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ABSTRACT 

 

A CONTEXT-AWARE INFERENCE SYSTEM, 

TO CAPTURE DESIGN RATIONALE 

FROM LEGACY CAD 

 

Publication No. ______ 

 

Ganeshram Ramji Iyer, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Venkat Devarajan 

There exist numerous design rationale systems that convert captured 

information into structured design rationale while providing rationale representation and 

retrieval. These systems woefully neglect the design rationale that is present in legacy 

CAD such as 2D drawings and 3D models. The dissertation addresses the issues that 

arise when dealing with the capture, representation and retrieval of design rationale 

from the 2D legacy CAD data, specifically the non-form related data (e.g. text and 

symbols). A definition for design rationale in the CAD domain is presented which 

forms the basis of the proposed approach. The approach uses a unique context-aware 

inference system to capture design rationale from legacy CAD data. A brief explanation 



 v 

of context is provided along with the advantages of using context for this task. The need 

and use of an inference system is detailed. Additionally a prototype system is 

implemented to address these issues from a software system point of view. A 

verification process is suggested that will validate the design rationale captured by the 

system to that captured by human re-designers.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The use of CAD/CAE in design documentation and modelling is becoming 

ubiquitous [1]. Feature-based CAD systems have demonstrated clear potential for 

creating attractive design environments and facilitating geometric reasoning related to 

design function, performance evaluation, manufacturing process planning, NC 

programming and other engineering tasks. In the last decade, interest in design rationale 

systems has grown. Design rationale systems are important tools because they can 

include not only the reasons behind a design decision but also the justification for it, the 

other alternatives considered, the tradeoffs evaluated, and the argumentation that led to 

the decision. The use of a design rationale system - a tool for capturing and making 

design rationale easily accessible - can thus improve dependency management, 

collaboration, reuse, maintenance, learning, and documentation.  On the down side, 

while it was expected that solid modelling or design rationale systems would replace 

drafting systems in design, this turned out to not be the case. Even today, most CAD 

applications are based on two-dimensional drafting. Shah [2] states that the reason for 

this failure is the deficiency of the geometric modelling tools. As the design and the 

manufacturing process evolve around the geometric shape of the product, the current 
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generation of CAD systems is based on geometric modelling techniques. These 

techniques have proved to be deficient as their usefulness is limited to recording the 

embodiment detail of the product. Unfortunately designers no longer merely exchange 

geometric data but need to share more general information about the product such as the 

design rationale, constraints, specifications and manufacturing knowledge. As design 

becomes increasingly knowledge intensive, the need for computational frameworks to 

effectively support the formal representation, capture, retrieval and reuse of product 

knowledge/design rationale, becomes more critical [3]. Commercial and governmental 

entities looking to use design rationale systems to improve their product development 

process, have to deal with the bulk of the design rationale that resides in their current 

design data, such as the 2-dimensional drawings. This design rationale needs to be 

propagated to a more reusable, intelligent and structured format such as those used by 

design rationale or knowledge-based systems. 

1.2 What is MCAD and legacy MCAD? 

Before stating the overall problem section provides the necessary background 

on Mechanical Computer-aided Design (MCAD) and legacy MCAD. MCAD normally 

refers to geometry authoring tools primarily used to create detailed designs in numerous 

mechanical domains such as automotive, aerospace, ship building etc. Legacy MCAD 

refers to the two main formats viz. 2-dimensional (2D) drawings and 3-dimensional 

(3D) models used by MCAD tools to store detailed designs. 2D drawings contain CAD 

entities such as points, lines, arcs, circles, splines etc. in addition to text and symbols. 

3D models on the other hand are composed of CAD entities such as edges, surfaces, 
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solids etc. If the 3D model is parametric then it also contains features, parts and sub-

assemblies which are composed of the lower level CAD entities mentioned previously. 

The text contained in the legacy CAD indicate notes, materials, dimensions, tolerances, 

company-, project-, design-, designer info, surface finish etc. The geometry indicates 

shape, alternatives, dimensions, tolerances etc. 

 

Figure 1.1: Representative 2D drawing with relevant elements highlighted 
 

 
Figure 1.2: Representative 3D model with relevant elements highlighted 
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There are numerous CAD systems that support these two formats. Autodesk’s 

AutoCAD software is probably the most used 2D drawing product in the market with 

Autodesk’s proprietary DWG the most common storage file format. Autodesk has 

another file format termed the Drawing Exchange Format (DXF) that is ASCII based. 

The 3D market has many players such as Dassault Systemes’ CATIA and SolidWorks, 

UGS, PTC’s Pro/Engineer, Autodesk’s Inventor etc. 

This dissertation addresses 2D formats, although the methods and hypothesis 

stated could easily apply to 3D formats too. With regards to file formats the proposed 

approach should work with all the proprietary formats of the commercial systems 

though intermediate translators may have to be written to allow entity extraction. The 

two file formats directly targeted are the DXF and the DWG. The DXF file primarily 

stores 2D drawings and although 3D is also possible in DXF the current dissertation 

does not address that specific format. To handle the DWG file format, existing software 

provided by Autodesk to convert the DWG file to DXF is used. There is no loss of 

necessary information in this conversion process and hence deemed acceptable. In 

addition to serving as a storage format for geometry, text and symbols the DXF file also 

provides manageability objects such as groups and layers. To provide a brief 

explanation of these manageability objects consider the need to separate entities based 

on their type i.e. by placing the geometry and text on different layers the user can use 

the properties of the layers such as visibility to view either the layer containing 

geometry or the layer containing text or both simultaneously. 
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1.3 Overall Problem 

The origin of the problem addressed in this dissertation comes from the U.S 

Army the Tank Automotive Research, Development and Engineering Centre’s 

(TARDEC) Tank Automotive and Armaments Command (TACOM) department. It was 

claimed that the manufacturing team from TACOM were reluctant to move to 3-

dimensional (3D) solid models from 2-dimensional (2D) drawings. One primary reason 

stated was the lack of design rationale in the 3D models that was available in 2D 

drawings. The lack of this information in the 3D models may have something to do with 

the manner in which these 3D models were created compared with 2D drawings. 

2D CAD systems such as AutoCAD primarily provide the drafters with tools to 

replicate in digital format the paper and Mylar based blueprints that used to store design 

artifact information. These paper and Mylar based blueprints were considered as 

storehouses of all design decisions and information with regards to the various artifacts 

that were designed. Using a variety of techniques such as scanning of paper blueprints 

to digital raster formats and then converting the raster formats to vector formats using 

software such as VPHybridCAD©. These vector formats were usually available in 

commonly available file formats such as AutoCAD’s proprietary DWG or the DXF 

format, which were both primarily 2D. Since the newly created vector-based, digital 2D 

drawings were facsimiles of the original paper blueprints these new 2D drawings were 

now the storehouses of the design decisions that were contained in the paper blueprints. 

But 2D drawings and the CAD tools used to create them e.g. AutoCAD had many 

problems viz. possibility of creating ambiguous geometry, non-parametric geometry, 
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non-associative dimensions etc. To address these problems 3D modeling MCAD 

(Mechanical Computer-aided design/drafting) systems were introduced that created 

parametric, unambiguous, feature-based models. To take advantage of these new 

functionalities designers and corporations began converting their 2D drawings to 3D 

models. But 3D MCAD systems use a very different layout of the artifacts as compared 

to the 2D drawings. The 3D CAD systems focus primarily on the geometry while 

incorporating the non-geometric elements in arbitrary manners. Additionally the process 

of converting 2D drawings to 3D models largely ignored the non-geometric information 

stored in the 2D drawings.  

These two reasons account for the lack of the non-geometric information in the 

3D models that was present in the 2D drawings but the claim made by TACOM 

manufacturers was that they could capture design rationale from 2D drawings that they 

could not from 3D models. To validate this claim and address the need of a method to 

move design rationale from 2D drawings to 3D models, a Small Business Innovation 

Research (SBIR) proposal was submitted in collaboration with Imagecom Inc, which 

was awarded to Imagecom Inc in 2004. 

The overall problem that this dissertation addresses stems from this SBIR 

proposal i.e. how can we capture design rationale from legacy drawings assuming that a 

valid rationale exists behind any information that is included on legacy MCAD ? 
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1.4 Key Issues and Hypothesis 

The previous section (section 1.2) briefly provided the overall problem. From 

this overall problem statement we can identify a few questions that need to be answered 

which are: 

• What is design rationale? 

• What is design rationale in the domain of legacy MCAD? 

• Why is it important to capture design rationale from legacy MCAD? 

These questions are answered in Chapter 2 (Related Research) in section 2.3. 

The key issues that are addressed in this dissertation are: 

• Existing design rationale capture methods do not address legacy CAD. 

• Addressing the primary key issue requires us to address secondary issues 

regarding scope when dealing with legacy CAD viz. 

o a. What percent of all legacy MCAD can we address? 

o b. What percent of design rationale on legacy CAD can we capture? 

o c. Does using standard legacy CAD formats (ASME, ISO) aid in 

addressing scope? 

These key issues are addressed systematically in the subsequent chapters. In an 

effort to address these key issues the dissertation describes a new method by proving the 

following hypothesis: 

“LEGACY CAD DESIGN RATIONALE CAN BE CAPTURED BY 

IDENTIFYING THE SURROUNDING CONTEXT.” 
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The subsequent chapters also detail the steps needed to prove the hypothesis. 

Chapter 2 provides the related research regarding the key ideas such as “legacy CAD 

design rationale” and “context”. 

1.5 Scope of Research 

The idea of capturing design rationale from legacy MCAD is not new but is 

treated quite differently from the current state of the research in legacy MCAD. Chapter 

2 provides the required related research on the definition of design rationale in legacy 

MCAD and its relationship to the definition of design rationale in general and why it is 

more important to treat design rationale in legacy MCAD in this manner rather than 

treat it in a manner consistent with current state of research. The scope can be addressed 

by providing the answers to the following questions: 

• What percent of all legacy CAD can we address? 

This dissertation is limited to Mechanical Engineering and more specifically to 

machined piece parts and sub-assemblies. System level CAD is ignored. 

• What percent of design rationale on legacy CAD can we capture? 

The answer to this lies not in the proposed approach but in comparing the 

rationale captured by the suggested method to that captured by an experienced re-

designer. The system that is built with this dissertation cannot capture more rationale 

than an experienced re-designer as the system will then have to be rather extensive with 

unlimited scope to match the experience and knowledge that the re-designer has access 

to. But in general the system will perform better than an inexperienced re-designer if it 

has access to well defined rule-bases. Additionally, as detailed later the percent of 
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design rationale that can be captured will increase with continued input from 

experienced re-designers. 

• Does using standard legacy CAD formats (ASME, ISO) aid in addressing 

scope? 

It is generally easier to extract context from well defined CAD formats, rather 

than random representation formats. While theoretically the system should be able to 

parse CAD candidates at the same level as that possible by a human, in practice the 

maturity of the system will decide its accuracy. A well defined format aids in limiting 

the scope of applicable legacy CAD to the following: 

• Groups of related (by company, project, design) legacy CAD 

increases percent of successful context extraction. 

• Related, formal legacy CAD increases probability of inference: 

The system that is proposed in this dissertation has been 

developed to address legacy CAD files belonging to a single 

project or company that have standardized layout formats rather 

than dealing with individual unrelated CAD files. 

1.6 Outline of dissertation 

The following is a brief outline of the rest of the chapters in this dissertation. 

Chapter 2 provides the required related research. Starting with the need for 

design rationale chapter 2 provides the state of the research in design rationale, its 

capture, representation and retrieval. With an understanding of design rationale in 

general, the chapter then details legacy MCAD design rationale, its definition, 
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importance and applicability of current suggested capture, representation and retrieval 

methods. Chapter 2 also provides the state of the research on the idea of context and 

specifically the concepts of context in design and context in legacy MCAD. To better 

understand context chapter 2 provides the detail of the nature, structure, importance and 

impact of context in both design and legacy MCAD. 

Chapter 3 details the approach proposed to address the hypothesis stated in 

section 1.4. The first step of the approach is an analysis process to identify the process 

and rationale that can be captured by human candidates. The goal of the analysis is to 

identify the nature of a software system that is developed as a part of this dissertation to 

address the hypothesis in as automated a manner as possible. 

Chapter 4 details the software architecture proposed to automate the capture of 

design rationale from legacy MCAD. This chapter also briefly describes the system 

implementation details such as the programming languages, file formats and databases 

used to achieve automation. 

  Finally, in chapter 5, a validation approach is proposed to prove that the design 

rationale that is captured by such a system is the same as that can be captured by human 

candidates. During this validation step the design rationale captured by the two means is 

compared to prove the quality of the design rationale captured by the software system.
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CHAPTER 2 

RELATED RESEARCH 

 

This chapter provides the related research and background required for the rest 

of the dissertation. The topics covered in this chapter are design documentation, design 

rationale and more specifically design rationale in the domain of legacy MCAD, context 

in design and context in legacy MCAD. 

2.1 Design Documentation 

With any design there is a need for design documentation. Design 

documentation is primarily used to store the data/information that is generated during 

the design process. Design documentation is a storehouse of the final design or can be 

seen as a snapshot of the final decisions of the design process. Re-designers use design 

documentation for any required design changes and/or improvements while 

manufacturers use the documentation for production purposes, manufacturing 

instructions, material selection etc. There are many advantages and disadvantages to 

using design documentation methods and tools.  

2.1.1 Advantages of Design Documentation 

Design documentation and tools that support documentation are rather 

ubiquitous and fairly easy to use. Existing, specialized tools such as computer-aided 

design (CAD), computer-aided manufacturing (CAM), product data management 
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(PDM) and product lifecycle management (PLM) in addition to general productivity 

tools such as Microsoft Word or Excel support design documentation very well. The 

specialized tools focus on advanced geometry representation and manufacturing 

simulation and planning while the general tools serve as storehouses of standards, 

design tables and calculations etc. Due to the nature and availability of documentation 

tools almost all product design tasks are accompanied by the outputs of these tools 

providing ad-hoc standards to store design decisions e.g. using spreadsheets for design 

calculations. 

2.1.2 Disadvantages of Design Documentation 

While design documentation is considered very valuable it has some notable 

disadvantages. Design documentation tends to get very voluminous and most times has 

an unstructured format. The completeness of design documentation relies on the 

designer. If the designer does not do a thorough job of providing necessary details the 

documentation remains incomplete. If the department or the company does not provide 

a formal, standard method for documentation then the documentation format tends to be 

rather informal, once again dependent on the designers to define completeness and 

consistency. All these reasons make the process of maintaining and querying the 

documentation rather expensive both economically and temporally. But the primary 

reasons why design documentation is considered insufficient are:  

• It does not store the reasons or justifications for a particular design decision  

• It does not also store the alternatives that were explored during the design 

process and the reasons for their rejection. Even if the designer does state 
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the justifications for a design decision over an alternative, this information is 

not easily available and very rarely stored with the original design itself. 

2.2 Design Rationale 

To address these disadvantages of design documentation researchers suggest 

storing the rationale behind a design decision in addition to the data or information 

pertaining to the design decision. This stored rationale is commonly referred to as 

design rationale, design intent or design history. Design rationale stores design 

decisions along with their reasons and justifications in addition to the alternatives 

explored and the reasons and justifications for their rejection. Thus design rationale 

provides both argumentation (a way to query for the reason behind a particular 

decision) and communication (a way to store the design discourse viz. the design space 

explored) in addition to documentation (storing design data/information). Various 

design rationale systems have been developed since the early 1980’s. The research has 

ranged from basic observations about the design process to different approaches to 

capturing design rationale [4]. The results of the research in design rationale have been 

to suggest definitions for design rationale in addition to developing, approaches to 

design rationale systems, representation schema for design rationale, approaches to 

capture design rationale and, design rationale retrieval strategies. Some suggested 

definitions include: 

“Design rationale expresses elements of the reasoning which has been invested 

behind the design of an artifact" [5]. 
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“Design rationale is the reasoning and argument that leads to the final decision 

of how the design intent is achieved.” “Design intent is the `expected’ effect or behavior 

that the designer intended the design object should achieve to fulfill the required 

function.” [6] 

“Design rationale means statements of reasoning underlying the design process 

that explain, derive, and justify design decisions.” [7] 

Design rationale means “information that explains why an artifact is structured 

the way that it is and has the behavior that it has” [8]. 

“Design rationales include not only the reasons behind a design decision but 

also the justification for it, the other alternatives considered, the tradeoffs evaluated, and 

the argumentation that led to the decision” [9]. 

Lee’s [9] definition is used as the basis for this entire dissertation. 

2.2.1 Advantages of Design Rationale 

It is well accepted within the design community that the availability of explicit, 

declaratively represented design rationale would be a tremendous asset. Design 

rationale would serve as a record of the basic structure of a design, codifying how the 

design satisfies specified requirements, as well as key decisions that were made during 

the design process. This information would facilitate collaboration among multiple 

distributed designers – a tremendous benefit for large-scale design efforts. Rationale 

would also provide guidance in exploring alternative designs, whether as part of the 

natural evolution of a design or in response to changing requirements. Finally, design 

rationale would enable easier maintenance of artifacts over their life cycles and more 
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effective reuse of designs by making it easier for downstream engineers to understand 

how a design works [10]. 

2.2.2 Disadvantages of Design Rationale 

While considerable effort has been put into developing design rationale systems, 

none of these systems has been adopted for widespread industrial use [4]. Molavi and 

his colleagues state that this failure is above all due to the costs and disruptions 

associated with capturing and structuring of the design rationale [33]. They contend that 

although there have been some individual success stories of  applying design rationale 

systems in practice, almost every one of these has been associated with heroic efforts by 

a solitary champion of design rationale within the successful project. There are few or 

no published indications that significant design rationale projects have been continued 

past the pilot project stage [11]. Most design rationale systems are still in the laboratory 

stage because further research and development is needed to focus on the advancements 

needed to take the science to the level at which it can be effectively deployed in 

industry [4]. 

2.2.3 Overview of Design Rationale Systems 

Figure 2.1 [4] shows the flow of data through a general design rationale system. 

The next few sub-sections provide a summary of the background on the commonly used 

terms with respect to design rationale viz. approaches, capture, representation and 

retrieval. 
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Figure 2.1: General architecture of Design Rationale systems [4] 
 

2.2.3.1 Approaches to building design rationale systems 

The main approaches to design rationale systems are process-oriented and 

feature-oriented. In dynamic design domains the process-oriented approach is used to 

give historical representation of artifacts while in fields with a relatively high degree of 

standardization, the feature-oriented approach is used to give logical representation of 

artifacts, to follow the rigorous and logical rules of the design process. 

• Process-oriented approaches emphasize the design rationale as a history of 

the design process. Most design rationale approaches are process-oriented. 

