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ABSTRACT

ON THE STUDY OF MULTI-CHANNEL EEG: LOSSLESS
COMPRESSION, SIGNAL MODELING

AND CLASSIFICATION

Publication No.

YODCHANAN WONGSAWAT, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Soontorn Oraintara

Recently, electroencephalogram (EEG) has become necessary for diagnosis, telemedi-

cine, and brain computer interface (BCI). This thesis investigates three signal processing

tools which can explore multi-channel structures of the EEG for different applications

such as lossless compression, artifact removal, and classification.

First, this thesis presents a method for approximating the Karhunen-Loeve trans-

form (KLT) of multi-channel EEG signals. The proposed transform is further parameter-

ized by lifting factorization by which the coefficients’ dynamic range is controlled through

a proposed pivoting scheme, rendering a reversible structure under quantization of co-

efficients called IntSKLT. A lossless coder for multi-channel EEG signals which exploits

inter-channel correlation among the EEG channels by the IntSKLT is also presented.

Simulation results show that the coding performance of the proposed coder is improved

by approximately 10% over the benchmark lossless coders. Furthermore, compared with

directly using the reversible structure of the KLT (IntKLT), the degradation in coding

v



performance using the IntSKLT is approximately 3% while the computational complexity

is reduced by more than 60%.

Second, in order to avoid high computational load on calculating the parallel factor

analysis (PARAFAC)-based space-time-frequency model of a multi-channel EEG signal,

this thesis presents three reduced complexity space-time-frequency models. The models

are developed by dividing the selected contents into segments followed by applying the

PARAFAC. By carefully selecting the numbers of segments, signatures extracted from

the conventional space-time-frequency model can be approximated by those from the

proposed models with the computational complexity reduced by more than 50%. Simu-

lation results show that the proposed models can efficiently extract eyeblink artifacts from

background EEG. Furthermore, classification accuracies when employing the proposed

models to the BCI application are also comparable with the conventional model.

Finally, this thesis presents a feature extraction scheme called multi-channel flexible

local discriminant bases (MF-LDB) for left/right imagery classification of a multi-channel

EEG. The MF-LDB is obtained by calculating the local cosine packets (LCP) of the

decided channel over nonuniform segments. The proposed method combines information

from neighboring channels based on hard and soft decisions. Simulation results show

that the proposed feature extraction scheme can improve the classification accuracies of

the left/right imagery signals by more than 3%. By applying the minimum variance

distortionless response (MVDR) to find the spectra over nonoverlapping segments of

each EEG channel, a nonredundant time-frequency transform called local MVDR packets

transform which can provide highly selective frequency responses is also presented with

approximately 4% improvement in classification accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Electroencephalogram (EEG) has been widely used for clinical analysis (e.g. to

diagnose the disease and to assess the effectiveness of the treatment via the brain func-

tions [4]) and also for the brain computer interface (BCI), i.e. using brain signal instead

of hand. Generally, EEGs are measured by placing many electrodes onto human scalp,

resulting in a multi-channel EEG signal. Each channel represents an EEG signal at dif-

ferent positions on the scalp. Since the human scalp has a limited area, some neighboring

channels (electrodes) of EEG can be highly correlated. However, when some particular

activities occur, e.g. eyeblink, thinking, movement, some neighboring channels can be

quite different. This thesis aims to develop signal processing tools for exploiting the

usefulness of these multi-channel structures of EEG to solve two major problems, which

are

1. how to losslessly compress the huge amount of EEG data, and

2. how to efficiently model an EEG signal in order to extract valuable information for

the purpose of analysis, e.g. artifact removal and classification.

1.2 Contributions of the Thesis

Three major contributions of this thesis can be summarized as follows:

1. In order to solve the first problem in 1.1 an investigation on approximation of the

Kahunen-Loeve transform (KLT) used in order to decorrelate a multi-channel EEG for

lossless compression is presented. Inter-channel correlation of the multi-channel EEG has

1



2

been exploited to losslessly compress a multi-channel EEG via the sub-optimal KLT. This

transform is obtained by subdividing the data into segments and then iteratively applying

a local KLT to each segment of the data. The reversible approximation of the sub-

optimal KLT called IntSKLT is developed via the lifting-type factorization. A pivoting

scheme for selecting the permutation matrices which leads to less rounding errors for the

factorization is also proposed. Since the sub-optimal KLT consists of many smaller-sized

KLT matrices, factorizing these matrices would simplify the reversible approximation

process. The coding algorithm using the IntSKLT for decorrelating the inter-channel

correlation, and using the autoregressive model of order six and reversible discrete cosine

transform of type IV (IntDCT-IV) for temporal decorrelation, is also introduced. This

research can be useful for telemedicine since sometimes the information has to be losslessly

transmitted.

2. In order to solve the second problem on modeling a multi-channel EEG in 1.1,

reduced complexity space-time-frequency models are proposed. This topic focuses on

reducing the computational complexity of this 3-way PARAFAC model by the proposed

4- and 5-way PARAFAC models. Basically, the complexity is reduced by segmenting the

selected domains (space and time) to form the 4- or 5-dimemsional array data. Then

the 4- or 5-way PARAFAC model is applied to this new data in order to simultaneously

extract the important features contained in all space, time, frequency, and segment do-

mains. By using our derived equations with a constraint on the length of segments, the

features of the conventional 3-way model can be approximated by those of the reduced

complexity models. The proposed models are useful in many applications, such as arti-

fact removal and classification. The application of one of the reduced complexity model,

i.e. space-time-frequency-time/segment (STF-TS) model, on removing of the eyeblink

artifact is illustrated. By employing the space signature of the STF-TS model as the



3

estimated steering vector for the beamformer, the eyeblink artifact contaminated in a

multi-channel EEG can be efficiently removed.

3. To improve the classification accuracy for the left/right imagery EEG, the fea-

ture extraction scheme called multi-channel flexible local discriminant bases has been

developed. In this research, the information from multiple channels is exploited to de-

sign the data dependent features via the local cosine packets transform (LCP) (also

known as dual of the wavelet packets transform). Specifically, the nonuniform segments

designed from the LCP coefficients of multiple channels are designed to optimally dis-

criminate between the left and right imagery EEGs. The high classification accuracy can

be obtained by employing the proposed features. To further improve the classification

accuracy, we also develop a data dependent time-frequency transform similar to the local

cosine packets by calculating the spectra of each non-overlapping window through the

signal. These spectra are computed so that the variances of the filtered signals in each

window are minimized. The possible applications of this issue are such as controlling the

wheelchairs, mouse, or remote by using brain signals, e.g. EEG.

1.3 Organization of the Thesis

This thesis begins with the background (Chapter 2) on a multi-channel EEG and

useful signal processing tools which will be used for the rest of the thesis. Chapter 3

presents a sub-optimal KLT and its application on lossless multi-channel EEG com-

pression. Low complexity models for a multi-channel EEG are presented in Chapter 4

together with some of their applications on artifact removal and left/right imagery EEG

classification. In Chapter 5, we introduce a feature extraction scheme that takes into ac-

count multiple channels of EEG for improving the classification accuracy of the left/right

imagery EEG classification. Finally, Chapter 6 concludes this thesis.



CHAPTER 2

BACKGROUND

This chapter aims to provide the background on a multi-channel EEG and sig-

nal processing tools that will be used in this thesis. This includes the background on

Karhunen-Loeve transform (KLT), matrix factorizations, space-time-frequency modeling,

local cosine packets (LCP), and minimum variance distortionless response (MVDR).

2.1 Multi-channel EEG

EEG is one type of brain signals which is measured by placing electrodes, i.e. small

disks made of silver-silver chloride (Ag-AgCl), on the human scalp. The resulting EEG

data obtained by measuring EEGs using more than one electrode at a time is called

multi-channel EEG (each electrode is sometimes called channel).

2.1.1 Electrode Positioning

Electrodes are usually placed on the human scalp according to the recommendation

of the International Federation of Societies for Electroencephalography and Clinical Neu-

rophysiology called 10-20 system (as depicted in Fig. 2.1). The 10-20 system is designed

to avoid the eyeball placement. By using specific anatomic landmarks from which the

measurement would be made, 10 or 20% of that specified distance is used as the position

of the electrodes.

4
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2.1.2 Brain Rhythms

There are five main rhythms (frequency bands) which are used to categorize EEG

signals into five different types of waves, i.e. delta, theta, alpha, beta, and gamma waves

(Fig. 2.2):

1. Delta (δ) waves lie within the frequency range of 0.5-4 Hz. These waves are

generally associated with deep sleep.

2. Theta (θ) waves lie within the frequency range of 4-8 Hz. These waves appear as

consciousness slips towards drowsiness.

3. Alpha (α) waves lie within the frequency range of 8-13 Hz. These waves usually

indicate relaxed awareness without any concentration. Alpha-range signal which is

seen over the sensorimortor cortex is called Mu (μ) rhythms. This μ rhythm is very

useful to discriminate the imagery signal in the brain computer interface (BCI).

4. Beta (β) waves lie within the frequency range of 13-30 Hz. These waves are

associated with active thinking.

5. Gamma (γ) waves have the frequency range above 30 Hz. These waves have low

amplitude but high frequency and can be used to confirm some brain diseases. The

occurrence of these waves is rare.

More detail on a fundamental of EEG can be found in [1].

2.2 Karhunen-Loeve Transform (KLT)

Karhunen-Loeve transform (KLT) is the transform that maps a real random vector

x = (x0, x1, . . . , xN−1)
T to a random vector y = (y0, y1, . . . , yN−1)

T such that y is com-

pletely decorrelated. In particular, if ΦT is the matrix representation of the KLT, then

y = ΦTx and

E
{
yyT
}

= E
{
ΦTxxTΦ

}
= ΦTE

{
xxT
}

Φ = ΦTRxxΦ = Λ,



6

Figure 2.1. Conventional 10-20 electrode positions for measuring a multi-channel EEG
signal [1].

where the columns of Φ are the normalized eigenvectors of Rx = E
{
xxT
}
, Λ is the diag-

onal matrix of the eigenvalues with respect to Φ and T denotes the transpose operation.

Case of Markov-1 Model

By assuming the input signal as the first order stationary Markov process, the

analytical solution for the KLT matrix can be solved. The correlation between the i-th

and j-th channels is given by:

[Rxx]ij = E{xixj} = ρ|i−j|, i, j = 0, 1, · · · , N − 1, (2.1)
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Figure 2.2. The rhythms of EEG signals [1].

where ρ is the adjacent correlation coefficient such that 0 < ρ < 1. The analytical

eigenvalues and their corresponding eigenvectors for this special class of inputs are given

in [5].

2.3 Matrix Factorization

There are many ways to parameterize a non-singular matrix such as QR factoriza-

tion, singular value decomposition (SVD) and LU factorization. In this section, for the

purpose of constructing a reversible transform, a modification of the LU factorization is

summarized below. The idea is that a non-singular matrix A is factorized so that both

L and U matrices have the diagonal elements equal to 1 or -1. For detailed discussion,

the reader is referred to [6]:

Theorem 1 [6]: Given a non-singular diagonal matrix DR = diag(1, 1, . . . , 1, eiθ),

the matrix A has a factorization of A = PLDRUS0 if and only if det (PTA) = det
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(DR) �= 0, where P is a permutation matrix, L, U, S0 are a lower triangular matrix, an

upper triangular matrix, a single row marix, respectively, and their diagonal elements

are 1,−1, i, or −i.
In this thesis, we are interested in this form of matrix factorization when eiθ in DR

is 1 or -1, i.e. the matrix factorization can be reduced to the form of A = PLUS0, where

the diagonal elements of L and U are 1 or -1. The algorithm for constructing the matrix

factorization in Theorem 1 can be summarized as follows:

1) Suppose that A is an N × N non-singular matrix. There exists a permutation

matrix P1 for row exchanging such that

A(1) = P1A =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

â
(1)
1,1 â

(1)
1,2 · · · â

(1)
1,N

â
(1)
2,1 â

(1)
2,2 · · · â

(1)
2,N

· · · · · · · · · · · ·
â

(1)
N,1 â

(1)
N,2 · · · â

(1)
N,N

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

with â
(1)
1,N �= 0.

2) According to 1), there exists a matrix S0,1 = I − s1eNe
T
1 that makes the pivot

on the first row of A(1) equal to 1, where s1 = (â
(1)
1,1 −1)/â

(1)
1,N and ej is the column vector

of which the j-th element equals to 1 and the rest equal to zero, i.e.

P1AS0,1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1 â
(1)
1,2 · · · â

(1)
1,N

â
(1)
2,1 − s1â

(1)
2,N â

(1)
2,2 · · · â

(1)
2,N

· · · · · · · · · · · ·
â

(1)
N,1 − s1â

(1)
N,N â

(1)
N,2 · · · â

(1)
N,N

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

.
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3) Apply the elimination matrix L1 in order to achieve the forward elimination of

the first column,

L1P1AS0,1 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

1 a
(1)
1,2 · · · a

(1)
1,N

0 a
(1)
2,2 · · · a

(1)
2,N

· · · · · · · · · · · ·
0 a

(1)
N,2 · · · a

(1)
N,N

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.

4) Continue the algorithm for N − 1 iterations. Finally, we obtain

LN−1PN−1 . . .L1P1AS0,1 . . .S0,N−1 = U

=

⎡

⎢
⎢⎢
⎢
⎢
⎢⎢
⎣

1 a
(N−1)
1,2 · · · a

(N−1)
1,N

0 1 · · · a
(N−1)
2,N

· · · · · · · · · · · ·
0 0 · · · a

(N−1)
N,N

⎤

⎥
⎥⎥
⎥
⎥
⎥⎥
⎦

,

where a
(N−1)
N,N = ±1.

5) Thus, we can obtain L−1PTAS−1
0 = U, i.e. A = PLUS0, where

S−1
0 = S0,1 . . .S0,N =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1 0

I

0 1

−s1 · · · −sN−1 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,

L−1 = LN−1(PN−1LN−2P
T
N−1) . . . (PN−1 . . .P2L1P

T
2 . . .P

T
N−1), and

PT = PN−1 . . .P2P1.

