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ABSTRACT 

 

NUMERICAL STUDY OF MAGNETOHYDRODYNAMICS 

 

 

 

 

Publication No. ______ 

 

Takahiro Sonoda, AE 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Brian H. Dennis 

Use of electromagnetic fields has been shown to be an effective way to control 

the behavior of electrically conducting fluids. Specifically, the modification of the 

boundary layer profile with electromagnetic fields can yield performance improvements 

such as reduced drag and improved heat transfer. Though this approach has been 

demonstrated computationally and experimentally with conducting liquids (i.e. 

seawater), application to aerodynamic devices operating in air has not seen the same 

success.  

 iv



Through the use of numerical simulation and eventually optimization, we hope 

to develop efficient designs that are effective for boundary layer control for low 

temperature conducting gases (non-thermal plasmas). The boundary layer control 

technique requires an electrically conducting fluid within the boundary layer and either 

intense magnetic fields or high voltage difference across electrode pairs. The plasma 

discharge at atmospheric pressure was suggested to ionize air and thus increase the 

electrical conductivity of the air. 

A numerical model was developed to assist in the design of physical 

experiments and to enhance the understanding of the physical mechanism of the plasma 

flow under the influence of electromagnetic fields. 

The model equations governing the flow of non-thermal plasmas in an 

electromagnetic field were discretized using finite volume method for MHD fluid 

equations and Galerkin finite element method for MHD electrodynamics equations on 

an unstructured mesh. 

It was observed that flows at low Reynolds number can be altered by 

electromagnetic fields with low applied voltage and relatively low magnetic flux 

density under the assumption of constant electrical conductivity of plasma. 
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CHAPTER 1 

INTRODUCTION 

The possible use of magnetohydrodynamics (MHD) to aerospace engineering 

applications has been revisited by research communities in recent years. This trend 

might owe to some of the technological improvements in magnetic materials and power 

source devices in the last few decades. Along with the availability of the more advanced 

technology, demands for better performance in engineering applications are always 

soaring. MHD applications are conceptually attractive although the power input 

required to obtain appreciable effects in the gas medium may be economically 

prohibitive at this time. 

Feasibility study of MHD techniques plays an important role in the design and 

development of MHD devices. The desired MHD effects must be obtained by supplying 

reasonable amount of power input and having a magnetic device with attainable 

magnetic field strength. 

1.1 Concept of MHD actuator 

The fundamental concept of the MHD techniques is that charges moving 

through an electromagnetic field experience a Lorentz force and an increase in energy. 

This microscopic behavior of particle kinetics results in the macroscopic behavior of the 

flow. In addition to Lorentz force, electric fields are capable of doing work on charged 

particles, which results in the change in energy of the flow without any mechanical 
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contact, called Joule heating. These two effects make a significant difference between 

behaviors of the electrically conducting and non-conducting flow. The fundamental of 

MHD actuator is to determine the way to apply electric and magnetic fields so that the 

flow can be altered as desired. 

1.2 Types of MHD devices 

Either flow acceleration through power input or electricity generation through 

extraction of power from the flow are the common operating principles among all the 

MHD devices. Potential use of MHD technique for aerospace applications can be 

further categorized into several disciplines according to its purpose as an engineering 

devise.  

 
1.2.1 MHD accelerated flow wind tunnel 

There is a limit to which Mach number of the flow at test section in hypersonic 

facility can be increased since availability of the energy depends on the total enthalpy of 

the flow. Conventionally, the working fluid upstream needs to be either compressed to 

extremely high pressure, heated to extremely high temperature, or combination of both 

in order to attain the extended range of test section Mach number. In addition to them, 

the MHD technique provides the third means to realize the above [1]. 

1.2.2 MHD propulsion devices 

MHD propulsion devices, such as electrical propulsion systems, have been 

proposed for use in space flight [2, 3]. It can overcome the limitations of specific 

impulse that be attained by chemical rockets due to the limited availability of the total 

enthalpy in chemical reactions. The exhaust velocity of an engine is an essential factor 
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to determine achievable thrust [3]. The higher exhaust velocity can be achieved by 

externally supplying power in the presence of magnetic field. However, as a drawback, 

thrust to weight ratio of MHD propulsion device is less than unity. For this reason, use 

of MHD propulsion devices is limited to outer space [4]. 

1.2.3 MHD active flow control 

Passive and active flow control schemes have been extensively studied since 

1918 [4]. At the early stage of study, it was found that the boundary layer plays an 

important role in the flow control. The primary objective of flow control methods is to 

reduce the large energy losses in the flow. As a means of energizing the flow to 

overcome an adverse pressure gradient in the boundary layer regions, MHD flow 

acceleration may prevent the boundary layer from separating [2].  

1.2.4 MHD power generation 

The MHD electric power generator is based upon the Faraday effect; that is, a 

conductor which moves through a magnetic field generates within it an induced electric 

current. The MHD generator uses ionized gases that are produced through heating by 

chemical or nuclear fuel as the moving conductors [2]. Thermal ionization of gases that 

is crucial to this application takes place only at extremely high temperatures. 

1.3 Review of MHD research 

Though the subject of MHD has been understood since the fundamental 

experiments of Hartmann and Lazrus in the 1930’s, aerospace applications using plasma 

have not been fully developed. This is due to the low electrical conductivity of 
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atmospheric gases and the significant power input required to cause substantial 

alternation in flow [2].  

Recently, interest in MHD techniques for use with non-thermal plasmas has 

been found with the aerodynamics community. However, the main barrier to the 

practical usage of MHD for aerodynamics is the low electrical conductivity of the 

working gas. In order to increase the electrical conductivity of the gas, the use of 

discharge plasma under the atmospheric condition was found to be effective. The 

weakly ionized gas is generated by secondary electronic emission from embedded 

electrodes on control surfaces. The generated plasma consists of electrons in a highly 

excited state, however the heavy ions retain the thermodynamic condition of its 

surrounding neutral particles. 

Some of the experimental and numerical attempts for analysis of MHD in non-

thermal plasma conditions are reviewed in the following sections.  

1.3.1 Experimental study 

Quite a few experimental works have been conducted in electrohydrodynamics 

(EHD), where the air is weakly ionized by di-electric discharge plasma and energized 

due to the deposition of energy in the form of, joule heating [5]. Significant shifts in the 

aerodynamic forces over a broad range of angles of attack were reported using plasma 

actuators [8, 9].  This technique was further applied to the separation control of low-

pressure turbine blades [10]. Plasma actuator was arranged in such a way that a steady 

two-dimensional wall jet effect is induced downstream of the actuators. It was reported 

that comparable effect to vortex generators was measured. 
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Use of a magnetic field in addition to the plasma discharge has been considered 

to provide more significant alternation of flow. Experimental work on flow control with 

MHD for aerospace applications mainly focuses on drag reduction and increase in lift. 

However, the mechanism of alternation of the flow is still uncertain [6]. Further 

investigations need to be done in order to obtain desired alternation of the flow.  

MHD flow control for the application where thermal plasma is not present, can 

be realized by having plasma discharge and magnetic field applied in the plasma flow 

[6]. In this experiment, a hypersonic flow was altered by using discharge plasma and 

applying magnetic field. The range of magnetic flux density applied perpendicular to 

the plasma current flow direction and the air flow, is between -0.2 and 0.2 Tesla. 

Furthermore, the mean applied voltage ranges from 600 to 1600 volts. The results show 

that the change in lift and drag is on the order of a few grams in hypersonic flow [6]. 

An important parameter in MHD is a value of electrical conductivity for the 

fluid medium. It directly corresponds to the degree of ionization of the gas and the 

strength of the applied electromagnetic field. Recent efforts have been made to measure 

the electrical conductivity of supersonic nonequilibrium plasma [7]. The measured 

conductivity under the magnetic field of 1.0 Tesla ranges from 0.02 to 0.06 [mho/m].  

1.3.2 Numerical study 

In order to model the flow physics of electrically conducting medium, MHD 

equations are utilized. The equations are derived by taking the moments of Boltzman 

equations developed in the kinetic theory [2]. The Boltzmann equations have three 

independent variables in physical space, another set of three independent variables in 
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velocity space, and time. In addition to the flow equations, Maxwell’s equations are also 

required to model the electromagnetic properties. Thus, these two sets of governing 

equations are the so-called MHD equations, and are commonly used in astrophysics. 