The representation schema of process-oriented rationale system is generally 
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graph-based using nodes and links, with nodes indicating possible issues and 

links indicating relationships among the nodes. 

• Feature-oriented design rationale systems contain domain knowledge-bases, 

which can be used to support automated reasoning and the generation of 

design rationale. So representations of design rationale are usually more 

formal than in a process-oriented design rationale system. In some systems, 

the design rationale is represented with links to the existing knowledge-base. 

The retrieval and reuse of design rationale seems very natural in the design 

process of later artifacts [4]. 

2.2.3.2 Capture of Design Rationale 

In a design process, capturing design rationale involves recording the 

reasonings, decisions, oppositions, trade-offs, etc and constructing a formal or semi-

formal structure so that the design rationale can be used in the decision-making process 

during design [4]. There are two main methods to capture design rationale viz. 

automatic and user-intervention [12]. The automated method does not require the 

designer to input or record design discussions, decisions and reasoning themselves 

while the user-intervention method does. These two methods are used to capture design 

rationale using either process-oriented or feature-oriented approach. In the process-

oriented approach design rationale is seen as a history of the design process while in the 

feature-oriented approach design rationale has a formal, logical structure and is 

supported by domain knowledge-bases. Thus in fields with relatively high degree of 

standardization the feature-oriented approach is used while the process-oriented 
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approach is used in dynamic design domains. Lee [13] offers the following 

classification for the rationale capture systems: 

• Reconstruction [9] 

o Captured outside the design process, usually after it has been 

performed using information recorded during design. 

• Automatic generation [9] 

o Generated from an execution history 

• Methodological byproduct [9] 

o Emerges during the design process.  

o Methodology aids design and captures rationale 

• Apprentice [9] 

o System monitors designers actions and compares with pre-generated 

rationale 

• Historian [14] 

o Similar to Apprentice but does not make suggestions. 

2.2.3.3 Representation of Design Rationale 

The choice of a representation schema is a critical issue [4] because it 

determines how to organize this enormous amount of diverse material and build in into 

a usable structure. It also determines how to capture and retrieve the design rationale 

[4]. The following are some of the commonly referred representation schema. 

• Argumentation-based design rationale representation is the most common 

format. With argumentation, designers can easily maintain consistency in 
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decision-making, keep track of decisions and communicate about design 

reasonings. The most common argument structures for selecting and organizing 

information are IBIS (Issue-based information system) [15], PHI (Procedural 

Hierarchy of Issues) [16], QOC (Questions Options and Criteria) [17] and DRL 

(Decision Rationale Language) [18].  

o In IBIS the key issues are usually articulated as questions, with each 

issue followed by one or more positions that respond to the issue. Each 

position can potentially resolve or be rejected from the issue. Arguments 

either support or object to a position.  

o The Procedural Hierarchy of Issues (PHI) extends IBIS by broadening 

the scope of the concept “issue” and by altering the structure that relates 

issues, answers and arguments. First, it simplifies relations among issues 

by using the “serve” relationship only. Second, it provides two methods 

to deal with design issues: deliberation and decomposition i.e., to give 

answers to the issue or to break down the issue into a variety of sub-

issues which in turn could be deliberated or decomposed. 

o QOC represents the design space using three components viz. questions 

identify key issues for structuring the space of alternative; options 

provide possible answers to the questions; criteria are the bases for 

evaluating and choosing among the options. The QOC representation 

emphasizes the systematic development of a space of design options 

structured by questions, and the rationale representation in QOC is 
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created along with the descriptive representation (specification) or the 

artifact itself (prototype). 

o Decision Rationale Language (DRL) uses design rationale as an account 

of how the designed artifact serves or satisfies expected functionalities. 

DRL is an expressive language, which represents the space around 

decisions. The DRL is used to represent and manage the qualitative 

elements of decision making: for example, the alternatives being 

considered, their current evaluations, the arguments responsible for these 

evaluations, and evaluation criteria. 

• Functional representation (FR) is a modified form of argumentation-based 

representation. Like DRL, FR uses design rationale as an account of how the 

designed artifact serves or satisfies expected functionality. FR takes a top-down 

approach to represent a device; the overall function is described first and the 

behavior of each component is described in the context of this function. FR 

encodes the designer’s account of the causal processes in the device that 

culminate in achieving its functions. The Structure-Behavior-Function (SBF) 

[19] and KRITIK [20] are examples of FR. 

• Augmenting Design Documentation (ADD) [21] represents design rationale by 

documenting the complete design decision path associated with the artifact as 

well as the rationale behind each decision presented by the user. Recently a 

system called ADD+ was proposed that uses the same basic model as ADD but 
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stores the wealth of knowledge by organizing it into high-level rhetorical 

structures. 

• The Core Product Model (CPM) [22] is an object-oriented framework for 

representing products. The CPM stores a complete view of a product and hence 

contains a Rationale class. The Rationale class along with its sub-classes stores 

the justifications and evolution of the product including functions and 

constraints. 

2.2.3.4 Retrieval of Design Rationale 

At different design stages there are various purposes for accessing design 

rationale. The reuse of design rationale is made possible by successful retrieval 

strategies. The integration of design rationale systems with other design support systems 

can greatly improve the retrieval of design rationale. The following are some of 

methods proposed for design rationale retrieval: 

• Design rationale retrieval shares much in common with case-based reasoning 

and retrieval. The goal of most design rationale systems is to store rationale so 

that relevant past experiences can be retrieved to aid in current problem solving. 

Case-based retrieval methods are thus the most common retrieval methods in 

design rationale systems. 

• Design rationale Navigators permit the designers to investigate stored rationale 

using a graphical interface. The designers traverse between nodes connected by 

links to facilitate investigation. Navigators are commonly implemented in most 

design rationale systems to provide a graphical interface to the designer. 
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• Retrieval strategies that retrieve answers to designers’ queries are generally 

considered more efficient than navigators. Questions of the type of “what-if” or 

“why” provide the designer with ways of exploring alternatives and 

justifications of the argumentation or reasoning behind a decision. 

• Automatic triggering is another common retrieval method that monitors the 

designer’s actions as it checks the design process, compares the decisions made 

with the constraints, rules or criteria in a design rationale library or knowledge-

base. If differences are detected the new decision will be stored in the design 

rationale library. This type of retrieval is ideal for use during the design process. 

2.3 Legacy MCAD Design Rationale 

With a general understanding of design rationale and the state of the research in 

the areas of approach, capture, representation and retrieval, the following section deals 

with design rationale in the limited domain of legacy MCAD. Current attempts to 

capture design rationale from legacy MCAD fall largely into two categories 2D 

drawings to 3D model conversions and drawing interpretation. The next two sub-

sections present the state of the research and art on design rationale in legacy MCAD. 

2.3.1 2D drawings to 3D model conversions 

There exists much research to capture the information present on the 2D 

drawings and propagate it to an intelligent, parametric, feature-based 3D model. Weiss 

and Dori [23] propose an approach that automates the 3D object reconstruction from 2D 

engineering drawings by mimicking human intelligence. Dori and Wenyin [24] have 

described a complete system that realizes the entire process of understanding 



 

 23 

mechanical engineering drawings from scanning to 3D reconstruction. The system 

described has the capability of separating geometric entities from non-geometric, such 

as text, arrowheads, leaders, dashed lines and hatch lines etc. Tanaka et al [25] describe 

a method to automatically convert 2D assembly drawings to 3D part models, generating 

a unique solution for designers regardless of the complexity of the original 2D assembly 

drawings. They use the dimension lines, part numbers and part lists, usually drawn on 

the 2D, to create the 3D assemblies. 

On the commercial side too there are numerous proposed solutions. Imagecom 

Inc. [26] has a product named FlexiDesign that converts 2D drawings in AutoCAD 

DWG and DXF formats to parametric, feature-based 3D models in a variety of target 

MCAD systems e.g. PTC’s Pro/Engineer, SolidWorks, Autodesk’s Inventor etc. 

FlexiDesign, as it stands, currently handles piece-part drawings but is being extended to 

handle assembly drawings. Various MCAD systems such as SolidWorks and 

Pro/Engineer also provide the user with basic 2D to 3D conversion tools built into their 

system, though these tools are largely manual and are primarily facilitate drawing reuse 

rather than conversion. 

2.3.2 Drawing interpretation 

There are many drawing interpretation solutions also suggested that allow a 

designer to query CAD files for required information. Joseph [27] has presented a 

methodology for the interpretation of engineering drawings based on a combination of 

schemata describing drawing constructs with a library of low-level image analysis 

routines and a set of explicit control rules applied by a parser. The resulting system 
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integrates bottom-up and top-down processing strategies within a single, flexible 

framework modelled on the human perception cycle. The system, termed Anon, is a 

knowledge based image analysis system intended to extract 2D graphical elements and 

symbols from a grey level image of a mechanical engineering drawing. The system 

classifies the information on the drawing into appropriate schematic classes such as 

solid, dashed and chained lines, solid and dashed curves, cross hatching, text, witness 

and leader lines and certain forms of dimensioning. Cheng and Yang [28] propose a 

knowledge-based graphic description tool that is used to recognize and understand 

engineering drawings. The graphic description tool basically consists of a concept 

description network, a graphic description language, a physical description framework, 

a set of image processing modules, a matcher, a rule-based inference engine, an 

interpreter and blackboard control architecture. The concept description framework, 

graphic description language, and physical description framework are designed to 

represent domain knowledge, graphic semantic knowledge and physical properties of 

engineering drawings in different fields. The matcher recognizes all graphic symbols 

and characters that are extracted by the low-level image processing routines. The rule-

based inference engine is built to infer possible relations among graphic symbols and 

generate a relational graph. The interpreter is used to generate an acceptable explanation 

in terms of traversal of the relational graph. This framework does not attempt to create a 

solid model from the captured information but instead builds an engineering drawing 

understanding system that could be queried as necessary. Vaxiviere and Tombre [29] 

present a knowledge based system named CELESSTIN that extracts technologically 
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significant entities and analyzes the whole setup with respect to disassembling and 

kinematics knowledge. These technologically significant entities allow CELESSTIN to 

start using rules referring to the semantics of the represented object itself. The paper 

illustrates how to assign a simple syntax on the basic structures to recognize simple 

mechanical entities such as shafts or screws. 

Almost all solutions, except Cheng’s and Yang’s [28], and Vaxiviere’s and 

Tombre’s [29] address the problem of 2D drawings to 3D model conversion as mostly 

geometric with possible input from the supporting symbols and text that may be present 

on the 2D drawing sheet. Research to identify and separate product geometry from 

dimension sets, arrowheads, hatching lines, text and symbols fall short in failing to 

recognize that the non-geometric information on the drawing sheet contributes to 

engineering knowledge, design intelligence and some design rationale. Tanaka’s [25] 

solution is further limited, in that one major requirement for their algorithm to work is 

that the original assembly drawings consist of standard parts such as bars and plates. 

While Cheng and Yang’s [28] paper describes a rule based system that recognizes, 

examines and classifies the graphic symbols in the engineering drawings, their graphic 

description language diverges from the current practice of using vectorized geometric 

information. The specific domain knowledge of the drawing that their system extracts is 

mostly used to examine and classify the graphical symbols in a field. Very little 

semantic knowledge is attached to the graphical symbols using the domain knowledge. 

Vaxiviere’s and Tombre’s CELESSTIN [29], while able to recognize simple 

mechanical entities, will face difficulties when the complexity of the mechanical entities 
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grows beyond symmetric blocks. CELESSTIN also lacks support for non-geometric 

entities, which could pose problems when information is missing from the geometry of 

the artefact. 

Most importantly it must be noted that none of these solutions capture design 

rationale as the reason for the artefact or a part of it. No methods exist that capture the 

functions, justifications or alternatives in the same way as traditional design rationale 

systems. This is one of the biggest failures of legacy MCAD design rationale systems. 

2.3.3 Definition of legacy MCAD Design Rationale 

From the summary of related research and background presented in preceding 

sub-sections it is clear that there exists no clear understanding of what is meant by 

design rationale in legacy MCAD. Based on an extensive literature survey it is 

concluded that no researcher has even provided a definition for design rationale in the 

domain of legacy MCAD. The definitions stated for generic design rationale in sub-

section 2.2 are not applicable in the domain of legacy MCAD. In an effort to better 

understand legacy MCAD design rationale the following definition is suggested: 

“Design rationale contained in legacy CAD is the insight into the design 

variables implicit in the structural, semantic and practical relationships between the 

geometric and textual entities present in the CAD representation” [30]. 

The design variables are the functions, flows, objectives, constraints, principles, 

guidelines and manufacturing that are considered during the design process. It should be 

noted, however, that the design rationale that can be captured from legacy CAD will be 

limited due to the nature of the information present on it. 2D drawings contain only 
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unstructured graphic entities such as lines, texts and symbols while 3D models, 

although they contain a well structured geometric view, do not provide a comprehensive 

view of the product beyond geometry. To better illustrate the definition for legacy 

MCAD design rationale refer to Figure 2.2, which shows that design rationale is 

implicit from the entities present in the legacy CAD and also from the relationships that 

exist between the entities. This dissertation contends that these are the aspects that play 

a major role in design rationale capture. 

 

Figure 2.2: Legacy CAD Design Rationale 
 

2.3.4 Importance of legacy MCAD design rationale 

Design rationale is considered important for various reasons. Pena-Mora et al. 

[31], while they do not attempt to define design rationale, state that the Architecture/ 
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Engineering/Construction industries can benefit from the explicit representation of the 

design process rationale in many ways;  

• Large and lengthy projects change over time and require certain design 

decisions to be modified during the design-construction process. Reasons or 

justifications used during the initial design stages can be lost resulting in the 

need to define them over and over resulting in increased project costs and 

delays. The ability to store and recall these reasons will improve productivity. 

• The quality of the project increases as the project rationale is represented 

explicitly and is readily accessible for review. 

• A model that allows the rationale to be explicitly stated and easily manipulated 

leads to a more intelligent use of knowledge and resources.  

• Understanding design rationale of designers is also important to achieve 

coherent integration of design solutions and transfer design knowledge [32]. 

2.3.5 Lack of Design Rationale system deployments 

While industry increasingly uses more intelligent engineering frameworks to 

improve their product development process there is still a lack of design rationale 

system use. Hu et al provide a list of reasons for this in [12]. They state that for design 

rationale systems to be adopted for widespread industrial use, the systems have to be 

advanced enough to be effectively deployed. They claim that there are still open issues 

with regards to capture, representation, retrieval and approach that need to be addressed 

before any effective deployment. Molavi et al [33] state the reason for the failure of 

design rationale systems is due to the costs and disruptions associated with capturing 
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and structuring of the rationale. The following reasons can be added to the list of 

failures. Legacy CAD is still considered as the storehouse of current design data. There 

are still a large number of legacy CAD files in use in government and industry and their 

use is not decreasing any time soon. While it is generally considered better to use design 

rationale systems we cannot ignore the bulk of the design rationale (product knowledge) 

that resides in legacy CAD. Some method is needed that captures the design rationale 

from legacy CAD and propagates it to the design rationale system. The next few sub-

sections evaluate the applicability and limitations of the capture, representation and 

retrieval methods available for generic design rationale systems to the domain of legacy 

MCAD. 

2.3.5.1 Applicability of Capture methods 

When considering legacy MCAD the design process is nearly complete since at 

this stage we have a detailed representation of the product. This implies that any design 

rationale capture method must be after the completion of the design process. This means 

that the methods mentioned previously in section 2.2.3.2 for design rationale capture 

viz. Methodological byproduct, Apprentice, Automatic Generation and Historian are not 

applicable as they capture design rationale during the design process. The 

Reconstruction method is the only one that seems applicable but based on its definition 

the Reconstruction method depends on process data captured during design e.g. video, 

email discussions, design documents etc. to infer rationale. In the limited domain of 

legacy CAD there is little or no access to this data. 

 



 

 30 

2.3.5.2 Applicability of Representation methods 

Legacy CAD design rationale representation faces a similar problem as capture 

(section 2.3.5.1). The current representation methods suggested in section 2.2.3.3 do not 

address legacy CAD. Those representation methods require knowledge of issues, 

questions, options, alternatives, functions, evaluation criteria etc., most of which are 

unknown in the domain of legacy CAD, where only details of the end product is known. 

If we were to use one of the aforementioned representation schemas, it may result in 

incomplete representation due to lack of data. As a side note, one representation method 

that seems viable is the Core Product Model’s [22] Rationale class. Since the Rationale 

class is object-oriented we may be able to modify this class and limit it to legacy CAD. 

2.3.5.3 Applicability of Retrieval methods 

Unlike capture and representation methods, current retrieval methods mentioned 

in section 2.2.3.4 may still be relevant in the domain of legacy CAD. Since retrieval 

methods are dependent on capture and representation methods and on the particular use 

of design rationale, some modifications may be required but largely still applicable. 

2.4 Context 

This section presents a survey of literature related to context [34] [35]. This is 

primarily to help understand what is context, what is its structure, is it important in 

design, does it influence design, how would one use context in design, how does 

designing using context differ from other approaches to design modeling and finally 

what is the impact of context in design? An excellent survey of context in a wide variety 

of fields (Artificial Intelligence, Natural Language Processing, Architecture, Software 
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Engineering) is presented by Brezillon [36]. The survey presented here is intended to 

look at the use of context and to help determine the importance of context in domains 

other than those covered by Brezillon [36]. 

2.4.1 What is Context? 

To answer this question the following paragraphs present a survey of the use of 

context and definitions provided for it in domains such as patterns, design, user access 

control, software etc. 

2.4.1.1 Context in Patterns 

Alexander [37] defines a pattern (in architectural design) as the description of a 

problem that occurs repeatedly in our environment and the core, reusable abstracted 

solution in a context. This explicitly means that when creating patterns such as those 

described by Alexander one must take into account the context that is relevant to the 

design pattern. The introductory paragraph of a pattern explains how the current pattern 

fits in or completes the larger patterns and sets the context of the pattern. The context 

delineates the situation under which the pattern is applicable. Context often includes 

background, discussions of why the current pattern exists, and evidence for generality 

[38]. The importance of context in patterns is thus to tie the stated problem to the core 

solution described in the pattern. The lack of a well defined context will hamper the re-

usability of the pattern taking away from the basic purpose of patterns.  Unfortunately, 

Alexander does not define context very clearly.  Despite this, his idea of patterns and 

contexts in design is finding increasing use in software engineering. 
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2.4.1.2 Context in Search 

Many aspects of design involve search: search for catalogue items such as 

bearings and gears, search through a multi-parameter space for an optimum set of 

values, etc.  Web search engines generally treat search requests in isolation. This is yet 

another area where the context will gain importance in next generation search engines 

[39]. Glover et al. [40] present a meta-search engine that operates as a layer above 

regular search engines. The engine, Inquirus 2, takes the query plus context information 

and attempts to use the context information to find relevant documents via regular web 

search engines. Budzik [41] present a system that automatically infers the context of the 

search request. The system, Watson, does this based on the contents of the document 

that the user is editing. Popular, commercial web search engines such as Google [42, 

43] and Yahoo [44] also support user context such as the user’s location and 

personalization to improve search results. When a user logs into these commercial web 

search engines the search systems store the context surrounding the search terms as well 

the results. The system may also track the results that the user views. Using an 

intelligent ranking system on the captured context of the users search behaviour will 

provide search results that are more relevant to the user.  No definition is given, 

however.  If such context based search engines become prevelant and we can define the 

context surrounding a specific design problem, design will become easier. 

