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ABSTRACT

OPTIMIZATION OF THE TOOL PATH

IN A ROBOTIC ENVIRONMENT

Publication No.

Mukund Venkatachari Narasimhan, PhD.

The University of Texas at Arlington, 2006

Supervising Professor: Bo Ping Wang

The rising costs and demand coupled with shrinking energy generating
resources has triggered the need for optimum use of energy resources, minimizing the
overhead costs and maximizing the profits. Robots have been long touted as a fit
replacement of human labor force in manufacturing sectors. Slowly there is increased
presence of robots in automobile and electronic industries. Typically they are used for
welding, painting, ironing, assembly, pick and place, inspection, and testing. Mass
production, fulfilling the ever increasing demand, can be accomplished by robots
because of their precision, speed of operation and high endurance capabilities.

This dissertation comprises of two parts, the first part concentrates on

optimizing the tool path. The path could be either a closed loop where in the robotic

\%



manipulator would get back to the home position after completing the task or could be
an open segment where the manipulator would start and end at different locations after
the completion of the task. Optimization of the tool path is similar to solving a
Traveling Salesman Problem. A technique of insertion and reordering is applied to
obtain an optimized tool path.

The second part deals with the direct and inverse kinematics of the given robot
configuration. A new notation, which takes into account all the six parameters necessary
to define a rigid body in space, is developed to analyze kinematic analysis of industrial
robots. Using the same notation, an inverse kinematics solver is used to compute the
joint parameters necessary for the robot manipulator to reach the target point in space.
This solver uses an iterative procedure to solve complex non-linear inverse kinematics
problems. This solver tested on robots with revolute or prismatic or a combination of
both yielded satisfactory results. The same solver can be used to analyze cylindrical,
helical, spherical, combinations of all joints, planar and spatial mechanisms.

The combination of optimizing the tool path and use of robots in the mass
production of high demand products would go a long way in minimizing the costs,

maximizing the profits and as well as delivering supply on time.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Robots are a tailor made fit for the electronics industry. In both military and
consumer electronics, production would be next to impossible without robotics for
many reasons, ranging from quality and quantity to ergonomics and economics [1].
Robots are used for a variety of tasks like assembling circuit boards, installing the
circuit boards onto the chassis of electronics, inspection, testing, pick and place,
welding, soldering, spray painting and the list continues. Robots are the probable
solution to keep tabs on high labor costs, high production and efficiency. In the future
as electronics get smaller and more sophisticated, robotics will be increasingly called
upon to assemble, pack, inspect and test these micro electronic products.

The rising costs and demand coupled with shrinking energy generating
resources has triggered the need for optimum use of energy resources, minimizing the
overhead costs and maximizing the profits. This is where optimization comes into
picture. So the objectives of this dissertation are developing a new algorithm to
optimize the tool path of the robotic manipulator, developing a better joint
transformation technique using a new notation terminology, developing a new inverse

kinematics solver using this notation.



The robotic tool has to traverse to various locations for machining, assembly
and for pick or place operations. These locations or co-ordinate points are similar to the
nodes/cities in Traveling Salesman Problem. Therefore the optimization of the tool path
is similar to obtaining a solution to a symmetric TSP. Insertion and Re-ordering
Algorithm is used to obtain the solution to TSP, the same algorithm could also be used
to solve open segment path with fixed start and end points.

A new notation, which takes into account all the six parameters necessary to
define a rigid body in space, is developed to analyze industrial robots. Transformation
matrices, thus generated from these parameters are used to study direct kinematics and
for generating workspace or work envelop of the given robotic configuration. For the
robotic manipulator to reach the intended target point, one must figure out the joint
parameter values. Inverse Kinematics deals with determining these parameter values,
but solving this is a bit hard as the equations involved are highly nonlinear. A new
iterative algorithm is used to generate accurate solutions by determining the joint
parameter values. This algorithm produced satisfactory results when tested on robots
which had revolute, prismatic and an arbitrary combination of revolute and prismatic
joints. The algorithm can also be extended to analyze other types of joints like
cylindrical, helical, spherical joints and as well as planar & spatial mechanisms. All
these algorithms are integrated into a software tool MyRobot. This CAD/CAE tool,
built using java and java3d, has a good user friendly interface. The main reason for
choosing this programming language is because of its platform independent

characteristic. This makes it easy for the application to run on any operating systems.



Any kind of robot with a combination of revolute and prismatic joint pairs could
be built without any hassle. One can study the direct kinematics, workspace generation,
inverse kinematics, optimized path planning capabilities of the modeled robot.

1.2 Background

The Traveling Salesman Problem (TSP) is a deceptively simple combinatorial
optimization problem. The problem is about a salesman who wants to visit a number of
cities cyclically. The conditions being, he has to visit each city once and needs to get
back to the start city at the end of the tour. The hard part is due to the fact that if one
considers n cities, then one has to probably determine them systematically and finally
find the minimum path length. This requires atleast (n-1)! steps, n>3. So if one
considers a problem with 10 cities then its equal to figuring out the minimum of 9!
equal to 362880 different paths. This will increase rather exponentially as n increases
and it will take ages to verify each route and figure out the minimum length.

Dorigo and Gambardella [2] developed a distributed algorithm that was applied
to get a solution for the Traveling Salesman Problem (TSP). Real ants are capable of
finding the shortest path from a food source to their nest without using visual cues by
exploiting pheromone information. The distributed algorithm used a set of cooperating
agents called ants to find good solutions to TSP. These Ant agents were shown to
cooperate using an indirect form of communication mediated by a pheromone that get
deposited on the edges of the TSP graph while building solutions. An evolutionary
algorithm for solving traveling salesman problem was proposed by Tsai et al [3]. They

enhanced the ability of exploration and exploitation by incorporating global and local



searches and developed a neighbor-join operator. A novel meta-heuristic approach
called Ant Colony Optimization with Multiple Ant Clans was developed by Cheng-Fa
Tsai et al [4]. This was based on parallel genetic algorithm that searches the solution
space to obtain Global Minimum. This technique was used to solve TSP. For solving
large TSP, two other techniques Multiple Nearest Neighbor and Dual Nearest Neighbor
were used.

A hybrid algorithm for solving vehicle route planning problems was proposed
by Lee [5]. This algorithm combined both ant colony optimization (ACO) and genetic
algorithm (GA) and used the prominent features of respective techniques. This way this
technique avoided premature convergence and was able to fetch feasible solutions. A
combination of local optimization heuristics and phenotype genetic operators was used
by Pullan [6] to solve TSP. The local optimization heuristics reduced the search
domain, while the phenotype genetic operators eliminated the creation of invalid tours
and assisted the generation of sub-optimal schema. Xuan and Li [7] introduced a new
Local Evolutionary Algorithm (LEA) to solve the TSP. The algorithm used fast local
search methods in neighborhood search and utilized the robustness of evolutionary
methods, in global search in order to obtain global optimum. Cuiru Wang [8] et al used
Modified Particle Swarm Optimization technique to solve the typical combinatorial
optimization problem, the Traveling Salesman Problem. Particle Swarm Optimization
algorithm was modified based on the concepts of Adjustment Operator and Adjustment

Sequence.



