using open database formats and an open, modular architecture extensibility can be

 134

added to the system. The open formats allow the number of templates and keywords

that the system recognizes to be easily increased thereby increasing the amount and

quality of design rationale that it captures. Additionally the second validation method

necessitates clearly defining the various complexity levels of the drawing files. In the

following sub-sections these issues are addressed.

5.1.3.1 Definition of drawing file’s complexity

Four levels of complexity are suggested as follows:

• Simple: The Simple drawing files contain standard or at least consistent

sheet sizes. The entities are all of known types with known attributes and

are well laid out on the sheet. The drawing file uses layers appropriately

by cleanly separating the various syntax groups on different layers.

There are no keywords on the simple drawing file that the system is

unaware of. Finally the file is less busy with as few entities as needed.

• Medium: The Medium drawing files contain more entities than the

Simple and are busier. There are keywords that the system does not

recognize. Multiple views are added for the shape of the part and may

contain additional inferences. Bill of Materials or Part Tables may be

present that provides rationale regarding Assembly or Application. Other

attributes remain the same as the Simple drawing files.

• Medium-complex: The Medium-complex drawing files contain

numerous entities and the entities are laid out more poorly than the

Medium level. This would necessitate additional capture methods viz.

 135

semi-automatic or interactive methods to extract the context. Other

attributes remain the same as the Medium drawing files.

• Complex: The complex drawing files are those that contain very little

context. They have no standard sheet sizes, few layers to separate the

different entity types and may contain little or no keywords. The files

primarily contain geometry which provides little design rationale.

5.2 Output Format

This section details the output format chosen to display the design rationale. The

format was chosen for the ease of use by the re-designers. It also simplifies the process

of comparison required for validation. To fill out the form the re-designer needs to

simplify answer the question based on the instructions provided for each individual

question. If multiple answers are required the re-designer merely needs to repeat the

answer format as many times as necessary. To answer the questions the re-designers

were provided with a sample set of drawings and this questionnaire to answer. This

questionnaire can be filled out with an editor such as Microsoft Office Word or

OpenOffice Writer.

Table 5.1: Design Rationale Capture Analysis Output Format

1. What function, flow and domain can you ascertain for the part that is

contained in the drawing? These can be identified from the name of the

part, if appropriately named.

i. State part name =

 136

Table 5.1 - continued
ii. Infer function =

iii. Infer flow =

iv. Infer domain =

2. Can you determine if the represented part is a part of an assembly? If

yes, identify the assembly constraints. These would be typically

identified from the geometric dimensions and tolerance that are present

on the drawing. In addition state if possible the type of assembly

constraint that is represented.

a. State dimension with tolerance =

i. Infer constraint =

3. Identify the specified material for the part. This can be found in the

notes section of the drawing. Infer the reason this material was chosen

viz. the Objectives and Constraints for selecting the specified material.

a. State material =

i. Infer objective =

ii. Infer constraint =

4. Retrieve specific properties for the material

a. Modulus of Elasticity =

b. Tensile Strength, Yield =

c. Tensile Strength, Ultimate =

d. Hardness, Brinell =

 137

Table 5.1 - continued
e. Relative Cost =

f. Machinability (Based on AISI 1212 steel. as 100%

Machinability) =

g. Density =

5. Identify the company name that is stated on the drawing. From the

stated company name infer the design environment (viz. commercial,

governmental, US Army etc)

a. State company name =

i. Infer design environment =

ii. Infer possible goals (e.g.)

1. Reliability =

2. Shelf life =

3. Cost priority =

6. Identify all manufacturing instructions stated on the drawing. Infer

possible objectives and constraints for the manufacturing instructions

(e.g. quench and temper to increase surface hardness)

a. Manufacturing =

i. Objective =

ii. Constraint =

 138

5.3 Design Rationale captured by re-designers

With that output format available this section provides the design rationale

captured by the re-designers. Only a sample set of results are presented here. The initial

capture analysis process was done with two candidates with six drawings. The second

analysis process was done with two candidates with three drawings. The results that are

presented here are from the second analysis process. It should be noted that the re-

designers who were interviewed for the second analysis may be considered

inexperienced to intermediately experienced re-designers. Candidate 1 holds a Doctoral

degree and has a little more than a year experience as a junior designer at Siemens.

Candidate 2 holds a Masters’ degree with more than 3 years experience.