2.4.1.3 Context in Access Control 

Mostefaoui and Brezillon [45] propose a conceptual model for context-based 

authorizations that offers a fine grained control over access on protected resources. The 
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context, in this case, is made up of the users and environment’s state and information. 

As opposed to a static access policy based on the user’s identity, Mostefaoui and 

Brezillon state that a context based policy would respond in a flexible manner in highly 

dynamic computing environments due to the dynamic nature of context itself. Context 

thus becomes the key to the approach to specify the policies to grant or deny access to 

resources.  Within global design teams access to protected resources is becoming 

important.  Such research results will make it easier for the member of such teams to 

access the design data and information. 

2.4.1.4 Context-aware computing 

Dey [46] presents an operational definition of context-aware computing and 

discuss the different ways in which context can be used by context-aware applications 

such as possibly those used by global design teams. His definition is: a system is 

context-aware if it uses context to provide relevant information and/or services to the 

user, where relevancy depends on the user’s task. He states that context is a poorly used 

source of information in computing environments. As a result we have an impoverished 

understanding of what context is and how it can be used. In [46] Dey presents the 

Context Toolkit, an architecture that supports the building of context-aware 

applications. Dey contends that a new definition of context is required as the existing 

definitions do not provide any easy way to determine whether a type of information 

listed in the definition is context or not. His new definition, Dey states, makes it easier 

for developers to enumerate the context for a given applications scenario. Dey uses this 
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definition of context as the basis for his Context Toolkit which makes it easy to add the 

use of context to existing non-context-aware applications.   

2.4.1.5 Context in Software 

Software applications used by designers among others need to be deployed on a 

variety of platforms and within a variety of contexts in general. Currently platform 

independent modelling techniques such as the Unified Modelling Language are used to 

model the software applications and these models are then transformed to a refined 

model. That means that for each new target platform at least one new model 

transformation is needed. Wagelaar [47] proposes a context-driven modelling 

framework that models each target context in a context model. The framework can 

automatically select appropriate transformation rules for a concrete context and 

configure them into a context-optimized transformation.  While he does not define 

context, this research could have application in design where design models need to be 

viewed from different contexts (design, manufacturing, procurement, analysis etc). If 

we can define the various design contexts properly, then such a system could 

automatically transform the CAD model into the appropriate design context. 

2.4.1.6 Context in Communication 

Communication is yet another domain where context plays an important role. 

The context surrounding a particular communication helps clarify the ambiguity that 

may exist with words that may have varying meanings. Fogarty et al [48] present a 

study on the usage of a context-aware communication client. The results of the study 

show that the users of the client use the context of their colleagues as an indication of 
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presence rather than the status of availability. Since communication clients that 

integrate chat, video and voice is becoming an important tool in communication, 

especially among global design teams, the inclusion of the awareness of the users’ 

context is increasingly found in many commercial clients.  No commonly agreed on 

definition in this domain exists, however.  This research also has possible application in 

global design teams since not only do the members of such teams come from different 

cultures they also come from different industrial contexts. 

2.4.1.7 Context in Databases 

Goh et al [49] present an approach for database interoperability, in which the 

notion of context is the key to circumvent the problems that arise when dealing with 

schematic and semantic incompatibilities of underlying, heterogeneous and autonomous 

databases. By context they refer to the implicit assumptions underlying the way in 

which an interoperating agent routinely represents or interprets data. Since more and 

more companies are using Product Data Managers (PDMs) to manage the data and 

information created during design and often different members of the same team use 

different PDMs, this is an increasing problem in design. 

2.4.1.8 Context in Artificial Intelligence 

Turner treats context for intelligent agents as any identifiable configuration of 

environmental, mission-related, and agent-related features that has predictive power for 

behavior [50]. Bremond and Thonnat deal with contextual information of a process as 

the information whose value remains constant during processing and changes when the 

process is used for another application [51]. Bigolin and Brezillon state that context 
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delimits a domain allowing the designer to restrict the possible solution space of a 

problem [52]. In their survey of context in problem solving, Pomerol and Brezillon treat 

context as a constraint in problem solving that does not intervene in it explicitly [53]. 

From the above short review, it appears that a clear definition of context has not 

yet appeared in the field of context in general although the following definitions for 

context have been suggested by various researchers: 

“Turner treats context for intelligent agents as any identifiable configuration of 

environmental, mission-related, and agent-related features that has predictive power for 

behavior [54].” 

In addition to this definition, Turner also states that “context is a distinguished 

(e.g., named) collection of possible world features that has predictive worth to the agent 

[50].” 

Bigolin and Brezillon state that “context delimits a domain allowing the 

designer to restrict the possible solution space of a problem [55].” 

Pomerol and Brezillon state that “context is what constrains a problem solving 

without intervening in it explicitly [53].” 

Bremond and Thonnat define “contextual information of a process as 

information whose value remains constant during processing and changes when the 

process is used for another application [51].” 

Bigolin and Brezillon define context “as the delimitation of a domain, that 

allows to restrict the possible solution-space of a problem [52].” 
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Dey defines context “as any information that can be used to characterise the 

situation of an entity. An entity is a person, place, or object that is considered relevant 

to the interaction between a user and an application, including the user and applications 

themselves [46].” 

Mills and Goossenaerts state that “a context surrounding an entity of interest is a 

set of properties (with values), that are (a) provided by a set of entities in the same 

symbolic or physical space as the entity of interest, (b) relevant to the entity of interest 

in that situation of interest during some time interval and (c) added to the properties of 

that entity only within that context [56].  Properties can be parameters, rules, behaviors, 

principles, filters, objects with their own properties, attributes, etc.” 

The definition by Mills and Goossenaerts, which is used in this work, can be 

elaborated upon to understand it better. At any point in the design, the focus is on some 

entity of interest which exists in a symbolic or physical design space. The surrounding 

situation (i.e. the context) adds to that entity of interest a set of relevant properties 

which are in the same design space. A change in either the entity of interest or the 

surrounding situation would change the context that is applicable. The entity of interest 

is suggested by Dey [46] to be a person, place or abstract object. In engineering design 

the entity of interest could be the design problem, a design variable (e.g. design 

function, solutions etc), or a designer etc. 
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2.4.2 What is the structure of context? 

Sowa has discussed a structure for contexts, based on the linguistics domain 

where the idea of context has been studied the most [57]. Sowa has proposed three 

levels: 

• Syntax: Partial basic meaning of a word or phrase is extracted from the 

position of the word in the sentence. 

• Semantics: Further meaning of the word or phrase is extracted from its 

location in the paragraph(s) surrounding it. 

• Pragmatics: The final level of meaning is extracted from the rest of the 

surrounding situation in which the document was created: author(s), 

milieu, time of day etc. 

We apply this idea of a context structure to the context surrounding key aspects 

of design; the function to be provided by the artefact and the problem solution. Drawing 

a parallel between Sowa’s structure in linguistics and engineering design we have for 

design: 

• Syntax: Key design constraints (e.g. spatial) 

• Semantics: Weighted objectives, other constraints (e.g. safety factors, 

weight, stiffness) 

• Pragmatics: Design rules, guidelines, standards, domain, environment 

The syntax level consists of key constraints, which can identify an expected 

behavior.  In several domains that we have looked at, such key constraints are often 

implicit and need to be made explicit. For e.g. the key constraints for the domain of 
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Mechanical Structure design are the allowance of external power sources, the presence 

or absence of a ground plane and a set of spatial constraints on the force. Consider the 

problem of supporting an object in a gravitational field. The function is that of 

providing one or more forces which bring the object, acting under the force of gravity, 

into equilibrium.  This function can be provided by several behaviors including (a) posts 

anchored to the ground,(b) ties anchored to a ceiling or to a helicopter, (c) beams 

anchored to side supports, (d) arches also anchored to side supports, (e) a rocket motor 

pushing up on the weight, etc. Each of these behaviors can be supplied by numerous 

shapes, dimensions and materials. In the case of our example, the first key constraint 

would be constraint on the application of external physical power sources. This 

constrains the use of actively providing the force through the means of artifacts such as 

a helicopter or rocket motor and restricts us to passive means of supplying the force 

such as  reaction forces from a ground plane ( i.e. using the earth). If power sources 

were allowed, then these solutions would remain active but may be eliminated at 

another level (e.g. due to cost constraints). Using similar key constraints we should be 

able to identify a few relevant solutions which can then be analyzed for suitability. 

The next is the semantic level.  The idea here follows that first suggested by 

Pahl and Beitz [58] and further amplified by Dym and Little [59] and Dieter [60].  They 

use constraints and weighted objectives in general engineering design to evaluate design 

concepts.  In the semantic level we place the other constraints on the function and the 

metrics of the weighted objectives to be fulfilled.  In the Mechanical Structures domain 

context, other constraints typically include constraints on weight, cost, safety, 
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durability, etc.  The metrics for the weighted objectives also include the same 

parameters as the constraints.  No parameter however can be both a constraint and an 

objective [59].  Constraints are statements about the desired product that limit the 

design space. Objectives are statements that enlarge the design space but can be used 

later to rank possible solutions. The major difficulty at this contextual level is that 

although we know what the metrics for the objectives and the constraints should be, to 

filter out unwanted candidates we need to calculate the actual values for equivalent 

properties of the physical entities for various solution contexts that could provide a 

solution.  For these computations we need to know the shape, the dimensions and the 

material properties as well as equations for calculating cross sectional areas, volumes, 

costs, moments of inertia, stress and deflection.  The domain restricts the large possible 

set of equations relating the metrics to the properties. The equations for stress and 

deflection, etc are further restricted by the syntax level to those associated with 

particular structural behavior that the syntax level has identified.  That is, as soon as the 

syntax level has been built and surrounds the function, the particular equations have 

been identified. 

The third is the pragmatic level.  In the pragmatics level are the design 

principles, design guidelines, Governmental and industry regulations.  These are applied 

to the solution to add refinement. Application of this principle to the solution would 

require modifications to the overall design but would most likely not require major 

modifications. 
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2.4.3 Is context important in design and does it influence design? 

These questions are treated together since they are interdependent. To be 

important, context has to have some use and influence design in some way. The view of 

the research conducted during this dissertation is that context contributes implicitly but 

strongly to design decisions. Most experienced designers reach a solution to a design 

problem much more easily than inexperienced ones. This is because they make use of 

context implicitly as discussed below and that making context explicit will enable any 

designer to reach an appropriate solution/decision faster, easier and requiring less 

experience. Context has an influence on design and the design process primarily 

because any design problem exists in a surrounding context. By understanding the 

elements of context and their individual influence on design, context can be made 

explicit. 

Every design problem exists in an overall pragmatics such as the domain of the 

design problem, the domain of the design organization, the type of design and other 

environmental aspects such as the experience of the designers, their training and the 

hierarchy that the designer is a part of (department, design team, projects etc). The 

following is a brief explanation of the influence of this pragmatic context. 

• Designers attempting to solve design problems implicitly define the domain that 

the problem lies in thereby limiting the class of appropriate solutions. Even 

when solving multi-domain problems one of the steps is to break down the 

problem into its individual domains before design and analysis. This implies that 

if the properties of the domain were defined, thereby defining the domain 
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context, we would essentially limit the list of functions, constraints, objectives 

and solutions relevant to the design problem. In my view, one of the reasons 

inexperienced designers take longer to create a design is that they spend 

considerable time implicitly defining the context surrounding their particular 

design problem – the entity of interest. 

 

Figure 2.3: Hierarchy within corporation 
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• The type of design is an important contextual parameter. The design variables 

are dependent to some extent on the type of the design. Well understood design 

types such as selection of bearing from a bearing catalogue or choosing 

appropriate dimensions in parametric design are easier to characterize than say 

novel design where the designer may have to generate new concepts to arrive at 

a solution. Thus design types that can be considered as routine may be easier to 

automate and may require less experience to solve. 

• To understand the influence of the domain of the design organization, consider 

the designers and the information related to them. It can be seen from Figure 2.3 

that the designer does not exist independently but instead forms an important 

part of a design environment. Depending on the company hierarchy the designer 

would be a part of one or more design teams, and the design teams would be a 

part of departments and so on. Design teams follow standards, guidelines or 

good practices. These form a part of the context that influences the designer’s 

decision while solving a problem. Similarly if the departments or the parent 

company have a different set of standards or guidelines then these too would 

form a part of the designer’s context. (Of course it should be noted that in a 

stable hierarchy such as this we do not account for conflicting properties being 

added to the designer’s context from the different standards. The “standards” is 

an example of the context that is external to the designer. Factors internal to the 

designer are also equally applicable. For example as already mentioned, the 

experience level of the designer suggests the breadth of knowledge possessed by 
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the designer. This includes knowledge related to design in general such as the 

related domains and solutions and more specifically the surrounding context 

related to the operational, financial and other goals of the company. To properly 

aid the designer or to successfully automate the design process any implemented 

knowledge-driven design system needs access to this contextual knowledge that 

surrounds the designer (and hence the design problem) to arrive at a solution 

more efficiently. 

Just as the context that surrounds the design problem influences it, the context 

that surrounds and influences design variables viz. function, objectives, constraints, 

solutions etc are identified. The following sub-sections detail the identified context, its 

influence and its use to simplify design problems. 

2.4.4 How would a designer use context in design? 

In the course of research a design model was developed that is context-aware 

and uses the structure for context suggested by Sowa [57]. The design model is based 

on the process model suggested by Pahl and Beitz [61] and furthered by Dym and Little 

[62], Fenves et al [63] and Gero and Kannengiesser [64]. The design model uses the 

context structure to progressively narrow the relevant list of solutions in a step by step 

manner using the three contextual levels (syntax, semantics, pragmatics) suggested 

above. The basic premise of this model is: a function in a context defines a solution. 

This model is termed the Function-Context-Structure (FCS) model of design and is 

shown in Figure 2.4. Like its parent models the FCS model is also function-based but 

essentially adds a filter in the form of a structured context to provide a mechanism to 
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map design function to artifact solution. The FCS design model follows the stages 

prescribed by Pahl and Beitz [58] and expanded by Dym and Little [59], Fenves et al 

[63], Gero and Kannengiesser [64] and Dieter [60] etc. which are: 

i. Problem definition 

ii.  Conceptual design 

iii.  Preliminary design 

iv. Detailed design 

 

Figure 2.4: Function-Context-Structure Model of Design 
 

All design begins with a problem statement which may merely be a client’s 

statement. The first step in any design process is to define the problem clearly. This step 

is not unique to the FCS model but is detailed here as it is during this step that the 

domain and inner context are defined. The following are the prescribed steps: 
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• Identify the flows (input and output) both implicit and explicit in the 

problem. 

• Determine the domains/sub-domains that the design problem lies in. Some 

of the domains/sub-domains can be inferred from the flows identified in the 

previous step. The domains / sub-domains contribute to the domain context. 

• Identify the overall design goal. This goal can be organized into sub-

objectives. 

• Identify any design constraints from the problem statement. 

• Determine the possible list of design functions that relate the input flow to 

the output flow in this domain. 

• Recall the designer’s context e.g. design guidelines, principles and standards 

pertaining to the corporation (commercial or governmental) etc. 

• Having identified these design variables organize them into appropriate 

context levels. Constraints can be split into key e.g. spatial and other 

constraints e.g. safety etc. Key constraints primarily form syntactic context. 

Objectives and other constraints form a part of semantic context. Knowledge 

of domain context allows the designer to filter out functions and solution 

artefacts that are not relevant in the current design domain. The principles, 

standards and guidelines and domain context form the pragmatic context. 

Step 2, conceptual design, involves the generation of concepts or schemes of 

candidate designs. The main task in this step is to generate design alternatives viz. 

identify solutions that can achieve the objective. In typical function based design, the 
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goal of the designer would be to identify solutions that realize the functions while 

satisfying constraints. For this stage Fenves et al’s model [63] relies on a function-to-

form transformation to populate the initial structural solution. Since it is not always 

possible to infer functional information from a structural description or vice-versa [65] 

the FCS model follows an adaptation of Gero’s and Kannengiesser’s [64] approach of 

determining conceptual solutions using the syntactical context surrounding the function. 

The syntax is made up of the key constraints that were identified in the ‘Problem 

Definition’ step. The design function is filtered through the syntax to arrive at physical 

effects. The classes of solutions belonging to the domain identified in the ‘Problem 

Definition’ step are then filtered through the combination of the syntax and physical 

effects to arrive at the conceptual designs. 

Step 3 involves refining the conceptual schemes into preliminary designs. The 

semantic context that was identified during ‘Problem Definition’ forms the primary 

decision variable. The semantics mainly contain the weighted objectives and other 

constraints (not considered key constraints) such as safety, weight, price etc. The 

semantics also consist of the equations determined by the relevant physical effects of 

the conceptual designs. The designer uses the semantics to decide attributes such as 

material and geometry. Ashby [66] provides a detailed methodology to select an 

appropriate material along with a way to identify an efficient geometric shape and we 

are looking to use his methodology in the FCS model. The semantic filtering requires 

the computation of values for equivalent properties of the physical entities for various 

solution contexts that could provide a solution. 
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The fourth step adds an additional level of filter viz. the pragmatic context. The 

design principles, design guidelines, governmental and industrial regulations, domain 

knowledge, company and designer information form the pragmatic context. The result 

of this stage would be a design artefact solution with the level of detail required for 

production. 

2.4.5 How does using context differ from other approaches to design modelling? 

Design models, the results of much design research, are a symbolic 

representation of real entities/processes for design, analysis, simulation etc. A model 

captures essential parts of a system. Most design models viz. [67, 63, 68, 69, 64]) use 

well-understood object representation schemes such as UML, taxonomies, semantic 

meta/networks, ontologies, process-oriented schemes,  etc. Some of the newer methods 

are using knowledge-based frameworks, patterns or context-aware models etc. The 

following is a brief description of the various schemes: 

• Taxonomies: - Simple hierarchical tree/graph like structures that specify 

relationships between the nodes. The nodes represent real world 

entities/processes. 

