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ABSTRACT

A DISCRETE EVENT BASED STOCHASTIC SIMULATION

APPROACH FOR STUDYING THE DYNAMICS

OF BIOLOGICAL NETWORKS

SAMIK GHOSH, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professors: Sajal K. Das, and Kalyan Basu

With increasing availability of data resources on the molecular parts of a living cell,

biologists are focussing on holistic understanding of cellular mechanisms and the emergent

dynamics arising out of their complex interactions. Comprehending the fine-grained

signal specificity, gene regulation and feedback mechanisms of molecular interactions at

a network level forms a central theme of systems biology.

With the speed and sophistication of computational methods, in silico modeling

and simulation techniques have become a powerful tool for biologists challenged with

understanding the system complexity of biological networks. Numerical simulation of

classical chemical kinetics (CCK), agent-based simulations of biological processes, and

linear optimization models of metabolic networks, have been applied to the study of

cellular behaviors with varying degrees of success. The spatio-temporal scales of cellular

processes, coupled with the knowledge gap and complexity of biological networks limit

the application of existing computational techniques.
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In this dissertation, we present a network-centric modeling and simulation approach

to systematically study the stochastic dynamics of cellular processes at a molecular level.

The central theme of our approach revolves around abstracting a complex biological

process as a collection of discrete, interacting molecular entities driven in time by a set

of discrete biological events (bioEvents). We develop the discrete-event based simulation

engine, called iSimBioSys, together with an integrated database of biological pathways,

which captures the temporal dynamics of the molecules through stochastic interactions

of different bioEvents.

With an illustrative case study of signal transduction networks in bacterial cells, we

highlight the efficiency of a discrete event based approach in capturing high-level system

dynamics of a biological process, particularly in reproducing the switching effect of the

PhoPQ pathway in Salmonella cells as reported in experimental work. Next, we build a

detailed stochastic model for the fundamental process of gene expression in prokaryotic

cells and study the biological events of transcription and translation using the proposed

simulation framework. Our results identify the role of transcriptional and translation

machinery in controlling the burstiness of protein generation. We extend our simulator

to incorporate a hybrid algorithm which combines stochastic models of signalling and

regulatory events with a flow-based model for metabolic networks. In order to validate

the efficacy of the hybrid simulation approach, we develop an integrated database of

signaling and metabolic networks in the bacterial cell Escherechia Coli. The hybrid

simulation recreates experimentally observed regulation of metabolic flux distributions

in the network while providing new insights into the mechanism of regulation.
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CHAPTER 1

INTRODUCTION

Traditionally, the key focus of biology has been on detailed understanding of single

genes, molecules or processes involved in particular phenotypic manifestations. With

the discovery of the double-stranded structure of the di-oxy ribonucleic acid (DNA)

molecule which forms the basic building block of a living cell, the field of molecular biology

has increasingly generated detailed mechanistic maps of complex molecular machineries

working inside a cell. This powerful “reductionist approach” [184] has resulted in a

significant understanding of the structure and function of individual genes, proteins as

well specific cellular processes.

With the development of efficient and cost effective sequencing techniques and the

complete sequencing of the human genome, biologists have obtained huge amounts of data

on the molecular “parts list” comprising a cell. The availability of high-throughput mi-

cro array experiments and bio chips have further augmented the process of accumulating

experimental data on specific disease pathophysiologies at a molecular level. Complete

genomic sequencing of new organisms has been completed and advanced databases like

Genome Bank (GenBank) [176], Protein Database (PDB) [179], which store comprehen-

sive annotations of genomic and protein structures, are being developed at previously

unimaginable rates.

Concomitant with this development, a large body of knowledge is being derived

from biological pathways activated by different regulatory genes, hormones and metabolic

reactions through fluorescence tagging and other types of advanced in-vitro experi-
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ments [11]. These results are captured in large volume of scientific papers and public

pathway databases like PubMed [145], Ecocyc [52], KEGG [96] etc.

The availability of data in the post-genomic era has opened up further opportunities

for researchers. The ability to systematically store and retrieve biological data, and

more importantly, to be able to characterize the phenotypic behaviors of a biological

system emerging as a whole from the “part-lists” has become the foremost question in

biology [67].

As more and more data become available, biologists are now looking beyond assign-

ing functions to individual genes. The focus is shifting from understanding complex bio-

logical systems as static models of loosely connected molecular devices to an ‘integrated’

or ‘collective’ mode of behavior, encompassing interdependent regulatory controls and

multiple interacting components [87].

While system level understanding of biological processes has been a recurrent theme

in biology from the days of Norbert Weiner [126], it has found increasing attention in the

last decade, particularly due to the vastly improve techniques in molecular biology. The

availability of high-throughput experimental data on the molecular entities controlling

cellular function has opened up tremendous opportunities for the marriage of system sci-

ences with the biological sciences to provide a complete spectrum of knowledge [67], [46].

Computational systems biology [67] aims to develop a class of integrated mathemat-

ical, computational and experimental techniques with the goal of linking the knowledge

of different molecular parts of a living cell in comprehending the structure, dynamics,

control and design of biological systems. As elucidated by Denis Noble in [46], “Sys-

tems biology...is about putting together rather than taking apart, integration rather than

reduction. It requires that we develop ways of thinking about integration that are as rig-

orous as our reductionist programmes, but different....It means changing our philosophy,

in the full sense of the term”.
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1.1 Challenges in comprehending molecular complexity

However, development of such integrated techniques for studying biological net-

works pose several challenges to biologists. While the ability to study biological systems

at an integrated level remains the key goal of molecular biology, it is pertinent to identify

the salient features of living systems which need to be tackled in building “systems level”

views of molecular interactions:

• Complexity : Biological systems are characterized by their inherent complexity,

arising from the non-linear interplay between different entities within a cell, as

well as the myriad environmental signals affecting the physiology of tissues and

organs. Comprehending the fine-grained interplay between the environment (intra-

cellular as well as extra-cellular) and the cells in a living organism as it maintains

its homeostasis [6] remains a major challenge for systems biology.

• Knowledge gap: The complexity of natural systems makes it further difficult to

obtain detailed information on the molecular mechanisms associated with a partic-

ular process. Even with existing techniques, major molecular level knowledge gap

exists in the understanding of the biology of various fundamental processes. Even

for well-characterized cellular functions, the large number of parameters control-

ling their interaction dynamics make the study of large scale biological networks

a particularly challenging problem. The ability to easily abstract the available

level of knowledge on a biological process and bridge the “gap” in a computational

framework remain a major hurdle of systems biology.

• Time and space heterogeneity : Another challenge for developing integrated mod-

els of biological processes is the large order of spatial and temporal dimensions in

which cellular systems operate. Signaling networks operate on the order of seconds

and minutes while metabolic reactions in a cell typically take microseconds. Also,

molecular interactions are constrained to cellular compartments (cytoplasm or mi-
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tochondria) while various viruses and bacteria affect tissues and organs in a body.

Development of multi-scale models [38] of biological processes is a major goal of

systems biology.

• Computational challenges - need for speed : Computational techniques and math-

ematical models provide a promising and powerful tool for capturing the complex

diversity of biological systems. Particularly, in the post-genomic era, the use of

computers and databases in systematic storage and retrieval of vast amounts of

molecular data has become successful [145]. Even with the ever increasing power

of computational tools, the need for fast and efficient biosimulation techniques [99]

remains an open challenge for both biologists and computer scientists.

Thus, the fundamental challenge [87]in a “wholistic” understanding of biological

processes is the complexity involved in the interaction of different components, coupled

with the knowledge gap which exists in a complete characterization of their molecular

mechanics. The complexity and knowledge gap increases manifold as we move into higher

scales such as interaction of large ensemble of cells in a tissue, or interaction of tissues in

continuum for rhythmic pumping of the heart [45]. The goal of “systems biology” is to

build tools and techniques, both computational and experimental, which allow systematic

characterization of biological systems, from cells to tissues and organs, and finally to the

physiology of human beings, as outlined in Fig. 1.1.

