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ABSTRACT

DESIGN AND IMPLEMENTATION OF A FEEDBACK LINEARIZING
CONTROLLER AND KALMAN FILTER FOR A

MAGNETIC LEVITATION SYSTEM

Publication No.

John A. Henley, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Panayiotis S. Shiakolas

The principal investigation undertaken in this research is the development and
subsequent implementation of a feedback linearizing nonlinear controller and extended
Kalman filter for a laboratory-based Magnetic Levitation (Maglev) device. The Maglev
hardware is both highly nonlinear and open-loop unstable in its dynamic response. The
control and estimation scheme proposed in this work is first validated using an
increasingly sophisticated level of simulations. The control and estimation algorithm

had the sensor noise identified using hardware data. Then, the plant noise covariance is

v



tuned using both on-line and off-line hardware data. Additionally, the output of the
nonlinear controller is then mapped to hardware-suitable levels using a digital lead-lag
controller. Experimental results are included where the system is given a set of

reference trajectories to track.
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CHAPTER 1
INTRODUCTION

In the past few decades an increasing amount of research effort in the control
systems field has been focused on the control of a magnetic levitation system. This
problem is of particular interest to the controls community since the dynamics of the
system are open-loop unstable and highly nonlinear. For a successful controller to be
considered for such a system, it must simultaneously stabilize the open-loop behavior
and correctly incorporate the nonlinear elements of the systems dynamics into the
control output. Examples of magnetic levitation systems can be found throughout
academia and industry. Some of these applications include semiconductor fabrication
[1], production of steel [2], high speed commuter trains [3], bearing design [4] and
machine tools [5] in which magnetic levitation, in various forms has played a key role
in the development of these successful technologies.

The challenges presented to the designer when developing a control scheme for
this system are quite formidable and, as many times as not, the simpler solution using
well know principles is selected. These linear solutions (both frequency and state space
based approaches) are quite capable of controlling this system. However, their strength
is also a weakness in that the assumptions made to allow use of these techniques limit

the region of state space that can be considered.



Additionally, even conventional linear state space approaches usually require
faithful reproduction of the entire state vector, even when the state vector can not be
directly measured. With the surfacing of nonlinear control these systems can be more
accurately controlled over a wider range of the state space. Of the wide variety of
nonlinear control schemes available, an exact feedback linearization controller is
considered for the stabilization and tracking control of a single-axis magnetic levitation
test bed. For successful implementation of this controller, a continuous-discrete
extended Kalman filter is constructed to provide real-time accurate estimates of the
velocity and current, which are not measurable with the hardware configuration.

1.1 Background

The classical approach involves describing the system with an input/output
relationship or vector-matrix description based on a first order linear approximation of
the system dynamics perturbed around an operating point. Once the system is
characterized by the linear description, the design of a controller using various
techniques is relatively straight forward. Many commercially available software
packages could aid in the design and structure selection of the linear controller. Often
the controller types available to linear systems only require information provided by
directly measuring the output, while more sophisticated linear controllers require the
full state for the control law formulation. In the event that the full state is not available,
the remaining states can often be reconstructed using a state estimator. While these
techniques many times satisfy the design needs, linear controllers are susceptible to a

few notable limitations. The approximate linear model is only valid in a small region of



state space around the operating point. Tracking certain types of reference trajectories
or user set operating points far away from the linearized set point can cause the state to
venture into an unstable region. External disturbances, which are often difficult if not
impossible to identify and address prior to implementation, can also cause the system to

have undesirable or unstable behavior.

1.2 Prior Related Research

Many authors have proposed solutions to the control and state estimation of
magnetic levitation systems which are selected since they are nonlinear and open-loop
unstable. The feedback linearization technique (both input-state and input-output) has
been applied to solve the nonlinear control problem posed by magnetic levitation
devices [6-8]. Other nonlinear methods applied include Hybrid Neural Networks [9],
Sliding Mode Control [10], Dual Neural Network/Sliding Mode Control [11], and
Robustly Stabilized Feedback Linearization [12]. However, the control problem alone
only addresses one half of the design challenge, accurate and timely information about
the entire state is required. Some authors have chosen to numerically differentiate the
position signal as a means to observe or estimate the velocity of the suspended object
[6], while others have addressed the state estimation problem with Luenberger-type
observers [12]. A more advanced estimator using a reduced order nonlinear observer

has also been shown with much success in previous work [13].



1.3 Thesis Organization

This research is structured as follows: The general description of the system,
synthesis of the nonlinear controller, and synthesis of the extended Kalman filter are
presented in Chapter 2. Simulation and hardware implementation of the controller
scheme is presented in Chapter 3. System simulations are considered in Sections 3.1
and 3.2. Position sensor characterization and position noise covariance are determined
experimentally in Sections 3.3 and 3.4. The plant noise covariance is tuned in an off-
line method, using hardware data, then verified on-line with the hardware, in section
3.5. Mapping of the nonlinear control output to suitable hardware values is carried out
in section 3.6. Hardware results are presented in Section 3.7, where a number of
reference trajectories are considered. Chapter 4 contains the conclusions of this research

and suggestions for future work.



CHAPTER 2

SYSTEM DESCRIPTION AND DESIGN

In this chapter the pertinent system dynamics, nonlinear feedback linearized
control law and state estimator used in this research are presented. The scope of this
effort is to use estimated states to determine a sequence of control inputs that will allow
the measured output of the system to recreate a reference trajectory. To accomplish this
goal, this chapter is broadly organized into three main sections. The first addresses the
system dynamics, equilibrium points and hardware / software development
environments. The next main section is more extensive since it outlines the
preliminaries for the existence of the proposed nonlinear control scheme. The third
section discusses the proposed state estimator and the foundations that allow its
extension to nonlinear systems.

2.1 Hardware Description

The hardware device used in this research is a Magnetic Levitation (Maglev)
System and is shown in Figure 2.1. The Maglev consists of three primary components:
the infrared position sensor, the power and analog control electronics, and the
electromagnet. In operation, the position sensor emits an infrared light beam across the
air gap between the suspended ferromagnetic object and the electromagnet. The voltage
corresponding to the object position generated by the sensor is acquired by a

commercially available Digital Acquisition Card (DAC), NI PCI 6024E [14] used in a



personal computer (PC). Once the signal is acquired by the DAC, the software state
estimator uses the measured position and plant model to estimate the unmeasured states
of the Maglev system. These estimated states are in turn used by the nonlinear
controller to determine the appropriate control output. The control output from the PC is

amplified using the power electronics in the black box shown in Figure 2.2.

Electromagnet
Coil

Levitated
Ferromagnetic

Object Position

Sensor

Figure 2.1 Maglev hardware — electromagnet coil, position sensor and levitated
object



Power & Control
Electronics

Terminal Block for
Digital Acquisition
Card

Figure 2.2 Maglev hardware — power electronics and
terminal block

2.2 Real-Time Development Environment

This work was implemented and verified on a hardware in the loop (HIL)
environment using xPC Target [15], a MATLAB toolbox allowing for real time
embedded development. xPC allows the system designer to develop and incorporate the
design and analysis tools of MATLAB into a readily deployable executable. The current

xPC setup requires two PC systems; the target system executes the real time kernel,



while the host system performs supervisory control, monitoring and parameter changes.
Communication between the two systems is accomplished through a serial
communication interface. This XxPC setup has been used with great success for the
implementation of a digital / neural net controller [ 16] and with the implementation of a
digital / fuzzy controller [17]. The details of this system, its set-up and use have been
treated by afore-mentioned authors, and its use as an educational tool has been
discussed by [18].

2.3 Magnetic Levitation Dynamics

2.3.1. Magnetic Levitation System Operation
The schematic of the equivalent magnet model and the free body diagram of a

suspended object of mass, m,vertically is shown in Figure 2.3.

+Wg -

Figure 2.3 Maglev circuit and free body diagram
When a ferromagnetic object is placed beneath the electromagnet at a distance x,
typically denoted as an air gap, it will be acted upon by the attractive force produced by
the electromagnet. Simultaneously, the object will block a portion of the infrared light

being emitted and received by the position sensor. A relationship describing the amount



of blocked light to the object distance allows the sensor voltage signal to be converted
into a position below the electromagnet coil. The signal is fed back into the target where
it is further used to determine the state of the system and subsequently used to generate
a control signal.
2.3.2. Electromagnet Dynamics

The dynamics of the coil are usually represented as an equivalent R-L circuit in
series as shown in Figure 2.3. Applying Kirchoff’s voltage law around the circuit, one
can describe the relevant dynamics of this 1% order system. The voltage drop across the

resistor and inductor is described by Ohm’s and Ampere’s laws respectively [19]

Ve =i*RC (2.1)
di

V, =1 — 2.2

L Cdl‘ ( )

Applying Kirchoff’s voltage law and substituting equations 2.1 and 2.2 yields

Ll(t):VR +VL :i*RC+LC% (23)

Recasting equation 2.3 as a first order differential equation gives

ﬂ—_&lq_M

2.4
d L, L, @4)

2.3.3. Levitated Object Dynamics
A free body diagram of the levitated object being suspended vertically by

balancing the force generated by the electromagnet, f(x,i), and the gravity force, mg,

is shown in Figure 2.3. The force experienced by the levitated object f(x,i), is a
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function of the air gap or distance below the electromagnet, x, and the current supplied
to the magnet, i, is found by direct application of both Ampere’s and Faraday’s laws

[20].

i dL(x)

S i) == 2 dx

(2.5)

The total inductance, L(x), is a nonlinear function of the position in the electromagnetic

field. A typical approximation is to assume that the inductance varies in an inverse

relationship with respect to the position [21], as shown in equation 2.6

L(x)=L, +LO% (2.6)
where L_is the constant inductance of the electromagnet in the absence of the levitated
object, L, is the additional inductance contributed by the presence of the object, and

X, 1s the equilibrium position. Substituting equation 2.6 into equation 2.5 and taking the

derivative, one finds equation 2.7.
2 N2
I :
f(x,i)= _osz &J = C[ij 2.7)

Application of Newton’s 3" Law of motion for this suspended object yields

N2
mi = mg — c[iJ (2.8)
X

Recasting equation 2.8 into a standard form gives the equation of motion

i=g _E[L’j (2.9)
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2.3.4. Vector Format and Equilibrium Points

It is necessary to arrange the dynamics expressed in equations 2.4 and 2.9 in a
format better suited for the analysis to be performed in later sections. The state variables
are defined as: x; — position, x, — velocity and x3 — current. The state variable format of

the dynamics becomes, assuming that the position is measured,

. %)
X1 c 2 0
x2::g——{§J + 0 |u@) (2.10)
; m\ xy 1
; L
K L.
L LC _
y=c"-[x x x]'=l 0 0}k x x[ (2.11)

In a shorter format, the vector expression found in equations 2.10 and 2.11 can be

expressed as
x=f(x)+g-u(t) (2.12 a)
y =h(x) (2.12b)
It is important to note that at static equilibrium, the time rate derivatives must strictly be

equal to zero, x =0. The state that satisfies this condition may be expressed as

%=H O%F (2.13)
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The equilibrium current,xg, is evaluated from equation 2.9, and must satisfy the

3 1 |&m
Xn =X 1/— 2.14

2.4 Exact Feedback Linearizing Controller

following condition [20]

In this section, the conditions for the linearizing transformation and nonlinear
feedback allowing the Maglev to be controlled are outlined. Of particular interest will
be the coordinate transformation also known as a diffeomorphism, z = ¢(x), and the
feedback law, u = a(x)+ f(x)-v, which will allow it to be accomplished. Some of the
more common mathematical preliminaries related to this discussions are presented in
Appendix B, for reference.

2.4.1. Determination of Relative Degree

The relative degree of a linear system is defined as the difference between the
number of poles and zeros [23]. This concept can be extended to nonlinear systems but
requires more mathematical treatment. Further treatment of this issue is discussed
elsewhere, where the following definition is given and repeated here for completeness

[23]:



13

Definition 2.1 [23]
Given the Single Input — Single Output System, SISO, outlined in equation 2.12a, it is

said to have relative degree r at a point x,,if:

1) Lng}h(x) = 0 for all xin a neighborhood of xpand all £ <7 -1

if) L, L;,_lh(x) £0

The terms L, and L_kf represent the Lie derivative of /(x) taken along g(x)and

k —times along f(x), respectively. A more expansive treatment of this subject is
presented in Appendix B.

Applying this definition to the Maglev system yields:

k=0: Lyh(x)=0 (2.15)
k=1: LgL ph(x)=0 (2.16)
. 2, v 2C | x3

k=2 LyLiph(x) == | 2.17)

At the equilibrium point(x,,i,), the terngL_th(xO);ﬁO, meaning that the

relative degree of the system is 3. For the relative degree of the Maglev to remain well
defined, the system will be allowed to operate in a region of state space that is bounded

by x, >0and x, >0. This restriction is not unreasonable since x; <0would result in

the levitated object either touching the coil or existing inside the coil, and x, <0 would
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result in a negative current. Careful examination of the power electronic schematic
shown in Appendix A does not allow for this possibility.

