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ABSTRACT 

 

 

DESIGN AND IMPLEMENTATION OF A FEEDBACK LINEARIZING 

CONTROLLER AND KALMAN FILTER FOR A  

MAGNETIC LEVITATION SYSTEM 

 

Publication No. ______ 

 

John A. Henley, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Panayiotis S. Shiakolas 

The principal investigation undertaken in this research is the development and 

subsequent implementation of a feedback linearizing nonlinear controller and extended 

Kalman filter for a laboratory-based Magnetic Levitation (Maglev) device. The Maglev 

hardware is both highly nonlinear and open-loop unstable in its dynamic response.  The 

control and estimation scheme proposed in this work is first validated using an 

increasingly sophisticated level of simulations.  The control and estimation algorithm 

had the sensor noise identified using hardware data. Then, the plant noise covariance is 



 v

tuned using both on-line and off-line hardware data. Additionally, the output of the 

nonlinear controller is then mapped to hardware-suitable levels using a digital lead-lag 

controller.  Experimental results are included where the system is given a set of 

reference trajectories to track.      
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CHAPTER 1 

INTRODUCTION 

In the past few decades an increasing amount of research effort in the control 

systems field has been focused on the control of a magnetic levitation system.  This 

problem is of particular interest to the controls community since the dynamics of the 

system are open-loop unstable and highly nonlinear. For a successful controller to be 

considered for such a system, it must simultaneously stabilize the open-loop behavior 

and correctly incorporate the nonlinear elements of the systems dynamics into the 

control output. Examples of magnetic levitation systems can be found throughout 

academia and industry. Some of these applications include semiconductor fabrication 

[1], production of steel [2], high speed commuter trains [3], bearing design [4] and 

machine tools [5] in which magnetic levitation, in various forms has played a key role 

in the development of these successful technologies. 

The challenges presented to the designer when developing a control scheme for 

this system are quite formidable and, as many times as not, the simpler solution using 

well know principles is selected. These linear solutions (both frequency and state space 

based approaches) are quite capable of controlling this system. However, their strength 

is also a weakness in that the assumptions made to allow use of these techniques limit 

the region of state space that can be considered. 

. 
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Additionally, even conventional linear state space approaches usually require 

faithful reproduction of the entire state vector, even when the state vector can not be 

directly measured. With the surfacing of nonlinear control these systems can be more 

accurately controlled over a wider range of the state space. Of the wide variety of 

nonlinear control schemes available, an exact feedback linearization controller is 

considered for the stabilization and tracking control of a single-axis magnetic levitation 

test bed. For successful implementation of this controller, a continuous-discrete 

extended Kalman filter is constructed to provide real-time accurate estimates of the 

velocity and current, which are not measurable with the hardware configuration.    

1.1 Background 

The classical approach involves describing the system with an input/output 

relationship or vector-matrix description based on a first order linear approximation of 

the system dynamics perturbed around an operating point. Once the system is 

characterized by the linear description, the design of a controller using various 

techniques is relatively straight forward.  Many commercially available software 

packages could aid in the design and structure selection of the linear controller. Often 

the controller types available to linear systems only require information provided by 

directly measuring the output, while more sophisticated linear controllers require the 

full state for the control law formulation. In the event that the full state is not available, 

the remaining states can often be reconstructed using a state estimator.  While these 

techniques many times satisfy the design needs, linear controllers are susceptible to a 

few notable limitations.  The approximate linear model is only valid in a small region of 
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state space around the operating point.  Tracking certain types of reference trajectories 

or user set operating points far away from the linearized set point can cause the state to 

venture into an unstable region.  External disturbances, which are often difficult if not 

impossible to identify and address prior to implementation, can also cause the system to 

have undesirable or unstable behavior. 

 
1.2 Prior Related Research 

Many authors have proposed solutions to the control and state estimation of 

magnetic levitation systems which are selected since they are nonlinear and open-loop 

unstable.  The feedback linearization technique (both input-state and input-output) has 

been applied to solve the nonlinear control problem posed by magnetic levitation 

devices [6-8]. Other nonlinear methods applied include Hybrid Neural Networks [9], 

Sliding Mode Control [10], Dual Neural Network/Sliding Mode Control [11], and 

Robustly Stabilized Feedback Linearization [12]. However, the control problem alone 

only addresses one half of the design challenge, accurate and timely information about 

the entire state is required. Some authors have chosen to numerically differentiate the 

position signal as a means to observe or estimate the velocity of the suspended object 

[6], while others have addressed the state estimation problem with Luenberger-type 

observers [12].  A more advanced estimator using a reduced order nonlinear observer 

has also been shown with much success in previous work [13].   
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1.3 Thesis Organization 

This research is structured as follows: The general description of the system,  

synthesis of the nonlinear controller, and synthesis of the extended Kalman filter are 

presented in Chapter 2. Simulation and hardware implementation of the controller 

scheme is presented in Chapter 3. System simulations are considered in Sections 3.1 

and 3.2. Position sensor characterization and position noise covariance are determined 

experimentally in Sections 3.3 and 3.4.  The plant noise covariance is tuned in an off-

line method, using hardware data, then verified on-line with the hardware, in section 

3.5. Mapping of the nonlinear control output to suitable hardware values is carried out 

in section 3.6. Hardware results are presented in Section 3.7, where a number of 

reference trajectories are considered. Chapter 4 contains the conclusions of this research 

and suggestions for future work.    
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CHAPTER 2 

SYSTEM DESCRIPTION AND DESIGN 

In this chapter the pertinent system dynamics, nonlinear feedback linearized 

control law and state estimator used in this research are presented. The scope of this 

effort is to use estimated states to determine a sequence of control inputs that will allow 

the measured output of the system to recreate a reference trajectory. To accomplish this 

goal, this chapter is broadly organized into three main sections. The first addresses the 

system dynamics, equilibrium points and hardware / software development 

environments. The next main section is more extensive since it outlines the 

preliminaries for the existence of the proposed nonlinear control scheme. The third 

section discusses the proposed state estimator and the foundations that allow its 

extension to nonlinear systems. 

2.1 Hardware Description 

The hardware device used in this research is a Magnetic Levitation (Maglev) 

System and is shown in Figure 2.1.  The Maglev consists of three primary components: 

the infrared position sensor, the power and analog control electronics, and the 

electromagnet. In operation, the position sensor emits an infrared light beam across the 

air gap between the suspended ferromagnetic object and the electromagnet. The voltage 

corresponding to the object position generated by the sensor is acquired by a 

commercially available Digital Acquisition Card (DAC), NI PCI 6024E [14] used in a 
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personal computer (PC). Once the signal is acquired by the DAC, the software state 

estimator uses the measured position and plant model to estimate the unmeasured states 

of the Maglev system. These estimated states are in turn used by the nonlinear 

controller to determine the appropriate control output. The control output from the PC is 

amplified using the power electronics in the black box shown in Figure 2.2.  

 

 
 
Figure 2.1 Maglev hardware – electromagnet coil, position sensor and levitated 

object 

Electromagnet 
Coil 

Position 
Sensor 

Levitated 
Ferromagnetic 
Object 
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2.2 Real-Time Development Environment 

This work was implemented and verified on a hardware in the loop (HIL) 

environment using xPC Target [15], a MATLAB toolbox allowing for real time 

embedded development. xPC allows the system designer to develop and incorporate the 

design and analysis tools of MATLAB into a readily deployable executable. The current 

xPC setup requires two PC systems; the target system executes the real time kernel, 

 
Figure 2.2 Maglev hardware – power electronics and 

terminal block 

Power & Control 
Electronics 

Terminal Block for 
Digital Acquisition 
Card 
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while the host system performs supervisory control, monitoring and parameter changes. 

Communication between the two systems is accomplished through a serial 

communication interface. This xPC setup has been used with great success for the 

implementation of a digital / neural net controller [16] and with the implementation of a 

digital / fuzzy controller [17]. The details of this system, its set-up and use have been 

treated by afore-mentioned authors, and its use as an educational tool has been 

discussed by [18]. 

2.3 Magnetic Levitation Dynamics 

2.3.1. Magnetic Levitation System Operation 

The schematic of the equivalent magnet model and the free body diagram of a 

suspended object of mass, m,vertically is shown in Figure 2.3. 

 

Figure 2.3 Maglev circuit and free body diagram 
 

When a ferromagnetic object is placed beneath the electromagnet at a distance x, 

typically denoted as an air gap, it will be acted upon by the attractive force produced by 

the electromagnet.  Simultaneously, the object will block a portion of the infrared light 

being emitted and received by the position sensor.  A relationship describing the amount 
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of blocked light to the object distance allows the sensor voltage signal to be converted 

into a position below the electromagnet coil. The signal is fed back into the target where 

it is further used to determine the state of the system and subsequently used to generate 

a control signal.   

2.3.2. Electromagnet Dynamics 

The dynamics of the coil are usually represented as an equivalent R-L circuit in 

series as shown in Figure 2.3. Applying Kirchoff’s voltage law around the circuit, one 

can describe the relevant dynamics of this 1st order system. The voltage drop across the 

resistor and inductor is described by Ohm’s and Ampere’s laws respectively [19] 

CR RiV *=       (2.1) 

dt
diLV cL =        (2.2) 

Applying Kirchoff’s voltage law and substituting equations 2.1 and 2.2 yields 

dt
diLRiVVtu ccLR +=+= *)(      (2.3) 

Recasting equation 2.3 as a first order differential equation gives 

cc

c
L

tui
L
R

dt
di )(+−=       (2.4) 

2.3.3. Levitated Object Dynamics 

A free body diagram of the levitated object being suspended vertically by 

balancing the force generated by the electromagnet, ),( ixf , and the gravity force, gm , 

is shown in Figure 2.3.  The force experienced by the levitated object ),( ixf , is a 
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function of the air gap or distance below the electromagnet, x, and the current supplied 

to the magnet, i, is found by direct application of both Ampere’s and Faraday’s laws 

[20]. 

dx
xdLiixf )(

2
),(

2
−=       (2.5) 

The total inductance, )(xL , is a nonlinear function of the position in the electromagnetic 

field. A typical approximation is to assume that the inductance varies in an inverse 

relationship with respect to the position [21], as shown in equation 2.6 

x
xL

LxL c
00)( +=       (2.6) 

where cL is the constant inductance of the electromagnet in the absence of the levitated 

object, 0L  is the additional inductance contributed by the presence of the object, and 

0x is the equilibrium position. Substituting equation 2.6 into equation 2.5 and taking the 

derivative, one finds equation 2.7. 

22
00

2
),( 






=






=

x
iC

x
ixL

ixf     (2.7) 

Application of Newton’s 3rd Law of motion for this suspended object yields  

2






−=

x
iCmgxm &&      (2.8) 

Recasting equation 2.8 into a standard form gives the equation of motion 

2







−=

x
i

m
Cgx&&     (2.9) 
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2.3.4. Vector Format and Equilibrium Points 

It is necessary to arrange the dynamics expressed in equations 2.4 and 2.9 in a 

format better suited for the analysis to be performed in later sections. The state variables 

are defined as: x1 – position, x2 – velocity and x3 – current.  The state variable format of 

the dynamics becomes, assuming that the position is measured, 

)(
1
0
0

3

2

1

3

2

3

2

1
tu

Lx
L
R

x
x

m
Cg

x

x
x
x

c
c

c 



















+

























−









−=

















&

&

&

    (2.10) 

[ ] [ ] [ ]TTT xxxxxxcy 321321 001 ⋅=⋅=    (2.11) 

 In a shorter format, the vector expression found in equations 2.10 and 2.11 can be 

expressed as 

)()( tugxfx ⋅+=&      (2.12 a) 

         )(xhy =        (2.12 b) 

It is important to note that at static equilibrium, the time rate derivatives must strictly be 

equal to zero, .0≡x&   The state that satisfies this condition may be expressed as    

[ ]Txxx 3
0

1
00 0=      (2.13) 
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The equilibrium current, 3
0x , is evaluated from equation 2.9, and must satisfy the 

following  condition [20] 

C
gmxx 1

0
3
0 =       (2.14) 

2.4 Exact Feedback Linearizing Controller 

In this section, the conditions for the linearizing transformation and nonlinear 

feedback allowing the Maglev to be controlled are outlined. Of particular interest will 

be the coordinate transformation also known as a diffeomorphism, )(xz φ= , and the 

feedback law, vxxu ⋅+= )()( βα ,  which will allow it to be accomplished. Some of the 

more common mathematical preliminaries related to this discussions are presented in 

Appendix B, for reference. 