Figure 1.1. Closing the “gap” in system wide study of human physiology.
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1.2 Role of in silico modeling and simulation

The complexity and magnitude of the problem in developing system-level under-

standing of cellular dynamics have opened up opportunities for the application of compu-

tational and network modeling techniques in this domain [6]. In recent years, researchers

have recognized the necessity of developing systematic mathematical principles, borrowed

from engineering and computer sciences, in an effort to comprehend the complex molec-

ular choreography within living organisms. Computational models, or in silico models,

supplement in vitro and in vivo experimental techniques, providing formal methods for

storing and querying biological data. Moreover, leveraging the ever-growing power of the

silicon chips, such techniques hold the promise of significantly reducing the cost of bio-

logical experiments and drug design. Well calibrated in silico models will allow biologists

to perform systematic what if experiments on particular pathways, check the dynamics

of different alternative hypotheses and proceed to further wet-lab experiments on only

viable pathways as predicted by the computer models. These approaches have huge im-

plications for the pharmaceutical industry, where the lack of computational techniques

for reliable hypothesis-testing lead to high costs of drug development time.

Fig. 1.2 shows the typical drug development pipeline. As seen from the figure, the

process starts with identification of potential trug target molecules and their subsequent

validation and selection. Once the target molecules are selected, new chemical entities

(NCE) or leads are developed and optimized for the selected targets. While in this

stage, around 300 leads are indentified, severe attrition of the NCEs occur downstream,

particularly in preclinical and earlu clinical phases ( phase I and II) leaving around 10-

20 NCEs which enter advanced clincal studies. The optimized NCEs finally leads to the

development of one new drug application at the end of phase III clinical trials completing

the process which takes around 10-15 yrs and nearly a billion dollar in expenditure.

Computational systems biology has the potential of significantly augmenting the different
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stages of the drug discovery pipeline, providing in silico target pathway identification

and lead optimization to the development of virtual trials on a suite of virtual patient

population.

Figure 1.2. The role of computational systems biology.

With the promise of significantly reducing the time and cost of drug discovery,

sophisticated in silico modeling and simulation techniques have become a powerful tool

for biologists who are challenged with understanding system complexity of biological pro-

cesses. With the unprecedented growth of genomic and experimental databases, bioin-

formatic tools have been developed to mine information from these raw data sets [145].

Sophisticated physico-chemical and mechanistic models [21] of molecular dynamics have

been built and validated based on experimental data. In recent times, graph theoretic

and network theory concepts [191] have been applied to extract information from com-

plex pathways of biological entities, which can be combined with mechanistic models to

develop cell simulation platforms.
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Mathematical models have been particularly successful for complex biochemical

reaction networks, using deterministic rate laws [66], which gives a relationship between

reaction rates and molecular concentrations. Many simulation tools, based on classical

chemical kinetics (CCK) have been developed [115], [141], [182], [70] which represent

cellular dynamics in terms of ordinary differential equations (ODE) and employ numerical

methods to solve them.

Figure 1.3. In Silico modeling and simulation philosophies.

In recent years, to encompass the inherent stochasticity of cellular systems [112],

stochastic simulation algorithms have emerged as alternative modeling approaches for

biochemical networks. Particularly, in the light of the fact that biochemical reactions

involve discrete, random collisions between molecules, the assumptions of chemical re-

actions to be macroscopic under convective or diffusive stirring, continuous and deter-

ministic, are simplifications of the physical reality [21]. Numerous stochastic algorithms

which approximate the chemical master equation (CME) [41], have been developed and
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successfully applied by Gillespie et.al [41, 102], Burrage and Tian [180], Novre et.al [127],

in environments with low copy number of molecules and small system volume.

Fig. 1.3([47]) shows the broad classification of the different modeling techniques

currently prevalent in computational systems biology. As seen from the figure, most

modeling and simulation efforts employ either a “top-down” or a “bottom-up” view of

the biological space. In a “top-down” approach, mechanistic models of the interaction

between different tissues and organs are developed and represented through system of

ordinary differential equations. The numerical solution of these equations, which are

based on mass action kinetic parameters, capture the temporal behavior of the species

in a continuous and deterministic domain. Such physiology-driven, top level models are

effective in representing coarse-grained dynamics but do not capture the network level

information stored in the more detailed molecular pathway maps.

On the other hand, “bottom-up” approaches start at the level of single molecules

and genes, and integrates data from various genomic and proteomic databases to build

increasing complex bio-molecular models. While such an approach provides a fine gran-

ularity of details, spatio-temporal scalability becomes a major challenge. Particularly,

such data-driven approach face significant computational hurdles in encompassing large

pathway networks at the high level of granularity. As shown in Fig. 1.3, most of the

work on computational bio-modeling has focussed on the two extremes of the inverted

pyramids. However, the base of the pyramids provides a wide spectrum of flexibility in

terms of capturing physiological as well as “omics” level information of molecular path-

ways. A “middle-out” approach, wherein data from the bottom layers is integrated in a

computational platform to study of dynamics of biochemical pathways and physiological

interactions, can provide an efficient and flexible modeling paradigm.
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1.3 Our Contribution

In this dissertation, we focus on the application of network based modeling and

simulation methodologies for the study of biological systems. In this approach, the cell

is viewed as a complex network of interacting molecular pathways and its phenotypic

manifestations evolve through the dynamic interaction of the molecular entities under

different intra-cellular and extra-cellular environmental signals.

Based on a middle-out design philosophy, the central theme of our approach revolves

around abstracting a complex biological process as a collection of interacting functions

driven in time by a set of discrete biological events. Analyzing the system at a molecu-

lar level, the temporal dynamics of the system are revealed by the interaction of these

events. The stochastic behavior of the interactions is captured through the mathematical

formalism characterizing the time associated with each of the biological events, i.e. the

event holding time modeling. The discrete event models create the biological process

description in time, while the event-based stochastic simulation captures the interaction

of these processes through the events to create the dynamics of the biological system.

In this work, we have laid down the framework of a discrete event based stochastic

simulation framework for studying the molecular dynamics of cellular processes. The key

contributions of this work, which are depicted pictorially in Fig. 1.4, are outlined below:

• iSimBioSys − discrete event biosimulation engine: A novel discrete event based

stochastic simulation framework is proposed for studying the temporal dynamics

of cellular processes at a molecular level. The event level abstraction provides a

middle-out philosophy, allowing the definition of biological processes at different

levels of granularity (defined through the events) depending on available biological

knowledge and focus of study. Based on the discrete event paradigm, a biosimula-

tion platform, called iSimBioSys is developed which is able to incorporate biological

knowledge and simulate the temporal dynamics of different molecular entities. With
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the focus on flexibility of model abstraction at various scales, we study the dynamics

of signal transduction and gene regulatory pathways, capturing the various biolog-

ical functions through discrete events. We simulate the effect of virulence gene

regulation in single cell bacteria, Salmonella typhimurium, reproducing the switch-

ing effect of external signals in controlling virulence as reported in experimental

work.

• Stochastic modeling of biological events and logic modules : The proposed modeling

and simulation schema allows the integration of stochastic models of various bio-

logical events at different levels of granularity. Each event model is represented by

a parameterized mathematical expression for the probability distribution of event

time.

Delving into details of a particular biological event, we employ the proposed simu-

lation methodology in developing stochastic models of prokaryotic gene expression.

A stochastic birth-death model is developed for transcription and translation events

in bacterial cells. The proposed analytical model is capable of providing a quanti-

tative framework for systematically studying the effect of different molecular actors

on gene expression dynamics.

• Integrated database of biological networks and pathways : An integrated database

schema is developed, which stores information on the various biological pathways in

a cell. The pathways database stores the information available in various disparate

sources, public databases and biological literature, providing a common interface

for querying and simulating interactions between them at different scales of space

and time. An illustrative database schema has been developed for regulation of

central metabolism reactions in the bacteria Escherichia Coli (E.Coli), integrating

data on 7 global transcription factors and their signal transduction, which regulate
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802 genes and their protein products which control the metabolism of around 1000

reactions involving 2000 metabolites.