In the event the relative degree is less than the order of the system, additional
steps must be taken in the construction of the coordinate transformation. The remaining
n—r portions of the diffeomorphism will have to be linearly independent functions to
complete the transformation [24]. Additionally, the internal dynamics, the remaining
n—rportion of the system that is unobservable in the input-output map, must be
examined to guarantee that these dynamics are in fact stable [23].

As a note, the internal dynamics of a nonlinear system can be a significant
design issue if the system is inverted, in the course of improving trajectory tracking.
This problem has been greatly studied and will not be addressed here, but the reader can
find many useful results and methods in the open literature [25 - 33].

2.4.2. Necessary and Sufficient Conditions for Feedback Linearization

The necessary and sufficient conditions for a nonlinear system to be converted
to a linear system have been well documented in literature [23, 24, 26 - 36]. Again, the
main results of [23] are presented here for completeness.

Definition 2.2 [23]
Given the nonlinear system in 2.12a and 2.12b, the State Space Exact

Linearization problem is solvable near a point x (i.e. there exists an “output" function
h(x) for which the system has relative degree ratx() if and only if the following

conditions are satisfied:
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1) The matrix [g ad g ad ]2, g] has rank n

i) The distribution D = span{ g adyg ad ]2, g}is involutive near x,, .

Checking the first condition:

0 0 -2 [x—;J
mL, \ x,
ran/’c[g(x0 ), ad ; g(x,), ad ; g(x, )]z rank| 0 E[X—;J ﬂ[x2f3J (2.18)
mL,\ x, mL, \ x
1 R, R’
L, L L

=3
For the second condition to be shown true, the Lie Bracket of any two vectors in the

span D must be equal to a linear combination of those two vectors.

0 0 0
_R
[g(x),ad rg(x)]= ﬁ% S +i£x—; (2.19)
mL | xi L. x3 1| x3mLe{ xj
0 L. R.
L

Equation 2.19 shows that the span is in fact involutive atx,. The supporting
ancillary calculations can be found in Appendix D. Note that should the state vector
venture in regions of state space such that x; =0and/or x3 =0, not only will the

system lose its relative degree (see definition 2.1) but it will also lose the necessary and

sufficient conditions for a feedback linearizing coordinate transformation.
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2.4.3 Coordinate Transformation and Nonlinear Feedback

The previous section introduced the necessary and sufficient conditions for the
existence of a feedback linearizing coordinate transformation, also known as a
diffeomorphism, and the related nonlinear feedback. The coordinate transformation
process is relatively straight forward once the connection is made that the output
equation, 2.12b, satisfies the conditions placed upon 7j by [26] and [35], where T is the

solution to the partial differential equation

_on oT, ~
(dTy, g(x)) = . g(x)+...+ - g(x)=0 (2.20)

Xn
In this work, no claim is placed upon a global transformation. To generate the
transformation, one could simply take the Lie Derivative of 2.12b with respect to 2.12a
until the input u(¢) appears in the output of the derivative [24]. The details of this
procedure are presented in Appendix E. The nonlinear change in coordinates is

presented in equation 2.21.

2
z=0O(x)=|x;, Xy, g—g(—j (2.21)

In the transformed coordinates, the nonlinear dynamic equations take the from shown in

equation 2.22.



17

. . X2

71 Y 2

. . Clx

2 |=|i|= g—;(xij (2.22)
] |y

2C| xpx3 L 2CR, x5 | 2C (x3 ()
m x13 mz’c X12 mLc x12
By defining the following terms, «,,u(t), equation 2.22 can be written in terms of a

linear system of equations,

o) =) _ L{%Jr R, x}} (2.23a)
L,Lh(x) X, L,
2
) =——— =1k [x—ll (2.23b)
LgLiph(x) 2C | x3
a(x)+v
O 00 (2239

Restrictions of x| # 0and x3 # 0 are placed on the system to prevent equation 2.23

from becoming singular. Not only will 2.23 become singular but the rank requirement
outlined in necessary and sufficient conditions of section 2.4.2 will be violated. These
restrictions are also the same bounds placed on the region of state space that guarantees
a well defined relative degree. The linear system of equations is expressed in terms of

equation 2.22 and 2.23 as

01 0]z [o
2=10 0 1|z [+]|0@) (2.24)
00 0fz| |1
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where v(¢)is the new input for the linear system.
Equations 2.23c and 2.24 allow the construction of a linear transfer function between
the linear input and the measurement equation 2.23b.
2.4.4 Linear Control Law and Asymptotic Reference Tracking

A suitable controller will need to be introduced for stability and tracking since
the open loop dynamics of the Maglev are unstable. The transformation implemented in
the previous section produces a linear system that is represented as a chain of
integrators at the origin of the complex plane, while the transformed system is in a
better structure for controller design. The controllability and observability of the linear

system is full rank, see equation 2.25a and 2.25b.

rank C = rank[b Ab Azblz 3 (2.25a)
rank O = rank[cT c'4 A ]T =3 (2.25b)
Noting that the transformed linear system is controllable and observable, the desired

poles of the closed loop system are chosen to be 77, =—60, 7, =—80and7n; =-100,

which will produce a closed-loop time constant of 0.1 second. The state feedback

gain,kT , 1s evaluated through the placement of these poles using the Bass-Gura

Formula shown in equation 2.32 [37].

kK=l —ahHr T ¢! (2.32)
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where

kT - Feedback gain due to placing closed-loop poles at 77;,77, and 773

A - Coefficients of the desired closed loop characteristic polynomial

a - Coefficients of the open loop characteristic polynomial

T - Toeplitz matrix of the open loop characteristic polynomial, based on the
system representation by equation 2.24

Determining these parameters yields the following

A=[240 18800 480000] (2.27a)
a=[0 0 0] (2.27b)
1 0 0
T=(0 1 0 (2.27¢)
00 I
00 I
c=l0 1 0 (2.27d)
1 0 0

Substituting 2.27a, 2.27b, 2.27c¢ and 2.27d into equation 2.32 produces the state

feedback gain shown in equation 2.28.

kT =[480000 18800 240] (2.28)
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The linear system in equation 2.24 with its poles placed atn,, 7, and 7, is expressed in
equation 2.29 as

0 1 0 Iz [0
z=| 0 0 1 |l zo |+]0 () (2.29)
—k1 —k2 —k3 Z3 1

Armed with the stabilizing gain, kT, and knowledge of how the statesz;,z,and
zzevolve, the nonlinear input derived in equation E.14, found in Appendix E, is re-
written in equation 2.30.

3
—Li,h(x) =3 kL () +v

u(t) = ”j (2.30)
Lgth(x)

The next step in the synthesis of the nonlinear controller is to drive the
suspended object to track a reference trajectory, yp(¢). The error between the actual
position and the reference position is defined as

e(t) = y(t) = yr () (2.31)

Equation 2.31 can be differentiated and substituted into equation 2.30 producing

a nonlinear feedback control law driven by the error dynamics between the levitated

object states and the reference trajectory, as shown in equation 2.32.

Xy X R 2Cx .
u(t)=Le|| =22 |+~ x3 |+ 33 [k (x) — g )+ ko (xg = ir)
X1 c mchl

(2.32)

2

P I 2 I

+h3| 8 YR ||t VR
m )C3
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This controller will asymptotically drive the levitated object position to the
reference trajectory, regardless of the initial condition as long as it stays bounded, well
conditioned, and at least the first three derivatives of the reference trajectory exist.

2.5 Continuous-Discrete Time Extended Kalman Filter

The use of modern high performance controllers necessitates the need for
methods of determining the state of the system since typically measuring the entire state
vector is impractical if not impossible. For the purposes of this research, a continuous-
discrete extended Kalman filter is proposed. This embodiment of the state estimator is
of particular usefulness when dealing with a system, such as this one, in which the
dynamic model is continuous but the measurements are performed at discrete time
intervals.

The process for computing and estimating the states by the continuous-discrete
time extended Kalman filter is outlined in Figure 2.6. The current state estimate and
covariance are propagated forward in time until the next measurement occurs. Then,
the Kalman Gain is computed and the state estimate and covariance are updated. These
updated values are then propagated forward and the process repeats itself. The
formulations presented in this section are thoroughly treated along with other filtering

schemes in [38].
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Initialize : Propagate:
o) =% P =P+ | F(6) Plebs Ple) T + () 0(e) Gle)T
P0+:E{23233T} o k+£ e renenee
- k+1
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k
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KkZPk Hk(xk)[Hk(xk)Pk Hk(xk)+RkT
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Pt =[1-K, H|Pf

Figure 2.4 Update and Propagation of the extended Kalman filter

2.5.1 Dynamic Model
The version of the Kalman filter employed in this work assumes that the noise is
Gaussian and that the system parameters are known. The dynamics of the truth model
are expressed in equations 2.33 and 2.34.
x=f(x)+g-u@®)+¥@)  wr), wi)~N(0,0()) (2.33)
Vi =h(xp)+ve, vip ~N(O,Ry) (2.34)
The format of these equations is very close to the dynamics of the system used
in the design on the feedback linearizing controller in section 2.3. In fact, equations
2.33 and 2.34 are the augmented form of the first dynamic equations and account for

un-modeled plant dynamics, and noise in the measurement. The process noise w(¢)is
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defined as a zero mean Gaussian white-noise with covariance Q(¢) ; this term helps the
filter account for un-modeled continuous plant dynamics. Accordingly, the discrete
sensor noise v, 1is a zero mean Gaussian white-noise term with covariance R, . Along
with the assumption of Gaussian white-noise it is assumed that the two noise sources,
w(t) and v(k), are not correlated with each other at any point in time, and that they are

also not correlated with themselves at any point in time. This notion is expressed in

equations 2.35 and 2.36.

E{v(t) w(t)! }: 0 (2.35)

E= { w(t)w(t)T }: 0(t) 8t — 1) (2.36a)
0 k#j

E= {vkv,f }: {Rk = (2.36b)

Note that the term v(¢) in equation 2.35 is the continuous time embodiment of
the discrete time measurement noise.
2.5.2 Initialization of the Filter

Of specific interest to the development of any extended Kalman filter is the
initial condition of the state vector, and the initial condition of the error covariance

expressed in equations 2.37 and 2.38 respectively.

X(tg) = % (2.37)

Py = E{f(to)f(tO)T } (2.38)
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The continuous — discrete extended Kalman filter varies from the more
traditional linear class of Kalman filters in many ways but the most pressing difference
lies in the inability to prove stability of the nonlinear filtering process. Often, stability is
proved or accepted when the covariance converges or the state estimator produces
'good' estimates. The implied assumption for this class of nonlinear filters is that the
true state is sufficiently close to the estimated state [38]. Along these same lines, the
selection of the initial state and covariance is critical for the filter to converge. The goal
for the designer is to place the initial conditions close enough to the true state allowing
the update process to offset the diverging tendencies of propagating process. For the
purpose of this research, the initial conditions placed on the state are as follows:

e The position initial condition is the short circuit voltage of the position
sensor, since there is not an object blocking the emitted light the
measured portion is the maximum value in the sensor range. The
characterization of the position sensor is discussed in section 3.4.

e The initial velocity of the levitated object is set equal to zero.

e The initial current is determined by substituting the appropriate values
into equation 2.14 and solving for the equilibrium current.

2.5.3 Measurement Equation
Equation 2.39 allows for nonlinear terms to be used in the measurement

equation. Since the Jacobian is taken of the measurement equation, attention needs to
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be paid to conditions and parameters that might cause it to become unbounded or

exhibit loss of rank condition.

Hy(£7) Eg_h A (2.39)

X

k

The measurement equation in this research is characterized by a linear relationship
between the object position and voltage output of the measuring sensor.
2.5.4 Kalman Gain Equation

For linear Kalman filters, the format of the gain expressed in equation 2.40
minimizes the error associated with the propagated state estimate [38].

Ky = P Hy GO[H, GE)PE Hy () +Re 1™ (240)

For nonlinear systems, certain elements of these systems scale and shift the
input Gaussian functions resulting in non-Gaussian responses [39]. "Estimators for
many nonlinear systems can be based on Kalman and Kalman — Bucy filters; though not
precisely "optimum" they are "optimal" in the sense that they tend toward optimum.
These modified linear-optimal estimators are useful when the stochastic effects are
additive and small, either as a result of the original system's structure or of reasonable
assumptions regarding magnitudes of these effects. Details of the specific probability
density functions may not be well portrayed, but the overall performance in state
estimation can be satisfactory for two reasons. The first is that random signals are
summed in estimators, and the central limit theorem assures that the probability density

functions of the sums tend to become Gaussian no matter what the individual
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distributions look like. The second is that the estimators contain integration or
summation, which tends to average out the Gaussian-destroying effects of the
nonlinearities in producing the state estimate". [39]
2.5.5 Update Equations

When the discrete time measurement becomes available (equation 2.34) the
Kalman gain computed in equation 2.40 updates the propagated estimate, according to
equation 2.41. The error signal between the actual and estimated output is multiplied by
the Kalman gain that in turn updates the current estimate. This structure for the state

observers is very common [40-41]
xp =5 + Kl —h(Ep)] (2.41)
PE =U - Ky Hy (31 Pf (2.42)
Along the same lines as the state update (equation 2.41), the covariance
(equation 2.42) also makes use of the latest information provided by the system to
refine its value.
2.5.6 Propagation Equations
At the end of the estimation process, the updated values must be propagated

forward in time to the next measurement update. This is accomplished with equation

2.43 for the plant and equation 2.45 for the covariance.