Rigorous derivations of MHD equations are available in the literatures [2]. Most 

of existing mathematical models of MHD flow in aerospace applications exploit the 

standard MHD equations with augmented equations with additional components.  

MHD simulations in the past for aerospace applications have been developed in 

a context of thermal plasmas. In other words, the air enters a dissociated state due to the 

addition of heat. In thermal plasma, the chemical reactions take place due to the 

significant amount of energy deposition into the gas. High temperature flow physics 

have been studied extensively during the development of re-entry vehicles such as 

Apollo and the Space Shuttle in order to predict the durability of heat shielding 

materials.  

A typical approach to model the thermal plasma is to consider the chemical 

reactions and flow equations [11]. Furthermore, more detailed simulations have 

considered the two-temperature model by noting that the temperature of the heavy 

particles and electrons differs [12, 13]. Theoretically, each species can have its own 

temperature. However, this model approximates the temperature of heavy particles as 

one temperature since the mass of heavy species are somewhat similar. On the other 

hand, the mass of an electron is insignificant compared with other species. According to 

the definition of the temperature, the temperature of electrons deviates from the other 

heavy species. 
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In the high temperature weakly ionized gas, transport properties and the 

electrical conductivity can be computed using the collision cross sections [2] estimated 

from the binary collision model [14, 15, 16]. The electrical conductivity can be also 

derived from the kinetic theory with the experimentally obtained collision cross section 

[2]. 

One of main difficulties in modeling of MHD at the low temperature is based on 

the fact that the working medium such as air needs to be ionized using a secondary 

ionization source in order to increase the electrical conductivity. This can be done 

through electron beams [17] and glow discharge or dielectric barrier discharge. Thus, 

this raises the necessity to derive the mathematical model of the plasma discharge 

across the electrodes, which involves the knowledge of detailed collision models [18, 

19].  

The role of the electron temperature that represents the kinetic energy of the 

electrons becomes more significant in non-thermal plasma. The plasma reaction in non-

thermal condition can be initiated only by the collisions of secondary electrons emitted 

from the electrodes to other air molecules. Electron collisions may excite the molecules 

to the meta-stable state, which now is an active species. Though meta-stable atoms and 

molecules exist for only a short period of time, they play an important role in non-

thermal plasma chemistry [18]. A considerable number of species needs to be taken into 

account if the detailed plasma chemistry is to be modeled completely and that, results in 

large number of unknowns. Furthermore, chemical kinetics of most of reactions has not 

been measured or cannot be measured [18]. More fundamental research in cold plasma 
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chemistry needs to be conducted before one can form a complete mathematical model 

to simulate these complex reactions. 

Slight variations in the modeling of non-thermal MHD flow can be observed 

among the literature. This is due to the difference in modeling of plasma discharge.  

A primitive model of discharge plasma called a phenomenological model of 

discharge plasma was used to model MHD hypersonic flow control [22]. This model 

consists of MHD equations, the charge conservation equation, and the generalized 

Ohm’s law. The explicit model of the electrical conductivity was derived simply based 

on the observation of the phenomenon. The electrical conductivity decreases as the 

distance from the electrodes increases. 

In a slightly more sophisticated mathematical model, discharge plasma is 

modeled by a drift-diffusion glow discharge model [23]. In this model, the charge 

conservation equation, the generalized Ohm’s law, and the external circuit equation are 

exploited. In addition to those, the electric field was updated according to the change in 

the distribution of charge density. As a variation of this model, it was suggested to 

replace generalized Ohm’s law with the momentum equations for the charged species 

[24]. Since the generalized Ohm’s law was derived from the electron-momentum 

equation, the ion-momentum equation, and the overall momentum equation [2], this 

approach seems to be reasonable. Under an assumption of the low magnetic Reynolds 

number, the induced magnetic field was not computed. 

In chapter_2, the governing equations for MHD are discussed. Maxwell’s 

equations will be discussed in detail in order to see the consistency of the equations. 
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In chapter_3, the numerical methods used to solve the MHD equations will be 

discussed. 

In chapter_4, a finite volume flow solver developed at the UTA CFD Lab was 

validated for Poisuille flow and the internal flow around the turbine blade. 

In chapter_5, simulation results for the use of MHD technique to modify the 

flow field are presented. 
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CHAPTER 2 

GOVERNING EQUATIONS 

2.1 Derivations of MHD equations 

MHD equations consist of two sets of equations, fluid equations and 

electromagnetic equations. The fluid equations describe the flow physics under the 

influence of the electromagnetic fields. They have a form of the Navier Stokes equation 

in classical fluid dynamics with additional terms due to the effect of EMF, namely, 

Lorentz force and Joule heating. The electromagnetic equations describe the 

electromagnetic field due to both externally applied and induced fields. Full description 

of the behavior of electromagnetic fields is realized by Maxwell’s equations. In this 

work, the Maxwell’s equation will be simplified using appropriate approximations. 

 
2.1.1 Velocity distribution function 

In microscopic level, the molecules of fluid collide with each other and the 

collisions transmit the change in the state of the bulk flow. In addition to the large 

number of collisions, the particles have a distribution of speeds; that is, they are not 

isoenergetic. The collisions between particles not only change the direction of motion, 

but in addition, one particle can transfer part or all of its kinetic energy to another 

particle [2].  

One treats those particles which at a given time have velocities in some small 

range of velocity. In order to do that, the velocity distribution function is introduced. 
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The velocity distribution functions represent the probability of the number of particles 

with a certain velocity range at a certain point. 

2.1.2 Moments of Boltzmann equations 

Since the exact distribution function cannot be obtained, the problem must be 

simplified by considering only gross properties, such as density, velocity, and thermal 

energy. Furthermore, when there exist a large number of collisions such as in weakly 

ionized plasma, the perturbing effect of external fields on the particle motion is small. 

Thus, the average perturbing effect on a large number of particles is analyzed.  

By integrating the Boltzmann equation, whose solution is the distribution 

function with respect to a certain velocity ranges, the conservation equations can be 

obtained. It should be noted that conservation equations can be derived only for those 

quantities which are conserved by the particles during collision; mass, charge, 

momentum, and energy. These are the first half of MHD equations that describe the 

flow physics under the influence of the electromagnetic fields. 

2.2 Fluid equations 

The first half of MHD equations is a set of fluid equations. They are consisted 

of the first three moments of the Boltzmann equation, conservation of mass, 

momentum, and energy.  

It should be noted that fluid equations have the same mathematical expression 

as the Navier Stokes equations in the ordinary fluid dynamics except the source terms 

on the right hand side, body force in each component of momentum equations and the 



 

Joule heating in the energy equation. MHD fluid equations in a differential form are 

written in Cartesian coordinates as following.  

( ) ( ) 0~~
~

~~
~~

~
=

∂
∂

+
∂
∂

+
∂
∂ v

y
u

xt
ρρρ   

(2.1) 
( ) ( ) ( ) zyyxxx BJvu

y
pu

xt
u ~~~~~~

~
~~~~

~~
~~

2 =−
∂
∂

+−+
∂
∂

+
∂

∂ τρτρρ  (2.2) 

( ) ( ) ( ) zxyyxy BJpv
y

uv
xt

v ~~~~~~
~

~~~~
~~

~~
2 −=−+

∂
∂

+−
∂
∂

+
∂

∂ τρτρρ  (2.3) 

yyxxyyyxtt

xyxxtt
t

EJEJvupv
y
TKvE

y

vupu
x
TKuE

xt
E

+=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+
∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
−−+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−+
∂
∂

+
∂
∂

ττ

ττ

 (2.4) 

The right hand side, the source terms, of the governing equations should be 

discussed in details since they differ from Navier-Stokes equations. In 2-D model, only 

two terms from the cross product of the total current density and the magnetic field 

appear. It is a limitation of the 2-D model that only a certain directions of current and 

the magnetic field can be retained. As shown in equations, the directions of the current 

can be in any directions in the computational domain. Only z-component, normal to the 

gage, of the magnetic field is considered in this model. The source terms in the energy 

equation represents the Joule heating, addition of the energy from the electric field to 

the flow. 

It should be noted that the current density that appears in the conservation of 

momentum and the energy equations is the total current density. Thus, the definition of 

the electric current should be clearly noted [2].  

e
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If the gas is electrically neutral, the convection current vanishes. Thus, the total 

current is the same as the conduction current.  
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With Eqn2.6, total current density is equivalent to conduction current density. In 

order to calculate the conduction current density, generalized Ohm’s law was used. 