• HimSim flow based simulation of metabolic network engine: A novel hybrid simu-

lation technique called HimSim is proposed, which combines discrete event driven

models of slow time-scale events (like signaling and gene regulation) with an alge-

braic data-flow based model for capturing the fast-time scale metabolic reactions.

The hybrid scheme alleviates the problem of “stiffness” i.e. inability to simulate the

effects of fast time-scale reactions in conjunction with slow reaction models. The

proposed methodology, together with the integrated database, provides a generic

platform for genome-wide, multi-scale modeling of cellular networks.

The hybrid approach captures the interplay between signal transduction, gene reg-

ulatory and metabolic networks for the bacterial cell Escherechia Coli(E.Coli) built

in the integrated database. We validate experimental reported results on the tran-

scriptional regulation of metabolic reactions in E.Coli under different environmental

and growth conditions. While simulation studies on this hybrid platform focused

on the core metabolism part of the E.Coli metabolic network (with around 50 genes

and 100 metabolic reactions, the existing system together with the database is ca-

pable of simulating the current genome-scale networks for E.Coli as available from

the EcoCyc database [52].

1.4 Organization of the Dissertation

In Chapter 2, we present a detailed taxonomy of existing computational approaches

for modeling and simulation of complex biological processes, identifying the key features

together with the promises and pitfalls of the existing approaches employed in the study

of cellular dynamics.
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Figure 1.4. Contributions of this dissertation.

In Chapter 3, we outline the discrete event simulation paradigm, which provides

an event based abstraction of biological networks and their interactions. Further, we

build the architecture of our biosimulation tool, called iSimBioSys, elucidating the dif-

ferent components of the framework and outline its salient properties vis-a-vis existing

biosimulation platforms.

We validate the efficacy of the discrete-event based approach by simulating the dy-

namics of signal transduction and gene regulatory networks in the bacterial cell Salmonella

Typhimurium in Chapter 4. In silico models are developed for the key functions involved

in the virulence pathogenesis pathway in Salmonella and simulation results obtained to

validate existing wet-lab data for the signaling network system.

With a goal to model the biological events at different scales of granularity in our

discrete event based approach, Chapter 5 develops a detailed stochastic model for the

fundamental process of gene expression in prokaryotic cells and studies the biological

events of transcription and translation in a simulation framework. Our results identify
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the role of transcriptional and translation machinery in controlling the “burstiness” of

protein generation.

Chapter 6 elucidates on the hybrid simulation framework proposed for studying

biological networks at different time-scales and develops the integrated database schema

for storing pathway data. We conclude with the key observations of this work in terms of

its efficacy in providing a fast and scalable biosimulation platform for developing large-

scale models of various human disease pathophysiologies.



CHAPTER 2

IN SILICO MODELING AND SIMULATION LANDSCAPE

The wealth of data available from high-throughput experimental systems that pop-

ulate ever-increasing molecular pathway databases has brought about a paradigm shift

in the study of molecular biology [67]. Sophisticated experimental methodologies, like

micro-array based genome-wide study of gene expression, are being developed for system

wide analysis of cells. With increasing availability of data resources on the molecular

parts of a living cell, biologists are focussing on holistic understanding of cellular ma-

chinery and the emergent dynamics arising out of their complex interactions.

As elucidated in the previous chapter, the inherent complexity of the different bi-

ological networks, coupled with cross-talk and non-linear, spatio-temporal interactions

between the molecular components of the pathways, render in vitro/ in vivo experimen-

tal approaches insufficient in capturing the dynamics of the system. In recent years,

computational techniques, derived from different branches of engineering and sciences,

have become popular in providing a systematic mathematical formalism in the study

of biological processes [115], [141], [182]. Mathematical modeling provides a systematic

formalism for capturing molecular details in a physiological context which can be stored

in dynamic repositories and subjected to computational studies for uncovering biological

insights.

In this chapter, we provide a taxonomical overview of different modeling and biosim-

ulation techniques which have been applied in the study of complex biological systems

with varying degrees of success . In section 2.1, we identify the principle parameters

governing the different modeling techniques. Next, in sections 2.2 to 2.5, we delve into

14
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specific in silico modeling methods and identify their strengths and weaknesses putting

in perspective the discrete event based stochastic simulation approach proposed in this

dissertation in section 2.6.

Figure 2.1. Modeling & simulation tools and methods.

2.1 Taxonomy of bio-modeling and simulation approaches

In developing modeling approaches for biological systems, it is pertinent to ob-

serve the unique features of complex biological functions which can affect mathematical

models. As identified in the Chapter 1, biological systems are typically characterized

by complex, non-linear interactions of a large number of molecular entities, knowledge
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gaps in the understanding of their mechanistic behaviors, together with wide variations

in spatial and temporal patterns. With this large spectrum of factors that control bio-

logical functions, physicochemical biomodels can be classified on the basis of following

salient parameters [21]:

• Time: The propagation of time in the system can be continuous (C) or discrete

(D)

• Space: The state space of the system can be continuous or discrete

• System Evolution: The evolution of the system can be considered in terms of being

deterministic (D) or stochastic (S)

• Physical Scale: The model can consider the system at a microscopic scale (as in

molecular dynamic simulations), macroscopic scale (chemical kinetic systems) or

mesoscopic (where individual molecules are represented).

Based on the above characteristics considered in a biological model, in silico tech-

niques can be broadly classified into four categories:

• Classical chemical kinetic (CCK) approach

• Stochastic simulation algorithm (SSA) approach

• Computational approach

• Agent-oriented approach

We elucidate on these modeling and simulation techniques, together with their

promises and pitfalls, next.

2.2 Classical chemical kinetic (CCK) approach

The most extensively used modeling approach, which has been applied across dif-

ferent time and scales of biological processes, is based on classical chemical kinetics

(CCK) approach. Most common models of molecular networks like kinase cascades and

metabolic pathways, gene regulatory networks and protein interaction networks consider
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the system as a set of coupled ODEs (ODE network) and use numerical methods to

capture the system dynamics deterministically in continuous time and space.

A large number of computational tools, which provide a software platform for build-

ing, storing and parameterizing a set of biochemical reactions and solving those using

numerical techniques, are available, like Gepasi [141], Jarnac [70], CyberCell [170], [110],

Stode [29]. These rate-based models have been successfully applied to study gene ex-

pression and other molecular reaction systems [66] as well as build physiological disease

models [159].

While continuous-deterministic reaction models are capable of capturing behavioral

dynamics for spatially homogeneous systems with large number of molecular species,

the inherent stochasticity observed in many biological processes (gene expression and

protein synthesis) have proven the limitation of CCK in accurately representing biological

processes. As mentioned earlier, due to the stochastic nature of molecular interactions,

the assumptions made in deterministic models break under various biologically relevant

scenarios:

1. Volume: Deterministic systems assume infinite volume to convert a spatial distri-

bution of discrete molecules into single, continuous variable of concentration. As

many intracellular reactions occur in small volumes, the assumption affects the

accuracy of the model.

2. Stochastic Fluctuations : In many cases, fluctuations of the bimolecular systems are

amplified (stochastic resonance) and cause observable behavioral changes at the

macroscopic level, particularly for low copy number of molecules.

3. Spatial heterogeneity : Continuous, deterministic systems assume system homogene-

ity, which is frequently violated in biochemical systems due to compartmentaliza-

tion of processes within the cell.
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4. Deviant behaviors : In a recent work, Arkin et.al [112] systematically identified

classical scenarios where the CCK model fails to capture system dynamics even in

cases of high molecule counts, and proved that deterministic CCKs are closer to

the ’mode’ rather than the ’average’ behavior of stochastic reaction dynamics.

