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ABSTRACT

GENERALIZATION OF WIDELY LINEAR FILTERING

CONCEPTS FOR EQUALIZATION AND

INTERFERENCE SUPPRESSION IN

PAM/QAM SYSTEMS

Publication No.

Kiran Kumar Kuchi, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Vasant K. Prabhu

In PAM/QAM transmission systems, standard minimum mean square error (MMSE)

linear (LE) or decision feedback equalization (DFE) methods are often used to sup-

press the detrimental effects inter-symbol and/or co-channel interference (ISI/CCI)

effects of the channel. The main aim of this thesis is to show the benefits of widely lin-

ear (WL) filtering for equalization applications in wireless systems. For this purpose,

we introduced generalized widely linear MMSE/MMSE-DFE equalization structures

for both PAM systems that use real constellations and QAM (that use complex mod-

ulation alphabets) with multiple antennas and multiple co-channel interferers. In the

proposed implementation, the WL receiver, unlike conventional methods, first sep-

arates the in-phase (I) and quadrature (Q) parts of the complex baseband received

signal and jointly filters the two branches for signal detection. We derived the filter
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settings for both infinite and finite length implementation and analyzed the receiver

performance in various channel conditions. This thesis has three main contributions.

First, we analyze the advantage of WL filtering for PAM signaling in a white noise

channel. When the ISI channel response is complex, we show that WL LE/DFE

receivers outperform conventional methods both in complexity and performance. We

obtained closed form mean square error (MSE) expressions that clarified the MSE

advantage, and lower noise enhancement properties of WL receivers. Second, we

show that WL receivers outperform conventional receivers in the presence of PAM-

type interference. For both PAM and QAM signaling, assuming that the WL-DFE

feedback path is error free, we show that, a receiver with N antennas can reject up

to 2N − 1 PAM interferers or any combination of M1 PAM and M2 QAM interferers

satisfying the constraint: M1 + 2M2 < 2N . This is significant gain compared to

a conventional receiver whose interference cancellation (IC) capability is limited to

N−1 interferers at most. Third, we analyze the symbol error rate (SER) performance

and diversity-IC trade-off for the proposed receivers in a flat Rayleigh fading channel.

After deriving an upper bound (UB) to the SER and certain approximations to the

UB, we used the SER expressions to characterize the trade-off between diversity

and interference cancellation. A comparison between conventional and WL methods

showed that the additional dimensions created by I-Q split enhances the diversity

gain in addition to providing IC advantage.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the past of few years, high demand for wireless services has led to a proliferation

of wireless standards such as GSM, CDMA etc. In many of these systems, voice is a

predominant service while data usage is expected to increase rapidly with the intro-

duction of next generation wireless systems. It is estimated that nearly half the world

population will soon have wireless phone access. Basic reliable voice communication

has become all the more important factor in wireless system design especially to serve

the billions of mobile phone users in emerging markets. In high (user) density cellular

networks, the system has to be designed efficiently to provide high quality of service

in a cost efficient manner. From radio design point of view, typical challenges faced

by wireless networks include:

• Spectrum efficiency: Since bandwidth is scarce and expensive, the system has

to be designed to maximize spectrum efficiency.

• Power efficiency: The network coverage typically depends on both power am-

plifier efficiency and the limited battery power of hand-held devices. Power

efficient modulation schemes such as BPSK, MSK/GMSK (that have low peak

to average ratio) are often used together with powerful channel codes to improve

network coverage.

• Cost and size limitations: Cost and device size is a major issue in designing

small portable units such as cellular phones.

1
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• Low implementation complexity: The complexity of baseband signal processing

algorithms is an important consideration in DSP/ASIC implementation.

To address some of these problems, and to improve the quality and efficiency of

wireless systems, many schemes such as MIMO (Multiple Input Multiple Output) [1],

[2], SIMO (Single Input Multiple Output), many different Space-Time codes [3] and

interference cancellation schemes have been proposed [4]. Almost all these schemes

involve the use of multiple transmit/reciver antennas, complex receiver structures

and complex signal processing schemes. In this thesis we propose a simple concept

called generalized WL equalization that is applicable to both PAM-type signaling

that uses real constellations and QAM-type signaling (complex constellations) that

achieves almost the same enhancement as most of these other schemes at much less

complexity. 

Tx Rx

Propagation channel 

t 

( )s t
( ) ( ) ( ) ( )r t s t h t w t= ⊗ +

0h

1h

2h
3h

T

Figure 1.1. A wireless link.

1.1.1 Characteristics of Wireless Channels

A typical wireless link is shown in Figure 1.1. At the receiver, the information carrying

signal s(t) is often impaired by a multi-path fading channel, denoted as h(t), and a

co-channel interference term w(t) that is generated by other users sharing the same

channel (frequency re-use). As depicted in the figure, the fading channel is usually
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modeled as a Rayleigh fading process with (symbol spaced) statistically independent

channel taps with unequal average power. The channel is said to be frequency selective

when the symbol rate sampled channel response has dispersion; otherwise we call it a

flat fading channel. The amount of dispersion in the channel (or the channel length)

is mainly dictated by the transmission rate: R = 1
T
. For instance, the Typical Urban

(TU) GSM channel (that has 270 KHz bandwidth) can be modeled as a two tap

channel whereas the Vehicular-A (1 MHz bandwidth) CDMA channel has up to six

dominant channel taps. Although flat fading channel is ISI free, the signal undergoes

severe fading. In such cases, the system has to employ some form of diversity such

as transmit/receive diversity (using space-time codes) or time/frequency diversity

(using signal repetition and channel coding). In frequency selective case, the channel

inherently has some diversity. We can say that the diversity order of a frequency

selective channel is equal to the total number of independently faded channel taps.

A well designed equalizer would be able to fully capture this diversity thus reducing

the need for other forms of diversity. In practice, the dispersive effects caused by the

frequency selective channel/pulse shaping filters can very well be mitigated by single

antenna receivers but it is generally difficult to suppress co-channel interference using

a single antenna. Hence, multiple antenna receivers have been proposed as a remedy

for the CCI problem. The generalized WL equalizers proposed in this thesis not only

provide superior ISI suppression but also offer an interference cancellation gain in a

single/multiple antenna system. Before discussing WL concepts, first we shall review

the state of the art equalization techniques.

1.1.2 Conventional Equalization Techniques

For many modulation systems including PAM and QAM systems, conventional MMSE

based equalization techniques [5], both linear and decision feedback equalization
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(DFE) methods, are used to solve the ISI problem. The linear equalizer is a pre-

ferred method for low complex systems where the noise enhancement caused by the

LE is outperformed by the equalization gain. DFE, on the other hand, avoids the

noise enhancement problem by using a combination of feed-forward and feedback fil-

ters. In general, DFE provides a signal-to-noise ratio (SNR) improvement over a LE.

However, when there is significant energy in the DFE feed-back path, this method

suffers from feedback errors. The maximum likelihood sequence estimator (MLSE)

[6], [7] that estimates the whole data sequence by Euclidean distance minimization, is

less sensitive to error propagation. But this algorithm has a computational complex-

ity that grows exponentially with modulation size and channel length which makes it

unsuitable for heavily dispersive channels. The maximum a-posteriori (MAP) equal-

izer [8] is similar to MLSE in performance but has an additional ability to provide

symbol-by-symbol soft bit decisions which is a requirement in coded systems. Both

MLSE and MAP have low complexity variants such as reduced state sequence esti-

mators (RSSE) [9] which reduce the exponential complexity by using MMSE-DFE

front-end pre-filtering and a combination of set partitioning and decision feedback

techniques; RSSE is especially suitable for large modulation alphabet sizes and long

ISI channels.

1.1.2.1 Performance in Fading Channels

Performance of any equalization scheme depends specifically on the type of ISI chan-

nel under consideration. Even with MLSE equalization, the ISI caused by the pulse

shaping filters generally lead to a performance loss (except in some special cases)

whereas the ISI caused by the frequency selective fading channel enhances perfor-

mance through diversity effect. It can be shown that MLSE/MAP equalizers fully

captures the diversity that is inherently present in the frequency selective channel.
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Analytical and simulation evaluation showed that MLSE provides full diversity (that

is the diversity order of the given channel) whereas the conventional MMSE-DFE

receiver (under the assumption of error free feed-back) provides nearly full diversity

but with a slight SNR penalty (0.5-3.0 dB in typical channels of interest). Simulation

studies also suggest that RSSE receivers with as few as 2-4 states [10] can recover

most of the DFE loss and approach near MLSE performance in typical frequency se-

lective channels. It is difficult to quantify the diversity order for a LE but simulation

showed that this method also benefits significantly from multi-path diversity.

1.1.3 Co-channel Interference Suppression

In this thesis work we consider a TDMA type cellular system in which several users

share a given channel on a time slot sharing basis (users do not interferer within a given

cell). In this type of system CCI that arises from the frequency reuse mechanism will

be a dominant impairment that limits the system capacity. In the present literature

many different interference suppression schemes have been proposed to improve link

and system performance. The IC gain is typically used to operate the network with

lower frequency re-use factors (with high interference and high channel usage) to

increase system capacity. In general, all CCI mitigation techniques requires some

form of redundancy. This may be in the form of excess bandwidth, multiple antennas

etc. As our main aim is to increase bandwidth efficiency, we consider a TDMA-type

system without any excess bandwidth, but the receiver may exploit multiple antennas.

1.1.3.1 Joint Detection Schemes

The existing interference cancellation schemes may be broadly classified into two

classes. The first approach, widely known as multi-user joint detection (JD), jointly

detects both signal and interference using the channel state information (CSI) of both
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signals [11] ,[12]. As in single-user equalization, joint detection can be implemented

using optimal MLSE/MAP techniques or sub-optimal low complexity MMSE/MMSE-

DFE techniques. In the presence of ISI and CCI, the MLSE type joint detector has

additional complexity that grows exponentially with the total number of users (i.e.

the total number of co-channel signals including signal and interference) and the

channel memory [13]. On the other hand, MMSE/MMSE-DFE type joint detectors

alleviate the exponential MLSE complexity using a front-end pre-filter to suppress

the ISI first, followed by a joint DFE receiver that detects all users using multi-user

decision feedback [14]. However, pre-filter based joint detectors work well only when

the number of receiver antennas is greater than or equal to the total number of users

whereas MLSE based JD can be useful even with a single receiver antenna. In flat

Rayleigh fading channels, when CSI of all users is perfectly known at the receiver, it

has been shown that many BPSK co-channel users can be separated using a single

receiver antenna (approximately 2.0 dB SNR loss per user [15]). This result is unique

to BPSK only; It was also shown in [15] that single antenna multi-user joint detection

for QAM signals requires a very high SNR penalty unless multiple antennas are used.

Note that the above mentioned multi-user equalization techniques explicitly rely on

the CSI of both signal and interference for joint detection. In systems where the

CSI of the interference cannot be obtained accurately (as in cellular systems), other

means of interference cancellation have to be considered.

1.1.3.2 Covariance based Interference Cancellation

The second class of interference cancellation schemes, known as interference rejection

combining (IRC) methods that are based on multi-antenna MMSE/MMSE-DFE type

receiver processing, detect the signal of interest while treating the rest of the inter-

ference as background noise. These methods solely rely on interference covariance
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information for interference suppression. This approach has been used in cellular

systems such as IS-54/136 (North American TDMA standard), GSM/EDGE [4], [16].

In [17], Winters et al. have shown that IRC receivers provide both diversity gain

and interference suppression advantage when the receiver is equipped with multiple

antennas. They have shown that, in flat fading channels, an N antenna receiver can

reject M co-channel interferers (M < N) while proving a diversity order: N −M . In

frequency selective channels, simulation results indicate that, an MMSE-DFE receiver

can also suppresses M interferers but provides an increased diversity order roughly

equal to: ν(N − M) where ν is the diversity order of the frequency selective chan-

nel under consideration. Note that IRC techniques are well suited for cellular type

applications where it is difficult to obtain the CSI of interference accurately but the

CSI of desired signal and the interference covariance can be accurately measured, for

instance, using a training sequence.

The IRC method, however, has two limitations. First, these schemes cannot provide

any IC advantage in single antenna systems. Second, in multiple antenna systems,

the required number of antenna elements can be high if the system has a large number

of dominant interferers. Note that in typical base station deployments, cost and com-

plexity requirements generally limit the number of receiver antennas to 2-4, whereas

a maximum of two receiver antennas has been considered at the terminal (for mobile

handsets or lap-tops) side. In that respect, it is desirable to find techniques that offer

a better complexity and performance trade-off.

1.1.4 Equalization using Widely Linear Filtering

Our work stems from a new signal processing concept called widely linear filtering

that has successfully been used for linear (mean square) estimation of a signal and its

complex conjugate. When the channel response is complex, collecting the complex
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Figure 1.2. Widely linear filtering.

and complex-conjugate copies (alternatively collecting the real and imaginary parts)

of the received signal creates two different copies of signal (see Figure 1.2). In [18],

Picinbono and Chevalier showed that filtering of these two copies provides a per-

formance advantage when the pseudo covariance (defined as covariance between the

received signal and its complex conjugate) is non-zero. Such processes are classified

as improper (or non-circular) random processes [19]. Although, complex, complex-

conjugate filtering was previously used by [20], [21] for signal processing and commu-

nication applications, the concept has not received much attention until Picinbono

formally introduced the notion of widely linear filtering (WLF). Though, complex,

complex-conjugate based implementation has been a popular choice for WLF, the

same benefit can be obtained using an alternative implementation based on the real

(I) and quadrature (Q) parts of the received signal as shown in Figure 1.3. The I-Q

implementation is computationally more efficient as the filter tap calculations and

signal filtering involves real arithmetic only.

Let us now examine the suitability of commonly used PAM and QAM signals for

WLF. Conventional PAM systems use one dimensional (real) modulation alphabets

that are modulated on either the cosine or sine branches were as QAM uses two di-
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Figure 1.3. Widely linear filtering using I-Q processing.

mensional (complex) symbols whose real part is modulated on to the in-phase (sine)

and the imaginary part is sent on the quadrature (cosine) branch. In many systems,

including the wireless case, the received sine and cosine signals undergo different

attenuations during radio propagation. Therefore, the baseband channel impulse re-

sponse can be modeled as a complex response with distinct real and imaginary parts.

Also, other modulation schemes such as MSK/linearized GMSK [22] use both in-

phase and quadrature branches for modulation but the signal carries real information

symbols. These schemes have an equivalent PAM representation (after applying a 90

degree phase de-rotation between successive symbols). Especially in case of GMSK,

because of ISI introduced by the modulator, the de-rotated channel response takes

complex values. In general, when the channel impulse response is complex (either

due to propagation channel or pulse shaping), we can show that, PAM becomes a

non-circular random process as it exhibits non-zero pseudo-covariance whereas QAM

becomes circular (the pseudo-covariance function vanishes for symmetric QAM con-

stellations). Essentially, WLF can be considered in systems where either wanted

signal or interference involves PAM-type signals.
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1.1.4.1 Related Work

Yoon and Leib, in [23], showed the advantage of WLF using an SNR maximizing

matched filter receiver that takes into account the pseudo covariance of the noise

(plus interference) in a two user DS-CDMA system employing real valued spreading

sequences and BPSK modulation. Subsequently, Lampe and Breiling, in [24], general-

ized these results to a multi-user case. They showed that, in a DS-CDMA system that

uses complex spreading sequences and WL multi-user detectors, PAM signaling offers

a higher spectral efficiency than QAM. In addition, Lampe et al. in [25] proposed an

interesting application of WLF for iterative multi-user detection for QAM systems.

Though, a symmetric QAM constellation is a circular random process by it self, in

the presence of extrinsic information (i.e. when a-priori information is available as

in an iterative receiver), the QAM signal becomes non-circular. This property was

used to improve the convergence speed of (i.e. to reduce the number of iterations)

an iterative multi-user receiver. Also, in [26], WLF was applied to suppress narrow

band interference (NBI) in DS-CDMA systems that uses either PAM or QAM signals.

Further, [27] extended that concept to NBI cancellation in multi-carrier systems.

Recently, in [28], Gerstacker et al. showed that, when the desired signal has PAM

and when the ISI channel response is complex (noise being AWGN), widely linear

equalizers (WLE), both WL-LE and WL-DFE, provide a performance advantage

over conventional equalizers. It was shown that WL receivers that independently

filter the complex and complex-conjugate parts of the received signal experience less

number of channel zeros (near unit circle). This property was shown to be the reason

for the lower noise enhancement and better performance of WL receivers. In [29],

this concept was extended to equalization of space-time block codes with QAM type

signaling. In this case, the gain of WL receivers owes to their ability to exploit
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the inherent correlations between the complex and complex-conjugated copies of the

QAM symbols present in the Alamouti space-time block code. Although, the WLE

concepts proposed in [28], [29], in principle, can be extended for CCI suppression,

the authors did not address this aspect; they specifically considered performance in

a white noise channel with ISI.

With regard to CCI suppression, GSM is one of the first industrial standards to adopt

WLF [30]. In [31], Trigui and Slock applied I-Q type WL receivers for CCI cancella-

tion for single antenna GMSK receivers, whereas in [32], Gardner and Reid applied

a modified version of WLF (so called linear-conjugate-linear (LTL) FRESH filters)

for CCI cancellation in GSM with single/multiple antennas1. However, most of the

existing WLE methods address IC concepts for systems that use BPSK modulation

or PAM-type modulation only. An important case where QAM being the desired

signal and PAM being interference has not been considered. A practical application

of this type of channel occurs in GSM/EDGE type systems that uses a combination

of PAM (GMSK) and QAM (8-PSK) signals. In this type of system, scenarios arise,

where the desired signal may have PAM/QAM, but interference consists of a mixture

of PAM and QAM signals. In this channel, conventional WLE that are tailored for

PAM signaling are not useful. Moreover, extension of WL concepts to QAM requires

a new equalization framework. This thesis addresses this problem and further extends

the WL equalization method to multiple antennas and multiple interferers. We show

that WL processing is not only useful for PAM systems but also provides significant

advantage for QAM systems especially in the presence of PAM-type interference.

1Note that single antenna interference cancellation (SAIC) is a mandatory feature for GMSK

modes of GSM standard.
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1.2 Overview of Thesis

In this thesis, we consider receiver design for a single/multiple antenna receiver but the

transmitter is assumed to have a single antenna only. We depart from the conventional

complex, complex-conjugate type WL approach and introduce alternative and more

efficient WL-DFE/WL-LE receiver structures for PAM/QAM systems using the in-

phase (I) and quadrature (Q) parts of the received signal collected from each antenna

branch. We derive the receiver settings for both finite and infinite length filters and

analyze the performance under various channel conditions. The thesis is organized

into six chapters.

After introducing the over-sampled baseband signal model in Chapter 2, in Chapter

3 we first analyze the performance of WL PAM equalizers in ISI channels with white

noise. In this chapter we provide detailed derivations of WL MMSE/MMSE-DFE

filter settings for finite and infinite length cases. We demonstrated how WL receivers

take advantage of additional dimensions created by I-Q split to reduce the noise en-

hancement problem that is inherent to MMSE receivers. The performance advantage

is clarified by comparing the MSE for conventional and WL methods. In addition,

the computational advantage of WL methods is highlighted.

In Chapter 4 we consider performance in interference limited systems. Specifically,

we consider an interference limited channel where CCI consists of a mixture of PAM

and QAM interferers. This is the baseline model for rest of the interference analysis

throughout this thesis. In this chapter, we first formulated WL MMSE/MMSE-DFE

receivers for QAM/PAM systems with multiple antennas and multiple (PAM/QAM)

interferers. Next, we derived the IC properties of WL receivers as function of number

of antennas and the number of interferers. We used simulation to show the BER
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advantage of proposed receivers for single and dual antenna systems in frequency

selective Rayleigh fading channels.

In Chapters 3, 4 we reviewed the WL equalization problem mainly from signal process-

ing point of view. For channels with fading and interference, it is equally important

to understand the error rate behavior and the diversity-IC trade-off [17]. This aspect

is well understood for conventional systems. However, the analogous results for WL

receivers are not available in the literature. In Chapter 5 we first derive an upper

bound to the symbol error rate of a PAM/QAM WL receiver in flat Rayleigh fading

channels. Using the SER analysis, we established the diversity-IC trade-off for WL

receivers with multiple antennas and multiple (PAM/QAM) interferers. Specifically,

we show that, when interference consists of M1 PAM and M2 QAM interferers, an N

antenna PAM/QAM WL receiver provides full IC with a diversity order: N−M2−M1

2
.

This is significant gain compared to conventional methods that provide full IC gain

up to M interferers with a diversity order: N −M for M < N where M = M1 + M2.

Finally we outlined a list of future research topics in Chapter 6 followed by conclusions

in Chapter 7.

1.3 Notation

The following notation is adopted throughout this thesis.

• Matrices (H) are denoted with upper case boldface letters.

• Vectors (h) are denoted with lower case bold face letters.

• Scalar quantities (Rxx(f)) are denoted with non boldface letters.

• The notation Tr(H),H∗,H′,H†, and |H| denotes trace, conjugate, transpose,

conjugate-transpose, and determinant operations respectively.
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• The symbol � denotes element wise convolution between any two matrices or

vectors.

• h(D) =
∑

k hkD
k denotes the discrete D-transform whereas the sequence h∗

−k

has a D-transform h∗(D−∗) =
∑

k h∗
kD

−k. By letting D = e−j2πfT , −1
2T

≤ f ≤
1

2T
we get the corresponding discrete Fourier transform (DFT).

• We use the notation h(f), h∗(−f) that correspond to h(D), h∗(D−∗) respec-

tively.

• The notation hk ↔ h(f) denotes a DFT pair.

• The notation Re(yk), Im(yk) denotes the real and imaginary parts of a complex

valued vector yk respectively.

• Vectors/matrices with a super script h̃k or H̃k is used to denote I/Q domain

quantities only.