The word Robot is derived from a Czech word "robota", which means tedious
labor, serf or one in servient labor. Robot Institute of America [9] in 1979 defined as "A
reprogrammable, multifunctional manipulator designed to move materials, parts, tools,
or specialized devices through various programmed motions for the performance of a
variety of tasks". Merriam-Webster Online Dictionary defines it as "a machine or device
that looks like a human being and automatically performs complicated and repetitive
tasks". The term "robot" was first used in a play called "R.U.R." or "Rossum's Universal
Robots" (1921) by the Czech writer Karel Capek. From this began the concept of robot
and ever since they have undergone a lot of developments. One can find robots
employed in a variety of tasks ranging from simple pick and place to handling
hazardous radio active materials, arc welding, spray painting, assembly and inspections.
Now a days, they assist medical doctors to perform precise non invasive medical
surgeries. The increasing needs for high productivity, desired quality and lower costs
are pushing the industries to look towards computer based automated systems. The
robots bring many benefits to workers and to company owners by taking care of dirty,
difficult and dangerous jobs and by being cost effective [10]. The integration of
computer to control these automated systems will increase productivity. Some of the
fields where computers are extensively used include CAD/CAM, computer simulations
& modeling and analysis.

Since 1950, many developments of computer software packages have taken
place in the field of mechanism, which include robots. Among them are DRAM

(Dynamic Response of Articulated Machinery) by Chace and Smith, IMP (Integrated



Mechanisms Program) by Sheth and Uicker, ADAMS (Automated Dynamic Analysis
of Mechanical Systems) by Orlandea and Chace, DADS (Dynamic Analysis and Design
System) by Wehage and Haug, LINCAGES (LINkages Computer Analysis and
Graphically Enhanced Synthesis) by Minnesota Technology Transfer, IGRIP from
Delmia corporation, DYMES (Dynamics of Mechanical Systems), COSMOS/Motion
by Solid Works Corporation, Pro/Mechanica Motion simulation package by PTC,
RobotAssist by New River Kinematics, Roboworks from Newtonium, ROBOTICA,
SDS, WORKSPACE, DynaMech and others.

Kinematics is the science of motion, which treats motion without regard to the
forces that causes it [11]. Kinematics is one of the most important fields in robotic
engineering since robot manipulation can only be achieved by the control of
manipulator or the end effector and its associated parts, tools, and objects in Euclidean
three dimensional space. The main objective in robot manipulation is the ability to
position the end effector at a specified location with specified orientation. It can be
reached by solving the direct and inverse kinematic specifications for a particular robot
manipulator. The direct kinematics is used to determine the joint displacements,
velocities, accelerations, and all higher order derivatives of the position variables (with
respect to time or any other variable(s)). The relative segmental displacement, velocity
and acceleration are determined from the prescribed geometric specifications of the
robot. On the other hand, the inverse kinematic problems for robot manipulators deals
with calculating a possible sets of joint parameters which could be used to attain the

given position and orientation of the manipulator.



Mechanisms can be divided into planar mechanisms and spatial mechanisms,
according to the relative motion of the rigid bodies. In planar mechanisms, all of the
relative motions of the rigid bodies are in one plane or in parallel planes. If there is any
relative motion that is not in the same plane or in parallel planes, the mechanism is
called the spatial mechanism. In other words, planar mechanisms are essentially two
dimensional while spatial mechanisms are three dimensional.

An open chain mechanism, commonly known as a robot or manipulator is an
interconnection of rigid links, connected at the joints that allow relative motion of the
adjacent links. The relationships and behavior of these links and joints can be modeled
by using symbolic notation and deriving transformations from it.

Denavit and Hartenberg, in 1955, modeled and analyzed mechanical systems by
developing the first symbolic notation [12]. This notation, D-H notation employs only
four parameters (a, a, B, s) to describe the shape and joint characteristics of each link.
This notation is used extensively in the analysis of robotic manipulators and
mechanisms. But some complications arise while analyzing certain mechanisms as D-H
notation only defines relative joint positions, due to its joint definition. It also fails when
adjacent joint axes are not parallel or normal to each other. A modified notation was
developed by Sheth and Uicker in 1972 [13], whose purpose was to improve and extend
the use of D-H notation to determine the exact joint position in space. S-U notation
introduced six constant joint parameters (a, b, c, a, B, y), plus a variable part that
contains the same number of parameters as the degrees of freedom of the joint. The

Cylindrical-Bryant angles notation or C-B notation in short, was developed by Yih in



1991 to model and analyze spatial robots [14]. This uses cylindrical and bryant angles
transformation matrices to describe the shape and joint characteristics of each link.
Unlike D-H notation, C-B notation permits determination of exact joint positions in
space. This exact joint position is the actual location of the physical joint center in
space. This notation uses five parameters (0, h, r, a, f) and in some cases six parameters
(6, h, 1, a, B, y) to describe the link shape and joint behavior. Even this notation has a
problem as there are no variables to represent the transformation in the y-direction.

Roth [15] determined that the reachable workspace of a general manipulator
was bounded by the surface of a generalized torus. Gupta and Roth [16] extended this
approach by considering n degree-of-freedom manipulators. Kumar and Waldron [17]
introduced the concept of dexterous workspace. With regard to workspace
determination of serially linked manipulators, important work was done by Tsai and
Soni [18]. They solved the accessible region of planar two link robot arms in terms of
equivalent area, and developed an algorithm to observe the workspace for n-R robots.
Ceccarelli [19-20], developed a formulation for the workspace boundary of general N-
revolute manipulators as well as proposed in the form of Feasible Workspace Regions
to determine regions within which a toroidal workspace can be prescribed for a feasible
dimensional design of two-revolute manipulators. An optimization approach to
computing the boundaries of the workspaces of planar manipulators was developed by
J.A. Snyman et al. [21]. A.B. Kyatkin and G.S. Chirikjian [22] synthesized binary
manipulators using Fourier transform on the Euclidean group. Yunfeng Wang and
Gregory S. Chirikjian [23] developed a diffusion-based algorithm for workspace
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generation of highly articulated manipulators. The diffusion-based algorithm makes the
workspace generation problem as simple as solving a diffusion-type equation which has
an explicit solution. The equation is a partial differential equation defined on the motion
group and describes the evolution of the workspace density function depending on the
manipulator length and kinematic properties. Analytical methods for identifying the
boundary to the workspace of serial mechanical manipulators and the boundary to voids
in the workspace as well as a complete solution to the problem of determining singular
behavior in the workspace of open-chain mechanisms were developed by Abdel-Malek
et al. [24-25]. Lai and Menq [26] conducted a theoretical study on dexterous workspace
of robotic manipulators and developed a method based on the concept that the boundary
of the robot's dexterous workspace governed by the boundary of W,(4), where W, (4) is
the reachable space of joint 4 when joints 1-3 were allowed to rotate freely. Zhang and
Sikka [27] derived a complete description of the workspace of a two degrees of freedom
planar robot manipulator. This derivation took into account the effects of kinematic
parameters on the work space. This derivation was based on a method using polynomial
discriminants of the kinematic equations and expressed the workspace as a set of
boundary curves, so that they could be used conveniently in a number of applications.
Ceccarelli [28] introduced the concept of feasible workspace regions and used it to
develop two revolute manipulators for a workspace prescribed through arbitrarily given
workspace points.