• UML: - In UML real world entities or processes are represented using 

classes, class properties, use-cases and objects (specific instantiations of 

classes). 

• Semantic networks: -  A semantic network or net is a graphic notation for 

representing knowledge in patterns of interconnected nodes and arcs. What 

is common to all semantic networks is a declarative graphic representation 
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that can be used to either represent knowledge or support automated systems 

for reasoning about knowledge. Some versions are highly informal, but other 

versions are formally defined systems of logic. Following are six of the most 

common kinds of formal semantic networks; definitional networks, 

assertional networks, implicational networks, executable networks, learning 

networks, hybrid networks. 

1. Ontologies: - An ontology has been defined as a specification of a 

conceptualization [70]. That is, an ontology is a description (like a formal 

specification of a program) of the concepts and relationships that can exist 

for an agent or a community of agents. An ontology is represented as classes 

with slots (properties with/out values and limits), but is not considered 

complete without instances (like objects these are specific instantiations of 

classes). Unlike UML an ontology describes concepts of a domain 

specifically designed for sharing and reuse. On a side note, a shared context 

is represented using ontologies [45].  

• Patterns: - A pattern describes a problem, which occurs over and over again 

in an environment and then describes the core of the solution to that 

problem, in such a way that you can use this solution a million times over, 

without ever doing it the same way twice. A pattern is not an isolated entity 

(problem-solution-description). It should merely specify the field of 

relationships and only the essential parameters to implement (solve) the 

problem [71]. The following is the format of a pattern: 
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� A picture (symbolic representation) showing an archetypal example 

of that pattern. 

� Introductory paragraph which sets the context of the pattern. This 

paragraph explains how the current pattern fits/completes the larger 

pattern. 

� Headline giving the essence of the problem (problem definition). 

� Body of the problem – empirical background, evidence for validity, 

range of methods of manifestation (application). 

� Solution to problem – contains required field of physical and social 

relationships, instructions to build the pattern. 

� Parent and child patterns. 

Based on the preceding sections and our research on context we can state the 

following differences among context-based models and the other schemes: 

• Unlike UML or taxonomies, context is not a representation language/method. 

One can use these languages/methods to represent context. 

• While UML classes are usually static (though flexible) representations of real 

world entities/objects/processes, context adds relevance and dynamism to the 

entity of interest. 

• A context provides the structure, the relationship and the situation (domain/sub-

domain) to define the problem, the solution or the approach to the solution. It 

does not merely serve to represent real world entities/processes like the other 

methods. 
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• If considered according to Alexander’s pattern, a context represents 

relationships among the current design problems (or solutions) and the parent 

(or child) problems (or solutions). 

• Unlike ontologies which specify concepts, contexts are dynamic filters that 

narrow down the relevant information that apply to the current entity of interest 

(e.g. to specify the field (domain) of interest of the design problem/solution). 

2.4.6 What is the impact of context in design?  

Bigolin and Brezillon [72] have stated that context constrains the problem 

space. That statement can be extended to mean that it must also delimit the design 

domain allowing the designer to restrict the possible solution space of a problem. The 

impact of the domain context has been recognized in research but no conclusive results 

exist that show how a designer would use the domain context. This section provides the 

details on the nature of domain context, its usage and impact on the design process and 

the solution. The term “domain” refers essentially to the discplines that are in existence 

in society today (e.g. engineering in general. mechanical engineering, electrical 

engineering). This dissertation has focussed mainly on the engineering domain and 

specifically on mechanical engineering. Table 2.1 illustrates the proposed taxonomy of 

domains. The classification of domains is based on the flow that is contained in the 

domain. For example if we are talking about money then we are in the finance domain. 

Similarly if we are talking forces and torques then we are in the mechanical sub-domain 

(sub-domain of engineering). The presence of fluids would either indicate fluid or 

thermal sub-domain which can be further broken based on the context of the fluid e.g. 
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temperature considerations, relevant flow of fluid or heat transfer etc. Since we are 

concerned only with the engineering domain, other domains like Finance, Philosophy 

etc. have been left out to enhance readability. Further we only sub-classify the 

Mechanical domain (as that is our domain of interest) further treating Mechanisms, 

Thermal, Fluids, Civil, Aerospace and Hydraulics etc. as sub-domains of the 

Mechanical domain. 

Table 2.1: Taxonomy of Engineering Domains 

Social 
          Engineering 
                    Mechanical 
                              Structures 
                              Mechanisms 
                                       Motion Without acceleration 
                                       Motion With acceleration 
                               Thermal 
                               Fluids 
                               Civil 
                                         Structural 
                                         Transportation 
                               Materials 
                                         Ceramics 
                                         Polymer 
                                         Metallurgical 
                                Aerospace 
                    Electronics 
                    Hydraulics                     
                    Electrical 
                    Software 
                    Industrial 
                    Manufacturing 
                    Biomedical 
                    Chemical 
                    Nuclear 
                    Petroleum 
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Next presented is the taxonomy of functions delimited by the Mechanical 

Engineering domain. This is not a new taxonomy but is based on the taxonomy 

proposed by Szykman et al [73]. This parent taxonomy is used as it is one of the most 

complete taxonomy of functions available in research while being sufficiently concise 

as they have removed synonyms and specialized functions. Szykman et al’s taxonomy 

is not domain-centric. To arrive at the domain-centric taxonomies start with their 

taxonomy and eliminate those functions that do not apply to the “Mechanical” domain. 

The result of this elimination is all the functions in Szykman’s taxonomy, except for the 

division “Assembly-function” and their sub-divisions. The “Assembly-function” and 

their sub-divisions are relevant in the “Manufacturing” domain. This condensed 

taxonomy is shown in Table 2.2. 

The taxonomy shown in Table 2.2 is constrained further by the sub-domains of 

“Mechanisms”. To do so identify those functions that are relevant in the “Structures” or 

“No motion” sub-domain and those that are relevant in the sub-domain with “Motion” 

and further for “Acceleration” and “No acceleration”. For the “Structures” or “No 

motion” sub-domain this implies that the “Conveyance-function” and “Signal/Control-

function” sub-divisions are irrelevant. The reason for this is because “Conveyance-

functions” primarily cause motion while “Signal/Control-functions” are applied to 

mechanical control elements e.g. mechanical valves. 
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Table 2.2: Taxonomy of Functions in the Mechanical Domain 

Mechanical Functions 
Usage-function     
           Sink   
                    Absorb 
                    Consume 
                    Dissipate 
           Source   
                    Extract 
                    Generate 
                    Supply 
            Storage   
                    Store 
Combination/Distribution-function     
                    Connect 
                    Couple 
                    Distribute 
                    Link 
Transformation-function 
                    Amplify 
                    Attenuate 
                    Convert 
                    Decrease 
                    Modify 
Conveyance-function 
                    Rotate 
                    Transfer 
                    Translate 
                    Transmit 
Signal/Control-function 
                    Actuate 
                    Adjust 
                    Decrease 
                    Increase 
                    Indicate 
                    Inhibit 
                    Maintain 
                    Measure 
                    Resist 
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Other examples such as “Convert” are generally applicable in conjunction with 

motion e.g. conversion of electrical energy to mechanical energy is accompanied by 

rotational motion. Functions from other sub-divisions such as the “couple” function are 

usually used in reference to the coupling of elements for transfer of motion or energy 

etc. The taxonomy of functions in the “Structures” domain is shown in Table 2.3. 

Table 2.3: Taxonomy of Functions in the Structures (no motion) domain 

Structures Functions (No motion) 
Usage-function     
           Sink   
                      Absorb 
           Source   
                     Supply 
           Storage   
                     Store 
Combination/Distribution-function 
                  Distribute 
                  Link 
Transformation-function  
                  Amplify 
                  Decrease 

 

Similarly, to prepare a taxonomy of functions for the “Motions” domain all 

functions shown in Table 2.2 are relevant but for the “Signal/Control-function” division 

and its sub-divisions. While only the Mechanisms domain is discussed the same 

principles of classification apply to other sub-domains also. Consider for example the 

“Manufacturing” sub-domain. The functions from Szykman et al’s taxonomy that are 

applicable in the “Manufacturing” domain are the sub-types of “Assembly-function”. 

In a similar manner the taxonomy of flows in the Mechanical Engineering 

domain can be prepared. Once again Szykman et al’s taxonomy of flows [73] is used as 
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a starting point, but do not follow their criteria of classification as is. It has been 

modified to ensure uncommon flows such as “Generic-Energy” or “Generic-Power” or 

even those that we consider properties of flows such as “Acceleration” or “Jerk” are not 

part of my taxonomy of flows. This was done because flows like “Generic-Energy” or 

“Generic-Power” cannot be used directly in design problems. These have to be 

converted to more useful types such as active “Forces” or “Kinetic-Energy” before they 

can be applied. The resulting flow taxonomy is shown in Table 2.4. 

The next step is to delimit the flows shown in Table 2.4 further for the sub-

domains of Structures and Mechanisms. This is a similar process as performed the 

functions where the irrelevant flows are discarded when considering the “No motion” 

sub-domain or the “Motion” sub-domain and its sub-domains. The result of this action 

leads us to the taxonomies shown in Table 2.5 and Table 2.6. 

Care should be taken in how the taxonomy of flows in “Motion” domain is 

used. The sub-domains traditionally dealing with mechanisms in motion such as 

kinetics, kinematics and dynamics differ in the properties of the flows such as velocity, 

acceleration and their time derivatives but deal with the same flows as that found in the 

“No motion” (“Structures”) domain. To better explain this, consider the flow “force” in 

the “No motion” domain vs. in the “Motion” domain. The difference would be the 

property of the force for e.g. in the “No motion” domain the force does not cause 

motion whereas in “Motion” domain the force could be accelerated or could be a jerk, 

causing a similar motion. 
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Table 2.4: Taxonomy of Flows in the Mechanisms Domain 

Mechanical Flows 
Energy    
 Motion   
  Translational  
   Impedance 
   Oscillatory 
   Relative 
  Rotational  
   Impedance 
   Oscillatory 
   Relative 
 Force 
             Friction  
             Weight  
             Spring  
 Torque 
 Generic   
             Kinetic  
             Potential  
             Gravity 
             Spring 

 
Table 2.5: Taxonomy of Flows in Structures (No motion) domain 

Structures (No Motion) Flows 
Force  
 Friction 
 Weight 
 Spring 
Torque 
Kinetic 
Potential 
           Spring 
           Weight 
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Table 2.6: Taxonomy of Flows in Motion domain 

Motion Flows 
Translational  
 Impedance 
 Oscillatory 
 Relative 
Rotational  
 Impedance 
 Oscillatory 
 Relative 
Force 
 Friction 
 Weight 
 Spring 
Torque 
Kinetic 
Potential 
           Spring 
           Weight 

 
With the taxonomies of domains, functions and flows, it has been shown that 

identifying the domain allows designers to constrain the design variables such as 

functions and flows to a manageable few. But these taxonomies have an implicit 

relationship embedded in them: only certain functions are relevant when considering 

certain flows in a particular domain [74]. So essentially identifying the domain and the 

flows of the design problem allows us to constrain the taxonomy of functions. This is 

important because clearly defining the variables applicable to the design problem makes 

the process of design more efficient and additionally the fewer choices of design 

variables relevant to the current design problem allow for easier design decisions. This 

sub-section presents an additional set of taxonomies that define the relationships 

between functions and the relevant flows. The taxonomies for the “Structures” (“No 
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motion”) domain are presented but the same principle may be applied to other domains 

in order to prepare complete taxonomies ready for use by design automation systems. 

Table 2.7: Relationship among Functions and Flows in Structures (No motion) domain 

Absorb 
          Kinetic 
          Potential 
                   Spring 

Supply 
          Force 
                    Friction 
                    Spring 
          Torque 
           Kinetic 
           Potential 
                    Spring 

Store 
          Potential 
                    Spring 

Distribute 
          Force 
                    Friction 
                    Weight 
                    Spring 
          Torque 
          Potential 
                    Gravity 
                    Spring 

Link 
          Force 
          Torque 

Amplify 
          Force 
                    Friction 
                    Spring 
          Torque 

Decrease 
          Force 
                    Friction 
                    Spring 
          Torque 

  

 
The taxonomies presented have shown that the impact of the domain on the 

design functions and flows is to limit them. The function and flow taxonomies 

presented here show that identifying the domain constrains the functions and flows to a 

manageable few. The focus is mainly on the “Mechanical” domain for this dissertation 

but Function and flow taxonomies for other domains exist and are suggested as future 

research. Such delimited taxonomies when used in conjunction with the macroscopic 

taxonomies presented by Ullman [75], Dixon et al [76] and Pahl and Beitz [58] etc. 
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serve to provide a complete view of design. One use of our taxonomies could be as a 

tool to educate novice designers. Current design curricula concentrate on results of 

numerous analyses of design artefacts as the primary selection criteria. Our delimited 

taxonomies could be used to teach designers to select the most appropriate solution 

artefact based on design variables that can be identified from the client’s statement such 

the design domains, functions and flows. Similarly our taxonomies could be used by 

design automation systems to simplify the path to a solution. 

To be truly useful to the designer or design automation systems they must be 

able to map the function domain to the physical domain. To do so effectively numerous 

product matrices are proposed based on the following basic idea: 

• There exist various artifacts viz. gears, springs, structures etc which 

provide varying functions while meeting varying objectives and 

constraints. Designers implicitly group artifacts into classes based on 

the functions that the artifacts realize. 

• Each artifact class has numerous sub-types,  (e.g. (i) worm, helical, 

spur and others are sub-types of gears, (ii) flat and V are sub-types of 

belts and (iii) torque, conical, barrel, hourglass, torsion are sub-types of 

springs) that have further constraints that must be considered when 

selecting that particular sub-type.  

• Designers select an artifact class based on the function that they can 

provide but selecting from the sub-types that exist is usually done 
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based on certain key constraints. By identifying these key constraints 

(or syntactic context) the selection process is formalized. 

Using that basic idea the following product matrices are contributed. The 

original product matrix was developed by Dr. John Mills who is using this matrix in his 

course work to teach design students on using the idea of context based design 

selection. The following tables provide the product matrices for gears, springs, 

structures and motors. It should be pointed out that these matrices are in an early draft 

and further research is required to consider them truly useful. To use the product 

matrices presented in Figure 2.5, Figure 2.6 and Figure 2.7 identify the constraints in 

your problem and eliminate any selections that have an “X” in the row. The sub-type(s) 

that are remaining are the artifacts that will most closely provide your function while 

meeting the design constraints. 
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Figure 2.5: Product matrix for springs 
 

2.5 Context in legacy MCAD 

The definition for design rationale in legacy MCAD, stated in section 2.3.3, 

gives us the impact of context in legacy CAD. The definition organizes design rationale 

into the three levels for context suggested by Sowa. The definition for design rationale 

mentions three levels of relationships viz. structural, semantic and practical. The 

structural relationship is a synonym for Sowa’s syntactical context, while the practical 

relationship is synonymous to Sowa’s pragmatic context. Iyer et al [77] have also 

suggested a context-based inference approach to capture design intent from legacy 

CAD. They use the three levels of context to classify the raw data that is extracted from 

the legacy CAD into syntax, semantics and pragmatics. 
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Figure 2.6: Product matrix for gears, belts and pulleys, chains and sprockets and 
cables (courtesy Dr. John Mills) 
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Figure 2.7: Product matrix for motors 
 

By comparing Sowa’s levels of context with legacy MCAD we derive the 

following context levels: 

Table 2.8: Context in legacy MCAD 

Syntax Notes, titleblock, shape, symbols 

Semantics 

Standards, manufacturing, material (with characteristics), 

parts list, application, milieu, alternatives, part name, 

inspection 
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Table 2.8 - continued  

Pragmatics 
Function, flow, domain, objectives, constraints,  design 

rules, guidelines, designer, project, company info, domain 

 

The following is a sample of the information that is found: 

• Syntax: 

o The geometry of the drawing to determine overall shape of the part. 

o The tolerance values, including number of decimal places, as an 

indicator of tight vs. loose tolerances that may be critical for assemblies 

and part function. 

o The use of firm and relative dimensions to infer the datum plane and 

feature dependencies in the resulting 3D model. Use of dimensions, table 

data for validating geometry. 

o Importance of precise placement of holes for connectivity between 

related parts to form assemblies. 

• Semantic: 

o The part name as an indicator of the part’s function (e.g. bracket, pump, 

gear etc). 

o The material as an indicator of cost, strength, part thickness, 

manufacturing process, etc. of the part.  

o The surface finish as an indication of possible exposure to elements, 

mating connections, etc. 

o Any notes referencing markings and etchings as an indicator that the part 

may be a replacement part in the field. 

o Correlation of elements in notes and geometry to infer the treatment 

and/or manufacturing operations. 
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o Symbols for manufacturing processes such as finishing, welding, 

assembling, etc 

o Geometry and attributes of part as an indicator feature objective (i.e. ribs 

in a part add strength while pockets make the part lighter.) 

• Pragmatic: 

o Company and department name along with appropriate knowledge as a 

method to infer information such as applicable standards, specifications, 

applicable disciplines etc, 

o Designer information to gauge project information, 

o Date/time information to gauge document revision/completion 

information. 

2.6 Conclusion 

With the required background the next chapters will address how a context-

based approach will address the problem, stated in chapter 1, of capturing design 

rationale from legacy MCAD. 
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CHAPTER 3 

APPROACH TO SOLVING PROBLEM 

 

The following chapter details the approach proposed to address the problem 

dealt with in this dissertation. In order to do so the first requirement is to understand the 

nature of legacy MCAD design rationale. The second requirement is to identify the 

process of legacy MCAD design rationale capture itself. Only after meeting those 

requirements can we discuss a software architecture that will incorporate the process 

identified to satisfying the second requirement. The software architecture is discussed in 

the next chapter. 

3.1 Design Rationale Analysis of Legacy MCAD 

From Chapter 1 we know the claim that the manufacturers were making i.e. that 

they are able to capture design rationale from 2D drawings that they are unable to 

capture from parametric 3D models. This claim required further investigation and this 

section details the approach and the results of the investigation. Legacy MCAD, 

specifically 2D drawings, contains only unstructured graphical entities such as 

geometry, text and symbols. In order to properly interpret the meaning and significance 

of the contents of the legacy file, human re-designers implicitly create associations 

between the unstructured entities to identify more meaningful classes of structured 

entities. For example by creating associations between relevant geometric entities, the 



 

 68 

re-designer identifies the shape of the part. By creating associations between geometry 

and text the re-designer could identify dimensions and tolerances or manufacturing 

symbols (e.g. surface finish) depending on the properties of the entities and the 

associations created. When comparing the contents of a 2D drawing with that of a 3D 

model it can be seen that the 3D model has more structured geometric entities but uses a 

different layout as compared to 2D drawings to display their content. Most 3D models 

do not contain the same text and symbol entities that re-designers expect to see in the 

same manner as 2D drawings. This additional text and symbols may be the key to 

understanding the validity of the claim that the re-designers could capture design 

rationale from the 2D drawings and not 3D models. This reiterates the contention made 

in section 2.3.3 on the importance of the information other than geometry that is 

contained in the legacy MCAD file. 