• The convolution between two functions x(t) and y(t) is defined as: x(t)�y(t) �∫
τ
x(τ)y(t − τ) dτ .

• The convolution between two discrete functions xk and yk is defined as: xk�yk �∑
m xmyk−m.

• diag(x1, x2, · · · , xN) denotes an N × N diagonal matrix with entries x0, .., xN

along the main diagonal and zeros elsewhere.

• Let x = [x1, x2, .., xN ]′ denote a real Gaussian random (column) vector of length

N × 1. Let E[x] = mx, E[(x − mx)(x −mx
†)] � Rxx denote the mean and

covariance functions respectively. The joint probability density function (pdf)

of elements of x is given by: p(x1, x2, .., xN) = 1√
(2π)N |Rxx|

e−(x−mx)†R−1
xx (x−mx).

This density function is compactly denoted as: N(mx,Rxx).

• The symbol E[.] denotes the expectation operation with respect to all the ran-

dom variables contained in that function whereas Ex[.] denotes expectation

operation explicitly with respect to random variable x.



CHAPTER 2

SYSTEM MODEL

2.1 Introduction

In our system model we consider a single antenna transmitter and a receiver with N

antennas. In this chapter we first introduce the signal model for conventional over-

sampled systems in Section 2.2. In Section 2.3 we introduce the discrete baseband I-Q

signal model for PAM and QAM systems. As we are interested in determining receiver

performance in both interference and noise limited situations, in Section 2.4 we model

the additive noise as a sum of several PAM and QAM interferers and thermal noise.

Using the signal model developed in this chapter, we first consider conventional and

WL receiver structures for PAM signaling in a white noise channel in Chapter 3. In

Chapter 4, the WL receiver concepts will be extended to QAM systems with multiple

antennas and multiple CCI.

2.2 Signal Model

We consider an M-ary PAM/QAM-type system when the symbol transmission rate

R = 1
T
, the modulated/transmitted signal s(t) is,

s(t) =

k=∞∑
k=−∞

xkp(t − kT ). (2.1)

The symbols xk takes real values for PAM, and complex values xk = xk,I + jxk,Q

in case of QAM, and p(t) is assumed to be a real-valued pulse. The receiver has N

antennas. The propagation channel between the transmitter and ith receiver antenna

15
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Figure 2.1. Conventional receiver.

has a complex-valued response f i(t), the signal is corrupted by additive noise term

zi(t). Then the output of a front-end (anti-aliasing) filter q(t) denoted as yi(t) at the

i th antenna can be written as (see Figure 2.1):

yi(t) =

k=∞∑
k=−∞

xkh
i(t − kT ) + ni(t), i = 1, 2, .., N (2.2)

where

hi(t) � p(t) � f i(t) � q(t)

denotes the total channel response which is the convolution of transmitted pulse,

propagation channel, and the receiver filter and

ni(t) = zi(t) � q(t)

denotes the filtered noise term, zi(t) being the additive noise component that is

collected at the i the antenna. Assuming an over-sampling rate of s
T
, we sample the

received waveform at t = kT + lT
s
, l = 0, 1, ..., (s − 1) to obtain

yi
k,l = yi(t)|t=kT+l T

s
(2.3)

=
v∑

m=0

xk−m hi
m,l + ni

k,l (2.4)
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Figure 2.2. Discrete baseband signal model.

where k is the time index, l represents the over-sampling index,

hi
k,l = p(t) � f i(t) � q(t)|t=kT+l T

s

and ni
k,l = ni(t)|t=kT+l T

s
. The ISI channel is assumed to be time limited to a length

(v + 1). In the rest of the paper we adopt vector notation of [5] for representing

the over-sampled outputs of multiple antenna signals. Then (2.4) can be compactly

represented as

yk = hk � xk + nk, (2.5)

where we stack up over-sampled antenna outputs in a column vector format as:

yk = [y1
k,1, .., y

1
k,s, .., y

N
k,1, .., y

N
k,s]

′

hk = [h1
k,1, .., h

1
k,s, .., h

N
k,1, .., h

N
k,s]

′

nk = [n1
k,1, .., n

1
k,s, .., n

N
k,1, .., n

N
k,s]

′
.

A schematic diagram of the above signal model is depicted in Figure 2.2.

2.3 Signal Model with I-Q Split

As shown in Figure 2.3, we extract multiple signal streams by extracting the in-phase

(real) and quadrature (imaginary) components of the over-sampled outputs from each

antenna. By stacking up the I-Q parts of (2.5) in a column vector format we get:

ỹk =
v∑

l=0

h̃lxk−l + ñk, PAM (2.6)
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Figure 2.3. Signal model with I-Q split.
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Figure 2.4. Equivalent baseband I-Q signal model for PAM.

where,

ỹk =

⎡
⎢⎣ Re(yk)

Im(yk)

⎤
⎥⎦ , h̃l =

⎡
⎢⎣ Re(hl)

Im(hl)

⎤
⎥⎦ , ñk =

⎡
⎢⎣ Re(nk)

Im(nk)

⎤
⎥⎦ .

Since the modulation alphabet is real, I-Q split creates two copies of signal and noise

with real valued channel gains. Thus, we have a single input (scalar PAM input)

multiple output (SIMO) system model. A schematic diagram of above signal model

for PAM signaling is shown in Figure 2.4.
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Figure 2.5. Equivalent baseband I-Q signal model for QAM.

For QAM signaling, since the modulation alphabets are complex quantities, and since

the channel is assumed to be complex, I-Q split creates vector-matrix signal model

of form:

ỹk =

v∑
l=0

H̃lx̃k−l + ñk, QAM (2.7)

where the channel takes a matrix form: H̃l =

⎡
⎢⎣ Re(hl) −Im(hl)

Im(hl) Re(hl)

⎤
⎥⎦ and the modu-

lation takes a vector form: x̃k = [Re(xk), Im(xk)]
′. In this case, I-Q split creates a

multiple input (constituted by I-Q parts of QAM) multiple output (MIMO) signal

model. A schematic representation of the QAM signal model is given in Figure 2.5.

The time domain signals given in (2.5), (2.6),(2.7) can be represented in D-domain

as:

y(D) = h(D)x(D) + n(D), Conv

ỹ(D) = h̃(D)x(D) + ñ(D), PAM

= H̃(D)x̃(D) + ñ(D) QAM.
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Further, the D-domain channel vectors/matrices can be explicitly written as:

h(D) = [hI(D) + jhQ(D)] (2.8)

h̃(D) =

⎡
⎢⎣ hI(D)

hQ(D)

⎤
⎥⎦ (2.9)

and

H̃(D) =

⎡
⎢⎣ hI(D) −hQ(D)

hQ(D) hI(D)

⎤
⎥⎦ . (2.10)

We further express the I-Q channel vectors as:

hI(D) = [h1
I,1(D), .., h1

I,s(D), .., hN
I,1(D), .., hN

I,s(D)]′ (2.11)

hQ(D) = [h1
Q,1(D), .., h1

Q,s(D), .., hN
Q,1(D), .., hN

Q,s(D)]′, (2.12)

where hq
p(D), p = 1, 2, .., s,q = 1, 2, .., N being indices, denotes the D-transform

of hq
k,p and hq

I,p(D),hq
Q,p(D) denote the D-transform of real and imaginary parts of

hq
k,p. Further, we assume that the modulation symbols are identical and statistically

independent (i.i.d.). In case of QAM, the I-Q parts of the symbol constellation are

assumed to be zero mean uncorrelated symbols with equal variance. Then we have:

E[|xk|2] = 1, E[x̃kx̃
†
k] = I

2
.

2.4 Interference Modeling

We assume that the received signal is corrupted by a sum of M co-channel interferers

and thermal noise. The interference plus thermal noise term can be represented in

discrete baseband form as

nk =
M∑

m=1

gm
k � x̂m

k + zk (2.13)
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where

gm
k = [g1,m

k,1 , .., g1,m
k,s , .., gN,m

k,1 , .., gN,m
k,s ]

′

represents the channel vector of m th interfering signal, x̂m
k represents the mth mod-

ulation sequence and

zk = [z1
k,1, .., z

1
k,s, .., z

N
k,1, .., z

N
k,s]

′

represents AWGN of variance sN0 per dimension [5]. We assume that x̂m
k are zero

mean i.i.d. symbols that are statistically independent of desired modulation sequence,

and E|x̂m
k |2 = 1. Since the interference modulation alphabet is assumed to be PAM

or QAM type, we assume that there are M1 PAM interferers and M2 QAM interferers

in the system. With I-Q split, the noise plus interference term can be modeled as:

ñk =
M1∑
l=1

g̃l
k � x̂l

k︸ ︷︷ ︸
PAM CCI

+
M2∑

m=1

G̃m
k � x̄m

k︸ ︷︷ ︸
QAM CCI

+ z̃k︸︷︷︸
AWGN

(2.14)

where

g̃l
k = [Re(gl

k), Im(g
l
k)]

′, G̃m
k =

⎡
⎢⎣ Re(gm

k ) −Im(gm
k )

Im(gm
k ) Re(gm

k )

⎤
⎥⎦ ,

z̃k = [Re(zk), Im(zk)]
′ denotes the real and imaginary parts of thermal noise of variance

sN0

2
per dimension, and x̄m

k = [Re(x̂m
k ), Im(x̂m

k )]′. We assume that E[|x̂l
k|2] = 1,

E[x̄m
k x̄†m

k ] = I
2
. Taking the D-transforms of (2.13), (2.14), the time domain signals

can be expressed in D-domain as:

n(D) =

M∑
l=1

gl(D)x̂l(D) + z(D) (2.15)

ñ(D) =

M1∑
l=1

g̃l(D)x̂l(D) +

M2∑
m=1

G̃m(D)x̄m(D) + z̃(D). (2.16)

We use the following notation to explicitly represent the above D-domain vectors

gl(D) = [g1,l
1 (D), .., g1,l

s (D), .., gN,l
s (D)]′, (2.17)
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g̃l(D) =

⎡
⎢⎣ gl

I(D)

gl
Q(D)

⎤
⎥⎦ , (2.18)

and

G̃m(D) =

⎡
⎢⎣ gl

I(D) −gl
Q(D)

gl
Q(D) gl

I(D)

⎤
⎥⎦ (2.19)

where

gl
I(D) = [g1,l

I,1(D), .., g1,l
I,s(D), .., gN,l

I,s (D)]′ (2.20)

gl
Q(D) = [g1,l

Q,1(D), .., g1,l
Q,s(D), .., gN,l

Q,s(D)]′, (2.21)

where gr,s
q (D) and gr,s

q (D), q, r, s being indices denotes the D-transform of gr,s
k,q,

and gr,s
I,q(D),gr,s

Q,q(D) denotes the D-transform of real and imaginary parts of gr,s
k,q re-

spectively. Using (2.15), the conventional noise plus interference correlation matrix

(NCM) is given by:

Rnn(D) � E[n(D)n†(D−∗)] (2.22)

=

M∑
m=1

gm(D)gm†(D−∗) + sN0I. (2.23)

For convenience let us introduce: Rnn(D) � Rii(D) + sN0I where

Rii(D) �
M∑

m=1

gm(D)gm†(D−∗) (2.24)

denotes the interference correlation matrix (ICM). Further, using (2.16), we define

the NCM of the I-Q signal as:

Rññ(D) � E[ñ(D)ñ†(D−∗)]

= Rĩ̃i(D) +
sN0

2
I (2.25)
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where

Rĩ̃i(D) �
M1∑
l=1

g̃l(D)g̃l†(D−∗)︸ ︷︷ ︸
PAM CCI contribution

+
1

2

M2∑
m=1

G̃m(D)G̃m†(D−∗)︸ ︷︷ ︸
QAM CCI contribution

(2.26)

denotes the I-Q interference correlation matrix (ICM).



CHAPTER 3

WIDELY LINEAR EQUALIZATION FOR PAM SYSTEMS

3.1 Introduction

It is well known that conventional MMSE equalizers suffer from noise enhancement in

channels with zeros near unit circle. In [28] Gerstacket et al. showed that WL equal-

izers that independently filter the complex, complex-conjugate (or the I-Q) parts of

the signal reduce the noise enhancement problem as WLE are less likely to experi-

ence channel zeros near unit circle. In [28], the authors mainly relied on simulation to

show the advantage of WL receivers in frequency selective channels. We take a more

theoretical approach. In this chapter we show that the advantage of WL methods

can be explained using certain MSE connection between conventional and WL re-

ceivers. We provide new insights into the performance and computational complexity

of conventional and WL equalizers using detailed MSE analysis.

Intentionally, we depart from the customary complex, complex-conjugate based WL

approach and formulate WL MMSE/MMSE-DFE equalizers using the in-phase (I)

and quadrature (Q) parts of the received signal. We consider both finite and infinite

length equalizers. Although our focus in this chapter is restricted to a single antenna

receiver (N = 1) in a white noise channel, we keep the derivations general enough to

include extension to multiple antennas and non-white noise cases.

The chapter is organized as follows. In Section 3.2 we analyze conventional and WL

linear equalizers first for infinite length case followed by finite length scenario. In

24
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Section 3.3 we provide analogous results for DFE case followed by a summary of the

results of this chapter in Section 3.4.

3.2 Linear Equalization

First we shall begin with the well-known conventional LE. The notation and deriva-

tions for infinite length equalizers are obtained from [5] while derivations for finite

length case are obtained from [39]. Although our results are self-contained, the inter-

ested reader may refer to the references for additional details.

 

Slicerkw
ky

Final decision

FFF

Figure 3.1. Conventional linear equalizer.

3.2.1 Infinite Length Conventional Linear Equalizer

A standard linear equalizer as depicted in Figure 3.1 uses a vector-valued linear feed-

forward (FFF) filter

wk = [w1,k, w2,k, .., wNs,k]

which convolves with the over-sampled data vector (introduced in (2.5)):

yk = [y1,k, y2,k, .., yNs,k]
′

that produces a scalar output sequence zk = wk � yk to provide an MMSE estimate

of xk. Denoting the error sequence by ek we have:

ek � xk − zk.
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We seek the optimum filter that minimizes the mean square error (MSE) metric:

MSEConv LE � minwk
E[|xk − zk|2].

Using D-notation:

e(D) = x(D) − w(D)y(D). (3.1)

Using orthogonality principle:

E[e(D)y†(D−∗)] = Rxy(D) − w(D)Ryy(D) = 0

together with (3.1) we can obtain the optimum FFF as:

w(D) = Rxy(D)R−1
yy (D) (3.2)

= Rxx(D)h†(D−∗)[h(D)h†(D−∗) + Rnn(D)]−1 (3.3)

= [R−1
xx (D) + h†(D−∗)R−1

nn(D)h(D)]−1h†(D−∗)R−1
nn(D). (3.4)

In the above expressions (3.4) is obtained by applying matrix inversion lemma1 and

Rxy(D) � E[x(D)y†(D−∗)] = Rxx(D)h†(D−∗)

Ryy(D) � E[y(D)y†(D−∗)] = h(D)h†(D−∗) + Rnn(D)

Rnn(D) � E[n(D)n†(D−∗)]

Rxx(D) � E[x(D)x∗(D−∗)] = 1.

The minimum MSE for this case can be obtained as [5]:

MSEConv LE = T

∫ 1
2T

− 1
2T

1

[1 + h†(−f)R−1
nn(f)h(f)]

df (3.5)

where frequency domain quantities are used in defining the MSE. In case of white

noise, Rnn(D) = sN0I. Hence we can represent the FFF alternatively as:

w(D) =
1

[sN0 + h†(D−∗)h(D)]︸ ︷︷ ︸
scalar MMSE filter

h†(D−∗)︸ ︷︷ ︸
Matched Filter

.

1(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1
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Here, the FFF filter is split into a matched filter and a scalar MMSE whitening filter.

Note that the alternative form is computationally more efficient than the direct form

(3.3) as this implementation requires a single scalar MMSE filter after applying a

vector-valued matched filter (MF) filter. Next we shall examine the structure and

MSE performance for an infinite length WL-LE.

 

Slicer 

I kw ,

,Q kw

 ( )Re

( )Im

ky

FFF for I-branch 

FFF for Q-branch 

Final decision 

Figure 3.2. WL linear equalizer for PAM.

3.2.2 Infinite Length WL Linear Equalizer

In contrast to the conventional LE, the WL-LE independently filters the I/Q data

branches (see Figure 3.2) and combines these outputs to form a decision variable:

z̃k = w̃k � ỹk.

In the above expression, the WL filters, compactly denoted as:

w̃k = [wI,k,wQ,k],

are optimized by minimizing the MSE metric:

MSEWL LE � minw̃k
E[|xk − z̃k|2].
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Following the results of conventional LE, we can obtain the D-domain solution for

WL-LE as:

w̃(D) = Rx̃ỹ(D)R−1
ỹỹ (D) (3.6)

= Rxx(D)h̃†(D−∗)[h̃(D)h̃†(D−∗) + Rññ(D)]−1 (3.7)

= [R−1
xx (D) + h̃†(D−∗)R−1

ññ(D)h̃(D)]−1h̃†(D−∗)R−1
ññ(D) (3.8)

where

Rx̃ỹ(D) � E[x(D)ỹ†(D−∗)] = Rxx(D)h̃†(D−∗)

Rỹỹ(D) � E[ỹ(D)ỹ†(D−∗)] = h̃(D)h̃†(D−∗) + Rññ(D)

Rññ(D) � E[ñ(D)ñ†(D−∗)].

The minimum MSE in this case is given by:

MSEWL LE = T

∫ 1
2T

− 1
2T

1

[1 + h̃†(−f)R−1
ññ(f)h̃(f)]

df. (3.9)

In case of white noise, Rññ(D) = sN0

2
I. Using this, the WL-FFF can be expressed as:

wI(D) =
h†

I(D
−∗)

[ sN0

2
+ h̃†(D−∗)h̃(D)]

, wQ(D) =
h†

Q(D−∗)

[ sN0

2
+ h̃†(D−∗)h̃(D)]

. (3.10)

Note that in this case the WL FFF is a real-valued vector filter of length 2sN that

is twice that of conventional filter. In spite of increase in filter length, in Section

3.2.4, we show that the overall complexity of WL receiver is lower than that of a

conventional receiver when the noise is white.

3.2.3 MSE Comparison for Infinite Length LE

In this section, we highlight the advantage of WL detection by using a closed form

expression that shows the MSE connection between conventional and WL receivers.

Let

Q(D) � h†(D−∗)h(D) +
sN0

2
(3.11)
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denote the covariance function for conventional case. Strictly speaking, the covariance

function for conventional signal should be defined as: h†(D−∗)h(D)+sN0 for complex

AWGN input. Since, only the real part of the noise contributes to the performance, we

modify the covariance definition to include sN0

2
as noise variance. Such a modification

allows us to draw a direct comparison between conventional and WL methods 2.

Using, (2.8), (2.11), (2.12), we can express Q(D) in terms of respective I/Q channel

responses as:

Q(D) = h†(D−∗)h(D) +
sN0

2

= [h†
I(D

−∗) − jh†
Q(D−∗)][hI(D) + jhQ(D)] +

sN0

2

=
s∑

l=1

N∑
m=1

[|hm
I,l(D)|2 + |hm

Q,l(D)|2 + 2Im[hm
Q,l(D

−∗)hm
I,l(D)]

]
+

sN0

2
.

Letting D = e−j2πfT we get:

Q(f) =
s∑

l=1

N∑
m=1

[|hm
I,l(f)|2 + |hm

Q,l(f)|2 + 2Im[hm
Q,l(−f)hm

I,l(f)]
]
+ s

N0

2
(3.12)

= a(f) − ā(f) (3.13)

where

a(f) �
s∑

l=1

N∑
m=1

[|hm
I,l(f)|2 + |hm

Q,l(f)|2] + s
N0

2
(3.14)

ā(f) � 2

s∑
l=1

N∑
m=1

Im[hm
Q,l(−f)hm

I,l(f)]. (3.15)

We can verify that a(f) is an even function of f and ā(f) is a real valued odd function

i.e.
∫ 1

2T

− 1
2T

ā(f) df = 0. Using (2.11),(2.12) let us define:

Q̃(f) � h̃†(−f)h̃(f) +
sN0

2
=

s∑
l=1

N∑
m=1

[|hm
I,l(f)|2 + |hm

Q,l(f)|2]+ sN0

2
= a(f). (3.16)

2Alternatively, we could let the noise variance be sN0 and compare the MSE for conventional

and WL cases in the limiting case when N0 takes a zero value.
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For a non zero constant noise variance N0 we have:

Q(f) = a(f) − ā(f) > 0 =⇒ ā(f)

a(f)
< 1.

Using (3.9),(3.16) the MSE for a WL-LE can be expressed as:

MSEWL LE = T
sN0

2

∫ 1
2T

− 1
2T

1

h̃†(−f)h̃(f) + sN0

2

df (3.17)

= T
sN0

2

∫ 1
2T

− 1
2T

1

a(f)
df. (3.18)

Using (3.5),(3.13) the MSE for a conventional equalizer can be expressed as3:

MSEConv LE = T
sN0

2

∫ 1
2T

− 1
2T

1

h†(−f)h(f) + sN0

2

df

= T
sN0

2

∫ 1
2T

− 1
2T

1

a(f) − ā(f)
df

= T
sN0

2

∫ 1
2T

− 1
2T

1

a(f)[1 − ā(f)
a(f)

]
df

= T
sN0

2

∫ 1
2T

− 1
2T

1

a(f)

[
1 +

ā(f)

a(f)
+

ā2(f)

a2(f)
+

ā3(f)

a3(f)
+ ..

]
df

= T
sN0

2

∫ 1
2T

− 1
2T

⎡
⎣ 1

a(f)
+

ā2(f)
a2(f)

+ ā4(f)
a4(f)

+ ..

a(f)

⎤
⎦ df

= MSEWL LE + Excess MSE.