2.4.1. Determination of Relative Degree 

The relative degree of a linear system is defined as the difference between the 

number of poles and zeros [23]. This concept can be extended to nonlinear systems but 

requires more mathematical treatment.  Further treatment of this issue is discussed 

elsewhere, where the following definition is given and repeated here for completeness 

[23]: 
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Definition 2.1 [23] 

Given the Single Input – Single Output System, SISO, outlined in equation 2.12a, it is 

said to have relative degree r  at a point ox if:  

i) 0)( =xhLL k
fg for all x in a neighborhood of 0x and all 1−< rk  

ii) 0)(1 ≠− xhLL r
fg  

The terms gL and k
fL represent the Lie derivative of )(xh taken along )(xg and 

timesk −  along )(xf , respectively.  A more expansive treatment of this subject is 

presented in Appendix B.  

Applying this definition to the Maglev system yields: 

:0=k        0)( =xhLg                                                   (2.15) 

:1=k                 0)( =xhLL fg               (2.16) 

:2=k            












−=

2
1

32 2)(
x

x
mL

CxhLL
c

fg      (2.17) 

At the equilibrium point ),( 00 ix , the term 0)( 0
2 ≠xhLL fg , meaning that the 

relative degree of the system is 3. For the relative degree of the Maglev to remain well 

defined, the system will be allowed to operate in a region of state space that is bounded 

by 01 >x and .03 >x  This restriction is not unreasonable since 01 ≤x would result in 

the levitated object either touching the coil or existing inside the coil, and 03 <x  would 
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result in a negative current. Careful examination of the power electronic schematic 

shown in Appendix A does not allow for this possibility.   

In the event the relative degree is less than the order of the system, additional 

steps must be taken in the construction of the coordinate transformation. The remaining 

rn −  portions of the diffeomorphism will have to be linearly independent functions to 

complete the transformation [24]. Additionally, the internal dynamics, the remaining 

rn − portion of the system that is unobservable in the input-output map, must be 

examined to guarantee that these dynamics are in fact stable [23].   

As a note, the internal dynamics of a nonlinear system can be a significant 

design issue if the system is inverted, in the course of improving trajectory tracking.  

This problem has been greatly studied and will not be addressed here, but the reader can 

find many useful results and methods in the open literature [25 - 33].   

2.4.2. Necessary and Sufficient Conditions for Feedback Linearization 

The necessary and sufficient conditions for a nonlinear system to be converted 

to a linear system have been well documented in literature [23, 24, 26 - 36]. Again, the 

main results of [23] are presented here for completeness. 

Definition 2.2 [23]  

Given the nonlinear system in 2.12a and 2.12b, the State Space Exact 

Linearization problem is solvable near a point 0x (i.e. there exists an “output" function 

)(xh for which the system has relative degree r at 0x ) if and only if the following 

conditions are satisfied: 
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i) The matrix ][ 2 gadgadg ff  has rank n  

ii) The distribution { }gadgadgspanD ff
2= is involutive near 0x . 

Checking the first condition:   
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3=  

For the second condition to be shown true, the Lie Bracket of any two vectors in the 

Dspan must be equal to a linear combination of those two vectors. 
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Equation 2.19 shows that the span is in fact involutive at 0x . The supporting 

ancillary calculations can be found in Appendix D. Note that should the state vector 

venture in regions of state space such that 01 =x and/or 03 =x , not only will the 

system lose its relative degree (see definition 2.1) but it will also lose the necessary and 

sufficient conditions for a feedback linearizing coordinate transformation. 
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2.4.3 Coordinate Transformation and Nonlinear Feedback 

The previous section introduced the necessary and sufficient conditions for the 

existence of a feedback linearizing coordinate transformation, also known as a 

diffeomorphism, and the related nonlinear feedback.  The coordinate transformation 

process is relatively straight forward once the connection is made that the output 

equation, 2.12b, satisfies the conditions placed upon 1T by [26] and [35], where T1 is the 

solution to the partial differential equation 

0)(...)()(,
1

1
1 =

∂
∂

++
∂
∂= xg

x
T

xg
x
TxgdT

n

n    (2.20) 

 In this work, no claim is placed upon a global transformation. To generate the 

transformation, one could simply take the Lie Derivative of 2.12b with respect to 2.12a 

until the input )(tu  appears in the output of the derivative [24]. The details of this 

procedure are presented in Appendix E.  The nonlinear change in coordinates is 

presented in equation 2.21. 
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In the transformed coordinates, the nonlinear dynamic equations take the from shown in 

equation 2.22. 
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By defining the following terms, )(,, tuβα , equation 2.22 can be written in terms of a 

linear system of equations, 









+=

−
= 33

1

2
32

2

3

)(
)(

)( x
L
R

x
xx

L
xhLL
xhL

x
c

c
c

fg

fα   (2.23a) 











−==

3

2
1

2 2)(
1)(

x
x

C
Lm

xhLL
x c

fg
β    (2.23b) 

)(
)()(
x

vxtu
β

α +=      (2.23c) 

Restrictions of 01 ≠x and 03 ≠x are placed on the system to prevent equation 2.23 

from becoming singular. Not only will 2.23 become singular but the rank requirement 

outlined in necessary and sufficient conditions of section 2.4.2 will be violated. These 

restrictions are also the same bounds placed on the region of state space that guarantees 

a well defined relative degree. The linear system of equations is expressed in terms of 

equation 2.22 and 2.23 as 
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where )(tv is the new input for the linear system. 

Equations 2.23c and 2.24 allow the construction of a linear transfer function between 

the linear input and the measurement equation 2.23b. 

2.4.4 Linear Control Law and Asymptotic Reference Tracking 

A suitable controller will need to be introduced for stability and tracking since 

the open loop dynamics of the Maglev are unstable. The transformation implemented in 

the previous section produces a linear system that is represented as a chain of 

integrators at the origin of the complex plane, while the transformed system is in a 

better structure for controller design. The controllability and observability of the linear 

system is full rank, see equation 2.25a and 2.25b. 

[ ] 32 == bAAbbrankCrank    (2.25a) 

[ ] 32 ==
TTTT AcAccrankOrank   (2.25b) 

Noting that the transformed linear system is controllable and observable, the desired 

poles of the closed loop system are chosen to be 601 −=η , 802 −=η and 1003 −=η , 

which will produce a closed-loop time constant of 0.1 second. The state feedback 

gain, Tk , is evaluated through the placement of these poles using the Bass-Gura 

Formula shown in equation 2.32 [37]. 

1)( −−−= CTak TTTT λ     (2.32) 
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where 

Tk - Feedback gain due to placing closed-loop poles at 1η , 2η and 3η  

λ - Coefficients of the desired closed loop characteristic polynomial 

a - Coefficients of the open loop characteristic polynomial 

T - Toeplitz matrix of the open loop characteristic polynomial, based on the 

system representation by equation 2.24 

Determining these parameters yields the following 

]48000018800240[=λ     (2.27a) 

]000[=a       (2.27b) 
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Substituting 2.27a, 2.27b, 2.27c and 2.27d into equation 2.32 produces the state 

feedback gain shown in equation 2.28. 

]24018800480000[=Tk      (2.28) 
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The linear system in equation 2.24 with its poles placed at 1η , 2η and 3η  is expressed in 

equation 2.29 as 
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Armed with the stabilizing gain, Tk , and knowledge of how the states 1z , 2z and 

3z evolve, the nonlinear input derived in equation E.14, found in Appendix E, is re-

written in equation 2.30. 
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The next step in the synthesis of the nonlinear controller is to drive the 

suspended object to track a reference trajectory, )(tyR . The error between the actual 

position and the reference position is defined as 

)()()( tytyte R−=     (2.31) 

Equation 2.31 can be differentiated and substituted into equation 2.30 producing 

a nonlinear feedback control law driven by the error dynamics between the levitated 

object states and the reference trajectory, as shown in equation 2.32. 
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 This controller will asymptotically drive the levitated object position to the 

reference trajectory, regardless of the initial condition as long as it stays bounded, well 

conditioned, and at least the first three derivatives of the reference trajectory exist. 

2.5 Continuous-Discrete Time Extended Kalman Filter 

The use of modern high performance controllers necessitates the need for 

methods of determining the state of the system since typically measuring the entire state 

vector is impractical if not impossible.  For the purposes of this research, a continuous-

discrete extended Kalman filter is proposed.  This embodiment of the state estimator is 

of particular usefulness when dealing with a system, such as this one, in which the 

dynamic model is continuous but the measurements are performed at discrete time 

intervals.   

The process for computing and estimating the states by the continuous-discrete 

time extended Kalman filter is outlined in Figure 2.6. The current state estimate and 

covariance are propagated forward in time until the next measurement occurs.  Then, 

the Kalman Gain is computed and the state estimate and covariance are updated. These 

updated values are then propagated forward and the process repeats itself. The 

formulations presented in this section are thoroughly treated along with other filtering 

schemes in [38].     
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Figure 2.4 Update and Propagation of the extended Kalman filter 
 

2.5.1 Dynamic Model 

The version of the Kalman filter employed in this work assumes that the noise is 

Gaussian and that the system parameters are known. The dynamics of the truth model 

are expressed in equations 2.33 and 2.34.  

))(,0(~)(),()()()( tQNtwtwttugxfx ⋅Ψ+⋅+=&     (2.33) 

),0(~,)(~
kkkkk RNvvxhy +=      (2.34) 

The format of these equations is very close to the dynamics of the system used 

in the design on the feedback linearizing controller in section 2.3.  In fact, equations 

2.33 and 2.34 are the augmented form of the first dynamic equations and account for 

un-modeled plant dynamics, and noise in the measurement.   The process noise )(tw is 



23 

 

defined as a zero mean Gaussian white-noise with covariance )(tQ ; this term helps the 

filter account for un-modeled continuous plant dynamics. Accordingly, the discrete 

sensor noise kv  is a zero mean Gaussian white-noise term with covariance kR . Along 

with the assumption of Gaussian white-noise it is assumed that the two noise sources, 

w(t) and v(k), are not correlated with each other at any point in time, and that they are 

also not correlated with themselves at any point in time. This notion is expressed in 

equations 2.35 and 2.36.  

{ } 0)()( =TtwtvE        (2.35) 

{ } )()()()( τδ −== ttQtwtwE T      (2.36a) 
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      (2.36b) 

Note that the term )(tv  in equation 2.35 is the continuous time embodiment of 

the discrete time measurement noise.  

2.5.2 Initialization of the Filter 

Of specific interest to the development of any extended Kalman filter is the 

initial condition of the state vector, and the initial condition of the error covariance 

expressed in equations 2.37 and 2.38 respectively. 

00 ˆ)(ˆ xtx =       (2.37) 

}{ TtxtxEP )(~)(~
000 =      (2.38) 
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The continuous – discrete extended Kalman filter varies from the more 

traditional linear class of Kalman filters in many ways but the most pressing difference 

lies in the inability to prove stability of the nonlinear filtering process. Often, stability is 

proved or accepted when the covariance converges or the state estimator produces 

'good' estimates. The implied assumption for this class of nonlinear filters is that the 

true state is sufficiently close to the estimated state [38].  Along these same lines, the 

selection of the initial state and covariance is critical for the filter to converge. The goal 

for the designer is to place the initial conditions close enough to the true state allowing 

the update process to offset the diverging tendencies of propagating process.  For the 

purpose of this research, the initial conditions placed on the state are as follows:   

• The position initial condition is the short circuit voltage of the position 

sensor, since there is not an object blocking the emitted light the 

measured portion is the maximum value in the sensor range. The 

characterization of the position sensor is discussed in section 3.4.  

• The initial velocity of the levitated object is set equal to zero.  

• The initial current is determined by substituting the appropriate values 

into equation 2.14 and solving for the equilibrium current.   

2.5.3 Measurement Equation 

Equation 2.39 allows for nonlinear terms to be used in the measurement 

equation.  Since the Jacobian is taken of the measurement equation, attention needs to 
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be paid to conditions and parameters that might cause it to become unbounded or 

exhibit loss of rank condition.   

kx
kk x

hxH
ˆ

)ˆ(
∂
∂≡−       (2.39) 

The measurement equation in this research is characterized by a linear relationship 

between the object position and voltage output of the measuring sensor. 