5.3.1 Sample drawing 1

Table 5.2: Design Rationale captured from sample drawing 1 by re-designer

1. What function, flow and domain can you ascertain for the part that is

contained in the drawing? These can be identified from the name of the

part, if appropriately named.

b. State part name = Yoke

i. Infer function = Connect

ii. Infer flow = Force

iii. Infer domain = Mechanical

iv. Can you determine if the represented part is a part of an

assembly? If yes, identify the assembly constraints.

 139

Table 5.2 - continued
These would be typically identified from the geometric

dimensions and tolerance that are present on the

drawing. In addition state if possible the type of

assembly constraint that is represented.

c. State dimension with tolerance = -0.005, +0.010

i. Infer constraint = Assembly mate

2. Identify the specified material for the part. This can be found in the notes

section of the drawing. Infer the reason this material was chosen viz. the

Objectives and Constraints for selecting the specified material.

d. State material = Forging Steel, FS 1018

i. Infer objective = Good Machinability

ii. Infer objective = High tensile strength

iii. Infer constraint =

3. Retrieve specific properties for the material

e. Modulus of Elasticity = 29700 psi

f. Tensile Strength, Yield = 39900 psi

g. Tensile Strength, Ultimate = 39900 psi

h. Hardness, Brinell = 126

i. Relative Cost = 0.8

j. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 52%

 140

Table 5.2 - continued
k. Density = 0.284 lb/in³

4. Identify the company name that is stated on the drawing. From the stated

company name infer the design environment (viz. commercial,

governmental, US Army etc)

l. State company name = US Army Tank-Automotive and

Armaments Command

i. Infer design environment = US Army

ii. Infer possible goals (e.g.)

1. Reliability = High

2. Shelf life = Long

3. Cost priority = Low

5. Identify all manufacturing instructions stated on the drawing. Infer

possible objectives and constraints for the manufacturing instructions

(e.g. quench and temper to increase surface hardness)

m. Manufacturing =

i. Objective =

Constraint =

 141

5.3.2 Sample drawing 2

Table 5.3: Design Rationale captured from sample drawing 2 by re-designer

1. What function, flow and domain can you ascertain for the part that is

contained in the drawing? These can be identified from the name of the

part, if appropriately named.

a. State part name = Arm, Support

i. Infer function = Support

ii. Infer flow = Force

iii. Infer domain = Mechanical

2. Can you determine if the represented part is a part of an assembly? If

yes, identify the assembly constraints. These would be typically

identified from the geometric dimensions and tolerance that are present

on the drawing. In addition state if possible the type of assembly

constraint that is represented.

a. State dimension with tolerance = Depth +/- 1/64

i. Infer constraint = Assembly mate

3. Identify the specified material for the part. This can be found in the

notes section of the drawing. Infer the reason this material was chosen

viz. the Objectives and Constraints for selecting the specified material.

a. State material = Forged Steel 4145H

i. Infer objective = Good Machinability

 142

Table 5.3 - continued
ii. Infer objective = High tensile strength

iii. Infer objective = Rockwell hardness C32

iv. Infer constraint =

4. Retrieve specific properties for the material

a. Modulus of Elasticity = 29700 psi

b. Tensile Strength, Yield = 39900 psi

b. Tensile Strength, Ultimate = 39900 psi

c. Hardness, Brinell = 126

d. Relative Cost = 0.8

e. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 52%

f. Density = 0.284 lb/in³

5. Identify the company name that is stated on the drawing. From the

stated company name infer the design environment (viz. commercial,

governmental, US Army etc)

a. State company name = US Army Tank-Automotive

and Armaments Command

i. Infer design environment = US Army

ii. Infer possible goals (e.g.)

1. Reliability = High

2. Shelf life = Long

 143

Table 5.3 - continued
3. Cost priority = Low

6. Identify all manufacturing instructions stated on the drawing. Infer

possible objectives and constraints for the manufacturing instructions

(e.g. quench and temper to increase surface hardness)

a. Manufacturing = Quench and temper

v. Objective = Increase hardness

5.3.3 Sample drawing 3

Table 5.4: Design Rationale captured from sample drawing 3 by re-designer

1. What function, flow and domain can you ascertain for the part that is

contained in the drawing? These can be identified from the name of

the part, if appropriately named.