In the above expressions we invoked the infinite series of type [1 − x]−1 =
∑∞

k=0 xk

and eliminated the terms containing odd-powers as they integrate to zero. The excess

MSE is a non-negative quantity since a(f) and the even powers of ā(f)
a(f)

are always

positive. Now we have the desired result. The MSE for WL-LE is less than or equal

to conventional MSE and equality holds when the excess MSE term is zero, which

happens if only if ā(f) = 0 i.e. −2
∑s

l=1 Im[hQ,l(−f)hI,l(f)] = 0. This condition will

3Note that for PAM, only the real part of noise contributes to error rate. Therefore we divide

the MSE expression given by (3.5) by a factor 2.
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be satisfied when all channel taps are real or when the channel is ISI free. In all other

complex valued ISI channels WL-LE provides a lower MSE than conventional LE.

Alternatively, we can say that the presence of ā(f) (that is caused by the imaginary

part of time domain signal covariance) is responsible for additional noise enhancement

which is quantified by the excess MSE term. This problem is most severe for channels

that has a large ā(f). We further emphasize this result using the following examples.

Example-1

Consider linear equalization of a binary modulation alphabet over a single antenna 2-

tap ISI channel whose impulse response is given by hk = [0.707, j0.707]. In frequency

domain: h(f) = 0.707(1 + jej2πfT ). Assuming white Gaussian noise of variance N0

2

per dimension, the MSE for conventional LE is given by:

MSEConv =
N0T

2

∫ 1
2T

−1
2T

1

|h(f)|2 + N0

2

df =
N0T

2

∫ 1
2T

−1
2T

1

1 − sin(2πfT ) + N0

2

df.

For SNR= 1
N0

=10dB, using numerical integration we get: MSEConv ∼ 0.156. Since the

unbiased SNR is calculated as:

SNRU,Conv = 10 log [
1

MSEConv
− 1],

we get: SNRU,Conv=7.332 dB. On the other hand, for the WL-LE, we have:

hI(f) = 0.707, hQ(f) = 0.707ej2πfT .

Since

|hI(f)|2 + |hQ(f)|2 = 1

the MSE becomes MSEWL LE = N0

1+N0
. The unbiased SNR in this case is equal to 13

dB which is equal to the optimum matched filter bound (MFB). In contrast, the

conventional equalizer suffers from high noise enhancement due to the presence of

spectral null at f = 1
4T

. This example clearly illustrates the superiority of WL

framework for PAM signaling.
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Example-2

Next we evaluate performance of Example 3.5.2 from [5]. The channel taps are

given by hk = [−0.5, 1 + j0.25,−0.5]. We normalize the channel profile to unit

power and compute the MSE for SNR=10 dB. In this case the conventional LE gives

MSEConv ∼ 0.147 whose unbiased SNR is equal to SNRU,Conv = 7.57dB which corresponds

to 5.36 dB loss with respect to (w.r.t) MFB. On the other hand the WL-LE gives

MSEWL LE ∼ 0.11, SNRU,WL LE = 9.08 dB, a gain of 1.51 dB compared to conventional LE.

3.2.4 Complexity Comparison

In this section we highlight the complexity differences between conventional and WL

methods for infinite length LE implementation. In Section 3.2.3, we have shown that

WL receiver generally provides lower noise enhancement and a lower MSE. We will

next show that lower noise enhancement also implies a computational advantage.

In LE implementation, most of the complexity arises from the covariance inversion

(MMSE filtering) step. Using D-notation, using (3.13), (3.16) let:

a(D) − ā(D) =
sN0

2
+ h†(D−∗)h(D), a(D) =

sN0

2
+ h̃†(D−∗)h̃(D)

where we replaced a(f), ā(f) with a(D), ā(D). In case of white noise, using (3.4),

(3.10) the FFF can be expressed as:

w(D) = [s
N0

2
+ h†(D−∗)h(D)]−1︸ ︷︷ ︸
MMSE section

h†(D−∗)︸ ︷︷ ︸
MF

=
1

[a(D) − b(D)]
h†(D−∗) (3.19)

w̃(D) = [s
N0

2
+ h̃†(D−∗)h̃(D)]−1︸ ︷︷ ︸
WL MMSE section

h̃†(D−∗)︸ ︷︷ ︸
I-Q MF

=
1

a(D)
h̃†(D−∗). (3.20)

Note that the MMSE section is a scalar filter whereas the MF is a vector. To fully

understand the complexity differences between the two methods we analyze the im-

plementation complexity for MF, MMSE filters separately.
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3.2.4.1 Matched Filter (MF) Implementation

In (3.20), the WL receiver has two sets of real-valued matched filters, one to match the

real part and the other for the imaginary part, whereas in (3.19) conventional LE needs

a single (complex valued) vector matched filter. Since h̃†(D−∗) is vector of length 2sN ,

the WL receiver needs 2sN convolutions (between real signals) operations whereas

the conventional MMSE receiver needs sN complex valued convolutions (because

h†(D−∗) is a row vector of length sN) which is equivalent to 4sN real convolutions.

Clearly, the conventional MF is more complex to implement than WL MF.

3.2.4.2 MMSE Filter Implementation

Next we consider the complexity differences in implementing the MMSE filter. The

MMSE section for the conventional case can be expressed as:

wconv MMSE(D) =
1

a(D)

[
1 − ā(D)

a(D)

]−1

whereas the MMSE section for WL case is given by 1
a(D)

. We see that conventional

MMSE section requires an additional filter [1− ā(D)
a(D)

]−1. In time domain, the impulse

response of the MMSE filter can be expressed as:

wConv, MMSE,k = âk � δk, k ∈ [−∞,∞]

where âk ↔ 1
a(D)

, δk ↔ [1 − ā(D)
a(D)

]−1. For the WL case, the time domain MMSE

response can be shown to be

w̃WL MMSE,k = âk, k ∈ [−∞,∞].

Note that âk is a real-valued filter (by definition) whereas δk takes complex values.

Let us assume that a truncated sequence of length Nf closely approximates the WL

MMSE filter. Because of convolution operation, δk, lengthens the impulse response of
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w̃WL MMSE,k. If δk has significant energy outside this truncation window, the conventional

MMSE receiver has to consider a longer FFF filter. Therefore we can say that WL

implementation has computational advantage in finite length implementation as well.

We use the following example to further highlight the complexity differences between

the two methods.

Example We analyze the implementation complexity of a LE in a single antenna

system with a 2-tap channel h(D) = 1 + jaD where a is a positive constant less than

1. For N0 → 0, the FFF can be approximated as:

wLE(D) = [N0 + h†(D−∗)h(D)]−1h†(D−∗) ∼ 1

h(D)
=

1

1 + jaD
.

We can express this filter in infinite series form:

wLE(D) ∼ [1 + jaD]−1 =

∞∑
k=0

(−ja)kDk.

The corresponding time domain sequence is given by

wk = (−ja)k, k ≥ 0.

For small values of a the FFF can be truncated to the first few taps. However as

a → 1, the number of taps required to approach infinite length performance becomes

large. In contrast the WL LE takes the form:

w̃WL LE(D) = [N0 + 1 + a2]−1[1, aD−1].

In this case, WL FFF reduces to a single scalar multiplication whereas the MF op-

eration requires a single delay operation and two real multiplications only. In this

example, I-Q split makes the system ISI free even before applying the MF.

3.2.5 Finite Length Conventional Linear Equalizer

Having demonstrated the superiority of WL approach in the infinite length case we

turn our attention to the more practical finite length situation. We first formulate
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the conventional and WL-LE’s using finite length filter constraints and analyze MSE

performance to understand the differences. Recall that the discrete-time complex-

valued signal model (2.5) is given by:

yk = hk � xk + nk =
v∑

m=0

hmxk−m + nk

where we stacked up the over-sampled elements in vector format. Using notation

from [39], we stack a block Nf of output received elements yk as:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yk+Nf−1

yk+Nf−2

...

yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 · · · hv 0 · · · 0

0 h0 h1 · · · hv 0 · · ·
...

...

0 · · · 0 h0 h1 · · · hv

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk+Nf−1

xk+Nf−2

...

xk−v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

nk+Nf−1

nk+Nf−2

...

nk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.21)

In compact vector-matrix form:

yk+Nf−1:k = Hxk+Nf−1:k−v + nk+Nf−1:k. (3.22)

In the above equation we used the compact notation k+Nf−1 : k−v to denote a vector

whose first and last components takes the subscripts k + Nf − 1,k − v respectively.

We denote the FIR FFF with w† where:

w† = [w†−(Nf−1), ..,w
†
0]

w†
m = [w∗

(Ns−1),m, · · · w∗
0,m].

For convenience let us define:

1∆ � [01×∆ 1 01×Nle
]
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where ∆ (0 ≤ ∆ ≤ Nf +v−1) is the equalizer decision delay and Nle � Nf+v−∆−1.

At each time instant k, the FFF w† filters the block of output samples yk+Nf−1:k to

form a decision variable zk. The error ek between the filtered signal zk and desired

symbol is given by:

ek � zk − xk+Nf−1−∆

=

Nf−1∑
l=0

w†−lyk+l − xk+Nf−1−∆

= [w†−(Nf−1) · · · w†
0]yk+Nf−1:k − [01×∆ 1 01×Nle

]xk+Nf−1:k−v

= w†yk+Nf−1:k − 1∆xk+Nf−1:k−v.

The optimum filter settings that minimize the MSE metric E[|ek|2] can be determined

as [39]

w† = 1∆RxyR
−1
yy (3.23)

= 1∆RxxH
†[HRxxH

† + Rnn]−1 (3.24)

= 1∆[R−1
xx + H†R−1

nnH]−1H†R−1
nn (3.25)

where

Rxx � E[xk+Nf−1:k−vx
†
k+Nf−1:k−v] = I

Rnn � E[nk+Nf−1:kn
†
k+Nf−1:k] = sN0I

Rxy � E[xk+Nf−1:k−vy
†
k+Nf−1:k] = RxxH

†

Ryy � E[yk+Nf−1:ky
†
k+Nf−1:k] = HRxxH

† + Rnn.

The minimum MSE is given by:

MSEConv FIR LE = 1∆[R−1
xx + H†R−1

nnH]−11†∆. (3.26)

The optimum filter settings are determined by the decision-delay value ∆ that corre-

sponds to the minimum MSE.
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3.2.6 Finite Length WL Linear Equalizer

To construct a finite length WL-LE we begin with the I-Q signal model (2.6)

ỹk = h̃k � xk + ñk (3.27)

=
v∑

m=0

h̃mxk−m + ñk. (3.28)

Collecting a block of Nf samples of ỹk in vector-matrix format:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ỹk+Nf−1

ỹk+Nf−2

...

ỹk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h̃0 h̃1 · · · h̃v 0 · · · 0

0 h̃0 h̃1 · · · h̃v 0 · · ·
...

...

0 · · · 0 h̃0 h̃1 · · · h̃v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk+Nf−1

xk+Nf−2

...

xk−v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ñk+Nf−1

ñk+Nf−2

...

ñk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.29)

In compact vector-matrix form:

ỹk+Nf−1:k = H̃xk+Nf−1:k−v + ñk+Nf−1:k. (3.30)

Since each element in ỹk+Nf−1:k, ñk+Nf−1:k, H̃ is made up of a 2sN ×1 column vectors

composed of in-phase and quadrature components, the actual size of these quanti-

ties are 2NsNf × 1, 2NsNf × 1, 2NsNf × (Nf + v) respectively. In this case, we

independently filter the I/Q data branches to produce a decision variable

z̃k = w̃†ỹk+Nf−1:k

where w̃† denotes the WL FFF. The error ẽk between the filtered signal and desired

symbol is given by:

ẽk � z̃k − xk+Nf−1−∆ = w̃†ỹ†
k+Nf−1:k − 1∆xk+Nf−1:k−v.
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The optimum filter settings that minimize the MSE metric E[|ẽk|2] can be determined

as:

w̃† = 1∆RxỹRỹỹ (3.31)

= 1∆RxxH̃
†[H̃RxxH̃

† + Rññ]−1 (3.32)

= 1∆[R−1
xx + H̃†RññH̃]−1H̃†R−1

ññ (3.33)

where

Rññ � E[ñk+Nf−1:kñ
†
k+Nf−1:k] =

sN0

2
I

Rxỹ � E[xk+Nf−1:k−vỹ
†
k+Nf−1:k] = RxxH̃

†

Rỹỹ � E[ỹk+Nf−1:kỹ
†
k+Nf−1:k] = H̃RxxH̃

† + Rññ.

The minimum MSE is given by:

MSEWL FIR LE = 1∆[R−1
xx + H̃†R−1

ññH̃]−11†∆. (3.34)

If we compare the expressions for the FFF for conventional case given in (3.25) and

WL case given by (3.33), we notice that conventional method involves a complex ma-

trix inversion operation whereas WL case requires inversion of a real matrix of same

dimension. Apart from this difference, as mentioned in the previous section, the WL

case involves MF of real signal whereas conventional filter requires complex valued

MF’s. Hence, WL-LE provides a complexity advantage in a finite length implemen-

tation. Next we examine the MSE connection between the WL and conventional LE

for finite length case.
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3.2.7 MSE Comparison for Finite Length LE

We fix the FFF filter length to be Nf and assume the same decision delay in both

cases then compare the MSE. Recall that the MSE for a conventional LE is given by

(3.26) as:

MSEConv FIR LE = 1∆

[
I +

2H†H
N0

]−1

1†∆.

Let I + 2H†H
N0

= A + jB. Using this we can express the MSE as:

MSEConv FIR LE = 1∆[A + jB]−11†∆ = 1∆[I + jA−1B]−1A−11†∆.

Further let C = jA−1B. Using an infinite series expansion:

[I + C]−1 = I +
∞∑

m=1

(−1)mCm

and separating the odd and even powered terms, the MSE can be represented as an

infinite series

MSEConv FIR LE = 1∆A−11†∆ −
∞∑

m,odd

1∆CmA−11†∆ +
∞∑

m,even

1∆CmA−11†∆.

Using the special properties of C (see Section 3.3.6, Theorem 3.3.1) we can show that:

• The the eigenvalues of C are less than 1 and hence the series is absolutely

convergent.

• Since the diagonal entries of CmA−1 are zero for odd values of m, the term

1∆CmA−11†∆ becomes zero.

• Since CmA−1 is positive semi-definite for m even, 1∆CmA−11†∆ ≥ 0.

Using the above results we can express the MSE of conventional FIR LE in terms of

MSE of WL FIR LE as:

MSEConv FIR LE = 1∆A−11†∆ +
∞∑

m,even

1∆CmA−11†∆

= MSEWL FIR LE + Some positive constant
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Table 3.1. LE performance comparison in channel-1

Nf MSEConv MSEWL SNRU,Conv (dB) SNRU,WL (dB)
5 0.2142 0.0476 5.64 13
10 0.1683 0.0476 6.94 13
15 0.1583 0.0476 7.26 13

where we used the MSE expression given by (3.34): MSEWL FIR LE = 1∆A−11†∆. The

above result suggests that, for any given filter length Nf , and any given decision

delay, the conventional FIR LE exhibits a higher MSE than WL FIR LE for all

complex valued ISI channels. Equality holds only when the imaginary part of the

signal covariance is zero i.e. B = 0. Hence we can say that while the WL receiver

optimally exploits the signal energy for detection, the conventional LE suffers from

additional noise enhancement because of the presence of imaginary component B in

the signal covariance. The noise enhancement depends mainly the diagonal entries

of A−1B
m
A−1. To understand the trade-off between MSE and complexity we revisit

Examples-1 and 2 for the finite length case.

Table 3.1 shows the performance of channel-1 given in Example 1 and in Table 3.2 we

show the results for channel-2 given in Example 2. In the second case, the conventional

LE provides near infinite-length performance for a 10 tap filter whereas WL-LE nearly

achieves its infinite length SNR with 5 taps only; a great deal of complexity reduction.

On the other hand, if we fix the filter length to 5 taps, then WL-LE provides 2.5 dB

SNR gain over conventional LE while we recall that the SNR difference between the

two methods is only 1.5 dB when both methods use infinite length filters. Clearly, WL-

LE significantly outperforms conventional LE both in complexity and performance.
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Table 3.2. LE performance comparison in channel-2

Nf MSEConv MSEWL SNRU,Conv (dB) SNRU,WL (dB)
5 0.1793 0.1095 6.6 9.1
10 0.1465 0.1081 7.65 9.16
15 0.1462 0.1081 7.66 9.16

3.3 MMSE Decision Feedback Equalization

In case of LE we have shown that WL-LE offers lower noise enhancement, lower MSE

and thus outperforms conventional LE in complex valued ISI channels. In this section

we consider the performance of conventional and WL-DFE receivers. We first analyze

the infinite length DFE followed by finite length DFE.
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Figure 3.3. Conventional MMSE-DFE.

3.3.1 Infinite Length Conventional DFE

We define the DFE settings for the conventional signal model given by (2.5)

yk = hk � xk + nk. (3.35)

A standard MMSE-DFE structure consists of (see Figure 3.3) a vector-valued feed-

forward filter (FFF) wk = [w1,k, .., wsN,k], that filters the input data (column) vector

yk such that at the output a symbol-by-symbol detector makes decisions by removing
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ISI (using past symbol estimates) with the aid of a feedback filter (FBF) bk. The

filters are optimized by minimizing the MSE term: [wk, bk] = min[wk,bk]E[|ek|2] where

ek is the error between filtered signal and the reconstructed signal defined as:

ek = wk � yk − bk � xk. (3.36)

Here bk �xk represents the reconstructed signal term where we have assumed perfect

knowledge of past symbol estimates. The feedback filter is constrained to be causal,

monic i.e.

bk = 1, k = 0

= 0, k < 0.

In D-domain (3.36) can be expressed as:

e(D) = w(D)y(D) − b(D)x(D). (3.37)

Using orthogonality principle [5]:

E[e(D)y†(D−∗)] = 0. (3.38)

Using (3.36), expanding the terms in (3.38), we get:

w(D) = b(D)Rxy(D)R−1
yy (D)

= b(D)Rxx(D)h†(D−∗)[h(D)Rxx(D)h†(D−∗) + Rnn(D)]−1

= b(D)[R−1
xx (D) + h†(D−∗)R−1

nn(D)h(D)]−1h†(D−∗)R−1
nn(D) (3.39)

where

Rxy(D) � Rxx(D)h†(D−∗)

Ryy(D) � [h(D)Rxx(D)h†(D−∗) + Rnn(D)]

Rnn(D) � E[n(D)n†(D−∗)].
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Let us consider the scalar spectrum factorization [5]:

[R−1
xx (D) + h†(D−∗)R−1

nn(D)h(D)] ↔ γConvu
†(D−∗)u(D), (3.40)

where

γConv = e
T
∫ 1

2T

− 1
2T

ln[R−1
xx (f)+h†(−f)R−1

nn (f)h(f)] df

is a positive constant and u(D) is a causal, monic, minimum phase function with all

poles and zeros inside the unit circle, and u†(D−∗) is anti-causal, maximum phase

function. It can be shown that the optimum FBF that minimizes the MSE is given

by:

b(D) = u(D).

Using this, the optimum FFF can be expressed in terms of spectral factors as

w(D) = b(D)[R−1
xx (D) + h†(D−∗)R−1

nn(D)h(D)]−1h†(D−∗)R−1
nn(D)

= [γConv]
−1u†(D−∗)−1h†(D−∗)R−1

nn(D).

In Appendix B.1 we described an algorithm that can be used to calculate the spectral

factors u(D) and the inverse filter u†(D−∗)−1 that can be used to determine the FFF

settings. The minimum MSE for this method is given by:

MSEConv DFE =
1

γConv
= e

−T
∫ 1

2T

− 1
2T

ln[R−1
xx (f)+h†(−f)R−1

nn (f)h(f)] df
. (3.41)

Although the MMSE-DFE structure is specifically designed for a DFE symbol detec-

tor, the FFF is quite often used as a pre-filter for RSSE [9] or MLSE detectors.

3.3.2 Infinite Length WL DFE

Unlike conventional MMSE-DFE which works with complex valued received signal

(2.5), we define DFE settings for the I-Q signal model (2.6):

ỹk = h̃k � xk + ñk.
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The structural form of WL-DFE is shown in Figure 3.4. Let:

ẽk = w̃k � ỹk − b̃k � xk

be the error between the pre-filtered signal and the re-constructed signal, and

w̃k = [wI,k,wQ,k]

denotes the WL-FFF of dimension 1 × 2sN and b̃k is a real-valued scalar feedback

filter. The feedback filter is again assumed to be causal, monic. Using the results

from the previous section, we can obtain the WL-DFE filter settings as:

w̃(D) = b̃(D)[R−1
xx (D) + h̃†(D−∗)R−1

ññ(D)h̃(D)]−1h̃†(D−∗)R−1
ññ(D)

= [γWL]
−1ũ†(D−∗)−1h̃†(D−∗)R−1

ññ(D) (3.42)

b̃(D) = ũ(D)

where ũ(D) is obtained by factoring the real valued covariance function as:

[R−1
xx (D) + h̃†(D−∗)R−1

ññ(D)h̃(D)] ↔ γWLũ
†(D−∗)ũ(D), (3.43)

where

γWL = e
T
∫ 1

2T

− 1
2T

ln[R−1
xx (f)+h̃†(−f)R−1

ññ (f)h̃(f)] df

is a positive constant and ũ(D) is a causal, monic, minimum phase function with all

poles and zeros inside the unit circle, and ũ†(D−∗) is anti causal, maximum phase

function. In case of white noise, we can represent the WL-FFF alternatively as

w̃(D) =

[
γWL

sN0

2

]−1

ũ†(D−∗)−1h̃†(D−∗) (3.44)

=

[
γWL

sN0

2

]−1

ũ†(D−∗)−1
[
h†

I(D
−∗) h†

Q(D−∗)
]

(3.45)

= [wI(D) wQ(D)] . (3.46)
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The minimum MSE for these settings is given by:

MSEWL DFE =
1

γWL
= e

−T
∫ 1

2T

− 1
2T

ln[R−1
xx (f)+h̃†(−f)R−1

ññ (f)h̃(f)] df
. (3.47)

As in conventional case, DFE, RSSE/MLSE methods can be straightforwardly used

after WL-FFF.
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Figure 3.4. WL MMSE-DFE.