3.1.1 Design Rationale Capture Analysis Process 

To better understand the importance of all the entities to capture design rationale 

from legacy MCAD and the process that re-designers use to capture design rationale we 

used the method suggested by Stauffer, Ullman and Dietterich published in their paper 

titled “Protocol Analysis of Mechanical Engineering Design” [78] and performed 

“design rationale capture analysis of legacy MCAD”. We worked with two candidates 

for the first stage of analysis, the first an experienced re-designer and the second an 

experienced modeler. We identified sample drawings from a repository available with 

Imagecom Inc [79]. The two candidates were presented with the same set of sample 

drawings to ensure consistency between their findings. A sample drawing is shown in 
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Figure 3.1. The analysis process required the candidates to verbalize their thought 

process when identifying the entities, any relevant associations between the entities and 

inferring design rationale.  

 

Figure 3.1: Sample 2D drawing 
 

To provide support to the candidates and to impart a formal order to the 

verbalization, the candidates were presented with a list of questions that they needed to 

answer. The following is a sample list of questions posed to the interviewees. 

• What steps do you take when presented with a MCAD artifact for 

redesign? 

• How do you rate the importance of entities contained in the legacy 

MCAD – geometric, textual etc? 

• Please infer the following classes from the drawing: 

o Function of part 

o Flow related to part 
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o Domain of part or assembly 

o Manufacturing instructions and symbols 

o Material 

o Standards, principles and guidelines 

o Alternatives presented (geometry, material, manufacturing etc) 

o Constraints (dimensional, assembly etc) 

o Possible objectives of part 

• Please state importance of above identified classes for purpose of 

redesign of part or assembly contained in drawing. 

• Do you use sources external to the MCAD representation to identify the 

classes mentioned above? If yes, what are these sources – design 

databases, engineering dictionaries, previous knowledge or other? 

• How do you deal with assembly representations? Is there a need for 

individual part drawings to determine assembly constraints? 

• Do assembly drawings provide more information about the function, 

flow, domain, alternatives, objectives or constraints? 

• Do manufacturing instructions included in the legacy CAD provide any 

clues to the possible objectives or constraints of the part or assembly? 

• How do you deal with alternatives (geometry or otherwise) shown on the 

legacy CAD? 

• Do the change notes included in the CAD representation provide any 

insight into the design evolution of the part or assembly? 
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3.1.2 Results of Design Rationale Analysis 

One result of the design rationale analysis was that the candidates were inferring 

a lot of meaning and significance from the legacy file, but each individual assigned 

different importance to the identified classes. The experienced re-designer assigned 

higher importance to the text and other attributes contained on the legacy MCAD file to 

infer design rationale such as function, objectives or constraints. The experienced 

modeler on the other hand focused more on the geometry, parts list and assembly 

constraints as possible design rationale concerned with the use and application of the 

part, represented in the MCAD file. The modeler used the inferred application of the 

part as possible reasons for the decisions contained on the MCAD file. On the whole the 

candidates could infer information about costs, application, mating surfaces, function, 

flow and domain by creating associations between the various classes identified in 

chapter 2. This validates the claims made in Chapter 1 by the manufacturers. The 

subjects were able to infer design rationale from the legacy CAD beyond the data that is 

contained on the legacy CAD.  

Additionally with this analysis we are able to establish that design rationale on 

legacy MCAD is not explicitly stated. The entities on the MCAD file and the 

relationships between those entities i.e. context in legacy MCAD, provide useful 

information that someone with the required domain knowledge can use to infer design 

rationale about the represented part. 
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Finally the process employed by the subjects to capture design rationale from 

the legacy CAD files was documented. The following are the broad steps that the 

subjects were using to infer design rationale. 

• Brief review of the legacy MCAD file to identify relevant entities and their 

properties e.g. location, dimensions etc. 

o This step is comparable to the parsing of the files where the human 

candidates spent some time to identify the types of entities contained on 

the legacy MCAD file along with their location and relation to other 

entities based on certain associated properties such as location, type, 

color, annotations etc. The result of this step is that the human candidates 

have essentially identified essential entities that are present on the legacy 

file. 

• Having identified the essential entities the next step the human candidates take is 

to identify the relationships that exist between the identified entities. The key to 

creating these relationships is their knowledge of the domain. Three types of 

relationships are created viz. the context levels – syntax, semantics, pragmatics. 

The first relationship to be created is the syntax, which the candidates create by 

identifying the properties and attributes of the entities such as location, type, 

color etc. By doing so they have created groups of entities that would aid in 

identifying further relationships. Examples of such groups are shape, notes, 

titleblock, symbols etc. The second relationship created is the semantics. 

Starting with the groups of entities identified at the syntax stage the candidates 
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try and identify common keywords and patterns that exist within the groups. 

These identified keywords and patterns provide meaning to the created groups.  

Examples of identified keywords would be iron, aluminum, steel (which would 

indicate materials), gear, yoke, cover (which would indicate artifact names) and 

ASME, DOD, STD (which would indicate standards).  

• The final relationship that the candidates infer is the pragmatics. This involves 

retrieving valuable information based on their experience and knowledge of the 

concerned domain of the legacy MCAD file. The meaning they inferred in the 

second relationship step allows the candidates to create links between a 

particular meaning and the significance the meaning implies. For example 

knowing a particular material would allow us to infer certain significance such 

as metal or non-metal, strength, hardness etc. Knowing the part name allows us 

to infer for example possible functions and flows. If standards were identified 

then possible guidelines and principles could be inferred. 

• Having inferred the pragmatics the re-designers use these links to infer possible 

design variables and possible reasons in the form of objectives and constraints, 

possible alternatives and insights about material choice. All these collectively 

form design rationale as we have seen in chapter 2. For example by identifying 

the name of the part they could infer the possible function of the part. From the 

material, the re-designers could infer possible objectives such as low weight, 

high strength or corrosion resistance. From the manufacturing process specified 
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the re-designers could infer if the part was meant for large or small batch 

products. 

3.2 Identify context levels in legacy MCAD 

Section 2.5 presented an overview of context in legacy MCAD. With the results 

of the design rationale analysis presented in section 3.1.2, the following section 

provides the details of context in legacy MCAD. The three levels of context that were 

identified in section 2.5  are expanded upon to include the entities contained on the 

legacy MCAD and numerous other classes that can be inferred based on the 

relationships between the entities which are also modeled.  

The models were created using Microsoft’s Visio software in UML. The models 

are standard UML Class diagrams with Generalization or Dependency relationships. 

The Generalization relationship can be simply described as “part-of” where all child 

classes are subparts of the parent class. Similarly the Dependency relationship can be 

thought of as “depends on” where the properties of the parent class are inherited by the 

child classes. 

3.2.1 Syntax in legacy MCAD 

Since legacy MCAD contains only unstructured geometric and textual entities 

the first step taken by the human candidates during the design rationale analysis was to 

perform a detailed survey of the entities, their locations, properties, layers and any 

structural relationships. Using this data the candidates were able to identify the syntax 

level of the context in legacy MCAD which are the unstructured entities in various 

related groups. This class typically consists of the shape of the part, dimensions, 
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tolerances, notes or title-block information. Figure 3.2 shows the syntax level with its 

child classes. 

 

 

Figure 3.2: Syntax level with child classes 
 

The following is a brief explanation of the child classes of syntax, the entities 

they contain and the relationships between the entities: 

3.2.1.1 Notes 

These are typically text with some symbols included. The text can be single-

lined or multi-lined, while the symbols are usually used to indicate surface finish, 

tolerances or dimensions. The notes class is made up of numerous single- or multi- line 

independent notes that may be numbered or bulleted. 

3.2.1.2 Titleblock 

Titleblock is typically formed of tables, text and symbols. The tables could be 

composed of numerous lines arranged to contains rows and columns forming individual 

cells that contain the text and symbols. The text may be single- or multi- line and could 

indicate parameter variables with their values, while symbols could be used to indicate 

global tolerances and milieu information such as the company name, designer, design 

and project information. 
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3.2.1.3 Shape 

The shape is normally only composed of geometry (point, lines, arcs, circles, 

splines etc) but could use textual descriptions to indicate details or repeating arrays of 

entities or groups of entities. 

3.2.1.4 Symbols 

Symbols are normally made up of both geometric and textual entities. Symbols 

indicate surface finish, manufacturing, dimensions, tolerances, markers etc. Based on 

the shape and contents the appropriate symbol is inferred. 

3.2.2 Semantics in legacy MCAD 

Having identified the syntax classes the next step that the human candidates take 

is to identify the semantics level from the syntax classes using a variety of techniques. 

By looking for certain patterns and keywords that can be found in the syntax classes the 

candidates identify the semantics classes that are shown in Figure 3.3. 

 
 

Figure 3.3: Semantics level with child classes 
 

The following is a brief explanation of the child classes of semantics, the 

entities they contain and the relationships between the entities: 
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3.2.2.1 Standards 

This class, shown in Figure 3.4, typically contains the standards, guidelines and 

principles that are composed of text and explicitly stated in the notes or title-block 

classes. Some examples of standards are DOD-STD-00100D (AR), ANSI Y14.5M-

1982 etc. Standards are company, project or design specific. 

 
 

Figure 3.4: Standards class dependent on Notes and Titleblock classes 
 

3.2.2.2 Manufacturing 

The manufacturing class is normally composed of text or symbols and contains 

instructions for the production of the part represented in the legacy MCAD. Some 

examples of text instructions are casting, forging, quench, temper etc. Surface finish 

symbols and weld symbols are examples of the manufacturing symbols that contain text 

to indicate required values. 

 
 

Figure 3.5: Manufacturing class dependent on Notes and Symbols classes 
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3.2.2.3 Alternatives 

Alternative shapes, materials or manufacturing instructions are usually 

explicitly represented and appropriately labeled as such. They could contain geometry 

or text and can be inferred from shape, notes and symbols. 

 
 

Figure 3.6: Alternatives class dependent on Notes, Shape and Symbols classes 
 

3.2.2.4 Materials 

The Materials class is typically composed of text entities and is derived from 

Notes class. Some examples are Steel, Aluminum, Al, Bronze, Cu, Sn etc. 

 
 

Figure 3.7: Materials class dependent on Notes class 
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3.2.2.5 UsedOn 

The UsedOn class is composed of text and depends on the Titleblock class. It 

indicates the assembly or the system level artifact of which the currently represented 

artifact is a part. 

 
 

Figure 3.8: UsedOn class dependent on Titleblock class 
 

3.2.2.6 Part and Assembly 

The Part and Assembly classes are composed of text entities and depend on the 

Titleblock, Shape and Symbol classes. They help identify whether the currently 

represented artifact is a piece part of an assembly. 

 
 

Figure 3.9: Part and Assembly classes depend on Titleblock, Shape and Symbols 
class 
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3.2.2.7 PartName 

The PartName class is composed of text entities and depends on the Titleblock 

class. 

 
 

Figure 3.10: PartName class depends on Titleblock class 
 

3.2.2.8 Inspection 

The Inspection class is composed typically of symbols and text and depends on 

the Symbols and Notes class. 

 

 
 

Figure 3.11: Inspection class depends on Notes and Symbols classes 
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3.2.2.9 PartsList and Milieu 

The PartsList and Milieu classes are composed of text and depend on the 

Titleblock class. 

 
 

Figure 3.12: PartsList and Milieu classes depend on Titleblock class 
 

3.2.3 Pragmatics in legacy MCAD 

Having identified the semantics classes the human candidates inferred the final 

level i.e. the pragmatics level by using their expertise and knowledge of the domain. By 

considering each semantics class individually the candidates infer the appropriate 

pragmatics class. Figure 3.13 shows the child classes at the pragmatics level. 

The following is a brief explanation of the child classes of pragmatics, the 

entities they contain and the relationships between the entities: 
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Figure 3.13: Pragmatics level with child classes in legacy MCAD 
 

3.2.3.1 Function, Flow, Domain and Application 

Information about the Function, Flow, Domain and Application can be inferred 

from the PartName semantics class. 

 
 

Figure 3.14: Function, Flow, Domain and Application inferred from PartName 
 

3.2.3.2  DesignEnvironment, QualityInspection, Objectives and Constraints 

Information about the DesignEnvironment, QualityInspection, Objectives and 

Constraints can be inferred from the Standards semantics class. 
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Figure 3.15: DesignEnvironment, QualityInspection, Objectives and Constraints 
inferred from Standards 

 
3.2.3.3 Constraints, RelativeCost, QualityInspection 

We can infer information about Constraints, RelativeCost and QualityInspection 

from the Manufacturing semantics class. 

 
 

Figure 3.16: Constraints, RelativeCost and QualityInspection inferred from 
Manufacturing 

 
3.2.3.4 Objectives and Constraints 

Information about Objectives and Constraints can be inferred from the 

Alternatives semantics class. 
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Figure 3.17: Objectives and Constraints inferred from Alternatives 
 

3.2.3.5 Objectives, SpecificProperties, Application and RelativeCost 

We can infer information about Objectives, SpecificProperties, Application and 

RelativeCost from the Materials semantics class. 

 
 

Figure 3.18: Objectives, SpecificProperties, Application and RelativeCost inferred 
from Materials 

 
3.2.3.6 Application and DesignEnvironment 

Information about the Application and DesignEnvironment can be inferred from 

the UsedOn semantics class. 
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Figure 3.19: Application and DesignEnvironment inferred from UsedOn 
 

3.2.3.7 Constraints and Application 

We can infer information about Constraints and Application from the Part and 

Assembly semantics classes. 

 
 

Figure 3.20: Constraints and Application inferred from Part and Assembly 
 

3.2.3.8 RelativeCost and QualityInspection 

Information about the RelativeCost and QualityInspection can be inferred from 

the Inspection semantics class. 
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Figure 3.21: QualityInspection and RelativeCost inferred from Inspection 
 

3.2.3.9 Function and Constraints 

Information about the Function and Constraints can be inferred from the 

PartsList semantics class. 

 
 

Figure 3.22: Function and Constraints inferred from PartsList 
 

3.2.3.10 Application, DesignEnvironment and Domain 

We can infer information about Application, DesignEnvironment and Domain 

from the Milieu semantics class. 

 
 

Figure 3.23: Application, DesignEnvironment and Domain inferred from Milieu 
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3.3 Automated capture of context from legacy MCAD 

Having provided an understanding of the context that can be captured from 

legacy MCAD and the relationships that exist between the context classes at the three 

levels, this section describes the need and process of capturing the context from legacy 

MCAD using an automated software system. 

3.3.1 Need for automated capture of design rationale 

One of the results of the design rationale capture analysis stated in section 3.1.2 

was the process that the re-designers used to extract context from legacy MCAD and 

capture design rationale from the extracted context. If design rationale that is contained 

is legacy MCAD is to prove useful i.e. that re-designers looking to modify existing 

designs use the rationale contained in these legacy design storehouses, then the design 

rationale capture process needs to be simplified by providing an automated and standard 

capture method.  

3.3.2 Process of automated design rationale capture 

The automated capture design rationale from legacy MCAD has two distinct 

steps viz. 

• Extraction of context from the legacy MCAD 

• Inferring design rationale from the extracted context 

An illustration of this process is shown in Figure 3.24. The following sub-

sections provide the details on the process emulated by the automated software system. 

To be truly useful, the proposed automated system must closely emulate the process 

followed by the re-designer and modeler described in section 3.1.2.  
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Figure 3.24: Overall approach to capture Design Rationale from Legacy MCAD 
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It should be noted that some steps of the process followed by re-designers may 

prove impossible to emulate using software but the number of such steps can be reduced 

and the quality of the output of the system can be improved by building a system that 

will grow based on input from experienced re-designers. In short by making the system 

extensible we can ensure that the output is increasingly closer to that captured by the re-

designer and modeler. 

3.3.2.1 Extract context from legacy MCAD 

To extract context from legacy MCAD the re-designer and modeler followed a 

process that is described in section 3.1.2. For an automated system to capture context in 

a similar manner the following are the steps. These steps are analogous to the steps of 

the process described in section 3.1.2. 

• Read all the raw data contained in the legacy MCAD: At this stage all 

entities contained on the legacy CAD are extracted, and, for 

simplification, sorted into either geometric or textual entity types. Basic 

pattern recognition techniques are used to informally group and 

categorize the entities into these types. A temporary data storage is used 

for the output of this step. By using an open ASCII based MCAD file 

such as DXF the system will be able to read the raw data in addition to 

their properties.  

• Extract the syntax classes: By identifying the relationships between the 

raw data as described in section 3.2.1 the system will extract the syntax 

classes. From the Design Rationale Capture Analysis it was observed 
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that the human candidates used the layout of the raw data to extract 

relationships. Using comprehensive pattern search and analysis methods 

we categorize the extracted entities. To achieve this in a repeatable 

manner the patterns could be pre-determined and stored. By identifying 

the common patterns that exist for different situations e.g. company, 

project or industry we can create templates that describe the syntax 

relationships that exist. Using these templates we then focus on the 

extracted entity along with its context (e.g. surrounding entities, entity 

type, entity properties) as defined by the template.  

• Extract the semantics classes: By using the relationships between the 

syntax classes the system can extract the semantics classes as stated in 

section 3.2.2. In a manner similar to the process documented during the 

design rationale capture analysis the system uses numerous keywords 

files and pattern matching algorithms to extract the semantics from the 

syntax classes. 

• Infer the pragmatics classes: Using the relationships between the 

semantics classes as stated in section 3.2.3 the system can infer the 

pragmatics classes. 

  3.3.2.2 Infer Design Rationale 

The final step is to infer design rationale using the extracted contextual 

relationships. To do so, an inference engine was implemented as a part of this 

dissertation. An inference engine is a software component that is implemented 
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specifically to separate the data from the logic. Logic is language of reasoning. It 

consists of a collection of rules that is used when reasoning. The next section describes 

the various types of logic that exist, the type of logic that is implemented through the 

proposed inference engine and the reason for choosing that type of logic. 

1. Propositional logic: Propositional logic is logic at the sentential level. 

The smallest unit of information that has to be dealt with is the sentence 

which is called a proposition. The reasoning process assumes each 

statement as either true or false. No analysis is performed of the 

individual statements. The primary goal of propositional logic is to 

identify truth or falsehood of sentences based on preceding sentences. 