Krzysztof Tcho'n and Robert Muszy nski [29] developed a new method of

solving the singular inverse kinematic problem for non-redundant robotic manipulators.



An evolutionary symbolic regression algorithm in order to give models approximating
the inverse kinematic model (IKM) of any general 6R manipulator, by program-
functions with variable forms and sizes was implemented by F. Chapelle and P. Bidaud
[30]. Yang et al. developed an inverse kinematics solution for manipulators based on
fuzzy logic. The algorithm was implemented on a simple two-DOF robot manipulator
[31]. Juan Manuel Ahuactzin and Kamal K. Gupta [32] proposed a novel and global
approach to solving the point-to-point inverse kinematics problem for highly redundant
manipulators. Farbod Fahimi et al. [33] developed a new and efficient kinematic
position and velocity solution scheme for spatial hyper-redundant manipulators. The
Backbone curve concepts and a modal approach were used to resolve the manipulator’s
redundancy. A. Ramdane-Cherif et al. [34] developed an efficient algorithm to solve
inverse kinematic problem of redundant robots subjected to a set of criterion and
constraints. The method used is based on formulating a simple optimization problem
using neural network. Alberto Borboni [35] developed a new general fuzzy iterative
algorithm based classical algorithms for the solution of the inverse kinematic problems
for serial manipulators. Luya Li et al. [36] developed an effective method for
determining the inverse kinematics of redundant robots and implementing real-time,
kinematic control with joint velocity constraints. A new algorithm proposed by Chan
and Lawrence [37], gave accurate solutions near & at singular points and as well as for
targets which were out of the manipulator’s reach. The algorithm used the error damped
pseudo-inverse to obtain stable joint corrections near singularities. Kun Ji and Yih [38]

used a generalized approach for solving the inverse kinematics problem. The method
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was applicable to non-redundancy control of most of industrial robots and also to the
redundancy control of Light Duty Utility Arm. The joint variables in multi variable, non
linear kinematic equations were separated and restructured into a system of linear
jacobian equations, these equations were re-written and solved in matrix form. A
closed-form inverse kinematics solver for non-redundant reconfigurable robots, based
on the Product-of-Exponentials (POE) formula was proposed by Chen and Gao [39].
POE reduction techniques and sub-problems were used to obtain inverse kinematic
solutions to a large number of possible configurations. A technique, by Antonelli et al
[40], based on a new second-order inverse kinematics algorithm was used to enable
handling of velocity and acceleration constraints while tracking the desired end-effector
path. This ensured that the joint variables were within their limits.

Fernando Durate et al. [41] developed a new method that optimized the
manipulability through a least square rational function approximation, to determine the
joints position and also the chaos revealed by kinematic trajectory planning scheme
while controlling redundant and hyper redundant manipulators. Lianfang Tian et al. [42]
developed a novel genetic algorithm using a floating-point representation to search for
optimal end effector trajectory for a redundant manipulator. Reza Fotouhi et al. [43]
developed a two-phase trajectory planning for a two-link rigid manipulator. A new
approach based on interval analysis was developed by Aurelio Piazzi and Antonio
Visioli [44] to find the global minimum-jerk (MJ) trajectory of a robot manipulator
within a joint space scheme using cubic splines. Galicki M and Friedrich-Schiller [45]

developed a solution to the problem of tracking a prescribed geometric path by the end
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effector of a kinematically redundant manipulator at the control loop level. A novel
collision avoidance algorithm based on a generalized potential field model of 3-D
workspace was developed by Lin and Chuang to solve path planning problem of a high
degree of freedom robot manipulators in 3D workspace [46].

1.3 New Notation Review

Symbolic notations make modeling of robotic configuration easier. The notation
consists of essential parameters for a complete description of a mechanical system.
With the help of this generalized symbolic notation, transformation matrices are
generated, this in turn is used to model link shapes and to incorporate the constraint
motions of joints. There are many notations like D-H, S-U and C-B notations that can
be used for modeling robots, but they come with their own pros and cons. D-H notation
require just four parameters to represent joint transformations, but complications arise
while analyzing certain mechanisms. The reason is due to the fact that it uses relative
joint motions due to its joint definition and also it fails when adjacent joint axes are not
parallel or normal to each other. S-U on the other hand uses six constant joint
parameters plus a variable part that contains same number of parameters as the degrees
of freedom of the joint. C-B notation to some extend can be used to analyze most of the
robotic configurations because it permits the determination of exact joint positions in
space. It uses five parameters to define the transformation from one joint to other
adjacent joint. But this fails in some cases as there is no parameter to take care of the y-
axis translation. So the new notation removes this constraint by using up an extra

variable to represent a translation parameter in the y-direction. This way it satisfies the
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requirement of the need of six degree of freedom, three rotational components and three
translation components, required to define a body or point with respect to a reference, in
space. This notation can be called as a modified or refined form of CB notation
developed by Yih.
1.3.1 Advantages of this notation over CB Notation

Consider a robot configuration as shown in Figure 1.1, analysis of this
configuration using CB notation fails as there is no additional parameter that defines

translation along Y axis. This situation could be avoided using this new notation.

Figure 1.1 Shows an Arbitrary Configuration Where CB Notation Fails.
1.3.2 Notation and Transformation Matrix

This notation utilizes six parameters to define an adjacent joint, these are

0 - represents the rotational parameter around the principal Z-axis.

h - represents the translation along the principal Z-axis.

r - represents the translation along the X-axis.
13



b - represents the translation along the principal Y-axis.
a - represents the rotation around the principal X-axis.

B - represents the rotation around the principal Y-axis.

L
L * sin(o)
(¢}
Front View
L
L * sin(o) * sin(n)
n

L * sin(o) * cos(n)

Top View

Figure 1.2 Representation of h, r and b Parameters.

Two parameters ¢ and 1 describe the orientation of the link in a 3D co-ordinate
system. ¢ depicts the in-plane angle between the link and the coordinate system, while 1
depicts the out-of-plane angle made by the link with respect to the coordinate axes.