According to [6], we can further factorize the matrix LU (in A = PLUS0) into

N single-row elementary reversible matrices (SERMs), i.e. the matrices that the off-

diagonal elements are all zero except for one row which contains the non-zero elements,
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and the diagonal elements are ±1, which will result in reducing of error from the rounding

operations. The resulting factorization is now denoted as

A = PLSNSN−1 · · ·S1S0, (2.2)

where PL is a permutation matrix, and Si are SERMs for i = 0, 1, . . . , N . It should be

noted that the diagonal elements of Si are ±1.

Since, the choice of PL is not unique and can affect the dynamic range of the non-

zero elements in Si, choosing the right PL is very important. However, if the dimension

of A is large, this task can be very difficult.

2.4 Space-Time-Frequency Model

This section reviews some backgrounds on the STF model. Each channel of the 1-D

time-domain signal is first transformed to reveal its 2-D time-frequency representation.

By stacking all the 2-D time-frequency arrays from all the channels, we form a 3-D array

in space-time-frequency domain. Then, the 3-way parallel factor analysis (PARAFAC) [7]

is further applied to this 3-D array in order to decompose the data into its fundamental

components yielding the STF model.

2.4.1 Time-Frequency Transform

In order to map a 1-D signal in time domain to a 2-D signal in time-frequency

domain, time-frequency transform is employed. Time-frequency modeling is known to

be practical for the analysis of 1-D nonstationary signals e.g. EEG [8], [9]. There are

two main methods to achieve this goal, i.e. to simultaneously localize signals in both

time and frequency domains, the Cohen’s class (translate signal in time and frequency)

and the affine class (translate signal for time resolution and scale the signal for frequency

resolution). Since the affine class yields nonuniform nature of time-frequency signal



11

components, it is more suitable for EEG [10]. An EEG signal, s(t), can be efficiently

decomposed into the affine class time-frequency atoms by convolving with the complex

Morlet wavelet basis (filter), w(f, t), as

ý(f, t) = |w(f, t) ∗ s(t)|2 . (2.3)

By stacking ý(f, t) of all channels, a 3-D array can be formulated as ý(n, f, t), where n

is the channel index [10].

2.4.2 Space-Time-Frequency Model (STF Model)

In order to decompose a 3-D array signal into space, time and frequency domains,

the 3-way PARAFAC is applied to the 3-D array signal, ý(n, f, t) (denoted in array form

as Ý) resulting in the STF model, which can be formulated as

Ý N×F×T = h(Á, Ć, D́) + É N×F×T , (2.4)

where the 3-way PARAFAC model, i.e. the STF model, is

h(Á, Ć, D́) =

M∑

m=1

á(n,m)ć(f,m)d́(t,m),

and É is a 3-D array residual of the model. Each column of ÁN×M denotes a space

signature of the m-th component where its matrix elements are denoted as á(n,m), n

is the channel index ranging from 1 to N , m is the component index ranging from 1 to

M , and M is the number of components. Each column of ĆF×M denotes the frequency

signature where its matrix elements are denoted as ć(f,m) and f is the frequency index

ranging from 1 to F . Each column of D́T×M denotes the time signature where its matrix

elements are denoted as d́(t,m), and t is the time index ranging from 1 to T . It is noted

that a suggested number of components M should be the one that maximizes the core

consistency diagnostic (CORCONDIA) value which in [7] is known as an efficient model
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validation criteria. The parameters Á, Ć, and D́ can be estimated by using the alternate

least square algorithm (ALS) [7] where the cost function is

argminá,ć,d́

∥
∥
∥∥
∥
Ý −

M∑

m=1

á(n,m)ć(f,m)d́(t,m)

∥
∥
∥∥
∥
.

Intuitively, the space signatures in Á obtained from this STF model represent the weight-

ing parameters of the inter-channel correlation among time-frequency representations of

each channel. Taking into account that this STF model needs to simultaneously process

a 3-D array signal, hence, if at least one of its three dimensions, i.e. space, time or

frequency, is large, the decomposition will be very complex and makes this elegant model

infamous for real-world applications.

2.5 Local Cosine Packets (LCP)

Sometimes original data can be represented in a more meaningful fashion (accord-

ing to some applications) by transforming it into another domain. In order to preserve

all information with the minimum number of transform coefficients, the selected trans-

form should be nonredundant and orthogonal. To achieve this, the LCP is used instead

of the short time Fourier transform (STFT) (with the overlapping windows), which is

redundant. The LCP is similar to the wavelet packets in the sense that it provides a

time-frequency representation with uniform partitioning in frequency domain.

Let x(t) be a signal in time domain, and [aj , aj+1]j∈Z be a set of partitions of x(t)

where the length of each partition is lj = aj+1 − aj . LCP coefficients can be calculated

by

Cj
k =
〈
x(t), ψj

k(t)
〉

=

∫ aj+1+γ

aj−γ

x(t)ψj
k(t)dt, (2.5)

where

ψj
k(t) = wj(t)

√
2

lj
cos

[
π

(
k +

1

2

)
(t− aj)

lj

]
, j ∈ Z, k ∈ Z+,
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and γ is overlapping part of the window wj(t) which is less than or equal to lj. To

preserve the orthogonality, the smooth window function wj(t) is constructed using the

cutoff function b(t) which satisfies the following conditions:

∣
∣b(t)2

∣
∣+
∣
∣b(−t)2

∣
∣ = 1 for t ∈ �,

b(t) = 0 if t < −1 and b(t) = 1 if t > 1. The reader is referred to [11] for more details on

the LCP.

2.6 Minimum Variance Distortionless Response (MVDR)

The minimum variance distortionless response (MVDR) can be used to estimate

the spectrum of the time-domain signal y(t) by employing the Fourier matrix into the

optimization process [12]. Specifically, let y(t), t = 0, ..., T̂−1, be the signal obtained from

passing a discrete time signal x(t) to the length p bandpass filter a = [a(0), ..., a(p− 1)]T

with center frequency at ω, where T̂ is the length of the signal. Let E[x(t)] = 0, then

the variance of y(t) is

σ2
y = E[y(t)2] = E[aHx(t)xH(t)a] = aHRxxa, (2.6)

where y(t) = aHx(t),H denotes the conjugate transpose operator, and Rxx = E[x(t)xH(t)].

In order to design the filter a to be as selective as possible for the frequency band of in-

terest ω, we can minimize the total power of y(t) subject to the constraint that the filter

is undistorted at the frequency ω. Specifically, we can find the filter a by the following

contraint optimization problem:

min
{
aHRxxa

}
subject to aHe(ω) = 1, (2.7)

where e(ω) = [1, e−jω, ..., e−jω(p−1)]T . The minimization of (2.7) leads to

a =
R−1

xxe(ω)

eH(ω)R−1
xxe(ω)

. (2.8)
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By substituting (2.8) into (2.6), the power of the resulting signal y(t) after filtering with

a bandpass filter a centered at ω can be obtained by

E[y(t)2] =
1

eH(ω)R−1
xxe(ω)

, 0 ≤ ω ≤ π. (2.9)

According to (2.9), it can be shown in [13] that the spectrum of x(t) can be estimated as

S(ω) ≈ p + 1

eH(ω)R−1
xxe(ω)

, 0 ≤ ω ≤ π, (2.10)

where p is the length of filter a.



CHAPTER 3

SUB-OPTIMAL KLT AND ITS REVERSIBLE APPROXIMATION FOR
LOSSLESS MULTI-CHANNEL EEG COMPRESSION

3.1 Introduction

Nowadays, EEG has become one of the most useful signals for clinical analysis,

i.e. to diagnose the disease and to assess the effectiveness of the treatment via brain

functions. However, this analysis process normally takes a very long period of time.

Hence, developing the specific type of compression schemes for this signal is an interesting

issue. In practice, every sample of the EEG signal is very important and cannot be

neglected without the consideration by experts. Therefore, a compression scheme for the

EEG signal has to be lossless.

In order to losslessly compress a multi-channel EEG signal, several types of re-

dundancies must be taken into consideration. The temporal redundancy is successfully

removed in [14], [15]. Antoniol and Tonella [14] presented a survey on EEG lossless com-

pression algorithms using the predictive coding, transform coding, vector quantization

and compared with some well known lossless compression algorithms [16], [17]. Predic-

tive coding are reported to be the most efficient tool that yields an optimal tradeoff

between coding performance and computational complexity. In [15], the authors pro-

posed an improved lossless compression scheme on predictive coding by taking the bias

cancellation and error modeling into account. Some researchers also employ inter-channel

redundancies into consideration but somehow based on the concept of lossy compression.

In [18], Karhunen-Loeve transform (KLT) (also known as principal component

analysis (PCA) [19], [20]) is reported to be the best scheme for reducing inter-channel re-

dundancy of the multi-channel ECG compared with the discrete cosine transform (DCT),

15
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discrete wavelet transform (DWT) and lifting wavelet transform (LWT) [21]. The KLT

is known for its optimality to diagonalize the autocovariance matrix of an input signal,

and to pack the most energy in the fewest transform coefficients, i.e. an input signal is

efficiently decorrelated using the KLT. These properties of the KLT are very useful in

data compression since less bits will be used to represent the signal [22], [23], [5]. An

efficient algorithm employing the KLT to decorrelate inter-channel redundancy of multi-

channel signals is also applied to the multi-channel audio coding in [24]. The uses of

KLT for reducing the inter-channel redundancy of ECG and audio signals are possible

since the number of channels is not likely to be very high. However, for a multi-channel

signal such as EEG [4], the number of channels (electrodes) can be as high as a couple

hundreds (or a couple thousands in the near future). Calculating the KLT for reducing its

inter-channel redundancy is impractical. The problem is even more severe if the KLT is

used for lossless compression of EEG (losslessly decorrelated inter-channel redundancy of

EEG) since its reversible approximation has to be calculated. Hence, finding a reversible

approximation of the KLT with less computational complexity is a challenging problem.

3.1.1 Sub-Optimal KLT and Its Reversible Approximation

Efficient methods for implementing the reversible approximation of the KLT called

reversible KLT can be calculated by factorizing the KLT matrix into the triangular el-

ementary reversible matrices (TERMs) and single-row elementary reversible matrices

(SERMs) [25], [6]. However, the factorization is not unique, and depends on the per-

mutation matrices. Different factorizations yield different dynamic ranges of coefficients,

which are of particular importance to lossless compression applications. The large co-

efficients can significantly impact on the dynamic ranges of the internal nodes in the

transform and thus the accuracy of the transform for the same precision. The problem

is more severe as the size of the KLT matrix increases.
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Considerations on using the reversible KLT for lossless compression include:

• (P1): Since the factorization of the KLT is not unique, finding the best solution in

the sense of minimum dynamic range of coefficients is very difficult. An obvious

approach is to compare all the possible factorizations. Since the number of solutions

is of order O(N !), this, however, is impractical for an N -dimensional signal which

N is large.

• (P2): Since the KLT is a statistically dependent transform, its parameters must be

transmitted as side information which is of order O(N2). Hence, the side informa-

tion should also be minimized.

• (P3): The calculation of the KLT and the implementation of the reversible KLT

are highly complex, especially for a high dimensional signal.

In order to solve (P1), the systematic pivoting scheme modified from [2] is proposed

by pre-ordering the KLT matrix before applying the suggested pivoting scheme of [2].

The reversible KLT using the proposed pivoting is called integer KLT (IntKLT). Fur-

thermore, in order to solve the problems according to (P2) and (P3), an approximated

version of the KLT, called distributed KLT, is studied in [26] by partially applying KLTs

to some selected disjoin groups of divided signals. This study leads to efficient coding

performance, however by applying the distributed KLT to a very high dimensional signal,

the dimension of divided signals in some groups is still possibly high. This again leads

to the difficulties when the distributed KLT is applied to a lossless compression appli-

cation. Hence, in this thesis, to solve problems (P2) and (P3), an approximation with

reversibility preserved for large KLT is proposed. The signals are divided into groups

using the ‘divide-and-conquer’ philosophy. For each group, the signals are decorrelated

by their fixed smaller-size KLT (referred to as marginal KLT in [26]). Large-magnitude

transform coefficients are then grouped and further decorrelated using their marginal

KLT. Small-magnitude transform coefficients are passed through the next stage. By
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repeating this self-similar structure, a novel transform called sub-optimal KLT is con-

structed. Each of the marginal KLTs of the sub-optimal KLT can be further realized by

a lifting factorization, rendering a reversible transform with small rational lifting coeffi-

cients. For convenience, this reversible approximation of the sub-optimal KLT is called

integer sub-optimal KLT (IntSKLT). As mentioned, in order to obtain small lifting co-

efficients, appropriate permutation matrices have to be well selected. Finding the right

permutation matrices for factorizing each smaller-sized marginal KLT instead of full-sized

N -point KLT is more practical. As a result, using the IntSKLT can significantly reduce

the computational complexity while keeping a comparable coding gain. In practice, the

IntSKLT can be used to reduce the redundancy of a high dimensional signal in a lossless

coder.

3.1.2 Lossless Multi-Channel EEG Compression

The existing literatures are still lacking of a systematic approach for losslessly com-

pressing multi-channel EEG, i.e. losslessly reducing both the inter-channel and temporal

redundancy. In this thesis, to solve this problem and to evaluate the usefulness of our pro-

posed IntSKLT, we also propose a lossless compression algorithm for the multi-channel

EEG. In order to shift the mean of each channel back to zero, we employ a simple back-

ward difference along the temporal domain of each channel. Since the number of channels

of EEG can sometimes be very high, to optimally reduce the inter-channel correlation,

the IntSKLT is employed. The temporal redundancy of each channel is then reduced

by employing the predictive coding or the integer-to-integer mapping approximation of

the DCT type IV (stereo IntDCT-IV) [27]. The coding results show that the proposed

lossless coder using the IntSKLT outperforms the benchmark lossless coders by more

than 20% in compression ratio. The publication related to this chapter can be found

in [28], [29], and [30].
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3.2 Sub-Optimal KLT and Its Reversible Approximation

This section presents a novel sub-optimal KLT. Its performance when the input is

the 1-st order Markov process is studied in Section 3.2.1 and 3.2.2. In order to use the

sub-optimal KLT for lossless compression, its reversible structure called IntSKLT is also

presented in Section 3.2.3. The performance of the IntSKLT is evaluated in Section 3.2.4.