a. State part name = Arm, Support, Suspension

i. Infer function = Support

ii. Infer flow = Force

iii. Infer domain = Mechanical

 144

Table 5.4 - continued
2. Can you determine if the represented part is a part of an assembly? If

yes, identify the assembly constraints. These would be typically

identified from the geometric dimensions and tolerance that are

present on the drawing. In addition state if possible the type of

assembly constraint that is represented.

a. State dimension with tolerance = Depth +/- 1/32

i. Infer constraint = Assembly mate

3. Identify the specified material for the part. This can be found in the

notes section of the drawing. Infer the reason this material was chosen

viz. the Objectives and Constraints for selecting the specified

material.

a. State material = Forged Steel 4145H

i. Infer objective = Good machinability

ii. Infer constraint =

b. State material = Forged Steel 4337H

i. Infer objective = Good machinability

ii. Infer constraint =

4. Retrieve specific properties for the material

a. 4145H

i. Modulus of Elasticity = 29700 ksi

ii. Tensile Strength, Yield =

 145

Table 5.4 - continued
iii. Tensile Strength, Ultimate =

iv. Hardness, Brinell = 208

v. Relative Cost =

vi. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 60%

vii. Density = 0.284 lb/in3

b. 4337H

i. Modulus of Elasticity =

ii. Tensile Strength, Yield =

iii. Tensile Strength, Ultimate =

iv. Hardness, Brinell =

v. Relative Cost =

5. Machinability (Based on AISI 1212 steel. as 100%

Machinability) =

vi. Density =

6. Identify the company name that is stated on the drawing. From the

stated company name infer the design environment (viz. commercial,

governmental, US Army etc)

a. State company name = US Army Tank-Automotive

and Armaments Command

i. Infer design environment = US Army

 146

Table 5.4 - continued
ii. Infer possible goals (e.g.)

1. Reliability = High

2. Shelf life = Long

3. Cost priority = Low

7. Identify all manufacturing instructions stated on the drawing. Infer

possible objectives and constraints for the manufacturing instructions

(e.g. quench and temper to increase surface hardness)

a. Manufacturing =

i. Objective =

viii. Constraint =

5.4 Design Rationale captured by software system

The following section presents the design rationale captured by the software

system. The output shown here is formatted to match the results of the capture analysis

process performed with the re-designers. This is to simplify the comparison process.

Table 5.5: Design Rationale captured from sample drawing 1 by software

1. What function, flow and domain can you ascertain for the part that

is contained in the drawing? These can be identified from the name

of the part, if appropriately named.

a. State part name = Yoke

 147

Table 5.5 - continued
i. Infer function = Join, Support,

Connect

ii. Infer flow = Motion

iii. Infer domain = Mechanical

2. Can you determine if the represented part is a part of an

assembly? If yes, identify the assembly constraints. These would

be typically identified from the geometric dimensions and

tolerance that are present on the drawing. In addition state if

possible the type of assembly constraint that is represented.

a. State dimension with tolerance = Diameter -0.005

i. Infer constraint = Assembly mate (Shaft)

3. Identify the specified material for the part. Infer the reason this

material was chosen viz. the Objectives and Constraints for

selecting the specified material.

a. State material = FS 1018

i. Infer objective = Good

weldability, good machinability, good

formability

ii. Infer constraint = low strength, low

hardness

 148

Table 5.5 - continued
4. Retrieve specific properties for the material

a. FS 1018

i. Modulus of Elasticity = 29700 ksi

ii. Tensile Strength, Yield = 39900 psi

iii. Tensile Strength, Ultimate = 63800 psi

iv. Hardness, Brinell = 126

v. Relative Cost = 1.6

vi. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 52%

vii. Density = 0.284 lb/in3

b. FS 1025

i. Modulus of Elasticity = 29700 ksi

ii. Tensile Strength, Yield = 39900 psi

iii. Tensile Strength, Ultimate = 63800 psi

iv. Hardness, Brinell = 126

v. Relative Cost = 1.6

vi. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 52%

vii. Density = 0.284 lb/in3

 149

Table 5.5 - continued
5. Identify the company name that is stated on the drawing. From

the stated company name infer the design environment (viz.

commercial, governmental, US Army etc)

a. State company name = US Army Tank-

Automotive and Armaments Command

i. Infer design environment = US Army

ii. Infer possible goals (e.g.)