The basic homogeneous transformation matrix that is essential to determine the
exact joint position in space is infact the product of individual transformation matrices
containing the above defined parameters. Therefore

T(O, h, 1, b, a, B) =T(Z, 6) * T(Z, h) * T(X, r) * T(Y, b) * T(X, o) * T(Y, B)

where,
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[c@ —s6 0 0

T(Z. 0) = s@ ¢ 0 0 (L
0 0 10
0 0 01
(1 0 0 0

T(Z, h) = 000 0} (1.2)
0 01 h
0 0 0 1
1 0 0 r

T(X,1) = 000 0} (1.3)
0010
0 0 0 1
1 0 0 0

T(Y,b) = 000 b} (1.4)
0010
00 0 1
1 0 0 0
0 ca -sa 0

TX, a) = (1.5)
0 sa ca O
0 0 0 1
¢ 0 sp 0O

T(Y, ) = oL 0h (1.6)
-spf 0 c¢f O
0 0 0 1
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T(0,h,r,b,a,p)=

(cOcf —sbsasf) —(sOca) (csp+sOsacf) (—bsO+rch)
(sCcf+cbsasp) (cOca) (sbsp—cOsacf) (bcO+rsh)
—(casp) sa (cacP) h
0 0 0 1

1.7)

This homogeneous transformation matrix that incorporates three rotational and
three translation components is called the shape matrix. This transformation matrix
describes the link shape and joint behavior. Hence this transformation matrix can be
written in another form depicting the orientation part represented by the direction cosine

matrix D; and position vector represented by a vector P;.

Px
Di Py

Ti(Oi,hi,ri,bi,ai, fi) = p (1.8)
0O 0 O 1

1.3.3 Characteristic or Shape Matrices of Kinetic Pairs

A characteristic or shape matrix describes both the shape of the link and the
behavior constrained by kinematic pairs. The five basic kinematic pairs are Revolute,
Prismatic, Cylindrical, Helical, and Spherical joints.

1.3.3.1 Revolute Pair

A revolute pair, Figure 1.3, has an axial rotation 0; along the axis. Its

characteristic matrix is given in equation 1.9.
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Figure 1.3 The Revolute Pair (R).

Ti(@i,hi,ri,bi,ai, pi) = D) PO (1.9)

0 0 0 1
where 0; is the only design variable and varies within the range of joint
constraint.

1.3.3.2 Prismatic Pair

Figure 1.4 The Prismatic Pair (P).
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A prismatic joint, Figure 1.4, allows translation along its generatix only. The

characteristic matrix is as given as

Di P(h):
Ti(6:, hi,ri,bi,ai, fi) = (1.10)

where, h; is the only design variable and this varies within the range of joint
constraint and 0; is constant.

1.3.3.3 Cylindrical Pair

This type of joint is characterized by a rotation 6: about the cylinder axis, and a
translation /:along the axis. So this has two degrees of freedom (6, h;). The cylindrical

joint is illustrated in Fig 1.5.

Figure 1.5 The Cylindrical Pair (C).
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The characteristic matrix is given by

D (0): PO N h)
Ti(Oi,hi,ri,bi,ai, fi) = (1.11)

1.3.3.4 Helical Pair

The helical joint produces a helical movement, and the two joint
variables, 0i and 4, can be correlated by its lead of the screw L;, with 0; in radians. The
helical joint is shown in Figure 1.6.

O =1f(hj)=h;/L; or h;=1(6) =6 * L; (1.12)

Figure 1.6 The Helical Pair (H).

The characteristic matrix for a helical joint is thus given as

D(0)i PO U h)
Ti(O:, hi,ri,bi,axi, fi) = (1.13)

Here the number of design variable is reduced to 1.
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1.3.3.5 Spherical Pair

Figure 1.7 The Spherical Pair (S).

The definition for joint axis Z; can be infinite because the spherical joint is free
to rotate in all the directions. In this case ai-1 and Bi-1 are set equal to zero. From
Figure 1.8, the relative link length, a;, between J; and J;;; remains constant all times.
However angle ¢ is measured from Z; to a; but the parameters h; and r; vary with angle
@. hi=ajcg and r; = ais¢. A spherical joint may have three degrees of freedom and each

rotates about the Cartesian coordinate axis indicated by (yu;, ¥, ¥z;). By definition, yzi is

equivalent to 6. Irrespective of the order of rotation about the X; and Y; axes,

ais gic 0i
B D (0): ais gis O
Ti(Oi,hi,ri,bi,ai, i) = 4 (1.14)
aic Qi
0 0 0 1

where element cyy; cy, is the direction cosine between Z; and a;. Since the

angle between Z; and a; was previously defined as ¢, then ¢ = ¢ (cysi ¢ Vi)
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Figure 1.8 Joint Parameters of a Spherical Pair (S).

The characteristic matrix is as given below.

Ti(6:i,hi,ri,bi,ai, fi) = D@ PO N9 (1.15)

1.3.4 Examples Describing the Generation of Transformation Matrices
Consider three revolute joints i, i+1 and i+2, the parameters of i™ joint are
determined in the following way. The transformation is generated by multiplying the

sequence of individual transformation component matrices in the right order.
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ei+2

VA
! Joint (i+2)

\J 0; Ois1

h Joint (i+1)

Joint 1

Figure 1.9 An Example Describing the Generation of Transformation Matrix.

0 = 0; is the principle parameter when a revolute joint is considered.

h = h;is the translation along the Z direction.

r =r;1s the translation along the X direction.

b =0, as there is no need for any translation along Y direction.

a = 90°, compare the local co-ordinate axes of joints i and i+1. For these two
axes to match, a rotation of +90° around it joint’s X axis in counter clockwise
direction is required. Hence the value of a is equal to +90°.

B =0° no need of any rotation around Y axis.

After this sequence of transformations, both i and i+1 joints match well. Now
consider joints i+1 and i+2, the parameter values are as follows,

0 = 0y, is a parameter when a revolute joint is considered.
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h =0, as there is no need for translation along the Z direction.

r =14 1S the translation along the X direction.

b = bi,1, as there is no need for any translation along Y direction.

a = 0°, no need of any rotation around X axis.

B =90°, to match the local co-ordinates of i+1 and i+2 joints, a rotation of +90°
is necessary around Y axis. After this sequence of transformations, both 1 and

1+1 joints match well.

ei+1
Ihi Joint (i+1)

Joint 1

Figure 1.10 Example 2, Describing the Generation of Transformation Matrix.

Here joint 1 is a prismatic joint and i+1 is a revolute joint. For a prismatic joint,
h is a principle parameter, as this defines the limit of the joint. The values of other
parameters are as follows:

0 =0, as it is a prismatic joint.

h = h;j is the principle parameter that describes the translation along the Z

direction.

r =r1;is the translation along the X direction.
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b =0, as there is no need for any translation along Y direction.

a = 90°, compare the local co-ordinate axes of joints i and i+1. For these two
axes to match, a rotation of +90° around it joint’s X axis in counter clockwise
direction is required. Hence the value of a is equal to +90°.

B = 0°, no need of any rotation around Y axis.