3.2.1 Sub-Optimal KLT

In order to solve the issue caused by applying the KLT to a high dimensional

signal (say N dimensions), an N -dimensional signal (input of the KLT) is equally divided

into two groups of N/2 points (assume that N is even) along the arbitrary scan order

(Fig. 3.9). Each group is decorrelated by its local marginal KLT, and the outputs are

sorted according to the variances from large to small. To further reduce the dependency,

the largest N/4 points from the two groups are combined, and decorrelated by their

N/2-point KLT. Under the assumption that, the input signals are highly decorrelated

after the first stage, the remaining N/2 points of KLT coefficients, which are usually very

small, are exported directly to the outputs. Fig. 3.1 shows a block diagram for the case of

N = 64. A self-similar structure is used to further reduce the complexity where the same

structure is repeated for each of the N/2 KLT. The details of each 32-point sub-optimal

KLT in Fig. 3.1 is illustrated in Fig. 3.2, where the iterations of dividing the signals stop

at 8-point KLT, which is a feasible size to optimize for the best parameters. It should

be noted that optimality of the proposed approximation of the KLT also depends on the

statistics of the signals and how they are grouped at the first stage.
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Figure 3.1. Structure of the 64-point sub-optimal KLT.

3.2.2 Markov Process

In this section, let us consider a special case of Markov process. Assume that the

correlation between the i-th and j-th points of a signal is given by:

[Rxx]ij = E{xixj} = ρ|i−j|, i, j = 0, 1, · · · , N − 1.

It can be shown that the maximum achievable coding gain [31] for this case is

GN =
1
N
tr(Rxx)

det(Rxx)1/N
= (1 − ρ2)−(1− 1

N
),

where tr denotes the trace operation.

3.2.2.1 4-point Case

Consider a simple case of N = 4 where the signals are decorrelated using the

structure in Fig. 3.3. It can be shown that the marginal KLTs T1 and T2 are

Ti =
1√
2

⎡

⎢
⎣

1 1

1 −1

⎤

⎥
⎦ , (3.1)
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Figure 3.2. Structure of the 32-point sub-optimal KLT which is composed of the 16-point
sub-optimal KLTs and the 8-point KLTs.

and the corresponding eigenvalues are 1 ± ρ. The coding gain after the first stage (zi)

is (1 − ρ2)−
1
2 . Applying a 2-point KLT to the larger components z0 and z2 results in a

sub-optimal coding gain of

Ĝ4 = (1 − ρ2)−
1
2

[
1 − 1

4
ρ2(1 + ρ)2

]− 1
4

.

It can be shown that 0.9036 ≈ (2
3

)1/4 ≤ Ĝ4

G4
≤ 1 for 0 ≤ ρ ≤ 1.

3.2.2.2 2p-point Case

In the extension to the case of N = 2p, assume that the three N/2-point KLTs

used in the approximation in Fig. 3.1 are obtained by the eigenvectors of the correlation

matrices of the corresponding inputs, i.e. the three KLTs are the marginal KLTs. Fig. 3.4



22

2-point KLT
T1

2-point KLT
T2

2-point KLT
T3

x0

x1

x2

x3

y0

y1

y2

y3

z0

z1

z2

z3

Figure 3.3. Structure of the 4-point sub-optimal KLT.
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Figure 3.4. ĜN/GN for the case of N = 64.

plots the ratio ĜN

GN
as a function of ρ for the case of N = 64. It is clear that when these

sub-KLTs are optimal, the degradation in coding gain is very insignificant (less than

0.3%) compared to the original KLT.

In order to apply the proposed sub-optimal KLT to the compression scheme, two

points should be noted. First, in the proposed recursive structure, the N/2-point KLTs

are further approximated, and thus the difference in coding gains accumulates. Second,

and perhaps more importantly, EEG signals may not be a Markov process. In fact, the

correlation structure can be in 2-D (e.g. for a multi-channel EEG, one channel may be

correlated to all of its surrounding neighboring channels). Hence, the choice in clustering

the inputs into groups also has an impact on the coding performance. The preliminary

study on this issue is demonstrated in Section 3.2.4.
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3.2.3 Integer Sub-Optimal KLT (IntSKLT)

This section illustrates the structure of the IntSKLT. Since the IntSKLT is the

transform that composes of many blocks of IntKLTs, we will first describe the details of

the IntKLT followed by the IntSKLT.

3.2.3.1 IntKLT

According to Section 2.3, any N × N non-singular matrix A with determinant

of ±1 can be factorized as in (2.2). Thus, A can be approximated with reversibility

preserved by simply quantizing the off-diagonal of Si. As mentioned in Section 3.1, the

factorization in (2.2) is not unique and depends mainly on the permutation matrices. To

demonstrate this, let us consider an example.

Let A be an orthogonal matrix of size 3 × 3:

A =

⎡

⎢
⎢
⎢⎢
⎣

0.6 −0.64 0.48

−0.8 −0.48 0.36

0 0.6 0.8

⎤

⎥
⎥
⎥⎥
⎦
.

Two lifting factorizations of A can be given by:

A =

⎡

⎢⎢
⎢
⎢
⎣

0 1 0

0 0 1

1 0 0

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

1 0 0

0 1 0

0.33 −0.5 −1

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

1 0 0

0.27 1 −0.8

0 0 1

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 −0.3 0.6

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

−0.33 0.5 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1

1 0 0

0 1 0

⎤

⎥
⎥
⎥
⎥
⎦
, or (3.2)
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A =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0

0 0 1

1 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

3.75 −3.42 −1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

1.2 1 −0.48

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 −3.33 0.8

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

−1.25 4.92 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
. (3.3)

It is clear that both (3.2) and (3.3) are equal, and can be approximated with reversibility

preserved. The magnitudes of the coefficients in (3.2) are all less than or equal to one

whereas those in (3.3) are as high as 4.92.

In general, the factorization in (2.2) leads to high dynamic range of the matrix

elements which has a direct impact on lossless coding performance. Intuitively speaking,

if the elements in (2.2) are greater than 1, when the rounding operators are applied to

each internal node (Fig. 3.6), the rounding errors are amplified. Consequently, the lossless

coding performance is degraded. The traditional procedure to solve this problem is to

find all possible factorizations so that the rounding error is minimized. However, this

scheme is impractical due the large number of solutions which is of order O(N !). This

problem can be solved by carefully choosing the permutation matrices using the efficient

pivoting scheme.

• Proposed Pivoting Scheme: In [2], a pivoting scheme for reducing the dynamic

range of the factorized matrix coefficients is proposed. A condition on how to

select the permutation matrix PL in (2.2) is simply added in the factorization

process. The permutation matrix PL is selected such that only the coefficients in

ST
0 are minimized. It should be noted that the possible factorization solutions is

now down to order O(N). This pivoting scheme results in a similar factorization

to (2.2) except that S0 is now a lower-triangular matrix with diagonal elements of
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±1. Although, using the factorization in (2.2) together with the pivoting scheme

in [2] seems to work well, there still be an issue in lacking of the degree of freedom

on column interchange which may result in unexpected large dynamic range of the

coefficients in some cases.

Without losing any information, we simply propose the solution to the above prob-

lem by factorizing the column-interchanged version of A instead of A itself. In

general, another permutation matrix PR is incorporated to (2.2) as

AN×N = PLSNSN−1 · · ·S1S0PR. (3.4)

Heuristically, the right permutation matrix (column pre-ordered matrix) PR is sug-

gested to be a rotated version of the identity matrix, therefore we have only N

choices of PR. Generally, the pivoting scheme in [2] is only a special case of the

proposed pivoting scheme. In comparison, the proposed pivoting scheme introduces

slightly more possible factorization solutions of order O(N2). However, these are

much fewer than the solutions of the traditional procedure which is of order O(N !).

Furthermore, it is evident in Fig. 3.5 that by using the proposed pivoting scheme to

parameterize the IntKLT, the rounding error is approximately reduced by almost

5%.

• Structure of the N-point IntKLT : Since the KLT is an orthonormal transform, its

determinant is ±1. To obtain a reversible approximation of the factorization in

(3.4), a rounding operator is applied at each lifting stage, resulting in the IntKLT.

Fig. 3.6 illustrates the structure of the proposed IntKLT for the case of N = 4 (4-

point IntKLT). As one can see, there are a total of 3
2
N(N −1) coefficients and only

2N − 1 rounding operations. Although the proposed factorization can efficiently

approximate the KLT, factorizing a large KLT matrix is still impractical. .
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3.2.3.2 IntSKLT

Once the sub-optimal KLT is obtained (as in Section 3.2.1), it is very simple to

implement its reversible realization. Each marginal KLT matrix in the structure of the

sub-optimal KLT is replaced with its corresponding IntKLT rendering a reversible ap-

proximation of the sub-optimal KLT called IntSKLT. For example, the reversible approx-

imation of the 32-point sub-optimal KLT can be constructed by replacing each 8-point

KLT in Fig. 3.2 with the 8-point IntKLT.

The computational complexity, i.e. the number of lifting coefficients, of the N -point

IntSKLT remains only approximately 3.1N1.585 (3
2
8(8− 1)× 3log2(N/8) = 84× 3log2(N/8) =

28
9
3log2 N = 28

9
N log2 3 ≈ 3.1N1.585) compared with 3

2
N(N−1) used in the N -point IntKLT.

It is clear that the difference between the number of coefficients from both cases gets larger

especially when N is large. In general, using the IntSKLT can reduce the computational

complexity from using the IntKLT by more than 60%. In addition, according to the

fact that the IntSKLT is not an ideally optimal transform, theoretical optimal coding

property, i.e. the optimal energy compaction [5], will not be as efficient as the IntKLT.

However, since the IntSKLT uses less amount of transform coefficients, i.e. less amount

of side information, its lossless coding performance will be just slightly degraded from

the IntKLT. This will be further clarified by the simulation results in Section 3.3.

3.2.4 Transform Evaluation

Fig. 3.7 compares the (sorted) output variances resulting from the IntKLT, IntSKLT

and IntDCT [32] when being applied to decorrelate the inter-channel redundancies of the

multi-channel EEG signal in Fig. 3.8(a). Since the IntDCT is signal independent, there

are more large residual outputs compared with the IntKLT, while the output variances

of the IntSKLT are very similar to those obtained from the IntKLT.
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Figure 3.5. Cumulative mean absolute error of the proposed pivoting and the pivoting
in [2] for the 64-point IntKLT using 8,192 samples of EEG signals, where x-axis represents
the number of cumulated points and y-axis represents the cumulative mean absolute
values.

In this experiment, the order of the input to each marginal KLT (of the IntSKLT)

is also taken into consideration. We rearrange the multi-channel EEG signal according to

two types of channel scans (channel ordering), i.e. spiral scan (Fig. 3.9(a)) and clustering

scan (Fig. 3.9(b)). Figs. 3.7(a) and (b) show that by using the clustering scan, the output

variances obtained by the IntSKLT are closer to those of the IntKLT than those using

the spiral scan. Both scanning schemes are proposed based on the assumption that, the

neighboring channels are similar to each other. The spiral scan is constructed by scanning

the channels from the center channel (CZ) in a circular way to the outer channel (VEOU).

The clustering scan is constructed by grouping the neighboring channels together. It

should be noted that the patterns of both scans are empirically constructed in order to

group the signals that have the similar structures together. The optimal choice of scan

needs further investigation.
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Figure 3.6. Reversible structure of the factorization using (3.4) for the case of 4×4 KLT
matrix (4-point IntKLT).

3.3 Application of the IntSKLT in Lossless Multi-channel EEG Compression

In this section, the lossless coder for a multi-channel EEG is presented. Fig. 3.10

shows a block diagram of the proposed coder consisting of four main stages: preprocess-

ing, inter-channel decorrelation, temporal decorrelation and entropy coding.

3.3.1 Preprocessing

According to a data acquisition process, strengths of the potentials at different

electrode positions on the scalp can be different. Figs. 3.8(a)-(d) show various EEG

waveforms measured from the neighboring locations. It is observed that, while sharing

some temporal similarities, they have different DC-bias. This bias complicates and de-

grades the inter-channel decorrelation performance. Removing the DC-bias can simplify

the KLT and hence the IntKLT and IntSKLT used in the inter-channel decorrelation

stage. Thus, a simple backward difference is applied along the temporal domain of each

channel as a preprocessing:

yi[n] = xi[n] − xi[n− 1],
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Figure 3.7. Performance analysis of the 64-point IntKLT, IntDCT and IntSKLT using:
(a) spiral and (b) clustering scanned versions of data 1, where x-axis represents the
transform coefficients and y-axis represents their (sorted) variances.

where i indicates the channel index ranging from 1 to N , N is the number of channels.

In summary, this process results in zero-mean signals yi[n], and thus improves the coding

performance.

3.3.2 Spatial (Inter-Channel) Decorrelation

In this process, we aim to reduce the inter-channel redundancy of a multi-channel

EEG signal. In general, the inter-channel correlation of a multi-channel EEG signal

is location-dependent. Therefore, fixed-basis transforms such as DCT, DFT and LWT

may fail to efficiently exploit the inter-channel relationship. To alleviate this problem, a

data-dependent type of transforms is preferred. Hence, in our proposed coder, the KLT

which is optimal and data dependent is used to reduce the inter-channel redundancy of

the multi-channel EEG signal. In particular, let T be the KLT matrix obtained from the

multi-channel signal then

y[n] = Tx[n],
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Table 3.1. Compression ratios (CR) when different inter-channel decorrelation methods
are applied (NT denotes No Temporal decorrelator).