2.5.4 Kalman Gain Equation 

For linear Kalman filters, the format of the gain expressed in equation 2.40 

minimizes the error associated with the propagated state estimate [38].   

1])ˆ()ˆ([)ˆ( −−−−−− += kk
T
kkkkk

T
kkk RxHPxHxHPK     (2.40) 

For nonlinear systems, certain elements of these systems scale and shift the 

input Gaussian functions resulting in non-Gaussian responses [39].  "Estimators for 

many nonlinear systems can be based on Kalman and Kalman – Bucy filters; though not 

precisely "optimum" they are "optimal" in the sense that they tend toward optimum. 

These modified linear-optimal estimators are useful when the stochastic effects are 

additive and small, either as a result of the original system's structure or of reasonable 

assumptions regarding magnitudes of these effects. Details of the specific probability 

density functions may not be well portrayed, but the overall performance in state 

estimation can be satisfactory for two reasons. The first is that random signals are 

summed in estimators, and the central limit theorem assures that the probability density 

functions of the sums tend to become Gaussian no matter what the individual 



26 

 

distributions look like. The second is that the estimators contain integration or 

summation, which tends to average out the Gaussian-destroying effects of the 

nonlinearities in producing the state estimate". [39]     

2.5.5 Update Equations 

When the discrete time measurement becomes available (equation 2.34) the 

Kalman gain computed in equation 2.40 updates the propagated estimate, according to 

equation 2.41. The error signal between the actual and estimated output is multiplied by 

the Kalman gain that in turn updates the current estimate.  This structure for the state 

observers is very common [40-41]   

)]ˆ(~[ˆˆ −−+ −+= kkkkk xhyKxx       (2.41) 

−−+ −= kkkkk PxHKIP )]ˆ([      (2.42) 

Along the same lines as the state update (equation 2.41), the covariance 

(equation 2.42) also makes use of the latest information provided by the system to 

refine its value.   

2.5.6 Propagation Equations 

At the end of the estimation process, the updated values must be propagated 

forward in time to the next measurement update.  This is accomplished with equation 

2.43 for the plant and equation 2.45 for the covariance.   

)()()()(ˆ tuxgxftx ⋅+=&       (2.43) 
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)()()()),(ˆ()()()),(ˆ()( ttQtttxFtPtPttxFtP TT ΨΨ++=&   (2.45) 

Of particular interest is the propagation of the covariance, equation 2.45, which 

is accomplished using a continuous time linear Riccatti equation. As mentioned 

previously, the Jacobian of the dynamics must be recomputed at each cycle and special 

attention must be paid to the behavior of this operation.    

2.5.7 Filter Tuning 

The most practical issue surrounding the development of the extended Kalman 

filter is the determination of the process noise covariance, )(tQ , process noise 

input, )(tΨ , and measurement noise covariance, kv . For the purpose of validating the 

structure of a control and estimation algorithm, reasonable values can be used based on 

the dynamic model being analyzed using published values and experimental results 

available in the open literature.  However, when the algorithm is taken to the next stage 

of implementation on hardware, a systematic approach must be undertaken to better 

characterize these terms based on the available and collected experimental data.  

2.6 Conclusions 

 In this chapter, the development of the feedback linearized nonlinear controller 

and continuous-discrete time extended Kalman filter are presented as they apply to the 

open loop unstable, highly nonlinear Maglev system.  First, the Maglev dynamics were 

presented and cast into a suitable format for later manipulation. Then, the relative 

degree of the nonlinear system was discussed.  Subsequently, the necessary and 

sufficient conditions for the existence of a linearizing diffeomorphism were shown, 
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allowing for the construction of a linearizing coordinate change and nonlinear feedback 

that transformed the system into an equivalent linear system.  Once the dynamics were 

cast into a linear system, the closed loop eigenvalues were assigned using the Bass-Gura 

formula. Then, the nonlinear feedback was augmented such that the controller would 

track suitable reference trajectories.  Since not all of the states are directly available to 

the controller, a suitable state estimator must be formulated.  For this task, a continuous-

discrete time extended Kalman filter was proposed. Additionally, the integration of the 

controller and state estimator showing the information flow are explained. 
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CHAPTER 3 

SIMULATION VERIFICATION AND HARDWARE IMPLEMENTATION 

This chapter discusses the validation of the proposed controller / estimator in 

phases that would allow for simulation verification and hardware implementation.  

First, the controller and estimator structure and operation were validated in simulation 

as a proof of concept to justify further development. Second, the simulations were 

refined using the same structure that would be implemented in hardware with particular 

attention placed on the propagation of the covariance. Additionally, these refined 

simulations validated the scheme to be used on the actual hardware.  Next, plant noise 

parameters were tuned off-line using simulations with data taken from the actual 

hardware. Finally, the controller and estimator were implemented and verified on the 

actual hardware considering a variety of input reference trajectories.   

3.1 Controller / Estimator Simulations 

Validation of the feedback linearized nonlinear controller / continuous-time 

extended Kalman filter structure and their interaction were first examined in simulation 

using scripts developed in MATLAB following the structure presented in Figure 3.1.  
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Figure 3.1 Feedback linearized nonlinear controller / extended Kalman filter 
simulation structure and interoperation. 

 

These simulations represent a 'proof of concept' and were the justification for 

continued work on this topic. Many of the features used in these simulations are 

continued through each phase of the implementation process. However, as the phases 

get closer to the hardware implementation, the structure and system parameters were 

successively revised and reviewed.   

The simulation process is comprised of three distinct phases each relying on the 

other two phases for information in order to produce well behaved and stable results, a 

detailed outline of the simulation is presented in Appendix F. First, the plant state is 

propagated to the next time step and a sub-step of this propagation phase is to calculate 
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the controller output. It is important to note that the control value is not based on the 

actual plant state at any time during the simulation, but rather it is determined using the 

current values of the estimated states. After plant state propagation is complete, the 

synthetic measurement process is performed.  The object position is corrupted using a 

random noise from a zero-mean white Gaussian distribution with covariance kR .  The 

final portion of the simulation is to update the state estimate and covariance, and 

propagate the latest information available to the filter using the updated system values 

forward to the next time step. However, the state estimate and the covariance estimate 

are not integrated in the same manner due to some of the simulation infrastructure 

limitations. The state estimate is propagated forward using the same method as the plant 

state, a fixed step Runge-Kutta integration scheme. As previously mentioned, the 

covariance is propagated in a different manner; the simulation used in this portion of the 

research can not accommodate the 3 x 3 size of the covariance matrix, allowing for this 

limitation, only the covariance matrix diagonal terms are used to propagate forward to 

the next time step. While the plant and state estimates are cast into a continuous-time 

formulation, the covariance is cast into discrete time format allowing exact 

representation of the continuous-time covariance at the step time, albeit with only one 

third of the covariance information used in the propagation. 
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Table 3.1 Maglev simulation parameters 
Simulation Parameter Symbol Value Units 

Levitated Object Mass m  0.055066 Kg 

Coil Inductance cL  0.59 H 

Incremental Coil 
Inductance 0L  0.02 H 

Coil Resistance cR  25.0 Ω 

Gravitational Constant g  9.81 
sec

m
 

Simulation Time Step dt  0.001 sec 

Measurement Noise 
Standard Deviation kv  0.001 m 

Plant Initial Condition 321 ,, xxx  0.0148, 0, 0.89409 Am m ,, sec  
Estimator Initial 

Condition 321 ˆ,ˆ,ˆ xxx  0.014367, 0, 0.9388 Am m ,, sec  
Desired Closed-Loop 

Poles 321 ,, ηηη  
-60, -80, -100  

Covariance Initial 
Condition 0p  

0 I085.   

Process Noise Covariance )(tQ  















100
010
000

025.0  
 

 

The core structure of these simulations is based on example 5.5 found in [38], 

and the m-file can be found on the website maintained by the author [42]. The 

simulation parameters are based on the values determined by [45], and can be found in 

Table 3.1. These parameters will remain unchanged unless otherwise noted. 
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3.1.1 Fixed Step Numerical Integration 

Many options are available for the integration of ordinary nonlinear differential 

equations.  In particular, the widely accepted Runge-Kutta 4th-order fixed-step-size 

integration is considered for all phases of this work (m-file, Simulink and xPC).  The 

script containing the m-file embodiment of this scheme can be found in Appendix F, 

while the version used for the simulations in Simulink and consequently xPC can be 

found in the Simulink documentation on the MathWorks website [44]. The selection of 

initial conditions and integration step-size are often critical selection parameters for 

successful simulations. These parameters must be adjusted during simulation and 

experimentation.  

A variable-step Runge-Kutta integration scheme produces efficiencies over the 

fixed-step method upwards of several orders of magnitude; however, the controller and 

estimator equations are not setup for a variable-step approach. Additionally, the goal of 

the simulation was to stay true, in as many ways as possible, to how the actual hardware 

system would operate, thus, a fixed-step approach is consistent with the operation of an 

embedded microprocessor and the xPC environment used for hardware implementation. 

3.1.2 Step Input Response 

The Maglev response to a step input is discussed in this section. For the 

purposes of these simulations, the system is allowed to converge to a steady state after 

the initial filter and controller transient response, and then the step input is applied via 

the reference trajectory. The step trajectory used in this simulation is 2.0 mm change in 

the position of the levitated object. The measurement noise covariance used in the 
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simulations is shown in Table 3.1. The process noise, Q(t), off diagonal terms are set to 

zero since the noise is assumed to be uncorrelated and zero mean Gaussian white-noise. 

The first term in the 1,1Q position is also set to zero since an exact kinematic relationship 

is being represented, owing to the fact that the velocity is defined exactly as the position 

time rate of change. The coefficient proceeding )(tQ in Table 3.1 was found by iterating 

the simulations until a consistently stable state estimate was observed.   

The simulated measured position, reference trajectory and estimated trajectory 

of the Maglev system responding to a 2.0 mm step input are illustrated in Figure 3.2. It 

is observed that the simulated measurement and filter estimated position of the object 

oscillate about the nominal trajectory after the transient response has decayed. As 

expected with simulated noisy measurements, the measured position of the levitated 

object will never correspond to the reference trajectory at any time in the simulation 

time. While the estimated position will exhibit much of the noisy tendency of the 

simulated measured position, it does exhibit smoother response, since the extended 

Kalman filter seeks to minimize the error state estimate. The simulated Maglev 

response to a step input presented in Figures 3.2 – 3.6 validate the controller, estimator 

and their interoperation structure represented in Figure 3.1. 
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Figure 3.2 Maglev simulated system measured position response, estimated 
position response to a 2.0 mm step input 

 
When comparing the quality of the estimates produced by an extended Kalman 

filter it is useful to compare the difference between the actual state value and the state 

estimate, as shown in equation 3.1.  

111 ˆ~ xxx −=      (3.1) 

The quality of the estimate can also be computed since it is directly used in the filtering 

scheme.  The square root of the position error covariance produces the position error 

standard deviation and places a bound on the position error. A σ3/−+  standard 

deviation bounds produced by the filter is plotted along with the position estimate error. 

This σ3/−+  bounds is a confidence interval on the error estimate.  The smaller 

σ3/−+  bounds on position error, the higher quality estimate being generated by the 
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optimal state estimator. The position error of the Maglev when tracking a 2.0 mm step 

with the σ3/−+  error bounds is presented in Figure 3.3. Two note worthy items of the 

position estimate error occur when the step change occurs at sec75.0=t . The first item 

is that the reference trajectory exhibits a singularity when the simulation time reaches 

the step time. When the filter is left to differentiate the step reference position trajectory 

a singularity does occur and the controller / estimator diverge. On the surface this 

violates the conditions for derivative continuity of the reference input developed in 2.3. 