In this dissertation only revolute and prismatic joints are considered for

validating the results.
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CHAPTER 2

TOOL PATH OPTIMIZATION

2.1 Introduction

Optimization of the tool path traversed by the robotic manipulator is required to
achieve cost effectiveness, increased productivity and efficiency. This is similar to a
symmetric traveling salesman problem. In general, The Traveling Salesman Problem
(TSP) is a deceptively simple combinatorial optimization problem. The problem is
about a salesman who wants to visit a number of cities cyclically. The conditions being,
he has to visit each city once and needs to get back to the start city at the end of the tour.
The hard part is due to the fact that if one considers n cities, then one has to probably
determine them systematically and finally find the minimum path length. The process of
finding the minimum path length can be accomplished easily if the points are grouped
in a definite order. The key to finding the solution lies in this process. To compute the
optimized path, a new algorithm called Insertion & Reordering Algorithm is used. In
order to expedite the process of finding the optimized path, this algorithm is coupled
with piece-wise optimizer, where in the initial path is generated by Insertion &
Reordering technique and later, each of the segment is checked to see if its optimized or
further more reordering is necessary. The process is iterated till the minimum value

stabilizes.
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2.2 Insertion and Reordering Algorithm

Input consists of the following
e n-data points
e Number of Iterations
e Stopping Criteria

v

Number of )
Iterations e Publish the path
rad exhausted? Or e Compute length
Stopping Criteria e Stop the process
Encountered.

Two points are
considered initially

A

Reorder the point set
Y in same order as the
path obtained.

Is the cycle
complete?

A

> Insert the next point in the available
positions and collect the relevant paths

v

Apply the Line Crossing Algorithm and
eliminate crossing segments of the path. Collect
only the minimum path

A

Figure 2.1 Flow-chart Portraying Insertion & Reordering Algorithm.
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This algorithm consists of two parts, the insertion part which is mainly to find
the best non-intersecting path and the reordering part of stacking the points in the same
order as the best path obtained from the insertion step.

Step 1: Two points out of the n available points is considered. The shortest path
between two points will be the straight line connecting them.

Step 2: The third point is considered and could be inserted in any of the
available three positions, 3-1-2, 1-3-2, 1-2-3.

Step 3: The line crossing algorithm is applied to the paths in the set to check if
any segment of the path intersect. All such paths whose segments intersect are rejected.

Step 4: Among the available paths in the result set, the one with the least length
is selected.

Step 5: The steps 2 to 4 is repeated till all the n points are exhausted. This
completes one cycle.

Then the entire process is repeated for number of iterations till the value of the
path length is stabilized.

2.3 Example Showing the Steps

Figure 2.2 Initial Data-set.
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Consider a simple example with four nodes as shown in figure 2.2. The
objective is to find the minimum path length connecting these four points. Let us
consider just two points initially and continue the process till an optimized solution is

obtained.

w

Figure 2.3 Subsequent Steps.

~

Figure 2.4 Reordering and Insertion Step.

This algorithm may take a longer time if the number of nodes increases and hence using
the algorithm for number of iterations makes it a hopeless candidate as it would eat up
the time required to complete the process. Hence a variant of this algorithm called

Piece-wise Insertion & Reordering Algorithm is developed.
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2.4 Piece-wise Insertion & Reordering Algorithm

This is similar to the parent algorithm with a slight difference. Consider two
points, the least distance between the two is a line connecting them. Now the third
point can be inserted in just one position available between the first and second.
Basically the start and end points are defined and rest of the points is fitted between
them. The non-intersecting path with the least length is generated at the end of one
cycle. The points are reordered based on this path and the entire process is iterated till a

stable solution is obtained. Let us see an example of how this works,

Figure 2.5 Step by Step Explanation of Piece-wise Insertion & Reordering Algorithm.

A software tool was designed and developed in Java. Java takes care of the
number crunching and optimization evaluation, while Java3D is used for display
purpose. This algorithm tested on standard data obtained from “The TSPLIB Symmetric
Traveling Salesman Problem Instances” [75] produced satisfactory results. Results are

displayed in subsequent pages.
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2.5 Test Results

_ B mmm Ref Test Data (7544 3659)
Berlin 52 cities — My Solution (7544 3659)
1200 T T T T T T

1000

800

600

400

200

D | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800

Figure 2.6 Test Case - Berlin with 52 Cities.
Matlab was used in this case to super-impose the results. For this test case, both
the reference result and the result computed by the proposed algorithm were the same.
The next two test cases, Djibouti & Western Sahara cities, were taken from Georgia

Tech TSP repository.
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Figure 2.7 Reference Test Data for Djibouti Cities.
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Figure 2.8 Solution Generated by the Proposed Algorithm.
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Figure 2.9 Reference Test Data for Western Sahara Cities.
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Figure 2.10 Solution Generated by the Proposed Algorithm.
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=== Ref Test Data (429.9833)
51-city problem (Christofides/Eilon) —— My Solution (428.9816)
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Figure 2.11 Test Case - 51 Cities.
The result shown was 429.9833 and is depicted by thick red line.
The proposed algorithm generated a path slightly different and the optimized

path length was 428.9816 and is depicted by thin green line.
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= Ref Test Data (678.5975)
—— My Solution (677.1096)

= Ref Test Data (108159 4383)
—— My Solution (108159 4383)

Figure 2.13 Test Case — 76 Point Problem.
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——
= Ref Test Data (512 3094)
—— My Solution (511 5015)

Figure 2.14 Test Case — 96 Point Problem.

= RefTest Data (74.1067)
—— Wy Solution (73.9676)

Figure 2.15 Test Case — Ulysses 16 Point Problem.
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=== Ref Test Data (75.6651)
Ulysses 22 Points Problem My Solution (75.3097)
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Figure 2.16 Test Case — Ulysses 22 Point Problem.
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Figure 2.17 Test Case — US 48 Cities Problem.
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2.6 Other Test Cases
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Figure 2.19 Test Case — 5 X 5 Grid Problem.
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2.7 Optimizer - Software Tool

The algorithm was incorporated into a software application, Optimizer. Java is
used for number crunching and for computing the path, while Java3D is used for

display purpose. The functionalities and steps required to compute an optimized path is

as follows.
—
inimumm Yalue
1 —
Time Elapsed
|

Figure 2.20 The Main Screen.

The left part of the application displays the various functionalities incorporated
in the Optimizer. The data set can be loaded into the application using the “Load

Points” feature. The “Settings” feature allows the user to set various parameters like
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number of iterations required, the number of points to be grouped while using the piece
wise algorithm and the number of points to be reordered. The “Initial Path” feature uses
the regular Insertion and Reordering Algorithm, this will ensure that the initial path or
initial reordering has non-intersecting individual segments. “Optimize” features runs the
Piece-wise algorithm and checks for the points grouping to have an optimized length.
The algorithm will reorder the points and optimize if the segment considered isn’t
having the minimum length for that part of the path. “Start & End” feature manually
allows the user to fit the best path between a start and end point. The iterations can be
stopped any moment by using the “Stop Iteration” feature. The generated optimized
path could be saved for later use by using the “Save Path” feature. Sometimes it is
essential that the points are interchanged so that the chances of arriving at the solution
are brighter as there will be randomized arrangement of the points. “Invert Points” can
be used to reverse the arrangement of the path, so that one can test the values of reverse
and forward paths. The “Verify” feature can be used when one needs to manually check

if the path generated between two points displayed is indeed the minimum path.
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CHAPTER 3

DIRECT KINEMATICS

Kinematic analysis deals with position or displacement, velocity, and
acceleration. Among these three, the most important of them being the position
analysis. Roth first defined the performance evaluation of the manipulators by
workspace. Roth and Shimano (1977) were the first to describe the reachable space or
volume, which they called the workspace. Kumar & Waldron (1981) and Tsai & Soni
(1983) defined working volume of a robot as the sum total of all locations that can be
reached by the robot end effector [74].