2.3 Stochastic simulation algorithm (SSA) approach

Stochastic models, which present an accurate approximation for the chemical mas-

ter equation (CME) [41], have been developed, largely based on Gillespie’s algorithm [41,

102]. In this method, the next reaction event and the time associated with it are com-

puted based on a probability distribution (Monte Carlo Step). The original Gillespie’s

algorithm is inherently very slow as it has to generate a large number of random numbers

on each Monte Carlo step. Stochastic tools, like StochSim [127], have been developed

based on Gillespie’s technique and its computationally efficient variants like Gibson-

Bruck [102] and tau-leaping [180, 5] which incorporate approximations to speed up the

simulation.

Other modeling tools, which provide an integrative environment to build and study

biochemical reaction systems in an exchangeable format (like Systems Biology Markup

Language (SBML)) using deterministic as well as stochastic techniques are available,

like E-Cell [115], Virtual Cell [186], Dizzy [161], and M-Cell [65]. These techniques are

based on treating a biological process as a system of equations, represented by their

rate constants and other parameters (like volume, cell density etc.) and simulating their

interactions through numerical techniques or Monte Carlo based stochastic simulations.

While stochastic techniques provide a more closer mechanistic model of molecular

interactions, the computational cost of the models pose a serious problem for large scale

biological networks [99]. Moreover, as both CCK and SSA are based on representing

the molecular interactions in the form of reaction equations, capturing the biology of
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different pathways require building reaction models with thousands of equations and this

relevant kinetic parameters. The cost of numerical simulation techniques, together with

the difficulty in obtaining kinetic constant values, make these approaches challenging for

genome-scale system study.

2.4 Computational approach

Computational approaches, based on optimization techniques and graph-theoretic

formalisms, are particularly promising in studying biological systems with incomplete

mechanistic knowledge where the system behavior evolves as an emergent property through

non-linear interaction of molecular entities.

Computational models for biosimulation has been developed based on Petri nets [130,

131, 73] and stochastic process algebra [103, 28, 12]. These methods present a mathemat-

ical formalism for representing biochemical pathways within and between cells. In [131],

the authors present a stochastic Petri net (SPN) model for studying simple chemical re-

actions (SPN model of ColE1 plasmid replication) and show how existing softwares can

be used to perform structural analysis based on numerical techniques.

Discrete event system specifications based on Devs & StateCharts [154, 155], devel-

oped by Harel et.al and Stochastic π calculus [12] have been successfully demonstrated to

provide a computational platform for temporal simulation of complex biological systems.

Hillston et. al have developed a mathematical technique, Performance Evaluation Pro-

cess Algebra (PEPA) [103, 108], wherein functionality is captured at the level of pathways

rather than molecules and the system is represented as a continuous time Markov chain.

Another approach, based on steady-state, constraint-based optimization of cell

properties, have been particularly successful in developing metabolic reaction models

and flux computation. Flux balance analysis (FBA) [2, 117] abstracts metabolic flux

distribution in a cellular network as an optimization problem driven by thermodynamic
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and stoichiometric constraints. We provide a more detailed discourse on flux balance

methods later in Chapter 6.

While such computational techniques provide a efficient algorithmic platform for

the analysis of specific biological systems, the lack of a common interface and data inte-

gration techniques render them unsuitable for systematic study of biological pathways,

operating on varying time and space scales.

2.5 Agent-oriented approach

Simulation methodologies, based on software engineering concepts of object ab-

straction and modularity have been applied to the development of computational models

of biological processes with emergent behaviors.Agent based modeling (ABM) paradigms

have been applied in the studied for in silico complex bio-processes by Uhramacher

et.al [15, 17, 86]. In [171], the authors have developed AgentCell, an ABM based digital

assay for the study of bacterial chemotaxis. Another modeling technique, Functional

Unit Representation Model (FURM) [160, 166] has been proposed for large scale model-

ing of in vitro drug metabolism. Simulation platforms, based on discrete events, where

the events are modeled on rate constants and measured experimental data, have been

demonstrated in [188] and [183].

Agent-oriented approach employ object abstraction and modularity concepts from

software engineering to provide a software platform for biological simulations. One of

the limitations of such an approach is the requirement of explicit agent definition and

their specific functional behavior in a biological process. In many biological pathways,

identification of well-define modules as well as functional behaviors becomes difficult due

to lack of sufficient data on the particular entities.
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2.6 Summary

The overarching theme guiding the development of in silico modeling and sim-

ulation tools, is developing models based on continuous-deterministic ODEs or using

stochastic simulation algorithms (SSA) for approximating the chemical master equa-

tion, which capture the temporal evolution of the reaction event probabilities. Most of

these techniques focus on specific parts of molecular pathways, which are represented in

graphical and mathematical formalisms, treat spatial dynamics in terms of well-defined

cellular compartments, and abstract the complexity in terms of estimated parameters

and rate constants. The different approaches and specific implementations outlined in

this chapter, are represented graphically in Fig. 2.1 [47] depicting the trade-off between

system scale and complexity in the modeling space.. As seen from the figure, top-down

approaches based on mechanistic models of cellular physiology capture the system be-

havior at a higher scale while compromising on molecular level complexity available from

“omics” databases. Bottom-up, data-driven approaches integrate proteomic and genomic

level data but suffer from scalability problems at the tissue and organ level physiology.

In this chapter, we systematically built the taxonomy of these different techniques

and identified the key design parameters of the bio-modeling and simulation landscape.

We have provided an overview of the different modeling and simulation philosophies

for studying biological processes at various levels of granularity. Table 2.1 outlines the

different approaches and compares their characteristics as identified here.

In the next chapter, we outline our modeling and simulation technique, based on

a discrete event system specification, where the biological events (representing reactions,

ionic diffusions) are mechanistically modeled depending on their biophysical character-

istics to compute the probability distribution of their execution times. A discrete event

simulation system then links the biological processes to simulate the behavior emerging

from the interaction of the events in time.
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Table 2.1. Comparative list of biological modeling and simulation softwares

Modeling
technique Tool

Spatial
representation

Temporal
evolution

Reaction
model

Classical
chemical
kinetics
(CCK)

Jarnac [5] Not explicitly
defined

Continuous time
mass action
kinetics

Gepasi [141] Compartments, sub
volumes

Continuous time Mass action

E-Cell [115] Compartmental
Supports CCK as
well as SSA

mass action,
chemical
master
equation
(CME)

SimBiology [182] Not explicitly
defined

Supports CCK as
well as SSA

mass action,
chemical
master
equation

CyberCell [170] Off lattice
Inter-particle
collisions

MD based

Stochastic
simulation
approach
(SSA)

MesoRD [85] Compartments, sub
volumes

Event-driven CME

M-Cell [65] Off lattice Time-step driven At surfaces,
CME

Smoldyn [169] Off lattice
Interparticle
collisions

MD based

Dizzy [161]
Supports CCK as
well as SSA

continuous time CCK, CME

Promot/ DIVA [110] Not explicitly
defined

Continuous time CME

Computational
approach

Stochastic
Petrinets [130, 131,
73]

Compartments
Continuous/discrete
time steps

Graphical
model

Flux balance analysis
(FBA) [2]

Not explicitly
defined

Constraint driven,
steady-state flux
optimization

linear
optimization
technique

Agent-
oriented
approach

AgentCell [171] Not explicitly
defined

Time-step driven
Agents model
molecular
behavior

FURM(Functional
unit representation
of biological
processes [160, 166] )

Not explicitly
defined

Continuous time
Functional
modeling

Stochastic
discrete
event based

iSimBioSys [157] Compartmental
Event driven
discrete time steps

Based on
CME, explicit
models of
reaction time



CHAPTER 3

A DISCRETE EVENT BASED SIMULATION PARADIGM

A fundamental challenge in computational systems biology [67] is the “..judicious

simplification” of the biological system complexity without loosing the ensemble dynamic

behavior in an incomplete biological knowledge space. As elucidated in the previous chap-

ter, various computational modeling/simulation tools have been developed to represent

biological processes using formal mathematical constructs, either in the form of ordi-

nary differential equations or agents. While these techniques are capable of customizing

specific representation of pathways and molecular interactions, a generic framework cap-

turing the different biochemical networks over a wide range of time, space and scale

dimensions is needed for developing large in silico models of cellular physiologies.