To accommodate this situation the derivatives of the reference trajectory are defined 

equal to zero for this series of simulations, thereby eliminating the potential for the 

singularity to exist. The second item to note at this time is due to the position error and 

the standard deviation. The sudden change in the position does not cause the quality of 

the estimate to degrade and the position error is comparable to the rest of the filter 

performance. 
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Figure 3.3 Maglev simulated position estimate error response and +/- 3 σ error 
bounds to a 2.0 mm step input   

 
Figure 3.4 shows the performance of the extended Kalman filter for estimating 

the suspended object velocity although it can not be directly measured on the hardware 

and consequently is not synthetically measured in simulation. The differential velocity 

associated with the actual time instant of position change was omitted from the 

simulation as mentioned earlier since this discontinuity caused unbounded behavior in 

the simulation. Behaviorally speaking, the shape of the velocity estimate about the zero 

velocity reference trajectories corresponds with the position hunting about its trajectory.    
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Figure 3.4  Maglev system estimated velocity response to a 2.0 mm step input 
 

The velocity estimate error can be characterized in the same manner as the 

position estimate error. The simulated velocity error plotted along with the velocity 

error bounds at  σ3/−+  is shown in Figure 3.5. The bounds of the velocity error 

covariance when compared with the position error covariance are approximately an 

order of magnitude greater. Not measuring this state directly adds significantly to the 

degradation of the estimate quality.  
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Figure 3.5 Maglev simulated velocity estimate error response and +/- 3 σ error 
bounds to a 2.0 mm step input  

 
 The extended Kalman filter also estimates the current used in the 

electromagnetic coil during the simulation. The change in coil current corresponding to 

the change in reference trajectory and simulated measured object position is illustrated 

in Figure 3.6. The oscillatory behavior of the coil current (and the other state estimates) 

is attributed to two significant types of behaviors.  The first behavior stems from the 

control input calculated by the controller based on the estimated state of the system as 

mentioned earlier in this section.  The second behavior lies in the inclusion of noise in 

the simulation process.  In the unlikely event that the actual position is identically equal 

to the reference trajectory, the measurement noise will generate an error signal. Added 

to this effect is the plant noise that further complicates the estimate.  
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Figure 3.6 Maglev estimated current response to a 2.0 mm step input 
 
3.1.3 Sine Wave Response 

The performance of the feedback linearized controller and extended Kalman 

filter to track a sinusoidal trajectory about a nominal operating point is discussed in this 

section. The sine wave has amplitude of 1.0 mm and a frequency of 10 rad/sec with a 

nominal position of 14.8 mm yielding a nominal current of 0.894 A. The remaining 

simulation parameters remain unchanged from Table 3.1. Figure 3.7 shows the 

sinusoidal reference trajectory, measured position of the ferromagnetic object and the 

estimated position. The position estimate error along with the σ3/−+ bounds 

illustrating the quality of the estimate is also presented in Figure 3.7 for completeness. It 

is observed that the controller can adequately track the reference signal. 
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Figure 3.8 shows the performance of the extended Kalman filter for estimating 

the suspended object velocity when the position is tracking a 1.0 mm amplitude, 10 

rad/sec sinusoidal reference trajectory. For this series of simulations the velocity has a 

nontrivial trajectory since the reference trajectory considered has well defined 

derivatives. This state variable can not be directly measured on the hardware and 

consequently is not synthetically measured in simulation but is estimated. The velocity 

estimate produces a lower quality estimate when compared with the position estimate. 

However, the velocity estimate error produces approximately the same quality of 

estimate when compared against the step input velocity estimate error illustrated in 

Figure 3.5.  Behaviorally speaking, the shape of the velocity estimate about the 

reference velocity trajectory correlates with the position hunting about its trajectory. 

The velocity error estimate and its error bounds in addition to the velocity estimate and 

its reference trajectory are presented in Figure 3.8. 

 The extended Kalman filter also estimates the current used in the 

electromagnetic coil during the simulation. The current estimate corresponding to the 

simulated measured position tracking the reference trajectory is presented in Figure 3.9. 

The same behaviors discussed for the current estimate in section 3.1.2 are observed, 

with the notable exception that the state estimates have to constantly make adjustments 

in order to track the sinusoidal trajectory. It is important to note that in previous 

simulations the states were allowed to progress past the transient response before the 

step change is introduced, where in these simulations the system is forced to track the 

input signal and respond to the transient response.   
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Figure 3.9 Maglev estimated current response to a 1.0 mm, 10 rad/sec sine wave 
 

3.2 Enhanced Controller / Estimator Simulations 

Validation of controller and estimator algorithm in section 3.1 is an important 

first step in the development process but to take this work closer to hardware 

implementation the algorithms proposed needed to be recast in the Simulink 

environment for xPC conformity. 

3.2.1 Simulink Controller / Estimator Algorithm Structure  

Several modifications had to be made to the structure of the simulation 

procedure outlined in Appendix E to accommodate the Simulink kernel.  The first major 

departure is the method in which the controller, estimator and plant values are 

calculated.  Taking full advantage of the Simulink Solver requires that the dynamics be 
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cast into the standard S-function format.  All three major aspects of this work were 

appropriately cast in a S-function format  but it was found that MATLAB's Real-Time 

Workshop (RTW) [43] could not compile these MEX based S-functions into an xPC 

executable.  The controller and estimator were converted into an embedded m-file 

function [44] which can be compiled by RTW into an xPC executable. This allowed the 

code developed in these embedded m-files to be used in the implementation phase of 

this work. The embedded m-file function scripts used in these simulations are contained 

in Appendix G. The Simulink model used in these simulations is shown in figure 3.10. 

The values for the simulation parameters are contained in Table 3.1 and remain 

unchanged unless otherwise stated. 

Recasting the m-filed based simulation into the Simulink environment allowed 

the covariance to be reformulated. As mentioned in section 3.1 the state estimator 

proposed in these simulations is a continuous-time extended Kalman filter (CEKF). Due 

to the limitations of the m-file based simulations the covariance was changed to a 

discrete time formulation and only the diagonal elements of that matrix were propagated 

to the next time step. In the simulations presented in this section, the covariance is 

propagated in the same fashion as the plant and state estimate, using a standard 4th order 

Runge-Kutta fixed step solver found in Simulink xPC. Procedurally, the covariance 

being cast into a continuous-time formulation agrees with the embodiment of the plant, 

controller and state estimate which are all continuous-time representations. However, 

this change in the format and structure of the covariance allows for the off diagonal 

elements to have an impact on the state estimate.  
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3.2.2 Step Input Response 

For consistency between the different simulations presented in this research, the same 

reference trajectory was applied to the enhanced Simulink simulations as the m-file based 

simulations. The simulated measured position, reference trajectory and estimated position are 

presented in Figure 3.11 as the Maglev responds to a 2.0 mm step input. Based on the 

simulated measurements, and the state estimate presented in the figure, the enhanced 

simulation produces acceptable results using the parameters presented in Table 3.1. The 

simulated system response is virtually indistinguishable from the simulated system response 

presented in Figure 3.2. While the simulated measured position appears to track the reference 

trajectory suitably well, this tracking performance does not address the quality of the estimate 

produced by the extended Kalman filter.  The position estimate error along with a σ1/−+  

error bounds is presented in Figure 3.11. These error bounds were relaxed from σ3/−+  used 

in the previous section to σ1/−+  since the error standard deviation produced by the 

extended Kalman filter increased by a factor of 30. This difference is attributed to a higher 

fidelity model of the Simulink estimator; where the Simulink version propagates the entire 

covariance matrix but the m-file only propagates the diagonal elements of the error 

covariance. While the error bounds on the position estimate error have significantly increased, 

the actual error between the state estimate and the synthetic plant state has not increased by 

the same margin. Ideally the plant noise covariance should be tuned to reduce the bounds on 

the estimate error, but this parameter was left unchanged from the previous set of simulations 

in order to provide a baseline for comparing the two sets of simulations.  In subsequent 

sections the actual plant noise will be tuned using actual hardware data. 
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The velocity estimate and velocity estimate error evaluated by the extended Kalman 

filter are shown in Figure 3.12. The velocity estimate error and the corresponding error 

bounds are shown as a gauge for the relative quality of the estimate. Note that the error 

bounds increase from the initial conditions and converge to a larger values. The error 

boundary illustrated in the figure was modified to reflect a σ1/−+  bound instead of the more 

conventional σ3/−+ bound. Although the error bounds are greater than the corresponding 

results produced by the m-file based simulation (see Figure 3.5), the actual estimate error 

does not increase accordingly.  This behavior is also attributed to the higher fidelity in the 

Simulink model and the need to perform plant noise covariance tuning. As mentioned in 

section 3.1.2 the reference input needs to have a sufficiently differentiable form, and 

examination of the Simulink model presented in Figure 3.10 does not allow a singularity from 

a step change to cause an unbounded response. 

 The extended Kalman filter also estimates the current used in the electromagnetic 

coil during the simulation. The change in coil current corresponding to the change in 

reference trajectory and simulated measured object position is illustrated in Figure 3.13. The 

oscillatory behavior of the coil current is attributed to the controller tracking the reference 

input while the estimates are being perturbed by both the induced measurement and plant 

noise. 
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Figure 3.13 Maglev estimated current response to a 2.0 mm step input 
 

3.2.3 Sine Wave Response 

As mentioned in section 3.2.2 the same reference trajectory is supplied as an input in 

this set of simulations so that comparisons can be drawn between the simulations discussed in 

section 3.1.3. Figure 3.13 shows the measured position, estimated position and reference 

trajectory considered in this series of simulations.  Figure 3.13 also shows the position 

estimate error and the associated position error bounds. The performance of the estimate error 

and the bounds on the estimate error agree with the results discussed in section 3.2.2. 
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The estimated velocity and velocity trajectory associated with the sinusoidal input is 

presented in Figure 3.15. Note the relatively poor quality of the velocity estimate response in 

the simulation. This is expected since the velocity is not directly measured but is a synthetic 

state generated inside the filter. The velocity estimate error and the associated error bounds 

are also presented in Figure 3.15 as a means of comparing the relative filter performance. The 

velocity error bounds is quite significant; when compared to the m-file based simulation 

shown in Figure 3.8, the boundary is 27 times greater. This increased error bounds is 

attributed to the improved model of the filter covariance and the need to tune the plant noise 

covariance to suit the revised covariance formulation. While the error bounds significantly 

increased, the actual velocity estimate error had the same magnitude of response as the m-file 

based simulation as shown in Figure 3.8.  

Figure 3.20 shows the simulated estimate response of the coil current to the levitated 

object tracking the sinusoidal reference trajectory. In the initial portion of the simulation the 

current briefly becomes negative. This small excursion of the current into negative values is 

attributed to transient response of the controller and state estimator. On the surface this does 

violate the conditions placed upon the region of state space that the system is allowed to 

operate without violating the necessary and sufficient conditions of the nonlinear controller. 

The actual state space region that must be observed is attributed to the actual state not the 

estimated state.  This occurrence is not possible on the hardware due to the diode 

configuration across the coil, preventing a reversal of current.  
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Figure 3.16 Maglev simulated system current response to a 1.0 mm, 10 rad/sec sine wave 
 

3.3 Position Sensor Modeling 

Sensor Modeling is required in order for the Simulink model to properly interpret the 

input from the hardware system.  For the purposes of this research, the sensor measures the 

air gap between the levitated object and the bottom of the electromagnet coil.  Proper 

understanding of the relationship between the levitated object position and the sensor output 

is required due to the fact that the position of the object is the state of the system being 

controlled.  Therefore, the input-output relationship for the sensor in conjunction with the 

ferromagnetic object levitated in this research needs to be characterized.   
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The relationship between the sensor output voltage is easily determined 

experimentally. The ferromagnetic object levitated is a steel ball bearing with a measured 

diameter of 1.905 cm and a mass of 0.05506 Kg as shown in Figure 3.17.  

 

To obtain the experimental sensor to voltage response the ball bearing will need to be 

positioned under the coil at known heights and the sensor output voltage recorded.  The steel 

ball position is known since it is placed on top of the simple positioning device shown in 

Figure 3.18 attached to the Maglev hardware. This device is often referred to as the object 

positioning tool. The thread along the bolt section of the tool has a lead of 1.954 mm per 

revolution. As shown in Figure 3.18, the position tool has 16 subdivisions. The position 

resolution of the object positioning tool is 0.122 mm per subdivision.  Using the ball bearing 

and the object positioning tool, the sensor response was characterized and shown in Figure 

3.19. The linear portion of the response has a minimum bound of 14.0 mm and a maximum 

bound of 15.5mm along with a linear curve fit.   