Coder data1 data2 data3 data4

IntKLT+NT 2.37 2.38 2.39 2.24

IntSKLT+NT 2.35 2.37 2.37 2.20

IntDCT+NT 2.12 2.12 2.10 1.97

LWT+NT 2.16 2.17 2.17 2.02

AR(1)+NT 2.22 2.26 2.24 2.12

Prediction transform+NT 2.22 2.24 2.23 2.07

IntKLT+AR(6) 2.94 2.97 2.97 2.74

IntSKLT+AR(6) 2.93 2.95 2.94 2.71

IntDCT+AR(6) 2.67 2.71 2.69 2.49

LWT+AR(6) 2.50 2.51 2.52 2.32

AR(1)+AR(6) 2.73 2.75 2.75 2.58

Prediction transform+AR(6) 2.77 2.78 2.78 2.58

where x[n] = [x1[n], . . . , xN [n]]T denotes the vector of the n-th samples of the N -channel

data. y[n] = [y1[n], . . . , yN [n]]T denotes the corresponding KLT coefficients of x[n], and

the KLT matrix T is calculated by 1
N

∑
n x[n]x[n]T . To losslessly decorrelate the spatial

correlation, the KLT can be approximated using the IntKLT or IntSKLT.

In general, when the IntKLT or IntSKLT are used as the channel decorrelator, the

energy will be compacted in the very first channels and very small in the other channels.

This results in an efficient coding performance [5]. For convenience, the resulting channel

after applying the IntKLT or IntSKLT will be called eigenchannel.

3.3.3 Temporal Decorrelation

After spatial decorrelation, temporal redundancy is exploited separately in each

eigenchannel. Considerations for the choice of transform in this process include that:
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Table 3.2. Performance analysis (in term of CR) of using the IntKLT and the IntSKLT
with different scanning types.

64-channel EEG signals data1 data2 data3 data4

NC+AR(6) 2.63 2.63 2.62 2.39

IntKLT+AR(6) 2.94 2.97 2.97 2.74

IntSKLT(clustering scan)+AR(6) 2.93 2.95 2.95 2.72

IntSKLT(spiral scan)+AR(6) 2.91 2.93 2.92 2.67

IntSKLT(random scan)+AR(6) 2.86 2.92 2.92 2.64

1. it can efficiently reduce the temporal redundancy,

2. it is a reversible process due to the lossless issue, and

3. it can be computed at low cost.

In this thesis, two classical temporal decorrelators are employed. By assuming the

EEG signal as time series, one of the classical predictive coding, i.e. the 6-order autore-

gressive model (AR(6)), is used [15]. Actually, the AR(6) can be further improved by

using together with the context-based bias cancellation (a context based error correc-

tion) [15]. However, to fairly compare with some other existing lossless algorithms, we

drop this error correction part in our lossless coder. By assuming that the signal is quasi-

nonstationary, the non-overlapping sliding window of the stereo IntDCT-IV proposed

in [27] as depicted in Fig. 3.11 is employed as a temporal decorrelator of each eigenchan-

nel (In our experiment, the window is slided by 1,024 samples). The key idea of the stereo

IntDCT-IV is that we can decorrelate two channels at the same time while obtaining the

reversible structure via lifting scheme. Furthermore, by employing two channels at the

same time, the rounding operators as well as the rounding error are reduced. The reader

is referred to [27] for the proof of the structure in Fig. 3.11.
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Table 3.3. Compression ratios obtained from using proposed pivoting (denoted as pro-
posed) and pivoting scheme in [2] (denoted as Galli) for factorizing the KLT matrices.

Coder data1 data2 data3 data4

IntKLT+stereo IntDCT-IV (Proposed) 2.82 2.84 2.83 2.63

IntKLT+stereo IntDCT-IV (Galli) 2.81 2.83 2.82 2.63

IntKLT+AR(6) (Proposed) 2.94 2.97 2.97 2.74

IntKLT+AR(6) (Galli) 2.94 2.96 2.96 2.74

IntSKLT+stereo IntDCT-IV (Proposed) 2.83 2.86 2.85 2.66

IntSKLT+stereo IntDCT-IV (Galli) 2.83 2.85 2.84 2.66

IntSKLT+AR(6) (Proposed) 2.93 2.95 2.94 2.71

IntSKLT+AR(6) (Galli) 2.87 2.94 2.94 2.71

3.3.4 Entropy Coding

Huffman coding is used for two main reasons:

1. to further losslessly reduce the statistical redundancy, and

2. to fairly compare the coding results with other lossless algorithms.

It is noted that more sophisticated entropy coding, e.g. the activity-based conditional

coding [15], can also be applied in order to achieve a better coding performance.

Coding Results

In this simulation, the proposed lossless coder is applied to 8 seconds of 4 datasets

of 64-channel EEG in Fig. 3.8, e.g. left eyeblink, left-right eye blink, eye rotating and

speaking (called data 1-4, respectively). All data is sampled at 1.024 kHz and digitized to

16 bits, i.e. each channel has 8,192 samples. KLT matrices and AR coefficients obtained

in these experiments are trained from the first 2,048 samples of each channels of each

dataset.
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Table 3.4. Compression ratios obtained from applying various types of lossless coders to
data 1-4 (NC denotes No Channel decorrelator and NT denotes No Temporal decorrela-
tor).

Coder data1 data2 data3 data4

IntKLT+stereo IntDCT-IV 2.82 2.84 2.83 2.63

IntKLT+AR(6) 2.94 2.97 2.97 2.74

IntSKLT+stereo IntDCT-IV 2.83 2.86 2.85 2.66

IntSKLT+AR(6) 2.93 2.95 2.94 2.71

NC+stereo IntDCT-IV 2.53 2.54 2.52 2.31

NC+AR(6) 2.63 2.63 2.62 2.39

NC+NT 2.07 2.17 2.04 1.89

Huffman 1.34 1.28 1.39 1.27

Shorten 2.24 2.03 1.93 1.70

JPEG2000 2.07 2.07 2.06 2.05

GZIP 1.44 1.43 1.38 1.29

Table 3.1 illustrates the efficiency of various inter-channel decorrelation schemes,

e.g. the IntKLT, IntSKLT, IntDCT [32], LWT [21], AR(1) (backward difference along

channels), and prediction transform. The prediction transform used for the compari-

son in this experiment corresponds to a reversible triangular matrix shown in Fig. 3.12,

where the coefficients sk are selected to minimize the mean square error of the prediction.

In particular, the prediction transform is simply a linear prediction along the channels

which its structure is a special case of the IntKLT. The backward difference is applied

(along the temporal domain) to each channel of EEG prior to the channel decorrelation

as the preprocessing stage (Fig. 3.10). By using these schemes as the channel decorre-

lators without any temporal decorrelator, maximum compression ratios are obtained by

using the IntKLT and IntSKLT while using the AR(1), prediction transform, LWT and

IntDCT yield the degradation in compression ratios. Furthermore, by using the IntKLT,
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IntSKLT, IntDCT, LWT, AR(1) and prediction transform as the channel decorrelators

and using the AR(6) as the temporal decorrelator, Table 3.1 also illustrates that maxi-

mum compression ratios are still obtained by using the IntKLT and IntSKLT while using

the prediction transform, AR(1), IntDCT and LWT yield the degradation in compression

ratios.

Table 3.2 compares the performances of the IntKLT and IntSKLT with different

scanning types. Therefore, in all cases, AR(6) is used as the temporal decorrelator. When

there is no inter-channel decorrelator, i.e. the spatial decorrelation block in Fig. 3.10 is

removed, the coder yields the worst compression ratio. The maximum performances

are achieved by using the IntKLT which is slightly higher than using the IntSKLT. By

applying the clustering, spiral and random scans to the input signals of the 64-point

IntSKLT, the compression ratios are respectively degraded. This shows that the order of

EEG channels has some impacts on the coding performance of the IntSKLT.

Table 3.3 illustrates the merit of the proposed pivoting scheme (denoted as Pro-

posed) over the pivoting scheme in [2] (denoted as Galli). By using the proposed coder

with different inter-channel decorrelators (e.g. IntKLT and IntSKLT) and temporal

decorrelators (e.g. stereo IntDCT-IV and AR(6)), the proposed pivoting scheme leads to

the improvement in coding performance especially in data1.

Finally, Table 3.4 compares the coding performances of our proposed lossless coders

(using the IntKLT and IntSKLT as the inter-channel decorrelators, and using the stereo

IntDCT-IV and AR(6) as the temporal decorrelators) with the benchmark lossless coders

such as

• Structure in Fig. 3.10 except that the inter-channel decorrelator is discarded and

stereo IntDCT-IV is used as the temporal decorrelator (NC+stereo IntDCT-IV,

NC denotes No Channel decorrelators),
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• Structure in Fig. 3.10 except that the inter-channel decorrelator is discarded and

AR(6) is used as the temporal decorrelator (NC+AR(6)),

• Structure in Fig. 3.10 except that both inter-channel and temporal decorrelators

are discarded (NC+NT, NT denotes No Temporal decorrelators), i.e. using only

preprocessing and Huffman coding,

• Huffman coding,

• GZIP [17],

• Optimal linear prediction based lossless coding (Shorten) [33],

• Lossless JPEG2000 [34]

For all data, the proposed coder yields the highest compression ratios. Even though,

using the IntSKLT would lead to slightly degradation in coding performance compared

with using the IntKLT, we can achieve more than 80% reduction in computation time

when performed on the laptop computer with a 1.6 GHz Intel Pentium M processor.

Although the classical lossless coding scheme such as GZIP yields less time-complexity

than the proposed coder, since EEGs do not have much frequent reoccurrence data,

using GZIP would not be a good candidate coder [15]. Also, by using Shorten, Lossless

JPEG2000, only AR(6) and only stereo IntDCT-IV, inter-channel redundancies have not

been taken into consideration. Using the stereo IntDCT-IV as the temporal decorrelator

yields slightly degradation in coding performance compared with the AR(6). However,

since the stereo IntDCT-IV is signal independent, it can be useful in some cases where

the EEG signals are very small and thus the calculation of the AR coefficients is ill-posed.

In this experiment, KLT matrices of the size 64 × 64 for 64-channel EEG have to

be transmitted as the side information. Since the KLT matrices offline calculated from

the training set can be used as the fixed transforms for the online stage, less than 3%

of the overall transmitted bits are used as the side information for the IntKLT and less

than 1.5% for the IntSKLT.
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3.4 Summary

In this chapter, we have presented a novel sub-optimal KLT. This transform can

eliminate the complexity issue when applying the KLT to a high dimensional data. Based

on this sub-optimal KLT which composes of many sub-KLTs, we show that the reversible

approximation, called IntSKLT, can be implemented easily since we only have to deal

with the factorization of smaller-sized matrices. A new pivoting scheme is also presented

to further improve the performance of the reversible structure. The results show that

the proposed pivoting scheme can efficiently improve the coding performances of the

IntKLT and IntSKLT. Moreover, a lossless coder designed for multi-channel EEG which

exploits the inter-channel and temporal correlation is presented. Since the IntSKLT yields

coding gain close to the original KLT while requiring less side information for perfect

reconstruction, this lossless coder is very useful especially when the number of channels

is high. The improvements in coding performances of the proposed coder compared with

the benchmark lossless coders are also illustrated.
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Figure 3.8. The first 10 channels of 4 datasets according to the clustering scan (from
the bottom to the top) in Fig. 3.9(b): (a) Left eyeblink (data1), (b) Left-right eyeblink
(data2), (c) Eye rotating (data3) and (d) speaking (data4). x-axis represents the time
(in second) and y-axis represents the size of each EEG data. The dot lines represent the
zero-mean line for each channel of EEGs.
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Figure 3.9. Pattern of scanning schemes: (a) spiral scan and (b) clustering scan (Channel
HEOL and VEOU are included in cluster 8).
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CHAPTER 4

REDUCED COMPLEXITY SPACE-TIME-FREQUENCY MODELS
FOR MULTI-CHANNEL EEG

4.1 Introduction

In order to efficiently exploite a multi-channel EEG in real world applications, e.g.

brain computer interface (BCI) [35], classification, analysis, and prediction, we have to

fully understand the pattern of this multi-channel signal. To achieve this, all information

should be incorporated to form an efficient model. Therefore, finding a right model to

extract the features of the multi-channel EEG with less time consuming becomes one of

the challenging problems in neuroscience.

EEG is first modeled by its frequency statistics in [36]. The model is further im-

proved by using time-frequency representation of a single channel EEG, [37], [38], [8]

which is known as a nonstationary signal. Usually, EEG signals are recorded at multiple

locations, yielding information about which part of the brain is functioning. This spatial

knowledge is efficiently exploited using principal component analysis (PCA) in [39], [40].

However, by using PCA nonuniqueness occurs due to arbitrary choice of rotational

axes [10], which leads to the robustness problem of the model. Recently, independent

component analysis (ICA) is applied to eliminate this nonuniqueness problem by impos-

ing the statistical independent constraint which is even stronger than orthogonality of

PCA, [41], [42]. In conventional PCA and ICA, no frequency knowledge is exploited even

though it can be separately employed later. All space, time, and frequency domains are

employed in [43] by analyzing the region of time-frequency plane. Another interesting

work on topographic-time-frequency decomposition is proposed in [44] by imposing the

minimum norm and maximal smoothness to the time and frequency signatures, respec-

40
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tively, for uniqueness of the model. Recently, Miwakeichi et al [10] found that by using

PARAFAC, [7], [45] these uniqueness constraints are unnecessary. Therefore, they pro-

pose a novel model that applies space-time-frequency representation of a multi-channel

EEG to a 3-way PARAFAC to obtain the space, time and frequency signatures (features),

called space-time-frequency model (STF model). Although, all domains are exploited in

these models, they suffer from the high computational complexity when measured in a

long period of time or with high number of electrodes.

In this chapter, we present three methods to reduce the computational complex-

ity of the STF model for a multi-channel EEG. The first method aims to estimate the

STF model using the space-time-frequency-time/segment model (STF-TS model) by sub-

dividing the time domain into a number of segments resulting in a 4-D array signal. The

4-way PARAFAC is then applied for the analysis of the 4-D array signal. This approach

is appropriate when the signals are recorded for a long period of time. The second

method aims to estimate the STF model using the space-time-frequency-space/segment

model (STF-SS model), which is suitable when the number of channels (dimension of

space domain) is high. By partitioning the channels into sub-groups, a 4-D array signal

is constructed, and the 4-way PARAFAC is then applied for the analysis. However, if the

dimensions of both time and space domains are high, the computation of these models

can be further reduced. Therefore, we extend the idea by simultaneously partitioning

the multi-channel EEG in both space and time domains called space-time-frequency-

space/segment-time/segment model (STF-SS-TS model). These three reduced complex-

ity models are further shown to be useful in many EEG analysis problems, e.g. artifact

removal and classification of long-term and high number of channels EEG signals. The

content of this chapter is published in [46], [47], [48], and [49].
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4.2 Reduced Complexity Space-Time-Frequency (STF) Models

By segmenting the selected domains (space, time or both) the STF model with

the additional domains called space/segment and time/segment can be obtained. In

this section, three modeling schemes based on this ‘divide and conquer ’ philosophy are

introduced.