In this chapter, we propose a network centric approach for modeling complex bi-

ological pathways through the stochastic interaction of discrete biological events (bio-

Events). In section 3.1, we outline the details of the modeling technique, identifying the

biological events and stochastic models associated with them and comparing them with

existing stochastic approaches. Section 3.2 builds the biosimulation framework, called

iSimBioSys, defining the simulation algorithm and software architecture, which provides

the computational platform for studying the interaction dynamics of the events. We

summarize the contributions of this chapter in section 3.3.

3.1 Stochastic discrete event based approach

In the system engineering view of complex biological processes [23], the key notion

is to abstract the complexity of the system as a set of discrete time and space variables

23
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(random variables), which capture its behavior in time. The entire system is a collection

of functional blocks or modules, which are driven by a set of “events”. An “event”

defines a large number of micro level state transitions between a set of state variables

accomplished within its execution time, also termed “holding time”. The segregation of

the complete state space into disjoint sets of independent events which can be executed

simultaneously without any mutual interaction forms the basis of abstraction for the

particular system under investigation.

The application of this technique in large complex communication networks [88]

has demonstrated the accuracy of the approach for the first and higher order dynamics

of the system within the limits of input data and state partitioning algorithms [178]. For

example, discrete event based system modeling has been effectively applied for designing

routers, the key components responsible for routing traffic through the Internet. Discrete

event based simulation techniques have also been used a wide variety of manufacturing

processes and system dynamics of complex industrial processes [168].

Motivated by the success of discrete event driven stochastic simulation techniques

in large scale complex networks, our approach is based on identifying and modeling

key biological functions at a cell, tissue or organ level and mapping those to a set of

discrete biological events, called bioEvents, associated with the model processes. The

model captures the behavior of the pathways in time, through the stochastic interactions

of the different bioEvents, as shown in Fig. 3.1.

3.1.1 Biological event identification and definition

Each event represents a biological interaction (chemical reaction, ionic diffusion

etc.) and is associated with two characteristics:
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Figure 3.1. Event interactions in time.

• The parametric stochastic model of the underlying physico-chemical process associ-

ated with the event. The model, elucidated further in the next section, characterizes

the holding time distribution associated with the event.

• The molecular resources associated with the event (e.g the molecular species in-

volved in a reaction event) and their utilization algorithm based on reaction stoi-

chiometry or pathway knowledge.

Thus, to define the discrete events, we first identify a biological process as a system

of resources (which can typically be the various molecules, ions, ribosome, chromosome,

operons, etc. involved in the system) that are periodically changing their state between

“busy” (e.g., a molecule is busy in a reaction), “free”e.g., a molecule is free to enter a

new reaction),“created” (e.g., a molecule is created by a reaction) and “killed” (e.g., a

molecule is used up by a reaction) based on the underlying resource usage algorithms.

The events are marked by the time instant the selected resources change their state in

the system. The state transitions from one state to another are governed by transition

rates of the functions involved in the process.

The estimation of the transition rates is derived by mathematical model or by ex-

perimental observation of the physical processes involved in the functions. As an example,

we consider the fundamental function of phosphorylation, which involves the transfer of a

phosphate ion from an Adenosine triphosphate (ATP) molecule to another molecule/ion
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resulting in the phosphorylated molecule/ion and a molecule of Adenosine diphosphate

(ADP). In particular, we consider the phosphorylation of a PhoP molecule (which as

we will see later is intra membrane protein signaling molecule involved in the regulation

of the PhoPQ pathway in Salmonella) to phosphorylated PhoP or PhoPp. In order to

capture the dynamics of this basic biological function, we need to account for the state

of the resources involved (in this case ATP, count of PhoP molecule and phosphorylated

PhoP molecule, and ADP). Further, the time required to perform this function, which

is termed as the holding time, is estimated on models based on fundamental physical

processes like molecular kinetic, diffusion physics and molecule binding mechanism that

will be in place at that particular system state. Thus, this holding time will be randomly

changing as the system states change and will accurately reflect the actual working of

the cellular system. At the end of the “holding time”, the phosphorylation molecule can

trigger an “event” to drive another functional process.

As the simulation proceeds at a event level, the resource states are determined

in terms of the “molecular count” of the individual resources that are affected by the

event. For example, after the successful completion of the PhoP-phosphorylation event,

the count of ATP in the system is decreased by one while that of ADP is increased by

one. The PhoP molecule is “killed” and phosphorylated PhoP molecule is “created”. In

this way, basic biological molecules and their events are identified, modeled and linked

together in a discrete event simulation framework to capture the dynamic interactions of

a cellular process in time.

3.1.2 Modularity and Module Reuse

As is evident from the above discussion, one of the key challenges of this discrete

event modeling of biological processes is the identification of basic functional modules,

the resources involved in them and the key events driving the interaction between the dif-
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ferent modules. The wide variability and complexity of modules, resources and possible

set of events in natural sciences further complicate the problem. However, there exists

a core set of basic functional modules which play fundamental roles in a wide variety of

biological processes. Identification and modeling of theses functions can greatly facilitate

the study of complex processes of life. Some of the basic biological events (and their

associated time), which are associated with key biological functions, include:

(1) Reaction Time,

(2) Diffusion Time,

(3) DNA Protein binding time

(4) Transcription Time

(5) Translation Time

(6) Transport Time

(7) Protein Life Time

(8) Protein Folding Time

Identifying ’modularity’ of biological processes forms a key step in employing sys-

tem engineering principles to the study of these complex processes. A discrete event

framework allows the identification of such modules, few of which are outlined above,

and their characterization in terms of their input and output events, event holding time

distributions and resource utilization stoichiometry. Such formal characterization lends

reuse of the modules across various biochemical pathways and networks. In the next sec-

tion, we layout the mathematical underpinning for the modules based on their biophysical

and chemical characteristics.
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3.1.3 Capturing the system behavior in the temporal domain

In discrete event simulation, “simulation time” is the representation of the “physical

time” of the system being modeled. Each event time computation is associated with a

time-stamp indicating when that event occurs in the physical system being simulated.

The event time is computed from the knowledge of the previous event that triggers the

current event, together with the event execution time.

This execution time is often called “holding time” of the event function and is

generally a random number. The dynamics of resource utilizations with progression in

time unveil the complete internal picture of a complex biological process, capturing the

evolution of the system in time. The exercise of characterizing the system parameters is

performed as follows:

• Identify the list of discrete events that can be included in the model based on the

available knowledge of the system. As mentioned previously, due to lack of complete

understanding of biological process, at this stage the modeler can abstract their

system at different level of event definition, like reactions events, event of molecular

assembly like ribosome, or even events at higher structural levels.

• Identify the resources of interest for the execution of the event function which are

being used by the biological process for each discrete event. In other words, we need

to identify the various types of molecules, cells, tissues etc which are involved in

the event function. In addition, we include the biologic understanding of the event

execution to define the resource usage algorithm for an event (either in reactions,

or as catalysts or end products). For example, the ribosome binding gap on the

mRNA for protein synthesis.

• Compute the time taken to complete this biological discrete event, i.e. the holding

time of the discrete event. For this purpose, it is important to mathematically relate

all the event parameters which affect the interaction of the resources in a particular
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biological function. In reality many of these parameters are random variables which

are linked through complex algebra of random numbers. The event execution time

is a random number drawn from a probability distribution characterized by its two

significant moments. Because of the details of the biological function included in

this mathematical model, the moments are parametric and change with the change

in system state.

Unlike in rate based simulation models, where it is assumed that the system state

remains the same during the complete reaction of multiple molecules, the time

required for completion of a biological event processing is computed as a function of

these parameters. The resource utilization algorithms which determine the holding

time of the functional blocks, together with the resources involved and their count

in the system, all play a key role in the dynamic behavior of the biological process

being simulated.