4. Reliability = High

5. Shelf life = Long

6. Cost priority = Low

6. Identify all manufacturing instructions stated on the drawing.

Infer possible objectives and constraints for the manufacturing

instructions (e.g. quench and temper to increase surface hardness)

a. Manufacturing =

i. Objective =

7. Constraint =

Table 5.6: Design Rationale captured from sample drawing 2 by software

1. What function, flow and domain can you ascertain for the part

that is contained in the drawing? These can be identified from the

name of the part, if appropriately named.

 150

Table 5.6 - continued
a. State part name = Arm, Support

i. Infer function = Support, Cover

ii. Infer flow =

iii. Infer domain = Mechanical

2. Can you determine if the represented part is a part of an

assembly? If yes, identify the assembly constraints. These would

be typically identified from the geometric dimensions and

tolerance that are present on the drawing. In addition state if

possible the type of assembly constraint that is represented.

a. State dimension with tolerance = Diameter 0.173-

0.203, 0.44-0.56

i. Infer constraint = Assembly mate

3. Identify the specified material for the part. This can be found in

the notes section of the drawing. Infer the reason this material

was chosen viz. the Objectives and Constraints for selecting the

specified material.

a. State material = 4145H, 4147H, 86B45H

i. Infer objective = Weldability and

Machinability better than low carbon steel, good

for hot formed

 151

Table 5.6 - continued
ii. Infer constraint = medium strength, and

hardness

4. Retrieve specific properties for the material

a. 4145H, 4147H, 86B45H

i. Modulus of Elasticity = 29700 ksi

ii. Tensile Strength, Yield =

iii. Tensile Strength, Ultimate =

iv. Hardness, Brinell = 208

v. Relative Cost =

vi. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 60%

vii. Density = 0.284 lb/in3

5. Identify the company name that is stated on the drawing. From

the stated company name infer the design environment (viz.

commercial, governmental, US Army etc)

a. State company name = US Army Tank-

Automotive and Armaments Command

i. Infer design environment = US Army

ii. Infer possible goals (e.g.)

7. Reliability = High

8. Shelf life = Long

 152

Table 5.6 - continued
9. Cost priority = Low

6. Identify all manufacturing instructions stated on the drawing.

Infer possible objectives and constraints for the manufacturing

instructions (e.g. quench and temper to increase surface hardness)

a. Manufacturing =

1. Objective =

2. Constraint =

7. Identify the Application of the part. This can be retrieved from

the UsedOn information that is stated on the drawings.

a. State UsedOn variable = M113A1

iii. Application = Armed personal carrier

Table 5.7: Design Rationale captured from sample drawing 3 by software

1. What function, flow and domain can you ascertain for the part

that is contained in the drawing? These can be identified from the

name of the part, if appropriately named.

a. State part name = Arm, Support, Suspension

i. Infer function = Support, Cover

ii. Infer flow =

iii. Infer domain = Mechanical

 153

Table 5.7 - continued
2. Can you determine if the represented part is a part of an

assembly? If yes, identify the assembly constraints. These would

be typically identified from the geometric dimensions and

tolerance that are present on the drawing. In addition state if

possible the type of assembly constraint that is represented.

a. State dimension with tolerance = +/- 1/64, +/-

1/32

i. Infer constraint = Assembly mate

3. Identify the specified material for the part. This can be found in

the notes section of the drawing. Infer the reason this material

was chosen viz. the Objectives and Constraints for selecting the

specified material.

a. State material = 4145H, 4147H, 86B45H

i. Infer objective = Weldability and

Machinability better than low carbon steel, good

for hot formed,

ii. Infer constraint = medium strength,

medium hardness

4. Retrieve specific properties for the material

a. 4145H, 4147H, 86B45H

i. Modulus of Elasticity = 29700 ksi

 154

Table 5.7 - continued
ii. Tensile Strength, Yield =

iii. Tensile Strength, Ultimate =

iv. Hardness, Brinell = 208

v. Relative Cost =

vi. Machinability (Based on AISI 1212 steel. as 100%

Machinability) = 60%

vii. Density = 0.284 lb/in3

5. Identify the company name that is stated on the drawing. From

the stated company name infer the design environment (viz.

commercial, governmental, US Army etc)

a. State company name = US Army Tank-

Automotive and Armaments Command

i. Infer design environment = US Army

ii. Infer possible goals (e.g.)