4.2.1 Space-Time-Frequency-Time/Segment Model (STF-TS model)

For a long-term EEG signal, the calculations of both the time-frequency transform

and PARAFAC are very complex. Therefore, we aim to reduce this computational com-

plexity by dividing the time domain into segments. After that, the time-frequency trans-

form is applied individually to each segment forming a 4-D array signal, y(n1, st, f1, t1)

(denoted in array form as Ŷ), where n1 is the channel index ranging from 1 to N1, st is

the time/segment index ranging from 1 to St, f1 is the frequency index ranging from 1 to

F1, and t1 is the time index ranging from 1 to T1. The 4-way PARAFAC is then applied

to this 4-D array signal rendering a space-time-frequency-time/segment model (STF-TS

model). The STF-TS model of the 4-D array Ŷ can be formulated the same way as the

STF model as mentioned in Section 2.4.2 except that a new parameter D̂ is added:

Ŷ N1×St×F1×T1 = f(Â, B̂, Ĉ, D̂) + Ê N1×St×F1×T1 , (4.1)

where the 4-way PARAFAC model, i.e. the STF-TS model, is

f(Â, B̂, Ĉ, D̂) =

M∑

m=1

â(n1, m)b̂(st, m)ĉ(f1, m)d̂(t1, m),

and Ê is now a 4-D array residual of the model. Each column of ÂN1×M denotes the

space signature of the m-th component ranging from 1 to M where its matrix elements

are denoted as â(n1, m). Each column of B̂St×M denotes the time/segment signature

where its matrix elements are denoted as b̂(st, m). Each column of ĈF1×M denotes the
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frequency signature where its matrix elements are denoted as ĉ(f1, m). Each column of

D̂T1×M denotes the time signature where its matrix elements are denoted as d̂(t1, m).

Similar to the STF model, the parameters Â, B̂, Ĉ, and D̂ can be estimated by the ALS

with the following cost function

argminâ,b̂,ĉ,d̂

∥∥
∥
∥
∥
Ŷ −

M∑

m=1

â(n1, m)b̂(st, m)ĉ(f1, m)d̂(t1, m)

∥∥
∥
∥
∥
.

It should be noted that T in the STF model is equal to T1 × St in the STF-TS model.

4.2.2 Space-Time-Frequency-Space/Segment Model (STF-SS model)

Instead of segmenting the time domain of the signal, we can also use a similar

approach for the space domain. All channels of EEG are first equally divided into groups

in the space domain to form a 3-D array signal of space, time, and space/segment do-

mains. Then, a time-frequency transform is applied to each channel to form a 4-D array

signal of the space, time, frequency and space/segment domains. After that the 4-way

PARAFAC is applied to extract the features of this 4-D array resulting in a space-time-

frequency-space/segment model (STF-SS model). The STF-SS model can be mathemat-

ically formulated the same way as the STF-TS model except that the selected content to

be segmented is in the space domain.

4.2.3 Space-Time-Frequency-Space/Segment-Time/Segment Model
(STF-SS-TS model)

If a multi-channel EEG signal happens to have both high number of channels and

long period of time, the STF-TS and STF-SS models might not be as useful as they are.

Hence, in order to efficiently estimate the STF for this type of signal, the generaliza-

tion of the STF-TS and STF-SS models called the space-time-frequency-space/segment-

time/segment model (STF-SS-TS model) are derived. First, the temporal domain of a

multi-channel EEG signal is divided into segments yielding a 4-way array as the input
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data of the STF-TS model. After that all channels of the resulting 4-way array are equally

divided into groups yielding a 5-way array, y(sn, st, n3, t3, f3) (denoted in array form as

Y), where sn is the channel/segment index ranging from 1 to Sn, st is the time/segment

index ranging from 1 to St, n3 is the channel index ranging from 1 to N3, f3 is the

frequency index ranging from 1 to F3, and t3 is the time index ranging from 1 to T3.

The 5-way PARAFAC is then applied to this 5-D array signal rendering the STF-SS-TS

model. The STF-SS-TS model of the 5-D array Y can be formulated by combining the

time/segment and space segment/signatures together in one model, that is:

Y N3×St×F3×T3×Sn = f(A,B,C,D,G) + E, (4.2)

where the 5-way PARAFAC model, i.e. the STF-SS-TS model, is

f(A,B,C,D,G) =

M∑

m=1

a(n3, m)b(st, m)c(f3, m)d(t3, m)g(sn, m),

and E is now a 5-D array residual of the size N3 × St × F3 × T3 × Sn. Each column

of AN3×M denotes the space signature of the m-th component ranging from 1 to M

where its matrix elements are denoted as a(n3, m). Each column of BSt×M denotes the

time/segment signature where its matrix elements are denoted as b(st, m). Each column

of CF3×M denotes the frequency signature where its matrix elements are denoted as

c(f3, m). Each column of DT3×M denotes the time signature where its matrix elements

are denoted as d(t3, m), and each column of GSn×M denotes the space/segment signature

where its matrix elements are denoted as g(sn, m). The parameters A,B,C,D, and G

can be estimated by the ALS where the cost function is

argmina,b,c,d,g

∥
∥∥
∥
∥
Y −

M∑

m=1

a(n3, m)b(st, m)c(f3, m)d(t3, m)g(sn, m)

∥
∥∥
∥
∥
.

It should be noted that T and N in the STF model are equal to T3 × St and N3 × Sn in

the STF-SS-TS model, respectively.
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4.3 Estimation Methods for Calculating the STF Model from the Reduced
Complexity STF Models

In this section, we show that the reduced complexity STF models can be efficiently

used for estimating the conventional STF model. Specifically, instead of directly calculat-

ing the space, time, and frequency signatures from the original data using the STF model

as in Section 2.4, we can estimate these signatures by cascading the weighted versions of

their local signatures obtained by the reduced complexity STF models.

4.3.1 Estimation Method for Calculating the STF Model from the STF-TS
Model

In this section, we demonstrate a method to estimate the STF model from the

STF-TS model, i.e. we have to estimate the signatures of the STF model using the

signatures of the STF-TS model. According to (4.1), the time signatures of a long-term

multi-channel EEG signal can be estimated by cascading all St segments of the time

signatures D̂ which are weighted by their corresponding time/segment signatures B.

In order to efficiently estimate the STF model from the STF-TS model, the suggested

number of segments St and number of components M should be the ones that maximize

the CORCONDIA value [7]:

argmaxM,St

{
CORCONDIA(Ŷ, Â, B̂, Ĉ, D̂)

}
. (4.3)

In addition, to efficiently estimate the frequency signatures, the length (L) of each seg-

ment should satisfy the following condition:

L ≥ 1

min(fEEG)
, (4.4)

where min(fEEG) denotes the minimum (fundamental) frequency of the multi-channel

EEG signal.
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When the residual is neglected, the STF model in (2.4) can also be written in a

matrix form as

Ý F×T×N = D́
(
ΣĆf

ÁT
)
, (4.5)

where ΣĆf
is the diagonal matrix with the f -th row of Ć along the diagonal, f =

1, 2, ..., F . With the similar form, the STF-TS model (4.1) can be written in matrix form

as

Ŷ F1×St×T1×N1 = D̂ΣB̂st

(
ΣĈf1

ÂT
)
, (4.6)

where ΣĈf1
is the diagonal matrix with the f1-th row of Ĉ on the diagonal, f1 =

1, 2, ..., F1, and ΣB̂st
is the diagonal matrix with the st-th row of B̂ along the diago-

nal, st = 1, 2, ..., St.

According to (4.5) and (4.6), the time signature D́ of the STF model can be esti-

mated from the signatures of the STF-TS model as

D́ ≈
(
D̂ΣB̂1

, . . . , D̂ΣB̂St

)T

. (4.7)

The frequency signature Ć can be efficiently approximated as Ĉ because of the condition

in (4.4). The space signature Á is approximately equal to Â. The estimation method

for computing the STF model from the STF-SS model can be derived the same way as

the STF-TS model except that the segmentation is performed on the space domain.

4.3.2 Estimation Method for Calculating the STF Model from the STF-SS-
TS Model

In this section, we aim to estimate the STF model from the STF-SS-TS model.

According to (4.2), the time signatures of a multi-channel signal can be estimated by

cascading all St segments of the time signatures D which are weighted by their cor-

responding time/segment signatures B. Similarly, the space signatures of the multi-

channels signal can be estimated by cascading all Sn segments of the space signatures A
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which are weighted by their corresponding space/segment signatures G. St, Sn and M

can be selected in order to satisfy the following maximization argument:

argmaxM,St,Sn
{CORCONDIA(Y,A,B,C,D,G)} . (4.8)

However, in practice, the calculation of the CORCONDIA value of the STF-SS-TS model

may consume high computational resources. In order to solve this problem, we suggest an

alternative criterion by maximizing the numbers of iterations by which the ALS algorithm

converges. It should be noted that convergence on fitting the model does not necessary

imply convergence of parameters, but in practice this is usually the case [50].

When the residual is neglected, the STF-SS-TS model can be written in a matrix

form as

Y F3×St×Sn×T3×N3 =
(
DΣBst

)
ΣCf3

(AΣGsn
)T , (4.9)

where ΣCf3
is the diagonal matrix with the f3-th row of C along the diagonal, ΣBst

is

the diagonal matrix with the st-th row of B along the diagonal, and ΣGsn
is the diagonal

matrix with the sn-th row of G along the diagonal. st = 1, ..., St, sn = 1, ..., Sn, and

f3 = 1, ..., F3. The time signature D́ of the STF model can be estimated from the

STF-SS-TS model as

D́ ≈ (DΣB1, . . . ,DΣBSt

)T
. (4.10)

Similarly, the space signature Á of the STF model can be estimated from the STF-SS-TS

model as

Á ≈ (AΣG1, . . . ,AΣGSn

)T
. (4.11)
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Table 4.1. Parameter analysis of the STF model and the reduced complexity STF models

Models Number of free parameters

STF PSTF = M(N + F + T )

STF-TS PSTF−TS = M(N1 + St + F1 + T1)

STF-SS PSTF−SS = M(N2 + F2 + T2 + Sn)

STF-SS-TS PSTF−SS−TS = M(N3 + St + F3 + T3 + Sn)

4.4 Parameter Analysis

By decomposing the multi-channel EEG signal using the reduced complexity STF

models, the number of free parameters [51], i.e. the number of elements that the

PARAFAC have to find, can be analyzed in Table 4.1:

• STF-TS model : Since T in the STF model is equal to T1×St in the STF-TS model,

when T is large,

PSTF−TS << PSTF .

This means that less parameters need to be estimated and thus reduces the com-

putational complexity of the PARAFAC algorithm.

• STF-SS model : Given that Sn is the number of segments in a space domain. N2,

F2, and T2 are the numbers of channels in one segment, the number of frequency

index, and the number of time index, respectively. Since N in the STF model is

equal to N2 × Sn in the STF-SS model, when N is high,

PSTF−SS << PSTF .

• STF-SS-TS model : According to the STF-TS and STF-SS models, it is clear that

when T and N are high,

PSTF−SS−TS << PSTF−TS, PSTF−SS << PSTF .
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4.5 Simulation Results

The goal of this section is to investigate the performances among the STF-TS, STF-

SS and STF-SS-TS models whether they are good approximations of the STF model for

the purpose of real-world applications. We demonstrate the uses of these three models

in two applications where the number of channels or the temporal domain of the input

signals can be high, e.g. the artifact removal of a multi-channel EEG and the left/right

imagery EEG classification.

4.5.1 Eyeblink Artifact Removal

In this experiment, we use a dataset of a 24-channel EEG signal (Fig.4.1). This

signal is contaminated by approximately 2Hz eyeblink artifacts in channels 3-10 at the

time stems around 0.2, 2.8, 4.2, 7.2, and 8.9 seconds. The goal is to extract these eyeblink

artifacts from the 24-channel EEG by using space, time, and frequency information. The

conventional STF model and the proposed reduced complexity models are applied to this

data.

4.5.1.1 Issue on the Performance

According to the nature of our dataset, the STF model with the number of compo-

nents (M) equals two (which corresponds to the maximum CORCONDIA value of 96.93)

is selected. In order to estimate the STF model, the selected M is then used to further

calculate St in (4.3). As a result, the maximum CORCONDIA value of 18.04 is achieved

when St is eighteen. For the STF-SS-TS model, the resulting M and St are further

used to compute Sn in (4.8). However, as mentioned in Section 4.3.2, the calculation of

CORCONDIA values of the STF-SS-TS model is quite complex. Therefore, a convergent

criterion is used. The minimum number of iterations used for the STF-SS-TS model of

this eyeblink signal is eighteen when Sn is two. In addition, we also investigate the use
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of the STF-SS model which employs the resulting Sn from the STF-SS-TS model even

though the number of channels of the dataset is not very high.