Figure 3.17 Levitated object, steel ball 
bearing 
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Figure 3.18 Object position tool attached to Maglev device 
 

The nonlinear regions outside these bounds could be included as long as the output 

function has sufficient derivatives and is well defined so as not to present a singularity in the 

nonlinear controller calculations.  However, this extended region of the sensor response is not 

considered due to the low signal to noise ratio the real-time hardware will experience during 

operation in this region.   
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Figure 3.19 Input-output sensor response graph 
  

The best fit line description for both the position-voltage and voltage-position will 

allow this sensor response to be properly modeled in the Simulink xPC model. The 

conversion blocks used in subsequent Simulink models for the position-voltage and voltage-

position conversion are shown in Figures 3.20 a and b respectively. 
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(a)       (b) 

 
Figure 3.20 Simulink position sensor implementation (a) Position to voltage conversion 

and (b) voltage to position conversion   
 

3.4 Measurement Noise Characterization  

In order for the extended Kalman filter to properly operate and provide accurate 

estimates of the plant states, the sensor measurement noise must properly be accounted for in 

the filtering formulation.  The measurement obtained by the sensor is assumed to be the actual 

value, ky , plus some additive, random white Gaussian noise, kv , with zero mean and known 

covariance, as shown in equation 3.2. 

kkk vyy +=~      (3.2) 

 The object measurement tool was used to locate the metallic ball inside the position 

linear sensor range at a constant height, and data was collected via xPC target environment.  

Figure 3.21 shows the xPC Simulink model used to record the sensor values in order to 

determine the properties of the sensor noise. 
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Figure 3.21 Simulink model used to determine the sensor noise covariance  
 

 The hardware data was logged in the MATLAB workspace for position sensor noise 

evaluation and the sensor noise covariance was determined.  Equation 3.3 is used to 

determine sensor noise covariance, [46], where y~  is the measurement and µ  is the 

measurement sample mean. 

( ) ]~[ 22 µσ −= yE      (3.3) 

The experimentally derived standard deviation,σ , and the covariance, 2σ , of the position 

sensor employed in this research are presented in Table 3.2. 

Table 3.2  Experimentally determined position sensor noise properties 
Standard Deviation - σ  

mm 

Covariance - 2σ  

mm2 

          0.0034      1.156 x 10-5  
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3.5 Kalman Filter Plant Noise Characterization  

The next important step to complete in the implementation of the state estimator is to 

tune the process noise covariance matrix, )(tQ , since the values used for this parameter in 

previous sections of this research were arrived during the simulations and are not 

representative of the actual hardware. The first step in this process is accomplished with the 

use of an existing xPC Simulink digital lead-lag controller [16], as presented in figure 3.22, 

which stabilizes the levitating metallic object while the position and reference input are 

recorded in the MATLAB workspace for later analysis. Then, the recorded hardware response 

is used in an off-line manner to tune the plant noise covariance matrix. The recorded 

hardware position and reference trajectory are used as inputs in the nonlinear controller and 

the continuous-time extended Kalman filter used in the simulation sections 3.1 and 3.2. The 

Simulink model is modified such that the only inputs to the controller and state estimator 

model are those from the recorded hardware response stored in the MATLAB workspace, as 

presented in Figure 3.23. Iterations on the plant noise covariance candidates can then occur 

off-line and are quickly evaluated for some key attributes: quality of the estimate, relative 

errors and stability/ convergence of the covariance matrix. As a final validation step in the 

determination of the plant noise covariance the digital lead-lag controller and nonlinear 

controller / extended Kalman filter are run concurrently in the same model, where the lead-lag 

controller stabilizes the levitated object while the controller and estimator operate in a purely 

observation mode and evaluates the desired actuation signal as shown in Figure 3.24. This 
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type of configuration allows the successful candidate, determined in the off-line tuning, to be 

validated using the actual hardware in real-time.  

3.5.1 Continuous-Time Extended Kalman Filter 

As mentioned earlier in sections discussing the simulations of the nonlinear controller 

and extended Kalman filter, the specific type of Kalman filter used in those sections was a 

continuous-time extended Kalman filter.  During the plant noise covariance determination 

carried out in support of this research, the quality of the estimates produced by this version of 

the state estimator was not suitable for hardware implementation.  Many potential candidates 

were examined during the course of this tuning process.  A successful candidate that produced 

simultaneously high quality position, velocity and current estimates while producing stable 

results on the hardware could not be determined. Many factors could have contributed to poor 

results with the foremost suspect in a list of reasons focusing on the discrete sampling of the 

output by the embedded microprocessor.  A slightly different formulation of the extended 

Kalman filter was vetted against the recorded hardware data generated during this phase of 

the research. This formulation of the optimal state estimator was outlined in section 2.4. The 

results of these trials were promising enough that the continuous-time extended Kalman filter 

formulation was dropped from this research in favor of the discrete-time extended Kalman 

filter.  The two different versions of the state estimator are identical in Simulink model 

structure, however, the difference is apparent when examining the estimator embedded m-

function; this is available in Appendix G compared to the continuous version found in 

Appendix F.     
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3.5.2 Continuous-Discrete Time Extended Kalman Filter 

The digital lead-lag controller was compiled by MATLAB with the aid of RTW and 

xPC and then downloaded to the target computer.  The reference input position of the 

levitated object was set in the middle of the sensor range at 14.8 mm.  The object was placed 

under the coil and manually adjusted in the vertical axis until the controller successfully 

levitated the object. The offset for the operating block illustrated in Figure 3.22 was adjusted 

until the measured position was tracking the reference input. The results of digital lead-lag 

controller stabilizing the levitated object at 14.8 mm are presented in Figure 3.25. The 25 

second time frame of the hardware data is sufficient time to determine filter performance and 

estimator state stability, due to the open-loop unstable behavior of the non-controller plant 

dynamics. 

Once a suitable set of reference data was collected, it was used as input into Figure 

3.23 where different plant noise covariance candidates were evaluated. After several iterations 

of potential candidates, a suitable set of covariance matrix parameters was determined and is 

presented in equation 3.4. These parameters represent a 'best fit' since trade-offs were made 

between the three states in such a manner to produce an overall high quality estimate.  



















=
−

−

−

8

7

4

10*100
010*75.0
0010*1

)(tQ    (3.4) 
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Figure 3.25 Digital lead-lag controller tracking 14.8 mm reference input 
 

The measured hardware position, reference trajectory and position estimate produced 

by the simulation outlined in Figure 3.23 is presented in Figure 3.32. The performance of the 

position estimate will serve as a reliable representation of the state due to the high level of 

quality produced. The error between the measured and estimated position is also presented in 

Figure 3.23, along with a baseline representing the mean error. This mean error baseline is 

calculated on the difference between the measured position and the estimated position along 

the entire simulation time of 25 seconds and not on the 1.5 second representative simulation 

segment shown for clarity.  
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The zero velocity reference trajectory and position estimate produced by the hardware 

data driven simulation is presented in Figure 3.27. The performance of the velocity estimate 

will serve as a reliable representation of the state due to the high level of quality produced. 

The error between the measured and estimated position is also presented in Figure 3.27, along 

with a baseline representing the mean velocity error. This mean error baseline is calculated on 

the difference between the measured position exactly the same as done with the mean position 

error, except that the time interval in this case is the 1.5 second interval shown in the 

simulation results from 5 to 6.5 seconds. As a note, the mean velocity error was determined to 

be 9.7571*10-7 mm/sec, during the 1.5 second simulation presented in Figure 3.27. Use of the 

entire simulation results would be misleading since there were many position fluctuations 

during the simulation sequence, namely the initial transient response of the extended Kalman 

filter converging to and then tracking the state trajectory. In sections 3.1 and 3.2 special 

considerations were made during the simulation process so singular behavior would be 

avoided in the simulated system response. In the present simulation, the possibility of a 

singularity existing due to step change in the reference trajectory is avoided since the 

controller and extended Kalman filter are given the constant position from the start of the 

simulation. The time derivative of the measured position is not presented, since it serves as a 

poor source of velocity information due to very low signal to noise ratio.    
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The current estimate produced by the hardware data driven simulation along with the mean 

current estimate is presented in Figure 3.28. The response of the current estimate tracks the 

measured position of the levitated object very closely. The mean current estimate is presented 

as a reference for the average current estimated during the simulation. 

 

Figure 3.28 Offline current estimate using experimentally tuned plant noise covariance 
and mean estimate current 

 
 

The response of the covariance is an important feature in the determination of a 

suitable candidate for the plant noise covariance.  Since the stability of the extended Kalman 

filter is difficult to prove, if not impossible, the only real methods available for the 

determination of 'good' results lies in the convergence and tracking results produced by the 

state estimates and the convergence and relative error of the covariance matrix. The 
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covariance matrix response to the hardware-driven data is shown in Figure 3.29. Of particular 

importance is the response associated with diagonal elements of the covariance matrix, since 

it is assumed that the states are not correlated with each other, see section 2.4. However, when 

the simulation is driven by real data this assumption is not valid in the strictest sense. Since 

the diagonal and off-diagonal elements converge to relatively small numbers when compared 

with the magnitude of the estimate errors presented in Figure 3.32-3.27 any correlation is 

weak and can be neglected.  

The estimated states of the Maglev system produced from the experimentally tuned 

plant noise covariance are quite suitable to be discussed as inputs for the feedback linearized 

nonlinear controller. As a unit of estimated states that are driven from the hardware data they 

are closely aligned with simulation results presented in sections 3.1 and 3.2. 
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As final validation, the plant noise covariance determined thus far was implemented 

on the Maglev hardware using the continuous-discrete time extended Kalman filter illustrated 

in Figure 3.24, while the digital lead-lag controller stabilized the system and the nonlinear 

controller / extended Kalman filter operated in an observer role.  

The reference trajectory, measured and estimated position for the extended Kalman 

filter using the experimentally determined plant noise covariance is presented in Figure 3.30. 

Due to the large amount of data recorded when this model was run on the hardware only a 1.5 

second interval of the results are presented here. The state estimate produces a very strong 

estimate and tracks the measured position well when the levitated object experiences a 

disturbance as shown at the 77.5 second marker.  

 

Figure 3.30 On-line position estimate produced by the extended Kalman filter with 
experimentally tuned plant noise covariance  
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The on-line estimated velocity and the reference velocity trajectory produced by the 

extended Kalman filter operating as a pure observer are presented in Figure 3.31.  The 

performance of the estimated velocity closely correlates to the hardware position response 

illustrated in Figure 3.30.  However, the estimated velocity responds much more quickly to 

the disturbance than the position estimate. The difference in response can be attributed to the 

plant noise tuning. Throughout the off-line tuning process performance of the position 

estimate had to be sacrificed in order to receive acceptable estimated velocity estimates.     

 

Figure 3.31 On-line velocity estimate produced by the extended Kalman filter with 
experimentally tuned plant noise covariance  

 

The on-line estimated current produced by the extended Kalman filter operating as a 

pure observer is presented in Figure 3.32. As with the estimated velocity, the current is very 
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quick to respond to the disturbance compared to the position estimate. However and as 

expected, the overall response of the current estimate is closely correlated with the position 

response shown in Figure 3.30.   

 

Figure 3.32 On-line velocity estimate produced by the extended Kalman filter with 
experimentally tuned plant noise covariance  

 
3.6 Nonlinear Controller Output Mapping 

 As outlined in section 2.2.2 the control input to the system is the voltage drop across 

the electromagnet coil. The Simulink file must communicate this desired voltage drop across 

a series of interconnects, first the PCI-6024E Digital Acquisition Card (DA card) and then 

through the power amplification electronics to deliver this voltage to its intended location on 

the hardware.  This section discusses the mapping of the nonlinear control effort through 
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these interconnects that would allow the Simulink based Kalman Filter to control the coil 

voltage.   

 3.6.1 Software and Hardware Interconnects 

The difference between the hardware and the theoretical model lies in their respective 

outputs, note the difference between the detail shown in Appendix A and Figure 2.4. The 

electric circuit model used in this research is very simple and is easily characterized by a 

Kirchhoff's voltage law while the actual hardware devices are much more complicated. A 

mapping between the linear controller output and the nonlinear controller output will allow 

the system output to be properly scaled to produce the desired changes in the levitated object 

position. The Simulink model of the controller and state estimator along with a linear 

mapping function that allows the nonlinear control output to be appropriately mapped to a 

usable output by the system to control the levitated object is presented in Figure 3.33. This 

model is similar to the model shown in Figure 3.24; the only real difference being the 

mapping function and the manual switch which determines whether the linear or nonlinear 

controller output is used to control the hardware. 