(1) = f(x)+g(x)-u(t) (2.43)

F(x(t),t) = al (2.44)
X130
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P(1) = FG(0),0)P(t) + PO)F T (3(1),0)+ (1) 0() ¥ (1) (2.45)
Of particular interest is the propagation of the covariance, equation 2.45, which
is accomplished using a continuous time linear Riccatti equation. As mentioned
previously, the Jacobian of the dynamics must be recomputed at each cycle and special
attention must be paid to the behavior of this operation.
2.5.7 Filter Tuning
The most practical issue surrounding the development of the extended Kalman

filter is the determination of the process noise covariance, O(f), process noise
input, \¥(#) , and measurement noise covariance, v, . For the purpose of validating the

structure of a control and estimation algorithm, reasonable values can be used based on
the dynamic model being analyzed using published values and experimental results
available in the open literature. However, when the algorithm is taken to the next stage
of implementation on hardware, a systematic approach must be undertaken to better
characterize these terms based on the available and collected experimental data.

2.6 Conclusions

In this chapter, the development of the feedback linearized nonlinear controller
and continuous-discrete time extended Kalman filter are presented as they apply to the
open loop unstable, highly nonlinear Maglev system. First, the Maglev dynamics were
presented and cast into a suitable format for later manipulation. Then, the relative
degree of the nonlinear system was discussed. Subsequently, the necessary and

sufficient conditions for the existence of a linearizing diffeomorphism were shown,
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allowing for the construction of a linearizing coordinate change and nonlinear feedback
that transformed the system into an equivalent linear system. Once the dynamics were
cast into a linear system, the closed loop eigenvalues were assigned using the Bass-Gura
formula. Then, the nonlinear feedback was augmented such that the controller would
track suitable reference trajectories. Since not all of the states are directly available to
the controller, a suitable state estimator must be formulated. For this task, a continuous-
discrete time extended Kalman filter was proposed. Additionally, the integration of the

controller and state estimator showing the information flow are explained.



CHAPTER 3
SIMULATION VERIFICATION AND HARDWARE IMPLEMENTATION

This chapter discusses the validation of the proposed controller / estimator in
phases that would allow for simulation verification and hardware implementation.
First, the controller and estimator structure and operation were validated in simulation
as a proof of concept to justify further development. Second, the simulations were
refined using the same structure that would be implemented in hardware with particular
attention placed on the propagation of the covariance. Additionally, these refined
simulations validated the scheme to be used on the actual hardware. Next, plant noise
parameters were tuned off-line using simulations with data taken from the actual
hardware. Finally, the controller and estimator were implemented and verified on the
actual hardware considering a variety of input reference trajectories.

3.1 Controller / Estimator Simulations

Validation of the feedback linearized nonlinear controller / continuous-time
extended Kalman filter structure and their interaction were first examined in simulation

using scripts developed in MATLAB following the structure presented in Figure 3.1.

29
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Figure 3.1 Feedback linearized nonlinear controller / extended Kalman filter
simulation structure and interoperation.

These simulations represent a 'proof of concept' and were the justification for
continued work on this topic. Many of the features used in these simulations are
continued through each phase of the implementation process. However, as the phases
get closer to the hardware implementation, the structure and system parameters were
successively revised and reviewed.

The simulation process is comprised of three distinct phases each relying on the
other two phases for information in order to produce well behaved and stable results, a
detailed outline of the simulation is presented in Appendix F. First, the plant state is

propagated to the next time step and a sub-step of this propagation phase is to calculate
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the controller output. It is important to note that the control value is not based on the
actual plant state at any time during the simulation, but rather it is determined using the
current values of the estimated states. After plant state propagation is complete, the
synthetic measurement process is performed. The object position is corrupted using a

random noise from a zero-mean white Gaussian distribution with covariance R; . The

final portion of the simulation is to update the state estimate and covariance, and
propagate the latest information available to the filter using the updated system values
forward to the next time step. However, the state estimate and the covariance estimate
are not integrated in the same manner due to some of the simulation infrastructure
limitations. The state estimate is propagated forward using the same method as the plant
state, a fixed step Runge-Kutta integration scheme. As previously mentioned, the
covariance is propagated in a different manner; the simulation used in this portion of the
research can not accommodate the 3 x 3 size of the covariance matrix, allowing for this
limitation, only the covariance matrix diagonal terms are used to propagate forward to
the next time step. While the plant and state estimates are cast into a continuous-time
formulation, the covariance is cast into discrete time format allowing exact
representation of the continuous-time covariance at the step time, albeit with only one

third of the covariance information used in the propagation.
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Simulation Parameter Symbol Value Units
Levitated Object Mass m 0.055066 Kg
Coil Inductance L. 0.59
Incremental Coil I 0.02
0
Inductance
Coil Resistance R, 250 Q
Gravitational Constant g 9.81 %ec
Simulation Time Step dt 0.001 sec
Measurement Noise N 0.001 "
Standard Deviation k
Plant Initial Condition X1,X2,X3 0.0148, 0, 0.89409 m, " e 4
Estimator Initial [ 0.014367, 0, 0.9388 mm y
Condition 1,+273 »'/sec?
Desired Closed-Loop -60, -80, -100
Poles 112713
Covariance Initial 0.0857
Condition Po
0 0O
) ) 002510 1 O
Process Noise Covariance o) 0 0 1

The core structure of these simulations is based on example 5.5 found in [38§],

and the m-file can be found on the website maintained by the author [42]. The

simulation parameters are based on the values determined by [45], and can be found in

Table 3.1. These parameters will remain unchanged unless otherwise noted.
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3.1.1 Fixed Step Numerical Integration

Many options are available for the integration of ordinary nonlinear differential
equations. In particular, the widely accepted Runge-Kutta 4™-order fixed-step-size
integration is considered for all phases of this work (m-file, Simulink and xPC). The
script containing the m-file embodiment of this scheme can be found in Appendix F,
while the version used for the simulations in Simulink and consequently xPC can be
found in the Simulink documentation on the MathWorks website [44]. The selection of
initial conditions and integration step-size are often critical selection parameters for
successful simulations. These parameters must be adjusted during simulation and
experimentation.

A variable-step Runge-Kutta integration scheme produces efficiencies over the
fixed-step method upwards of several orders of magnitude; however, the controller and
estimator equations are not setup for a variable-step approach. Additionally, the goal of
the simulation was to stay true, in as many ways as possible, to how the actual hardware
system would operate, thus, a fixed-step approach is consistent with the operation of an
embedded microprocessor and the xPC environment used for hardware implementation.
3.1.2 Step Input Response

The Maglev response to a step input is discussed in this section. For the
purposes of these simulations, the system is allowed to converge to a steady state after
the initial filter and controller transient response, and then the step input is applied via
the reference trajectory. The step trajectory used in this simulation is 2.0 mm change in

the position of the levitated object. The measurement noise covariance used in the
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simulations is shown in Table 3.1. The process noise, O(¢), off diagonal terms are set to
zero since the noise is assumed to be uncorrelated and zero mean Gaussian white-noise.

The first term in the O | position is also set to zero since an exact kinematic relationship

is being represented, owing to the fact that the velocity is defined exactly as the position

time rate of change. The coefficient proceeding Q(7) in Table 3.1 was found by iterating

the simulations until a consistently stable state estimate was observed.

The simulated measured position, reference trajectory and estimated trajectory
of the Maglev system responding to a 2.0 mm step input are illustrated in Figure 3.2. It
is observed that the simulated measurement and filter estimated position of the object
oscillate about the nominal trajectory after the transient response has decayed. As
expected with simulated noisy measurements, the measured position of the levitated
object will never correspond to the reference trajectory at any time in the simulation
time. While the estimated position will exhibit much of the noisy tendency of the
simulated measured position, it does exhibit smoother response, since the extended
Kalman filter seeks to minimize the error state estimate. The simulated Maglev
response to a step input presented in Figures 3.2 — 3.6 validate the controller, estimator

and their interoperation structure represented in Figure 3.1.
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Figure 3.2 Maglev simulated system measured position response, estimated
position response to a 2.0 mm step input

When comparing the quality of the estimates produced by an extended Kalman
filter it is useful to compare the difference between the actual state value and the state
estimate, as shown in equation 3.1.

X] =X —X (3.1)
The quality of the estimate can also be computed since it is directly used in the filtering
scheme. The square root of the position error covariance produces the position error
standard deviation and places a bound on the position error. A +/—30 standard
deviation bounds produced by the filter is plotted along with the position estimate error.
This +/-30 bounds is a confidence interval on the error estimate. The smaller

+/—30 bounds on position error, the higher quality estimate being generated by the
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optimal state estimator. The position error of the Maglev when tracking a 2.0 mm step
with the +/—30 error bounds is presented in Figure 3.3. Two note worthy items of the
position estimate error occur when the step change occurs at £ =0.75 sec. The first item
is that the reference trajectory exhibits a singularity when the simulation time reaches
the step time. When the filter is left to differentiate the step reference position trajectory
a singularity does occur and the controller / estimator diverge. On the surface this
violates the conditions for derivative continuity of the reference input developed in 2.3.
To accommodate this situation the derivatives of the reference trajectory are defined
equal to zero for this series of simulations, thereby eliminating the potential for the
singularity to exist. The second item to note at this time is due to the position error and
the standard deviation. The sudden change in the position does not cause the quality of
the estimate to degrade and the position error is comparable to the rest of the filter

performance.
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Figure 3.3 Maglev simulated position estimate error response and +/- 3 ¢ error
bounds to a 2.0 mm step input

Figure 3.4 shows the performance of the extended Kalman filter for estimating
the suspended object velocity although it can not be directly measured on the hardware
and consequently is not synthetically measured in simulation. The differential velocity
associated with the actual time instant of position change was omitted from the
simulation as mentioned earlier since this discontinuity caused unbounded behavior in
the simulation. Behaviorally speaking, the shape of the velocity estimate about the zero

velocity reference trajectories corresponds with the position hunting about its trajectory.
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Figure 3.4 Maglev system estimated velocity response to a 2.0 mm step input

The velocity estimate error can be characterized in the same manner as the

position estimate error. The simulated velocity error plotted along with the velocity

error bounds at

+/=3 0 1is shown in Figure 3.5. The bounds of the velocity error

covariance when compared with the position error covariance are approximately an

order of magnitude greater. Not measuring this state directly adds significantly to the

degradation of the estimate quality.
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Figure 3.5 Maglev simulated velocity estimate error response and +/- 3 ¢ error
bounds to a 2.0 mm step input

The extended Kalman filter also estimates the current used in the
electromagnetic coil during the simulation. The change in coil current corresponding to
the change in reference trajectory and simulated measured object position is illustrated
in Figure 3.6. The oscillatory behavior of the coil current (and the other state estimates)
is attributed to two significant types of behaviors. The first behavior stems from the
control input calculated by the controller based on the estimated state of the system as
mentioned earlier in this section. The second behavior lies in the inclusion of noise in
the simulation process. In the unlikely event that the actual position is identically equal
to the reference trajectory, the measurement noise will generate an error signal. Added

to this effect is the plant noise that further complicates the estimate.
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Figure 3.6 Maglev estimated current response to a 2.0 mm step input

3.1.3 Sine Wave Response

The performance of the feedback linearized controller and extended Kalman

filter to track a sinusoidal trajectory about a nominal operating point is discussed in this

section. The sine wave has amplitude of 1.0 mm and a frequency of 10 rad/sec with a

nominal position of 14.8 mm yielding a nominal current of 0.894 A. The remaining

simulation parameters remain unchanged from Table 3.1. Figure 3.7 shows the

sinusoidal reference trajectory, measured position of the ferromagnetic object and the

estimated position. The position estimate error along with the +/—3 o bounds

illustrating the quality of the estimate is also presented in Figure 3.7 for completeness. It

is observed that the controller can adequately track the reference signal.