1. Reliability = High

2. Shelf life = Long

3. Cost priority = Low

6. Identify all manufacturing instructions stated on the drawing.

Infer possible objectives and constraints for the manufacturing

instructions (e.g. quench and temper to increase surface hardness)

a. Manufacturing =

 155

Table 5.7 - continued
1. Objective =

2. Constraint =

7. Identify the Application of the part. This can be retrieved from

the UsedOn information that is stated on the drawings.

a. State UsedOn variable =

viii. Application =

5.5 Results of comparison

Comparing the design rationale captured by the software system with the re-

designers’ output it can be seen that the design rationale is of the same quality. It should

be noted that the re-designers whose results are presented in this dissertation are

primarily inexperienced to medium experienced re-designers. This implies that the

system is mature enough to capture design rationale comparable to inexperienced to

medium experienced re-designers.

156

REFERENCES

[1] M.A. Rosenman, and J.S. Gero, Purpose and function in a collaborative

CAD environment, Reliability Engineering and System Safety, 1999(64), pp 164 – 179.

[2] J. J. Shah, M. Mäntylä, Parametric and Feature-based CAD/CAM:

Concepts, Techniques and Applications, ISBN 0-471-00214-3, 1995.

[3] Szykman, et. al., The Role of Knowledge in Next-generation Product

Development Systems, ASME Journal of Computing and Information Science in

Engineering, 2001.

[4] Xiaochun Hu Jun Pang, Yan Pang, Michael Atwood, Wei Sun, William

C. Regli, A Survey on design rationale: Representation, Capture and Retrieval,

Proceedings of DETC’00: 2000 ASME Design Engineering Technical Conferences,

September 10-13, 2000, Baltimore, Maryland.

[5] Shum, S., Hammond, N. (1993), Argumentation-Based Design

Rationale: From Conceptual Roots to Current Use, Tech. Report EPC-1993-106, Rank

Xerox Research Centre, Cambridge.

[6] Sim, S., Duffy, A. (1994), A New Perspective to Design Intent and

design Rationale, in Artificial Intelligence in Design Workshop Notes for Representing

and Using Design Rationale, 15-18 August, pp. 4-12.

157

[7] Fischer, G., Lemke, A., McCall, R., Morch, A. (1995), Making

Argumentation Serve Design, in Design Rationale Concepts, Techniques, and Use, T.

Moran and J. Carroll, eds., Lawrence Erlbaum Associates, pp. 267-294.

[8] Conklin, J. and Burgess-Yakamovic, K. (1995), A Process-Oriented

Approach to Design Rationale, in Design Rationale Concepts, Techniques, and Use, T.

Moran and J. Carroll, eds., Lawrence Erlbaum Associates, Mahwah, NJ, pp. 293-428.

[9] Lee, J. (1997), Design Rationale Systems: Understanding the Issues,

IEEE Expert, Vol. 12, No. 3, pp. 78-85.

[10] Karen L. Myers, Nina B. Zumel, Pablo Garcia, Acquiring design

rationale automatically, AIEDAM Vol. 14 Nos. 2, 1999, pp 115–135.

[11] Jeffrey M. Molavi, Raymond McCall, and Anthony Songer, A new

approach to effective use of design rationale in practice, Journal of Architectural

Engineering, 2003, pp 62 – 69.

[12] Hu, X., Pang, J., Pang, Y., Atwood, M., Sun, W. and Regli, W. C., “A

Survey on Design Rationale: Representation, Capture and Retrieval,” Proceedings of

the 2000 ASME DETC, Paper No. DETC2000/DFM-14008.

[13] Lee, J., Design rationale systems: understanding the issues, Expert,

IEEE, Volume 12, Issue 3, May-June 1997 Page(s):78 - 85

[14] Chen, A., McGinnis, B., Ullman, D., Dietterich, T. (1990), Design

History Knowledge Representation and Its Basic Computer Implementation, The 2nd

158

International Conference on Design Theory and Methodology, ASME, Chicago, IL, pp.

175-185.

[15] W. Kunz and W. Rittel, Issues as elements of information systems,

Center for Planning and Development Research, University of California, Berkeley,

August 1970.

[16] R. J. McCall. PHI: A conceptual foundation for design hypermedia,

Design Studies, 12(1):30–41, January 1991.

[17] A. MacLean, R. Young, V. Belloti, and T. Moran. Questions, options,

and criteria: Elements of design space analysis, Human-Computer Interaction, 6(3-

4):201–250, 1991.