3.3.3 MSE Comparison for Infinite Length DFE

In Appendix A.1 we show that the MSE at the output of a conventional MMSE-DFE

is always higher than or equal to the MSE produced by WL MMSE-DFE. The two

MSE metrics are related as:

MSEConv DFE = MSEWL DFEe
T
∫ 1

2T

− 1
2T

[
ā2(f)

2a2(f)
+

ā4(f)

4a4(f)
+..]df

.

In the above expression the multiplicative factor e
T
∫ 1

2T

− 1
2T

[ ā2(f)

2a2(f)
+ ā4(f)

4a4(f)
+..]df

is always

greater than or equal to 1 in any complex-valued ISI channel. Equality occurs only

when ā(f) becomes zero.

Next we revisit Examples 1 and 2 and evaluate the MSE for these channels with

infinite length DFE filters. For channel-1, using numerical integration we get:

MSEConv DFE ∼ 0.07
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at SNR=10 dB. The unbiased SNR is SNRU,Conv DFE = 11.23 dB which is 1.77 dB

below MFB. Note that the conventional DFE itself provides remarkable gain over

conventional LE (which suffers from severe noise enhancement) whereas both WL-LE

and WL-DFE are able to achieve optimum MFB in this case.

In channel-2 we get: MSEConv DFE ∼ 0.1 at SNR=10 dB. The unbiased SNR is SNRU,Conv DFE =

9.54 dB which is 1.97 dB better than conventional LE and 3.54 dB below MFB. In

this case the WL-DFE achieves MSEWL DFE ∼ 0.085, SNRU,WL DFE = 10.32 dB, a gain of

0.78 dB gain over conventional DFE.

3.3.4 Conventional Finite Length MMSE-DFE

Infinite length DFE analysis is only a limiting situation and we wish to understand

the performance, complexity trade-offs between conventional and WL-DFE receivers

with finite length constraints. To this end we first analyze the conventional FIR DFE

followed by WL case. Recall that the conventional signal model in block matrix form

is given by (3.22)

yk+Nf−1:k = Hxk+Nf−1:k−v + nk+Nf−1:k. (3.48)

As in FIR conventional LE we denote the FFF with w† where:

w† = [w†−(Nf−1), ..,w
†
0]

w†
m = [w∗

(Ns−1),m, · · · w∗
0,m].

In case of DFE, the FFF w† filters the block of output samples yk+Nf−1:k and a feed-

back filter b† removes ISI with the aid of Nb past decisions. For convenience let us

define:

b† � [01×∆ 1 b∗1 · · · b∗Nb
01×Ne]
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where b∗l denotes the FBF coefficients. The error ek between the filtered signal and

desired symbol is given by

ek � zk − xk+Nf−1−∆

=

Nf−1∑
l=0

w†−lyk+l −
Nb∑

m=1

b∗mxk+Nf−1−∆−m − xk+Nf−1−∆

= [w†−(Nf−1) · · · w†
0]y

†
k+Nf−1:k − b†xk+Nf−1:k−v

= w†y†
k+Nf−1:k − b†xk+Nf−1:k−v

where zk denotes the filtered received signal, ∆ (0 ≤ ∆Nf + v − 1) is the decision

delay and Ne � Nf + v −∆−Nb − 1. The filter settings are obtained by minimizing

the MSE [39]:

MSEConv FIR DFE = b†[R−1
xx + H†R−1

nnH]−1b.

Assuming that feed-back filter length Nb is equal to the channel memory v, we can

obtain the optimum feedback filter setting using the matrix Cholesky factorization:

R−1
xx + H†R−1

nnH = LDL† (3.49)

where L is lower triangular monic matrix and D is a diagonal matrix

D � diag(d0, d1, · · · , dNf +v−1).

Let d∆opt = max(dNf−1, dNf
, · · · , dNf +v−1) where ∆opt is the optimum delay value that

minimizes the MSE. Then the optimum feed-back filter is given by b†
opt = Le∆opt+1

where e∆opt+1 denotes a unit vector with a one in the ∆opt +1 position and zeros else

where. Then minimum MSE becomes:

MSEConv FIR DFE = d−1
∆opt

.
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The optimum FFF can be obtained as [39]:

w† = b†
optRxyR

−1
yy

= d−1
∆opt

e†∆opt+1L
−1H†R−1

nn .

where Rxy, Ryy, Rnn are already defined in Section 3.2.5. To calculate the filter

settings the spectrum factorization algorithms given in [40] can be used.

3.3.5 WL Finite Length MMSE-DFE

Let us begin with the I-Q signal model (3.30):

ỹk+Nf−1:k = H̃xk+Nf−1:k−v + ñk+Nf−1:k. (3.50)

In this case the WL-FFF filter defined as

w̃† = [w̃†
−(Nf−1) · · · w̃†

0], w̃†
m = [w̃(2Ns−1),m · · · w̃0,m]

where each element w̃m is composed of 2sN real filter coefficients. Let define a real-

valued WL feed-back filter:

b̃† � [01×∆̃ 1 b̃1 · · · b̃Nb
01×Ne ]

where Ne � Nf + v − ∆̃ − Nb − 1. Using these definitions we can represent the error

signal as:

ẽk � z̃k − xk+Nf−1−∆̃ = w̃†ỹ†
k+Nf−1:k − b̃†xk+Nf−1:k−v

where z̃k denotes the filtered received signal, ∆̃ (0 ≤ ∆̃ ≤ Nf + v − 1) the decision

delay. Assuming that feed-back filter length Nb is equal to the channel memory

v, we can obtain the optimum feed-back filter setting using the matrix Cholesky

factorization:

R−1
xx + H̃†R−1

ññH̃ = L̃D̃L̃† (3.51)
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where L̃ is lower triangular monic matrix and D̃ is a diagonal matrix:

D̃ � diag(d̃0, d̃1, · · · , d̃Nf +v−1).

Let d∆̃opt
= max(d̃Nf−1, d̃Nf

, · · · , d̃Nf+v−1) where ∆̃opt is the optimum delay that

minimizes the MSE. Then the optimum feed-back filter is given by: b̃†
opt = L̃e∆̃opt+1.

Then then minimum MSE becomes: MSE WL FIR DFE = d̃−1

∆̃opt
. The optimum FFF is

given by [39]

w̃† = b̃†
optRxỹR

−1
ỹỹ

= d̃−1

∆̃opt
e†∆̃opt+1L̃

−1H̃†R−1
ññ .

where Rxỹ, Rỹỹ, Rññ are already introduced in Section 3.2.6.

3.3.6 MSE Comparison for Finite Length DFE

In the infinite length case we showed that MSE for conventional DFE is always higher

than WL MSE for all complex valued ISI channels. This section examines the MSE

connection in FIR case. Using (3.49), let us denote:

Q = R−1
xx + H†R−1

nnH.

As in infinite length case we use the modified noise variance term Rnn = N0

2
I to

facilitate a direct comparison with WL-DFE. Assuming Rxx = I, let us re-write Q in

terms of real and imaginary parts as:

Q = A + jB = A[I + jA−1B]

where A = I + 2Re[H†H]
N0

and B = 2Im[H†H]
N0

. Now we have the following:

Theorem 3.3.1 • A is equal to the WL covariance term A = I + 2H̃†H̃
N0

which is

positive definite by definition
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• B is a skew Hermitian matrix whose eigenvalues are purely imaginary and ap-

pear as conjugate pairs.

• Every eigenvalue of jA−1B lies in the interval (−1, 1) and occur in negated

pairs as (−λ, λ)

• 0 < |I + jA−1B| ≤ 1

• Let C = jA−1B. Then CmA−1 is a positive semi-definite and has non-negative

eigenvalues for m even, and it becomes a skew-Hermitian matrix with zero di-

agonal for odd values of m

Proof The proof is given in Appendix A.2

Next, we examine the MSE connection between conventional and WL-DFE methods

using a geometric SNR measure. Using the notion of geometrical signal energy for a

multidimensional random process introduced in [41] 4, we can define the geometric

SNR for the conventional and I-Q covariance matrices as

GSNRConv FIR DFE � |A + jB|
1

Nf +v = |A|
1

Nf +v |I + jA−1B|
1

Nf +v

GSNRWL FIR DFE � |A|
1

Nf +v .

Since |I+jA−1B| ≤ 1, the conventional GSNR is generally less than that of WL DFE

receiver. As the filter lengths become infinite, the GMSE defined as: GMSE � 1
GSNR

,

approaches the MSE for infinite length case, that is

lim
Nf→∞

1

GSNRConv FIR DFE

→ e
−T
∫ 1

2T

− 1
2T

ln
[
1+ 2|h(f)|2

N0

]
df

lim
Nf→∞

1

GSNRWL FIR DFE

→ e
−T
∫ 1

2T

− 1
2T

ln
[
1+ 2|h̃(f)|2

N0

]
df

.

4A connection between geometrical SNR and channel mutual information was established in [41]

for finite-length DFE
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Table 3.3. FIR DFE performance comparison in channel-1

Nf MSEConv MSEWL SNRU,Conv (dB) SNRU,WL (dB)
5 0.0766 0.0476 10.81 13
10 0.0736 0.0476 10.99 13
15 0.0732 0.0476 11.02 13

Table 3.4. FIR DFE performance comparison in channel-2

Nf MSEConv MSEWL SNRU,Conv (dB) SNRU,WL (dB)
5 0.1042 0.0875 9.34 10.18
10 0.1034 0.0868 9.38 10.22
15 0.1034 0.0868 9.38 10.22

From exact MSE point of view, in Appendix A.3, we show that for any given decision

delay, the WL DFE provides a higher SNR (or lower MSE) than conventional DFE.

Equality holds if and only if B = 0.

Let us investigate the effect of finite filter length on WL and conventional DFE re-

ceivers. We tabulated the results for channels 1 and 2 in Table 3.3 and 3.4 respectively.

In both cases, the MSE does not change significantly when filter length is increased

from 5 to 15. If we assume 5-taps for implementation, we get an SNR gain (between

WL and conventional cases) of 2.19, 0.84 dB for Examples-1,2 respectively. We must

also note that WL DFE is still less complex to implement than conventional DFE for

a given filter length.

3.3.7 Complexity Comparison

In order to determine the optimum filter settings each method performs a matrix

Cholesky decomposition. We should first note that the WL case [see (3.51)] involves

Cholesky decomposition of real symmetric matrix whereas the conventional case [see

(3.49)] needs to decompose a complex Hermitian matrix of same dimension that re-
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quires a higher computational power. Also, the MF front-end for conventional DFE

case involves a complex valued filter which requires sN complex convolutions (equiv-

alent to 4sN real convolutions) whereas the WL case involves 2sN real convolutions.

Clearly, the WL method has a computational advantage over conventional MMSE-

DFE.

3.4 Summary

In this chapter we demonstrate the complexity and performance differences between

WL and conventional equalizers using MMSE and MMSE-DFE configurations and

for infinite and finite length equalizers. When the ISI channel response is complex,

we show that WL-LE and WL-DFE equalizers outperform their conventional coun-

terparts both in complexity and performance. In Section 1V C of [28], the authors

pointed out that they could not obtain a direct MSE connection between conventional

and WL methods. We show that this can be done. Specifically, we derive closed form

results that provide an explicit connection between MSE performance and computa-

tional complexity between conventional and WL equalizers for both finite and infinite

length filters. We would like to note that the proposed WL equalization concepts can

be extended to PAM and QAM systems to enhance performance in the presence of

co-channel interference. This aspect is considered in the following chapters.



CHAPTER 4

INTERFERENCE CANCELLATION

4.1 Introduction

The main theme of Chapter 3 was the lower noise enhancement properties of WL

receivers for PAM equalization. For complex valued ISI channels, when the noise

is white, it is shown that WL PAM equalizers, both LE and DFE, provide lower

noise enhancement and lower complexity than conventional MMSE methods. In this

chapter we consider performance with both ISI and CCI. Assuming that interference

consists of a mixture of PAM and QAM signals (as discussed in Section 2.4), we

analyze performance for conventional and WL systems with PAM/QAM signaling.

When the ISI channel response is complex, and when interference has PAM compo-

nents, collecting the real and imaginary parts of the received signal gives two copies

of signal and interference with real channel gains. In this case, an MMSE-type re-

ceiver that exploits the correlations between the I-Q signals can be used to suppress

interference. This property was used in [31] and [32] to suppress CCI in PAM-type

systems. In this chapter we show that the gain of WLE is not limited to PAM; We

show that QAM receivers can benefit from WLF especially when interference has

PAM components. This chapter has two main contributions. First, we formulate

WL MMSE/MMSE-DFE receiver structures for QAM signaling with infinite length

filters. Second, we explain the performance differences between conventional and WL

receivers for both PAM and QAM signaling when the receiver has multiple antennas

and multiple CCI.

53
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In Chapter 3 we already derived MMSE/MMSE-DFE receiver structures for con-

ventional and WL receivers for PAM signaling. Although performance analysis was

restricted to white noise case, the proposed receivers are applicable for interference

limited systems as well. Therefore, we shall not repeat those derivation again. In

Section 4.2 of this chapter, we first generalize the WL MMSE/MMSE-DFE equaliza-

tion concepts for QAM systems with multiple antennas and multiple CCI. In Section

4.3, we compare the IC performance of conventional and WL receivers for both PAM

and QAM signaling schemes. The implementation complexity of proposed receivers

is briefly considered in Section 4.4. Finally, simulation is used to show the IC benefits

of proposed receivers in Section 4.5 followed by a summary of this chapter in Section

4.6.
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Figure 4.1. WL MMSE-DFE for QAM.

4.2 WL MMSE-DFE for QAM Desired Signal

In case of PAM signaling, as the desired signal itself is a non-circular random process,

WL receivers provide an advantage in both white noise [28], [42] and interference

limited situations [31], [32]. However, for QAM signaling, since the desired QAM
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signal is a circular random process, WL receivers can be expected to provide an ad-

vantage only when the additive noise is non-circular1. In interference limited systems,

especially when interference consists of both PAM and QAM components, the noise

plus interference signal becomes non-circular. For this type of channel WLF can be

applied to enhance system performance. Recall that the time domain signal for QAM

signaling is given by (2.7) as:

ỹk =

v∑
l=0

H̃lx̃k−l + ñk (4.1)

where the channel takes a 2sN × 2 matrix of form:

H̃l =

⎡
⎢⎣ Re(hl) −Im(hl)

Im(hl) Re(hl)

⎤
⎥⎦

and the modulation takes a vector form: x̃k = [Re(xk), Im(xk)]
′. In this case, we view

the real and imaginary parts of the QAM symbol as two input signals and define the

equalizer accordingly. As shown in Figure 4.1, the proposed receiver consists of a

matrix-valued feed-forward filter (FFF) W̃k, a matrix-valued feedback filter (FBF)

B̃k and a decision device. The feed-forward and feedback sections are designed such

that a decision device will be able to deliver symbol-by-symbol decisions after ISI

cancellation with aid of past symbol decisions. Let us define a vector-valued ISI free

error signal:

ẽk � [eI,k, eQ,k]
′ = W̃k � ỹk − B̃k � x̃k.

The FFF W̃k can be written explicitly as:

W̃k = [W̃k,1, ..,W̃k,2sN ]

1Since AWGN is a circular random process, WL QAM equalization in case of white noise cannot

provide any additional benefit.
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where the i the component takes the matrix form:

W̃k,i =

⎡
⎢⎣ wI,I

k,i wI,Q
k,i

wQ,I
k,i wQ,Q

k,i

⎤
⎥⎦

due to I-Q split. Note that FFF is matrix filter of dimension 2 × 2sN . We constrain

the feedback filter as: B̃0 = I, B̃k = 0, k < 0, where each tap is a 2 × 2 matrix:

B̃k =

⎡
⎢⎣ bI,I

k bI,Q
k

bQ,I
k bQ,Q

k

⎤
⎥⎦ .

The optimum FFF and FBF will be calculated by minimizing either the trace or

determinant of the error covariance matrix as:

[W̃k, B̃k]
opt = min[W̃k,B̃k]E[ẽkẽ

†
k].

In D-domain:

ẽ(D) = W̃(D)ỹ(D) − B̃(D)x̃(D). (4.2)

By applying orthogonality principle E[ẽ(D)ỹ†(D−∗)] = 0, using (4.2), we can solve

for the FFF as:

W̃(D) = B̃(D)Rx̃ỹ(D)R−1
ỹỹ (D) (4.3)

= B̃(D)Rx̃x̃(D)H̃†(D−∗)[H̃(D)Rx̃x̃(D)H̃†(D−∗) + Rññ(D)]−1 (4.4)

= B̃(D)[R−1
x̃x̃ (D) + H̃†(D−∗)R−1

ññ(f)H̃(D)]−1H̃†(D−∗)R−1
ññ(D) (4.5)

where

Rx̃ỹ(D) � Rx̃x̃(D)H̃†(D−∗)

Rỹỹ(D) � H̃(D)Rx̃x̃(D)H̃†(D−∗) + Rññ(D)

Rx̃x̃(D) � E[x̃(D)x̃†(D−∗)] =
I

2

Rññ(D) � E[ñ(D)ñ†(D−∗)].
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In the above expressions (4.5) is obtained by using matrix inversion lemma. As we

assume that the received signal is corrupted by a sum of M1 PAM and M2 QAM

interferers and additive thermal noise, using (2.25), Rññ(D) can be explicitly written

in terms of interference correlation matrix as:

Rññ(D) =

M1∑
l=1

g̃l(D)g̃l†(D−∗)︸ ︷︷ ︸
PAM CCI contribution

+
1

2

M2∑
m=1

G̃m(D)G̃m†(D−∗)︸ ︷︷ ︸
QAM CCI contribution

+
sN0

2
I. (4.6)

To solve for the feedback filter B̃(D), the matrix-valued covariance process is factored

as: [
R−1

x̃x̃ (D) + H̃†(D−∗)R−1
ññ(D)H̃(D)

]
= Ũ†(D−∗)ΥŨ(D)

where Ũ†(D−∗) is a causal, monic, stable matrix filter with a causal inverse [43]. The

determinant of Υ is given by:

|Υ| = e
T
∫ 1

2T

− 1
2T

ln|[R−1
x̃x̃ (f)+H̃†(−f)R−1

ññ (f)H̃(f)]| df
.

It can be further shown that (see [44], [45]) both arithmetic (Tr[Rẽẽ]) and geometric

(|Rẽẽ|) mean square error metrics are minimized by choosing: B̃(D) = Ũ(D). Using

this, the optimum FFF can be expressed as:

W̃(D) = [Υ]−1Ũ†−1(D−∗)H̃†(D−∗)R−1
ññ(D).

The corresponding minimum GMSE becomes:

GMSEWL-DFE QAM = |Rẽẽ| = |Υ|−1 = e
−T
∫ 1

2T

− 1
2T

ln|[R−1
x̃x̃ (f)+H̃†(−f)R−1

ññ (f)H̃(f)]| df
. (4.7)

The optimum FBF and FBF settings can be determined using state-space methods

of [40].

4.2.1 Symbol Detection

In conventional systems (and also in PAM WL-DFE case), the DFE slicer takes a

scalar signal as input and delivers symbol decisions using standard slicing (threshold
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detection) techniques. However, the WL QAM receiver, as shown in Figure 4.1, has

to deal with two (real-valued) inputs corresponding to the I-Q branches. Ignoring the

receiver bias and assuming that the residual noise at the input to the decision device

has multi-variate Gaussian pdf 2 of form:

p(ẽk) =
1

2π
√|Υ|e

−(ẽ†kΥ−1ẽk),

the ML DFE decision rule can be formulated as:

dx̃k
= arg minx̃k

[z̃k − B̄k � x̂k − x̃k]
†Υ−1[z̃k − B̄k � x̂k − x̃k], (4.8)

where z̃k = W̃k � ỹk is the feed-forward filtered signal, B̄k is the feedback filter with

the first tap set to 0, and x̂k contains the I-Q parts of the past symbol estimates.

The DFE receiver selects the argument that minimizes the minimum distance over

all symbol possibilities.

4.2.2 WL LE for QAM

The MMSE-DFE structure assumes a linear form (see Figure 4.2) if the feedback

filter is constrained to be an identity matrix. In this case, the receiver consists of a

FFF followed by a symbol detector. The optimum FFF is given by:

W̃(D) = [R−1
x̃x̃ (D) + H̃†(D−∗)R−1

ññ(D)H̃(D)]−1H̃†(D−∗)R−1
ññ(D) (4.9)

and the MSE can be expressed as:

GMSEWL-LE QAM = |Rẽẽ| =

∣∣∣∣∣T
∫ 1

2T

− 1
2T

[R−1
x̃x̃ (f) + H̃†(−f)R−1

ññ(f)H̃(f)]−1df

∣∣∣∣∣ . (4.10)

In this case, the decision device uses a modified branch metric of form:

dx̃k
= arg minx̃k

[z̃k − x̃k]
†R−1

ẽẽ [z̃k − x̃k]

2Although interference is non-Gaussian (the modulation alphabets of CCI have binomial distri-

bution), the Gaussian approximation leads to simple decision metric and provides excellent BER

results
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where z̃k = W̃k � ỹk is the feed-forward filtered signal.

Remark If the interference correlation matrix has non-zero correlation among I-Q

branches (e.g. in case of PAM-type interference), the IC process will be split into two

phases. The front-end noise whitening filter R−1
ññ(D) portion of the FFF first offers

a partial IC effect while the remaining IC gain is extracted by the symbol detector

that takes into account the residual correlations between the I-Q branches. When the

correlation between I-Q branches is zero (e.g. when all the interfering signals have

QAM or AWGN case) the front-end noise whitening filter is solely responsible for the

IC gain. The symbol wise noise whitener Υ−1 has no role to play in this case as it

becomes a scaled identity matrix.