41

SPUNOQ 0119 Y)IM I)BWSI 10.L13 uonisod (q) pue dIABM JUIS IIS/ped

01 ‘wua (°1 & 03 dsuodsax uonisod pajewnsd “dsuodsaa uonisod paainsgdwn WISAS pajenuIs AJSeIAl (8) L°€ 31N

(a
[pag) amlL
ol 520 50 0
| |
N punog ewlbis m.‘_ _
1 punog elwfls g+
alllensa Iols Uonsod _ _ _
T
. ETP , , OL¥
(b0 0N ~ "4 " @Az BUIS ' 28SE) 0] "W | U0LS S1BW15T £
)
(oag) el
Sl 5L 3 S0 50 570 0

UOWIS04 paleLlisg
LUDS0d painseap —
Aopalzl] lay ——

L

{,100 0N ~Maanem alis aegpel 0|, "W | 8900dsa1 oS0

[y 1ou3

100

L0
cLoo
£L00

FL0a

SLloo
gLoo
£10°0
gL00
6LO0
c00

(w) s 1algo parse



42

Figure 3.8 shows the performance of the extended Kalman filter for estimating
the suspended object velocity when the position is tracking a 1.0 mm amplitude, 10
rad/sec sinusoidal reference trajectory. For this series of simulations the velocity has a
nontrivial trajectory since the reference trajectory considered has well defined
derivatives. This state variable can not be directly measured on the hardware and
consequently is not synthetically measured in simulation but is estimated. The velocity
estimate produces a lower quality estimate when compared with the position estimate.
However, the velocity estimate error produces approximately the same quality of
estimate when compared against the step input velocity estimate error illustrated in
Figure 3.5. Behaviorally speaking, the shape of the velocity estimate about the
reference velocity trajectory correlates with the position hunting about its trajectory.
The velocity error estimate and its error bounds in addition to the velocity estimate and
its reference trajectory are presented in Figure 3.8.

The extended Kalman filter also estimates the current used in the
electromagnetic coil during the simulation. The current estimate corresponding to the
simulated measured position tracking the reference trajectory is presented in Figure 3.9.
The same behaviors discussed for the current estimate in section 3.1.2 are observed,
with the notable exception that the state estimates have to constantly make adjustments
in order to track the sinusoidal trajectory. It is important to note that in previous
simulations the states were allowed to progress past the transient response before the
step change is introduced, where in these simulations the system is forced to track the

input signal and respond to the transient response.
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Current responce: 1 mm, 10 rad/sec, sine wave, v, ~ N(D, 001%)
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Figure 3.9 Maglev estimated current response to a 1.0 mm, 10 rad/sec sine wave

3.2 Enhanced Controller / Estimator Simulations

Validation of controller and estimator algorithm in section 3.1 is an important
first step in the development process but to take this work closer to hardware
implementation the algorithms proposed needed to be recast in the Simulink
environment for xPC conformity.

3.2.1 Simulink Controller / Estimator Algorithm Structure

Several modifications had to be made to the structure of the simulation
procedure outlined in Appendix E to accommodate the Simulink kernel. The first major
departure is the method in which the controller, estimator and plant values are

calculated. Taking full advantage of the Simulink Solver requires that the dynamics be
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cast into the standard S-function format. All three major aspects of this work were
appropriately cast in a S-function format but it was found that MATLAB's Real-Time
Workshop (RTW) [43] could not compile these MEX based S-functions into an xPC
executable. The controller and estimator were converted into an embedded m-file
function [44] which can be compiled by RTW into an XxPC executable. This allowed the
code developed in these embedded m-files to be used in the implementation phase of
this work. The embedded m-file function scripts used in these simulations are contained
in Appendix G. The Simulink model used in these simulations is shown in figure 3.10.
The values for the simulation parameters are contained in Table 3.1 and remain
unchanged unless otherwise stated.

Recasting the m-filed based simulation into the Simulink environment allowed
the covariance to be reformulated. As mentioned in section 3.1 the state estimator
proposed in these simulations is a continuous-time extended Kalman filter (CEKF). Due
to the limitations of the m-file based simulations the covariance was changed to a
discrete time formulation and only the diagonal elements of that matrix were propagated
to the next time step. In the simulations presented in this section, the covariance is
propagated in the same fashion as the plant and state estimate, using a standard 4™ order
Runge-Kutta fixed step solver found in Simulink xPC. Procedurally, the covariance
being cast into a continuous-time formulation agrees with the embodiment of the plant,
controller and state estimate which are all continuous-time representations. However,
this change in the format and structure of the covariance allows for the off diagonal

elements to have an impact on the state estimate.
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3.2.2 Step Input Response

For consistency between the different simulations presented in this research, the same
reference trajectory was applied to the enhanced Simulink simulations as the m-file based
simulations. The simulated measured position, reference trajectory and estimated position are
presented in Figure 3.11 as the Maglev responds to a 2.0 mm step input. Based on the
simulated measurements, and the state estimate presented in the figure, the enhanced
simulation produces acceptable results using the parameters presented in Table 3.1. The
simulated system response is virtually indistinguishable from the simulated system response
presented in Figure 3.2. While the simulated measured position appears to track the reference
trajectory suitably well, this tracking performance does not address the quality of the estimate

produced by the extended Kalman filter. The position estimate error along with a +/-10
error bounds is presented in Figure 3.11. These error bounds were relaxed from + /-3 o used
in the previous section to +/—10 since the error standard deviation produced by the

extended Kalman filter increased by a factor of 30. This difference is attributed to a higher
fidelity model of the Simulink estimator; where the Simulink version propagates the entire
covariance matrix but the m-file only propagates the diagonal elements of the error
covariance. While the error bounds on the position estimate error have significantly increased,
the actual error between the state estimate and the synthetic plant state has not increased by
the same margin. Ideally the plant noise covariance should be tuned to reduce the bounds on
the estimate error, but this parameter was left unchanged from the previous set of simulations
in order to provide a baseline for comparing the two sets of simulations. In subsequent

sections the actual plant noise will be tuned using actual hardware data.
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The velocity estimate and velocity estimate error evaluated by the extended Kalman
filter are shown in Figure 3.12. The velocity estimate error and the corresponding error
bounds are shown as a gauge for the relative quality of the estimate. Note that the error
bounds increase from the initial conditions and converge to a larger values. The error

boundary illustrated in the figure was modified to reflect a + /—1 ¢ bound instead of the more
conventional +/—3 o bound. Although the error bounds are greater than the corresponding

results produced by the m-file based simulation (see Figure 3.5), the actual estimate error
does not increase accordingly. This behavior is also attributed to the higher fidelity in the
Simulink model and the need to perform plant noise covariance tuning. As mentioned in
section 3.1.2 the reference input needs to have a sufficiently differentiable form, and
examination of the Simulink model presented in Figure 3.10 does not allow a singularity from
a step change to cause an unbounded response.

The extended Kalman filter also estimates the current used in the electromagnetic
coil during the simulation. The change in coil current corresponding to the change in
reference trajectory and simulated measured object position is illustrated in Figure 3.13. The
oscillatory behavior of the coil current is attributed to the controller tracking the reference
input while the estimates are being perturbed by both the induced measurement and plant

noise.
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Coil Current, 2 mm Step Responce, Y~ MN(O, 0012)
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Figure 3.13 Maglev estimated current response to a 2.0 mm step input

3.2.3 Sine Wave Response

As mentioned in section 3.2.2 the same reference trajectory is supplied as an input in
this set of simulations so that comparisons can be drawn between the simulations discussed in
section 3.1.3. Figure 3.13 shows the measured position, estimated position and reference
trajectory considered in this series of simulations. Figure 3.13 also shows the position
estimate error and the associated position error bounds. The performance of the estimate error

and the bounds on the estimate error agree with the results discussed in section 3.2.2.
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The estimated velocity and velocity trajectory associated with the sinusoidal input is
presented in Figure 3.15. Note the relatively poor quality of the velocity estimate response in
the simulation. This is expected since the velocity is not directly measured but is a synthetic
state generated inside the filter. The velocity estimate error and the associated error bounds
are also presented in Figure 3.15 as a means of comparing the relative filter performance. The
velocity error bounds is quite significant; when compared to the m-file based simulation
shown in Figure 3.8, the boundary is 27 times greater. This increased error bounds is
attributed to the improved model of the filter covariance and the need to tune the plant noise
covariance to suit the revised covariance formulation. While the error bounds significantly
increased, the actual velocity estimate error had the same magnitude of response as the m-file
based simulation as shown in Figure 3.8.

Figure 3.20 shows the simulated estimate response of the coil current to the levitated
object tracking the sinusoidal reference trajectory. In the initial portion of the simulation the
current briefly becomes negative. This small excursion of the current into negative values is
attributed to transient response of the controller and state estimator. On the surface this does
violate the conditions placed upon the region of state space that the system is allowed to
operate without violating the necessary and sufficient conditions of the nonlinear controller.
The actual state space region that must be observed is attributed to the actual state not the
estimated state. This occurrence is not possible on the hardware due to the diode

configuration across the coil, preventing a reversal of current.
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Sine Wave, 1mm Amplitude, 10 Hz,vk~ MN(O, 0012)
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Figure 3.16 Maglev simulated system current response to a 1.0 mm, 10 rad/sec sine wave

3.3 Position Sensor Modeling

Sensor Modeling is required in order for the Simulink model to properly interpret the

input from the hardware system. For the purposes of this research, the sensor measures the

air gap between the levitated object and the bottom of the electromagnet coil. Proper

understanding of the relationship between the levitated object position and the sensor output

is required due to the fact that the position of the object is the state of the system being

controlled. Therefore, the input-output relationship for the sensor in conjunction with the

ferromagnetic object levitated in this research needs to be characterized.
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The relationship between the sensor output voltage is easily determined
experimentally. The ferromagnetic object levitated is a steel ball bearing with a measured

diameter of 1.905 cm and a mass of 0.05506 Kg as shown in Figure 3.17.

17 Levitated obj ect, steel ball
bearing

Figure 3.

To obtain the experimental sensor to voltage response the ball bearing will need to be
positioned under the coil at known heights and the sensor output voltage recorded. The steel
ball position is known since it is placed on top of the simple positioning device shown in
Figure 3.18 attached to the Maglev hardware. This device is often referred to as the object
positioning tool. The thread along the bolt section of the tool has a lead of 1.954 mm per
revolution. As shown in Figure 3.18, the position tool has 16 subdivisions. The position
resolution of the object positioning tool is 0.122 mm per subdivision. Using the ball bearing
and the object positioning tool, the sensor response was characterized and shown in Figure
3.19. The linear portion of the response has a minimum bound of 14.0 mm and a maximum

bound of 15.5mm along with a linear curve fit.
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Figure 3.18 Object position tool attached to Maglev device

The nonlinear regions outside these bounds could be included as long as the output
function has sufficient derivatives and is well defined so as not to present a singularity in the
nonlinear controller calculations. However, this extended region of the sensor response is not
considered due to the low signal to noise ratio the real-time hardware will experience during

operation in this region.
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Figure 3.19 Input-output sensor response graph
The best fit line description for both the position-voltage and voltage-position will
allow this sensor response to be properly modeled in the Simulink xPC model. The
conversion blocks used in subsequent Simulink models for the position-voltage and voltage-

position conversion are shown in Figures 3.20 a and b respectively.
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Figure 3.20 Simulink position sensor implementation (a) Position to voltage conversion
and (b) voltage to position conversion

3.4 Measurement Noise Characterization

In order for the extended Kalman filter to properly operate and provide accurate
estimates of the plant states, the sensor measurement noise must properly be accounted for in
the filtering formulation. The measurement obtained by the sensor is assumed to be the actual

value, y,, plus some additive, random white Gaussian noise, v, , with zero mean and known

covariance, as shown in equation 3.2.
Ve = VitV (3.2)
The object measurement tool was used to locate the metallic ball inside the position
linear sensor range at a constant height, and data was collected via xPC target environment.
Figure 3.21 shows the xPC Simulink model used to record the sensor values in order to

determine the properties of the sensor noise.



60

Sensor Noise [dentification

Otz
[ arget Scopy
FCI-GOZ4E 1d: 1
Mational Instr. 2 e "iolt. Pos.
Analog Input
Scope (xPLC)
FELG0Z4E 1 Comverter

“Waoltage to Position
Cut1

Figure 3.21 Simulink model used to determine the sensor noise covariance
The hardware data was logged in the MATLAB workspace for position sensor noise
evaluation and the sensor noise covariance was determined. Equation 3.3 is used to

determine sensor noise covariance, [46], where 7 is the measurement and u is the
measurement sample mean.

o’ = E[(¥-u)’] (3.3)
The experimentally derived standard deviation, o, and the covariance,s?, of the position

sensor employed in this research are presented in Table 3.2.