The workspace of a robotic manipulator is defined as the set of all 3-
dimensional points that the manipulator or end effector can be reached. The outer
surface of the working volume is called the working envelope. There are two definitions
of workspace, dexterous workspace which is the volume of space the robot end effector
can reach with all orientations. At each point in this type of workspace, the end effector
can be arbitrarily oriented at any point. Second, the reachable workspace which is the
volume of space the robot can reach in at least one orientation. The study of robotic
workspace is important in knowing before hand if the location to be machined or
inspected is reachable, it’s also wuseful in arranging the associated flexible

manufacturing cell of a robot and assessing its efficiency in a manufacturing line.
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The working volume should be extensive enough to perform the required work
and must be devoid of voids. Voids are places inside the working envelope that are not
part of the working volume or in short, those places in the workspace which cannot be
reached by robot end effector. Velocity and acceleration spaces are obtained by
determining velocities and accelerations over the entire workspace. Their applications
are essential for the velocity and acceleration control of a robot following a specific
contour.

3.1 Displacement Analysis

The general homogeneous characteristic matrix, Tj, for different kinematic

lower pairs are given by

T(eah’r’b,a’ﬂ)=

(clcfp—sbsasf) —(sbca) (cOsf+sOsacf) (—bsO+rch)
(sOcP+cbsaspf) (cbOca) (sbsf—cOsacf) (bcO+rsh)
—(casp) sa (cacph) h
0 0 0 1

(3.1

The relative orientation and position of the n-th reference frame, with respect to

the universal coordinates, are obtained by a sequence of multiplications.
H=[T:-= ' (3.2)

where T; is the characteristic matrix of the i joint. The resultant homogeneous

matrix H contains the direction cosine matrix D and the position vector P to specify the
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orientation and position respectively. These two components of H are critical for the
control of the manipulator. Also H is the resultant system matrix for the position
analysis of a specific reference point of the robot manipulator. The reference point may
be the end effector or the manipulator, or any other designated point in the system.

3.2 Velocity and Acceleration Analysis

Velocity analysis, where in the values of the velocity components can be

computed by equation 3.2.

j:i Di Pi (3.3)

1% :i(H)=i(ﬁ Ti
dp dp \ "o
where, p equals to 0; if the joint under consideration is a revolute joint. In
revolute joints, 0 is a variable parameter. If a prismatic joint is considered then p equals
h;, as h is a variable parameter.
Similarly the acceleration analysis can be accomplished by taking the

differentiation of V with respect to p. This p equals 0;, if the joint under consideration is

a revolute joint. If a prismatic joint is considered then p equals h;.
A=) (3.4)
dp

3.3 Algorithm for Workspace Generation

Once the joint local axes and the joint types are assigned, the algorithm
generates individual characteristics matrix based on the different type of joint. Four

curves are generated initially. The first curve is generated by moving the last joint n
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from its minimum position to maximum joint position, keeping all other joints at the
minimum position. Second curve is generated by fixing joint n-1 at its maximum joint
range and again n™ joint is moved from minimum to maximum position. Third and
fourth curves are generated by fixing the n™ joint at minimum and maximum positions
and moving joint n-1 around its range. At the end of this step, four curves are generated.
The subsequent curves are generated using the same procedure till all the joints, except
the base one, are expended. These collections of curves are then swept about the base to
generate three dimensional work volume. If all the joints move in the same plane as in
scara type robots, then only a surface is generated.

However this has to be noted that the workspace generated is based on the
maximum reach of the links on the sagittal plane. While generating the workspace, all
the joints that have motion in a plane other than the sagittal plane are fixed at any
convenient position and not allowed to move. Thus in these cases, the workspace
generated do not represent an actual true workspace.

The Workspace generating is incorporated into a java application MyRobot. The
user needs to assign just the principal joint axis, 1.e. the Z axis for each of the joints,
internally the application assigns the other two axes. The axes are assigned in such a
way that either a or f is set to zero. This way the sequence of matrix operation reduces
to five individual transformation component matrices.

3.4 Results
Various configurations with all revolute joints, all prismatic joints and a

combination of both were tested using MyRobot tool. The examples include Cincinnati
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Milacron T3 Robot, Bendix AA/CNC Industrial Robot, KR 60 P/2 Robot from KUKA
Roboter GmbH, UPJ Robot from Motoman Corporation, Denso’s HS-E Series Robot,
and Cartesian Robot.
3.4.1 Cincinnati Milacron T3 Robot

This robot is composed of six revolute joints, Figure 3.1, three for the base,
shoulder, and elbow, and three for the wrist and hand. This robot was designed to do

simple tasks like machine tending and medium duty material handling.

Figure 3.1 Cincinnati Milacron T3 Robot (6 Revolute Pairs).
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Table 3.1 Notation Table of Cincinnati Milacron T3 Robot

Joint | O(deg) h (m) r (m) b (m) o(deg) | B(deg) | Variable
1 (R) [-120,120 | 1.5 0 0 90 0 0
2(R) 10,90 0 1.067 |0 0 0 0:
3(R) |-150,0 0 1.067 |0 0 0 0s
4 (R) |-90,90 0 0205 |0 -90 0 04
5(@®R) ]-90,90 0 0369 |0 0 90 0s
6(R) |-135,135 |0 0 0 0 0 s

Figure 3.2 Home Position and Direct Kinematic Parameters of Milacron T3 Robot
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Figure 3.3 Slice of Milacron T3 Robot Workspace taken at Sagittal Plane.

Figure 3.4 Workspace Generated by MyRobot.
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3.4.2 KR 60 P/2 from KUKA Roboter GmbH

Figure 3.5 KR 60 P/2 Robot from KUKA Roboter GmbH.

The KR 60 P/2 from KUKA Roboter GmbH, Figure 3.4, is a six-axis industrial
robot with articulated kinematics for all point-to-point and continuous path controlled
tasks. Their main areas of application are press-to-press transfer, machine linking,

handling, and palletizing.

Table 3.2 Notation Table of KR 60 P/2 Robot

Joint | O (deg) h (m) r (m) b (m) a(deg) | P(deg) | Variable
I (R) |-185,185 |0.99 0.7 0 90 0 0
2(R) |[-110,40 0 0 1.4 0 0 0:
3(R) |-60,210 0 0.507 |0 0 90 0s
4 (R) |-350,350 |0.893 0 0 0 -90 04
SR) |-120,120 |0 0.21 0 0 90 0s
6 (R) |-350,350 |0 0 0 0 0 06
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Figure 3.6 KR 60 P/2 Workspace Slice at the Sagittal Plane.