Generalized Ohm’s law is derived from the electron-momentum equation, the ion-

momentum equation, and the overall momentum equation [2]. It implicitly relates the 

conduction current density with the total electric and magnetic fields. The final version 

of Ohm’s law in a partially ionized gas can be written as 
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The ion-slip, the last term and the hall current, the second term, are also not 

considered in the simulation, which leads to a simpler expression of Eqn2.7. Now, the 

total current density can be explicitly written in terms of electrical conductivity, electric 

field, average flow velocity, and magnetic flux density. 

( )BvEjJ
rrrrr

×+== σ  (2.8) 
 

2.3 Maxwell’s equations 

The second half of MHD equations is a set of simplified Maxwell’s equations. 

As discussed in 2.1, Electromagnetic field needs to be prescribed to compute the 

Lorentz force and the Joule heating in the flow equations. 

2.3.1 Total current density and induced magnetic field 

The relation between the magnetic flux density and the total current density is 

obtained from the Ampere’s law. Two simplifications will be made with this 

relationship. 

 13



 

BM
t
EKJ p

rr
r

r
×∇=⎟

⎟
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⎞
⎜
⎜
⎝

⎛
×∇+

∂
∂

+ 00µ  (2.9) 

The first simplification can be made using the analysis of the order of 

magnitude. The second term, displacement current that represents the change in electric 

field induces the magnetic field can be neglected in engineering applications by 

comparing the first two terms. Furthermore, the magnetization current was neglected. 

BJ
rr

×∇=0µ  (2.10) 
 

The second simplification can be made when this relationship is non-

dimensionalized. For the low Reynolds magnetic number, the induced magnetic field 

due to the current can be neglected, which is 0Bb
rr

<< . For most of aerospace 

applications, the magnetic Reynolds number is small. Thus, only insignificant induced 

magnetic field is produced and neglected. As a result, this relationship is not required 

since the total current density can be computed using Ohm’s law and only the externally 

applied magnetic field is considered. 

2.3.2 Conservation of magnetic flux density 

As discussed in the previous section, the induced magnetic field due to the total 

current is neglected in this simulation. Thus, the only externally applied magnetic field 

is considered. This magnetic field needs to satisfy the following mathematical 

relationship that Maxwell’s equation presents. 

0=⋅∇ B
r

 (2.11) 
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2.3.3 Faraday’s law 

Since the induced magnetic field due to the total current is neglected and the 

externally applied magnetic field is time invariant, electric field decouples with 

magnetic field. 

0=
∂
∂

−=′×∇
t
BE
r

r
 (2.12) 

Thus, the electrical potential that satisfies the above equation can be introduced. 

Introducing the potential is computationally advantageous since the number of 

unknowns can be reduced in our governing equations.  

φ−∇=E
r

 (2.13) 
In the time-dependent or quasi-stationary case, the electrostatic and 

magnetostatic fields are completely uncoupled. This is no longer true in time-dependent 

problems. The electric field that appears in this equation is the induced electric field due 

to the time rate of change in magnetic flux. 

t
BE
∂
∂

−=′×∇
r

r
 (2.14) 

 

AB
rr

×∇=  (2.15) 
 

( ) E
t

A ′×∇=
∂
×∇∂

−
r

r

 (2.16) 

 

E
t
A ′×∇=
∂
∂

×∇−
r

r

 (2.17) 

 

t
AE
∂
∂

−=′
r

r
 (2.18) 
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In addition to the induced electric field, there may also be present an 

electrostatic field such as the externally applied static field, φ−∇=′′E
r

. Accordingly, the 

total electric field can be defined as 

EEE ′′+′=
rrr

 (2.19) 
 

φ∇−
∂
∂

−=
t
AE
r

r
 (2.20) 

 

φ−∇=E
r

 (2.21) 
Therefore, as long as the electric potential is introduced as the described relation 

above, Faraday’s law can be satisfied. 

2.3.4 Gauss’s law 

The last equation of Maxwell’s is the Gauss’s law. Gauss’s law represents that 

the presence of the charge density produces the electric field in the domain. 

eEK ρ=⋅∇
r

0  (2.22) 
In the previous section, the electric potential has been introduced. Substitution 

of Eqn 2.21 into the Gauss’s law Eqn 2.22 results in the following relation. This is a 

classical PDE problem, Poisson’s equation. 

eK ρφ =∇− 2
0  (2.23) 

It should be noted that the Maxwell’s equations do not give charge density as its 

solution for this case. Thus, the excess charge density needs to be computed using 

another physical relationship. An equation that describes the dynamics of the charges is 

the conservation equation of charges. 
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However, in this work, the neutrality of the medium is assumed. In other words, 

the excess charges are not present in the medium. Thus, the Gauss’s law can be 

simplified and results into Laplace’s equation. 

02
0 =∇− φK  (2.24) 

 

02 =∇− φ  (2.25) 
2.3.5 Conservation of charges 

The charge conservation equation for the excess charge can be derived from the 

Bolzmann equation as other conservation equations. The summation of charge 

conservation equation for each species should be taken, which results in the overall 

charge conservation equation. 

0=⋅∇+
∂
∂

J
t
eρ  (2.26) 

 

2.4 Nondimensionalized MHD equations 

MHD equations are non-dimensionalized to identify the important 

nondimensional parameters. Reference variables used to non-dimensionalize the 

equations are listed below. The details derivations of the following equations are 

provided in Appendix A. For the total current density in the fluid equations, Ohm’s law 

was used.  

( ) ( ) 0=
∂
∂

+
∂
∂

+
∂
∂ v

y
u

xt
ρρρ  (2.27) 

( ) ( ) ( ) zyyxxx BJuv
y

pu
xt

u
=−

∂
∂

+−+
∂
∂

+
∂

∂ τρτρρ 2  (2.28) 

( ) ( ) ( ) zxyyxy BJpv
y

vu
xt

v
−=−+

∂
∂

+−
∂
∂

+
∂

∂ τρτρρ 2  (2.29) 
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The non-dimensional total current density can be written in terms of the non-

dimensional electric field, magnetic flux, and Hartmann number, Reynolds, and another 

parameter, K.  

( )⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
⎭
⎬
⎫

⎩
⎨
⎧

=

z
a

y
a

z
a

x
a

y

x

uBHEKH

vBHEKH

J
J

J

ReRe

ReRe
22

22

r
 (2.31) 