[18] J. Lee and K. Lai. What’s in design rationale. Human-Computer

Interaction, 6(3-4):251–280, 1991.

[19] A. Goel. Model revision: A theory of incremental model learning. In 8th

International Conference on Machine Learning, pages 605–609, Chicago, USA, June

1991. AAAI.

[20] A. Goel. A model-based approach to case adaptation. In 13th Annual

Conference of the Cognitive Science Society, pages 143–148, Hillsdale, NJ, 1991.

Cognitive Science Society, Lawrence Erlbaum.

[21] A. C. B. Garcia and C. S. de Souza. Add+: Including rhetorical structures

in active documents. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 11(2):109–124, April 1997.

159

[22] R. Sudarsan, S.J. Fenves, R.D. Sriram and F. Wang, A product

information modeling framework for product lifecycle management, Computer-Aided

Design, Volume 37, Issue 13, November 2005, Pages 1399-1411.

[23] M. Weiss and D. Dori, A Scheme for 3D Object Reconstruction from

Dimensioned Orthographic Views. IEEE, 1995: p. 335-338.

[24] D. Dori and L. Wenyin, Automated CAD Conversion with the Machine

Drawing Understanding System: Concepts, Algorithms and Performance. IEEE

Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans, 1999.

1(4): p. 411 - 416.

[25] M. Tanaka, A single solution method for converting 2D assembly

drawings to 3D part drawings, Journal of Computer Aided Design, 2003.

[26] FlexiDesign [http://www.aspire3d.com/FlexiDesign.aspx] © Imagecom

Inc.

[27] S. H. Joseph, T. P. Pridmore, Knowledge-directed interpretation of

mechanical engineering drawings, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1992. 14(9): p. 928-940.

[28] Y. Q. Cheng and J. Y. Yang, A Knowledge-based Graphic Description

Tool for Understanding Engineering Drawings, Proceedings of the 2nd International

IEEE Conference. 1990.

[29] P. Vaxiviere, K. Tombre, CELESSTIN IV: Knowledge-based analysis of

mechanical engineering drawings, IEEE International Conference, 1992.

160

[30] Ganeshram R. Iyer, John J. Mills, Design Intent in 2D CAD: Definition

and Survey, Computer-Aided Design and Applications, Vol. 3, Nos. 1-4, 2006, p 259-

267.

[31] F. Pena-Mora, D. Sriram, R. Logcher, SHARED-DRIMS: SHARED

design recommendation-intent management system, Enabling Technologies:

Infrastructure for Collaborative Enterprises, 1993. Proceedings., Second Workshop on

20-22 April 1993 Page(s):213 – 221.

[32] Y. Ishino, (IMPACT Laboratory, Dept of Aerospace Engineering, Univ.

of Southern California), Y. Jin, Source: Advanced Engineering Informatics, v 16, n 2,

April, 2002, p 107-125.

[33] Jeffrey M. Molavi, Raymond McCall, and Anthony Songer, A new

approach to effective use of design rationale in practice, Journal of Architectural

Engineering, 2003, pp 62 – 69.

[34] G. R. Iyer, J. J. Mills, A survey of the importance of Context in

Mechanical Engineering Design, accepted at the 16th CIRP International Design

Seminar, Canada - July 16-19, 2006.

[35] G. R. Iyer, J. J. Mills, Impact of context in Mechanical Engineering

Domain, accepted at the 16th CIRP International Design Seminar, Canada - July 16-19,

2006.

[36] Brézillon P., Context in problem solving: A survey, The Knowledge

Engineering Review, 1999, 14(1): 1-34.

161

[37] Alexander C, A Pattern Language: Towns, Buildings, Construction,

Oxford University Press, New York, 1977.

[38] Doug Lea, Christopher Alexander: An introduction for object-oriented

designers, ACM SIGSOFT Software Engineering Notes, 19(1):39–46, January 1994.

[39] S. Lawrence, “Context in Web Search,” IEEE Data Engineering Bulletin,

vol. 23, pp. 25-32, 2000.

[40] Eric Glover, Steve Lawrence, William Birmingham, and C. Lee Giles.

Architecture of a metasearch engine that supports user information needs, Eighth

International Conference on Information and Knowledge Management, CIKM 99,

pages 210–216, Kansas City, Missouri, November 1999.