Figure 3.7 Workspace of KR 60 P/2.
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3.4.3 Motoman UPJ Robot

installation space. The UPJ robot offers superior performance in small part handling,

dispensing and assembly. It is also ideal for lab automation, inspection/testing,
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Figure 3.8 Motoman’s UPJ Robot’s Specifications.

education, and research applications.

Table 3.3 Notation Table of UPJ Robot

822
583

474

189
21

- 18

The Motoman UPJ is a compact, high-speed robot that requires minimal

Joint | O (deg) h (m) r (m) b (m) a(deg) | P(deg) | Variable
I (R) |-160,160 |29 0 0 90 0 0
2(R) |-90,85 0 0 2.6 0 0 0:
3(R) |-55,175 0 0.497 |0.298 0 90 s
4(R) |-170,170 |22 0 0 0 -90 0.
S(R) |-120,120 |0 0.9 0 0 90 0s
6 (R) |-360,360 |0 0 0 0 0 06
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Figure 3.9 UPJ Robot at Home Position.

Figure 3.10 UPJ Robot’s Workspace Slice.

50




Figure 3.11 Workspace of Motoman’s UPJ Robot.

3.4.4 Bendix AA/CNC Industrial Robot

Figure 3.12 Bendix AA/CNC Industrial Robot.
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The Bendix robot, Figure 3.11, is composed of six joints, revolute-revolute-
prismatic joints (R-R-P) for the base, shoulder, and elbow, respectively; and three
revolute joints for the wrist and hand.

Table 3.4 Notation Table of Bendix Robot

Joint | O(deg) h (m) r (m) b (m) o(deg) | P(deg) | Variable
I (R) |-9595 1.067 0 0 90 0 0
2 (R) | -45,225 0 0.659 |0 0 90 0:
3(P) |0 0,0.61 0 0 0 0 h3
4 (R) |-95,95 0.109 0 0 0 -90 04
5(@®R) |-20,200 0 0.146 |0 0 90 0s
6 (R) |-360,360 |0 0 0 0 0 s
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Figure 3.13 Portrays Bendix AA/CNC Industrial Robot at Home Position.
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Figure 3.15 Bendix Workspace Shown from Different Viewpoints.
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3.4.5 Denso HS-E Series Horizontal Articulated Robot
This is a four joint scara type robot. These robots are typically used in clean

rooms as pick and place robots.
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Figure 3.16 HS-E Series Horizontal Articulated Robot

Table 3.5 Denso HS-E Series Notation Table

Joint | O (deg) h (m) r (m) b (m) o(deg) | B(deg) | Variable
1(R) |00 3.62 0 0 0 0 G
2(R) |-155,155 |0 1.25 0 0 0 0:
3(R) |-145,145 |0 2.25 0 0 180 03
4P) |0 0,2 0 0 0 0 ha
5(@®) |0,360 0.36 0 0 0 0 0s
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Figure 3.17 HS-E Series Robot at Home Position.

Figure 3.18 Workspace of Denso’s HS-E Series Robot.
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3.4.6 Cartesian Robot
A cartesian coordinate robot is an industrial robot whose three principal axes of
control are linear (i.e. they move in a straight line rather than rotate) and are at right

angles to each other.

Figure 3.19 Cartesian Robot.

Table 3.6 Cartesian Robot Notation Table

Joint | O (deg) h (m) r (m) b (m) o(deg) | B(deg) | Variable
L®P) |0 0,2 0 0 0 90 h
2P |0 0,5 0 0 90 0 h2
3(P) |0 0,2 0 0 0 0 h3
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Figure 3.20 Cartesian Robot at Home Position.
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CHAPTER 4

INVERSE KINEMATICS

Kinematics is a branch of mechanics that deals with describing the motions of
objects without considering the factors that cause or affect the motion. This branch can
be further divided into direct kinematics and inverse kinematics. Direct kinematics is
the process of calculating the position, velocity and acceleration in space of the end
effector or any designated point of the manipulator. In inverse kinematics a target point
is given and the values of the joint parameters have to be determined to reach that
specific point. So it can be said that inverse kinematics does the reverse of direct
kinematics. The inverse kinematic equations of a manipulator are nonlinear and hence
difficult to solve. The difficulties faced in solving this kind of problem include

e Multiple to infinite solutions.

e No solutions because of divergence.

e No closed-form (analytical or approximate) solution.

To solve these type problems, one can use Analytical Methods or Iterative
(Differential) Methods like Geometric and Analytical Jacobian, Jacobian Transpose
Method, Pseudo-Inverse, Pseudo-Inverse with Optimization, Extended Jacobian

Method.
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4.1 Proposed Inverse Kinematics Solver

A Numerical Iterative technique similar to Gauss Siedel method is used to
generate joint parameter values. Consider a robot with all revolute joints and hence the
parameter is @ for all the joints. Input initial or guess values for the joint parameters,
then use forward kinematics procedure to find the end position of the robotic

manipulator. This is given by
D=T]Ti= | (4.1

The vector P; is set equal to the intended target coordinate values. Check if P; is
equal to P°; Now each of the transformation matrices T; is function of &, and hence the
individual € have to be separated in order to get the orientations of the links. Hence the
following procedure is performed to obtain the orientation values.

i-1 -l n -l

M=Ti:[HT_,} D {HT,} (4.2)

j=1 j=i+l

M is purely a function of 6, and since it represents rotation around the Z axes.
The value of € can be obtained by the following process,

T(0,h,r,b,a,p)=
(ccf —sOsasf) —(sbca) (cOsf+sbsacf) (—bsO+rch)
(scf+cbsasp) (cOca) (s&sf—cOsacf) (bcO+rsh)

—(casp) sa (cacp) h
0 0 0 1

(4.3)
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Now consider equation 4.3 and compare it with right hand side matrix of
equation 4.2. It is clear that Y component equals b*cH + r*s6 and X component is equal
to -b*s0 + r*cO.

bcos(@)+rsin(@)  Row2,Col4 1

. - - (4.4)
—bsin(@)+rcos(d) Rowl,Cold X
Divide the numerator and denominator of equation 4.4 by cos(0)
b + rtan(0) =£ (4.5)
—btan(@)+r X
bX + rX tan(@) = —bY tan(@) + rY (4.6)
Reordering equation 4.6,
rY —bX
tan(f) = ——— 4.7
@) rX +bY (4.7)
0 = tan™ (ﬂj (4.8)
rX +bY

Each of 0; are computed at the end equation 4.8, then these new values are
substituted back into equation 4.2 and next set of 0; are obtained. At end of each cycle,
the new set of 0; are substituted in direct kinematics equation 4.1. The vector P°
obtained at the end of this step is compared with vector P, which is essentially the
coordinate values of the intended target point. If the required precision is achieved then
the iterations are stopped and the values of these joint parameters are displayed. If not,
the iteration process, equation 4.1, 4.2 and 4.8, is continued till the stopping criterion is
encountered. If prismatic joined are considered then h; is the variable and only the

entries in row three and column four of matrix on right hand side is equated to h;.
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Y

Stop

Figure 4.1 Flowchart of Inverse Kinematics Solver.