 

Symbol 
Detector kW

,ˆ I ky

,ˆQ ky

 ( )Re

( )Im

ky

FFF 

Final decision 

Figure 4.2. WL LE for QAM.

4.3 Interference Cancellation Properties

The receiver structures proposed in the previous section combined with the receiver

concepts proposed in Chapter 3 completes the WL receiver development for both PAM

and QAM systems with ISI and CCI. In this section we provide a direct comparison

between the IC properties of conventional and WL methods. In Section 4.3.1, we

first compare conventional and WL receivers for DFE case followed by an analysis
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for LE in 4.3.2. In particular, we determine the IC properties for the interference

model given in Section 2.4 where we modeled the system with a mixture of M1 PAM

interferers and M2 QAM interferers. As we are interested in determining the IC gain

provided by antennas alone, in the rest of the analysis, we ignore the possible side

effects caused by transmit/receiver filters by assuming an over-sampling factor s = 1.

Also, we would like to remark here that the IC analysis of this section has similarities

to the rank analysis used by Winters et al. in [17] for conventional IC systems.

4.3.1 Comparison between Conventional and WL DFE Receivers

Using (3.41), (4.7), (3.47), the SNR at the output of a DFE receiver for conventional,

WL QAM and WL PAM cases is given by:

SNRConv DFE � 1

MSEConv DFE

= e
T
∫ 1

2T

− 1
2T

ln[R−1
xx (f)+h†(−f)R−1

nn (f)h(f)] df
(4.11)

GSNRWL-DFE QAM � 1

GMSEWL-DFE QAM

= e
T
∫ 1

2T

− 1
2T

ln|[R−1
x̃x̃ (f)+H̃†(−f)R−1

ññ (f)H̃(f)]| df
(4.12)

SNRWL-DFE PAM � 1

MSEWL-DFE PAM

= e
T
∫ 1

2T

− 1
2T

ln[R−1
xx (f)+h̃†(−f)R−1

ññ (f)h̃(f)] df
(4.13)

where

Rnn(D) =

M∑
m=1

gm(D)gm†(D−∗) + N0I (4.14)

Rññ(D) =

M1∑
l=1

g̃l(D)g̃l†(D−∗)︸ ︷︷ ︸
PAM CCI contribution

+
1

2

M2∑
m=1

G̃m(D)G̃m†(D−∗)︸ ︷︷ ︸
QAM CCI contribution

+
N0

2
I. (4.15)

denotes the D-domain noise plus interference correlation matrices for conventional

and I-Q cases respectively. These expressions are derived in Section 2.4. The cor-

responding frequency domain quantities can be obtained by letting D = e−j2πfT .
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Also, note that the above SNR metrics are obtained for an ideal DFE receiver whose

feedback path is assumed to be error free. Let

γ(f) � h†(−f)R−1
nn(f)h(f) Conv (4.16)

� |H̃†(−f)R−1
ññ(f)H̃(f)| WL QAM (4.17)

� h̃†(−f)R−1
ññ(f)h̃(f) WL PAM (4.18)

denote the frequency dependent SNR term. We adopt the following criterion. We say

that the receiver provides full IC gain i.e. complete interference suppression if

lim
N0→0

γ(f) → ∞. (4.19)

If we substitute this result in (4.11), (4.12) and (4.13) we can see that the considered

DFE receivers offer an infinite SNR gain irrespective of interference power level. This

usually happens when the interference correlation matrix of a given receiver becomes

rank deficient. Using the derivations given in Appendix C.1 first we show that, under

the assumption of ideal decision feedback, a conventional receiver with N antennas

and M interferers (M = M1+M2, M < N) can suppress N−M co-channel interferers.

When M ≥ N , the receiver can not offer full IC gain but gives a marginal IC benefit.

Note that this result is independent of modulation used by the signal or interference.

On the other hand, for the WL case, in Appendix C.2 we showed that, under the

assumption of ideal decision feedback, a QAM WL-DFE receiver equipped with N

antennas can fully reject any combination of M1 PAM and M2 QAM interferers that

satisfy the constraint: M1 + 2M2 < 2N . As PAM can be viewed as a special case of

QAM, this result applies to PAM WL-DFE as well. To understand the IC benefit,

we compare the IC ability of conventional and (PAM/QAM) WL receivers in Table

4.1. In this table, for conventional scenario, we showed the maximum number of

interferers (Mmax = N − 1) the receiver can potentially suppress, whereas for WL
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case we showed all possible combinations of PAM and QAM interferers (M1, M2)

that satisfy the constraint M1 +2M2 < 2N . For example, for single and dual antenna

cases:

• a single antenna WL MMSE-DFE receiver can suppress a single PAM interferer

• a dual antenna receiver can suppress either 3 PAM interferers or a total of two

mixed (one PAM plus one QAM) interferers

In contrast, a conventional receiver:

• has no IC capability with a single antenna

• with two antennas, it can reject a single interferer only.

Essentially, when interference consists of PAM or a mixture of PAM and QAM signals,

the WL-DFE receiver suppresses a higher number of interferers than conventional re-

ceivers. In practice, while the stated results are true in a flat (ISI free) fading channel,

in frequency selective fading, simulation showed that, decision feedback errors often

prevents the QAM WL-DFE to reach its full IC potential whereas the PAM WL-DFE

provides full IC gain independent of the channel model. Therefore, for WL receivers,

the modulation type used by the desired signal or interference plays a significant role

in determining the gain3.

4.3.2 Comparison between Conventional and WL LE Methods

In case of LE, using (3.5), (3.9) we can express the SNR at the output of LE as

SNRConv LE � 1

MSEConv LE

=

[
T

∫ 1
2T

− 1
2T

1

[1 + h†(−f)R−1
nn(f)h(f)]

df

]−1

SNRWL-LE PAM � 1

MSEWL-LE PAM

=

[
T

∫ 1
2T

− 1
2T

1

[1 + h̃†(−f)R−1
ññ(f)h̃(f)]

df

]−1

.

3We would like to mention that WL methods provide an IC advantage in the presence of PAM-

type interference only. In the absence of PAM-interference, conventional and WL methods have

same IC ability.
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Table 4.1. IC comparison between conventional and WL receivers

N Conv WL

Mmax (M1, M2)
1 0 (1,0)
2 1 (1,1), (3,0)
3 2 (1,2), (3,1), (5,0)
4 3 (1,3), (3,2), (5,1), (7,0)

For the above two cases, using the infinite SNR criterion (4.19), we can show that

both conventional LE and PAM WL-LE provide full IC gain when the respective

ICM is rank deficient (see Appendix C.1, C.2 for details). Hence the IC properties

shown in Table 4.1 apply to the conventional and PAM WL LE receivers. However,

the QAM WL-LE does not follow this trend. Using (4.10), let us consider the GSNR

for a QAM WL-LE receiver

GSNRWL-LE QAM � 1

GMSEWL-LE QAM

=

[∣∣∣∣∣T
∫ 1

2T

− 1
2T

[R−1
x̃x̃ (f) + H̃†(−f)R−1

ññ(f)H̃(f)]−1df

∣∣∣∣∣
]−1

(4.20)

Even when |H̃†(−f)R−1
ññ(f)H̃(f)| becomes infinity, the GSNR expression given in

(4.20) need not necessarily become infinity. In this case, it is not straightforward

to explain the IC gain through rank analysis as in QAM WL-DFE case. Simula-

tion showed that, this method does not provide full IC gain whenever the channel

has frequency selectivity. The reason could be attributed to noise enhancement of

matrix-valued equalizer that has to equalize the signal in I-Q and temporal directions

simultaneously.
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4.4 Complexity Aspects

In Chapter 3, we have shown that WL receivers provide both performance and com-

plexity advantage for PAM signals when the noise is AWGN. However, when the

wanted signal has QAM modulation, we can show that (see Appendix D.1) the MSE

is same for both conventional and WL receivers. It is also possible to show that FFF

and FBF tap values are identical in the sense that if the conventional filter taps have

complex values wk, the corresponding WL filters take same values except that they

are arranged in matrix form as:

⎡
⎢⎣ Re(wk) −Im(wk)

Im(wk) Re(wk)

⎤
⎥⎦. Therefore, the computational

complexity is also same for WL and conventional receivers with QAM signaling in

case of white noise. But there are significant complexity differences in the presence

of CCI.

4.4.1 Complexity of WL-PAM Receiver

In interference limited systems, all the MMSE receivers use a front-end noise whiten-

ing filter to suppress interference (for reference see the FFF expressions given in (3.4),

(3.8) for conventional and WL LE cases). In conventional case, the noise whitening

filter R−1
nn(f) has a dimension of N ×N (assuming s = 1) whereas the I-Q whitening

filter R−1
ññ(f) has a larger dimensionality 2N × 2N . The higher dimensionality im-

plies a complexity increase. However, after the noise whitening step, since the residual

noise is white, the MF and MMSE filter implementation is simpler for WL case (see

Section 3.2.4 for details). In general, the complexity differences in PAM case depend

highly on the type of channel under consideration.
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Figure 4.3. Single antenna BPSK detection with single BPSK interferer.

4.4.2 Complexity of WL-QAM Receiver

When the wanted signal has QAM modulation, the FFF and FBF become MIMO

filters that have twice the size of conventional filters. Hence, the calculation and im-

plementation of the noise whitening filter and the rest of the filters (FFF, FBF) are

more complex for WL case. Moreover, the WL receiver has to calculate matrix spec-

trum factorization (SF) that is computationally more intensive than conventional

scalar SF. In addition, the WL symbol detector requires higher complexity than a

standard conventional DFE. Note that a conventional DFE receiver can be imple-

mented with low complexity using slicing techniques whereas the WL demodulator

given by (4.8) must explicitly calculate the Euclidean distance metrics for all possi-

ble symbol possibilities (at least M distance metrics) to find the minimum metric to

make a single symbol decision.
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4.5 Simulation Results

In this section we compare the BER performance of WL receivers to conventional

systems for both PAM and QAM signaling schemes. In our simulation setup, the

wanted signal is modeled as either BPSK or 8-PSK (with Gray coding) and the

noise part is modeled as a sum of several co-channel interferers (of equal average

power) and thermal noise. The CCI is modeled as a mixture of BPSK and 8-PSK

signals. We present simulation results for 5-tap (T-spaced) i.i.d. Rayleigh fading. We

assumed ideal channel state information (CSI) and perfect knowledge of ICM at the

receiver. Further, the CSI of desired signal and individual interferers are assumed to

be statistically independent. The results are reported for interference limited scenarios

where the total interference to thermal noise power ratio is set at 20 dB level. The

equalizer is implemented using FIR filters using the FIR MIMO MMSE-DFE method

proposed in [45]. We used 17 taps for the FFF and 15 taps for FBF. For LE, FFF

length is set to 30 taps. Note that the filter settings are chosen to emulate near

infinite length performance. The bit error rate (BER) results are averaged over 2000

channel realizations. We discuss the performance of both single and dual antennas

systems. The BER results are plotted as a function of C/I that is the total signal to

interference power ratio.

4.5.1 Single Antenna Interference Cancellation

In Figure 4.3 we show the BER results for a single antenna BPSK receiver in the

presence of a single BPSK CCI. In this case, both WL-LE and WL-DFE receivers

are able to provide full IC gain. However, with 8-PSK CCI, the BER results given in

Figure 4.4 show that WL-LE gives only 1.0-2.0 dB gain over conventional LE while

WL-DFE gives about 0.5 dB over conventional DFE. Note that in the presence of

8-PSK CCI, the WL receiver can not provide any IC gain but the gain we observed
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Figure 4.4. Single antenna BPSK detection with single 8-PSK interferer.

in Figure 4.4 is mainly due to lower noise enhancement that is inherent to PAM WL

equalizers.

For a single antenna 8-PSK system, in Figure 4.5 we plotted the BER with a single

BPSK CCI. In this case, WL-LE did not provide significant gain but WL-DFE gives

about 3.0 dB gain. To understand the limitations of WL-DFE we showed the BER

curves with perfect decision feedback. We see that the DFE error propagation is not

a serious problem for conventional DFE but it severely limited the gain of WL-DFE.

This problem may be alleviated to some extent by using more complex receivers such

as RSSE or turbo equalization. Note that WL techniques does not offer any gain for

8-PSK detection in the presence of 8-PSK type interference. In the next section, we

show that multi-antenna WL receivers very well can suppress both BPSK and 8-PSK

type interference.
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Figure 4.5. Single antenna 8-PSK detection with single BPSK interferer.
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Figure 4.6. Dual antenna BPSK detection with 3-BPSK interferers.
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Figure 4.7. Dual antenna BPSK receiver with mixed CCI (PAM+QAM).

4.5.2 Two Antennas Results

In Figure 4.6 we show performance of a two antenna BPSK receiver in case of 3-BPSK

interferers. As predicted by the WL-DFE and WL-LE analysis the WL method is

able to fully reject all 3-interferers in this case. Moreover, the performance difference

between LE and DFE methods is fairly small (less than 1.0 dB). We also verified in

Figure 4.7 that the IC performance is about the same when any two of the 3-BPSK

interferers are substituted with an 8-PSK interferer.

As shown in Figure 4.8, for 8-PSK signaling, in case of single BPSK interferer, the

2-antenna WL receivers offer significant gain for both WL-LE and WL-DFE config-

urations. Recall that the gain was modest (see Figure 4.5) when a single antenna

was used. But the gain increased quite significantly with an increase in the number

of antennas. With 3-BPSK interferers (see Figure 4.9) the WL-LE gives about 2.0

dB gain over conventional LE whereas the WL-DFE offers a gain of about 5.0 dB
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Figure 4.8. Dual antenna 8-PSK detection with single BPSK interferer.

although its IC capability is limited by the error propagation problem. We observed

a similar trend in a mixed interference scenario (see Figure 4.10).

4.6 Summary

In this chapter we generalized the existing WL equalization structures to include

QAM and PAM signaling schemes, multiple antennas with multiple interferers as

special cases. Infinite length, WL-DFE and WL-LE receiver structures are proposed

and performance of these schemes is analyzed through MSE metrics. Simulations

confirmed that, in frequency selective channels, both WL-LE and WL-DFE methods

provide full IC benefit (as predicted by the MSE analysis) when the desired signal

has PAM. For QAM signaling, in some cases, the DFE error propagation problem

prevented the WL-DFE to achieve its full IC potential, while WL-LE suffered from

noise enhancement problems. Nevertheless, the advantage of WL detection is sig-

nificant in most cases of interest. We think that the loss caused by the DFE error
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Figure 4.9. Dual antenna 8-PSK detection with 3-BPSK interferers.

propagation problem can be recovered through more complex receivers such as RSSE

or turbo equalization. Also, unlike white noise case, WL implementation in CCI lim-

ited channels increases receiver complexity. Considering the performance benefits, we

think that the additional computational requirements can be justified.
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Figure 4.10. Dual antenna 8-PSK receiver with mixed CCI (PAM+QAM).



CHAPTER 5

DIVERSITY ANALYSIS

5.1 Introduction

Multiple antennas can enhance performance of wireless systems corrupted by fading

and interference. The multi-antenna MMSE receivers that we discussed in the pre-

vious chapters basically attempt to maximize the total SNR at the output of the

receiver regardless of the channel characteristics i.e. whether the channel is thermal

noise or interference limited. In the absence of interference, we can show that the

proposed receivers emulate a maximum ratio combing (MRC) receiver and thus gives

full diversity benefit from all antennas. In interference limited cases the receiver gives

both diversity and IC gain. Especially, when the number of receiver antennas is less

than the number of interferers, the MMSE receivers first use the available dimensions

(created by antennas or I-Q split) for interference rejection and the remaining dimen-

sions for diversity. In fading channels, as both diversity and interference cancellation

features are crucial to good system performance, it is important to understand the

relative performance trade-off.

In Chapter 4, the IC performance of WL receivers was analyzed with ISI and CCI.

Performance was analyzed by evaluating the MSE at the output of the equalizer.

In such cases, analytical evaluation of bit error rate is difficult since the MSE is a

complicated function of channel characteristics. However, in the absence of ISI, and

when the channel has flat Rayleigh fading, error rate analysis is tractable. In this

73
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chapter we specifically consider the implementation, SER performance, and diversity-

IC trade-off of WL receivers in ISI free channels.

In [4], Winters et al. showed that, in flat fading channels, a conventional MMSE

receiver with N antennas and M interferers (M < N) can suppress M interferers

with a diversity order equal to: N − M . Moreover, they obtained SER expressions

in [46] for conventional IRC receivers for the single interferer case with flat Rayleigh

fading and simulation was used to study performance when interference has multiple

co-channel signals with arbitrary power. Recently, in [47], Chiani et al. extended

those results for M-PSK systems. They derived tight bounds and approximations for

M-PSK with multiple antennas and multiple interferers of equal average power in flat

Rayleigh fading channels. But, none of the previous papers considered SER results

for WL receivers. Because of differences inherent to conventional and WL methods,

the existing conventional SER expressions can not be applied to WL receivers.

In this chapter we specifically consider symbol error rate (SER) performance for an

M-ary PAM/QAM widely linear (WL) receiver with multiple antennas and multiple

co-channel interferers (with mixed PAM/QAM interference type) in a flat Rayleigh

fading channel. First, we derive an upper bound (UB) to the SER by averaging the

pair-wise error probability (PEP) expression with respect to the pdf of CSI of the

desired signal. The resulting SER bound is expressed as a function of the eigenvalues

of interference correlation matrix. For the general case of multiple antennas with

multiple CCI (with equal average power), we derive two different approximations to

this upper bound using the expected value of either the trace or square root of pseudo-

determinant of ICM. These two parameters are expressed in closed form using the

special properties of real Wishart matrices. We verified the accuracy of the proposed

approximations using simulation results.
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Next, using the SER expressions, we showed the trade-off between diversity and IC

gain as a function of interference modulation type and the number of antennas. It is

shown that both PAM and QAM WL receivers provide a higher diversity order and

superior IC gain in the presence of PAM-type interference. More specifically, when

interference consists of M1 PAM and M2 QAM interferers, an N antenna PAM/QAM

WL receiver provides full IC with a diversity order: N −M2 − M1

2
. This is significant

gain compared to conventional methods that provide full IC gain up to M interferers

with a diversity order: N − M for M < N .

The rest of the chapter is organized as follows. After introducing the signal model in

Section 5.2, the implementation of conventional and WL receivers in ISI free Rayleigh

fading channel is discussed in Section 5.3. The SER results for conventional systems is

briefly discussed in Section 5.4. The SER analysis for WL receivers is given in Section

5.5 followed by diversity analysis in Section 5.6. We reported simulation results in

Section 5.7 followed by a summary of the results of this chapter in Section 5.8.

5.2 Signal Model

In this chapter we use a simplified signal model that ignores the side effects such as

transmit, receiver filtering and over-sampling. In this chapter we focus our attention

to the performance differences caused by the fading channel alone. Therefore, we

model the baseband signal at the output of an array of antennas of length N (see

Figure 5.1) as:

yk = hxk + nk (5.1)
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where xk denotes the modulation symbols that take complex values when the signal

has QAM modulation and xk takes real values when the symbol constellation has

PAM,

yk = [y1
k, .., y

N
k ]

′
, nk = [n1

k, .., n
N
k ]

′

denote the collection of received signal and noise samples at time instant k, arranged

in vector format, and

h = [h1, .., hN ]
′

denotes the complex-valued channel coefficients. Assuming that the signals at dif-

ferent antennas have statistically independent fading1, each element in h is modeled

as zero mean i.i.d. complex Gaussian variable with variance C. We further assume

that the modulation symbols are i.i.d. symbols with unit energy. In case of QAM

we further assume that the I-Q parts are zero mean uncorrelated symbols with equal

variance.

5.2.1 Interference Model

The noise component nk = wk + ik is modeled as a sum of a thermal noise term wk

of variance N0 per dimension and a sum of M co-channel interferes

ik =

M∑
l=1

glxl
k,

gl = [gl,1, .., gl,N ]’ where gl,n is the impulse response of the lth interferer at nth

antenna, xl
k denotes the modulation alphabets of the l th interfering channel. We

assume that average power of all interfering signals is equal to I0. Each element

gl,n is modeled as an i.i.d. complex Gaussian random variable with zero mean and

variance I0. To simplify the receiver development, and to simplify the SER analysis,

1This assumption holds when antennas are spaced several wavelengths apart
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Figure 5.1. Conventional receiver.

we assume that the modulation alphabets xl
k are also zero mean, unit variance i.i.d.

complex Gaussian random variables. For higher order modulation, the pdf of I/Q

parts of xl
k can be closely approximated with Gaussian pdf, but in this chapter we

use the Gaussian approximation irrespective of modulation size.

5.3 Receiver Structures

The MMSE and MMSE-DFE receiver structures developed in the previous chapters

for ISI case can be simplified to a great extent when the system becomes ISI free. In

the following sections, we briefly revisit the conventional and WL receiver structures

for PAM and QAM cases.
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5.3.1 Conventional Signal Combining

The receiver structure for a conventional linear (unbiased) MMSE receiver that com-

bines the outputs of antenna branches is shown in Figure 5.1. The filtered signal at

the output of an unbiased MMSE detector [5] is given by:

zk =
h†R−1

nnyk

h†R−1
nnh

(5.2)

where

Rnn � E[nkn
†
k]

= Exl
k

⎡
⎣ M∑

l=1

glxl
k

(
M∑
l=1

glxl
k

)†⎤⎦+ E[wkw
†
k]

=
M∑
l=1

glgl† + N0I (5.3)

is the correlation matrix of interference plus thermal noise. Further, let

Rii =

M∑
l=1

glgl† (5.4)

denote the interference correlation matrix. The signal to noise ratio (SNR) at the

output unbiased MMSE receiver is given by: γc = h†R−1
nnh. Note that the MMSE

detector is functionally equivalent to a maximum likelihood (ML) detector that treats

the noise plus interference signal as colored Gaussian noise. Although interference

modulation symbols xl
k are not Gaussian, we use the Gaussian approximation to sim-

plify the decision metrics and subsequent error rate analysis. With this assumption,

the decision metric for a maximum likelihood (ML) detector is given by:

xk = arg minx̂k
e†

kR
−1
nnek (5.5)

where ek = yk−hx̂k and x̂k is a candidate symbol. Both ML and the MMSE receivers

provide the same error rate but differ in implementation only.
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Figure 5.2. WL receiver.