Table 3.2 Experimentally determined position sensor noise properties

Standard Deviation - o Covariance - 0'2

mm mm2

0.0034 1.156 x 107
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3.5 Kalman Filter Plant Noise Characterization

The next important step to complete in the implementation of the state estimator is to

tune the process noise covariance matrix, J(¢), since the values used for this parameter in

previous sections of this research were arrived during the simulations and are not
representative of the actual hardware. The first step in this process is accomplished with the
use of an existing xPC Simulink digital lead-lag controller [16], as presented in figure 3.22,
which stabilizes the levitating metallic object while the position and reference input are
recorded in the MATLAB workspace for later analysis. Then, the recorded hardware response
is used in an off-line manner to tune the plant noise covariance matrix. The recorded
hardware position and reference trajectory are used as inputs in the nonlinear controller and
the continuous-time extended Kalman filter used in the simulation sections 3.1 and 3.2. The
Simulink model is modified such that the only inputs to the controller and state estimator
model are those from the recorded hardware response stored in the MATLAB workspace, as
presented in Figure 3.23. Iterations on the plant noise covariance candidates can then occur
off-line and are quickly evaluated for some key attributes: quality of the estimate, relative
errors and stability/ convergence of the covariance matrix. As a final validation step in the
determination of the plant noise covariance the digital lead-lag controller and nonlinear
controller / extended Kalman filter are run concurrently in the same model, where the lead-lag
controller stabilizes the levitated object while the controller and estimator operate in a purely

observation mode and evaluates the desired actuation signal as shown in Figure 3.24. This
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type of configuration allows the successful candidate, determined in the off-line tuning, to be
validated using the actual hardware in real-time.
3.5.1 Continuous-Time Extended Kalman Filter

As mentioned earlier in sections discussing the simulations of the nonlinear controller
and extended Kalman filter, the specific type of Kalman filter used in those sections was a
continuous-time extended Kalman filter. During the plant noise covariance determination
carried out in support of this research, the quality of the estimates produced by this version of
the state estimator was not suitable for hardware implementation. Many potential candidates
were examined during the course of this tuning process. A successful candidate that produced
simultaneously high quality position, velocity and current estimates while producing stable
results on the hardware could not be determined. Many factors could have contributed to poor
results with the foremost suspect in a list of reasons focusing on the discrete sampling of the
output by the embedded microprocessor. A slightly different formulation of the extended
Kalman filter was vetted against the recorded hardware data generated during this phase of
the research. This formulation of the optimal state estimator was outlined in section 2.4. The
results of these trials were promising enough that the continuous-time extended Kalman filter
formulation was dropped from this research in favor of the discrete-time extended Kalman
filter. The two different versions of the state estimator are identical in Simulink model
structure, however, the difference is apparent when examining the estimator embedded m-
function; this is available in Appendix G compared to the continuous version found in

Appendix F.



63

JJ[[013U0) Se[-ped] [eISIP J0] [dpOW JUINWIS 77 € IN31 ]

I I¥209-10d IFC09-10d lnjesuadwiog Aej-pea mmﬁ_hwﬂmow,%oom_w_mon_
ajalasig ules ung s
(84440 A _h _ -.M. ’ i
_— - 5 [ - A Ho, S0 g
JEITEEE N uky) nog, i _Iﬂ -
(0d¥) adnag nox
‘504 3o e 2
(]
doag ahie witod Bunesada aylio) 18540
Ll

JuEjEU0D

SO awIL-[e3y Ddx Aq waishs uonesaa snaubep Joj joauo) [eubig



64

B)ep daemp.aey Suisn urun) UEBLIBA0D Jsiou jue[d Jul-}JO 10J PIsn [9pow JUINWIS €7°€ 3In31

R ]

adeysay it

J0JEUILIE |
»= | | s
Ll

2

zadoag

Buyens
JUS I BIRSE AL

Buneos
Aopalen Arajaslel ]
ENENEY) t._n:.__

1EAD]
L '
v ™ E}E(]
LXBEmERE . g uopsod
ERE] Lt - pRINSE 3
= [ » I
FUELEAST BT e - _Hnu— 1opesBiau| . Lt
n | d
] zinduy uay > _|'-
L | > -
x'— ajEwss L > N » >
_ I e L | La » -
21| plo g L .
- L
- -
» >
M | »
ol .
L | “
L
uopaung gyLyin m «
pappaqu3 Zhiowagy . B “ -ﬂ
I« i o I
joumos uay il -— ="}« “
fangaaler] sauaysy
3!
faogaaler)
2154 fpoEn,
D “ﬂ EETENEYS]
- -
A
AEWWNS
uoso 4

=

fiujun| s0UPUEADT 3si0p JUE|d 3UILO

WUFEU0D



65

durunj) UBLIBAOGD
asiou juejd wd)ISAS AI[GRJA] 10] JI3)[IJ UBWI[BRY] PIPUIIXI W) SNONUNUOD PUE II[[0.1}U0d FB[-ped] [eN3I( HT°€ 9IN31]

a|EDS AINSEAW

VV

FEE - LEG

— =@deysay |

THE-EXE

443

L] 20uELER DD PO
sod Ja
sinduy
] =Es plo

¥

uay

BIEWISE 31ES)

BUIEE TS

L
p

doag jabie |

Wied (LI
kA v J
h 2 J
YYYYYYYYYVYYY

[EIINETT

J3[|ouo] JERUIUON
> % -
hl

LB uay 2

Z(2d4x) adoag
s

FY Yy
A

=
F Y

LuonEIniEsS LA
B
& pmp ”

|

soreed e EERn V—_v lenues [e361g

1ojesuadweg Gej-peaq
321051

EY
abEyop 0} uos0 4
Jagaau0g Lwns

uomzo g oy abieyop,
JETERATE ) k3209124 Itz09104

ulEg U] BNEN), BUIS

=
oooo

anpqn, MiEnbg

nduj Bojeuy nding Bojeuy
“sog Hon, Z usu| FusheN gsu| [EUoHEN |
3FZ09-12d 3FZ0S-12d

(224002)
(25602

A

[24x) adoag

uiod Bunerado ayyio) j@sy0

A

A
A
T __|
A

L Pl
pdoag jabie |

A

A|uD 2pojy UeREMEEq0 - 44T £ 1=2)enuoy Beq-pea] epbig



66

3.5.2 Continuous-Discrete Time Extended Kalman Filter

The digital lead-lag controller was compiled by MATLAB with the aid of RTW and
xPC and then downloaded to the target computer. The reference input position of the
levitated object was set in the middle of the sensor range at 14.8 mm. The object was placed
under the coil and manually adjusted in the vertical axis until the controller successfully
levitated the object. The offset for the operating block illustrated in Figure 3.22 was adjusted
until the measured position was tracking the reference input. The results of digital lead-lag
controller stabilizing the levitated object at 14.8 mm are presented in Figure 3.25. The 25
second time frame of the hardware data is sufficient time to determine filter performance and
estimator state stability, due to the open-loop unstable behavior of the non-controller plant
dynamics.

Once a suitable set of reference data was collected, it was used as input into Figure
3.23 where different plant noise covariance candidates were evaluated. After several iterations
of potential candidates, a suitable set of covariance matrix parameters was determined and is
presented in equation 3.4. These parameters represent a 'best fit' since trade-offs were made
between the three states in such a manner to produce an overall high quality estimate.

1*10™4 0 0

o=l 0  .75*107’ 0 (3.4)
0 0 1%1078
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Figure 3.25 Digital lead-lag controller tracking 14.8 mm reference input

The measured hardware position, reference trajectory and position estimate produced
by the simulation outlined in Figure 3.23 is presented in Figure 3.32. The performance of the
position estimate will serve as a reliable representation of the state due to the high level of
quality produced. The error between the measured and estimated position is also presented in
Figure 3.23, along with a baseline representing the mean error. This mean error baseline is
calculated on the difference between the measured position and the estimated position along
the entire simulation time of 25 seconds and not on the 1.5 second representative simulation

segment shown for clarity.
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The zero velocity reference trajectory and position estimate produced by the hardware
data driven simulation is presented in Figure 3.27. The performance of the velocity estimate
will serve as a reliable representation of the state due to the high level of quality produced.
The error between the measured and estimated position is also presented in Figure 3.27, along
with a baseline representing the mean velocity error. This mean error baseline is calculated on
the difference between the measured position exactly the same as done with the mean position
error, except that the time interval in this case is the 1.5 second interval shown in the
simulation results from 5 to 6.5 seconds. As a note, the mean velocity error was determined to
be 9.7571*107 mm/sec, during the 1.5 second simulation presented in Figure 3.27. Use of the
entire simulation results would be misleading since there were many position fluctuations
during the simulation sequence, namely the initial transient response of the extended Kalman
filter converging to and then tracking the state trajectory. In sections 3.1 and 3.2 special
considerations were made during the simulation process so singular behavior would be
avoided in the simulated system response. In the present simulation, the possibility of a
singularity existing due to step change in the reference trajectory is avoided since the
controller and extended Kalman filter are given the constant position from the start of the
simulation. The time derivative of the measured position is not presented, since it serves as a

poor source of velocity information due to very low signal to noise ratio.
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The current estimate produced by the hardware data driven simulation along with the mean
current estimate is presented in Figure 3.28. The response of the current estimate tracks the
measured position of the levitated object very closely. The mean current estimate is presented

as a reference for the average current estimated during the simulation.
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Figure 3.28 Offline current estimate using experimentally tuned plant noise covariance
and mean estimate current

The response of the covariance is an important feature in the determination of a
suitable candidate for the plant noise covariance. Since the stability of the extended Kalman
filter is difficult to prove, if not impossible, the only real methods available for the
determination of 'good' results lies in the convergence and tracking results produced by the

state estimates and the convergence and relative error of the covariance matrix. The
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covariance matrix response to the hardware-driven data is shown in Figure 3.29. Of particular
importance is the response associated with diagonal elements of the covariance matrix, since
it is assumed that the states are not correlated with each other, see section 2.4. However, when
the simulation is driven by real data this assumption is not valid in the strictest sense. Since
the diagonal and off-diagonal elements converge to relatively small numbers when compared
with the magnitude of the estimate errors presented in Figure 3.32-3.27 any correlation is
weak and can be neglected.

The estimated states of the Maglev system produced from the experimentally tuned
plant noise covariance are quite suitable to be discussed as inputs for the feedback linearized
nonlinear controller. As a unit of estimated states that are driven from the hardware data they

are closely aligned with simulation results presented in sections 3.1 and 3.2.
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As final validation, the plant noise covariance determined thus far was implemented
on the Maglev hardware using the continuous-discrete time extended Kalman filter illustrated
in Figure 3.24, while the digital lead-lag controller stabilized the system and the nonlinear
controller / extended Kalman filter operated in an observer role.

The reference trajectory, measured and estimated position for the extended Kalman
filter using the experimentally determined plant noise covariance is presented in Figure 3.30.
Due to the large amount of data recorded when this model was run on the hardware only a 1.5
second interval of the results are presented here. The state estimate produces a very strong
estimate and tracks the measured position well when the levitated object experiences a

disturbance as shown at the 77.5 second marker.

Estimator state tracking using y plant noise
0.0149

—— Refrence Trajectory
——— Measure d Position
Estimated Pasition
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7P 77 I8 76 7826 785

Figure 3.30 On-line position estimate produced by the extended Kalman filter with
experimentally tuned plant noise covariance
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The on-line estimated velocity and the reference velocity trajectory produced by the
extended Kalman filter operating as a pure observer are presented in Figure 3.31. The
performance of the estimated velocity closely correlates to the hardware position response
illustrated in Figure 3.30. However, the estimated velocity responds much more quickly to
the disturbance than the position estimate. The difference in response can be attributed to the
plant noise tuning. Throughout the off-line tuning process performance of the position

estimate had to be sacrificed in order to receive acceptable estimated velocity estimates.

10 Estimatar state tracking using exprimentally determined plant noise covariance
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Figure 3.31 On-line velocity estimate produced by the extended Kalman filter with
experimentally tuned plant noise covariance

The on-line estimated current produced by the extended Kalman filter operating as a

pure observer is presented in Figure 3.32. As with the estimated velocity, the current is very
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quick to respond to the disturbance compared to the position estimate. However and as
expected, the overall response of the current estimate is closely correlated with the position

response shown in Figure 3.30.