0

0
2

0
2

02
~

~~~

η
σBLHa =  (2.32) 
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2.5 Vector form of MHD equations 

For the development of the algorithms, a vector form of the governing equations 

is used. The solution vector contains the conservative variables. The flux vector in x and 

y direction can be split into the inviscid flux and viscous flux. 

S
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(2.37) 

Thermal equation of state 

γ
ρTp =  (2.38) 

Caloric equation of state 
2

22

2
VvueEt
r+

+= ρ  (2.39) 

The total energy can be expressed in the quantity per unit volume. 
2

2
1 VeEt

r
ρ+=  (2.40) 

 
2.6 Electrical conductivity and Magnetic dipole 

Electrical conductivity is required to compute the conduction current from 

generalized Ohm’s law. The great challenge in modeling of MHD flow with plasma 

discharge is the derivation of an expression for electrical conductivity. 
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Under the assumption of the low magnetic Reynolds number, no induced 

magnetic field is considered. Thus, the magnetic field remains time-invariant. In order 

to compute the magnetic field due to the permanent magnets, the potential theory for 

magneto static is used to derive the mathematical model to describe the magnetic field 

line. 

2.6.1 Electrical conductivity 

When the generalized Ohm’s law is utilized, the explicit mathematical model to 

compute the electrical conductivity since it is known that the conductivity of the 

discharge region in the gas is non-uniform. 

A phenomenological model for low-temperature surface plasma [22] is 

exploited in this work. It is assumed that the electrical conduction occurs by diffusion of 

the charged species.  

The crucial issue with modeling of Magnetogasdynamics is to develop a 

mathematical model of the plasma discharge. It was found that the basic discharge 

structure is sustained by an electric field in all electronic collision ionizations [3].  

The mathematical model of discharge was experimentally derived in terms of 

only the electric field strength and electric conductivity within the discharge domain 

[22]. 

( ) ( )[ ]nrrwnrrwA 0max0 exp,,,, −−= σσ  (2.41) 
Where maxσ is the maximum magnitude of the electrical conductivity, w is the 

width of the discharge region, and r is the distance from the designated electrode 
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location r0. The exponent n can be adjusted to describe the different discharge 

characteristics. 

2.6.2 Magnetic dipole 

Elementary magnetic fields are dipoles with a source (north) and sink (south) of 

magnetic field. Just as with electric fields, the superposition principle applies to 

magnetic fields. Mathematically, the solution needs to satisfy the following physical 

relation. 

0=⋅∇ B
r

 (2.42) 
Analogous to the potential flow theory, the magnets can be approximated as 

magnetic dipoles. By defining the magnetostatic potential as 

BB φ∇≡
r

 (2.43) 
The Laplace’s equation can be obtained by substituting the magnetic field into 

the equation. In other words, magnetostatic scalar potential must be harmonic. 

02 =∇ Bφ  (2.44) 
The fundamental solution to the above equation for a point source in 3-D in 

Cartesian coordinate system is given as: 

( ) ( ) ( )20
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00 zzyyxx

m
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−
= rrφ  (2.45) 

As it was defined, magnetic flux can be found by taking the gradient of the 

magnetostatic potential. 
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This is the magnetic flux produced by a source located at the point  

assuming the sing of “m” is always positive. Magnetic flux with opposite effect can be 

also produced by a sink with the same strength. The potential and the flux have the 

exactly the same form with opposite sign of “m” and the different locations. Since both 

of them satisfy the equations above, these two fundamental solution can be added 

together to simulate the resultant effect due to dipoles according to superposition 

principle. Thus, the final form of magnetostatic potential is: 

( )000 ,, zyx

The magnetic field in 2D plane was considered. The distribution of the strength 

of the magnetic field can be found using 3D analytical model.  
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 (2.48) 

Assuming that a 2-D plane right in the middle of the sink and the source 

( ) is our computational domain, the analytical expression for the distribution of 

the magnetic flux in z-direction was found.  
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CHAPTER 3 

NUMERICAL METHODS  

The governing equations obtained in Chapter2 need to be discretized both in 

time and space in order to obtain their solution. MHD fluid equations were discretized 

using conventional finite volume method with an upwinding scheme for convective 

flux. A multi-stage Runge-Kutta time stepping scheme was utilized to advance the 

solution in time. An upwinding scheme is necessary especially to model supersonic 

flow physics due to its directional dependent nature. Moreover, it is numerically 

important since it ensures the stability of the solution. 

In addition to the MHD fluid equations, the space discretization of MHD 

electrodynamics equations can be achieved using Galerkin finite element method. The 

advantage of finite element method is that the higher accuracy in the solution can be 

attained relatively easily compared with the finite volume method by choosing different 

order of the shape function by which the solution is approximated. 

3.1 Discretization of MHD flow equations 

MHD fluid equations are solved on hybrid grid that consists of triangular and 

quadrilateral elements. The advantage of using unstructured grid is the ability to 

generate mesh over complex geometry. For the region where the high accuracy is 

required such as the inside of the boundary layer, the mapped or structured type grid can 

be used. 



 

Higher-order accuracy in space discretization can be achieved by reconstruction 

of the solution variables at previous time step with linear extrapolation at the cell-

interface. Since an upwind scheme, specifically flux difference splitting scheme, uses 

the state, solution variables, at both side of the cell-interface to evaluate the flux that is a 

function of the state of the flow right at the cell-interface.    

3.1.1 Spatial discretization 
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The flux normal to the cell-interface mathematically as shown above needs to be 

evaluated at the cell-interface between two cells. Flux split differencing was invented 

decades ago to overcome this problem and can be mathematically written as [25, 26] 

( ) ( ) ( )[ ]LRLR QQAQHQHH
rrrrrrr

−−+=
~

2
1  (3.4)

 

where 
Q
HA r

r

∂

∂
≡  

The key to flux differencing scheme is how to evaluate the Jacobian matrix at 

the cell-interface since flux H
r

 needs to be evaluated on the cell-interface. Since the 

finite-volume method uses a piece wise constant approximation in each cell, different 

values in the solution can appear on the right hand and the left hand across the cell-
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interface. Roe suggested the averaging procedures based on the left and right state 

across the cell-interface [26]. Thus, the Jacobian matrix can be evaluated in terms of 

Roe-averaged variables. These procedures are briefly listed below. Eqns for Roe-

averaged quantities [27] 
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3.1.2 Time integration 

Although our interest is to obtain the steady state solution of the governing 

equations assuming that such solution exists, the unsteady term in the governing 

equation is kept and the solution was converged to the steady state flow conditions with 

time marching. In this way, hyperbolicity of a partial differential equation can be kept.  

PDE can be converted into the ODE when the convective and diffusive flux 

terms and source terms are evaluated in terms of the solution variables obtained at the 

previous time step, which makes the scheme fully explicit.  
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Temporal discretiztion also introduces the numerical dissipation in addition to 

the numerical dissipation introduced due to the spacial discretization. 
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The flux vector in x and y direction are split into the convective flux vector and 

viscous flux vector. The dot product of the flux vector evaluated at each cell-interface 

and unit normal vector to the interface forms the term on the right hand side of the 

equation as well as the volume integral of the source vector.  

Fully explicit m-stage Runge-Kutta time-stepping scheme developed by 

Jameson [28] are shown below. It illustrates that the right hand side of the equation at 

each stage is just a function of the solution variables evaluated at the previous stage. 
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The coefficient for each stage is given by the following formula. 

1
1
+−

=
kmkα  

 
 

3.2 Discretization of MHD electromagnetic equations 

Galerkin Finite Element method was exploited to spatially descretize the 

Poisson’s equation of electric field. As a general remark, the finite element method have 

been extensively utilized in the field of structure dynamics. However, use of FEM is not 

limited only in this field. FEM can be applied to solve the general PDE problems with 

appropriate initial and boundary conditions such as Navier Stokes solver.  

As the first step to the Galerkin solution of PDE, it needs to be recast into a 

weak integral form, which requires the definition of function spaces and associated 

norms.  

In order to define the weak form of the boundary value problems, the test 

functions and the trial solutions need to be defined [29]. Its properties are mentioned 

briefly here. Test first collection of functions, denoted by ν  , is composed of test 

functions and consists of all functions which are square integrable, have square 

integrable first derivatives over the computational domain Ω , and vanish on the 

Dirichelt portion, , of the boundary. It can be mathematically written as,  DΓ

( ){ } ( )ΩΗ≡Γ=ΩΗ∈= Γ
11   0 

DDonwwν  (3.11)
The trial solutions needs to satisfy the Dirichlet conditions on the boundary of 

the solution domain, .  DΓ

( ){ } { }DDD uonuuuS +≡Γ=ΩΗ∈= ν   1  (3.12)
Where Du  is any function in ( )ΩΗ1  such that DD uu =  on DΓ .  
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( )yxe ,2 ρφ =∇−  (3.13)
The weighted residual formulation can be obtained by multiplying weighting 

function to the governing PDE and integrating over the whole domain.  

( ) Ω=Ω∇− ∫∫
ΩΩ

dyxwdw e ,2 ρφ  (3.14)

Using the properties of gradient operator, the integral form of the governing 

equation can be rewritten as 

( )( ) Ω=Ω∇⋅∇−∇⋅∇− ∫∫
ΩΩ

dyxwdww e ,ρφφ ( )  (3.15)

 

( ) ( ) Ω=Ω∇⋅∇+Ω∇⋅∇− ∫∫∫
ΩΩΩ

dyxwdwdw e ,ρφφ  (3.16)

Using Green-Gauss divergence theorem, the volume integral term can be 

written as the surface integral.  

( ) ( ) Ω=Ω∇⋅∇+Γ⋅∇− ∫∫∫
ΩΩΓ

dyxwdwdnw e ,ρφφ
r  (3.17)

This step has a mathematically significant meaning. The regularity requirements 

on the test function and admissible solution are modified; the admissible function is 

only differentiated once and the test function must be differentiable.  

By rearranging the equation above, the weak form of the governing equation 

can be written as the following. 

( ) Γ⋅∇+Ω=Ω∇∇ ∫∫∫
ΓΩΩ

dnwdyxwdw e
r

φρφ ,  (3.18)

The approximation of the solution can be achieved using the basis function. The 

linear basis function is used in this work. In other words, the linear variation of the 

solution variable in a cell is assumed. In Finite element method, the solution variable(s) 

can be computed at each node. 
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where  mesh element  finite in the A       : numbernodewithassociatedfunctionshapetheN A

In the Galerkin formulation, the arbitrary test functions, , are defined such 

that 

hw

{ }A
A

hh Nspanw
Dηη

ν
|∈

≡∈  (3.20)
Thus, using these definitions, the equation can be written as  

( ) ( ) ( ) ( ) ( ) D
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BDBAAA
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BBA includeAxuNNahNsNuNNa
D

N

D

ηη
ηηη

|,,,,
|

∈−+= ∑∑
∈

Γ
∈

r  (3.21)

where  npnBA ≤≤ ,1

This equation is written globally. 

Each quadrilateral is mapped onto a canonical square with normalized local 

oordinates ( ) [ ] [ 1,11,1, −× ]−∈ηξ  and the element shape functions are tensor products of 

those used in one dimension. Spacial variables and the solution variable are 

approximated in the same way.  