The following example illustrates propositional logic. Consider the 

following statements. 

All men are mortals 

Socrates is a man 

An inference engine treats these statements as true and based on 

these propositions can assert the following proposition which is treated 

as true for any succeeding propositions that may follow. 

Therefore Socrates is a mortal 

Propositional logic is not powerful enough to represent all types 

of assertions that are used in computer science and mathematics or to 

express certain types of relationships between propositions such as 

equivalence. For example, the assertion "x is greater than 1", where x is a 
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variable, is not a proposition because you can not tell whether it is true or 

false unless you know the value of x. Thus propositional logic can not 

deal with such sentences. However, such assertions appear quite often in 

mathematics and we want to perform inference on those assertions. Thus 

we need more powerful logic to deal with these and other problems. To 

address this need other types of logic exist. 

2. Predicate logic: Predicate logic allows us to represent fairly complex 

facts about the world, and to derive new facts in a way that guarantees 

that, if the initial facts were true then so are the conclusions. It is a well 

understood formal language, with well-defined syntax, semantics and 

rules of inference [80]. 

3. Syllogistic logic: Syllogistic logic contains the analysis of the judgments 

into propositions consisting of two terms that are related by one of a 

fixed number of relations and the expression of inferences by means of 

syllogisms that consists of two propositions sharing a common term as 

premise, and a conclusion which was a proposition involving the two 

unrelated terms from the premises. 

4. Modal logic: Modal logic deals with the phenomenon that subparts of a 

sentence may have their semantics modified by special verbs or modal 

particles. 

5. Mathematical logic: Mathematical logic is a subfield of mathematics that 

is concerned with formal systems in relation to the way that they encode 
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intuitive concepts of mathematical objects such as sets and numbers, 

proofs, and computation. 

6. Philosophical logic: Philosophical logic is the study of the more 

specifically philosophical aspects of logic. It deals with formal 

descriptions of natural language. It is concerned only with those entities 

— thoughts, sentences, or propositions — that are capable of being true 

and false [81]. 

The inference engine implemented with this dissertation follows propositional 

logic. The reason for selecting propositional logic over other types of logic is the format 

and nature of the data available in the limited domain of legacy MCAD. As has been 

detailed previously, legacy MCAD is typically composed of unstructured graphical 

entities such as geometry, text and symbols. This results in the captured contextual 

relationships containing identifiable propositions such as the material selected, 

manufacturing instructions, part name, individual assembly parts, dimensions, 

tolerances and design environment such company name, project name, and designer 

name. The resultant propositions are assumed as true by default without further 

analysis. This goes back to one of the assumptions of the dissertation that a valid 

rationale exists behind any information that is included on legacy MCAD. In the case of 

legacy MCAD the individual propositions do not need additional analysis to assert 

facts. Since the primary goal of the advanced types of logic is to analyze the 

propositions further they would be inapplicable in the specific context of legacy 

MCAD. 
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The overall architecture of the implemented inference engine is shown in Figure 

3.24. The input to the system is the information extracted from the legacy MCAD viz. 

Assembly, Artifact, Material, Manufacturing conditions and parameters and Geometry. 

The inferencing itself is done in numerous sub-modules, also shown in Figure 3.25 viz. 

Infer Domain, Infer Function, Infer Flow, Infer Objectives, Infer Constraints, Infer 

Material Properties. The details on each of these sub-modules are provided in following 

sections. For the implemented inference engine to perform the task of asserting 

succeeding propositions based on the input (preceding) propositions it has a collections 

of known propositions or rules that is stored in a rule-base, also shown in Figure 3.25 

viz. Domains, Functions, Flows and Production Rules. The next section details the rule-

base, its need and format and the difficulties that exist to build and extend the base. 

 

Figure 3.25: Overall architecture of Inference Engine 
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The rule-base is where the collection of known propositions is stored. An 

inference engine needs a rule-base as this helps separate the data from the logic 

implemented by the engine to select appropriate rules based on the input. The rule-base 

also provides an easy to understand explanation of why a particular rule was selected as 

no knowledge of the inference engine code is needed. By implementing the rule-base 

using XML we achieve easy editing of existing rules and addition of new rules. Other 

formats for rule-bases exist such as the Resource Description Framework which is a 

World Wide Web Consortium (W3C) specification for modeling information. The 

RuleML open specification also exists that provides a markup language to publish and 

share rules on the World Wide Web [82]. The rule-base implemented in this dissertation 

implements a format simpler than that suggested by RuleML. The reason for this is the 

lack for information that is needed to completely populate the individual rules as 

specified by RuleML.  

Samples of the rules that were generated with this dissertation are presented in 

Figure 3.26 and Figure 3.27. The following is the syntax that was used to create the 

individual rules. 

• <rule>: Each individual rule is enclosed within this node. The start and 

end tags separate individual rules. 

• <name>: The name of the individual rule. The value of this entry needs 

to be unique for each rule. This entry is required. 
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• <symbol>: The symbol is usually reserved for materials and is usually 

specified as the symbol of the material that the <name> node states. This 

entry is optional but must be included when materials are involved. 

• <objective>: The objectives that are associated with the rule. This entry 

is optional. If provided then the inference engine selects the objectives 

for the matched rule. The objective node has two sub-nodes. 

o <property>: This entry states the specific objective at the current 

sub-node. If the <objective> node is included then at least one 

node containing the property is required. 

o <value>: This entry states the value for the property at the 

current node. If the <objective> node is included then at least one 

node containing the value for the stated property is required. 

• <constraint>: The constraints that are associated with the rule. This 

entry is optional. If provided then the inference engine selects the 

constraints for the matched rule. The constraint node has two sub-nodes: 

o <property>: This entry states the specific constraint at the 

current sub-node. If the <constraint> node is included then at 

least one node containing the property is required. 

o <value>: This entry states the value for the property at the 

current node. If the <constraint> node is included then at least 

one node containing the value for the stated property is required. 



 

 97 

• <additionalrule>: Specifies any additional rules that are associated to 

the current rule. This entry is optional. If provided then the inference 

engine processes the rule stated in this node to match and select 

additional specific rules. For example if the additional rule stated points 

to a second rule-base then the inference engine processes this second 

rule-base and matches and selects additional rules from this rule-base. 

This is important in cases such as materials that require additional 

processing to select all appropriate rules. 

With the above description of the need and format of the rule-base this next 

section describes the population of the rule-base, the method, the collected propositions 

and the problems encountered. 

For the inference engine to function the rule-base needs appropriate propositions 

to be present in the rule-base. The inference engine uses these initial propositions to 

match and select the appropriate rules based on the current input. These propositions 

were created manually from various sources such as Tool Manufacturer’s Engineering 

Handbook [83], Mechanical Engineering Design [84], Machine Design: An Integrated 

Approach [85], Machine Elements in Mechanical Design [86], Mechanics of Materials 

[87], and Materials Selection in Mechanical Design [88] among others. A large portion 

of the rules have their origins in the output of the Design Rationale Analysis [Section 

3.1]. Sample of the rule-base are shown in Figure 3.26 and Figure 3.27. The rule-base 

does not differentiate among the various types of proposition being stored. The rule-
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base stores propositions on material, manufacturing, company information, functions, 

flows, domains etc. 

 

Figure 3.26: Sample rules from rule-base used by inference engine 
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Figure 3.27: Sample rules from rule-base used by inference engine 
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The rule-base stores propositions by identifying the object about which the 

proposition is predicated. For example consider the rule named “aluminum” in Figure 

3.27. This rule asserts the following propositions: 

The material is aluminum 

Aluminum has symbol Al 

Aluminum has objective of low weight 

Aluminum has objective of medium to high strength 

Aluminum has objective of high corrosion resistance 

Aluminum has objective of good workability 

Aluminum has additional rule-base located in “aluminum.xml” on disk 

This rule is sufficient to handle input that provides very little information to a 

lot. For example if the input states just aluminum, the input proposition can be read as: 

The Material is Aluminum 

Since this is assumed true the following propositions can be asserted about the 

subject “Material” by the above described rule: 

Material has symbol Al 

Material has objective of low weight 

Material has objective of medium to high strength 

Material has objective of high corrosion resistance 

Material has objective of good workability 

Material has additional rule-base located in “aluminum.xml” on disk 
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Thus by using the rule-base we are able to assert the objectives for the input 

material (viz. Aluminum) which constitutes design rationale based on the proposed 

definition [30]. 

If in case the input states detailed information such as Aluminum 4140 the input 

proposition can be read as follows: 

The Material is Aluminum 4140 

This allows us to assert the propositions that are asserted above when the 

proposition is simply “The Material is Aluminum”. But to assert additional propositions 

based on the detailed input “4140” we need to refer to the additional rule-base located 

in “aluminum.xml”. A sample of this rule-base is shown in Figure 3.28. From the 

detailed input it can be asserted known that the material belongs to the 4000 series of 

wrought Aluminum.  

This assertion depends on the numbering formats that are employed for 

designating the individual alloys. This designation system is completely set forth in the 

American National Standard ANSI H35.1 and in various publications issued by The 

Aluminum Association [83]. Appropriately the following propositions can be asserted 

by selecting the <4000> series node for <wrought> aluminum from the additional rule-

base [Figure 3.28]: 

Material has Typical Applications in welding wire, low melting point brazing 

alloys and architecture 

Material has Objective of low weight 

Material has Objective of high electrical conductivity 
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Material has Objective of high machinability 

Material has Objective of low melting point 

 

Figure 3.28: Rule-base for Aluminum 
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Any asserted propositions that are repeating between the simple and detailed 

input can be safely ignored. Thus having detailed input allows for additional 

propositions being asserted in terms of typical applications and additional objectives, 

which provides design rationale as previously defined. As can be noticed from the 

description above the following propositions were also used in addition to the input 

proposition to assert the design rationale: 

Wrought Aluminum 4000 Series starts with the digit 4 

Wrought Aluminum 4000 Series is a 4 digit system 

Using these above propositions the following proposition was asserted: 

4140 is part of Wrought Aluminum 4000 Series 

These propositions are part of rule-base as the material designation systems are 

very specific to the material i.e. there is one designation for Aluminum, another for 

Copper (the 5 digit Unified Numbering System for Metals and Alloys [83]), another for 

Steel (4 digit AISI, ASTM or SAE) and so on for other materials. The <additionalrule> 

node specifies the location of the rule-base that stores these propositions for the 

individual materials.  

But it should be noted that while some designations assist in identifying the 

detailed proposition from the additional rule-base this is not the case for all materials. 

This next section describes some of the problems that were faced in matching and 

selecting the additional rule from the material’s designation. The prime example in this 

case is Steel. Steels are available in numerous types viz. carbon, alloy, high-strength 

low-alloy, stainless, maraging and cast. The most common type of steel is carbon steel, 
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which comes in three main groups – low, medium and high. A four-numerical series 

adopted by the AISI and the SAO is used to designate standard carbon steels specified 

to chemical decomposition ranges [87]. Designers select from among carbon steels 

based on the carbon content which provides information regarding the steel properties. 

The designations do not provide any way to differentiate between the various groups of 

carbon steels if only the 4 digit designation number is known. So no rule can be used to 

identify the carbon steel group i.e. no proposition exists similar to the ones stated above 

for Aluminum. For example consider the following proposition: 

Low carbon steels have low strength 

Consider for example that the input provides detailed material information as: 

The material is Steel 1018 

In order to assert propositions regarding the material then we would need the 

following proposition: 

Steel 1018 is a low carbon steel 

But this proposition is not available and cannot be deduced from the designation 

system for Steels. In order to circumvent this problem the proposed and implemented 

method is to use open materials database available in digital format such as efunda [89] 

and MatWeb [90]. There are no known researches or applications that utilize this idea to 

identify propositions for use in an inference engine but the results from the current 

implementation suggest that this is a viable method. The basic idea is similar to that 

suggested by Google’s Custom Search Engine which is a tailored search engine, which 

prioritizes or restricts search results based on websites and pages that are specified, and 
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which can be tailored to reflect a specific point of view or area of expertise [91]. In the 

case of materials the aforementioned websites [89], [90] are the specified websites that 

provide materials related information required for generating necessary propositions. 

The next section provides a detailed understanding of the implemented 

inference engine. The inference engine consists of three distinct parts:  

1. Production Rules: The Production Rules are stored in the rule-base. 

These describe the condition that has to be matched and also specify the 

action that the inference engine must take when the condition is 

triggered. 

2. Working Memory: Consists of the input that is then treated as a 

proposition. 

3. Pattern Matcher: This is the main component of the inference engine. 

The primary goal of the Matcher is to identify production rules that 

closely match the input, select one or at the most few rules by resolving 

conflicts occurring due to the selected rules and execute the rules. 

The inference engine has three basic processes: Match rules, Select rules and 

Execute rules – which it performs to infer the appropriate rule. In Match Rule all the 

rules that are similar to the input are retrieved. In Select Rule the rule that is exactly like 

the input is selected by eliminating the other rules based on additional processing. 

Finally in Execute Rule the rule is executed which may only be displaying the 

properties of the selected rule or may be finding additional rules that match the input 

thereby repeating the process from Match Rule. Also there are two basic types of 
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inference engines – forward chaining and backward chaining. Forward chaining is data 

based while backward chaining is goal driven. In the delimited context of legacy 

MCAD only forward chaining is relevant as there is no appropriate goal that needs to be 

achieved which is the basic function of backward chaining. 

3.4 Necessary Validation of Automatically Captured Design Rationale 

Once the automated system has inferred design rationale the final step is to test 

the validity and quality of the captured design rationale. This dissertation proposes to 

perform this validation step using human re-designers with varying experience and 

knowledge levels. In a manner similar to the design rationale capture analysis described 

in section 3.1.1 we conduct validation interviews where human re-designers record the 

design rationale that they were able to capture from a sample set of drawings. The 

software system is also fed the same sample set and its output is recorded. The two sets 

of outputs are compared for validating and checking quality of the output from the 

software system. This procedure is dealt with in more detail in chapter 5. 

3.5 Conclusion 

With this chapter we have seen the approach followed to address the specific 

details of design rationale, context in design rationale and capture of design rationale 

from legacy MCAD. The next chapter details the software architecture of the system 

proposed to perform the automated capture of design rationale from legacy MCAD. 
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CHAPTER 4 

SOFTWARE ARCHITECTURE 

 

The following chapter provides the details of the architecture of the software 

system proposed to automate the capture of design rationale from legacy MCAD. 

Chapter 3 briefly described the two primary steps that have to be taken by a software 

system viz. (i) extract context from legacy MCAD and (ii) use extracted context to infer 

design rationale. The following sections expand on these two steps starting with an 

overall architecture and then drill deeper into each identified sub-step. 

4.1 Overall Architecture 

The overall architecture is based on the approach stated in section 3.3.2 in 

Chapter 3. An illustration of this overall architecture is shown in Figure 4.1. The 

following is a brief overview of the steps in the process: 

4.1.1 Entity Parsing 

The first step in the legacy MCAD design rationale capture process is the 

parsing of entities. In this step we read and parse three basic classes of entities viz. 

geometry, text and symbols. 

4.1.2 Extract Syntax 

Having parsed the three basic entity classes the next step is to extract the syntax. 

This is achieved by categorizing the entities parsed in the previous step into the 
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appropriate syntax class viz. notes, title-block, shape and symbol. This is done by using 

templates that describe the class including their location and other properties. 

 
 

Figure 4.1: Overall Architecture 
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4.1.3 Extract Semantics 

With the syntax available from the previous step, the third step is to extract 

semantics from the syntax. This requires the identification of numerous patterns and 

keywords contained in the syntax to extract the appropriate semantics class. 

4.1.4 Infer Pragmatics 

The penultimate step in the process is the inference of the pragmatics classes 

which provide the first level of design rationale in the form of values for design 

variables viz. function, flow, domain, objectives, constraints, application, relative cost 

etc. 

4.1.5 Infer Design Rationale 

The final step in the process is the combination of the pragmatics classes to infer 

the second level of design rationale as specified in section 3.3.2.2. 

4.2 Detailed Architecture 

With that brief overview of the architecture the following section provides the 

details on the methods, algorithms and dictionaries that were used to build the software 

system. 

4.2.1 Entity parsing 

As mentioned in section 1.2 this dissertation primarily deals with the DXF file 

format. To read the contents of the DXF file that contains the legacy MCAD the system 

uses a set of libraries developed by Imagecom Inc [26]. These libraries were developed 

using the Visual C++ language and are deployed as shared dynamic linked libraries 

(DLL). This allowed the current software system to call methods and use properties 
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implemented by Imagecom’s Tools as black box calls in a manner that no 

implementation details were known or necessary to read the DXF file. The only method 

that was called to read the DXF file was the “Read_DXF” method. This method accepts 

as input the path to the DXF file that needs to be processed. The method outputs an 

array of GE2D_Entity objects that is contained in the DXF file. The GE2D_Entity is a 

custom class implemented by Imagecom Tools to store the geometry, text and symbols 

contained in the DXF file. GE2D_Entity stores the entities, their types, location and 

other properties and mirrors the entities in the DXF file. The advantage of using the 

GE2D_Entity class is that it is object oriented. Each entity sub-type viz. line, arc, circle, 

text, symbol is stored as exclusive objects allowing protected access to its properties. 

 
 

Figure 4.2: Read DXF File and store array of GE2D_Entity objects 
 

4.2.2 Extract Syntax 

With all the raw data available from the previous step in the form of an array of 

GE2D_Entity objects, the next step is to extract the syntax from this raw data. DXF 

files provide little formal structure to the drawings that are generated as a part of design 

projects. The syntax that the drawings contain does not have pre-defined locations or 

other attributes thus making it difficult to extract. As briefly described in section 3.3.2.1 

the syntax extraction can follow a method similar to that employed by human re-

designers i.e. it can be done using situation specific templates. This is advantageous 

because with a change in the situation, which may change the syntax attributes, we can 



 

 111 

specify a different, more relevant template to use. In this implementation phase a 

sample template was implemented as a test case. The template design was performed 

with a care to easy extensibility and derivability i.e. if needed the template can be 

extended for the current situation and also for new situations we can derive common 

elements from an existing template to create the new template for the new situation. The 

templates primarily describe the syntax and semantics classes and their attributes. The 

software system reads the templates and extracts the syntax from the DXF based on the 

template attributes. 

To simplify the implementation of the templates it was designed in two specific 

layers. The first and topmost layer is a general layer that is specific to the company. The 

second layer is specific to each syntax class that is described in the company specific 

template. 

4.2.2.1 First layer template 

The first layer template consists of information that is specific for a single 

company (or even project). Figure 4.3 shows the “company.xml” template for a sample 

company. 