Estimator state tracking using exprimentally determined plant noise covariance
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Figure 3.32 On-line velocity estimate produced by the extended Kalman filter with
experimentally tuned plant noise covariance

3.6 Nonlinear Controller Output Mapping

As outlined in section 2.2.2 the control input to the system is the voltage drop across
the electromagnet coil. The Simulink file must communicate this desired voltage drop across
a series of interconnects, first the PCI-6024E Digital Acquisition Card (DA card) and then
through the power amplification electronics to deliver this voltage to its intended location on

the hardware. This section discusses the mapping of the nonlinear control effort through
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these interconnects that would allow the Simulink based Kalman Filter to control the coil
voltage.
3.6.1 Software and Hardware Interconnects

The difference between the hardware and the theoretical model lies in their respective
outputs, note the difference between the detail shown in Appendix A and Figure 2.4. The
electric circuit model used in this research is very simple and is easily characterized by a
Kirchhoff's voltage law while the actual hardware devices are much more complicated. A
mapping between the linear controller output and the nonlinear controller output will allow
the system output to be properly scaled to produce the desired changes in the levitated object
position. The Simulink model of the controller and state estimator along with a linear
mapping function that allows the nonlinear control output to be appropriately mapped to a
usable output by the system to control the levitated object is presented in Figure 3.33. This
model is similar to the model shown in Figure 3.24; the only real difference being the
mapping function and the manual switch which determines whether the linear or nonlinear

controller output is used to control the hardware.
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3.6.2 Output Mapping

The digital lead-lag controller is used to determine a suitable conversion between the
two controllers. This mapping is accomplished by changing the set point of the digital
controller (between 14.2 mm to 15.2 mm) and recording the output of the two controllers as
well as the coil voltage and resistance. These results are presented in Appendix H. Then, the
measured nonlinear controller output is plotted against the measured output from the digital

lead-lag controller, along with a linear curve fit as illustrated in Figure 3.34.

Nonlinear Controller Mapping

y = 0.1081x + 39131
R =0.8083

Linear Controller Output (V)

1.26

23.6 238 24 24.2 244 246 248 25 252
Nonlinear Controller Output (V)

Figure 3.34 Nonlinear controller output versus linear controller output, along with
linear best fit
The linear mapping relationship identified in Figure 3.34 is implemented in Simulink
by the output conversion block shown in Figure 3.35, which will allow the nonlinear output to

be properly scaled for use by the hardware.
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Figure 3.35 Nonlinear output to linear output scaling block

3.7 Experimental Hardware Results

The feedback linearized nonlinear controller and continuous-discrete extended
Kalman filter are implemented in a Simulink model as shown in Figure 3.33. The Simulink
model, related plant noise and output mapping have been experimentally adjusted specifically
for the levitated object considered in this research. Attempts to levitate similar objects using
the parameters previously discussed were unsuccessful. Therefore, it is assumed that any
additional objects would need to have the filter parameters tuned specifically for that object.
This is a reasonable assumption since a different sized object will induce different inductance
due it its presence in the electromagnet's field and the sensor response characterization will
also change due to the shape of the object. The results of this hardware implementation are
presented in three different sections, Steady State Tracking, Square Wave Response, and Sine
Wave Response. These responses represent the behavior of the Maglev interaction with the

nonlinear controller and state estimator proposed in this research.
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3.7.1 Steady State Tracking

Two different set points were considered in this research to demonstrate the ability of
the nonlinear controller and extended Kalman filter to track a constant reference trajectory.
The first set point is in the middle of the linear region of the position sensor range at 14.8
mm. The steady state tracking of the levitated object, mean levitated position and the
corresponding reference trajectory are presented in Figure 3.36a. As illustrated in the
simulation results in section 3.1 and 3.2 the measured position also oscillates about a nominal
value. The mean value of the measured position is also show in this figure allowing the -0.078
mm static offset to be more apparent. The second reference trajectory chosen was 14.5 mm
with the results of the position tracking shown in Figure 3.36b. The measured position
oscillates about the nominal trajectory as in the 14.8mm case, but the oscillation is much more
periodic than the first case. The oscillations for both trajectories are attributed to the un-
modeled plant dynamics or even a consequence of the output mapping discussed in section
3.6 having poor correlation near 14.5 mm. However the constant periodic nature of the
Maglev response also points to an external disturbance to the system. All of these factors

being accounted for results in a mean measurement showing a static offset of almost 0.5 mm.
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Response of Steady State Tracking at 14.8mm
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Figure 3.36 Steady state tracking of the Maglev with levitated object to a reference
trajectory 14.8 mm and 14.5 mm
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3.7.2 Square Wave Tracking

Two different set points were considered in this research to demonstrate the
ability of the nonlinear controller and extended Kalman filter to track a square wave
reference trajectory. To prevent singularities and consequently unbounded response in
both the controller output and/or the extended Kalman filter saturation blocks were
place on the output of the derivative elements shown in Figure 3.33. A nominal
trajectory of 14.8 mm was selected allowing the levitated object to be best placed in the
middle of the linear response region of the position sensor. To the nominal trajectory, a
0.05 mm amplitude square wave is added with frequency of 1.0 rad /sec and 2.0 rad /
sec respectively. The measured position of the levitated object to each square wave
trajectory, mean measured position and reference trajectory are presented in Figure
3.37. The response of the levitated object to the 1.0 rad/sec input frequency closely
correlates with the simulation results. The initial offset between the measured output
and the reference trajectory is approximately 0.05 mm below the desired position and
after change in position, the measured position is approximately 0.05 mm above the
desired reference trajectory. These results correlate very well with the simulated results
for two reasons: the first being that the mean measured position is very close to the
nominal reference trajectory of 14.8 mm, and the second reason is that the sinusoidal
disturbance experienced in Figure 3.36b is not significant. Tracking results for 2.0
rad/sec frequency represent a slightly different response for the hardware. The levitated
object tracked the square wave quite well with the exception of the offset error

associated with mean measured position and static offset associated with steady state
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region before or after the step change. The mean measured error is observed to be at
14.49 mm, approximately 0.31 mm above the nominal reference trajectory. The
measured wave height is 0.31 mm and the reference trajectory wave height is 0.1 mm,

approximately 3 times greater wave height.
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Figure 3.37 Square wave tracking for the Maglev with an amplitude of 0.05mm

and frequency of (a) 1.0 rad/sec and (b) 2.0 rad/sec
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3.7.3 Sine Wave Tracking

Two different set points were considered in this research to demonstrate the
ability of the nonlinear controller and extended Kalman filter to track a sinusoidal
reference trajectory. The nominal trajectory of 14.8 mm was selected in order to place
the levitated object in the center of the position sensor linear response region. Two
wave forms were added to this nominal trajectory of 0.05 mm amplitude sine wave with
frequency of 1.0 rad /sec and 2.0 rad /sec. The measured position, mean measured
position and the reference trajectory for both cases considered are presented in Figure
3.38. The mean measured position of the Maglev hardware to the 1.0 rad/sec frequency
input showed a 0.13 mm offset when compared to the reference trajectory. While the
mean measured position of the Maglev hardware to the 2.0 rad/sec input showed an
offset of 0.06 mm, the position of the levitated object did track the input trajectory
suitably well when considering the persistent sinusoidal disturbance. This disturbance
can most definitely be attributed to un-modeled plant dynamics, output mapping issues

associated with poor correlation and sinusoidal disturbance.
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Figure 3.38 Sine wave tracking for the Maglev with an amplitude of 0.05mm and
frequency of (a) 1.0 rad/sec and (b) 2.0 rad/sec.
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CHAPTER 4
CONCLUSIONS AND FUTURE WORK

In this research, a feedback linearizing nonlinear controller with an extended
Kalman filter was studied for implementation on a Maglev system which served as
hardware in the loop using a MATLAB/Simulink-based development environment. A
nonlinear feedback linearizing controller was developed to control the open-loop
unstable, highly nonlinear plant dynamics. Additionally, a continuous-discrete extended
Kalman filter was developed to provide suitable state estimates to the controller for
proper operation. The extended Kalman filter and nonlinear controller concept was
validated in simulation using m-file and Simulink-based methods. The extended
Kalman filter was tuned using data taken from the hardware in an offline method. Then,
the output of the nonlinear controller was mapped back to a suitable level so existing
data-acquisition Simulink blocks and power electronics could control the levitated
objects trajectory. Experimental validation of the closed-loop response of the Maglev
system was also presented.

4.1 Conclusions

To better address the actual behavior of the Maglev system a nonlinear
dynamical model was constructed based on the understood dynamics of the system. For
the control method to be successfully implemented, a coordinate transformation needed

to be constructed that would convert the nonlinear system into an equivalent linear
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system. Then, the equivalent linear system would be controlled by any linear method,
and the control effort communicated back to the plant with the use of nonlinear
feedback. A few system details needed to be verified, and then the system needed to be
shown as feedback linearizable by means of a set of necessary and sufficient conditions.

The dynamical model was first analyzed to determine if there were any hidden
dynamics. In linear system theory this is analogous to determining if the system has any
pole/zero cancellations. Once the relative degree of the nonlinear system was verified
the necessary and sufficient conditions were checked to ensure that a coordinate change
could be constructed. Finally, a linearizing coordinate transformation and nonlinear
feedback were constructed that converted the original plant into an equivalent linear
system.

Next, the problem of pole placement and asymptotic output tracking was
considered. Arbitrary placement of the closed-loop system poles allowed the
performance of the system to be tailored for this specific purpose. The linearizing
coordinate transformation allowed for an augmented form of the controller that would
asymptotically track certain reference trajectories.

For the purposes of state estimation, an extended Kalman filter was constructed
such that reliable and accurate state values could be utilized by the controller in a timely
manner. The Kalman filter is a state estimation method that seeks to optimally
minimize the error between the actual and estimated states. Although the formulation in
this work is “near” optimal, this method is robust enough that parameter changes and

un-modeled plant dynamics do not have a large effect on the results.
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A first series of simulations was developed in MATLAB m-file format which
allowed the structure of the nonlinear controller and extended Kalman filter to be
validated. The performance of the controller and estimator were promising enough that
implementation on hardware was then pursued.

The m-file simulations were first converted into S-function based Simulink
models but it was discovered that MATLAB's Real Time Workshop can not create an
xPC executable from these types of models. The simulations had to be recast into a
more suitable format using embedded m-files. While these simulations were being
reformulated, the covariance equation was also updated from the simple format used in
the m-file based simulations to the actual version that was implemented on hardware.
The simulations produced promising results that strengthened the confidence in the
original simulations. They showed that the higher fidelity covariance model, while
allowing for higher standard deviations in estimation error, did not degrade the
performance of the estimates or the controller performance.

Implementation of the controller and estimator could be carried out on the
hardware after the sensor noise, plant noise covariance and nonlinear controller output
mapping was performed using the Maglev hardware.

The sensor noise was determined empirically by fixing the position of the
levitated object in the middle of the position sensors range and recording position
values. These values were then used off-line to determine the appropriate sensor noise

covariance.



91

Making use of an existing Lead-Lag controller, measurements were taken of the
levitated object suspended by the hardware. The Simulink simulation model was
modified to allow off-line plant noise covariance tuning. During the tuning process the
state values produced by the estimator were not sufficient enough to allow for closed-
loop control. The format of the state estimator was changed from a continuous-time
extended Kalman filter to a continuous-discrete time extended Kalman filter. The utility
of the Simulink environment allowed only some minor code changes to occur and the
state estimator was converted. After several iterations a likely plant noise covariance
was determined using the actual hardware data. As a final test, another Simulink model
was constructed that allowed the state estimator to operate in an observation only mode.
The state estimates produced by the extended Kalman filter were strong enough that
hardware implementation could continue.

The next challenge was to adequately scale the output of the nonlinear controller
so that the hardware could make use of it. Again, a linear controller was used to map
the output of the nonlinear controller to the output of the linear controller. This
mapping was very sensitive to changes in mass of the levitated object and the sensor
curve used. Any changes to the system parameters beyond this point in the development
would require a full system 're-tune'.

Several reference trajectories were considered for the Maglev hardware to track.
In general, the Maglev tracked the reference trajectory with the exception that a static
offset is present in all cases considered. Furthermore, there was strong evidence of a

sinusoidal disturbance and/or a combination of un-modeled plant dynamics.
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4.2 Future Work

4.2.1 Feedback Linearized Nonlinear Controller

At the core of this nonlinear control technique was the linearizing coordinate
transformation and feedback. One of the many assumptions that this process drew upon
was that the plant dynamics were known exactly. Once the system had been converted
into a linear equivalent, a more robust controller could be used instead of a pole
placement design to reduce the sensitivity to parameter changes and un-modeled plant
dynamics.
4.2.2 State Estimation

Determination of the plant noise covariance was by far the most difficult portion
of this research. The question for the designer was often, "what is a good enough state
estimate?" Without adequate knowledge of the task to be performed or of how the
hardware will actually perform, this question was difficult, if not impossible, to answer.
An adaptive filtering scheme [38] would seek to alleviate the large and difficult tuning
process. Post-measurement signal processing might also be implemented to improve
performance and help reduce some of the persistent disturbances.
4.2.3 Hardware

Three hardware issues prohibited this system from being an outstanding
platform for the future development of advanced control and state estimation
techniques. First, the range of the position sensor, 1.0 mm, was not enough of a
dynamic range to fully demonstrate the power of the nonlinear controller. A sensor

with a larger operating range would greatly enhance this hardware.
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Second, use of a commercially available electromagnet would further reduce the
potential for un-modeled plant dynamics to exist, since the quality of construction and
material construction are higher quality. Material selection and construction technique
will help prevent the existence of distributed capacitance effects during electromagnet
operation.