  

 

 

 



 

 

  

 
Fi

gu
re

 3
.3

3 
Si

m
ul

in
k 

m
od

el
 a

llo
w

in
g 

sc
al

ed
 n

on
lin

ea
r 

co
nt

ro
l o

ut
pu

t o
r 

di
gi

ta
l l

ea
d-

la
g 

co
nt

ro
lle

r 
ou

tp
ut

 to
 c

on
tr

ol
 th

e 
M

ag
le

v 
sy

st
em

 
 

78 



79 

 

3.6.2 Output Mapping 

The digital lead-lag controller is used to determine a suitable conversion between the 

two controllers. This mapping is accomplished by changing the set point of the digital 

controller (between 14.2 mm to 15.2 mm) and recording the output of the two controllers as 

well as the coil voltage and resistance. These results are presented in Appendix H. Then, the 

measured nonlinear controller output is plotted against the measured output from the digital 

lead-lag controller, along with a linear curve fit as illustrated in Figure 3.34. 

Nonlinear Controller Mapping
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Figure 3.34 Nonlinear controller output versus linear controller output, along with 
linear best fit 

 

The linear mapping relationship identified in Figure 3.34 is implemented in Simulink 

by the output conversion block shown in Figure 3.35, which will allow the nonlinear output to 

be properly scaled for use by the hardware. 
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Figure 3.35 Nonlinear output to linear output scaling block 
 

3.7 Experimental Hardware Results 

The feedback linearized nonlinear controller and continuous-discrete extended 

Kalman filter are implemented in a Simulink model as shown in Figure 3.33.  The Simulink 

model, related plant noise and output mapping have been experimentally adjusted specifically 

for the levitated object considered in this research. Attempts to levitate similar objects using 

the parameters previously discussed were unsuccessful.  Therefore, it is assumed that any 

additional objects would need to have the filter parameters tuned specifically for that object. 

This is a reasonable assumption since a different sized object will induce  different inductance 

due it its presence in the electromagnet's field and the sensor response characterization will 

also change due to the shape of the object. The results of this hardware implementation are 

presented in three different sections, Steady State Tracking, Square Wave Response, and Sine 

Wave Response. These responses represent the behavior of the Maglev interaction with the 

nonlinear controller and state estimator proposed in this research. 
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3.7.1 Steady State Tracking  

Two different set points were considered in this research to demonstrate the ability of 

the nonlinear controller and extended Kalman filter to track a constant reference trajectory. 

The first set point is in the middle of the linear region of the position sensor range at 14.8 

mm. The steady state tracking of the levitated object, mean levitated position and the 

corresponding reference trajectory are presented in Figure 3.36a.  As illustrated in the 

simulation results in section 3.1 and 3.2 the measured position also oscillates about a nominal 

value. The mean value of the measured position is also show in this figure allowing the -0.078 

mm static offset to be more apparent.  The second reference trajectory chosen was 14.5 mm 

with the results of the position tracking shown in Figure 3.36b. The measured position 

oscillates about the nominal trajectory as in the 14.8mm case, but the oscillation is much more 

periodic than the first case. The oscillations for both trajectories are attributed to the un-

modeled plant dynamics or even a consequence of the output mapping discussed in section 

3.6 having poor correlation near 14.5 mm. However the constant periodic nature of the 

Maglev response also points to an external disturbance to the system. All of these factors 

being accounted for results in a mean measurement showing a static offset of almost 0.5 mm.  
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(a) 
 

 

(b) 
Figure 3.36 Steady state tracking of the Maglev with levitated object to a reference 

trajectory 14.8 mm and 14.5 mm 
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3.7.2 Square Wave Tracking 

Two different set points were considered in this research to demonstrate the 

ability of the nonlinear controller and extended Kalman filter to track a square wave 

reference trajectory.  To prevent singularities and consequently unbounded response in 

both the controller output and/or the extended Kalman filter saturation blocks were 

place on the output of the derivative elements shown in Figure 3.33. A nominal 

trajectory of 14.8 mm was selected allowing the levitated object to be best placed in the 

middle of the linear response region of the position sensor. To the nominal trajectory, a 

0.05 mm amplitude square wave is added with frequency of 1.0 rad /sec and 2.0 rad / 

sec respectively. The measured position of the levitated object to each square wave 

trajectory, mean measured position and reference trajectory are presented in Figure 

3.37. The response of the levitated object to the 1.0 rad/sec input frequency closely 

correlates with the simulation results. The initial offset between the measured output 

and the reference trajectory is approximately 0.05 mm below the desired position and 

after change in position, the measured position is approximately 0.05 mm above the 

desired reference trajectory.  These results correlate very well with the simulated results 

for two reasons: the first being that the mean measured position is very close to the 

nominal reference trajectory of 14.8 mm, and the second reason is that the sinusoidal 

disturbance experienced in Figure 3.36b is not significant. Tracking results for 2.0 

rad/sec frequency represent a slightly different response for the hardware. The levitated 

object tracked the square wave quite well with the exception of the offset error 

associated with mean measured position and static offset associated with steady state 
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region before or after the step change. The mean measured error is observed to be at 

14.49 mm, approximately 0.31 mm above the nominal reference trajectory.  The 

measured wave height is 0.31 mm and the reference trajectory wave height is 0.1 mm, 

approximately 3 times greater wave height.  
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 (a)  

 
(b) 

Figure 3.37  Square wave tracking for the Maglev with an amplitude of 0.05mm 
and frequency of (a) 1.0 rad/sec and (b) 2.0 rad/sec 
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3.7.3 Sine Wave Tracking 

Two different set points were considered in this research to demonstrate the 

ability of the nonlinear controller and extended Kalman filter to track a sinusoidal 

reference trajectory. The nominal trajectory of 14.8 mm was selected in order to place 

the levitated object in the center of the position sensor linear response region. Two 

wave forms were added to this nominal trajectory of 0.05 mm amplitude sine wave with 

frequency of 1.0 rad /sec and 2.0 rad /sec. The measured position, mean measured 

position and the reference trajectory for both cases considered are presented in Figure 

3.38.  The mean measured position of the Maglev hardware to the 1.0 rad/sec frequency 

input showed a 0.13 mm offset when compared to the reference trajectory. While the 

mean measured position of the Maglev hardware to the 2.0 rad/sec input showed an 

offset of 0.06 mm, the position of the levitated object did track the input trajectory 

suitably well when considering the persistent sinusoidal disturbance. This disturbance 

can most definitely be attributed to un-modeled plant dynamics, output mapping issues 

associated with poor correlation and sinusoidal disturbance.        
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(a) 

 
(b) 

Figure 3.38 Sine wave tracking for the Maglev with an amplitude of 0.05mm and 
frequency of (a) 1.0 rad/sec and (b) 2.0 rad/sec.
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

In this research, a feedback linearizing nonlinear controller with an extended 

Kalman filter was studied for implementation on a Maglev system which served as 

hardware in the loop using a MATLAB/Simulink-based development environment. A 

nonlinear feedback linearizing controller was developed to control the open-loop 

unstable, highly nonlinear plant dynamics. Additionally, a continuous-discrete extended 

Kalman filter was developed to provide suitable state estimates to the controller for 

proper operation.  The extended Kalman filter and nonlinear controller concept was 

validated in simulation using m-file and Simulink-based methods.  The extended 

Kalman filter was tuned using data taken from the hardware in an offline method. Then, 

the output of the nonlinear controller was mapped back to a suitable level so existing 

data-acquisition Simulink blocks and power electronics could control the levitated 

objects trajectory. Experimental validation of the closed-loop response of the Maglev 

system was also presented.            

4.1 Conclusions 

To better address the actual behavior of the Maglev system a nonlinear 

dynamical model was constructed based on the understood dynamics of the system. For 

the control method to be successfully implemented, a coordinate transformation needed 

to be constructed that would convert the nonlinear system into an equivalent linear 
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system. Then, the equivalent linear system would be controlled by any linear method, 

and the control effort communicated back to the plant with the use of nonlinear 

feedback. A few system details needed to be verified, and then the system needed to be 

shown as feedback linearizable by means of a set of necessary and sufficient conditions.   

The dynamical model was first analyzed to determine if there were any hidden 

dynamics. In linear system theory this is analogous to determining if the system has any 

pole/zero cancellations. Once the relative degree of the nonlinear system was verified 

the necessary and sufficient conditions were checked to ensure that a coordinate change 

could be constructed. Finally, a linearizing coordinate transformation and nonlinear 

feedback were constructed that converted the original plant into an equivalent linear 

system. 

Next, the problem of pole placement and asymptotic output tracking was 

considered. Arbitrary placement of the closed-loop system poles allowed the 

performance of the system to be tailored for this specific purpose.  The linearizing 

coordinate transformation allowed for an augmented form of the controller that would 

asymptotically track certain reference trajectories. 

For the purposes of state estimation, an extended Kalman filter was constructed 

such that reliable and accurate state values could be utilized by the controller in a timely 

manner.  The Kalman filter is a state estimation method that seeks to optimally 

minimize the error between the actual and estimated states. Although the formulation in 

this work is “near” optimal, this method is robust enough that parameter changes and 

un-modeled plant dynamics do not have a large effect on the results.     
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A first series of simulations was developed in MATLAB m-file format which 

allowed the structure of the nonlinear controller and extended Kalman filter to be 

validated. The performance of the controller and estimator were promising enough that 

implementation on hardware was then pursued.  

The m-file simulations were first converted into S-function based Simulink 

models but it was discovered that MATLAB's  Real Time Workshop can not create an 

xPC executable from these types of models.  The simulations had to be recast into a 

more suitable format using embedded m-files.  While these simulations were being 

reformulated, the covariance equation was also updated from the simple format used in 

the m-file based simulations to the actual version that was implemented on hardware.  

The simulations produced promising results that strengthened the confidence in the 

original simulations. They showed that the higher fidelity covariance model, while 

allowing for higher standard deviations in estimation error, did not degrade the 

performance of the estimates or the controller performance. 

Implementation of the controller and estimator could be carried out on the 

hardware after the sensor noise, plant noise covariance and nonlinear controller output 

mapping was performed using the Maglev hardware.  

The sensor noise was determined empirically by fixing the position of the 

levitated object in the middle of the position sensors range and recording position 

values.  These values were then used off-line to determine the appropriate sensor noise 

covariance. 
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Making use of an existing Lead-Lag controller, measurements were taken of the 

levitated object suspended by the hardware. The Simulink simulation model was 

modified to allow off-line plant noise covariance tuning. During the tuning process the 

state values produced by the estimator were not sufficient enough to allow for closed-

loop control. The format of the state estimator was changed from a continuous-time 

extended Kalman filter to a continuous-discrete time extended Kalman filter. The utility 

of the Simulink environment allowed only some minor code changes to occur and the 

state estimator was converted. After several iterations a likely plant noise covariance 

was determined using the actual hardware data. As a final test, another Simulink model 

was constructed that allowed the state estimator to operate in an observation only mode.  

The state estimates produced by the extended Kalman filter were strong enough that 

hardware implementation could continue. 

The next challenge was to adequately scale the output of the nonlinear controller 

so that the hardware could make use of it.  Again, a linear controller was used to map 

the output of the nonlinear controller to the output of the linear controller.  This 

mapping was very sensitive to changes in mass of the levitated object and the sensor 

curve used. Any changes to the system parameters beyond this point in the development 

would require a full system 're-tune'.    

Several reference trajectories were considered for the Maglev hardware to track.  

In general, the Maglev tracked the reference trajectory with the exception that a static 

offset is present in all cases considered.  Furthermore, there was strong evidence of a 

sinusoidal disturbance and/or a combination of un-modeled plant dynamics.       
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4.2 Future Work 

4.2.1 Feedback Linearized Nonlinear Controller 

At the core of this nonlinear control technique was the linearizing coordinate 

transformation and feedback.  One of the many assumptions that this process drew upon 

was that the plant dynamics were known exactly. Once the system had been converted 

into a linear equivalent, a more robust controller could be used instead of a pole 

placement design to reduce the sensitivity to parameter changes and un-modeled plant 

dynamics. 