5.3.2 WL PAM Receiver Implementation in ISI free Channel

Ignoring the effects of over-sampling, the I-Q signal model can be represented in

vector format as:

ỹk = h̃xk + ñk (5.6)

where

ỹk = [Re(y1
k), Im(y

1
k), .., Re(y

N
k ), Im(yN

k )]′

h̃ = [Re(h1), Im(h1), .., Re(hN), Im(hN )]′

ñk = [Re(n1
k), Im(n

1
k), .., Re(n

N
k ), Im(nN

k )]′

denote the real and imaginary parts collected in column vector format. For conve-

nience, we deviated slightly from the I-Q signal notation of Section 2.3. The receiver

structure is shown in Figure 5.2. In this case, the receiver applies a vector-valued

unbiased MMSE filter whose output is given by

z̃k =
h̃†R−1

ññ ỹk

h̃†R−1
ññh̃

(5.7)

where

Rññ = E[ñkñ
†
k].
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Symbol-by-symbol decisions can be made using the decision variable z̃k using standard

threshold detectors. The SNR at the output of WL MMSE receiver can be obtained

as:

γWL PAM = h̃†R−1
ññh̃. (5.8)

Note that the WL receiver can also be implemented alternatively in ML form as

discussed in the previous section.

5.3.3 WL QAM Receiver Implementation in ISI free Channel

Since QAM symbol has both real and imaginary parts, I-Q split creates a MIMO

signal model of type:

ỹk = X̃kh̃ + ñk (5.9)

where X̃k � IN ⊗

⎡
⎢⎣ xk,I −xk,Q

xk,Q xk,I

⎤
⎥⎦ denotes2 a 2N × 2N size modulation matrix and

⊗ denotes the matrix Kronecker product [52]. The received signal ỹk, and noise term

ñk, channel vector h̃ are already defined in the previous Section. Note that X̃ is an

orthogonal matrix that satisfies: X̃†
kX̃k = x2

k,I +x2
k,QI. We propose that the I-Q parts

of the QAM symbols be jointly detected taking into account the correlation between

I-Q branches. Because of Gaussian assumption, the pdf of noise plus interference

signal can be modeled as:

p(ñk) =
1

2π
√|Rññ|

e−(ñ†
kR−1

ñññk).

Using the above density function, the ML symbol decision metric can be straightfor-

wardly formulated as [53]:

xk = arg minx̂k
ẽ†

kR
−1
ññ ẽk (5.10)

2The symbol IN denotes an identity matrix of size N
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where ẽk = ỹk − X̂kh̃. The matrix: X̂k � IN ⊗

⎡
⎢⎣ x̂k,I −x̂k,Q

x̂k,Q x̂k,I

⎤
⎥⎦ where x̂k =

x̂k,I + jx̂k,Q denotes the candidate symbol. The receiver selects the argument that

minimizes the minimum distance over all symbol possibilities. Using (5.9), ẽk can be

expressed as:

ẽk = ỹk − X̂kh̃ (5.11)

= Ekh̃ + ñk (5.12)

where Ek � X̃k − X̂k denotes the error between the desired and candidate symbol.

Because of the MIMO nature of the problem, here, we define the SNR based on the

distance metric. Using (5.11), the argument inside the decision metric in (5.10) can

be expressed as:

γWL QAM = h̃†E†
kR

−1
ññEkh̃. (5.13)

Since the ML metric decides in favor of minimum distance, in the above expression,

we should substitute the value of Ek that corresponds to the minimum distance error

event to obtain the SNR of WL receiver.

5.3.4 Structure of I-Q Noise plus Interference Correlation Matrix

Since CCI is allowed to have either PAM or QAM constellation we model the inter-

ference signal as a sum of M1 PAM interferers and M2 QAM interferers. The noise

term ñk can be explicitly represented in terms of individual interference terms as:

ñk =

M1∑
l=1

g̃lxl
k +

M2∑
l=1

G̃lx̃l
k + w̃k

where

g̃l = [Re(gl,1), Im(gl,1), .., Re(gl,N), Im(gl,N)]′,
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denote the individual I-Q parts of the lth PAM channel coefficients, xl
k are PAM

modulation symbols,

G̃l = [Gl,1, ..,Gl,N ]′

where

Gl,q �

⎛
⎜⎝ Re(gl,q) Im(gl,q)

−Im(gl,q) Re(gl,q)

⎞
⎟⎠

q being index, denotes the I-Q channel matrix for lth QAM interferer,

x̃l
k = [Re(xl

k), Im(x
l
k)]

′

represents the I-Q parts of QAM interfering modulation symbols and

w̃k = [Re(w1
k), Im(w

1
k), .., Re(w

N
k ), Im(wN

k )]′

represents the I-Q parts of thermal noise component with variance N0

2
per dimension.

Then the noise plus interference correlation matrix can be expressed as:

Rññ = Rĩ̃i +
N0

2
I

where Rĩ̃i denotes the ICM:

Rĩ̃i =

M1∑
l=1

g̃lg̃l† +
1

2

M2∑
l=1

G̃lG̃l†. (5.14)

5.4 SER for Conventional Receivers

In [47], the SER for an M-PSK conventional receiver introduced in Section (5.3.1)

was obtained in Eq (15) of [47] as:

Pc =
1

π
Eλ̄

[∫ Θ

0

A(θ)

Nmin∏
i=1

[
sin2(θ)

sin2(θ) + cMPSK
C
λ̄i

+ N0

]
dθ

]
(5.15)

where λ̄i, i = 1, .., Nmin denotes the eigenvalues of Rnn, Nmin denotes its rank given

by:

Nmin = min(N, M), cMPSK = sin2 π

M
, Θ =

π(M − 1)

M
,
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A(θ) �
[

sin2(θ)

sin2(θ) + cMPSK
C
N0

]N−Nmin

and Eλ̄ denotes the expectation with respect to the joint pdf of eigenvalues λ̄i. Because

of our starting assumption that the multiple interferers have independent Rayleigh

fading with equal average power, it can be shown that the interference correlation

matrix (given by (5.4)) Rii =
∑M

l=1 glgl† has complex Wishart distribution. The

joint pdf of eigenvalues of Rii is given in Eq (12) of [47]. The expectation operation

in (5.15) requires an Nmin fold integration with respect to the pdf of each of the

eigenvalues λi that does not have a closed form solution for arbitrary values of N and

M . In [47], Chaini et al. obtained several bounds and approximations to simplify the

SER calculations. In particular, in Section V-B, they derived an useful bound based

on the expected value of trace of Rnn as:

Pc,B =
1

π

∫ Θ

0

A(θ)

[
sin2(θ)

sin2(θ) + cMPSK
C

I0Nmax+N0

]Nmin

dθ (5.16)

where Nmax = max(N, M).

5.4.1 Discussion

In the limiting case as N0 → 0, A(θ) →
[

sin2(θ)

cMPSK
C

N0

]N−Nmin

. Hence the diversity order for

this system, defined as the exponent of C
N0

, is given by dconv = N −Nmin. Recall that,

from (5.3), the ICM is given by: Rii =
∑M

l=1 glgl†. Since gl is a column vector of

length N , the rank of Rii can be expressed as: Nmin = min(N, M). When the number

of interferers M is less than the total number of antennas N , Rii becomes rank

deficient i.e. Nmin = M . In that case, the diversity order is given by: dconv = N −M .

Also, as N0 → 0, the SER becomes zero, irrespective of interference power. Therefore,

we say that the conventional receiver fully rejects M interferers with a diversity order:

N −M as long as M < N . In the opposite case when Rii becomes full rank i.e. when
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M ≥ N , the receiver can not fully suppress interference, but gives full diversity. In

this case the diversity order can only be measured with respect to the exponent of

signal to noise plus interference ratio (SINR) term C
NmaxI0+N0

in (5.15).

5.5 SER Analysis for WL Receivers

The conventional SER results of previous section are specific to M-PSK systems with

conventional signal combining. In this section, we consider a general upper bound

to the SER for M-ary PAM and QAM systems with WL processing. In order to

derive this bound we use the standard pair wise error probability formulation that is

similar to the commonly used union bound. In the following section we first formulate

the PEP expressions for PAM and QAM signaling schemes with WL processing. In

Section 5.5.3, we derive closed form expressions for the SER using certain bounds and

approximations.

5.5.1 PEP for WL PAM Receiver

The pair wise error probability (PEP) defined as the probability of transmitting a

correct symbol xk and erroneously receiving x̂k can be formulated as [53]:

P (xk → x̂k) = Q

[√
d2

kγWL PAM

]
(5.17)

where d2
k = |xk−x̂k|2

4
denotes the (normalized) squared Euclidean distance and

Q(x) � 1√
2π

∫ ∞

x

e−
a2

2 da

and γWL PAM = h̃†R−1
ññh̃ which is given by (5.8). Since the channel and interfering

vectors are random quantities, the average PEP can be obtained as:

PPAM(xk → x̂k) = E

[
Q

(√
d2

kh̃
†R−1

ññh̃

)]
(5.18)

where E denotes the expectation with respect to the pdf of h̃†R−1
ññh̃.
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5.5.2 PEP for WL QAM Receiver

Using the signal model of Section 5.3.3, the PEP for QAM can be generalized as:

PQAM(xk → x̂k) = E

[
Q

(√
γWL QAM

4

)]
(5.19)

where γWL QAM = h̃†E†
kR

−1
ññEkh̃. The matrix Ek = X̃k − X̂k is an orthogonal ma-

trix because X̃k, X̂k are orthogonal matrices by definition. Therefore, E†
kEk can be

expressed as:

E†
kEk = (e2

k,I + e2
k,Q)I = |xk − x̂k|2I (5.20)

where ek,I � xk,I − x̂k,I and ek,Q � xk,Q − x̂k,Q. Now we rewrite the numerator of the

argument inside the Q-function as:

h̃†E†
kR

−1
ññEkh̃ = (e2

k,I + e2
k,Q)h̃†Ē†

kR
−1
ññĒkh̃ (5.21)

where Ēk � Ek√
(e2

k,I+e2
k,Q)

becomes a unitary matrix after normalization. Let

h̄ = Ēkh̃.

Since the individual elements of the complex channel h are assumed to be i.i.d. com-

plex Gaussian, and since the I-Q parts of a complex Gaussian process are i.i.d. random

variables, h̃ becomes: N(0, C
2
I2N). Further, we can show that the projection of a zero

mean i.i.d. Gaussian vector h̃ onto an unitary matrix Ēk yields another zero mean

i.i.d. Gaussian vector h̄ = [h̄1, .., h̄2N ] with the same pdf as h̃. Using this result, we

can express (5.21) in terms of h̄ as

(e2
k,I + e2

k,Q)h̃†Ē†
kR

−1
ññĒkh̃ = (e2

k,I + e2
k,Q)h̄†R−1

ññh̄. (5.22)

Using (5.18),(5.19),(5.22), using the fact that h̃ and h̄ have same pdf, the PEP expres-

sions for PAM and QAM cases take identical forms with the exception of constellation
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specific scaling factors d2
k. Hence the PEP for either PAM or QAM signaling can be

represented in universal form as:

PEP = E

[
Q

(√
d2

kh̄
†R−1

ññh̄

)]
, d2

k =
|xk − x̂k|2

4
. (5.23)

Therefore we can say that the interference suppression capability of a WL receiver

is completely independent of the modulation type used by the desired signal (i.e.

whether PAM or QAM is used) but the gain is decided mainly by the noise plus

interference correlation matrix structure.

5.5.3 Error Rate Analysis

If we assume that there are Kd error events that contribute to the same minimum

distance dmin, using the PEP expression (5.23), the symbol error rate for PAM/QAM

modulation can be upper bounded as [53]:

P ≤ KdE

[
Q

(√
d2

minh̄
†R−1

ññh̄

)]
. (5.24)

Note that the above upper bound is exact for BPSK, and provides accurate results

for higher order modulation for low error rates regions only. The matrix R−1
ññ can be

expressed as:

R−1
ññ = U†ΛU (5.25)

where U is an orthogonal matrix and Λ = diag[ 1
λ1

, .., 1
λ2N

]. Note that λk represents

the eigenvalues of Rññ. Using ( 5.25), we express the argument inside the Q-function

as

d2
minh̄

†R−1
ññh̄

† = d2
minω

†Λω = d2
min

2N∑
l=1

ω2
l

λl

(5.26)

where

ω = [ω1, .., ω2N ] = Uh̄
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is also zero mean i.i.d Gaussian i.e. ωl are: N(0, C
2
). Using this result (5.24) can be

expressed as:

P ≤ KdE

⎡
⎣Q
⎛
⎝
√√√√d2

min

2N∑
l=1

ω2
l

λl

⎞
⎠
⎤
⎦ . (5.27)

To simplify the analysis we further we upper bound the Q-function as a sum of

exponentials as [54]:

Q(x) <
1

12
e

−x2

2 +
1

4
e

−2x2

3 . (5.28)

This approximation allows a closed form evaluation of expectation with respect to

ωl while the error caused by the approximation is negligibly small for the SER of

practical interest. Using (5.28) and using the fact that ωl are statistically independent

real Gaussian random variables for different l, we can further upper bound (5.27) as:

P ≤ Kd

12

2N∏
l=1

E(ωl,λl)

(
e

d2
min

ω2
l

2λl

)
+

Kd

4

2N∏
l=1

E(ωl,λl)

(
e
2d2

min

ω2
l

3λl

)
(5.29)

Next we use the following result. When u = N(0, σ2), E[eαu2
] = 1√

(1+2ασ2)
. Using

this result we first evaluate the expectation with respect to ωl in (5.29) to get

P ≤ Eλl

⎡
⎣ Kd

12
∏2N

l=1

√
(1 +

d2
minC

2λl
)

+
Kd

4
∏2N

l=1

√
(1 +

2d2
minC

3λl
)

⎤
⎦

= Eλl

⎡
⎣∑

i=1,2

⎛
⎝ Ki∏2N

l=1

√
(1 + ciC

λl
)

⎞
⎠
⎤
⎦ (5.30)

where the constants c1 =
d2

min

2
, c2 =

2d2
min

3
, K1 = Kd

12
, K2 = Kd

4
are introduced for

compactness. Let m denote the rank of 2N ×2N matrix Rĩ̃i. Then Rĩ̃i has exactly m

non-zero eigenvalues denoted as: λ̃l, l = 1, .., m and the remaining 2N−m eigenvalues

are zero. Using this, the eigenvalues of Rññ can be expressed as:

λl = λ̃l +
N0

2
, for l = 1, .., m (5.31)

= 0, for l = m + 1, .., 2N. (5.32)
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Using this result we can rearrange the terms in (5.30) as

P ≤
∑
i=1,2

⎡
⎢⎢⎢⎢⎣

Ki

(1 + 2ciC
N0

)N−m
2

Eλ̃l

⎛
⎜⎜⎜⎜⎝

1

∏m
l=1

√(
1 + ciC

λ̃l+
N0
2

)
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ . (5.33)

In the above expression we still need to calculate the expectation with respect to λ̃l.

This aspect is addressed in following sections where we obtained two useful approxi-

mations that will be used to express (5.33) in closed form.

5.5.4 SER Approximations

The SER upper bound given by (5.33) requires an expectation operation:

Eλ̃l

⎡
⎢⎢⎢⎢⎣

1

∏m
l=1

√(
1 + ciC

λ̃l+
N0
2

)
⎤
⎥⎥⎥⎥⎦ . (5.34)

First we consider a system with N antennas and M PAM interferers of equal average

power. The extension to mixed interference case is given in Section 5.5.4.3. With M

PAM interferers, the interference correlation matrix takes the form:

Rĩ̃i =

M∑
l=1

g̃lg̃l†.

Since g̃ is an i.i.d. real gaussian vector, Rññ belongs to the class of (real) Wishart

matrices whose pdf is given in [47]. Therefore evaluation of expectation operation

in (5.34) requires integration over the joint pdf of eigenvalues Rĩ̃i. In this case, it is

difficult to obtain a closed form result. Numerical integration has to be used. We

avoid this approach, instead, we provide simple bounds and approximations to (5.34)

using the special properties of real Wishart matrices (that are discussed in Appendix

E.1). First, we derive an approximation to (5.34) using the expected value of square
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root of pseudo-determinant of Rĩ̃i. In Section 5.5.4.2, a simple approximation is

derived based on the trace of Rĩ̃i.

5.5.4.1 Approximation-1

Let us consider an interference limited system where N0 << I0 < C0. In that case,

the term ciC

λ̃l+
N0
2

>> 1 for most channel realizations. Hence we approximate the

denominator terms of (5.34) (when N0 → 0) as:

m∏
l=1

√√√√(1 +
ciC

λ̃l + N0

2

)
∼

m∏
l=1

√
ciC

λ̃l

.

Using this result, we can approximate (5.33) as:

P ≤
∑
i=1,2

⎡
⎣ Ki

(1 + 2ciC
N0

)N−m
2

Eλ̃l

⎛
⎝ m∏

l=1

√
λ̃l

ciC

⎞
⎠
⎤
⎦ . (5.35)

Using Theorem E.1.4 from Appendix E.1 the expected value of square root of non-zero

eigenvalues (pseudo-determinant) of Rĩ̃i can be expressed as:

E

[
m∏

l=1

√
λ̃l

]
=

(
I0

2

)m
2

m∏
i=1

Γ(n−i+1
2

+ 1
2
)

Γ(n−i+1
2

)
(5.36)

where m = min(2N, M), n = max(2N, M). Substituting (5.36) in (5.35) we get:

P1 = ρ
∑
i=1,2

[
Ki

(1 + 2ciC
N0

)
2N−m

2 (2ciC
I0

)
m
2

]
(5.37)

where ρ �
∏m

i=1

Γ(n−i+1
2

+ 1
2
)

Γ(n−i+1
2

)
.

5.5.4.2 Approximation-2

The SER approximation developed in the previous section is a tight approximation

only when N0 << I0 < C0. In this section we remove this restriction and present a
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SER approximation that works for other cases as well. In (5.33) the SER is expressed

as

P ≤
∑
i=1,2

⎡
⎢⎢⎢⎢⎣

Ki(
1 + 2ciC

N0

)(N−m
2

)
Eλ̃l

⎛
⎜⎜⎜⎜⎝

1∏m
l=1

√(
1 + ciC

λ̃l+
N0
2

)
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ . (5.38)

Since the eigenvalues λ̃l are positive, the above SER expression is concave in each

individual eigenvalue when others are fixed. But the function is neither globally

convex nor concave. Yet, we apply Jensen’s inequality as suggested by Chaini et.al.

in [47] to approximate (5.38) as:

P2 =
∑
i=1,2

⎡
⎢⎢⎢⎢⎣Ki

1

(1 + 2ciC
N0

)
2N−m

2

√∏m
l=1

(
1 + ciC

E[λ̃l+
N0
2

]

)
⎤
⎥⎥⎥⎥⎦ . (5.39)

Numerical evaluation of (5.39) requires one to calculate the expected values of λ̃l.

The joint pdf of eigenvalues λ̃l given by Theorem E.1.1 can be used to calculate these

expected values for a few special cases, (closed for evaluation is tractable for M = 2,

arbitrary N or N = 1, arbitrary M) but closed form evaluation for the general case is

difficult. To overcome this problem we use the following inequality from Section V-B

of [47]:
∏m

i=1
A

A+ B
xi

≤
[

A
A+ Bm∑p

i=1
xi

]m

to further upper bound the second part of (5.39)

as: ⎡
⎣ 1√∏m

l=1(1 + ciC

E[λ̃l+
N0
2

]
)

⎤
⎦ <

1(
1 + ciCm

m
N0
2

+
∑m

l=1 E[λ̃l]

)m
2

. (5.40)
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Note that E[
∑m

l=1 λ̃l] = E[Tr(Rññ)] = mn I0
2
. Substituting this result in (5.40), we

get:

P2 ≤
∑
i=1,2

⎡
⎢⎢⎢⎣Ki

1

(1 + 2ciC
N0

)
2N−m

2

(
1 + ciC

N0
2

+n
I0
2

)m
2

⎤
⎥⎥⎥⎦ . (5.41)

5.5.4.3 Mixed Interference Scenario

When interference has a mixture of PAM and QAM interferers Rññ is no longer a

Wishart matrix. Hence the SER approximation given by Approximation-1 can not

applied directly. However, we can simplify the analysis and obtain useful approxima-

tion to the SER by replacing each QAM interferer with two PAM interferers (This

approximation was justified in Chapter 4). In that case approximation-1 given by

(5.41) can be used directly with the following parameters:

m = min(2N, M1 + 2M2) (5.42)

n = max(2N, M1 + 2M2).

Note that the above expressions can be obtained straightforwardly by using the results

from the proof of Theorem E.1.4. Also, since the trace of Rĩ̃i is independent of mod-

ulation type employed by the individual interferer, the trace based approximation-2

applies to mixed interference case as well. In the following section we use the SER

bounds to analyze the diversity and IC properties of WL receivers.