• Identify the next set of biological discrete events initiated on the completion of an

event. If multiple discrete events are possible after completion of an event, it is

necessary to find out the probability of the individual next event. This modeling

of the probability depends on the biological knowledge captured through micro

array or other experimental data that are reported in pathways and other research

databases. For example, if one regulatory protein can possibly activate multiple

proteins due to the similarity of binding motif, the probabilities are modeled by

considering the individual binding site locations and the chromatin configuration of

the binding site. Though this knowledge is available, this level of biological detail

is not currently used in rate constant based ODE models.

Thus, extraction of the system information from experimental data captured in

literature to generate the pathway logic is an important component of any biological

system modeling. In current rate-based systems, this complex pathway knowledge (with
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positive and negative feedback loops) is converted into a system of kinetic equations

with rate constants (ODE network). This transformation potentially looses the temporal

behavior of the pathway, as it treats the ODEs as a memory less system of reaction

equations. In a discrete event based simulation, this behavior of the system is captured

through the sequence of biological events. Once the components are defined and linked in

the simulation framework, the dynamics unfold by the interacting of these events in time.

The overall functional modules of the simulation framework are outlined in Fig. 3.2.

Figure 3.2. The functional modules of the simulation.

As shown from the figure, the simulation methodology starts from extraction of

pathway information from different sources (databases as well as existing literature)

which store molecular level data from high throughput experiments. Based on the net-

work information captured from the pathways, the biological functions and modules are
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abstracted and maps to specific bioEvents. The bioEvents are characterized by their

associated resources and the stochastic models of the event holding times. The event

network is fed into the simulation engine block which drives the time-series result on the

change in concentration of the molecular species and generates in silico results. The in

silico experiments provide new insights into the biology of the system and contribute to

the development of de novo wet lab experiments, thereby completing the circular process.

3.1.4 Comparison with existing stochastic simulation algorithms

The efficacy of discrete event stochastic simulation techniques in the analysis of

system dynamics for complex biological processes has been successfully demonstrated in

the literature [88, 178, 168]. A large volume of work in stochastic in silico analysis of

biological systems is centered on Stochastic Simulation Algorithms (SSA) using Gillespie’s

technique [42, 43] and its variants [102]. Thus, we highlight the key characteristics of

our event based stochastic simulation approach, the basic steps of which are outlined in

Table 3.1, vis--vis the general SSA technique employed in Gillespie’s algorithm:

• Event Modeling and Resource Update: The development of stochastic event models

is closely linked to the success of the simulation and forms a central part of the mod-

eling and simulation approach. While the fundamental notion of approximating the

Chemical Master Equation (CME) [38] forms the driving principle in any stochastic

modeling framework, the event modeling and execution phase (Step 2 in Table 3.1)

and the resource update phase (Step. 3) differentiates the two techniques.

While Gillespie and other SSA algorithms employ a Monte Carlo step to deter-

mine the next reaction event and the time-step update from a memory less list of

events (event holding time exponential), individual event holding time probability

distributions characterize the discrete event approach. Moreover, the time-step is
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updated according to the particular temporal sequence of events associated with

the biology of a process.

• Capturing knowledge gap: Current simulation systems use pseudo-equations to cap-

ture knowledge-gap in system behaviors wherein acquiring the rate constants for

those equations becomes a challenging problem. In our approach, knowledge gaps

are captured by defining biological events at a level of abstraction where knowledge

is available, allowing events models to be at different levels of granularity for each

functional block.

• Temporal Evolution: The Gillespie algorithm makes time steps of variable length,

choosing one random variable to determine the next reaction and another to de-

termine the time of the reaction, based on the rate constants and population-size

of each species in the system. In another variant, StochSim [127] uses time steps

of fixed lengths in the simulation. The time step has considerable impact on the

computation speed and accuracy, and has to be tuned for the specific problem un-

der investigation. In our discrete event based algorithm, the system evolves in time

through the events and their holding time distributions. The system will adopt the

time step depending on the events without any special or prior analysis.

• Individual-based vs. Population-based Representation: The discrete-event based

simulation traces the system dynamics at the level of individual molecules, i.e it is

possible to trace the state of a tagged molecule as it changes its state from “busy”

to “free” or “killed” through the progression of events. On the other hand, the

Gillespie algorithm treats molecules at a population level and the identity of single

molecules are lost in the process.

• Multi-state molecules and reaction stiffness : The Gillespie algorithm has been

shown to run into combinatorial state space explosion for multi-state molecules

because each state has to be treated as a being part of a separate chemical equa-
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tion [25]. In StochSim [127], the authors introduce binary flags and associated prob-

abilities to consider multi-state molecules (e.g multi-protein complexes) as part of

a single reaction. In our discrete-event framework, the multi-state events are incor-

porated as sub-class of a single event which are modeled (models consisting of input

events, associated event holding distribution, resource utilization stoichiometry and

output events) as part of the general framework.

• Capturing the transient system behavior : In a system-wide study of biological path-

ways, involving large number of molecular entities, the biological knowledge of the

system is captured in the sequence of events driving the pathway. Maintaining the

sequence of events, as employed by our discrete event based simulation algorithm,

is essential for understanding the system behavior, especially in the transient phase

when the number of molecular species is low (for example, in a signal transduction

and downstream gene expression pathway, a transcription event (reaction) cannot

be executed before signaling and kinase/phosphastase activity events are executed).

Stochastic simulation algorithms employ Monte Carlo techniques where the order

of the reactions is not considered because the system is assumed to be memory less.

• Computational Efficiency: The performance of the discrete event simulation tech-

nique is based on the number of events (e) generated by the system. Because of

longer execution time of regulatory events, the event rate significantly drops in our

system and significant speed-up is possible. As analyzed in [127], the computa-

tional complexity of the Gillespie technique is on the order of number of reactions,

while that of StochSim is of the order of n, where n is the number of molecules

in the system. Also, it may be noted here that unlike the fixed size time-step in

StochSim [127] wherein reactions may not be executed in a time step, the discrete

event simulation, being event driven, moves forward in time at every biological

event, adjusting the count and states of molecular resources.
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• Parameter Estimation: Current simulation models are based on rate constants

predominantly estimated from experimental data. This becomes particularly chal-

lenging, as for many reactions, the rates are not experimentally available, and con-

siderable assumptions have to be made to complete the model. On the other hand,

the stochastic models are parameterized on physicochemical molecular properties,

like temperature and reactions energy barriers, and pathway information, which

are available in different databases. The parameterized models can be tuned to

validate different wet-lab experimental conditions (like modeling pathway behavior

at higher temperature) and for testing de novo hypotheses on an existing system.
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Table 3.1. Stepwise comparison between Gillespie and Discrete event appraoch

Stochastic Simulation
(Gillespie Algorithm)

Stochastic modeling
based Discrete event
simulation (iSimBioSys)

Comments

1

Initialization: Initialize
the number of molecules in
the system, reactions
constants, and random
number generators

Initialization: Initialize
the number of molecules in
the system for each species,
model parameters and
resources and random
number generators

The initialization steps are
similar in both the
algorithms

2

Monte Carlo Step:
Generate random
numbers to determine
the next reaction to
occur as well as the
time interval.

Event modeling and
execution: The next
reaction or event is selected
based on the functional
logic hardwired in the
simulator.
For each process and its
associated event, a random
number is generated for the
event execution time based
on the first and second
moment of the event
holding time distribution
computed by the stochastic
model.

In this step, Gillespie and
other stochastic simulation
algorithms employ a Monte
Carlo step to determine
next reaction event and
time while in our approach,
the next event selection
and random execution time
generation are computed
differently.

3

Update: Increase
the time step by the
randomly generated
time in Step 1.
Update the molecule
count based on the
reaction that
occurred.