4.2.2 State Estimation 

 Determination of the plant noise covariance was by far the most difficult portion 

of this research.  The question for the designer was often, "what is a good enough state 

estimate?" Without adequate knowledge of the task to be performed or of how the 

hardware will actually perform, this question was difficult, if not impossible, to answer.  

An adaptive filtering scheme [38] would seek to alleviate the large and difficult tuning 

process. Post-measurement signal processing might also be implemented to improve 

performance and help reduce some of the persistent disturbances.  

4.2.3 Hardware  

 Three hardware issues prohibited this system from being an outstanding 

platform for the future development of advanced control and state estimation 

techniques. First, the range of the position sensor, 1.0 mm, was not enough of a 

dynamic range to fully demonstrate the power of the nonlinear controller.  A sensor 

with a larger operating range would greatly enhance this hardware. 
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Second, use of a commercially available electromagnet would further reduce the 

potential for un-modeled plant dynamics to exist, since the quality of construction and 

material construction are higher quality. Material selection and construction technique 

will help prevent the existence of distributed capacitance effects during electromagnet 

operation.  

Third, the use of a commercially available power amplifier to drive the 

electromagnet would enable a more accurate plant model to be constructed. The present 

hardware requires the use of an operational amplifier and power transistor to boost the 

control input.  
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APPENDIX A 
 

POWER ELECTRONICS SCHEMATIC    
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APPENDIX B 
 

LIE DERIVATIVES AND LIE BRACKETS 
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Two types of operations are outlined in this section that will further the main body of 

this work as it pertains to the required math operations.   

Lie Derivatives: 

The first type of operation involving a real-valued function )(xh  and a vector 

field )(xf  is called a Lie Derivative. It involves taking the derivative of 

)(xh along )(xf  and is often expressed as hL f [23]. 

( )∑
= ∂

∂=
∂
∂=

n

i
i

i
xf

x
hxf

x
hxfxdh

1
)()(),(     (B.1) 

Lie Brackets can be used multiple times along the same vector field and on more than 

one different vector field. An example of a Lie Derivative taken twice of )(xh , first 

along )(xf then along )(xg . 

( )
)()( xg

x

hL
xhLL f

fg ∂

∂
=      (B.2) 

This process is very straight forward. Simply start at the right-most Lie Derivative and 

work back towards the left. An example of a Lie Derivative taken twice of )(xh , both 

times along )(xf . 
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Lie Brackets: 

The second type of operation involves two smooth vector fields )(xf and )(xg  that 

produce another vector field. This new vector field is commonly called a Lie 

Bracket, [ ]gf ,  and is defined as 

[ ] )()(, xg
x
f

xf
x
g

gf
∂
∂

−
∂
∂

=     (B.4) 

where 
x
g

∂
∂ and 

x
f

∂
∂ are the Jacobians of )(xg and )(xf respectively.  

As with the Lie Derivative, the Lie Bracket, also called a Lie product, can be 

determined in successive iterations.  

)](,[)( 1 xgadfxgad k
f

k
f

−=     (B.5) 

Allowing for any 1≥k , when )()(0 xgxgad f = . 
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APPENDIX C 
 

RELATIVE DEGREE CALCULATIONS 
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In order to determine the relative degree, following Definition 2.1, k is set to 0 and the 

Lie derivatives are taken.  Then this process will continue until the Lie Derivative result 

is nonzero, when taken at the equilibrium state, 0x . 

:0=k  
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:1=k  

First taking the derivative of )(xh along )(xf . 

[ ] 23

2

1

3
2001)( xx

L
R

x
x

m
CgxxhL

T

c

c
f =














−








−=    (C.2) 

Then taking the derivative of )(xhL f along )(xg . 

[ ] 0100010)( =
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


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T

c
fg L

xhLL     (C.3) 

It is clear from C.3 that the process must progress to 2=k since 0)( ≠xhLL fg  

:2=k  

Instead of starting back with having to take the derivative )(xh of along )(xf , the next 

step in this process can proceed directly from C.2.  Starting with )(xhL f  and take the 

derivative of it along )(xf . 
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As in the previous step take )(2 xhL f and take its derivative along )(xg . 
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)(2 xhLL fg being non-zero is not enough to finish the process; it will have to be non-

zero at the equilibrium point 0x . Since the region of state space has been restricted to 

01 >x and 03 >x the relative degree of the system is simply computed relying on the 

equality kr =−1 . By simple inspection the relative degree of the Maglev system at 0x is 

3. 
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APPENDIX D 
 

NECESSARY AND SUFFICENT CONDITION CALCULATIONS
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Noting that the first vector of the matrix )( 0xg  is nothing more than a condensed 

version of )( 0
0 xgad f  there are no computations required other than establishing the Lie 

Product at the equilibrium point, 0x . 
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Calculating )(2 xgad f involves: 
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Determining the Jacobian of D.6 produces: 
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Once ][ 2 gadgadg ff is constructed its rank can be determined at 0x .  
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3=  
Checking Condition II: 

The center piece of condition II involves the Frobenius Theorem, which allows for the 

span to be involutive if it is completely integrable.  This condition is easily checked by 

noting the Lie Product of any two column vectors in the span is said to be involutive if 

that product can be constructed as a linear combination of those two vectors. 

)()()](),([ xgadxgxgadxg ff γδ +=    (D.12) 

Calculating )](),([ xgadxg f : 
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All of the required Jacobians for this product have already been calculated, substituting 

D.1, D.3, D.6 and D.8 into D.13 produces 
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Equation D.14 can also be constructed with the linear combination of 

)(xg and )(xgad f . 
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Note that 
3xL

R

c

c−
=δ and 

3

1
x

=γ thus making the second condition true and making the 

existence of a linearizing coordinate transformation and nonlinear feedback possible. 
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CONSTRUCTION OF THE COORDINATE CHANGE AND NONLINEAR 
FEEDBACK 
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Take the derivative of the output )(xh along the dynamics of the system until the input 

appears [24]. Looking back at the relative degree determination, the input )(tu is not 

expected to appear until third iteration of this process. 

)()()()()()()(( tuxhLxhLtuxgxfxhy gf +=+∇=&   (E.1) 

0]100[]001[)( == T
cg LxhL    (E.2) 

Substituting C.2 and E.2 into E.1  

)(02 tuxy ⋅+=&     (E.3) 

Repeating this process for E.3. 
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Taking advantage of C.3 and C.4 and substituting them into E.4 
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Again for equation E.5 
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Again using C.4 except its derivative is taken along )(xg  
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Equation E.6 can be rewritten substituting in E.8a and E.8b 
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The input has appeared as part of the output.  Now a coordinate transformation between 

)(ty and )(tu can be defined. 
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An alternative definition can be expressed in terms of the dynamic system parameters. 

Note that the position, velocity and acceleration of the levitated object are represented 

in the coordinate transformation. 
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Casting E.10b into a set of first order differential equations the coordinate change picks 

up the input )(tu allows the definition of the new input )(tv . 
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Calling the last derivative taken y&&& , the new input to the linear system E.11 can be 

rewritten in a vbzAz +=& format.  Where A  is 3x 3 matrix and b is a 3x1 vector. 
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The format of equation E.12 is commonly known as a Bruvonsky form.  The last row of 

E.12 is of special interest since it is the nonlinear feedback.  Examining it closer one 

finds that a relationship exists between the nonlinear system's input )(tu and the linear 

system's input v . 

)()()( 23 tuxhLLxhLv fgf +=    (E.13) 

Solving for )(tu determines what the relationships is between the two inputs using 

nonlinear feedback. 
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In much of the literature equation E.14 is written in a different format [22], [23] 
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Where the elements of α and β are shown in equation E.14. 
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Simulation Flow Schematic: 
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M-file Based Simulation for Step Response: 
%John A. Henley 
%22 May 2005 
% Feedback Linerized Controller / Extended Kalman Filter 
% Simulation via M-file for concept validation 
%This file requires that the m-file real_state_track.m and  
%estimate_fun_track.m 
%close and reset  
clear all;  close all; 
%System Parameters 
x10=.0148;  L0=.02; C0=x10*L0/2;  
mass=.05506;  g=9.81; L1=.59;  
r=.001^2; R=25;  
%Time Step 
dt=.001; 
%Time Vector 
t=[0:dt:1.5];  
m=length(t);     
%Define State Vector Size and Length 
xt=zeros(m,3); ym=zeros(m,1);p_cov=zeros(m,3);xe=zeros(m,3); 
%define Iniital Conditions 
x10=.0148;  x20=0;  x30=x10*sqrt(g*mass/C0); 
x0=[1*x10;0;1*x30] 
%Setting Initial Conditions of Plant & Estimate 
xt(1,:)=x0'; 
xe(1,:)=[1.05*x10;0;1.05*x30]'; 
%Define initital conditions for covaraince 
p0=.085*eye(3); p=p0; p_cov(1,:)=diag(p0)'; 
%Define Process Noise Covaraince 
q=.025*[ 0 0 0; 
         0 1 0; 
         0 0 1]; 
%define measurement equation 
h=[1 0 0]; 
%linearization and pole placement 
b=[ 0; 
    0; 
    1]; 
A=[ 0 1 0; 
    0 0 1; 
    0 0 0]; 
%desired poles 
p1=[-100,-60,-80]; 
%Closed Loop Poles based on [-100,-60,-80]  
l=[240 18800 480000]; 
%Open Loop Poles 
a=[0 0 0]; 
%Teoplitz Matrix 
T=[1 0 0; 0 1 0; 0 0 1]; 
%Controbalitity Matrix 
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C=[0 0 1;0 1 0;1 0 0]; 
%Bass-Gura Formula 
k=(l-a)*inv(T')*inv(C) 
%Load workspace with 2mm step change 
load reftraj0140501605 
yr=yref; 
%velocity is set to zero to help avoid singularity in the response 
yr1=zeros(m,1); 
yr2=yr1; 
yr3=yr2; 
%start of simulation 
for i=1:m-1; 
%i-th portion of the reference trajectory 
y=yr(i); 
y1=yr1(i); 
y2=yr2(i); 
y3=yr3(i); 
%Plant State Propagation 
%fixed step 4th Order Runge-Kutta Integration 
f1=dt*real_state_track(xt(i,:),k,y,y1,y2,y3,xe(i,:)); 
f2=dt*real_state_track(xt(i,:)+0.5*f1',k,y,y1,y2,y3,xe(i,:)); 
f3=dt*real_state_track(xt(i,:)+0.5*f2',k,y,y1,y2,y3,xe(i,:)); 
f4=dt*real_state_track(xt(i,:)+f3',k,y,y1,y2,y3,xe(i,:)); 
xt(i+1,:)=xt(i,:)+1/6*(f1'+2*f2'+2*f3'+f4'); 
%create artificial measurement bases on reference trajectory with 
%standard deviation r 
ym(i)=xt(i,1)+sqrt(r)*randn; 
% Kalman Update 
gain=p*h'*inv(h*p*h'+r); 
p=(eye(3)-gain*h)*p; 
xe(i,:)=xe(i,:)+gain'*(ym(i)-xe(i,1)); 
%State Estimate Propagation 
%fixed step 4th Order Runge-Kutta Integration 
f1=dt*estimate_fun_track(xe(i,:),k,y,y1,y2,y3); 
f2=dt*estimate_fun_track(xe(i,:)+f1',k,y,y1,y2,y3); 
f3=dt*estimate_fun_track(xe(i,:)+f2',k,y,y1,y2,y3); 
f4=dt*estimate_fun_track(xe(i,:)+f3',k,y,y1,y2,y3); 
xe(i+1,:)=xe(i,:)+1/6*(f1'+2*f2'+2*f3'+f4'); 
%Bounds Check 
if xe(i,3)<0 
   xe(i,3)=0; 
end 
if xe(i,3)>1.25 
   xe(i,3)=1.25; 
end 
%Jacobian of open loop plant 
fpart =[0,   1,0; 
3*(C0/mass)*(xe(i,3))^2/xe(i,1)^3,0,2*(C0/mass)*xe(i,3)/xe(i,1)^2; 
0,0,-(R/L1)]; 
%propagation of covariance 
phi=c2d(fpart,[0;0;1],dt); 
p=phi*p*phi'+q*dt; 
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p_cov(i+1,:)=diag(p)'; 
end 
%calculation of sigma bounds 
sig3=p_cov.^(0.5)*3; 
M-file Based Plant Propagation: 
function f=real_state_track(xt,k,y,y1,y2,y3,xe) 
x1d=.0148; 
x10=.0148; 
L0=.02; 
C0=x10*L0/2; 
mass=.05506; 
g=9.81; 
L=.59; 
R=25; 
Ks=1; 
%transformed states 
z1 = Ks*(xe(1)); 
z2 = Ks*xe(2); 
z3 = Ks*(g-C0/mass*xe(3)^2/xe(1)^2); 
%componets of nonlinear feedback 
b=2*Ks*C0/mass*xe(3)^2/xe(1)^3*xe(2)+2*Ks*C0/mass*xe(3)^2/xe(1)^2*R/L; 
a=-2*Ks*C0/mass*xe(3)/xe(1)^2/L; 
v=-(k(1)*(z1-Ks*y)+k(2)*(z2-Ks*y1)+k(3)*(z3-Ks*y2)); 
u=(-b+v+y3)/a; 
%controlled plant 
f=[ xt(2); 
    g-(C0/mass)*(xt(3)/xt(1))^2; 
    -(R/L)*xt(3)+(1/L)*u]; 
 