Third, the use of a commercially available power amplifier to drive the
electromagnet would enable a more accurate plant model to be constructed. The present
hardware requires the use of an operational amplifier and power transistor to boost the

control input.
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Two types of operations are outlined in this section that will further the main body of
this work as it pertains to the required math operations.

Lie Derivatives:

The first type of operation involving a real-valued function A(x) and a vector

field f(x) is called a Lie Derivative. It involves taking the derivative of

h(x)along f(x) and is often expressed as L ph[23].

IS
(dh(x), f(x)) = > f)=> o

i=1""1

fi(x) (B.1)

Lie Brackets can be used multiple times along the same vector field and on more than

one different vector field. An example of a Lie Derivative taken twice of/(x), first

along f(x)then along g(x).

AL h)

Lgth(x): ax

g(x) (B.2)

This process is very straight forward. Simply start at the right-most Lie Derivative and

work back towards the left. An example of a Lie Derivative taken twice of A(x), both
times along f'(x).

a(Lk—l )
ox

L hx) = f(x) (B.3)
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Lie Brackets:
The second type of operation involves two smooth vector fields f(x)and g(x) that

produce another vector field. This new vector field is commonly called a Lie

Bracket, [/, g| and is defined as

A

[f.g]l= f(x)— 2 () (B.4)

where a_g and al are the Jacobians of g(x)and f(x)respectively.
X X

As with the Lie Derivative, the Lie Bracket, also called a Lie product, can be

determined in successive iterations.

adfg(X) L/ ad 'g](x) (B.5)

Allowing for any k£ >1, when adjg g(x)=g(x).
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In order to determine the relative degree, following Definition 2.1, £ is set to 0 and the

Lie derivatives are taken. Then this process will continue until the Lie Derivative result

is nonzero, when taken at the equilibrium state, x .

k=0:

T
Loh(x)=[1 0 0]{0 0 Li} =0

First taking the derivative of A(x) along f(x).

2
th(x)z[l 0 0] Xy g—g(xiJ —&x3 =Xy
m\ X1

Then taking the derivative of L ,h(x)along g(x).

T
1
LoLsh(x)=[0 1 0]{0 0 L—} =0

C

It is clear from C.3 that the process must progress to k =2since Lg L rh(x) # 0

k=2:

(C.1)

(C.2)

(C.3)

Instead of starting back with having to take the derivative A(x) of along f(x), the next

step in this process can proceed directly from C.2. Starting with L #h(x) and take the

derivative of it along f(x).
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As in the previous step take L% A4(x) and take its derivative along g(x).
p p I; g

2 T
x _
LgL?h(x): 20113 0 —2C| x3 0 0 L 20 X3 (C.5)
m x13 m x12 L, mL,. x12

L gLi,h(x) being non-zero is not enough to finish the process; it will have to be non-

zero at the equilibrium point x(y. Since the region of state space has been restricted to
x; >0and x5 >0 the relative degree of the system is simply computed relying on the

equality » —1 = k . By simple inspection the relative degree of the Maglev system at x(yis

3.
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Noting that the first vector of the matrix g(x() is nothing more than a condensed
version of adje g(x() there are no computations required other than establishing the Lie

Product at the equilibrium point, x .

T
1
g(xo>{0 0 —} (D.1)
LC
Calculating ad 7 g(x):
) )
ad e =% -2 g (D2)
Note that g(x) and f(x)can be found defined in equation 2.10:
0
) ) 2C| x5 2C| x3
®_lolmy L= a2 (D.4)
ox ox m m x
R
0 _¢c
L Lc J
X2 0 1 0
clx) | |2c(x 2 ()] °
ad g(x)=[0] g——(—ﬂ S0 5| 0] @)
m\ x| m\ x; mL,. x| 1
R -
- 0o o X te
L ¢ 40 L. ]

T
R
ad ;g =|0 2¢ x—; e (D.6)
mLe | x L



Calculating ad ]2, g(x)involves:

dadrg
ad%g(x)=[f, ad fg(X)]— f f- f ad g
Determining the Jacobian of D.6 produces:
0 0 0
dadrg | —4C| x3 0 2€ (1
ox mL,. 1 mL, \ x,
0 0 0
0 0 0 X2
2
atgn=| 4| 5 | ﬁH QH
mL X; mL.\ xp m\ x|
R
0 0 0 —Zx
L L, |
0 1 0
2= _z 20 [x
m x13 m x ML x12
R R
o o0 -=< -
| L. | | L |

Cc

) T
2 . —2CX3 —4CX2X3 RC
ad’yg = 2 3 3
mL.x{ mL.x; L

Once [g adrg ad ]% g]is constructed its rank can be determined at x .

104

(D.7)

(D.8)

(D.9)

(D.10)
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0 —2C| x3
mL,. x{
rank{g(xo ), ad r g(xg), ad ]% 2(xo )}: ranks 0 ﬁ{ﬁ} ﬁ{m} (D.11)
m 2| mL 3
c\X] c X
1 R L5
Le L2 L
X

Checking Condition II:

The center piece of condition II involves the Frobenius Theorem, which allows for the
span to be involutive if it is completely integrable. This condition is easily checked by
noting the Lie Product of any two column vectors in the span is said to be involutive if

that product can be constructed as a linear combination of those two vectors.
[g(x),ad pg(x)]=0 g(x)+yad yg(x) (D.12)

Calculating[g(x), ad y g(x)]:

dad
9adrg(r) (98

. . ad rg(x) (D.13)

[g(x),ad ;g(x)] =

All of the required Jacobians for this product have already been calculated, substituting

D.1, D.3, D.6 and D.8 into D.13 produces
C

0
2C [ 1
,ad =| = = D.14
[g(x),ad g (x)] 5] [x%} (D.14)
0

Equation D.14 can also be constructed with the linear combination of

g(x)andad rg(x).



Note that § =

[g(x).ad ;g(x)] =

C

c X3

mL%

20[1}
2 2
X1

0

0

Q“|Ho o

0
2C

ML

R

X3

2
X1

zc

L2

Cc

|
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(D.15)

and y = Lthus making the second condition true and making the

X3

existence of a linearizing coordinate transformation and nonlinear feedback possible.



APPENDIX E

CONSTRUCTION OF THE COORDINATE CHANGE AND NONLINEAR
FEEDBACK

107



108

Take the derivative of the output /(x) along the dynamics of the system until the input

appears [24]. Looking back at the relative degree determination,

expected to appear until third iteration of this process.

the input u(¢) is not

Y =Vh(x)(f(x)+g(x)u(t) = L ph(x)+ Lo h(x)u(r) (E.1)

Leh(y=01 0 0[0 0 1/1.1 =0
Substituting C.2 and E.2 into E.1
y=x7+0-u(?)
Repeating this process for E.3.
¥ = Lh(x) + Ly L ph(x) u(?)

Taking advantage of C.3 and C.4 and substituting them into E.4

2
y=g—£(x—3j +0-u(t)

m\ xXi
Again for equation E.5
¥ = Lyh(x) + LeL7h(x) u(f)

Building on the results of C.4

2
L3fh(x) = {E [x_g} 0 E[X—;H X g —g(
m Xi m x] m

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

2 2
Loh(x) :5{“’53 }r 2CR, {x—;} (E.7b)
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Again using C.4 except its derivative is taken along g(x)

LgLh(x) = ﬁﬂjj 0 2C[ Ho o 1L.Jf (E.82)
xl

m

Lo L7 h(x)= 22: {x—g} (E.8b)
X

mL, i

Equation E.6 can be rewritten substituting in E.8a and E.8b

2 2
2CR
_ac 0 |, CR, X _2<¢ Bty (E.9)
m X; mL, Xq mLe X1

The input has appeared as part of the output. Now a coordinate transformation between

y(t)and u(¢)can be defined.

¥
z=®(x)=|j (E.10a)

$
An alternative definition can be expressed in terms of the dynamic system parameters.

Note that the position, velocity and acceleration of the levitated object are represented

in the coordinate transformation.
2
z=0()=|x x, g —g(’ﬁj (E.10b)

Casting E.10b into a set of first order differential equations the coordinate change picks

up the input u(z) allows the definition of the new input v(¢) .
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. . X2

71 Y 2

. . Clx

2=V |= g—z(x—ﬂ (E.11)
. 1

23] |V

2C| xpx3 L 2CR, x| 2C (x5 (0
m xf mLc )C12 mLc x12

Calling the last derivative taken ', the new input to the linear system E.11 can be

rewritten ina z = Az+bvformat. Where A4 is 3x 3 matrix and b is a 3x1 vector.

Zy 010 Z1 0
2=lz3[=[0 0 1|z |+|0 @) (E.12)
v 0 0O Z3 1

The format of equation E.12 is commonly known as a Bruvonsky form. The last row of
E.12 is of special interest since it is the nonlinear feedback. Examining it closer one
finds that a relationship exists between the nonlinear system's input u(¢) and the linear
system's input v.

v= Li,h(x)+LgL2fh(x)u(t) (E.13)

Solving for u(¢) determines what the relationships is between the two inputs using

nonlinear feedback.

u(t)=—=>r—— (E.14)
&8~ f

In much of the literature equation E.14 is written in a different format [22], [23]
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o(x)+v

“O="500

(E.15)

Where the elements of @ and S are shown in equation E.14.
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Simulation Flow Schematic:

Start Define System Define Initial
Parameters Conditions

v
Calculate Linear +| Create Reference
Control Vector Trajectory

x (i) )2([) yrg/ .)./rg/ j}rg/ ..)./.rg/ kT

» Calculate:
Propagate Plant u®)
States . N
x(i) z(x)
xi+1) < ¥ (i)
A
Create Noisy Calculate:
Measurements Kalman Gain K@)
»{Update State Estimate (i)
v, ~ N(0,6%) Update Covariance ;)
A x(i) y ref  Vref Yref Vreft kT
» Calculate:
Propagate .
Estimated Plant u(x)
States . z(%)
. x (i)
i+ < ()

Bounds Check on o Calculate
Estimated States q/
9 x

v

Propagate Diagonal
of Covariance

pli+1)=diag(p)

Increment time

(i) =t(i)+dt

L
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M-file Based Simulation for Step Response:

$John A. Henley

%22 May 2005

% Feedback Linerized Controller / Extended Kalman Filter
% Simulation via M-file for concept validation

%$This file requires that the m-file real_state_track.m and
%estimate_fun_track.m

$close and reset

clear all; close all;

$System Parameters

x10=.0148; L0=.02; C0=x10*L0/2;

mass=.05506; g=9.81; L1=.59;

r=.001"2; R=25;

%$Time Step

dt=.001;

%$Time Vector

t=[0:dt:1.571;

m=length(t);

%Define State Vector Size and Length

xt=zeros(m,3); ym=zeros(m,1l);p_cov=zeros(m,3) ;xXxe=zeros(m,3);
%define Iniital Conditions

x10=.0148; x20=0; x30=x10*sgrt(g*mass/C0) ;
x0=[1*x10;0;1*x30]

%$Setting Initial Conditions of Plant & Estimate
xt(1l,:)=x0";

xe(l,:)=[1.05*x10;0;1.05*x30]";

%$Define initital conditions for covaraince
p0=.085*eye(3); p=p0; p_cov(l, :)=diag(p0) ';

%$Define Process Noise Covaraince

g=.025*[ 0 0 O;

01 0;
00 17;
%define measurement equation
h=[1 0 0];
%linearization and pole placement
b=[ 0;
0;
11;
A=[ 0 1 0O;
00 1;
00 0];

%desired poles

pl=[-100,-60,-807;

$Closed Loop Poles based on [-100,-60,-80]
1=[240 18800 4800007;

%$0pen Loop Poles

a=[0 0 01;

$Teoplitz Matrix

T=[1 0 0; 01 0; 00 11;

%Controbalitity Matrix
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Cc=[0 0 1;0 1 0;1 0 0];
%$Bass-Gura Formula
k=(1l-a)*inv(T"') *inv (C)
%Load workspace with 2mm step change
load reftraj0140501605
yvr=yref;
%velocity 1s set to zero to help avoid singularity in the response
yvrl=zeros(m,1);
yvr2=yrl;
vr3=yr2;
%start of simulation
for i=1:m-1;
%1i-th portion of the reference trajectory
y=yr(i);
yl=yrl(i);
y2=yr2(i);
y3=yr3(i);
%Plant State Propagation
%fixed step 4th Order Runge-Kutta Integration
fl=dt*real_state_track(xt(i,:),k,y,v1l,y2,v3,xe(i,:));
f2=dt*real_state_track(xt (i, :)+0.5*fl',k,yv,vl,v2,y3,xe(i,:));
f3=dt*real_state_track(xt (i, :)+0.5*f2',k,y,vl,v2,y3,xe(i,:));
f4=dt*real_state_track(xt(i,:)+£f3',k,yv,vl,v2,y3,xe(i,:));
xt(i+1l, :)=xt (i, :)+1/6* (£1'+2*£f2'+2*£3'+f4");
%create artificial measurement bases on reference trajectory with
%standard deviation r
ym(i)=xt(i,1)+sqgrt(r)*randn;
% Kalman Update
gain=p*h'*inv (h*p*h'+r) ;
p=(eye(3)-gain*h) *p;
xe(i,:)=xe(i,:)+gain'*(ym(i)-xe(i,1));
%State Estimate Propagation
%fixed step 4th Order Runge-Kutta Integration
fl=dt*estimate_fun_track(xe(i,:),k,v,v1l,v2,vy3);
f2=dt*estimate_fun_track(xe(i,:)+fl' ,k,yv,v1,v2,vy3);
f3=dt*estimate_fun_track(xe(i,:)+f2',k,yv,vl,v2,vy3);
f4=dt*estimate_fun_track(xe(i, :)+£f3"',k,yv,v1,v2,v3);
xe(i+l,:)=xe (i, :)+1/6* (£1'+2*£f2'+2*£3'+f4");
%$Bounds Check
if xe(1i,3)<0

xe(i,3)=0;
end
if xe(1,3)>1.25

xe(i,3)=1.25;

end
%Jacobian of open loop plant
fpart =0, 1,0;