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x 4
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( ) ( ) ( )∑
=

=≡
4

1

,,,
a

aa
hh uNuyxu ηξηξ  (3.23)

Now, the whole domainΩ  needs to be descretize into the small domain .  eΩ

First, the local stiffness matrix and force vectors, which is a contribution from 

each element needs to be constructed. 

( ) e
e baba

e
ab NNadNNK ΩΩ

=Ω∇⋅∇= ∫ ,  (3.24)
 

 30



 

( ) ( ) ( )∑
=

ΩΓΩ∂Ω −+=
en

b
e

N
ee

n

b

e
Dbaaa

e
a uNNahNsNf

1

,,, I  (3.25)

In order to solve the matrix equations, the sparse matrix solver was exploited to 

save the memory since most of the entries in the stiffness matrix are zero. The sparse 

matrix solver enables the algorithm to store only non-zero entries in stiffness matrix 

into the memory and to use them whenever needed just like accessing to the ordinary 

matrix. When the number of unknowns become large due to either/both increase in the 

number of equations to be solved or/and the number of nodes, an efficient way of 

utilizing computational resource available becomes crucial. 

3.3 Evaluation of the first derivative 

The solution to Poisson’s equation is the electric potential. In order to obtain the 

electric field, the gradient of the electric potential needs to be evaluated. A derivative of 

the unknown at points can be recovered exploiting weighted residual methods once the 

unknown was computed.  

The first derivative of the unknown in an element can be directly approximated 

by the nodal values of the first derivative of the unknown. 

∑
= ∂

∂
≈

∂
∂ r

i i
i s

N
s 1

φ̂φ  (3.26)

The unknown, u can be approximated by the interpolation functions (shape 

function). 

∑
=

≈
r

i
iiN

1

φφ  (3.27)

Let us take a derivative of both sides of the equations. 

∑
= ∂
∂

≈
∂
∂ r

i
i

i

s
N

s 1

φ̂φ  (3.28)
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By equating the two equations above, 

∑ ∑
= = ∂

∂
=
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∂r

i

r

i
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i s
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s

N
1 1

ˆˆ
φφ  (3.29)

Weighting this relation with shape-functions  iW

j

j
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ji d
s

NW
s

dNW φφ ˆΩ
∂
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=
∂
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Ω ∫∫ ΩΩ
 (3.30)
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The Galerkin weighted residual method was used 
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⎧
∂
∂

∫∫ ΩΩ
 (3.32)

Thus, now the problem is reduced to the matrix inversion. Since the mass matrix 

contains the non-zero off diagonal entries, the simultaneous system of equations needs 

to be solved. In this program, the preconditioned conjugate gradient (PCG) solver was 

used to achieve this operation.  

FEM uses the element based data structure while FVM for flow solver uses the 

edge based data structure. This difference is simply due to the difference in the way to 

solve governing equations.  

FVM requires the evaluation of flux terms at the cell interfaces, which is an 

ultimate problem. Since this flux needs to be conserved when the control volume is 

taken at a cell-interface, the flux in and out to the neighboring cell is the same in 

magnitude and opposite in its sign. Thus, flux needs to be computed once for each cell-

interface. On the other hand,  
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The finite element code was developed based on the weak form of the PDE. In 

order to solve the equations on the same mesh as the flow solver uses, the code was 

designed in a way that it can handle hybrid mesh that consists of triangular and 

quadrilateral elements. Though the construction of local stiffness matrix slightly differs 

due to the difference between the number of nodes in each element, the outline of the 

procedure is the same.  

The finite element method requires the operation of inverting stiffness matrix 

whose size is square of number of unknowns. Thus, the majority of computational time 

is spent on this operation. Furthermore, the stiffness matrix is a sparse matrix. In other 

words, most of the entry of this matrix is zero.   

3.4 Mesh 

The actual governing equations solved in this code keep the unsteady term and 

march down to the solution with the same procedure as the unsteady calculations.  

The Navier Stokes equations were solved until it converges with the 

electrodynamics turned off. This converged solution was used as an initial condition to 

simulate the interaction of electromagnetic field and aerodynamics. 

3.5 Boundary conditions 

3.5.1 Viscous surface 

No-slip condition for velocity is exploited at the surface. 

0== ww vu  (3.33)
Either the temperature of the wall or the condition of the heat flux can be also 

specified. Here, the adiabatic wall condition is used. 

( ) 0=∇=⋅ nTknq
rrr  (3.34)
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The pressure on the surface (pb) is determined by linear extrapolation.  

The normal gradient of the pressure is zero. 

( ) 2/121 ppppb −−=  (3.35)
3.5.2 Characteristic inflow/outflow 

The inflow/outflow boundary conditions are cell-face type boundary conditions. 

In the far field, the velocity normal to the far boundary (pointing out of the grid) and the 

speed of sound are obtained from two locally 1-d Riemann invariants:  

(Provide more discussions regarding with the physical meanings of it.) 

1
2

1
−

±⋅=±

γ
face

nn
a

vR
rr  (3.36)

 

The normal velocity and speed of sound are determined from 

( )−+ += nnface RRu
2
1  

( )−+ −
−

= nnface RRa
4

1γ  
(3.37)

The sign of the normal velocity determines whether the condition is at inflow 

(vn<0) or outflow (vn>0). The entropy  is determined using the value from 

outside the domain for inflow and from inside the domain for outflow. The entropy and 

speed of sound are used to determine the density and pressure on the boundary:  

γρ/p
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ρ 2
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(3.38)
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CHAPTER 4 

CODE VALIDATIONS 

The validation of the finite volume code developed in CFD lab was performed 

against the analytical solution for Poisulle flow. Analytical solution to the Poisulle flow 

is one of a few exact solutions that can be attained. In order to investigate the capability 

of the code, a more complex problem was selected as another test case for the flow 

solver. The experimental result for the internal flow over turbine cascade was used for 

the comparison.  

Finite element Poisson’s equation solver for the computation of electric 

potential and electric field were also validated against the exact solution. For this test 

case, Laplace’s equation of electric potential was used.  

4.1 Poiseuille flow 

Isothermal, laminar flow (ReH<~1000) of an incompressible Newtonian fluid in 

a long two-dimensional channel with height H is considered. The driving force to the 

flow in the channel is the applied pressure gradient between the inlet and the exit of the 

channel. The exact solution can be obtained by assuming the steady and fully developed 

flow between two plates. It implies that the velocity profile does not change along the 

direction of the flow. Therefore, an arbitrary location along the direction of the flow can 

be selected to sample the velocity profile. The derivation of the exact solution to this 

problem is readily available in any fluid dynamics textbooks [30]. 
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The x-component of the velocity was normalized by the maximum value of the 

x-velocity at the middle of the channel section. The normalized velocity profile is a 

function of the normalized distance from the middle point in the channel. 
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4.1.1 Problem setup 

A 15 by 1 rectangular domain was considered since it takes some distance for 

the flow to fully develop unlike the analytical solution. A mapped grid with 

quadrilateral elements was exploited to simulate the channel flow. For this reason, a 

large aspect ratio was selected. 

4.1.2 Boundary conditions 

Three types of boundary conditions were used for this problem. On the wall, the 

non-slip condition was used to assure the velocity on the wall to be zero. Both at the 

inlet and outlet, the different values of the pressure were assigned as a boundary 

condition. This pressure difference between the upstream and the downstream enforce 

the medium to flow. At the inlet, the characteristic type of boundary condition was 

used. The outflow boundary condition was used at the outlet.  
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Figure 4.1. Boundary conditions 
 

4.1.3 Results 

Velocity profile between two plates was obtained from the numerical result. The 

x component of velocity and y coordinate were normalized by the maximum velocity of 

the profile and the Height of the channel, respectively. As shown in Figure 4.2, 

reasonable agreement between the numerical and analytical solutions is observed. It was 

also observed that there is slight error in profile. This is perhaps due to treatment of the 

boundary conditions at the wall. The velocity at the wall was a small finite value, which 

results in slight offset from the analytically obtained profile. In this work, it was judged 

that this degree of disagreement was acceptable. 
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4.2 Turbine cascades 

In order to validate the finite volume solver for relatively complicated problem, 

a transonic flow over the turbine cascade was selected. This benchmark case validates 

capability of the code of computing subsonic low Mach number to supersonic high 

Mach number range. The experimental data was obtained in AGARD [31].   

4.2.1 Problem setup 

The dimension of the inlet and outlet lengths are the exactly the same as the 

pitch given in the test case. The top and bottom boundary are identical to each other so 

that the periodic boundary condition can be imposed. 

The hybrid mesh was constructed by using AFLR2. It consists of two types of 

elements or cells. Quadrilateral elements near the wall surface were used to more 

accurately capture features of boundary layer. It allows us to cluster the grid toward the 

wall uniformly along the contour. Furthermore, the lines can be orthogonal to the wall 

surface, which is advantageous to evaluate the velocity gradient normal to the wall. 

Triangle elements were used in most of the domain away from the near-boundary 

region was used.  
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Figure 4.4. Grid 

 
Figure 4.5. B.L. mesh at leading edge 

 
Figure 4.6. B.L. mesh at trailing edge 

 
Figure 4.7. Periodicity of geometry 
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4.2.2 Boundary conditions 

The boundary conditions need to be assigned to satisfy all the test conditions. 

The numerical aspects of boundary conditions are discussed in Chapter3. The 

appropriate boundary conditions for this case are listed below. The inlet pressure and 

Mach number were specified according to the experimental condition. The outflow 

boundary condition where the back pressure was specified was used at the outlet. On 

the surface of the turbine cascade, non-slip condition where the velocity at the surface is 

zero was used. The flow structure around the stuck of the cascades is periodic due to the 

periodic geometry. Thus, the periodic boundary condition was used to save the 

computational effort. 

4.2.3 Data reduction 

Once the flow field variables were obtained, the static pressure distribution over 

the blade contour was reduced to the isentropic Mach number along the chord length. 

This data reduction can be done using isentropic relationships. 
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To determine the value of static pressure at the outlet for a boundary condition, 

an isentropic relation was used with a give value for the isentropic Mach number 

for each test case in [31]. isM ,3
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In order to account for the total pressure loss in the flow across the cascade, the 

total pressure loss was assumed. 
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4.2.4 Results 
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Figure 4.8. Mach number contour 
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Figure 4.9. Static pressure contour 

 

Figures4.8 and 4.9 show the unique features of transonic internal flow. Due to 

this specific cascade configuration, the region between two cascades is just like a 

converging-diverging nozzle as shown in Figure4.7. The flow over the suction side of 