Update: The global
simulation clock is
increased by the time-step
computed in the previous
step as the event holding
time.
The resource count of
molecules are updated
based on the last event
stoichiometry

The temporal progression
takes place in discrete
time-steps based on the
random event holding times
computed in the previous
step in our approach.

4

Iterate: Go back to
Step 1 unless the
number of reactants
is zero or the
simulation time has
been exceeded.

Iterate: Go back to Step 1
and repeat the process. In
case a particular event
cannot be executed because
of resource conflicts, it is
ignored and simulation
proceeds without the
update step

The handling of
reactions/events with
resource conflicts/shortage
is different in our approach
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3.2 iSimBioSys simulation framework

In this section, we develop the software implementation of our discrete event simu-

lation platform, iSimBioSys, based on the methodology explained in the previous section.

The modular nature of the functional blocks involved in our event based approach lends

itself to an object-oriented computing paradigm [61]. Specifically, the Java based [84]

implementation encapsulates the stochastic models for the different biological events and

links them together in the discrete event simulator.

3.2.1 Event Objects

Each functional module is represented as an object, having its own state (the re-

sources involved in the module) and its associated behavior, which is modeled on the

functionality of the module. Another characteristic of a module are its associated in-

put events, which drive the functionality of that module and its corresponding output

events which are inputs to other modules. The central theme of a discrete event simu-

lator revolves around the event queue, which is the global data structure responsible for

storing time-stamped events for the simulation. The event queue maintains an event list

containing the events to be executed. Instead of having each event store its correspond-

ing execution time, each event is associated with the corresponding model object (an

instance of a model class) which stores the first and second moment of the probability

distribution associated with the event, e.g. the diffusion event is associated with the

mean and variance of the probability distribution as computed in the model formalism

outlined in the previous section.

A central scheduler is in control of the queue, popping events in a time-ordered

manner to avoid “causal errors” [82] and sending it to the corresponding modules. At each

event triggered, an instance of a random variable following the corresponding probability

distribution is computed to calculate the event execution time for the particular event.
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Based on the event execution logic, new events are created and pushed into the event list,

updating the global simulation clock in the process. The scheduler is also responsible for

maintaining the event list as events are generated by a module following its biological

process logic. As is evident from the discussion, the scheduler together with the event

queue drives the simulation environment while the module objects and their behaviors

define the event handlers of the framework. Fig. 3.3 shows the flowchart for the discrete

event simulation algorithm.

3.2.2 Software Components

Our current framework supports a multi-threaded architecture with the main sim-

ulation engine running in one thread while the visualization plane running on another.

The basic architecture and framework of the simulation involves four logical packages,

identified in the block diagram presented in Fig. 3.4:

• In Silico Experimental Setup: These set of classes are responsible for setting up

the modeling and system parameters used in the particular simulation block and

are generally provided through user interface or plain text files. While certain

parameters are based on available biological literature such as cell volume, macro-

molecule diameters etc., event execution time parameters are computed by the

engine internally based on the logic defined in the corresponding model class for

each event.

• Discrete Event Process Modules : These set of classes, derived from a common base

class, essentially the resource utilization algorithms for the biological process being

simulated and provide methods to compute event holding times. It may be noted

here that the discrete event process modules are a one-to-one mapped implemen-

tation of the functional modules. These event modules act on the system resources

constructed in the knowledge extraction phase. In our current implementation,
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Figure 3.3. The discrete event based simulation algorithm.

the resources are modeled in a two dimensional data structure consisting of the

resource state and its regulation logic (up or down regulation) based on the con-

structed pathway. As the event modules run in time, the resource states change

and capture the dynamics of the system. These set of classes form the heart of the
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Figure 3.4. The iSimBioSys software architecture.

modeling formalism as they realize the stochastic behavior associated with each

event in terms of its probability distribution.

• Main Simulation Engine: This class is responsible for handling the main thread of

the discrete event simulator and implements the global event queue used. This class

is responsible for communicating with the global event queue through the sched-

uler, executing the event process logic, updating the global simulation clock and

exchanging resource state information with the visualization unit which updates

the system behavior in real-time.

• Visualization and Data Generation: These set of classes are responsible for data

generation of the simulation and tracing the simulation in terms of change in re-

source states in the temporal axis.The user interface of the current implementation

involved three parts:

1. User Interface for experiment setup: The user interface is presented before the

start of the simulation for the user to set up system parameters, simulation

runtime environments and visualization data.



40

2. Runtime visualization of simulation: The simulation can be traced in run-time

in the visualization plane which runs on a separate thread as discussed earlier.

Depending on user inputs, it traces the change in resource concentration of

the system and also system signal states. As the dynamics of the system are

traced in time, it provides a window for viewing the system behavior while

the simulation runs in the background.

3. Performance visualization: These screens trace the various performance met-

rics of the simulation platform as it is executed. In the current implementation,

it is trace of the memory and CPU usage of the system.

Figure 3.5. iSimBioSys software interface.

Fig. 3.5 shows a snapshot of the experimental setup and visualization screens part

of the iSimBioSys simulation engine. It may be mentioned here that the current imple-

mentation of iSimBioSys is based on Java 1.5 SDK and runs on a windows XP service

pack 2 (enterprise edition) based Dell XPS Dimension system (Intel Pentium 4 processor

with HT technology running at 3.4 GHZ), 2GB DDR2 SDRAM at 533 MHz and 250MB

ATI Radeon X850 XT PE video card.
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3.3 Summary

In summary, our modeling and simulation technique presents a stochastic, event-

driven framework which approximates the stochastic dynamics of the chemical master

equation by parametric models of biological event time distributions. In this chapter, we

provided the basic building blocks of the modeling and simulation paradigm and built

the software framework. In the next chapter, we illustrate the simulation methodology,

building its different components based on the case study of virulence gene regulatory

and signal transduction pathways in the bacterial cell Salmonella.



CHAPTER 4

SIMULATING THE DYNAMICS OF SIGNAL TRANSDUCTION

One of the most important functions in a cell is the transduction of extra-cellular

and intra-cellular signals. A complex set of molecular machinery working in close co-

operation is responsible for sensing and transducing changes in environmental conditions

of a cell. The cell reacts to these signals by employing different gene regulation and

protein assembly mechanisms to maintain cellular homeostasis. Thus, studying the com-

plex dynamics involved in signalling pathways and their downstream regulatory networks

forms a fundamental step in the understanding of cellular behavior.

In this chapter, we employ the discrete event based modeling methodology to sim-

ulate the regulation of virulence gene in the bacterial cell Salmonella typhimurium when

it invades a host cell, specifically the effect of external magnesium concentration on the

two component PhoPQ virulence gene regulatory pathway. In section 4.1, we start with

a brief description of the signal transduction and gene regulation process for this par-

ticular two-component system based on available biological literature [185]. Section 4.2

develops the mathematical abstraction of the key biological events and the discrete event

simulation implementation of the abstraction, validating the switching effect of Magne-

sium signal on the signaling pathway as reported in experimental work while section 4.3

concludes the chapter.

4.1 Virulence gene regulation in salmonella typhimurium

Bacterial pathogenesis in Salmonella Typhimurium involves the complex interac-

tion of regulatory pathways which play different roles in various stages of infection [121,

42



43

62]. While various signaling networks are involved in orchestrating pathogenesis in a

host system, we focus on the two component PhoPQ regulatory pathway and its role in

accomplishing parasitism of the host. [185] elucidates the role of extra cellular Magne-

sium (Mg+2) concentration as a primary signal of this pathway which acts as a global

regulator of Salmonella virulence and helps in the survival and replication of the bacteria

in the macrophages (host cell), shown in Fig. 4.1. Low extra cellular Mg+2 (micromolar

concentrations) was shown to cause an increase in the expression of certain PhoPQ acti-

vated genes, while high Mg+2 concentrations (millimolar) caused an immediate “switch

off” of these genes. The knowledge available from the biological studies, together with

the qualitative diagram of the system in Fig. 4.1 represents the biological process under

study.