5.6 Diversity-IC Trade-off

In Section 5.5.4.1 the SER for interference limited conditions is upper bounded as:

P1 = ρ
∑
i=1,2

[
Ki

(1 + 2ciC
N0

)
2N−m

2 (2ciC
I0

)
m
2

]
. (5.43)
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We use the above result to describe the diversity-IC trade-off for a system with N

antennas, M1 PAM and M2 QAM interferers. Let us consider the SER behavior when

Rĩ̃i is rank deficient i.e. when m < 2N . In the asymptotic case as N0 → 0, we say

that the WL receiver provides a diversity order: dWL = N − m
2

which is given by

exponent of the SNR term C
N0

in (5.43). Recall that in mixed interference case, the

rank of Rĩ̃i is calculated in (5.42) as: m = min(2N, M1 + 2M2). When m < 2N , the

rank becomes: m = M1 + 2M2. In that case, the diversity order is given by

dWL = N − M2 − M1

2
. (5.44)

Therefore, at high SNR, the SER is dictated by thermal noise level rather than

interference power level3. In fact, from the SER expression (5.43) we can see that

receiver provides a zero error rate as N0 → 0, irrespective of interference power level.

Hence, we say that the WL receiver fully eliminates M1 PAM and M2 QAM interferers

when M1 + 2M2 < 2N with a diversity benefit: dWL = N − M2 − M1

2
.

Next, we consider the differences in the diversity performance of conventional and

WL receivers. Let M1 + M2 = M . In Section 5.5 we have shown that the diversity

order of a conventional receiver is given by

dConv = N − M when M < N. (5.45)

Using (5.44), (5.45) we can show that:

dWL − dConv =
M1

2
. (5.46)

3When Rĩ̃i has full rank m = 2N i.e. when M1 + 2M2 ≥ 2N , the SER is limited by the

interference power rather than thermal noise level. In this type of system, one can define diversity

order (i.e. the slope of SER) with respect to SIR (signal to interference power ratio) only. In this

case the WL receiver provides full diversity N (given by exponent of C
I0

in (5.37), but gives rather

limited IC gain. In this case, the multiplicative factor ρ in (5.37) represents the SER reduction

compared to a conventional system.
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Table 5.1. Diversity-IC trade-off for WL receivers with N = 2

dWL = N − M2 − M1

2
(M1, M2), M1 + 2M2 < 2N

0.5 (3,0),(1,1)
1 (2,0),(0,1)

1.5 (1,0)

Table 5.2. Diversity-IC trade-off for WL receivers with N = 4

dWL = N − M2 − M1

2
(M1, M2), M1 + 2M2 < 2N

0.5 (7,0),(5,1), (3,2), (1,3)
1 (6,0),(4,1), (2,2),(0,3)

1.5 (5,0),(3,1),(1,2)
2 (4,0),(2,1),(0,2)

2.5 (3,0),(1,1)
3 (2,0),(0,1)

3.5 (1,0)

The above result indicates that, when the number of interferers to be suppressed

is kept the same for conventional and WL cases, the diversity gain of WL receiver

increases with an increase in the number of PAM interferers. Therefore, from diversity

and IC point of view, it is beneficial to operate the system with more PAM components

than QAM.

Table 5.3. Diversity-IC trade-off for conventional receivers with N = 4

dConv = N − M M , M < N
1 3
2 2
3 1
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5.6.1 Discussion

Using the PEP upper bound we first showed that the IC properties of the WL receivers

do not depend on the modulation type of wanted signal (i.e PAM/QAM) but depends

mainly on the rank of ICM. From IC point of view, we have also shown that each

QAM signal can be treated as two equivalent PAM signals. This view provides a

simple guideline to the system designer to optimize the system with a mixture of

PAM and QAM signals.

Next, we established the trade-off between diversity and IC gain for both conventional

and WL receivers. In Table 5.2, 5.1 we tabulated the diversity order versus the

number of PAM/QAM interferers that the WL receiver can suppress for N = 4

and N = 2 respectively. In the second column of these tables, we plotted all possible

combinations (M1, M2) that gives a given diversity order dWL satisfying the constraint:

M1 + 2M2 < 2N . For example, single antenna WL receiver can suppress single

PAM interference whereas a two antenna WL receiver can suppress a maximum of

3-PAM interferers. In a mixed interferer scenario, with 2-antennas, the WL receiver

can reject a total of two interferers (a single PAM plus a single QAM) whereas the

conventional receiver can reject a single interferer only. Clearly, the WL receivers

provide an advantage when interference consists of PAM or a mixture of PAM and

QAM interferers. Also note that when the total number of interferers to be canceled

is fixed, WL receivers provide a higher diversity order than conventional receivers.

As an example, consider a 4-antenna system with 3-PAM interferers. In this the

conventional receiver provides a diversity of order equal to 1 whereas the WL-receiver

gives a diversity order 2.5. Clearly, WL receivers provide very good diversity-IC

trade-off with a fewer number of antennas than would be necessary for a conventional

systems. Hence, we can say that, WL receivers are not only useful for enhancing
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Figure 5.3. Single Antenna: BPSK desired-single BPSK CCI (C = I0 = 1).

performance but also offer a low complexity solution to the CCI mitigation problem.

5.7 Simulation Results

We provide simulation results for a system that uses a mixture of BPSK and QPSK

modulation alphabets. We show results for signal and dual antenna cases with mul-

tiple interferers. The simulated results are compared with the bounds and approx-

imations for WL receiver case only. For comparison the simulated SER results for

conventional receivers are also shown. The SER results are reported in two formats.

In one case the error rate is plotted as function of C/I (signal to total interference

power ratio) while fixing the I0
N0

level at 20 dB. In the second case we set C = I0 = 1

and plot the error rate as a function of SNR defined as C
N0

.

Figure 5.3 shows SER for BPSK in the presence of a single BPSK CCI where the

SER is plotted as a function of SNR. In this case the SER for conventional receiver
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Figure 5.4. Single Antenna: BPSK desired-two BPSK interferers.

reaches an error floor (because it has no IC ability with a single antenna) whereas

the WL receiver shows full IC gain with a diversity order equal to 0.5. In this case,

approximation-2 is a tight approximation for the whole range of SNR values whereas

approximation-1 becomes a loose UB. In Figure 5.4 we plotted the SER for a single

antenna receiver with 2-BPSK interferers as a function of C/I where the WL receiver

showed a limited IC gain (approximately 2.5 dB) only. In this case, approximation-1

is a tight upper bound whereas approximation-2 becomes some what loose UB. In

Figure 5.5 we show the IC capability when a QPSK signal is corrupted by a single

BPSK interferer. Note that, in this case, both approximations provide accurate results

at high C/I values whereas approximation-1 becomes a loose UB at low C/I. Since

the IC capability is independent of desired modulation type, in the rest of the cases

we show results for BPSK desired signal only.

When the number of antennas is two, the WL receiver can reject a maximum of 3-PAM

interferers or a total of two mixed interferers (one PAM plus one QAM). In Figure
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Figure 5.5. Single Antenna: QPSK desired-single BPSK CCI.

5.6 we show results for the mixed interferer case. The WL receiver shows complete IC

effect as suggested by the analysis. In this case approximation-1 is becomes tight at

high C/I only whereas approximation-2 under estimates the SER by about 2.5 dB for

all C/I values. In Figure 5.7, we plotted the SER with 3-BPSK interferers as function

of SNR. While the conventional receivers shows error floor, the WL receivers exhibits

a performance gain with a diversity order equal to 0.5. In this case approximation-2

gives a better match to simulation than approximation-1. In general a combination

of these approximations (a minimum of the two) gives a reasonable estimate of SER

for most cases of interest.

5.8 Summary

In Rayleigh fading channels the real (I) and imaginary (Q) parts of the channel are

assumed to be zero mean identical, and independent real Gaussian random variables.

In this type of channel, WL receivers that exploit the I-Q parts of the signal (col-
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Figure 5.6. Two Antennas: BPSK desired-2 interferers (PAM+QAM).

lected at each antenna output) provide a significantly higher interference suppression

gain than conventional MMSE receivers. When fading is symmetrically distributed

between the I-Q parts (as in Rayleigh fading model), we show that the IC gain is

independent of the modulation type (PAM/QAM) used by the desired signal but the

gain depends mainly on the rank of the ICM denoted as m. In a system with N

antennas and I-Q split, the receiver has 2N observations. The WL receiver is said

to have full IC capability (that is complete interference removal) when the ICM is

rank deficient i.e. when: m < 2N . The diversity order for this system is shown

to be: N − m
2
. This condition implies that, when the system employs a mixture of

PAM and QAM signals, a WL receiver can reject any combination of M1 PAM, M2

QAM interferers satisfying the constraint: M1 +2M2 < 2N , with a diversity of order:

N − M1+2M2

2
. This result essentially says that WL receivers outperform conventional

methods in both diversity and IC aspects.
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Figure 5.7. Two Antennas: BPSK desired-3 BPSK interferers (C = I0 = 1).

We obtained several approximations to the SER for M-ary PAM/QAM WL receiver

with arbitrary number of antennas and arbitrary number of equal power interferers.

The pseudo-determinant based approximation-1 is a tight approximation when N0 <<

I0 << C, for BPSK and QPSK signaling schemes. The trace based approximation-2

closely matched the simulation results for all values of interference and noise levels

especially when the rank of ICM is less than 2N . We show that the combination of

the two approximations provides a good approximation to the SER upper bound for

most cases of interest.



CHAPTER 6

FUTURE WORK

This thesis mainly considered applications of widely liner filtering concepts for en-

hancing the link performance in a TDMA-type wireless system. Our work can be

extended in many directions.

• In Example 1 of Chapter 3, we showed that the WL-LE can tolerate significant

ISI between I-Q branches without any performance loss when there is a 90

degree phase shift between the adjacent channel taps. In this context, let us

consider a rotated PAM signal of type: s(t) =
∑k=∞

k=−∞ jkxkp(t − kT ) where xk

is a real-valued modulation alphabet and jk is a deterministic phase rotation

factor that introduces a 90-degrees phase shift between successive symbols and

p(t) is a real-valued pulse. Although p(t) is real, because of jk rotation, the

effective channel impulse response becomes complex after applying a j−k phase

de-rotation to the received signal. For this type of scheme, the results of Chapter

3 indicates that an appropriate criterion for zero ISI channel design is:

h̃†(−f)h̃(f) =

s∑
l=1

[|hI,l(f)|2 + |hQ,l(f)|2 = Constant, − 1

2T
≤ f ≤ 1

2T
(6.1)

as opposed to the conventionally used metric:

h†(−f)h(f) =

s∑
l=1

[|hl(f)|2 = Constant, − 1

2T
≤ f ≤ 1

2T
. (6.2)

In fact, as indicated by Example-1, modulation pulses with controlled amount

of ISI (and better spectral properties) can be designed and reliably detected

using a WL receivers with better noise resilience than conventional equalizers.

100
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Linearized GMSK modulation is one such example. We think that WLF is

inherently related to the partial response ISI signal design problem for PAM-

type systems.

• In Chapter 4 it was shown that, the QAM WL-DFE was not able to offer full IC

benefit because of decision feedback errors. This loss may be reduced or even

eliminated using more complex equalizers. Two possible solutions are listed

below.

– For instance, reduced state sequence estimation (RSSE) methods can be

used as an alternative to the WL-DFE symbol detector to reduce the loss

caused by the feedback errors.

– In conventional systems, turbo equalization has been used successfully to

combat the ISI introduced by pulse shaping filters/propagation channel.

Similarly, a modification of the conventional MAP (or RSSE based) soft-

in-soft-out [55] turbo receiver can be applied at the WL MMSE-DFE FFF

output to reduce the error propagation problem. Also, as an alternative

to trellis based turbo equalizers, a combination of the WL receivers con-

cepts proposed in this thesis together with the MMSE turbo equalization

methods proposed in [56] can be used to formulate practical, low-complex

WL turbo receivers. Essentially, the turbo equalization problem can be

formulated as an I-Q MMSE optimization with extrinsic information from

channel decoder for complexity reduction.

• In Chapter 5 we considered the diversity-IC trade-off for flat fading channels

only. The diversity order for a PAM/QAM WL receiver with N antennas M1

PAM, M2 QAM interferers is shown to be:

dWL = N − M2 − M1

2
, M1 + 2M2 < 2N. (6.3)
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In frequency selective channels, we conjecture that, a PAM/QAM WL MMSE-

DFE receiver in the absence of error propagation, gives the following diversity-

IC trade-off:

dWL = ν(N − M2 − M1

2
), M1 + 2M2 < 2N (6.4)

where ν is the diversity order of the frequency selective channel under consid-

eration. For PAM signaling, it is possible show that above result holds for an

optimum MFB receiver. Therefore the DFE may be able to meet the given

diversity-IC trade-off. However, for QAM signaling it is not straightforward to

analyze the diversity performance. This is a subject for further research.

• Since WL receivers provide full IC gain flat fading channels, one can design

an orthogonal multi-carrier scheme where each carrier meets the diversity-IC

trade-off given by (6.3). As each sub-carrier in a OFDM system essentially un-

dergoes flat fading, as fading across different frequencies becomes statistically

independent (when there is enough separation), assuming there are ν sets of

frequencies with independent fading, we can show that, a WL receiver meets

the diversity-IC trade-off given by (6.4) when sufficient coding is applied across

different carriers. Unlike, the DFE (that suffers from error propagation), this

scheme ensures full IC but relies on a channel code to extract diversity from fre-

quency selective channel. It may be useful compare WL MMSE-DFE receivers

with WL multi-carrier receivers.

• In this thesis we assumed ideal knowledge of CSI and interference covariance

information in analyzing the IC performance. These two quantities are usually

estimated using a pilot sequence. In heavily dispersive channels, the quality of

channel/interference covariance sets a limit to the achievable IC gain. In general,

the length of the pilot sequence, the cross correlation between the pilots of signal
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and interference are the main impairments to the IC performance. Very few

papers address the theoretical limits of IC with imperfect channel estimation.

Moreover the basic trade-off between pilot overhead and IC gain has not been

fully explored.

• Lastly, we would like to remark that WL equalizers are useful for low-complex

implementation of multiple-input-multiple output (MIMO) systems as well. A

potential MIMO application is the collaborative MIMO scheme such as the

one proposed in the 3GPP UTRA release-7 (3.9G) uplink [57]. In this system,

multiple users (with single antenna) communicate with the base station on the

same frequency time-slot, while the receiver uses multiple antennas for signal

separation. In this type of channel, WLE can provide advantage if one of the

MIMO users has BPSK or PAM modulation.



CHAPTER 7

CONCLUSION

This thesis illustrates the use of widely linear equalization concepts for enhancing link

performance in TDMA-type wireless systems with ISI and CCI. When the wanted

signal has QAM, splitting the complex baseband signal into real and imaginary parts

leads to a multiple-input-multiple-output equalization problem (where we view the I-

Q parts of QAM symbol as independent signals) whereas in PAM case, I-Q split leads

to a single-input-multiple-output (SIMO) equalization. For both cases, we introduce

efficient WL MMSE/MMSE-DFE equalization structures for a system with multiple

antennas and multiple co-channel interferers. Performance of proposed receivers is

analyzed with various channel conditions.

First, we describe the benefits of WL equalization for PAM systems with ISI. When

the ISI channel response is complex, we show that WL receivers have less noise en-

hancement and lower computational complexity compared to conventional equalizers.

We derive closed form MSE expressions that demonstrate the advantage of new re-

ceivers for both finite and infinite length cases. Note that our results are applicable

to other quadrature schemes such as offset-QPSK, MSK, and GMSK that have an

equivalent PAM representation.

When the real and imaginary parts of the channel are distinct (as in Rayleigh fading

channel), and when the signal and interference have distinct impulse responses, we

show that WL-LE/DFE methods offer significantly better performance than conven-

tional receivers. It is shown that WLE provides an IC gain especially when interfer-

ence consists of PAM or a mixture of PAM and QAM signals. For both PAM and

104
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QAM signaling, assuming that the DFE feedback path is error free, we show that a

WL receiver with N antennas can reject up to 2N−1 PAM interferers or any combina-

tion of M1 PAM and M2 QAM interferers satisfying the constraint: M1 +2M2 < 2N .

Simulation results show that, in case of PAM signaling, both WL LE/DFE receivers

offer full IC gain for any interference modulation type. However, with QAM signal-

ing, in the presence of PAM-type interference, the gain of WL-DFE was limited by

feedback errors while the IC benefit of WL-LE was affected by noise enhancement

problem.

For the special case of flat Rayleigh fading, we have been able to compute several

bounds (and approximations) to the SER of WL receivers with CCI. Two new results

are shown. First, unlike frequency selective case, we show that IC ability of WL

receivers is independent of modulation type (PAM/QAM) used by wanted signal

but depends mainly on the modulation type employed by individual interferers and

the total number of antennas. Secondly, assuming that interference consists of a

mixture of PAM and QAM signals, we show that, a PAM/QAM WL receiver can

reject any combination of M1 PAM, M2 QAM interferers satisfying the constraint:

M1 + 2M2 < 2N while preserving a diversity of order: N − M1

2
− M2. Note that,

a conventional MMSE receiver with N antennas and M interferers (M < N) can

suppress a maximum of M interferers with a diversity order N − M . The above

results basically implies that WL receivers provide a diversity advantage in addition

to IC gain.

Also, the complexity analysis for interference limited channels indicates that the IC

gain comes at the expense of an increase in receiver complexity. We think that the

present systems can very well handle the additional computation required for WL

processing. Therefore, the proposed receivers are useful for application in wireless

systems that use PAM or a combination of PAM and QAM schemes.
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Finally, we would like to remark here that the conventional WL receiver implementa-

tion based on complex, complex-conjugate parts of the received signal requires more

complexity as it requires complex arithmetic in both filter tap calculation and signal

filtering whereas the proposed I-Q approach is computationally more efficient as it

involves real arithmetic only. The difference between the two approaches becomes

even more pronounced in a finite length implementation.



APPENDIX A

MSE EXPRESSIONS FOR DFE
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A.1 MSE Relationship for Infinite Length DFE

Using (3.41), (3.13) we can express the MSE for conventional DFE as

MSEConv DFE = e
−T
∫ 1

2T

− 1
2T

ln
[
1+ 2|h(f)|2

N0

]
df

=
N0

2
e

T
∫ 1

2T

− 1
2T

ln 1
a(f)−ā(f)

df

=
N0

2
e

T
∫ 1

2T

− 1
2T

ln 1
a(f)

df−T
∫ 1

2T

− 1
2T

ln[1− ā(f)
a(f)

]df

=
N0

2
e

T
∫ 1

2T

− 1
2T

ln 1
a(f)

df+T
∫ 1

2T

− 1
2T

[
ā(f)
a(f)

+
ā2(f)

2a2(f)
+..]df

=
N0

2
e

T
∫ 1

2T

− 1
2T

ln 1
a(f)

df+T
∫ 1

2T

− 1
2T

[
ā2(f)

2a2(f)
+

ā4(f)

4a4(f)
+..]df

.

On line 3 we invoked an infinite series expansion − ln(1 − x) =
∑∞

k=1
xk

k
for |x| < 1.

In line 4, we excluded the odd powers of ā(f) as they become zero when integrated.

Using (3.47), the MSE for WL-DFE can be expressed as:

MSEWL DFE =
N0

2
e

T
∫ 1

2T

− 1
2T

ln 1
a(f)

df
.

Using this we can expresses the MSE metrics as:

MSEConv DFE = MSEWL DFEe
T
∫ 1

2T

− 1
2T

[
ā2(f)

2a2(f)
+

ā4(f)

4a4(f)
+..]df

.

Since even powers of ā(f)
a(f)

are positive, we get:

MSEConv DFE ≥ MSEWL DFE.

A.2 Proof of Theorem 3.3.1

The first two statements can be verified by writing Q in terms of real and imaginary

parts of H. To prove the third statement, consider |Q| = |A||I + jA−1B|. Since

both Q and A are positive definite I + jA−1B is also positive definite and hence all

its eigenvalues are real and greater than -1. Let λ be an eigenvalue of jA−1B and x

be the corresponding eigenvector. Then we have jA−1Bx = λx. Conjugating both



109

sides, we get jA−1Bx∗ = −λx∗. We see that −λ is also an eigenvalue and x∗ is

the corresponding eigenvector. Since all the eigenvalues are greater than -1 and they

must appear in pairs (−λ, λ) and be confined to the range (−1, 1). We can also see

that |jA−1B| is restricted to the interval [0, 1). Further we can write |I + jA−1B| as∏k(1−λ2
k). Since each λk < 1 we see that 0 < |I+jA−1B| ≤ 1 which proves the fourth

statement. Now let us consider the eigen-structure of CmA−1. Since the eigenvalues

of Cm can be obtained by raising the eigenvalues of Cm to the mth power, [(−λ)m, λm]

is an eigen pair for Cm. We can see that these eigenvalues become positive for even

values of m and remain a negated pair for m odd. Since A−1 is positive definite and

Cm is positive semi-definite for m even, CmA−1 is also positive semi definite and

hence its eigen values are greater than or equal to zero. For odd values of m, CmA−1

becomes a skew-Hermitian matrix with purely imaginary entries [52]; consequently

its diagonal entries must be zero.

A.3 Exact MSE Relationship between Finite Length Conventional

and WL DFE Receivers

Recall that the conventional MMSE-DFE solution involves Choleski factorization of

form (3.49)

R−1
xx + H†R−1

nnH = LDL† = A + jB. (A.1)

Let L = La + jLb. We can express A.1 in terms of La,Lb as:

A + jB = [LaDL†
a + LbDL†

b] + j[LbDL†
a − LaDL†

b].

For the WL case we have:

R−1
xx + H̃†R−1

ññH̃ = L̃D̃L̃† = A. (A.2)
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Combining (A.1), (A.2) and expressing A = LaDL†
a +LbDL†

b in terms of its real and

imaginary parts as we get

L̃D̃L̃† = LaDL†
a + LbDL†

b (A.3)

=⇒ D̃ = L̃−1LaDL†
aL̃

†−1 + L̃−1LbDL†
bL̃

†−1 = GaDG†
a + GbDG†

b (A.4)

where Ga = L̃−1La,Gb = L̃−1Lb. Note that La is a lower triangular (LT) matrix with

unit diagonal and Lb is also LT with all zeros along the main diagonal. Since L̃−1 is

LT unit diagonal, Ga becomes LT with unit diagonal while Gb becomes LT with zeros

on the main diagonal. Since A+jB is positive definite (PD), both D, D̃ are both PD.