the cascade experiences rapid acceleration from the low speed to the sonic speed. For 

this particular case, the pressure ratio of inlet to the outlet was not significant enough 

for the flow to be further accelerated to the supersonic in the downstream. 

Figur4.9 depicts the non-dimensionalized static pressure distribution. 

Continuous decrease in static pressure from the stagnation point at the nose to the outlet 

displays the flow is continuously expanded with favorable pressure gradient. It should 

be noted that in the region on the pressure side of the blade near the trailing edge, iso-

pressure lines are becoming close together. As the back pressure is decreased, the shock 
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wave is eventually formed in this region, which will create the adverse pressure gradient 

upstream of the shock location. This may cause shock induced separation.    

4.3 Validation of FEM solver 

To validate the finite element Poisson’s solver, conducting cylinder of radius, a, 

and surrounded concentrically by conducting cylindrical shell of inner radius, b, was 

computed for the given value of the charge per unit length. Because of the symmetry of 

the domain, the problem can be modeled by one dimensional Laplace’s equation written 

in the polar coordinate.  

Figure 4.10. Parametric view of cylindrical 
capacitor 

Figure 4.11. Computational domain 
between two cylinders 

++ +- - - +- +-
+-

 

Analytical solution can be easily derived using Gauss’s law considering the 

domain between cylinders. Electric potential at any radius between cylinders can be 

computed by integrating the electric field taking the reference voltage. 
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4.3.1 Results 

Figure 4.12 depicts excellent agreement with the analytical solution for the 

electric potential. It ensures the accurate computation of the distribution of electrical 

potential in the computational domain. Furthermore, contour of the electric potential 

between two cylindrical plates are shown in Figure 4.13. As assumed in the derivation 

of the analytical solution, there is not variation of the electric potential in tangential 

direction. Furthermore, the electric field is defined as a gradient of electric potential. 

Thus, every iso-potential line is normal to arrowed electric field lines as shown in 

Figure 4.13.  
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CHAPTER 5 

NUMERICAL SUTYD OF MHD EFFECTS 

5.1 Hartmann flow 

MHD channel flow first investigated by Hartmann in 1930s was considered. 

MHD effect on the velocity profile of the channel flow due to externally applied 

uniform magnetic field was of particular interest. An external electric field was turned 

off to see the pure effect of the magnetic field on the electrically conducting fluid.  

Altered velocity profile was compared with that obtained in the classical Poiseuille flow 

problem in Chapter4. Furthermore, effects of the non-dimensional MHD parameters 

were discussed with simulation results. 

5.1.1 Problem setup 

The same geometry as the Poiseuille flow problem was considered. The height 

and length of the channel were 0.1 and 1 meter, respectively. A span of the channel was 

assumed to be infinitely long so that there is no variation of velocity profile in span wise 

direction between two side walls. Under this assumption, a two dimensional model is 

valid.  

Uniform time-invariant magnetic field was applied in a transverse direction to 

that of flow shown in Figure 5.1. Since no electric field was present in the flow for the 

first simulation, the current was produced by the average velocity and the magnetic flux 
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density according to the generalized Ohm’s law. Thus, body force acting on the flow is 

purely due to the magnetic field. 

y

 

Figure 5.1 Channel flow 

 

Figure 5.2. Side view of the channel flow 

y 
x 
z xB0 B0H
V0

 

The boundary conditions for the flow variables were specified in the same way 

as the Poiseuille flow since the induced magnetic field was not computed. The inlet and 

outlet flow conditions are also the same as the Poissuile flow. 

5.1.2 Results and discussions 

The flow under the influence of the magnetic field was computed. Results are 

presented in a dimensional form. Figure 5.3 shows the velocity profile sampled at the 

location one meter away from the inlet for different strength of magnetic flux density. 

The electrical conductivity was assumed to be uniform with a constant value of 0.1 

[mho].     

Figure 5.3 clearly displays that a velocity profile becomes flattened as a value of 

magnetic flux density increases. This flattening becomes more apparent near the center 

of the channel where the maximum speed in the flow direction is observed. This is also 

obvious from the mathematical expression of the Lorentz force, a cross product of the 

average flow velocity and magnetic flux density. The larger the magnitude of the 
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velocity is with the constant magnetic flux density, the more MHD effect can be 

observed. Therefore, flattening in the velocity profile at the wall is almost negligible 

since the speed of the flow is very small compared with the flow in the middle of the 

channel. 
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Figure 5.3. Velocity profile for B=1, 20, 50, 

and 100 [T] with σ=0.1 [mho] 
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Figure 5.4. Comparison of velocity 

profile with σ=0.1 [mho] 
 

 

Figure 5.5. Magnetic pressure 
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Figure 5.6. Change in pressure along x-

axis for B=1, 20, 50, and 100 [T] 
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The direction of the body force acting on the flow is against the flow, which 

results in resisting force to the flow. This is always the case with this type of 
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configuration shown in Figure5.5. Even when the polarity of the magnetic field is 

changed, in other words, the direction of magnetic field is in positive z-direction, the 

body force acting on the flow remains the same. This resisting effect to the flow is 

called magnetic pressure, which forces flow to slow down.  

By keeping the back pressure constant, inlet pressure varies assuming that there 

is a control valve upstream of the inlet.  It can be observed that increase in the 

magnitude of magnetic flux density increases static pressure at every location along the 

channel as shown in Figure 5.6.  

Furthermore, the value of magnetic flux density used here perhaps cannot be 

realized except the case for 1 Tesla. Most of rare earth magnets have the magnitude of 

less than one Tesla. Figure 5.4 illustrates that an effect of magnetic pressure is 

negligible within this range of magnetic field. This fact is advantageous for flow 

acceleration. 

5.2 Hartmann flow with uniform electric field 

In the previous simulation, an effect of the magnetic field was demonstrated by 

applying only the time-invariant uniform magnetic field, which caused deceleration of 

the flow. On the other hand, great interest of many engineering applications is to 

accelerate the flow. It can be realized adding uniform electric field. 

5.2.1 Problem setup 

In this simulation, effects of externally applied uniform electric field in addition 

to uniform magnetic field were investigated in the channel flow. All the conditions were 

kept the same as the previous simulation of Hartmann flow. Only change made was that 
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externally applied uniform electric field is present between the two plates in the 

channel. The cathode was placed on the top and the anode was placed to the bottom of 

the channel, which will create the uniform electric field across the two plates. 

 

Figure 5.7 Channel flow 

 

Figure 5.8. Side view of the channel flow 
 

5.2.2 Results and discussions 

Velocity profiles were obtained at the same location along the channel for 

different values of electrical field with a constant value of magnetic flux density. The 

electrical conductivity was also assumed to be uniform and constant.  The strength of 

the electric field is determined by the applied voltage across the electrodes and distance 

between them. Figure 5.9 shows that as the strength of the electric field increases, the 

flow acceleration becomes more significant, which results in the stretched profile in the 

direction of the flow.  

Pressure distribution corresponding to different strength of electric field along 

the channel from the inlet to the exit was shown in Figure 5.10. It illustrates that 

negative pressure gradient start increasing from the favorable pressure gradient that 

causes the fluid in motion. Further increase in the magnitude of electric field causes the 

pressure gradient to be positive or adverse pressure gradient. Since the simulation result 

y Cathode (+) E0

E0
x B0H B0

V0 Anode (-) 
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shows the flow is still in the original direction of the flow, this adverse pressure gradient 

is overcome by Lorentz force acting on the flow. 

U [m/s]

y
[m

]

0.5 1 1.5 2 2.5 3 3.5

-0.04

-0.02

0

0.02

0.04

E=20
E=200
E=1000
E=2000

 
Figure 5.9. Velocity profile for E= 20, 

200, 1000, and 2000 [V/m] at x=1.0 [m] 
with σ=0.1 [mho] and B=1 [T] 
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Figure 5.10. Change in pressure along x-
axis for E=20, 200, 1000, and 2000 [V/m] 

with σ=0.1 [mho] and B=1 [T] 
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Figure 5.11. Velocity profile for E= 20, 
200, 1000, and 2000 [V/m] at x=1.0 [m] 

with σ=0.01 [mho] 
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Figure 5.12. Change in pressure along x-
axis for E=20, 200, 1000, and 2000 [V/m] 

with σ=0.01 [mho] 
The same analysis was performed with a decreased value of electrical 

conductivity shown in Figure 5.11 and Figure 5.12. All other conditions were kept the 

same. Effects of electrical field on velocity profile and pressure distribution become less 
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significant due to decrease in current driven by the electric field. Indeed, the pressure 

gradient remains negative for the same range of electric field as the previous case. 

5.3 MHD channel flow with non-uniform electromagnetic field 

In the previous simulations, uniform electric field was assumed. However, this 

particular configuration of electrodes pair many not be realized for certain applications 

such as boundary layer control of the external flow. In this case, since the two 

electrodes pair needs to be located on the same surface of the body, the electric field 

becomes concentrated only in the vicinity of these electrodes. This raises the need to 

compute externally applied electric field. 

5.3.1 Problem setup 

 

Figure 5.13. Localized electromagnetic 
field 

 

Figure 5.14. Side view of localized 
electromagnetic field 

 

An electrodes pair was located on the bottom wall of the channel at the location, 

0.5 meter away from the inlet. Two electrodes are 0.01 meter apart and the point where 

the half of distance from each other coincides with the point 0.5 meter away from the 

inlet. Along with change of the configurations of position of the electrodes pair, a 

constant uniform magnetic field cannot be used to achieve acceleration of the flow 

above the two electrodes. The current flows from the cathode surface and goes back 

x

y

-B0+B0

+ - 

E0

y 
x 
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into the anode. In the vicinity of the cathode, the current is in the positive up direction 

while it is in the downward direction. This polarity in the direction of the current will 

create the polarity of the body force acting on flow if the polarity of the magnetic field 

is the same both above the cathode and the anode. 

In order to achieve continuous acceleration of the flow, by keeping the same 

configuration of the electrodes pair, there must be polarity in the externally applied 

magnetic field on the cathode and the anode. This arrangement is depicted in Figure 

5.13. 

For this simulation, instead of assuming the uniform magnetic field, two pairs of 

dipole magnetic potential in three dimensional were used to compute the magnitude of 

magnetic field flux density penetrating the domain of the simulation. 

5.3.2 Results and discussions 

Since the electric field and magnetic field are no longer uniform constant, they 

need to be computed. Electric field produced by a pair of electrodes was computed and 

visualized by the electric field lines. Figure 5.15 shows that the electric potential 