3*(C0/mass) * (xe(i,3))"2/xe(i,1)"3,0,2*(C0/mass) *xe(1,3)/xe(i,1)"2;
0,0,-(R/L1)];

%propagation of covariance

phi=c2d(fpart, [0;0;1],dt);

p=phi*p*phi'+g*dt;
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p_cov(i+l, :)=diag(p) ';

end

%calculation of sigma bounds
sig3=p_cov.”(0.5)*3;

M-file Based Plant Propagation:

function f=real_state_track(xt,k,y,vl,v2,vy3,xe)

x1d=.0148;
x10=.0148;
L0=.02;

C0=x10*L0/2;

mass=.05506;

g=9.81;

L=.59;

R=25;

Ks=1;

$transformed states

zl = Ks*(xe(l));

z2 = Ks*xe(2);

z3 = Ks*(g-CO/mass*xe(3)"2/xe(1l)"2);

gcomponets of nonlinear feedback

b=2*Ks*C0O0/mass*xe(3)"2/xe(l) "3*xe(2)+2*Ks*C0/mass*xe(3)"2/xe (1) "2*R/L;

a=-2*Ks*C0/mass*xe(3) /xe(1l)"2/L;

v=-—(k(1l)*(zl-Ks*y)+k(2)* (z2-Ks*yl)+k(3) * (z3-Ks*y2) ) ;

u=(-b+v+y3) /a;

%controlled plant

t=[ xt(2);
g-(CO0/mass) * (xt(3) /xt (1)) "2;
-(R/L) *xt (3)+(1/L) *ul;

M-file Based Estimate Propagation:
function f=estimate_fun_track(xe,k,vy,v1l,v2,y3)

x1d=.0148;
x10=.0148;
L0=.02;

C0=x10*L0/2;
mass=.05506;
g=9.81;
L=.59;
R=25;
Ks=1;
$transformed states
z1l = Ks*(xe(l));
z2 = Ks*xe(2);
z3 Ks* (g-CO/mass*xe(3)"2/xe(1l)"2);
gcomponets of nonlinear feedback
b=2*Ks*C0O0/mass*xe(3)"2/xe(l) "3*xe(2)+2*Ks*C0/mass*xe(3)"2/xe (1) "2*R/L;
a=-2*Ks*C0/mass*xe(3) /xe(1l)"2/L;
v=-—(k(1l)*(zl-Ks*y)+k(2)* (z2-Ks*yl)+k(3) * (z3-Ks*y2) ) ;
u=(-b+v+y3) /a;
t=[ xe(2);
g-(CO0/mass) * (xe(3) /xe(l))"2;
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-(R/L) *xe(3)+(1/L) *ul;

M-file Based Simulation for Sine Wave Response:
$John A. Henley
%22 May 2005
% Feedback Linerized Controller / Extended Kalman Filter
Simulation via M-file for concept validation
¥This file requires that the m-file real_state_track.m and
%estimate_fun_track.m
$close and reset
clear all; close all;
$System Parameters
x10=.0148; ©L0=.02; C0=x10*L0/2;
mass=.05506; g=9.81; L1=.59;
r=.001"2; R=25;
%$Time Step
dt=.001;
%$Time Vector
t=[0:dt:1.5];
m=length(t);
%Define State Vector Size and Length
xt=zeros(m,3); ym=zeros(m,1l);p_cov=zeros(m,3) ;xXxe=zeros(m,3);
%define Iniital Conditions
x10=.0148; x20=0; x30=x10*sqgrt(g*mass/CO0);
x0=[1*x10;0;1*%x30]
%$Setting Initial Conditions of Plant & Estimate
xt(1l,:)=x0";
xe(l,:)=[1.05*x10;0;1.05*x30]1";
%$Define initial conditions for covariance
p0=.085*eye(3); p=p0; p_cov(l, :)=diag(p0) ';
%$Define Process Noise Covariance
g=.025*[ 0 0 O;
01 0;
00 17;
%2define measurement equation
h=[1 0 01;
%linearization and pole placement
b=[ 0;

oe

O

]
A=]

cor o
o~

0;
1 .

7

00 0];
%desired poles
pl=[-100,-60,-807;
$Closed Loop Poles based on [-100,-60,-80]
1=[240 18800 4800007;
$0pen Loop Poles
a=[0 0 01;
$Teoplitz Matrix



T=[1 0 0; 01 0; 00 17;
%Controbalitity Matrix
C=[0 0 1;0 1 0;1 0 01;
%$Bass-Gura Formula
k=(l-a)*inv(T') *inv (C)

%reference signal
yvr=.0148*ones (m,1)+0.001*sin(20*t"') ;
yrl=diff (yr)/dt;

vrl (m)=yr(m-1); %First Time Derivative of Trajectory
yr2=diff (yrl) /dt;

vr2 (m)=yrl(m-1); %Second Time Derivative of Trajectory
yr3=diff (yr2)/dt;

vr3(m)=yr2(m-1); %Third Time Derivative of Trajectory

%start of simulation

for i=1:m-1;

%1i-th portion of the reference trajectory
y=yr(i);

yl=yrl(i);
y2=yr2(i);
y3=yr3(i);
%$Plant State Propagation

%fixed step 4th Order Runge-Kutta Integration
fl=dt*real_state_track(xt(i,:),k,y,vl,v2,y3,xe(i,:));

f2=dt*real_state_track(xt (i, :)+0.5*fl',k,yv,vl,v2,y3,xe(i,:));
f3=dt*real_state_track(xt (i, :)+0.5*f2',k,y,vl,v2,y3,xe(i,:));

f4=dt*real_state_track(xt(i,:)+£f3',k,yv,vl,v2,y3,xe(i,:));
xt(i+1, :)=xt(i,:)+1/6*(£1'+2*£2'+2*f3'+f4"');

%create artificial measurement bases on reference trajectory with

%standard deviation r
ym(i)=xt(i,1)+sqgrt(r)*randn;
% Kalman Update
gain=p*h'*inv (h*p*h'+r) ;
p=(eye(3)-gain*h) *p;
xe(i,:)=xe(i,:)+gain'*(ym(i)-xe(i,1));
%State Estimate Propagation
%fixed step 4th Order Runge-Kutta Integration
fl=dt*estimate_fun_track(xe(i,:),k,y,v1l,v2,v3);
f2=dt*estimate_fun_track(xe(i,:)+fl',k,yv,vl,v2,vy3);
f3=dt*estimate_fun_track(xe(i,:)+f2',k,yv,vl,v2,vy3);
fd=dt*estimate_fun_track(xe (i, :)+£f3',k,v,vl,v2,vy3);
xe(i+1l,:)=xe (i, :)+1/6*(£f1'+2*£f2'+2*f3'+f4"');
%$Bounds Check
if xe(1i,3)<0

xe(i,3)=0;
end
if xe(1,3)>1.25

xe(i,3)=1.25;
end
%Jacobian of open loop plant
fpart =[0,1,0;

3*(CO/mass) * (xe(i,3))"2/xe(1,1)73,0,-2*(C0/mass) *xe(1,3) /xe(i,1)"2;
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0,0,-(R/L1)1;

%propigation of covariance
phi=c2d(fpart, [0;0;1],dt);
p=phi*p*phi'+g*dt;
p_cov(i+l, :)=diag(p)';

end

%calculation of sigma bounds
sig3=p_cov.”(0.5)*3;
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Nonlinear Controller:

function control = fcn(inputs)

vy = inputs (1) ;
vl = inputs(2) ;
v2 = inputs(3);
v3 = inputs (4) ;
x1l = inputs(5) ;
X2 = inputs(6) ;
x3 = inputs(7) ;
x1d=.0148;
x10=.0148;

L0=.02;

C0=x10*L0/2;
mass=.05506;
g=9.81;
L=.59;
R=25;
Ks=1;
k=[480000, 18800, 2407;
zl = Ks*(x1);
z2 = Ks*x2;
z3 = Ks*(g-(CO0/mass) * (x3/x1)"2);
b=2*Ks*CO0/mass*x3"2/x1"3*x2+2*Ks*C0/mass*x3"2/x1"2*R/L;
a=-2*Ks*C0/mass*x3/x1"2/L;
v=—(k (1) *(zl-Ks*y)+k(2)* (z2-Ks*yl)+k (3) * (z3-Ks*y2)) ;
ul=(-b+v+y3) /a;
control = ul;

Extended Kalman Filter:
function [state_estimate,covariance] = fcn(old_state, inputs,
old_covariance)
p0 = le-5*eye(3);
© = po ;
p_cov = diag(p0) ';
a = [0 0 0;
0 1*10"-5 0;
0 0 1*10"-5];
gamma=.25* [0,0,0;
0,1,0;
0,0,171;
x10=.0148; ©L0=.02; C0=x10*L0/2;
mass=.05506; g=9.81; L=.59; R=25;
h = [1 0 0];
r = 0.00172;
ul = inputs (1) ;
ym = inputs(2) ;

p=o0ld_covariance;
x=01d_state;
gain=p*h'/r;
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fpart =[ 0, 1,
0;
3*(CO/mass) * (x(3))"2/x(1)"3, 0, -2*(CO0/mass) *x(3) /x(1)"2;
0, 0, -(R/L)1;
dx=[ x(2);
g-(CO0/mass) * (x(3) /x(1))"2;

(R/L) *x(3)+(1/L)*ul] + gain*(ym - x(1));

pdot = fpart*p + p*fpart' -p*h'*(1l/r)*h*p+ gamma*g*gamma';
state_estimate=dx;

covariance=pdot;

Maglev Plant Dynamics:
function [sys,x0] = maglev_3(t,x,u, flag)
switch flag,
case 0
sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs =
sizes.NumInputs =
sizes.DirFeedthrough =
sizes.NumSampleTimes
sys = simsizes(sizes);
x0 = [1.10*%.0148;0;1.1*%.8921];

7
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1;

case 1

ul=u(l);

x10=.0148;

L0=.02;

C0=x10*L0/2;

mass=.05506;

g=9.81;

L=.59;

R=25;

dx=[ x(2);
g-(CO0/mass) * (x(3) /x(1))"2;
-(R/L)*x(3)+(1/L) *ul];

sys=dx;
case 3
sys = [x(1)];

case {2, 4, 9}
sys = []; % Unused flags

otherwise
error ([ 'Unhandled flag = ',num2str(flag)]); % Error handling
end;
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Continuous - Discrete Extended Kalman Filter:
function [state_estimate,covariance] =
fcn(old_state, inputs, ref_pos,old_covariance)

a = [ 1*10"-4 0 0;
0 .75*%107~-7 0;
0 0 1*107-8 1;
gamma=[ 1,0,0;
0,1,0;
0,0,171;
x1ld=ref_pos/1000;
x10=x1d;
L0=.02;

C0=x10*L0/2;
mass=.05506;
g=9.81;
L=.59;
R= 27.6;
Ks=1;
h=[1 0 0];
r = 0.0034"2;
ul=inputs (1) ;
ym=inputs (2) ;
p=o0ld_covariance;
x=0ld_state;
%Continuos-Discrete Extended Kalman Filter
k=p*h'*inv (h*p*h'+r) ;
%$State Update
x=x+Kk'* (ym-x(1)) ;
%$Covariance Update
p=(eye(3,3)-k*h) *p;
%propigation of state
dx=[x(2) ;
g-(CO0/mass) * (x(3) /x(1))"2;
-(R/L) *x(3)+ul/L];
%propigation of covariance
fpart =[0, 1, O0;
3*(CO0/mass) * (x(3))"2/x(1)"3, 0, -2* (CO0/mass) *x(3) /x(1)"2;
0, 0, -(R/L)1;
pdot=fpart*p+p*fpart'+gamma*g*gamma ' ;
state_estimate=dx;
covariance=pdot;
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