 
Figure 4.3: Sample Company template 
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The template is implemented in an XML format. The advantage of doing so is 

that it provides an open, easily editable format. If needed users can open the templates 

in a text editor and modify the contents. The root node is <company> that has one 

attribute “name” that specifies the name of the company that this template belongs to. 

The <template_dir> tag has one attributes “location” that points to the location of the 

second layer of templates viz. the sheets, materials, manufacturing, standards, titleblock 

and notes templates. Different companies or projects may use different values for the 

attributes based on their specific situations. The nodes, for the second layer of 

templates, have a single attribute “location”. If this attribute does not have any specific 

value then it is assumed that they are located in the same directory as that specified in 

the <template_dir> node. 

The second template in this layer is the sheets.xml template shown in Figure 

4.4. This template is drawing sheet specific but could also vary from company (or 

project) to company. 

The sheets.xml template describes the sizes of the standard drawing sheet sizes 

typically identified by alphabets viz. C, D, E, K etc. The sheets.xml template describes 

the dimensions of the individual sheet itself along with the location and dimensions of 

the notes and title-block syntax classes. The location and dimensions of the shape 

classes can be inferred from the location and dimensions of the notes and title-block 

classes and hence has been ignored in the template. If deemed necessary in the future 

the sheets.xml template can be extended to include that information. 
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Figure 4.4: Sample Sheets template 

 
The sheets.xml template is useful to the software system as it provides the 

system with data necessary to locate and extract the various syntax classes. To use the 

sheets template for other situations it can be extended to describe the location and 

dimensions of the syntax classes. 

4.2.2.2 Second layer template 

The second layer templates are similarly stored in XML format. There are four 

second layer templates that describe the syntax classes viz. notes, title-block, shape, 

symbols. 
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Figure 4.5 shows the “notes.xml” template. The Notes class is extracted by the 

software system using the “sheets.xml” template that specifies the location and 

dimensions of the notes. But having extract the Notes class, the system still needs to 

recognize any patterns that exist to process the Notes. This is where the “notes.xml” 

template helps. The notes template has four child nodes. The <layer> node specifies on 

which drawing sheet layer the Notes are located. If this is a blank value then the system 

assumes the default drawing sheet layer as location of Notes. It is common to provide a 

title for the Notes section on the drawing file. If one is provide then the value for that 

title is specified in the <title> node of the “notes.xml” template. If each individual Note 

is numbered then their presence and the style of number of each Note and each sub-

Note is indicated using attributes “value” and “style” of the <numbering> node. The 

first value of the “style” attribute indicates the numbering style of each Note while the 

second value indicates the numbering style of each sub-Note. It is also common to find 

Notes that are broken into multiple sentences. The <lines> node describes whether the 

Notes are “single” or “multi” sentence and if they are multi- sentence the “ydist” 

attribute specifies the distance between two multi- sentence Note. 

 
 

Figure 4.5: Sample Notes template 
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Next is the title-block.xml template. Figure 4.6 shows the title-block.xml 

template. The title-block on a drawing sheet is typically laid out in a grid format with 

each cell of the grid containing parameters with the respective values. The title-block 

template describes the contents of the title-block by providing an identifier that qualifies 

the content of each cell. For example a standard drawing sheet title-block may contain 

the name of the company to which the drawing belongs. In order to name the company 

the title-block would contain either just the name or may contain an identifier such as 

“Name of Company” with a value in front of that identifier that names the company.  

Other possible parameters may be the name of the part that is contained in the 

drawings, a part number, designer information e.g. name, group etc, design information 

e.g. date etc. The title-block.xml file contains numerous <cell> nodes that identify the 

various cells of the grid along with the parameter that is located at that particular cell 

number. The numbering of the cell is dynamic and can be changed based on various 

criteria. Currently the numbering is done based on the relative horizontal and vertical 

locations of the cell in the grid. For a particular situation e.g. drawings belonging to the 

same company, the title-block may be pre-defined and the cell numbers may remain 

constant. When the situation changes i.e. a different company or project, a different 

title-block template may be needed. 

The third template in this layer is the shape template. This dissertation does not 

delve into extracting the shape of the artifact contained in the legacy MCAD. 
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Figure 4.6: Sample title-block template 
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This task is passed to Imagecom’s FlexiDesign technology and is not addressed 

in this current dissertation. The shape template is primarily geared toward identifying 

the information required by FlexiDesign such as the location of the geometry describing 

the shape. At this time the shape template is inferred from the sheets.xml template based 

on the location of the Notes and Title-block. Since overlapping elements are not 

considered good design the area of the drawing sheet not occupied by the Notes and 

Title-block is considered to belong to the Shape. 

The last template in this layer is the symbols template. Currently this template 

does not exist in an open format. The system uses Imagecom’s toolset to identify the 

symbols that are contained on the drawing file. Current drawing sample files contain 

exploded types of symbols that are composed of simpler geometric and textual entities. 

Numerous algorithms have been developed to extract these related geometric and 

textual entities to group them to identify the symbol based on certain commonly known 

patterns. For example to identify the surface finish symbol the system tries to identify 

two angular lines that intersect each other at one endpoint with an appropriate angle 

between them (the angle between them is a pattern value depending on different 

companies or projects or designers) with one line shorter than the other. Other shapes 

and variation of the surface finish symbol can also be extracted based on the standards 

of surface finish representation. A sample illustration of this symbol is shown in Figure 

4.7.  
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Figure 4.7: Surface Finish symbol 
 

Another example of symbols that are extracted by the system is the geometric 

dimensions and tolerance (or commonly known as GDT). These are typically 

represented as shown in Figure 4.8. The GDT is also extracted using Imagecom’s 

toolset and libraries with the extraction algorithms designed and implemented in the 

system currently being described. The GDT is primarily used for inspection after the 

artifact has been manufactured to confirm the quality of the part. 

 
 

Figure 4.8: Geometric Dimension and Tolerance symbol 
 

4.2.3 Extract Semantics 

After the system has extracted the syntax from the legacy MCAD file the next 

step is to extract semantics from the syntax classes based on the relationships between 

the syntax and semantics classes as shown in section 3.2.2. To find the semantics 

classes from the syntax the system uses numerous keywords files and pattern matching 
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algorithms. These keywords store the vocabularies used by re-designers that are used in 

various specific situations viz. specific domain, sub-domain or company. The current 

implementation of the keywords files uses flat text files with keywords separated by a 

new line characters. The patterns that the system uses is stored in terms of the identifiers 

stored in the template files described in sections 4.2.2.1 and 4.2.2.2. 

4.2.3.1 Keywords 

Based on the type of information that needs to be accessed, the corresponding 

keywords are stored with the rules database. Various portions of the rules are used as 

keywords e.g. the rule name or symbol are commonly used as keywords to match and 

select the appropriate rules. This allows a common location for the keywords that are 

identified throughout the data set and additionally provides a common store to relate the 

keywords with the information inferred about the keyword. 

To understand how the system uses the keywords to extract the semantics 

classes consider the materials keywords. The Materials semantics class depends on the 

Notes syntax class as shown in section 3.2.2. Once the system has extracted the Notes 

syntax class along with the text that is contained within the Notes, the next step is to run 

a comprehensive search for the material keywords within that text. All search results are 

stored and marked as possible materials that were stated for the particular drawing. 

Once a material keyword is found the system also reads the text that surround this 

material to identify more specific detail about the material. A similar process is 

performed for the manufacturing and standards keywords. 
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4.2.3.2 Common Patterns 

The templates described in sections 4.2.2.1 and 4.2.2.2 are used by the system to 

not only extract syntax but to also extract semantics. 

The title-block template for example stores the identifiers that help the system 

identify specific semantics classes. The complete listing of the semantics classes and the 

syntax classes from which they are extracted is recorded in section 3.2.2. The following 

is a description of how the system uses the title-block template to identify the following 

semantics classes – Standards, UsedOn, Part, Assembly, PartName, PartsList and 

Milieu. The title-block on a drawing is normally used as the placeholder for this kind of 

information. But unlike a human re-designer the system would need additional 

information to identify these classes merely from the text that is contained in the title-

block cells. To aid the system the title-block template stores identifiers that provide 

meaning for the content of the title-block cell. For example, cell number 1 from the 

title-block template contains the company information; cell number 2 contains the part 

name etc. Once the system has extracted the TitleBlock syntax class by using these 

identifiers from the title-block template the system extracts the semantics. 

In a similar manner the system also extracts the Inspection class by identifying 

meaning that surround the Symbols class. The system searches for texts that accompany 

the symbols that were extracted as part of the syntax. This is done based on a 

neighborhood algorithm depending on the orientation of the symbol. Currently the 

system can extract the texts that are oriented in the four regular, orthogonal quadrants 

and are present in a specific location near the symbol. For example consider the surface 
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finish symbol. The simplest form of the symbol is represented as shown in Figure 4.7 

but may also have a text value contained near the shorter leg. Figure 4.9 and Figure 4.10 

show two sample orientations of the surface finish symbols in the 1st and 3rd quadrant 

that the system can extract along with the surface finish value. 

 

 
 

Figure 4.9: Surface Finish symbol in the 1st quadrant 
 
 

 
 

Figure 4.10: Surface Finish symbol in the 3rd quadrant 
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4.2.4 Infer Pragmatics 

Having extracted the semantics classes the penultimate step that the system 

takes is to infer the pragmatics. The system employs numerous heuristic and retrieval 

methods to infer the pragmatics classes. These methods are described in the following 

sub-sections. The system uses heuristic algorithms to infer the Function, Flow, 

Application and Constraints classes and it uses retrieval methods to find the Domain, 

RelativeCost, QualityInspection, DesignEnvironment, Objectives, Constraints, 

SpecificProperties and Application classes. In the following sub-sections the method 

used to infer the specific pragmatics class is detailed. 

4.2.4.1 Infer Domain 

The system infers the domain to which the current drawing belongs to. It was 

documented in the design rationale capture analysis process that human re-designers use 

their existing knowledge and expertise to make such determinations. For the software 

system to make this determination in a similar manner requires access to similar 

knowledge. At the time of current implementation a data file, shown in Figure 4.11, is 

developed that allows the system to infer the Domain based on the PartName. The data 

file is implemented as a flat XML file. By using the definitions for the PartName from 

resources such as WordNet [92] and even common search engines such as Google [91], 

the system identifies the domain keywords within the search results. This overall 

methodology is shown in Figure 4.12. Using these identified keywords, the system then 

calculates probabilities for each domain and selects the domain with higher probability 

for further processing as the domain of the Part contained in the legacy CAD file. 
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Currently this data file is built manually but methods exist to automate building 

such a data file in an automated manner. This requires access to a dictionary such as the 

Dictionary of Mechanical Engineering by G. H. F. Nayler in digital form. The system 

could run heuristic searches on such a digital dictionary to determine the specific 

PartNames that belong in the Mechanical Engineering domain and use that to build the 

data file. Similar techniques with the relevant dictionaries for other domains could be 

used to build data files for all domains. This suggested automated method is out of 

scope of this dissertation due to lack of data needed. 

 

Figure 4.11: Sample from the Domain keywords data file 

4.2.4.2 Infer Function 

As detailed in section 3.2.3 the function can be inferred from the PartName and 

PartsList class. The system accomplishes this by applying heuristics on definitions 

retrieved from a lexical reference system. The lexical reference systems that are 

currently being used is the WordNet [92] database developed by Cognitive Science 

Laboratory at the Princeton University and the Google [91] search engine. The system 

accesses the WordNet database through COM (Component Object Model) interfaces, 

while access to the Google search engine is through simple internet access using an 

idealized web client. The methodology used by the system to infer the function of the 
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artifact contained in the drawing file is shown in Figure 4.13. It should be noted that the 

“Domain Function Taxonomy” data set that is shown in the Figure 4.13 is filtered to 

only include those functions that are relevant to the Domain that was retrieved in step 

4.2.4.1. 

 

Figure 4.12: Infer Domain 
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4.2.4.3 Infer Flow 

Similar to inferring function the system infers Flow from the PartName. The 

only difference for inferring Flow is that the system depends more on synonyms defined 

in the Domain Flow Taxonomy. This is because of the limited occurrence of the flows 

from the taxonomy in the PartName definition. This inference module is shown in 

Figure 4.14. 

4.2.4.4 Retrieve SpecificProperties 

By using the Materials class the system can retrieve SpecificProperties for the 

specific material. To retrieve the SpecificProperties the system uses a materials 

handbook that is available in digital format [93]. The system uses a wrapper around the 

data provided over the internet by [93] to extract the required properties. For example if 

the Material extract is Steel FS1025 then from [93] the system retrieves the web page 

that provides the material properties for FS1025. The implemented wrapper then 

extracts the SpecificProperties from this retrieved web page viz. Low Carbon Steel, 

Density, Modulus of Elasticity, Tensile Strength both Yield and Ultimate and Brinell 

Hardness.  

4.2.4.5 Infer Objectives and Constraints 

The system infers Objectives from the Materials class, the Company Name and 

the Manufacturing instructions. By using information from a Materials handbook 

provided in print format [94] copied over to a digital representation for easy access the 

system infers the Objective for the extracted Materials class. Inferences from the 

Company name are available from the Design Rationale Analysis process that was 
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detailed earlier, whereas inferences from Manufacturing instructions were gleaned from 

previously stated sources [88, 87, 86, 94]. 

 
Figure 4.13: Infer Function 
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Figure 4.14: Infer Flow 
 

The inferred Objectives typically describe key material properties such as 

weldability, machinability, formability, strength and hardness which are the selection 
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criteria for selecting the specific Material. To deal with the print format of data a 

simplified version is created in a template format illustrated in Figure 4.15. From the 

Materials class the system retrieves the SpecificProperties from section 4.2.4.4 and 

using the information from the SpecificProperties the system infers the Objectives from 

the template file. This inference module is shown in Figure 4.16. 

 
 

Figure 4.15: Materials Objectives and Constraints Template 
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Figure 4.16: Infer Objectives and Constraints from Materials (example) 
 

4.3 System Implementation 

The system was implemented using the Visual C++ programming language. The 

extraction, inference and retrieval modules were written as components, primarily 

libraries. Additionally in an order to take advantage of the digital dictionaries and online 

materials handbook the Visual C# language was used. Visual C# allows easy access to 

COM objects and is portable across operating systems though the current system was 

developed, deployed and tested only on the Windows Operating System. 
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To ensure that the data generated and used by the system is re-usable in other 

systems and projects most of the data was saved as text files or XML templates. The 

design of this data store was done using the Visual Studio Integrated Development 

Environment (IDE) 2005. Since the data store are open formats any text editor can be 

used to modify these files. 

Additionally the extraction process depended on the libraries and toolset 

provided by Imagecom. Imagecom also provided the functionality to read the DXF 

files. Imagecom’s toolset are implemented as libraries and the current system calls the 

methods and uses the properties by dynamically linking to the libraries. 

4.4 Conclusion 

This chapter has provided the algorithms required to extract the context and 

infer the design rationale from the entities on the drawing file, specifically the DXF file. 

The system is implemented as libraries allowing multiple client access. Currently the 

design rationale is stored as objects but output as text so the results need to be collected 

for the validation that is detailed in chapter 5. 
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CHAPTER 5 

RESULTS AND VALIDATION 

 

Having provided in detail the approach and the software architecture of the 

system developed to automate the capture process, this chapter provides the output of 

the system and also the output recorded during the design rationale capture analysis 

process described in section 3.1.1. The two sets of outputs are used to validate the stated 

approach and also the effectiveness of the system. Also described is the rationale behind 

choosing this proposed validation method as opposed to other possible validation 

techniques. 

5.1 Selecting a Validation Method 

Two relevant validation methods were suggested during the course of the 

development of the software system. Of these one method was finalized upon based on 

the advantages it offered. The following sub-sections details these two methods, their 

respective advantages and disadvantages and finally selects one of these methods. 

5.1.1 Validation Method 1 

The first validation method suggested requires a large sample set of more than a 

100 drawing files. This sample set needs to be analyzed by human re-designers and the 

software system. The results of both analyses are collected using the output format 

detailed later. These results are then compared for quality and accuracy to validate the 
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effectiveness of the proposed approach and developed software system. The following 

are the advantages and disadvantages of using this validation method. 

5.1.1.1 Advantages 

The large sample set will prove that the approach and developed software 

system do indeed work as proposed. By ensuring random selection process of the 

drawings it can be shown that the software system is capable of handling parts of 

varying complexity and is as effective as a human re-designer in capturing design 

rationale.  

5.1.1.2 Disadvantages 

Since the system needs to handle a large sample set of drawing files with 

varying complexity, it needs to be an extensive system with numerous templates and 

keywords and large amounts of inference information. Such monolithic systems are 

difficult to develop as part of an individual’s dissertation as this normally requires 

access to large amounts of resources. Additionally such an approach would be a hit or 

miss one, where the results of the human re-designers are used to merely validate the 

software system. The system does not have access to design rationale captured by the 

human re-designers and analyzing larger number of parts will not serve to improve the 

effectiveness of the system. 

5.1.2 Validation Method 2 

The second validation method suggested requires an initial categorization of the 

drawing files based on their complexity. The development of software system should 

take this categorization into account. The proposed system should be developed by 
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starting with the lowest level of complexity and become progressively able to handle 

more complex drawings. This requires that the system be extensible. 

5.1.2.1 Advantages 

The focus is not analyzing a large sample set of drawing files but instead on the 

quality and effectiveness of the design rationale captured by the software system. This 

provides an easier method to determine success of the system, as by developing a 

system that can address a majority of the drawings at the lowest level of complexity we 

can ensure that the output of the system can rival that of a human re-designer. There is 

no need to develop a monolith system as by developing an extensible system we can 

ensure that the system can progressively handle higher levels of complexity. 

Additionally by developing a system that can take advantage of the design rationale 

captured by the re-designers the quality of the system will continue to grow. 

5.1.2.2 Disadvantages 

The disadvantage of selecting the second validation method lies in the 

development of an extensible system. To take advantage of the design rationale 

captured by the re-designers the system must be able to take advantage of both the 

increasing database that the re-designer has access in terms of experience and 

knowledge as well as the inference techniques that the re-designer employs. 

5.1.3 Selecting a Validation method 

This dissertation suggest selecting the second validation method over the first 

and effectively addressing the issues related to the second validation method as follows. 

By using open database formats and an open, modular architecture extensibility can be 
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added to the system. The open formats allow the number of templates and keywords 

that the system recognizes to be easily increased thereby increasing the amount and 

quality of design rationale that it captures. Additionally the second validation method 

necessitates clearly defining the various complexity levels of the drawing files. In the 

following sub-sections these issues are addressed. 