decades rapidly with a distance from electrodes surface. It implies that strength of the 

electric field is substantial only in the vicinity of the electrodes.  
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Figure 5.15. Contour of electric potential 
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Figure 5.16. Electric field lines 

 

The magnetic field that is normal to the computational domain was computed 

using two pairs of di-poles derived from the potential theory. The three dimensional 

mathematical expression was used to calculate the strength of the field normal to the 

domain. In other words, only the z-component of the magnetic field produced by two 

pairs of magnets need to be obtained since other components will not contribute to body 

force production. 
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Figure 5.17. Velocity profile sampled at 

different locations 
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Figure5.18. Contour of x-component of 

velocity and streamlines 
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Figure 5.17 shows the altered velocity profile sampled at different locations due 

to the presence of electric field and magnetic fields. The sampling locations are shown 

in Figure 5.18. The velocity profile upstream of the cathode location is not affected by 

the field. However, the velocity profile sampled directly above the location of the 

cathode experiences significant change in its profile. Flow is further accelerated near 

the anode region. The change in velocity profile becomes less significant downstream 

of the anode.  

5.4 MHD flow control over a circular cylinder 

In the previous simulations, MHD effects on low speed flow were investigated 

using the channel flow problems. However, a question arises whether or not appreciable 

alternation of the flow field in higher Reynolds number regime can be observed. In 

order to answer this question, the subsonic flow over the cylinder was considered. 

5.4.1 Problem setup 

A cylinder with a diameter of 0.5 [m] was considered. The free stream Mach 

number was kept 0.5. Three electrodes were placed apart by 30 degrees from each other 

at the top and bottom of the cylinder. Again, the polarity of electrodes was decided in 

such a way that it produced the acceleration of flow. 

Only the magnitude of the applied voltage was varied from 200 volts to 1200 

volts to examine change in flow field near the cylinder. The magnetic flux density that 

characterizes the strength of the magnetic field was kept constant of 1 Tesla. It was also 

assumed that the plasma gas has a uniform property of the electrical conductivity and 

constant value of 0.1 [mho]. 
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Figure 5.19. Arrangement of electrodes 

 
Figure 5.20. Arrangement of electrodes 

and magnets 
 

5.4.2 Results and discussions 

The same magnitude with the opposite polarity of voltage was applied to 

electrodes. Figure 5.21 depicts the electric potential produced in the vicinity of these 

electrodes. For this particular case, 200 volts was applied to each electrode. The blue 

region shows the negative electric potential in Figure 5.21. Figure 5.22 illustrates the 

electric field lines produced by these electrodes. Just like a channel flow case, the 

directions of the electric field and the magnetic filed are essential to obtain a desired 

effect, either acceleration of the flow or deceleration of flow. Once the polarity of 

electrodes are determined, that of magnets can be determined shown in Figure 5.23.  

30degrees 
M=0.5
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Figure 5.21. Contour of electric potential 
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Figure 5.22. Electric field lines 

 

As shown in Figure 5.23, the magnetic flux density is fixed to be a constant of 1 

Tesla. The red region means that the direction of the magnetic field is in positive z-

direction which is out from the page. The blue region is the opposite direction.  
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Figure 5.23. Contour of z-component of 
magnetic flux density 
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Figure 5.24. Location of electrodes 

 

A qualitative analysis can be made from the following pressure contours for 

different magnitudes of the applied voltage. Results were plotted in the same scale for 
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all cases. As the magnitude of the applied voltage increases from 200 volts, change in 

pressure contour near the top and the bottom portion of the cylinder was observed. The 

noticeable change was that the minimum pressure that occurs in the expansion region 

becomes larger as the applied voltage was increased. The same phenomenon was 

observed even in Figure 5.10 in the channel flow. Favorable pressure gradient initially 

present eventually turned to an adverse pressure gradient.  
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Figure 5.25. Applied voltage: 200 [V] 
 

Figure 5.26. Applied voltage: 500 [V] 

Figure 5.27. Applied voltage: 800 [V] 
 

Figure 5.28. Applied voltage: 1000 [V] 

Figure 5.29. Applied voltage: 1200 [V] 
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Figure 5.30. Pressure coefficient distribution 
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Figure 5.30 also illustrates that decrease in pressure distribution along the top 

surface of the cylinder becomes less significant. For lower applied voltage, rate of 

decrease in pressure in the expansion region is much higher than that for higher voltage. 

Furthermore, rate of increase in pressure in the compression region for lower voltage is 

also much higher.  

It should be also noted from Figure 5.30 that the location where the lowest 

pressure takes place shifts toward the front as the applied voltage was increased.  It 

indicates that the flow expansion region became shorter and the flow compression 

region became longer instead. One possible reason for this is that deflection of flow due 

to the first electrode mounted at x=0 location acts as a wedge like obstacle in the flow. 

As noted in the Figure 5.18, the Lorentz force is acting on the flow not only in a 

horizontal direction but also in a vertical direction. Thus, the flow coming into the 

region tangential to the wall is deflected slightly away from the wall.  
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CHAPTER 6 

CONCLUDING REMARKSS 

A simple mathematical model of MHD flow with plasma discharge was 

exploited in order to capture the fundamental features of MHD interactions between the 

electromagnetic field and electrically conducting fluid. In all simulation cases, a 

uniform and constant electrical conductivity was assumed. This was perhaps a strong 

assumption for air plasma. However, this assumption allowed us to do a parametric 

study of the effects of electromagnetic field on the electrically conducting fluid. 

Simulation results for channel flow revealed the fundamental MHD related 

phenomenon, namely, magnetic pressure, and Lorentz force production. Although the 

magnetic pressure to the conducting fluid was found to be a undesired effect for the 

application of flow acceleration. However, it was also found that this effect is 

insignificant unless the strength of magnetic field is very large. This order of magnitude 

of the magnetic field strength is impractical since the enormous amount of input power 

will be required. 

A role of electric field is to increase the total current, which results in body 

force acting on the flow. Unlike the current induced by the motion of the fluid and the 

magnetic field, the current produced by the electric field does not depend on the flow 

velocity. Thus, in the channel case with uniform electric field and magnetic field, the 
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flow is uniformly affected by them by noting the fact the effect of magnetic pressure is 

negligible in a relatively low magnitude of magnetic field. 

For applications of external flow control, spatially uniform electromagnetic field 

cannot be achieved as it was mentioned in Chapter5, electrodes and magnets must be 

located on the same surface. Thus, the effect of MHD on the fluid was always confined 

into the region of boundary layer. 

It should be noted that all the cases tested with the channel were low Reynolds 

number flows in the range of 5,000~10,000. Flow with low Reynolds number has a low 

inertial force to viscous force ratio. In this range, the MHD effect on the flow is 

comparable to the inertial effect. However, the effect of MHD effect on the flow 

becomes much less compared with the inertial effect in high speed flow. For this reason, 

it is very difficult to alter the whole flow field using MHD. On the other hand, the 

potential use of MHD effect is to alter the boundary layer is still promising since the 

inertial effect in the boundary layer region is still small compared with the viscous 

effect. 

Simulation results for the flow over a cylinder were promising though a high 

applied voltage and electrical conductivity were required to alter the flow over the 

cylinder. The significant change in pressure distribution over the surface of the cylinder 

proved the possible use of MHD technique for aerospace applications. Indeed, Figure 

5.30 implies that the resultant force can be obtained by placing pairs of electrodes and 

magnets only one side of the cylinder. For instance, when the three electrodes used in 

this simulation were mounted at the bottom portion of the cylinder and substantial 
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voltage was applied, pressure on the bottom portion of the cylinder would increase. As a 

result, the net force acting in a positive vertical direction can be obtained. In other 

words, MHD device may serve as a lift generation device for this case. 

In conclusion, a MHD simulation based on a primitive mathematical model was 

able to predict the basic MHD effects. Furthermore, it predicted the significant 

alternation of the flow over a circular cylinder in terms of pressure distribution. 

Through these simulations results, fundamental lessons were learned for the design of 

MHD flow control devices. More sophisticated mathematical model should be 

examined in order to capture detailed flow phenomenon due to MHD effects. 
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NONDIMENSIONALIZATION OF GOVERNING EQUATIONS 
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Nondimensionalization of equations 
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For x-momentum equations, 
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The right side of x and y-momentum equations can be written as the vector form with 
the coefficients that come from the process of non-dimensionalizing the lefthand side of 
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equations. Furthermore, using Ohm’s law, current density can be expressed in terms of 
electric field and magnetic field. 
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Let’s look at the first term of the right hand side. 
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The final non-dimensional form of the right handside of the equation can be written as 
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The non-dimensionalized total current density can be defined as, 
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In the vector form, the non-dimensionalized total current density can be written as 
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When the magnetic force is derived by taking j from Ohm’s law, the Hartmann number 
will appear. (p38 Sutton&Shermann) 
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Non-dimensionalizng the energy equation is performed. 
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Let us just look at the right hand side of the energy equation. 
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Nondimensional equations 

( ) ( ) 0=
∂
∂

+
∂
∂

+
∂
∂ v

y
u

xt
ρρρ  

( ) ( ) ( ) zyyxxx BJuv
y

pu
xt

u
=−

∂
∂

+−+
∂
∂

+
∂

∂ τρτρρ 2  

( ) ( ) ( ) zxyyxy BJpv
y

vu
xt

v
−=−+

∂
∂

+−
∂
∂

+
∂

∂ τρτρρ 2  

[ ]

[ ] ( )yyxxyyyxyt

xyxxxt
t

EJEJKvupvqvE
y

vupuquE
xt

E

+=−−++
∂
∂

+

−−++
∂
∂

+
∂
∂

ττ

ττ
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=

x
u

y
v

x
v

y
u

y
v

x
u

L
yy

yx
L

xy
L

xx

2
Re3

2
Re

2
Re3

2

ητ

τητητ

 

( ) ( ) y
Tq

x
Tq

L
y

L
x ∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
PrRe1

~

PrRe1

~

γ
η

γ
η  

 

( )⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
⎭
⎬
⎫

⎩
⎨
⎧

=

z
a

y
a

z
a

x
a

y

x

uBHEKH

vBHEKH

J
J

J

ReRe

ReRe
22

22

r
 

0

0
2

0
2

02
~