4.2 Example Describing the Inverse Kinematics Solver

Consider an example of a robot with three revolute joints. Let the target point to

be reached by a vector P=(x, y, z). The forward kinematics is given by D =T, *T, *T;.

D is a homogeneous matrix of dimension 4 x 4. If the entries of matrix (1, 4), (2, 4) and
(3, 4) equals the component of the vector X, y and z, then no further iterations needed. If
they aren’t equal then these steps are performed,

Replace the entries of (1, 4), (2, 4) and (3, 4) with x, y and z. Then operation

T, =T,"'T;'Dis performed. Now compute the value 6,, update this new value and re-
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check if the position vector components of the matrix D =T, *T, *T,, equals those of x,
y and z. If the criteria is satisfied then iterations are stopped, else T, =7, DT, is
computed and from this value of 8, is computed, again update the new value of 6, in the
matrix7,. Now compute D and re-check again. The iterations are stopped if the
stopping criteria is encountered, if not then 7, = DT, 'T," is performed. New value of

6, is updated and matrix D is computed. So at the end of one cycle, the coordinate

values of the end effector are verified with those of the intended target point. Further
iterations are continued until the end effector reaches the target point.

This method of finding the joint values was tested on many robot
configurations. The results obtained were satisfactory as the robot manipulator was able
to reach the intended target points within the maximum number of iterations and within

the prescribed precision.
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4.2.1 Inverse Kinematics Results for Bendix Robot
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Figure 4.2 Bendix Robot at Home Position.
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4.2.2 Inverse Kinematics Results for Cincinati Robot
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4.2.3 Inverse Kinematics Results for Kuka Robot
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4.2.4 Inverse Kinematics Results for Motoman UPJ Robot
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Figure 4.16 UPJ Robot at Home Position.
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4.2.5 Inverse Kinematics Results for Scara Type Robot
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Figure 4.18 Scara Robot at Home Position.
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4.2.6 Inverse Kinematics Results for Cartesian Robot
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Figure 4.20 Cartesian Robot at Home Position.
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CHAPTER 5

APPLICATIONS

5.1 Pick and Place Operation

Robots are used in clean rooms for simple pick and place operations. This is to
ensure that a cleaner environment is maintained and also while handling minute things,
so that no dirt particles or moisture affect the quality of the product or process. They are

also used in material handling areas. An example to demonstrate this operation is as

follows,

S

Displacement

1.8830931925279133 |

[ -2.166367197316153
['0.300000000000000S

Target Paoink
i 1,8330931925279117
| -2,1663671973161547 |
[0.5000000000000003 |
Solution--Joink Values
[0 ]
[ -29. 145207942255 |

3

Text Poink

Solver
Animation

Figure 5.1 Depicts the Path to be Followed for Pick & Place Operation.
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Figure 5.2 Pick & Place Operation.

5.2 Integration of Optimization & Inverse Kinematics

In this section, a robot in an electronic assembly set up is considered. Usually,
for things in micro-scale, precision machines like robots are employed to perform
micro-assembly. Robots suit well for such kinds of dexterous and repetitive tasks. The
first step 1s to identify the locations on the electronic board where the robot would put in
components. These locations can be retrieved from any computer aided drafting
software. After the points are retrieved, these are passed onto the Optimizer part. The
optimization algorithm computes the minimum distance required by the robot
manipulator to complete the assembly. The minimum path is thus generated and the
points or nodes that make up this path are then passed onto the inverse kinematics
solver to generate the joint parameter values. This way the orientation and joint inputs

necessary to position the end effector onto the intended target position is accomplished.
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Figure 5.3 Positions Depicting the Assembly Locations.

Figure 5.4 Display of the Optimized Path.
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Figure 5.5 Step by Step Depiction of Assembly Process.

5.3 Application of Inverse Kinematics Solver

The inverse kinematics solver can be extended to analyze closed chain

mechanisms. The difference between open chain mechanism or robot and closed chain
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mechanism is that there is end effector also has a constraint. Here is an example to

explain the process of kinematic analysis of a four bar mechanism.

1 |
2 [ ]
3 ]

| Calculate |

| Next Point |

Figure 5.6 Four Bar Mechanism at the Initial Position.

Both the end points of this mechanism are fixed to the ground by using a pin joint. An
input angle is given to one of the links. In this case, an input angle of 10 degrees (in
counter clockwise direction) is given to first link. The orientation and the position of the
other joints are determined. The same inverse kinematics solver is applied to analyze

the displacement positions of the joints.
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1 100

2 340 464BTTER4D
3 7.959969036518

Calculate

-

Figure 5.7 Final Position and Orientation of the Links.

Consider a five bar mechanism as shown in figure, the objective is to make the
end point of the link protruding from the third link to reach the intended target point. If
the target point is within the space in which the mechanism moves, then it is possible to
use the same inverse Kinematics solver to find a solution, the solution in the form of
finding the individual link orientations and joint angles required to reach the target. In
this example, the target point considered is 4.48824, 4.74996, figure shows both the

initial position and the position where the mechanism end point reaches the target.

79



= o M

Figure 5.8 Initial Position of the Links.

Figure 5.9 Final Position of the Links.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusion

In this dissertation, a new notation was developed to analyze industrial robots.
Since it takes into account all the six parameters required to describe a point or body in
space, a right way of defining the configuration of the robot can be accomplished. The
defects in CB notation arising due to the fact that there is no variable taking care of the
translation component, is rectified by this new notation. The user needs to just assign
the principal joint direction, i.e. the Z axis direction, and its easier to fix other two axes,
thus an opportunity to collapse six parameters to five and hence shrinking the
computations necessary to generate transformation matrices. From these matrices,
workspace can be generated.

Inverse Kinematic equations are highly non-linear and hence difficult to solve,
but by using an iterative numerical technique, inverse kinematics of certain robot
configurations can be solved using this technique. The requirement of this technique is
that all the joints except the base joint move in the same plane. The same technique can
be extended to analyze closed chain mechanisms. The Insertion and Reordering
algorithm along with piece-wise algorithm makes sure that a feasible path can be

obtained in a very quick time.

81



The integration of optimization and inverse kinematics in robotics helps
minimize the costs, maximize profits and ensure that the supply demand equations are
stable.

6.2 Future Work

In the future, it is to be seen if the new notation can be tested on parallel robots
and on other complex systems. Also the possibility of extending the inverse kinematics
solver to obtain solutions to spatial mechanisms will result in the development of new
breed of mechanisms. Synthesis of mechanisms would be a best field to try out the
inverse kinematics solver. The link lengths could be generated depending on the points
to be traversed by the mechanism. As of now MyRobot tool can be used to analyze
revolute, prismatic or a combination of these two, but in the near future, additional

joints could be added to analyze a much wider variety of industrial robots.
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