The space signatures of the STF-TS, STF-SS, and STF-SS-TS models (Figs.4.2(d),

(g), and (j), respectively) result in similar signatures with those obtained from the con-

ventional STF model (Fig.4.2(a)). Intuitively, the first component of each model can

efficiently extract eyeblink artifacts which mainly occur in channels 3-10. The time

signatures of the STF model (Fig.4.2(b)) also contain similar information as the es-

timated time signatures derived from the STF-TS, STF-SS, and STF-SS-TS models

(Figs.4.2(e), (h), and (k), respectively), i.e. the eyeblink artifacts can be distinguished

from the background EEG. Even though segmenting the time domain as in the STF-TS

and STF-SS-TS models (Fig.4.2(e) and (k)) can cause some distortions in time signatures,

the peak locations which are corresponding to all five eyeblink artifacts occurring at times

0.2, 2.8, 4.2, 7.2, and 8.9 seconds can still be preserved. In this experiment, frequency of

each eyeblink artifact is approximately 2 Hz. According to Figs.4.2(c), (f), (i), and (l), it

is clear that the frequency component of the eyeblink can be well decomposed by the STF

model and our reduced complexity models. The STF and STF-SS (Figs.4.2(c) and (i))

models give almost the same signatures, while there are some small distortions in those

of the STF-TS and STF-SS-TS (Figs.4.2(f) and (l)) models. This is because segmenting

the time domain would cause more effect on changing the fundamental frequency in some

intervals than segmenting the space domain.

4.5.1.2 Issue on the Complexity

According to Section 4.2, by using the STF model, we have to calculate the

PARAFAC of the 3-way array ÝN×F×T of size 24 × 91 × 1800. This process consumes

a longer period of time due to the calculations of more free parameters compared with

the STF-TS model in which Ŷ N1×St×F1×T1 is of size 24× 18× 91× 100. The second and
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Table 4.2. Free parameters and normalized time complexity consumed by the STF and
STF-TS models of a left eyeblink EEG signal (assume that time consumed by the STF
model= 1).

Models STF STF-TS STF-SS STF-SS-TS

Free parameters 3830 466 3810 446

Time complexity 1 0.121 0.994 0.116

No. of iteration 26 18 28 18

third rows of Table 4.2 illustrate the computational complexities of both the STF and

STF-TS models in terms of the numbers of free parameters. By assuming that the com-

putational complexity of the STF model is 1, the STF-TS model consumes only 0.121.

It is noted that the free parameters can also be reduced by segmenting the space domain

by using the STF-SS model. However, in this experiment, using the STF-SS model is

not as efficient as using the STF-TS model since T1 is much greater than N2. Further

improvement on reducing the computational complexity of the STF and STF-TS models

can be done by using the STF-SS-TS model of the 5-way array YN3×St×F3×T3×Sn
of size

2 × 18 × 91 × 100 × 12. The STF-SS-TS model consumes 4% less complexity than the

STF-TS model and 88.4% less than the STF model. The numbers of iterations used

before the ALS converges in order to calculate the free parameters of all the models are

also shown in the fourth row of Table 4.2. The results imply that besides the efficiently

approximated signatures as in Figs.4.2(d)-(l), all the proposed models also converge as

quickly as the conventional STF model.

4.5.2 Left/Right Imagery EEG Signal Classification

In this section, we investigate the uses of the proposed models for extracting features

of a multi-channel EEG signal in order to distinguish between left and right imagery
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Figure 4.1. Original eyeblink artifact data of 24-channel EEG: Lowest and highest lines
represent channels 1 and 24, respectively.

signals. The dataset in [52] which contains nine subjects of 59-channel EEG at the

sampling rate of 100 Hz is used. Each subject is asked to perform some specific tasks,

e.g. push imagined left or right bottom. For simplicity, 4.16 second of 24-channel EEG is

selected from the original 6 second of the 59-channel EEG. Ninety trials of the 24-channel

EEG are used for training, and the rest ninety trials are used for testing. Subjects 3, 6,

8 and 9 are used in this experiment.

Originally, the STF model for this left/right imagery signal classification is used

in [53]. In [53], a multi-channel EEG signal is decomposed using a 3-way PARAFAC,

then the space signature of the selected component, i.e. the component of PARAFAC

selected from all M components, is employed as the feature vector for classification using

the support vector machine (SVM). To compare the performances of the STF, STF-SS
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Table 4.3. Classification accuracy (%) for left/right imagery signal classification of 4
subjects using space (S), estimated space (ES) and space/segment (SS) signatures as
feature vectors (FV).

Models STF STF-SS STF-SS STF-SS-TS STF-SS-TS

Signatures S ES SS ES SS

Lengths of FV 24 24 12 24 12

Subject 3 60 57.78 63.33 55.56 61.11

Subject 6 55.56 60 54.44 55.56 61.11

Subject 8 54.44 57.78 57.78 57.78 57.78

Subject 9 56.67 54.44 58.89 62.22 57.78

and STF-SS-TS models, we follow the same process as in [53] except that, instead of using

the SVM, only simple linear discriminant analysis (LDA) is used for our classification

experiment.

In this experiment, the space domain is divided into twelve groups (segments), and

each group contains 2-channel EEG as follows:

• Segment 1 (channels 1-2): FT7, T7,

• Segment 2 (channels 3-4): TP7, CP5,

• Segment 3 (channels 5-6): C5, FC5,

• Segment 4 (channels 7-8): FC3, C3,

• Segment 5 (channels 9-10): CP3, CP1,

• Segment 6 (channels 11-12): C1, FC1,

• Segment 7 (channels 13-14): FC2, C2,

• Segment 8 (channels 15-16): CP2, CP4,

• Segment 9 (channels 17-18): C4, FC4,

• Segment 10 (channels 19-20): FC6, C6,

• Segment 11 (channels 21-22): CP6, TP8,
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Table 4.4. Classification accuracy (%) for left-right imagery signal classification of 4
subjects using space/segment (SS) signatures, time/segment (TS) signatures, and both
space/segment signatures and time/segment signatures as the feature vectors (FV).

Models STF-SS STF-SS-TS STF-TS STF-SS-TS STF-SS-TS

Signatures SS SS TS TS SS+TS

Lengths of FV 12 12 8 8 20

Subject3 63.33 61.11 57.78 56.67 62.22

Subject6 54.44 61.11 53.33 54.44 62.22

Subject8 57.78 57.78 60 62.22 63.33

Subject9 58.89 57.78 54.44 61.11 60

Table 4.5. Free parameters, their corresponding complexity and the average numbers of
iterations (used before the ALS converges) consumed by the STF, STF-TS, STF-SS and
STF-SS-TS models of the left/right imagery EEG signal (assume that the complexity
consumed by the STF model= 1).

Models STF STF-TS STF-SS STF-SS-TS

Free parameters 1122 410 1102 390

Complexity 1 0.365 0.982 0.348

Avg. no. of iterations 22.69 27.69 28.06 24.56

• Segment 12 (channels 23-24): T8, FT8.

The second, third and fifth columns of Table 4.3 demonstrate that the classification

accuracies obtained by using the signatures of the STF-SS model (Sn = 12, M = 2) and

STF-SS-TS model (Sn = 12, St = 8, M = 2) as feature vectors are comparable, and

they are also comparable with the classification accuracies obtained from the STF model.

In addition, the estimated space signatures using the STF-SS and STF-SS-TS models

are reconstructed from cascading the weighted versions of the space signatures with their

corresponding space/segment signatures. Therefore, in this classification experiment, it

makes sense to employ only the space/segment signatures of the STF-SS and STF-SS-TS
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models as feature vectors since they have much shorter lengths. The fourth and sixth

columns of Table 4.3 show that using length-12 space/segment signatures as feature

vectors also yields comparable classification accuracies with the STF model while the

lengths of feature vectors are reduced by a factor of two. Taking into account that the

event-related desynchronization and event-related synchronization (ERD/ERS) patterns

which are the keys to distinguish between left and right imagery signals might take place

only on channels C3, C4 and some of their neighboring channels [54]. Therefore, including

too many channels, e.g. 24 channels, might degrade the classification accuracy. However,

it is suitable to see the performance of our reduced complexity models.

To improve the classification accuracy, we include the time/segment signatures as

additional features under two main assumptions:

• Besides the space domain, the ERD/ERS patterns can also be observed in the time

domain.

• By using fewer features, time/segment signatures of the STF-TS and STF-SS-TS

models contain similar information to the time signatures of the STF model,

Table 4.4 shows improvement in classification accuracy over the methods used in Ta-

ble 4.3. This implies that both space and time domains of the EEG signals are useful

features for EEG classification and can be simultaneously and efficiently extracted by

using the STF-SS-TS model. Table 4.5 further illustrates that while the numbers of it-

erations (used before the ALS converges) are comparable, the computational complexity

for calculating the free parameters of the STF-SS, STS-TS and STF-SS-TS models is

reduced from the STF model by 1.8%, 63.5% and 65.2%, respectively.

4.5.3 Removal of the Eyeblink Artifact from EEGs Using the STF-TS Model
and Robust Minimum Variance Beamforming (RMVB)

In EEG analysis, clean EEG signals without any artifact, e.g. eyeblink, speaking,

ECG, are usually preferred by the doctor. Therefore, in this experiment, we aim to
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recover the clean signals back from the eyeblink-contaminated signals by a more efficient

and sophisticated method than the decomposition in Section 4.5.1.

Let s(t) = [s1(t), s2(t), · · · , sN(t)]T be N zero-mean real mutually uncorrelated

point geometrically stationary sources which are mixed by an N × N full column rank

matrix (mixing matrix) A = [a1, a2, · · · , aN ] where ai is the i-th column of A. The

vector of time mixture samples x(t) = [x1(t), x2(t), · · · , xN (t)]T which is shown in Fig.4.3

can be formulated as

x(t) = As(t) + v(t) (4.12)

where v(t) = [v1(t), v2(t), · · · , vN(t)]T is the additive white Gaussian zero-mean noise

which is assumed to be spatially uncorrelated with the sensor data and temporally un-

correlated.

4.5.3.1 Implementation of the RMVB

According to Fig.4.3, since aj performs as the steering vector of the j-th source,

we may write y(t) which is an estimation of the source sj(t) as

y(t) = wT
j x(t),

where wj acts as a spatial filter. wj can be found by minimizing the energy of y(t) subject

to the prior knowledge on how the eyeblink artifacts look like. Since the prior knowledge

we use is not the ideal one, wj can be found by solving the worst-case performance

optimization [55] where the estimated prior knowledge can be used. In general, we can

write this problem as

Minimize Jc = wT
j Rwj subject to min

‖δ‖≤ε
|wT

j âj + wT
j δ| = 1,
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where R = 1
K

∑K
k=1 Rk

xx, and δ = aj − âj . By using the Lagrange multiplier method,

differentiating Jc with respect to wj , and setting to zero, the spatial filter wj can be

computed as follows:

wj =

[
R +

ε

ρ
I

]−1

âj , (4.13)

where ρ ≡ ‖wj‖ and I denotes the identity matrix. This equation can be simplified by

using the eigendecomposition of R, i.e.

R = UΣUT , (4.14)

where Σ is an N × N diagonal matrix whose the diagonal elements are the sorted (in

the decreasing order) eigenvalues (σi, i = 1, ..., N), and U is an N × N matrix whose

columns are the eigenvectors of R. With some manipulations on (4.13) [56], we can use

ρ that satisfies the following equation
N∑

i=1

( |gi|
ε+ ρσi

)2

− 1 = 0, (4.15)

where g = [g1, g2, ..., gN ]T = UT âj .

The clean multi-channel EEG without the eyeblink contamination, xfilt(t) , can be

obtained by deflation method [41], that is

xfilt(t) = x(t) − w̃jy(t),

where w̃j can be found so that xfilt(t) has minimum energy when the eyeblink source

y(t) is removed from the contaminated source x(t). Specifically, w̃j can be obtained by

minimizing Jj(w̃j) with repect to w̃j where

Jj(w̃j) = E[xT
filt(t)xfilt]

= E[xT
j (t)xj(t)] − 2w̃T

j E[xj(t)y(t)] + w̃T
j w̃jE[y(t)2].

Hence,

w̃j =
E[x(t)yT (t)]

E[y(t)2]
=
E[x(t)xT (t)]wj

E[y(t)2]
. (4.16)
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4.5.3.2 Simulation Results

We applied the artifact removal algorithm in Section 4.5.3.1 to real EEG measure-

ments. The database was provided by the School of Psychology, Cardiff University, UK,

and represent a wide range of eyeblinks, i.e. more than 500 eyeblink-contaminated EEG

recordings. The scalp EEG was obtained using 25 Silver/Silver-Chloride electrodes placed

at locations defined by the conventional 10-20 system [1]. The data were sampled at 200

Hz, and bandpass filtered with cut-off frequencies of 1 Hz and 30 Hz. The performance

of the algorithm can be observed by comparing the EEGs obtained at the electrodes in

the left subplot of Fig. 4.4 and the same segment of data after being processed by the

proposed algorithm in the right subplot of Fig. 4.4.

In order to provide a quantitative measure of performance for the artifact removal

method in Section 4.5.3.1, the correlation coefficient (CC) between the extracted eyeblink

artifact source, and the original EEGs and the artifact removed EEGs are computed and

demonstrated in Fig. 4.5. The CC of two discrete random variables x and y over a fixed

interval is mathematically defined as:

CC =
|∑w

i=1 x(i)y(i)|√∑w
j=1 x

2(j)
√∑w

j=1 y
2(j)

(4.17)

where w is the number of time samples.

The values reported in Fig. 4.5 have been computed as follows. For each of the

20 different eyeblink-contaminated EEGs, we executed method in Section 4.5.3.1. The

aforementioned CCs for each run were then computed between the extracted eyeblink

and the EEGs before and after the artifact removal. These values have subsequently been

averaged and shown in Fig. 4.5. Furthermore, their corresponding standard deviations

have also been reported. The CC values have been significantly decreased by using our

artifact removal method. Simulations for 20 EEG measurements demonstrate that the

method in Section 4.5.3.1 can efficiently identify and remove the eye-blink artifact from
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the raw EEG measurements by using the space signature (according to the eyeblink) of

the STF-TS model as a prior knowledge.

4.6 Summary

We have presented three reduced complexity STF models named the STF-TS,

STF-SS and STF-SS-TS models. These proposed models can exploit the space, time,

frequency, space/segment and time/segment domains of a multi-channel EEG. We also

derive the formulae for estimating the STF model from these reduced complexity models.

Since, the efficiency of the reduced complexity models depend closely on the choices of

selected numbers of segments, we present a criterion based on maximizing the COR-

CONDIA value in order to obtain the efficient choices of numbers of segments. Besides

maximizing the CORCONDIA value, a fast method for finding the number of segments

by minimizing the number of iterations before the model converges is also presented.