~~~

η
σBLHa =  

0

000
~

~~~
Re

η
ρ La

=  

00

0
~~

~

aB
EK =  

 
 
 
 

 67



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 
 

MAXWELL’S EQUATIONS 

 68



 

∑==⋅∇
s

ss
e eZn

KK
E

00

1ρr
 

 
0=⋅∇ B

r
 

 

t
BE
∂
∂

−=×∇
r

r
 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×∇+

∂
∂

+−=×∇ pM
t
EKJB

r
r

rr
00µ  

 
Faraday’s law of induction 
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A magnetic field potential “A” is defined  
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The total electric field consists of two contributions, one is the induced electric field due 
to the time rate of change of magnetic flux, and another one is externally applied 
electric field. 
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The above equation is the general expression for the total electric field. 
For our applications, we assume the steady state condition. Thus, there is no induced 
electric field considered.  
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The electric current in a nonstatic situation can be derived. This can be derived from the 
conservation of charge similar to the conservation mass. 
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The charge current can be decomposed into a drift current Jd, the effect of helical 
motion of individual particles, and polarization caused by charge separation. 
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In addition to the current caused by the motion of charges, changes in the dipole 
moment appear to be a current, because of the motion of the charges in the dipole. 
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The first three terms represent the current due to the charge motion. 
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Jd: drift current associated with the motion of the guiding centers of charged particles 
The second term: an apparent magnetization current 
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