[41] J. Budzik, K.J. Hammond, C. Marlow, A. Scheinkman, Anticipating

information needs: Everyday applications as interfaces to Internet information servers,

Proceedings of the 1998 World Conference of the WWW, Internet and Intranet,

Orlando, Florida, 1998. AACE Press.

[42] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. In Seventh International World Wide Web Conference, Brisbane,

Australia, 1998.

[43] Website link : http://www.google.com

[44] Website link : http://myweb2.search.yahoo.com/

[45] Mostefaoui, G. K. and Brezillon, P., A Generic Framework for Context-

Based Distributed Authorizations, Springer, LNAI2680, pp. 204–217, 2003.

162

[46] Dey, A. K., Understanding & Using Context, Personal and Ubiquitous

Computing, Vol. 5, No. 1, 2001, pp. 4-7.

[47] Wagelaar, D. Context-Driven Model Refinement. Proceedings of the

MDAFA 2004 workshop, Linköping, Sweden, June 2004 - LNCS 3599, August 2005,

pp. 189-203.

[48] Fogarty, J., Lai, J., Christensen J., Presence versus availability: the

design and evaluation of a context-aware communication client, Int. J. Human-

Computer Studies 61 (2004) 299–317

[49] Goh, Cheng Hian, Madnick, Stuart E, Siegel, Michael D. International

Conference on Information and Knowledge Management, Proceedings, 1994, p 337.

[50] Turner, R. M., Context-mediated behavior for intelligent agents, Int. J.

Human–Computer Studies, V 48, pp. 307-330, 1998.

[51] Bremond, F. And Thonnat, M, Issues of representing context illustrated

by video-surveillance applications, Int. J. Human-Computer Studies Vol. 48, pp 375—

391, 1998.

[52] Bingolin and Brezillon, An Experience using Context in Translation

from System's Requirements to Conceptual Model, Journal of Human computer studies

48(3).

[53] Pomerol and Brezillon, Context in Problem Solving: A Survey, The

Knowledge Engg Review, 41(1) 47-80, 1999.

163

[54] Turner, R. M., Context-mediated behavior for intelligent agents, Int. J.

Human–Computer Studies, V 48, pp. 307-330, 1998.

[55] Bingolin and Brezillon, An Experience using Context in Translation

from System's Requirements to Conceptual Model, Journal of Human computer studies

48(3).

[56] J. J. Mills, J. Goossenaerts, H.J. Pels, The Role of Context in the Product

Realization Process, Proc. CIRP Design Seminar, Stockholm, June (2001) 175-180.

[57] Sowa, J., 2000, Knowledge Representation: Logical, Philosophical and

Computational Foundations, F. Brooks/Cole Thompson Learning, New York.

[58] Pahl, G. and Beitz, W, Engineering Design: A Systematic Approach,

ISBN 3-540-19917-9.

[59] Dym, C. L., Little, P., Engineering Design: A Project-Based

Introduction, ISBN: 0-471-28296-0.

[60] Dieter, G. E., Engineering Design: A Materials and Processing

Approach, ISBN 0-07-366136-8.

[61] Pahl, G. and Beitz, W, Engineering Design: A Systematic Approach,

ISBN 3-540-19917-9.

[62] Dym, C. L., Little, P., Engineering Design: A Project-Based

Introduction, ISBN: 0-471-28296-0.

164

[63] Fenves, S., Choi, Y., Gurumurthy, B., Mocko, G., Sriram, R., Master

Product Model for the Support of Tighter Integration of Spatial and Functional Design,

NIST (2003).

[64] Gero, JS and Kannengiesser, U (2002), The situated function-behaviour-

structure framework, in JS Gero (ed.), AI in Design'02, Kluwer, Dordrecht, pp. 89-104.

[65] Rosenman, M. A. and Gero, J. S., CAD modeling in mul-tidisciplinary

design domains, in I. Smith (ed.), Artificial Intelligence in Structural Engineering,

Springer, Berlin, pp.335-347, 1998.

[66] Ashby, M. F., Materials Selection in Mechanical Design, 3rd ed. ISBN 0-

7506-6168-2.

[67] Christoph Hoffman and Robert Joan-Arinyo, CAD and the Product

Master Model, Computer-Aided Design, Vol. 30, No. 11, pp 905-918 (1998).