With less computational complexity, the proposed models can efficiently extract the

eyeblink artifacts from the normal multi-channel EEG. The proposed models also yield

comparable classification accuracies to the conventional STF model when being applied

to left/right imagery EEG classification. Finally, the space signature of the STF-TS

model can be efficiently used as a prior knowledge to recover back the clean EEG signals

from the eyeblink-contaminated signals via the RMVB.
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Figure 4.2. Space signatures of the (a) STF, (d) STF-TS, (g) STF-SS and (j) STF-SS-TS
models. Time signatures of the (b) STF, (e) STF-TS, (h) STF-SS and (k) STF-SS-TS
models. Frequency signatures of the (c) STF, (f) STF-TS, (i) STF-SS and (l) STF-SS-TS
models.
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Figure 4.3. System on extracting an eyeblink component from a multi-channel EEG.

Figure 4.4. The results of the proposed eyeblink artifact removal method for a set of
real EEGs. The left subplot depicts highly eyeblink-contaminated EEGs before artifact
removal while in the right subplot the segment of EEGs after being corrected for eyeblink
artifact is illustrated.



62

Figure 4.5. The averaged CC values and their corresponding standard deviations between
the extracted eyeblink and the restored EEGs (a) before and (b) after artifact removal
of different channels. The experiments have been performed for 20 different eyeblink-
contaminated EEG recordings.



CHAPTER 5

MULTI-CHANNEL FLEXIBLE LOCAL DISCRIMINANT BASES FOR
LEFT/RIGHT IMAGERY EEG CLASSIFICATION

5.1 Introduction

Nowadays, a study on the BCI raises a lot of signal processing issues to be solved [35].

One of that is how to distinguish between the left and right imagery signals and correctly

classify them. The possible applications of this issue are such as controlling the wheel-

chairs, mouse, or remote by using brain signals, e.g. EEG.

Distinguishing the left and right imagery EEG is possible since the event-related de-

synchronization and synchronization (ERD/ERS) patterns usually occur on the opposite

sides of the imagination of a hand movement [54]. This observation on the ERD/ERS pat-

terns motivates many researchers to explore novel theories and algorithms for left/right

imagery EEG classification. In [57], a time-frequency based approach is proposed by

filtering the fixed time windows in order to obtain band powers (BP) and classifying the

resulting BP with the learning vector quantization (LVQ). Automated approach to adjust

the influence of the BP during the learning process can be done using the distinction-

sensitive learning vector quantization (DLVQ) instead of the LVQ [58]. An alternative

way to obtain useful features for the classification is by employing parameters of the au-

toregressive (AR) model over uniformly short intervals [59], [60]. To further improve [59]

and [60], AR parameters are designed to be time dependent by using the model called

adaptive autoregressive (AAR) [61]. Taking into consideration that the features in [58]-

[61] are designed based on fixed time segments. Since the ERD/ERS patterns might not

uniformly occur in time, the classification accuracy might be degraded in some cases.

This problem can be efficiently solved by extracting the features of channels C3 and C4

63
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of a multi-channel EEG based on the local discriminant bases (LDB) procedure derived

from the local cosine packets (LCP) [11] over nonuniform segments [3],[62]. However,

according to the studies in [54], the ERD/ERS patterns at different frequencies might

not occur at the same channel. Since only channels C3 and C4 are used in [3],[62], the

misclassification rates might be high in some sets of data. In [63], by incorporating more

channels besides C3 and C4, the multi-channel classification scheme is illustrated but

still yields insignificant improvements compare with those in [3]. For convenience, the

classification scheme in [3] is called the conventional scheme.

This thesis aims to improve the LDB in [3] by including more useful channels

rendering a more efficient feature extraction scheme called multi-channel flexible local

discriminant bases (MF-LDB). We also propose two methods to design the MF-LDB.

For the first method called hard decision making (HDM), the MF-LDB is designed based

on the channel that maximizes class separability. For the second method called soft

decision making (SDM), the MF-LDB is designed based on linear combinations of the M̂

channels which have the highest class separability. Since, the LCP used for designing the

MF-LDB is not a shift invariant transform, spin cycle procedure [64] is employed prior

to the design process. After that the important features are selected using Fisher class

separability criterion and classified using the linear discriminant analysis (LDA) [65]. To

further improve the classification accuracy, we propose a high resolution transform which

motivated from the LCP and minimum variance distortionless response [12],[66] called

local MVDR packets. The local MVDR packets transform is used instead of the LCP to

design the LDB of the conventional scheme and yields approximately 4% improvement

in classification accuracy. The publication related to this chapter can be found in [67]

and [68].
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Figure 5.1. Data acquisition stage of the EEG signal used for classification.

5.2 Data Acquisition

The dataset used in this chapter is obtained from the 2002 BCI competition [52].

This dataset contains nine subjects of 59-channel EEG at a sampling rate of 100 Hz.

Each subject is asked to perform some specific tasks, e.g. push imagined left or right

bottom. The experiment lasts for six seconds for each trial and 4.16-second signals after

the appearance of the left/right cues are used for the classification (Fig. 5.1). The Hjort

derivation [69] is applied to each channel, ei, in order to obtain local activities. The

resulting channel after performing the Hjort derivation, eHjort
i can be approximated as

follows:

eHjort
i = ei − 1

4

∑

j∈Ni

ej, (5.1)

where Ni denotes the indices of four neighboring channels of ei. The EEG signals are

then filtered to retain frequencies between 2-40 Hz which are found to be a meaningful

frequency range used in the analysis of EEG [35], [54]. In this paper, all one hundred and

eighty trials (ninety trials of left and right imagery signals) are used for the classification.

5.3 Conventional EEG Classification Method

This section reviews the conventional method for left/right imagery classification of

EEG signals proposed in [3]. The block diagram of the conventional classification methods

is shown in Fig. 5.2(a). The flexible local discriminant bases (F-LDB) designed over the
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Figure 5.2. Block diagram of (a) the conventional left/right imagery classification method
[3] and (b) the proposed classification methods.

nonuniform segments derived from the LCP is used as the feature extraction procedure.

Normally, some other modalities can be used as local bases, e.g. wavelet packets. The

LCP is selected as the local bases since ERD/ERS patterns can be designed as a time

locked event-related potentials [62]. To avoid the shift varying issue of the LCP, spin

cycle procedure [64] is employed. It is noted that the design process of the F-LDB can

be implemented offline. For the online process, the designed F-LDB is used to extract

the features. The resulting LCP coefficients are then sorted according to their class

separability. The linear discriminant analysis (LDA) is used as the classifier.

5.3.1 Flexible Local Discriminant Bases (F-LDB)

The design of the F-LDB is composed of two main components: 1) spin cycle

procedure which is used to eliminate the shift varying issue of the LCP, and 2) merge and

divide procedure which is used to design efficient nonuniform segments for the F-LDB.
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5.3.1.1 Spin Cycle Procedure

Taking into consideration that the ERD/ERS patterns of each trial may not exactly

occur at the same time, therefore the transform used for these types of input should be

shift invariant. Since the LCP is not a shift invariant transform, i.e. LCP coefficients of

the original data and their shifted versions are different, we may not obtain the efficient

segments for constructing the LDB. This problem can be alleviated by using the spin

cycle procedure [64], i.e. we also include the shifted versions (by −τ, ..., τ) of the original

signal for constructing the nonuniform segment of the LCP. In particular, we have 2τ

more input signals for constructing the F-LDB via the LCP.

5.3.1.2 Merge and Divide Procedure

Merge and divide procedure is used to find the optimal nonuniform segments for

the F-LDB which result in features that maximize class separability. This procedure can

be summarized as follows:

1. Divide the EEG signals into small uniform segments (up to the required frequency

resolution), calculate their LCP coefficients and construct children and mother

structures as in Fig. 5.3(a), e.g. M1 is a mother segment with the corresponding

two children segments y1 and y2,

2. For each mother segment and its corresponding two children segments, calculate

the Euclidean distances of the cumulative distribution functions (cdf-distances) [64]

of their LCP coefficients as the class separability,

3. Merge the children segments if the sum of their distances is less than the distance

of their corresponding mother segment; otherwise divide the signal at that point,

4. Continue the previous step from left segments to right segments until nonuniform

segments are obtained.
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It should be noted that calculating the distance in the transform domain, which

is quite sensitive to the outliers in the dataset, sometimes may not lead to the true

discriminant patterns. This problem can be alleviated by computing the distance of the

cdf of the LCP coefficients [64].

5.3.2 Feature Extraction and Dimension Reduction

Once the nonuniform segments are obtained from the merge and divide procedure,

their corresponding LCP coefficients are used as the features for the classification. How-

ever, we cannot use all features we have because of the curse of dimensionality [70].

Therefore, we group the LCP coefficients of channels C3 and C4 together and sort them

using the Fisher class separability criterion:

F =
(μ1 − μ2)

2

σ2
1 − σ2

2

, (5.2)

where μi and σ2
i are mean and variance of the feature vector of class i. The top k LCP

coefficients will be further used as the selected features for classification.

5.3.3 Classification

For simplicity, linear discriminant analysis (LDA) is employed where the distance

of the features for discriminating the hyperplane is

d = vT s− v0,

where s is the feature vector, v0 is the threshold for making a decision, and v is the

weight vector of the LDA which can be computed by

v =
(∑

1
+
∑

2

)−1

(m1 −m2) ,

where
∑

i and mi are the covariance matrix and the mean vector of the feature vectors

of class i.
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5.4 Multi-Channel Flexible Local Discriminant Bases (MF-LDB)

Unlike the F-LDB, we propose the local discriminant bases which also take into

account channels besides C3 and C4 called multi-channel flexible local discriminant bases

(MF-LDB). In other words, channels of interest COIC3 in Fig. 5.3(c) and COIC4 in Fig.

5.3(d) are used to design the MF-LDB. Based on the problem formulation, we suggest two

methods to design the MF-LDB named hard decision making (HDM) and soft decision

making (SDM). For simplicity, let us consider using only the COIC3 for describing our

decision making methods in Sections 5.4.1-5.4.3.

5.4.1 Problem Formulation

Since the ERD/ERS patterns of each frequency band of EEG usually occur at

different scalp locations, using more than just C3 and C4 electrodes may improve the

classification performance in some situations. Thus, the MF-LDB which is an adaptive

method that takes into account multi-channel EEG can be formulated as follows:

Let the M × L matrix Xn be the n-th segment of a length-L M-channel signal

(Fig.5.3(b)), and let the length-M vector an be the corresponding weight vector of the

n-th segment of M-channel signal where n = 1, ..., N , N is the number of all children

segments (according to the merge and divide procedure), andM is the number of channels

of interest. According to Fig.5.3(c), M is nine. Furthermore, let a length-L vector yn be

a children segment (of the n-th segment) of the merge and divide procedure, then

yn = XT
nan. (5.3)

In this section, we describe two efficient methods to find an: HDM and SDM.
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5.4.2 Hard Decision Making Method (HDM)

In this method, the MF-LDB is designed based on a channel that maximizes the

cdf-distance of LCP coefficients between two classes (left and right imagery signals). This

method is called hard decision making (HDM).

For the n-th segment, an(m) (the element of an corresponding to channel-m) can

be set to one when m denotes the channel that maximizes the cdf-distance between two

classes, otherwise an(m) is zero. However, given the prior knowledge that C3 is known

as the significant channel in which ERD/ERS patterns usually clearly occur, we can

improve the decision making by giving more priority to this particular channel, i.e. the

threshold α needs to be included in the decision making method. Specifically, let m ∈
COIC3,

1) if m is channel C3,

an(m) =

⎧
⎪⎨

⎪⎩

1, if ‖pm
n − qm

n ‖2 ≥ α
∥∥pm̂

n − qm̂
n

∥∥2
,

0, otherwise,

2) if m is not channel C3,

an(m) =

⎧
⎪⎨

⎪⎩

1, if α ‖pm
n − qm

n ‖2 ≥ α
∥∥pm̂

n − qm̂
n

∥∥2 ≥ ∥∥pC3
n − qC3

n

∥∥2
,

0, otherwise,

where m̂ ∈ COIC3\ {C3}, and pj
n and qj

n denote the cdf-distances of LCP coefficients of

the n-th segment of classes 1 and 2 data of channel-j, respectively. The threshold α is

chosen between zero and one.

5.4.3 Soft Decision Making Method (SDM)

Basically, EEG signals can be modeled as the sum of neural potentials. By assuming

that the clear ERD/ERS patterns might not exactly occur at any position of COIC3, a

soft decision making method (SDM) is proposed to construct the signal yn at a new
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position that maximizes the cdf-distance by linearly interpolating the channels selected

from COIC3. Hence, an(m) can be considered as the weight of channel-m of the n-th

segment used for linear interpolation. Similar to the HDM, given a prior knowledge

that C3 is known as a significant channel in which ERD/ERS patterns usually occur,

the threshold β (ranging from zero to one) also needs to be employed in the decision

making method. Specifically, let the set of the first M̂ channels that maximize the cdf-

distance be COIC3 where COIC3 ⊆ COIC3. A new channel, say m̃, is constructed by linear

interpolation among all m ∈ COIC3 by using an(m) as their corresponding weights:

an(m) =
‖pm

n − qm
n ‖2

∑
i∈COIC3

‖pi
n − qi

n‖2 . (5.4)

After that two conditions need to be checked in order to obtain yn.

1) If β
∥
∥pm̃

n − qm̃
n

∥
∥2 ≥ ∥∥pC3

n − qC3
n

∥
∥2

, yn can be obtained by (5.3) using the resulting an

from (5.4).

2) If β
∥
∥pm̃

n − qm̃
n

∥
∥2
<
∥
∥pC3

n − qC3
n

∥
∥2

, channel C3 is selected as yn without performing any

interpolation.

Similarly, the HDM and SDM are also separately applied to COIC4 in Fig.5.3(d).