M-file Based Estimate Propagation: 
function f=estimate_fun_track(xe,k,y,y1,y2,y3) 
x1d=.0148; 
x10=.0148; 
L0=.02; 
C0=x10*L0/2; 
mass=.05506; 
g=9.81; 
L=.59; 
R=25; 
Ks=1; 
%transformed states 
z1 = Ks*(xe(1)); 
z2 = Ks*xe(2); 
z3 = Ks*(g-C0/mass*xe(3)^2/xe(1)^2); 
%componets of nonlinear feedback 
b=2*Ks*C0/mass*xe(3)^2/xe(1)^3*xe(2)+2*Ks*C0/mass*xe(3)^2/xe(1)^2*R/L; 
a=-2*Ks*C0/mass*xe(3)/xe(1)^2/L; 
v=-(k(1)*(z1-Ks*y)+k(2)*(z2-Ks*y1)+k(3)*(z3-Ks*y2)); 
u=(-b+v+y3)/a; 
f=[ xe(2); 
    g-(C0/mass)*(xe(3)/xe(1))^2; 
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    -(R/L)*xe(3)+(1/L)*u]; 
  
   
M-file Based Simulation for Sine Wave Response: 
%John A. Henley 
%22 May 2005 
% Feedback Linerized Controller / Extended Kalman Filter 
% Simulation via M-file for concept validation 
%This file requires that the m-file real_state_track.m and 
%estimate_fun_track.m 
%close and reset 
clear all;  close all; 
%System Parameters 
x10=.0148;  L0=.02; C0=x10*L0/2; 
mass=.05506;  g=9.81; L1=.59; 
r=.001^2; R=25; 
%Time Step 
dt=.001; 
%Time Vector 
t=[0:dt:1.5]; 
m=length(t); 
%Define State Vector Size and Length 
xt=zeros(m,3); ym=zeros(m,1);p_cov=zeros(m,3);xe=zeros(m,3); 
%define Iniital Conditions 
x10=.0148;  x20=0;  x30=x10*sqrt(g*mass/C0); 
x0=[1*x10;0;1*x30] 
%Setting Initial Conditions of Plant & Estimate 
xt(1,:)=x0'; 
xe(1,:)=[1.05*x10;0;1.05*x30]'; 
%Define initial conditions for covariance 
p0=.085*eye(3); p=p0; p_cov(1,:)=diag(p0)'; 
%Define Process Noise Covariance 
q=.025*[ 0 0 0; 
    0 1 0; 
    0 0 1]; 
%define measurement equation 
h=[1 0 0]; 
%linearization and pole placement 
b=[ 0; 
    0; 
    1]; 
A=[ 0 1 0; 
    0 0 1; 
    0 0 0]; 
%desired poles 
p1=[-100,-60,-80]; 
%Closed Loop Poles based on [-100,-60,-80] 
l=[240 18800 480000]; 
%Open Loop Poles 
a=[0 0 0]; 
%Teoplitz Matrix 
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T=[1 0 0; 0 1 0; 0 0 1]; 
%Controbalitity Matrix 
C=[0 0 1;0 1 0;1 0 0]; 
%Bass-Gura Formula 
k=(l-a)*inv(T')*inv(C) 
  
%reference signal 
yr=.0148*ones(m,1)+0.001*sin(20*t'); 
yr1=diff(yr)/dt; 
yr1(m)=yr(m-1);        %First Time Derivative of Trajectory 
yr2=diff(yr1)/dt; 
yr2(m)=yr1(m-1);     %Second Time Derivative of Trajectory 
yr3=diff(yr2)/dt; 
yr3(m)=yr2(m-1);   %Third Time Derivative of Trajectory 
%start of simulation 
for i=1:m-1; 
%i-th portion of the reference trajectory 
y=yr(i); 
y1=yr1(i); 
y2=yr2(i); 
y3=yr3(i); 
%Plant State Propagation 
%fixed step 4th Order Runge-Kutta Integration 
f1=dt*real_state_track(xt(i,:),k,y,y1,y2,y3,xe(i,:)); 
f2=dt*real_state_track(xt(i,:)+0.5*f1',k,y,y1,y2,y3,xe(i,:)); 
f3=dt*real_state_track(xt(i,:)+0.5*f2',k,y,y1,y2,y3,xe(i,:)); 
f4=dt*real_state_track(xt(i,:)+f3',k,y,y1,y2,y3,xe(i,:)); 
xt(i+1,:)=xt(i,:)+1/6*(f1'+2*f2'+2*f3'+f4'); 
%create artificial measurement bases on reference trajectory with 
%standard deviation r 
ym(i)=xt(i,1)+sqrt(r)*randn; 
% Kalman Update 
gain=p*h'*inv(h*p*h'+r); 
p=(eye(3)-gain*h)*p; 
xe(i,:)=xe(i,:)+gain'*(ym(i)-xe(i,1)); 
%State Estimate Propagation 
%fixed step 4th Order Runge-Kutta Integration 
f1=dt*estimate_fun_track(xe(i,:),k,y,y1,y2,y3); 
f2=dt*estimate_fun_track(xe(i,:)+f1',k,y,y1,y2,y3); 
f3=dt*estimate_fun_track(xe(i,:)+f2',k,y,y1,y2,y3); 
f4=dt*estimate_fun_track(xe(i,:)+f3',k,y,y1,y2,y3); 
xe(i+1,:)=xe(i,:)+1/6*(f1'+2*f2'+2*f3'+f4'); 
%Bounds Check 
if xe(i,3)<0 
   xe(i,3)=0; 
end 
if xe(i,3)>1.25 
   xe(i,3)=1.25; 
end 
%Jacobian of open loop plant 
fpart =[0,1,0; 
3*(C0/mass)*(xe(i,3))^2/xe(i,1)^3,0,-2*(C0/mass)*xe(i,3)/xe(i,1)^2; 
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0,0,-(R/L1)]; 
%propigation of covariance 
phi=c2d(fpart,[0;0;1],dt); 
p=phi*p*phi'+q*dt; 
p_cov(i+1,:)=diag(p)'; 
end 
%calculation of sigma bounds 
sig3=p_cov.^(0.5)*3; 
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EMBEDDED M-FUNCTION CODE 
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Nonlinear Controller: 
function control = fcn(inputs) 
     y  =   inputs(1); 
    y1  =   inputs(2); 
    y2  =   inputs(3); 
    y3  =   inputs(4); 
    x1  =   inputs(5); 
    x2  =   inputs(6); 
    x3  =   inputs(7); 
    x1d=.0148; 
    x10=.0148; 
    L0=.02; 
    C0=x10*L0/2; 
    mass=.05506; 
    g=9.81; 
    L=.59; 
    R=25; 
    Ks=1; 
    k=[480000, 18800, 240]; 
    z1 = Ks*(x1); 
    z2 = Ks*x2; 
    z3 = Ks*(g-(C0/mass)*(x3/x1)^2); 
     b=2*Ks*C0/mass*x3^2/x1^3*x2+2*Ks*C0/mass*x3^2/x1^2*R/L; 
    a=-2*Ks*C0/mass*x3/x1^2/L; 
    v=-(k(1)*(z1-Ks*y)+k(2)*(z2-Ks*y1)+k(3)*(z3-Ks*y2)); 
    u1=(-b+v+y3)/a; 
control = u1; 
 
Extended Kalman Filter: 
 
function [state_estimate,covariance] = fcn(old_state,inputs, 
old_covariance) 
p0  =   1e-5*eye(3); 
p   =   p0   ; 
p_cov  =   diag(p0)'; 
q   = [0        0        0; 
              0  1*10^-5        0; 
              0        0  1*10^-5]; 
gamma=.25* [0,0,0; 
            0,1,0; 
            0,0,1]; 
x10=.0148;  L0=.02; C0=x10*L0/2; 
mass=.05506;    g=9.81; L=.59;  R=25;  
h   =   [1 0 0];  
r = 0.001^2; 
u1  =   inputs(1);   
ym  =   inputs(2); 
p=old_covariance; 
x=old_state; 
gain=p*h'/r; 
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fpart =[    0,                              1,                           
0; 
    3*(C0/mass)*(x(3))^2/x(1)^3,    0,    -2*(C0/mass)*x(3)/x(1)^2; 
    0,                              0,                       -(R/L)]; 
 dx=[                        x(2); 
    g-(C0/mass)*(x(3)/x(1))^2; 
    -(R/L)*x(3)+(1/L)*u1] + gain*(ym - x(1)); 
pdot = fpart*p + p*fpart' -p*h'*(1/r)*h*p+ gamma*q*gamma'; 
state_estimate=dx; 
covariance=pdot; 
 
Maglev Plant Dynamics: 
function [sys,x0] = maglev_3(t,x,u,flag) 
switch flag, 
   case 0 
    sizes = simsizes; 
    sizes.NumContStates  = 3; 
    sizes.NumDiscStates  = 0; 
    sizes.NumOutputs     = 1;   
    sizes.NumInputs      = 1;   
    sizes.DirFeedthrough = 0;   
    sizes.NumSampleTimes = []; 
    sys = simsizes(sizes);   
    x0 = [1.10*.0148;0;1.1*.8921]; 
            
   case 1  
    u1=u(1); 
    x10=.0148; 
    L0=.02; 
    C0=x10*L0/2; 
    mass=.05506; 
    g=9.81; 
    L=.59; 
    R=25; 
    dx=[ x(2); 
        g-(C0/mass)*(x(3)/x(1))^2; 
        -(R/L)*x(3)+(1/L)*u1]; 
     sys=dx; 
 
   case 3 
    sys = [x(1)];  
  
   case {2, 4, 9 } 
     sys = []; % Unused flags 
  
   otherwise 
     error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
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Continuous - Discrete  Extended Kalman Filter: 
function [state_estimate,covariance] = 
fcn(old_state,inputs,ref_pos,old_covariance) 
q   =   [  1*10^-4             0              0;  
           0             .75*10^-7              0;  
           0            0              1*10^-8 ]; 
gamma=[ 1,0,0; 
        0,1,0; 
        0,0,1]; 
x1d=ref_pos/1000; 
x10=x1d; 
L0=.02;  
C0=x10*L0/2; 
mass=.05506; 
g=9.81;  
L=.59;   
R= 27.6;  
Ks=1; 
h=[1 0 0];  
r = 0.0034^2; 
u1=inputs(1);  
ym=inputs(2); 
p=old_covariance; 
x=old_state; 
%Continuos-Discrete Extended Kalman Filter 
k=p*h'*inv(h*p*h'+r); 
%State Update 
x=x+k'*(ym-x(1)); 
%Covariance Update 
p=(eye(3,3)-k*h)*p; 
%propigation of state 
dx=[x(2); 
    g-(C0/mass)*(x(3)/x(1))^2; 
    -(R/L)*x(3)+u1/L]; 
%propigation of covariance 
fpart =[0,  1,  0; 
    3*(C0/mass)*(x(3))^2/x(1)^3,    0,    -2*(C0/mass)*x(3)/x(1)^2; 
    0,                              0,                       -(R/L)]; 
pdot=fpart*p+p*fpart'+gamma*q*gamma'; 
state_estimate=dx; 
covariance=pdot; 
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APPENDIX H 
 
 

NONLINEAR CONTROL OUTPUT MAPPING
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