5.1.3.1 Definition of drawing file’s complexity 

Four levels of complexity are suggested as follows: 

• Simple: The Simple drawing files contain standard or at least consistent 

sheet sizes. The entities are all of known types with known attributes and 

are well laid out on the sheet. The drawing file uses layers appropriately 

by cleanly separating the various syntax groups on different layers. 

There are no keywords on the simple drawing file that the system is 

unaware of. Finally the file is less busy with as few entities as needed. 

• Medium: The Medium drawing files contain more entities than the 

Simple and are busier. There are keywords that the system does not 

recognize. Multiple views are added for the shape of the part and may 

contain additional inferences. Bill of Materials or Part Tables may be 

present that provides rationale regarding Assembly or Application. Other 

attributes remain the same as the Simple drawing files. 

• Medium-complex: The Medium-complex drawing files contain 

numerous entities and the entities are laid out more poorly than the 

Medium level. This would necessitate additional capture methods viz. 
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semi-automatic or interactive methods to extract the context. Other 

attributes remain the same as the Medium drawing files. 

• Complex: The complex drawing files are those that contain very little 

context. They have no standard sheet sizes, few layers to separate the 

different entity types and may contain little or no keywords. The files 

primarily contain geometry which provides little design rationale. 

5.2 Output Format 

This section details the output format chosen to display the design rationale. The 

format was chosen for the ease of use by the re-designers.  It also simplifies the process 

of comparison required for validation. To fill out the form the re-designer needs to 

simplify answer the question based on the instructions provided for each individual 

question. If multiple answers are required the re-designer merely needs to repeat the 

answer format as many times as necessary. To answer the questions the re-designers 

were provided with a sample set of drawings and this questionnaire to answer. This 

questionnaire can be filled out with an editor such as Microsoft Office Word or 

OpenOffice Writer.  

Table 5.1: Design Rationale Capture Analysis Output Format 

1. What function, flow and domain can you ascertain for the part that is 

contained in the drawing? These can be identified from the name of the 

part, if appropriately named. 

i. State part name =  

 



 

 136 

Table 5.1 - continued 
ii.  Infer function  =  

iii.  Infer flow  =  

iv. Infer domain  =  

2. Can you determine if the represented part is a part of an assembly? If 

yes, identify the assembly constraints. These would be typically 

identified from the geometric dimensions and tolerance that are present 

on the drawing. In addition state if possible the type of assembly 

constraint that is represented. 

a. State dimension with tolerance =  

i. Infer constraint =  

3. Identify the specified material for the part. This can be found in the 

notes section of the drawing. Infer the reason this material was chosen 

viz. the Objectives and Constraints for selecting the specified material. 

a. State material =  

i. Infer objective  =  

ii.  Infer constraint =  

4. Retrieve specific properties for the material 

a. Modulus of Elasticity  =  

b. Tensile Strength, Yield =  

c. Tensile Strength, Ultimate =  

d. Hardness, Brinell  =  
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Table 5.1 - continued 
e. Relative Cost   =  

f. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)   =  

g. Density   =  

5. Identify the company name that is stated on the drawing. From the 

stated company name infer the design environment (viz. commercial, 

governmental, US Army etc) 

a. State company name =  

i. Infer design environment =  

ii.  Infer possible goals (e.g.) 

1. Reliability          =  

2. Shelf life            =  

3. Cost priority       =  

6. Identify all manufacturing instructions stated on the drawing. Infer 

possible objectives and constraints for the manufacturing instructions 

(e.g. quench and temper to increase surface hardness) 

a. Manufacturing  =  

i. Objective =  

ii.  Constraint =  
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5.3 Design Rationale captured by re-designers 

With that output format available this section provides the design rationale 

captured by the re-designers. Only a sample set of results are presented here. The initial 

capture analysis process was done with two candidates with six drawings. The second 

analysis process was done with two candidates with three drawings. The results that are 

presented here are from the second analysis process. It should be noted that the re-

designers who were interviewed for the second analysis may be considered 

inexperienced to intermediately experienced re-designers. Candidate 1 holds a Doctoral 

degree and has a little more than a year experience as a junior designer at Siemens. 

Candidate 2 holds a Masters’ degree with more than 3 years experience. 

5.3.1 Sample drawing 1 

Table 5.2: Design Rationale captured from sample drawing 1 by re-designer 

1. What function, flow and domain can you ascertain for the part that is 

contained in the drawing? These can be identified from the name of the 

part, if appropriately named. 

b. State part name = Yoke 

i. Infer function  = Connect 

ii.  Infer flow  = Force 

iii.  Infer domain  = Mechanical 

iv. Can you determine if the represented part is a part of an 

assembly? If yes, identify the assembly constraints.  

 
 



 

 139 

Table 5.2 - continued 
These would be typically identified from the geometric 

dimensions and tolerance that are present on the 

drawing. In addition state if possible the type of 

assembly constraint that is represented. 

c. State dimension with tolerance = -0.005, +0.010 

i. Infer constraint = Assembly mate 

2. Identify the specified material for the part. This can be found in the notes 

section of the drawing. Infer the reason this material was chosen viz. the 

Objectives and Constraints for selecting the specified material. 

d. State material = Forging Steel, FS 1018 

i. Infer objective = Good Machinability 

ii.  Infer objective   =           High tensile strength 

iii.  Infer constraint =  

3. Retrieve specific properties for the material 

e. Modulus of Elasticity = 29700 psi 

f. Tensile Strength, Yield = 39900 psi 

g. Tensile Strength, Ultimate = 39900 psi 

h. Hardness, Brinell  = 126 

i. Relative Cost  = 0.8 

j. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)  = 52% 
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Table 5.2 - continued 
k. Density   = 0.284 lb/in³ 

4. Identify the company name that is stated on the drawing. From the stated 

company name infer the design environment (viz. commercial, 

governmental, US Army etc) 

l. State company name = US Army Tank-Automotive and 

Armaments Command 

i. Infer design environment = US Army 

ii.  Infer possible goals (e.g.) 

1. Reliability          =           High 

2. Shelf life            =           Long 

3. Cost priority       =           Low 

5. Identify all manufacturing instructions stated on the drawing. Infer 

possible objectives and constraints for the manufacturing instructions 

(e.g. quench and temper to increase surface hardness) 

m. Manufacturing  =  

i. Objective =  

Constraint = 
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5.3.2 Sample drawing 2 

Table 5.3: Design Rationale captured from sample drawing 2 by re-designer 

1. What function, flow and domain can you ascertain for the part that is 

contained in the drawing? These can be identified from the name of the 

part, if appropriately named. 

a. State part name = Arm, Support 

i. Infer function  = Support 

ii.  Infer flow  = Force 

iii.  Infer domain  = Mechanical 

2. Can you determine if the represented part is a part of an assembly? If 

yes, identify the assembly constraints. These would be typically 

identified from the geometric dimensions and tolerance that are present 

on the drawing. In addition state if possible the type of assembly 

constraint that is represented. 

a. State dimension with tolerance = Depth +/- 1/64 

i. Infer constraint = Assembly mate 

3. Identify the specified material for the part. This can be found in the 

notes section of the drawing. Infer the reason this material was chosen 

viz. the Objectives and Constraints for selecting the specified material. 

a. State material = Forged Steel 4145H 

i. Infer objective = Good Machinability 
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Table 5.3 - continued 
ii.  Infer objective   =           High tensile strength 

iii.  Infer objective   =           Rockwell hardness C32 

iv. Infer constraint =  

4. Retrieve specific properties for the material 

a. Modulus of Elasticity = 29700 psi 

b. Tensile Strength, Yield = 39900 psi 

b. Tensile Strength, Ultimate = 39900 psi 

c. Hardness, Brinell  = 126 

d. Relative Cost  = 0.8 

e. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)  = 52% 

f. Density   = 0.284 lb/in³ 

5. Identify the company name that is stated on the drawing. From the 

stated company name infer the design environment (viz. commercial, 

governmental, US Army etc) 

a. State company name = US Army Tank-Automotive 

and Armaments Command 

i. Infer design environment = US Army 

ii.  Infer possible goals (e.g.) 

1. Reliability          =           High 

2. Shelf life            =           Long 
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Table 5.3 - continued 
3. Cost priority       =           Low 

6. Identify all manufacturing instructions stated on the drawing. Infer 

possible objectives and constraints for the manufacturing instructions 

(e.g. quench and temper to increase surface hardness) 

a. Manufacturing  = Quench and temper 

v. Objective = Increase hardness 

 

5.3.3 Sample drawing 3 

Table 5.4: Design Rationale captured from sample drawing 3 by re-designer 

1. What function, flow and domain can you ascertain for the part that is 

contained in the drawing? These can be identified from the name of 

the part, if appropriately named. 

a. State part name = Arm, Support, Suspension 

i. Infer function  = Support 

ii.  Infer flow  = Force 

iii.  Infer domain  = Mechanical 
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Table 5.4 - continued 
2. Can you determine if the represented part is a part of an assembly? If 

yes, identify the assembly constraints. These would be typically 

identified from the geometric dimensions and tolerance that are 

present on the drawing. In addition state if possible the type of 

assembly constraint that is represented. 

a. State dimension with tolerance = Depth +/- 1/32  

i. Infer constraint = Assembly mate 

3. Identify the specified material for the part. This can be found in the 

notes section of the drawing. Infer the reason this material was chosen 

viz. the Objectives and Constraints for selecting the specified 

material. 

a. State material = Forged Steel 4145H 

i. Infer objective  = Good machinability 

ii.  Infer constraint              =  

b. State material = Forged Steel 4337H 

i. Infer objective  = Good machinability 

ii.  Infer constraint             =  

4. Retrieve specific properties for the material 

a. 4145H 

i. Modulus of Elasticity  = 29700 ksi 

ii.  Tensile Strength, Yield =  
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Table 5.4 - continued 
iii.  Tensile Strength, Ultimate =  

iv. Hardness, Brinell  = 208 

v. Relative Cost   =  

vi. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)  = 60% 

vii.  Density  = 0.284 lb/in3 

b. 4337H 

i. Modulus of Elasticity  =  

ii.  Tensile Strength, Yield =  

iii.  Tensile Strength, Ultimate =  

iv. Hardness, Brinell  =  

v. Relative Cost   =  

5. Machinability (Based on AISI 1212 steel. as 100%  

Machinability)              =  

vi. Density  =  

6. Identify the company name that is stated on the drawing. From the 

stated company name infer the design environment (viz. commercial, 

governmental, US Army etc) 

a. State company name = US Army Tank-Automotive 

and Armaments Command 

i. Infer design environment     = US Army 
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Table 5.4 - continued 
ii.  Infer possible goals (e.g.) 

1. Reliability          =         High 

2. Shelf life            =         Long 

3. Cost priority       =         Low 

7. Identify all manufacturing instructions stated on the drawing. Infer 

possible objectives and constraints for the manufacturing instructions 

(e.g. quench and temper to increase surface hardness) 

a. Manufacturing  =  

i. Objective =  

viii.  Constraint =  

 

5.4 Design Rationale captured by software system 

The following section presents the design rationale captured by the software 

system. The output shown here is formatted to match the results of the capture analysis 

process performed with the re-designers. This is to simplify the comparison process. 

Table 5.5: Design Rationale captured from sample drawing 1 by software 

1. What function, flow and domain can you ascertain for the part that 

is contained in the drawing? These can be identified from the name 

of the part, if appropriately named. 

a. State part name = Yoke 
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Table 5.5 - continued 
i. Infer function  = Join, Support, 

Connect 

ii.  Infer flow  = Motion 

iii.  Infer domain  = Mechanical 

2. Can you determine if the represented part is a part of an 

assembly? If yes, identify the assembly constraints. These would 

be typically identified from the geometric dimensions and 

tolerance that are present on the drawing. In addition state if 

possible the type of assembly constraint that is represented. 

a. State dimension with tolerance = Diameter -0.005 

i. Infer constraint = Assembly mate (Shaft) 

3. Identify the specified material for the part. Infer the reason this 

material was chosen viz. the Objectives and Constraints for 

selecting the specified material. 

a. State material = FS 1018 

i. Infer objective  = Good 

weldability, good machinability, good 

formability 

ii.  Infer constraint = low strength, low 

hardness 
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Table 5.5 - continued 
4. Retrieve specific properties for the material 

a. FS 1018 

i. Modulus of Elasticity  = 29700 ksi 

ii.  Tensile Strength, Yield = 39900 psi 

iii.  Tensile Strength, Ultimate = 63800 psi 

iv. Hardness, Brinell  = 126 

v. Relative Cost   = 1.6 

vi. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)   = 52% 

vii.  Density   = 0.284 lb/in3 

b. FS 1025 

i. Modulus of Elasticity  = 29700 ksi 

ii.  Tensile Strength, Yield = 39900 psi 

iii.  Tensile Strength, Ultimate = 63800 psi 

iv. Hardness, Brinell  = 126 

v. Relative Cost   = 1.6 

vi. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)   = 52% 

vii.  Density   = 0.284 lb/in3 
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Table 5.5 - continued 
5. Identify the company name that is stated on the drawing. From 

the stated company name infer the design environment (viz. 

commercial, governmental, US Army etc) 

a. State company name = US Army Tank-

Automotive and Armaments Command 

i. Infer design environment = US Army 

ii.  Infer possible goals (e.g.) 

4. Reliability          =           High 

5. Shelf life            =           Long 

6. Cost priority       =           Low 

6. Identify all manufacturing instructions stated on the drawing. 

Infer possible objectives and constraints for the manufacturing 

instructions (e.g. quench and temper to increase surface hardness) 

a. Manufacturing  =  

i. Objective =  

7. Constraint =  

 

Table 5.6: Design Rationale captured from sample drawing 2 by software 

1. What function, flow and domain can you ascertain for the part 

that is contained in the drawing? These can be identified from the 

name of the part, if appropriately named. 
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Table 5.6 - continued 
a. State part name = Arm, Support 

i. Infer function  = Support, Cover 

ii.  Infer flow  =  

iii.  Infer domain  = Mechanical 

2. Can you determine if the represented part is a part of an 

assembly? If yes, identify the assembly constraints. These would 

be typically identified from the geometric dimensions and 

tolerance that are present on the drawing. In addition state if 

possible the type of assembly constraint that is represented. 

a. State dimension with tolerance = Diameter 0.173-

0.203, 0.44-0.56 

i. Infer constraint = Assembly mate 

3. Identify the specified material for the part. This can be found in 

the notes section of the drawing. Infer the reason this material 

was chosen viz. the Objectives and Constraints for selecting the 

specified material. 

a. State material = 4145H, 4147H, 86B45H 

i. Infer objective = Weldability and 

Machinability better than low carbon steel, good 

for hot formed 
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Table 5.6 - continued 
ii.  Infer constraint = medium strength, and 

hardness 

4. Retrieve specific properties for the material 

a. 4145H, 4147H, 86B45H 

i. Modulus of Elasticity  = 29700 ksi 

ii.  Tensile Strength, Yield =  

iii.  Tensile Strength, Ultimate =  

iv. Hardness, Brinell  = 208 

v. Relative Cost   =  

vi. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)   = 60% 

vii.  Density   = 0.284 lb/in3 

5. Identify the company name that is stated on the drawing. From 

the stated company name infer the design environment (viz. 

commercial, governmental, US Army etc) 

a. State company name = US Army Tank-

Automotive and Armaments Command 

i. Infer design environment = US Army 

ii.  Infer possible goals (e.g.) 

7. Reliability          =           High 

8. Shelf life            =           Long 
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Table 5.6 - continued 
9. Cost priority       =           Low 

6. Identify all manufacturing instructions stated on the drawing. 

Infer possible objectives and constraints for the manufacturing 

instructions (e.g. quench and temper to increase surface hardness) 

a. Manufacturing  =  

1. Objective =  

2. Constraint =  

7. Identify the Application of the part. This can be retrieved from 

the UsedOn information that is stated on the drawings. 

a. State UsedOn variable     =         M113A1 

iii.  Application          =          Armed personal carrier 

 

Table 5.7: Design Rationale captured from sample drawing 3 by software 

1. What function, flow and domain can you ascertain for the part 

that is contained in the drawing? These can be identified from the 

name of the part, if appropriately named. 

a. State part name = Arm, Support, Suspension 

i. Infer function  = Support, Cover 

ii.  Infer flow  =  

iii.  Infer domain  = Mechanical 
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Table 5.7 - continued 
2. Can you determine if the represented part is a part of an 

assembly? If yes, identify the assembly constraints. These would 

be typically identified from the geometric dimensions and 

tolerance that are present on the drawing. In addition state if 

possible the type of assembly constraint that is represented. 

a. State dimension with tolerance = +/- 1/64, +/- 

1/32 

i. Infer constraint = Assembly mate 

3. Identify the specified material for the part. This can be found in 

the notes section of the drawing. Infer the reason this material 

was chosen viz. the Objectives and Constraints for selecting the 

specified material. 

a. State material = 4145H, 4147H, 86B45H 

i. Infer objective  = Weldability and 

Machinability better than low carbon steel, good 

for hot formed,  

ii.  Infer constraint = medium strength, 

medium hardness 

4. Retrieve specific properties for the material 

a. 4145H, 4147H, 86B45H 

i. Modulus of Elasticity  = 29700 ksi       
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Table 5.7 - continued 
ii.  Tensile Strength, Yield =  

iii.  Tensile Strength, Ultimate =  

iv. Hardness, Brinell  = 208 

v. Relative Cost   =  

vi. Machinability (Based on AISI 1212 steel. as 100% 

Machinability)   = 60% 

vii.  Density   = 0.284 lb/in3 

5. Identify the company name that is stated on the drawing. From 

the stated company name infer the design environment (viz. 

commercial, governmental, US Army etc) 

a. State company name = US Army Tank-

Automotive and Armaments Command 

i. Infer design environment = US Army 

ii.  Infer possible goals (e.g.) 

1. Reliability          =           High 

2. Shelf life            =           Long 

3. Cost priority       =           Low 

6. Identify all manufacturing instructions stated on the drawing. 

Infer possible objectives and constraints for the manufacturing 

instructions (e.g. quench and temper to increase surface hardness) 

a. Manufacturing  =   
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Table 5.7 - continued 
1. Objective =  

2. Constraint =  

7. Identify the Application of the part. This can be retrieved from 

the UsedOn information that is stated on the drawings. 

a. State UsedOn variable     =          

viii.  Application          =     

 

5.5 Results of comparison 

Comparing the design rationale captured by the software system with the re-

designers’ output it can be seen that the design rationale is of the same quality. It should 

be noted that the re-designers whose results are presented in this dissertation are 

primarily inexperienced to medium experienced re-designers. This implies that the 

system is mature enough to capture design rationale comparable to inexperienced to 

medium experienced re-designers. 
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