The resulting children segments from the HDM or SDM are used in the merge and divide

procedure (Section 5.3.1). Once the nonuniform segments and their corresponding LCP

coefficients are obtained, we group each frequency bin of the LCP coefficients obtained

from both COIC3 and COIC4 together and sort them using the Fisher class separability

criterion in (5.2). The top k coefficients will be further used as the selected features

for classification. It is noted that the process of designing the MF-LDB can be imple-

mented offline, hence the complexity of the online process (feature extraction, dimension

reduction and classification) is the same as that of the conventional method.
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5.4.4 Summary of the Classification Methods Using the HDM and SDM-
based MF-LDB

The block diagram of the proposed classification methods is shown in Fig. 5.2(b).

It can be summarized as follows:

1. Construct nonuniform segments for the MF-LDB from both COIC3 and COIC4

using the HDM or SDM together with the merge and divide procedure as an offline

process,

2. As an online process, calculate the LCP coefficients according to the resulting MF-

LDB from 1),

3. Group the LCP coefficients into selected frequency bins. (Normally, nonuniform

frequency bins can be designed offline so that the class separability is maximized,

but, experimentally, it yields slightly improvement in classification accuracies over

using the uniform ones [62]. Since the ERD/ERS patterns are proved to be mostly

occurred in the mu and beta bands [54], hence, in this chapter, only two fixed

frequency bins of 8-12 and 16-20 Hz which correspond to the μ and β bands,

respectively, are employed).

4. Sort the resulting coefficients from 3. by Fisher class separability (Section 5.3.2

and select the top k coefficients as the selected features for classification,

5. Perform classification using the LDA with 10-fold cross -validation.

As mentioned, since the LCP is not a shift invariant transform, we also employ the spin

cycle procedure, i.e. we also include the shifted versions (by −τ, ..., τ) of the signals in

COIC3 and COIC4 for designing the MF-LDB.

5.4.5 Local MVDR Packets

In [3], the LCP is found to be useful for the left/right imagery EEG classification.

Since the LCP is one type of the time-frequency nonredundant transform which is inde-
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pendent from the data, it is interesting to develop a transform with similar properties

but can be designed based on the input data. According to Section 2.6, by calculating

the spectrum of each nonoverlapping segment using the minimum variance distortion-

less response (MVDR) [12], [66], a new time-frequency nonredundant transform which

takes into account information of the input data is proposed called local MVDR packets.

Specifically, let x(t) be a real discrete time signal of length T̂ where t = 0, ..., T̂ − 1, the

local MVDR packets coefficient at a translation index k and a frequency index ω can be

obtained by

S(k, ω) =
1

eH(ω)R−1
xx (k)e(ω)

, (5.5)

where e(ω) = [1, e−jω, ..., e−jω(p−1)]T , H denotes a conjugate transpose operator, p denotes

length of a local basis of the MVDR (length of the filter), and the autocorrelation matrix

Rxx(k) of size p× p can be estimated as

Rxx(k) =

nk+1∑

t=nk+p

[x(t− 1) ... x(t− p)]T [x(t− 1) ... x(t− p)] ,

where 0 ≤ k ≤ K − 1, nk denotes the time index where the segmentation is performed,

n0 is 0, and nK is T̂ . In practice, in order to avoid from being singular, Rxx(k) needs to

be added by a matrix εI where I is the p×p identity matrix and ε is a very small positive

number. The MF-LDB can also be obtained from the local MVDR packets by using the

HDM or SDM followed by the merge and divide procedure.

5.5 Simulation Results

5.5.1 Design Example of HDM and SDM

Let us consider subject nine in the experiment. Channel C4 and its neighboring

channels (Fig. 5.3(d)) are used to illustrate the uses of HDM and SDM for designing

the MF-LDB. The resulting children segments obtained from the HDM (using threshold
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α = 0.8) and SDM (β = 0.8 and M̂ = 4) compared with the conventional method are

illustrated in Fig 5.4. By using the HDM, the 2-nd, 5-th and 12-th segments are chosen

from channels C2, C2, and CP4, respectively, while the rests are chosen from channel

C4. By using the SDM, all children segments except the 2-nd, 5-th and 12-th segments

are chosen from channel C4. The 2-nd segment is obtained by the weight average of

channels C2, FC2, CP2 and FC4. The 5-th segment is obtained by the weight average of

channels C2, CP2, C4 and FC4. The 12-th segment is obtained by the weight average of

channels CP4, C2, CP2 and C4. After that, by using the merge and divide procedure,

the resulting nonuniform segments obtained from using the HDM and SDM compared

with the conventional method can be illustrated in Fig 5.5. The HDM and SDM result

in visually clear ERD/ERS patterns in Fig 5.4. Consequently, more efficient nonuniform

segments so that the ERD/ERS patterns are clearly partitioned can be observed in

Fig 5.5. In addition, HDM and SDM yield similar nonuniform segments.

5.5.2 Classification Accuracy

Table 5.1 illustrates the classification accuracies of the HDM and SDM methods

compared with the conventional method in [3]. Using the SDM yields slightly higher

average classification accuracy than the HDM. Furthermore, using both the SDM and

HDM outperform the conventional method by an average of 3% and more than 5% in

some subjects.

Moreover, by replacing the LCP in Fig. 5.2(a) with the local MVDR packets, clas-

sification accuracy of subject 9 is shown in Table 5.2. Since the local MVDR packets

transform results in data dependent bandpass filters with respect to each frequency of

interest, it is reasonable that using the local MVDR packets yields around 4% higher

classification accuracy than using the LCP. It should be noted that, even though, using

the local MVDR packets leads to the improvement in classification accuracy, the compu-
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Table 5.1. Classification accuracy (Acc.) of the HDM and SDM methods compared with
the method in [3] denoted as conventional (NoF denotes number of features).

HDM SDM Conventional
Subjects Acc.(%) NoF Acc.(%) NoF Acc.(%) NoF

S1 78.33 6 78.89 15 77.22 14
S2 90 14 90.55 15 89.44 14
S3 74.44 20 75.56 4 72.22 5
S4 72.78 11 71.11 16 67.22 17
S5 70 9 68.89 10 67.78 9
S6 82.22 8 81.67 8 78.89 9
S7 87.78 22 88.33 10 86.11 20
S8 68.89 16 70.56 8 65.00 13
S9 75.56 14 75 15 70.56 12

Average 77.78 13.33 77.84 11.22 74.94 12.56

Table 5.2. Classification accuracy (%) of subject 9 using the LCP and local MVDR
packets.

NoF 10 12 14 16 18 20

LCP 67.78 70.56 70 69.44 68.89 68.89
MVDR 73.89 72.78 72.78 75 72.78 72.22

tational loads are quite high compared with the LCP. Reducing the complexity requires

further investigations.

5.6 Summary

We have presented a data dependent feature extraction scheme for classification of

a left/right imagery multi-channel EEG called MF-LDB. Two methods, called HDM and

SDM, are proposed for designing the MF-LDB. Besides using two fixed channels, these

methods also employ other neighboring channels resulting in improvements of classifi-

cation accuracies over the conventional scheme. The improvements from the proposed

scheme support the previous studies that the ERD/ERS patterns may not occur at the
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same position in different frequency bands. Furthermore, we have presented a novel local

MVDR packets transform which is designed based on input data rendering highly selec-

tive frequency responses. Since the use of the local MVDR packets instead of the LCP

leads to the improvement in classification accuracy, frequency band selection has a direct

effect on extracting the important features of the ERD/ERS patterns.
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Figure 5.3. Design process of the MF-LDB: (a) merge and divide procedure, (b) HDM
or SDM, (c) COIC3, and (d) COIC4.
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Figure 5.4. Original children segments of channel C4 of (a) left, (b) right imagery signals,
resulting children segments using HDM of channel C4 and its neighboring channels of
the (c) left, (d) right imagery signals, resulting children segments using SDM of channel
C4 and its neighboring channels of the (e) left, (f) right imagery signals. Only 20 trials
(with the mean shift by a multiple of 10) of each type of signals are shown for better
visualization. x-axis represents the 4.16-second time interval as shown in Fig. 5.1, where
0 corresponds to 3.83 second in Fig. 5.1.
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Figure 5.5. Resulting nonuniform segmentation (used for constructing the MF-LDB) after
applying the merge and divide procedure to the signals in (a) Fig.5.4(a), (b) Fig.5.4(b),
(c) Fig.5.4(c), (d) Fig.5.4(d), (e) Fig.5.4(e) and (f) Fig.5.4(f). Only 20 trials (with the
mean shift by a multiple of 10) of each type of signals are shown for better visualization.x-
axis represents the 4.16-second time interval as shown in Fig. 5.1, where 0 corresponds
to 3.83 second in Fig. 5.1.



CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

In this thesis, we have presented three investigations on signal processing for a

multi-channel EEG. In the first investigation, we have presented a sub-optimal transform

and used it for reducing the inter-channel correlation of the multi-channel EEG in the

proposed lossless coder. The proposed transform is constructed by iteratively applying

the KLT to the subdivided signals. Each small-sized KLT is then parameterized by

lifting factorization resulting in a sub-optimal reversible transform called IntSKLT. In

the second investigation, we have shown that a conventional STF model calculated from

a 3-way PARAFAC can be approximated by its segmented versions, i.e. STF-TS, STF-

SS, and STF-SS-TS models. We first segment the time domain, space domain, or both

of them. After that the 4- or 5-way PARAFAC models is further applied. The signatures

of the STF model can be well estimated by employing the resulting signatures from

the reduced complexity models and the proposed formulae. The proposed models have

been evaluated by employing in applications on artifact removal and left/right imagery

EEG classification. In the last investigation, we have proposed a feature extraction

scheme called MF-LDB which takes into account multiple-channel information of the

EEG. The MF-LDB is obtained by calculating the LCP over the decided nonuniform

segments. The decided segments are chosen from channels C3, C4, and their neighboring

channels by the hard and soft decision. To further improve the classification results on the

left/right imagery EEG classification, a non-redundant time-frequency transform which

combines the concept of the minimum variance spectral estimation and the LCP have

80
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been introduced. The proposed transform can significantly improve the classification

results.

6.2 Future Directions

6.2.1 Seizure Prediction and Detection

Since structures of EEG signals depend highly on the situations and patients, the

prediction and detection of some specific patterns simultaneously need both fast and so-

phisticated methods, especially for an online application. The success in this research can

secure the many patients’ life. Mostly, in this research area, time and frequency informa-

tions are usually employed. There are some other informations needed to be exploited,

e.g. inter-channel, local channel (region), local time and phase. These informations can

be put together by many methods. Optimal libraries can be designed for finding the

patterns of each EEG channel. Moreover, the optimal parameters of wavelets or filters

can be derived to obtain the optimal bases for representing each pattern of features.

Mathematical formulae for the probabilistic models of the patterns of interest can also

be found to improve the prediction and detection performances.

6.2.2 EEG Source Localization

Since EEG is the brain signal measured by a non-invasive method, it can be easily

contaminated by the noises, artifacts (muscular, eye blink, speaking), and potentials

from other positions in human body. Finding the true brain signals which represents the

specific behaviors is an open question to the researchers. Since PARAFAC can be used

for decomposing the signal into distinct components by taking into account the selected

information, e.g. spatial, time, local time, and frequency. The PARAFAC model and the

proposed reduced complexity version can be employed to solve this problem.
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6.2.3 Reduced Complexity Space-Time-Frequency Model

Based on Chapter 4, the upper and lower bounds performances of the proposed

reduced complexity space-time-frequency models need more investigation. Since the

PARAFAC can be considered as one type of decomposition methods. The possible ap-

proach on finding the upper and lower bounds performances is to modify the model eval-

uation of the well known decompositions, e.g. independent component analysis (ICA),

sparse component analysis (SCA), and principal component analysis (PCA). Moreover,

an investigation on using the proposed reduced complexity models for the regression

problem is also listed as the future works.

6.2.4 Emotion Recognition

To satisfy the need of human, designing a robot is a very interesting issue. In order

to obtain the most efficient design, recognizing the emotion is needed. Emotion can

be expressed by many ways, e.g. faces, sounds, heart rates, blood pressures, and brain

signals (EEG). Each type of signals can be used to construct the dictionaries indicated its

optimal patterns. There are many frameworks which can be modified based on this type

of applications, e.g. matching pursuit, basis pursuit, method of frames, and best basis

algorithm. Furthermore, the problem on combining more than one type of emotional

signals and finding the optimal decision making also need to be formulated. Since some

signals might not be considered as the useful information and can be considered as noises,

we also need to find the optimal de-noising methods by taking statistical knowledge of

each emotion into account.



APPENDIX A

ABBREVIATION LIST
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1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional

4-D Four-dimensional

5-D Five-dimensional

AAR Adaptive autoregressive

ALS Alternate least square

AR Autoregressive

BCI Brain computer interface

BP Band power

BSS Blind source separation

COI Channel of interest

CORCONDIA Core consistency diagnostic

DCT Discrete cosine transform

DFT Discrete Fourier transform

DLVQ Distinction-sensitive learning vector quantization

DPCM Differential pulse code modulation

DST Discrete sine transform

EB Eyeblink

ECG Electrocardiogram

EEG Electroencephalogram

EOG Electrooculogram

ERD/ERS Event related desynchronization/Event related synchronization

F-LDB Flexible local discriminant bases

HDM Hard decision making method
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ICA Independent component analysis

IntDCT Integer discrete cosine transform

IntKLT Integer Karhunen-Loeve transform

IntSKLT Integer sub-optimal Karhunen-Loeve transform

KLT Karhunen-Loeve transform

L/R Left/right

LCP Local cosine packets

LDA Linear discriminant analysis

LDB Local discriminant bases

LVQ Learning vector quantization

MF-LDB Multi-channel local discriminant bases

MVDR Minimum variance distortionless response

PARAFAC Parallel factor analysis

PCA Principal component analysis

RMVB Robust minimum variance beamformer

ROI Region of interest

SDM Soft decision making method

SERM Single-row elementary reversible matrix

STF Space-time-frequency

STF-SS Space-time-frequency-space/segment

STF-TS Space-time-frequency-time/segment

STF-SS-TS Space-time-frequency-space/segment-time/segment

SVD Singular value decomposition

SVM Support vector machine

TERM Triangular elementary reversible matrix

VQ Vector quantization
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