We see that GaDG†
a + GbDG†

b sum up to a PD diagonal matrix D̃. Let us denote

the diagonal entries Da = diag[GaDG†
a] and Db = diag[GbDG†

b]. Since Ga is LT

with unit diagonal, each of the diagonal entries of Da must be greater than or equal

the corresponding entries in D. On the other hand, the elements of Db take positive

values (lower than the corresponding entries in Da). Now we have the desired result.

Each of the diagonal entries of D̃ is greater than or equal to that of the corresponding

entries in D, that is

d̃m ≥ dm, m ≥ 0. (A.5)

Now we have the desired result. Each of the diagonal entries of D̃ is greater than or

equal to that of the corresponding entries in D.
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B.1 Spectrum Factorization Algorithm

Recall that in order to determine MMSE-DFE settings we had to calculate the feed-

back filter given by a spectral factorization of form:

S(f) = L†(−f)DL(f),

where L(f) is causal, monic, and minimum phase filter with all its poles and zeros

inside the unit circle. Note that we need to perform matrix spectrum factorization in

case of QAM WL MMSE-DFE and scalar factorization in other cases. The presented

algorithms applies to both cases. Note that the algorithm can also be used to design

a whitening filter to whiten the noise plus interference correlation matrix in case of

colored noise.

B.1.1 Spectral Factorization using State-Space Models

The derivations given in this section are obtained from the survey paper by A. Sayed

and T. Kailath [58]. For detailed derivations the reader is referred to Chapter-11 of

Linear Estimation by T. Kailath et.al. Using D-domain notation:

S(D) = L(D)DL†(D−∗),

where L(D) is a matrix valued polynomial of order m with all its roots inside the

unit circle. Let,

L(D) = I +

m∑
k=1

LkD
k.

Then

L†(D−∗) = I +

m∑
k=1

L†
kD

−k.
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Let Zk be a random process which produces the desired D-domain spectrum S(D)

with a covariance sequence given by

E[ZkZ
†
k−j] = Pj , 0 ≤ j ≤ m

= P†
−j, 0 < j ≤ −m

= 0, Otherwise.

Now we can view Zk as the output of a linear time invariant filter L†(D−∗) driven

by a white noise sequence say Ek. The sequence Ek is also known as the innovations

process associated with Zk since it is related to Zk through a causal and causally

invertible transformation L†(D−∗). We can express Zk as

Zk = Ek + L†
1Ek−1 + L†

2Ek−2 + .. + L†
mEk−m.

Now we can cast the problem in state-space form as

Xk+1 = FXk + K̄Ek,

Zk = HXk + Ek,

where

F �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

I 0

. . .
. . .

I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, H � [0, .., 0, I], K̄ � [L†
1,L

†
2, ..,L

†
m]

′
.

Also define

N � [Pm,Pm−1, ..,P1]
′
.

The transfer function from Ek to Zk is given by

T(D) = I + H[DI− F]−1K̄ = L†(D−∗).
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Using matrix inversion lemma we can also show that

L†−1(D−∗) = I − H[DI− (F− K̄H)]−1K̄,

so that the matrix F − K̄H must have all its eigenvalues inside the unit circle.

B.1.1.1 CKMS Algorithm

The spectral factors can be directly computed by using so-called Chandrasekhar-

Kailath-Morf-Sidhu (CKMS) recursions very efficiently. The algorithm is summarized

in the following steps.

1. Define the initial conditions: L0 = N = K̄ and Re,0 = P0 = Rr,0.

2. Iterate the following recursions for i ≥ 0

• Ki+1 = Ki − FLiR
−1
r,i L

†
iH

†

• Li+1 = FLi −KiR
−1
e,i HLi

• Re,i+1 = Re,i − HLiR
−1
r,i L

†
iH

†

• Rr,i+1 = Rr,i − L†
iH

†R−1
e,i HLi

3. Then in the limit as i → ∞, Ki tends to a constant and Re,i tends to a constant

Re. Further, let K̄ = KR−1
e .

4. The desired D,L†(D−∗) are given by D = Re, and

L†(D−∗) = I + [DI − F]−1K̄.

More explicitly, the individual entries of K̄ are the coefficients of L†(D−∗), i.e.,

K̄ = [L†
1,L

†
2, ..,L

†
m]

′
.

5. Next L†−1(D−∗) can be calculated as

L†−1(D−∗) = I − H[DI− (F− K̄H)]−1K̄.
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More explicitly, each tap in L†−1(D−∗) denoted as L†−1(k), is given by

L†−1(k) = −HF̄(k−1)K̄

where F̄ � F − K̄H, and k = 1, 2, .., L. Note that the L†−1(D−∗) is an infinite

length polynomial but in practice it will be truncated to a finite length L for

implementation purpose.
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C.1 IC Properties of Conventional Receivers

Consider the limiting behavior of h†(−f)R−1
nn(f)h(f) as N0 → 0. From (2.23), recall

that Rnn(f) = Rii(f) + sN0I. Assuming an over-sampling factor of s = 1, let rc

denotes the rank of N × N interference correlation matrix Rii(f). Then its first

N − rc eigenvalues are zero and the remaining rc eigenvalues, denoted as λk(f), k =

N − rc + 1, .., N , are non-zero. Hence, the eigenvalues of noise plus interference

correlation matrix: Rnn(f) =
∑M

m=1 gm(f)gm†(−f) + N0I are given by:

λ̄k(f) = N0, k = 1, .., N − rc

= λk(f) + N0, k = N − rc + 1, .., N.

Let us represent the matrix R−1
nn(f) as:

R−1
nn(f) = U†(−f)∆(f)U(f) (C.1)

where U(f) is a unitary matrix and ∆(f) is a diagonal matrix given by:

∆(f) = diag

[
1

λ̄1(f)
, ..,

1

λ̄N (f)

]
.

Using (C.1), we can express the frequency dependent SNR term as

h†(−f)R−1
nn(f)h(f) = ω†(−f)∆(f)ω(f), where ω(f) = U(f)h(f)

=
1

N0

N−rc∑
k=1

ω2
k(f) +

N−1∑
k=N−rc+1

ω2
k(f)

λ̄k(f)
. (C.2)

Next we determine the rank structure of Rnn(f). Recall that the interference corre-

lation matrix (ICM) can be represented in frequency domain as (2.23):

Rii(f) =

M∑
m=1

gm(f)gm†(−f).

Since gm(f) is N×1 vector, if the number of interferers M is less N , the rank becomes

rc = M . If M ≥ N , the correlation matrix has full rank i.e. rc = M . Combining these
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two results, we get: rc = min(N, M). Let us assume that the number of interferers

M is less N . In that case, the denominator of the first term in (C.2) will be inversely

proportional to N0. If we assume that the numerator term
∑N−rc

k=1 ω2
k(f) is a non-zero

quantity, as N0 → 0, we can see that h†(−f)R−1
nn(f)h(f) → ∞. Therefore, we can

say that the receiver provides an infinite SNR gain when the ICM is rank deficient.

Alternatively we can say that: a conventional receiver with N antennas completely

eliminates M interferers (M < N) as long as
∑N−rc

k=1 ω2
k(f) takes finite non-zero values.

In random channels, when the channel state information of signal and interference

are statistically independent continuous random variables, the singular condition:∑N−rc

k=1 ω2
k(f) = 0 occurs with very small probability. Thus we get an infinite SNR

gain with probability nearly equal to 1. However, when the ICM has full rank i.e.

when M ≥ N , the receiver can provide a partial IC gain only.

C.2 IC Properties of QAM WL MMSE-DFE Receiver

Let us express the channel matrix H̃†(−f) as H̃†(−f) =

⎡
⎢⎣ h̃†(−f)

h̃†(−f)P

⎤
⎥⎦ where P ∼=

⎡
⎢⎣ 0 I

−I 0

⎤
⎥⎦. We expresses the SNR in terms of P as:

H̃†(−f)R−1
ññ(f)H̃(f) =

⎡
⎢⎣ h̃†(−f)R−1

ññ(f)h̃(f) h̃†(−f)R−1
ññ(f)P†h̃(f)

h̃†(−f)PR−1
ññ(f)h̃(f) h̃†(−f)PR−1

ññ(f)P†h̃(f)

⎤
⎥⎦ . (C.3)

Let us assume that over-sampling factor s = 1. The determinant of (C.3) can be

compactly expressed as:

|H̃†(−f)R−1
ññ(f)H̃(f)| =

(
h̃†(−f)R−1

ññ(f)h̃(f)
)(

h̃†(−f)PR−1
ññ(f)P†h̃(f)

)
−

|h̃†(−f)R−1
ññ(f)P†h̃(f)|2. (C.4)
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To evaluate the asymptotic behavior of (C.4), we express this quantity in terms of

eigenvalues of R−1
ññ(f). From (2.25), the 2N × 2N noise plus interference correla-

tion matrix was expressed as: Rññ(f) = Rĩ̃i(f) + N0

2
I. Let r denote the rank of

Rĩ̃i(f). Then Rĩ̃i(f) has r non-zero (positive) eigenvalues and the remaining 2N − r

eigenvalues are exactly zero. Next, we consider unitary decomposition:

R−1
ññ(f) = Ũ†(−f)∆̃(f)Ũ(f) (C.5)

where Ũ(f) is a unitary matrix and ∆̃(f) is a diagonal matrix with entries:

λ̃k(f) =
2

N0
, for k = 1, .., 2N − r

=
1

λ̂k(f) + N0

2

, for k = 2N − r + 1, .., 2N

where λ̂k(f) are the non-zero eigenvalues of Rĩ̃i(f). Using (C.5), we express the first

diagonal element of (C.3) as:

h̃†(−f)R−1
ññ(f)h̃(f) = ω̃†(−f)∆̃(f)ω̃(f), where ω̃(f) = Ũ(f)h̃(f)

=
2

N0

2N−r∑
k=1

ω̃2
k(f) +

2N∑
k=2N−r+1

ω̃2
k(f)

λ̃k(f)
. (C.6)

Using (C.5), the second diagonal element of (C.3) can be expressed as:

h̃†(−f)PR−1
ññ(f)P†h̃(f) = ω̄†(−f)∆̃(f)ω̄(f), where ω̄(f) = Ũ(f)P†h̃(f)

=
2

N0

2N−r∑
k=1

ω̄2
k(f) +

2N∑
k=2N−r+1

ω̄2
k(f)

λ̃k(f)
. (C.7)

Again, using (C.5), the cross terms in (C.3) can be expressed as:

h̃†(−f)R−1
ññ(f)P†h̃(f) = ω̄†(−f)∆̃(f)ω̃(f)

=
2

N0

2N−r∑
k=1

ω̄†
k(−f)ω̃k(f) +

2N∑
k=2N−r+1

ω̄†
k(−f)ω̃k(f)

λ̃k(f)
. (C.8)
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Substituting (C.6), (C.7), (C.8) in C.4, we get:

|H̃†(−f)R−1
ññ(f)H̃(f)| =

[ 2

N0

2N−r∑
k=1

ω̃2
k(f) +

2N∑
k=2N−r+1

ω̃2
k(f)

λ̃k(f)

]
×

[ 2

N0

2N−r∑
k=1

ω̄2
k(f) +

2N∑
k=2N−r+1

ω̄2
k(f)

λ̃k(f)

]
−

∣∣∣ 2

N0

2N−r∑
k=1

ω̄†
k(−f)ω̃k(f) +

2N∑
k=2N−r+1

ω̄†
k(−f)ω̃k(f)

λ̃k(f)

∣∣∣2 (C.9)

=
A(f)

N0
+

B(f)

N2
0

+ C(f) (C.10)

where A(f), B(f), C(f) are obtained by expanding the squares in (C.9). Let us

consider a mixed interference scenario where interference consists of a sum of M1

PAM signals and M2 QAM signals. Using (2.25), the interference autocorrelation can

be expressed as:

Rĩ̃i(f) =

M1∑
l=1

g̃l(f)g̃l†(−f)︸ ︷︷ ︸
PAM CCI contribution

+

M2∑
m=1

G̃m(f)G̃m†(−f)︸ ︷︷ ︸
QAM CCI contribution

.

Since we are primarily interested in the rank of the Rĩ̃i(f) we can treat each QAM

interferer as equivalent to two PAM interferers to determine the rank of ICM. With

this equivalent model, the effective number of PAM interferers becomes M1 + 2M2.

In this case, using straightforward algebra, the rank of Rĩ̃i(f) can be expressed as:

r = min(2N, M1 + 2M2). If M1 + 2M2 < 2N , the determinant expression (C.10)

contains sum of terms containing N0, N2
0 in the denominator and a constant term.

Note that in certain special cases the terms containing B(f) may vanish (for example

when N = 1, M1 = 1). Let us assume that A(f), B(f) (if exists), C(f) take finite
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values. Using the fact that H̃†(−f)R−1
ññ(f)H̃(f) is positive definite, as N0 → 0, we

see that

|H̃†(−f)R−1
ññ(f)H̃(f)| → ∞.

Therefore, we say that, the receiver provides complete interference suppression when

M2 + 2M2 < 2N . Note that in the opposite case when M1 + 2M2 ≥ 2N , the ICM

has full rank i.e. r = 2N . In that case the terms containing A(f), B(f) vanish.

Consequently, the GSNR will be limited by the third term in C(f) which is limited

by interference power rather than thermal noise. In this case the system offers a

partial IC benefit only.

When Rĩ̃i(f) is rank deficient, the system cannot ensure infinite SNR gain in the

special case when: A(f) = B(f) = 0. When the CSI of signal and interference are

random (mutually independent) and when the real and imaginary parts of the channel

are statistically independent (as in Rayleigh fading channels), the above mentioned

singular conditions (i.e. A(f) = B(f) = 0) occur with small probability. In that case,

one can say that, WL receivers provide full IC with probability nearly 1 in random

channels.
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D.1 MSE Equivalence between Conventional and WL receivers for

QAM Systems

In this section we compare the MSE for WL and conventional methods when the noise

is AWGN. We consider the analysis for DFE case only. The results can be extended

to LE. Let

P(f) = H̃†(−f)H̃(f) + sN0I.

Using (2.10) and letting D = e−j2πfT , we get:

P(f) =
s∑

l=1

N∑
m=1

A

where

A =

⎡
⎢⎣ |hm

I,l(f)|2 + |hm
Q,l(f)|2 + N0 hm†

I,l (−f)hm
Q,l(f) − hm†

Q,l(f)hm
I,l(f)

hm†
Q,l(−f)hI,l(f) − hm†

I,l (f)hQ,l(f) |hI,l(f)|2 + |hQ,l(f)|2 + N0

⎤
⎥⎦ .

The off-diagonal elements can be expressed as:

s∑
l=1

N∑
m=1

hm†
I,l (−f)hm

Q,l(f) − hm†
Q,l(f)hm

I,l(f) = 2j

s∑
l=1

N∑
m=1

Im[hm†
I,l (−f)hm

Q,l(f)].

Using (3.14), (3.15) the determinant of P(f) can be expressed as:

|P(f)| = a2(f) − ā2(f).

We can verify that the following holds:

• a(f) is an even function

• |P (f)| is an even function

• ā(f) is a real valued odd function i.e.
∫ 1

2T

− 1
2T

ā(f) df = 0

For a conventional signal model, we can define

Q(f) � h†(−f)h(f) + sN0. (D.1)
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Using (2.8), we can express Q(f) as

Q(f) = h(f)†h(f) + sN0

=

s∑
l=1

N∑
m=1

|hm
I,l(f)|2 + |hm

Q,l(f)|2 − 2

s∑
l=1

N∑
m=1

Im[hm†
I,l (−f)hm

Q,l(f)] + N0

= a(f) − ā(f). (D.2)

For a non-zero constant noise variance N0 we have

Q(f) = h†(−f)h(f) + sN0 > 0.

By expressing expressing Q(f) in terms of a(f), ā(f) (D.2) we get

Q(f) = a(f) − ā(f) > 0 ⇒ ā(f)

a(f)
⇒ ā2(f)

a2(f)
< 1.

Using (A.1), we can express the MSE for conventional DFE as

MSEConv DFE = N0e
T
∫ 1

2T

− 1
2T

ln 1
a(f)

df+T
∫ 1

2T

− 1
2T

[ ā2(f)

2a2(f)
+ ā4(f)

4a4(f)
+..]df

.

Next, recall that the geometric MSE for the WL DFE is given by (4.7):

GMSEWL DFE QAM = e
−T

2

∫ 1
2T

− 1
2T

ln|R−1
x̃x̃ (f)+H̃†(−f)R−1

ññ (f)H̃(f)|df
(D.3)

= e
−T

2

∫ 1
2T

− 1
2T

ln
∣∣∣ 2P(f)

N0

∣∣∣df
(D.4)

= e
−T

2

∫ 1
2T

− 1
2T

ln

[
4(a2(f)−ā2(f))

N2
0

]
df

(D.5)

= e
ln

N0
2

+T
∫ 1

2T

− 1
2T

ln 1
a(f)

df−T
2

∫ 1
2T

− 1
2T

ln[1− ā2(f)

a2(f)
]df

(D.6)

=
N0

2
e

T
∫ 1

2T

− 1
2T

ln 1
a(f)

df+T
∫ 1

2T

− 1
2T

[
ā2(f)

2a2(f)
+

ā4(f)

4a4(f)
+..]df

(D.7)

=
MSEConv DFE

2
. (D.8)

In (D.7), we invoked an infinite series of type − ln(1 − x) = x + x2

2
+ x3

3
+ .. for

|x| < 1. Since the GMSE is defined as per branch MSE, since the noise is white

(the error correlation matrix at WL DFE output must be a diagonal matrix with
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equal entries) we can define the total MSE as MSEWL DFE QAM = 2GMSEConv DFE QAM which

is equal to the MSE produced by the conventional receiver. We would like to remark

here that the MSE equivalence between conventional and WL methods can be shown

rather easily if we formulate the WL QAM equalization problem using the complex

and complex-conjugate quantities.
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E.1 Wishart and Anti-Wishart Matrices

In the following we use the definitions and proofs from [59] regarding Wishart matrices

and apply these results to determine the statistical properties of ICM.

Definition A random matrix of form A = Z†Z =
∑n

k=1 Z†
kZk is called a real Wishart

matrix denoted as: Wm(n, 1
λ
I) if the elements of Z is of form: Z =

⎡
⎢⎢⎢⎢⎣

Z1

:

Zn

⎤
⎥⎥⎥⎥⎦ where each

individual vector Zi = [zi,1, .., zi,m] is a real i.i.d. Gaussian random vector: N(0, 1
β
I)

and n ≥ m.

Theorem E.1.1 The probability distribution of eigenvalues λ̃1, .., λ̃m, (λ̃1 > λ̃2..λ̃m >

0) of A = Wm(n, 1
β
I), (n ≥ m) is

π
m2

2

(2β)
mn
2 Γm(m

2
)Γm(n

2
)
e

−1
2λ

∑m
i=1 λ̃i

m∏
i=1

λ̃
(n−m−1)

2
i

m∏
i<j

(λ̃i − λ̃j) (E.1)

where Γm(.) denotes the multivariate gamma function defined as

Γm(a) = (π)
m(m−1)

4

m∏
i=1

Γ[a − 1

2
(i − 1)], Γ(x) =

∫ ∞

0

tx−1e−t dt x > 0 (E.2)

is the gamma function.

Proof See [59].

Theorem E.1.2 The expected value of products of the square roots of the eigenvalues

of a Wishart matrix is: E[
∏m

i=1

√
λ̃i] = (β)

m
2

∏m
i=1

Γ(n−i+1
2

+ 1
2
)

Γ(n−i+1
2

)
.

Proof Theorem 3.2.15 of [59] considered E[|A|]. A straight forward modification of

that results gives the stated result.

Definition The singular matrix Ā = ZZ† for n > m is called an anti-Wishart matrix.

Theorem E.1.3 The first m eigenvalue of anti-Wishart matrix Ā are equal to λ̃1, .., λ̃m

and the the remaining n − m eigenvalues are zero. These non-zero eigenvalues are

same as the eigenvalues of the Wishart matrix A = Z†Z: Wn(m, 1
β
I).
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Proof The proof is trivial.

Theorem E.1.4 The expected value of the product of non-zero eigenvalues (pseudo-

determinant) of Rĩ̃i is: E[
∏m

l=1

√
λ̃l] =

(
I0
2

)m
2
∏m

i=1

Γ(n−i+1
2

+ 1
2
)

Γ(n−i+1
2

)
m = min(2N, M),

n = max(2N, M).

Proof In this case

Rĩ̃i =
M∑
l=1

g̃lg̃l†.

Recall that the channel vector of jth interferer g̃j is a column vector of length 2N

whose elements are assumed to be i.i.d. zero mean real Gaussian random variables of

variance I0
2

per element. The interference correlation matrix (ICM) Rĩ̃i =
∑M

j=1 g̃j g̃j†

has full rank when the number of interferers M is greater than or equal to 2N . In

this case Rĩ̃i becomes a real Wishart matrix denoted as: W2N(M, I0
2
I). When the

number of interferers M is less then 2N , the ICM is rank deficient. In this case Rĩ̃i

becomes ani-Wishart. Combining the Wishart and anti-Wishart cases, and applying

Theorems E.1.2, Theorem E.1.4, we can express the expected value of the product of

square root of non-zero eigenvalues λ̃l of Rĩ̃i as

E[
m∏

l=1

√
λ̃l] =

(
I0

2

)m
2

m∏
i=1

Γ(n−i+1
2

+ 1
2
)

Γ(n−i+1
2

)
m = min(2N, M), n = max(2N, M) (E.3)

where m denotes the rank of Rĩ̃i.
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