[68] Yoshioka, M., and Tomiyama, T. (1997) “Pluggable Metamodel

Mechanism: A Framework of an Integrated Design Object Modelling Environment”,

Computer Aided Conceptual Design, Proceedings of the 1997 Lancaster International

Workshop on Engineering.

[69] Teresa De Martino, Bianca Falcidieno and Stefan Haßinger, Design and

engineering process integration through a multiple view intermediate modeller in a

distributed object-oriented system environment, Computer-Aided Design, Volume 30,

Issue 6, pp 437-452.

165

[70] T. Gruber. Towards principles for the design of ontologies used for

knowledge sharing, International Journal of Human-Computer Studies,

43(5/6):907{928, 1995.

[71] Alexander, Ishikawa, Silverstein, Jacobson, King, Angel, A Pattern

Language, 1977.

[72] Bingolin and Brezillon, An Experience using Context in Translation

from System's Requirements to Conceptual Model, Journal of Human computer studies

48(3)

[73] Szykman, S., J.W. Racz, and R.D. Sriram, The Representation of

Function in Computer-Based Design, Proceedings of the 1999 ASME Design

Engineering Technical Conferences, 1999.

[74] Julie Hirtz, Robert Stone, Daniel McAdams, Simon Szykman, Kristin

Wood, A Functional Basis for Engineering Design: Reconciling and Evolving Previous

Efforts, Journal of Research in Engineering Design, 2002, vol. 13, number 2, pp 65-82.

[75] David G. Ullman, A Taxonomy for Mechanical Design, Research in

Engineering Design, 1992, vol. 3, number 3, pp 179-189

[76] Dixon, J. R., Duffey, M. R., Irani, R. K., Meunier, K. L., Orelup, M. F.,

A proposed taxonomy of Mechanical Design problems, Computers in Engineering 1988

- Proceedings, 1988, p 41-46.

[77] Iyer, G., Mills, J.J., Barber, S., Devarajan, V., Maitra, S., Using a

Context-Based Inference Approach to Capture Design Intent from Legacy CAD,

166

Computer-Aided Design and Applications, Vol. 3, Nos. 1-4, 2006, to be published,

http://www.cadanda.com.

[78] Stauffer, L.A., Ullman, D.G., Dietterich, T.G., Protocol Analysis of

Mech Engg Design, ICED 87, pp 74-85.

[79] URL: http://www.aspire3d.com, Imagecom Inc, Arlington, TX.

[80] http://www.cs.odu.edu/~jzhu/courses/content/logic/

[81] Wikipedia contributors, "Philosophical logic," Wikipedia, The Free

Encyclopedia

[82] http://www.ruleml.org/

[83] Tool and Manufacturing Engineers Handbook, Editors: William H.

Cubberly, Ramon Bakerjian, CMfgT, SME, , Vol 5. ed. 4, ISBN: 0-87263-351-9, 1989.

[84] Mechanical Engineering Design, Shigley, Joseph Edward, Charles

Mischke, Richard Budynas, 7th Ed. ISBN 0-07-252036-1.

[85] Machine Design: An Integrated Approach, Robert L. Norton, 3rd Ed.

ISBN: 978-0131481909.

[86] Machine Elements in Mechanical Design, Robert L. Mott, 3rd Ed. ISBN:

0-13-841446-7.

[87] Mechanics of Materials, R. C. Hibbeler, 5th Ed. ISBN: 0-13-00-8181-7.

[88] Materials Selection in Mechanical Design, Michael Ashby, 3rd Ed. ISBN:

0-7506-6168-2

[89] URL: http://www.efunda.com/

167

[90] URL: http://www.matweb.com/

[91] URL: http://www.google.com/coop/docs/cse/faq.html#1

[92] URL:http://wordnet.princeton.edu, Cognitive Science Laboratory,

Princeton, NJ.

[93] URL: http://www.matweb.com, Material Property Data.

[94] Tool and Manufacturing Engineers Handbook – Desk Edition, vol 5, 4th

ed, 1989, ISBN: 0-87263-351-9.

168

BIOGRAPHICAL INFORMATION

Ganeshram Ramji Iyer has attained a Master of Science degree and a Doctor of

Philosophy degree in the field of Mechanical Engineering from the University of Texas

at Arlington. His current research interests lie in the domain of Computer-aided Design

(CAD), Product Data Management (PDM) and Product Lifecycle Management (PLM).

He is currently working at Imagecom Inc on CAD products for interoperability and next

generation Product Data Management.