Figure 4.1. Virulence gene regulation in salmonella.
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4.1.1 Modeling the two component pathway

Once the biological system has been defined, the modeling methodology outlined in

the previous chapter is employed to translate the qualitative knowledge into a quantitative

formalism, characterized by the events and the stochastic models of their execution time.

4.1.1.1 Knowledge extraction and pathway construction

The first step in building a discrete event based model of a biological process is

the extraction of molecular pathway information with subsequent construction of their

interaction network. We used comprehensive knowledge extraction from PubMed [145]

database, to construct the gene regulatory pathways for the PhoPQ network, identifying

the common intersection of the pathways i.e. the genes and gene products which are

regulated by this system at various stages.

For the PhoPQ two component pathway, the magnesium driven signal transduction

is involved in transcriptional regulation of 44 genes, 5 of which are involved in another

cascading two component system. A positive feedback loop exists in this pathway, in

the form of up regulation of phoP gene by the phosphorylated PhoP protein. Fig. 4.2

shows the complete pathway, with the positive feedback loop marked in deep color. The

pathways have been constructed using the Cell Designer 3.0 software which presents

a structured (Extensible Markup Language (XML)) format data which can be easily

rendered into the discrete event simulation framework. The gene regulatory pathway

provides information on the molecular resources involved in the network as well as their

biological interactions whose temporal dynamics drive the phenotypic response of the cell

to the magnesium signal. Fig. 4.2 marks the first step in the transition of the qualitative

knowledge of the biological system into a computational format captured in the pathway

network structure.
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Figure 4.2. The PhoPQ pathway.

4.1.1.2 Functional module identification of biological processes

The next step in model building is the abstraction of the biological functions associ-

ated with the signaling pathway. In this case, it translates into the basic processes which

are involved in the activation of the PhoPQ system under external magnesium, follows

by expression (up regulation) or repression (down regulation) of genes in the pathway.

Based on a available literature [185, 121, 62], the main functional modules have been

described in Fig. 4.3.

The biological process modules identified here are at different levels of granularity.

For example, the autokinase activity [185] of PhoQ receptor molecules involves phos-

phorylation of a single PhoQ molecule. However, gene expression is a complex process,

involving a large number of complex sub processes, all of which are not fully under-
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stood currently. Thus, the functional modules need to incorporate these varying levels

of granularity in their event models, which we illustrate next.

Figure 4.3. Event interaction network for the two component system.

4.1.1.3 Stochastic event modeling

In a discrete event based approach, the mathematical formalism underpinning the

simulation is the stochastic modeling of the events associated with the biological pro-

cesses. As mentioned in the previous chapter, the modeling of the event holding time of

the functional modules (the arrows between the modules in Fig. 4.3 denote the events),

is a key distinguishing step in our methodology. The random holding time is generated

as an instance of the probability distribution associated with a particular event. This

parametric distribution, defined in terms of its first and second moments, is computed
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from the stochastic modeling of the biophysical and biochemical properties of the process

(elliptical modules in Fig. 4.3) and forms the heart of the stochastic event modeling step.

Stochastic models for the different events involved in the signaling and gene reg-

ulatory pathway of the PhoPQ system have been developed as part of the simulation

framework. The simulation is capable of incorporating models in varying degrees of

granularity and abstraction. Below, we summarily present the stochastic model formal-

ism for two key processes used in this study at different levels of abstraction. More details

on the stochastic models are available in [136, 137, 138, 139].

• Transfer of magnesium ions through the cell membrane: As the PhoPQ pathway is

controlled by extra-cellular magnesium ion concentration, the movement of Mg2+

through the cell membrane needs to be modeled. This event is modeled [135] as

diffusion of charged ions through the cell membrane. Specifically, the event time

for a molecule of Mg2+ entering or leaving the membrane needs to be computed.

This deals with the inter-arrival (departure) time between two molecules or ions,

where their movement to/from a cell is controlled by concentration gradient and ion

charge potential gradient across the membrane. The inter-arrival (departure) time

is controlled by the ion flux in this case. To derive the inter-arrival (departure time

between the ith and (i+1)th molecules i.e. ti+1− ti , we determine tN−i+1 and tN−i

that denote respectively the times to transfer N − i− 1 and N − i molecules/ions

through the channel, where N is total number of molecules/ions. Now,tN−i can be

obtained by solving the following equation as reported in [132, 135]:

N − i = 2× C0 × AΣ∞
m=0(m

2π2 1− (−1)me
−zFV
2RT

z2F 2V 2

4R2T 2l2
+ m2π2

2

e−βtN−i) (4.1)



48

where A is the area of the membrane sheet; F is Faraday’s constant; T is the

absolute temperature; R is gas constant; z is the total number of positive charges;

l is the length of the ion channel; and β is,

β = (
z2F 2V 2

4R2T 2l2
+

m2π2

l2
)D (4.2)

The parameterized equations in Eqn.4.1 and Eqn.4.2 capture the different physico-

chemical factors affecting the diffusion of charged ions. Based on the parameter

values for diffusion of Mg2+ ions through the bacterial cell membrane, the inter-

arrival time between Mg2+ ions can be computed for different concentrations of

extra-cellular magnesium.

• Gene expression modules : Next, we focus on the complex module of gene expres-

sion and protein synthesis which orchestrate the expression dynamics of the dif-

ferent genes involved in a the regulatory pathway. The stochastic nature of gene

expression and the multitude of factors both at transcription (RNA polymerase

copy number), translation (competition between ribosome and RNaseE molecule

for translation initiation or decay respectively) as well as post-translational stages

pose modeling challenges in this complex molecular assembly phase. In this case

study, the holding time in these blocks have been modeled based on existing ex-

perimental data, collected for average bacterial transcription time and translation

times. The complex process of protein formation and decay have been modeled as

an exponential distribution with the exponent computed based as function of the

number of proteins in the system and its half life values, which depends on the

conformation and residue length of a particular protein.

While such modules at varying degree of model granularity can co-exist in our

framework, in the next chapter we provide a detailed stochastic model for prokary-
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otic gene expression, accounting for the different molecular machinery controlling

the process.

• Discrete event simulation: This is the heart of the framework, comprising of the

core simulation engine responsible for driving the system in silico. Based on the

functional modules, the key events driving the interaction of these modules are

identified. The event times associated with each of these biological events are de-

veloped based on the stochastic modeling techniques. The discrete event platform,

iSimBioSys, elucidated in the previous chapter, incorporates these information in

its framework.

• In silico result and wet lab verification: The success of the simulation methodol-

ogy depends on the validation of results with wet lab experiments. This provides

a tool for verification of biological processes and for subsequent hypothesis test-

ing of biological functions prior to more advanced and costly in vitro and in vivo

experiments.

The components elucidated in this section, powered by large databases of molecular

knowledge, iteratively interact to form an in silico modeling and simulation platform.

4.2 Experimental validation and hypothesis testing

The efficacy of the modeling and simulation approach is governed by (a) validation

of the model against existing wet-lab experimental results, (b) effective calibration and

sensitivity analysis of the key parameters governing the biological model and (c) hypoth-

esis testing of different conditions on the biological system which can give further insights

for novel experiments in the future.

In this section, we employ the discrete event based stochastic simulation framework

to model the effect of the PhoPQ two-component signal transduction pathway on the

expression of virulence genes involved in bacterial pathogenesis of the gram-negative
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bacteria Salmonella Typhimurium. While the simulation system can be used to model

the temporal dynamics of different regulatory pathways in a bacterial cell, we focus on

the particular system in this work as it provides:

• Existing wet-lab experimental setup and results [185] which allow the validation of

the simulation results.

• The system involves the interaction of signal transduction with subsequent expres-

sion of genes governed by the upstream signals.

• The gene regulation pathway as built based on existing literature on the two-

component system provides various regulatory mechanisms including up and down

regulation of genes, and positive feedback effects which can serve to test different

hypothesis.

• As the system involves complex biological functions like gene regulation and pro-

tein expression, whose exact molecular mechanisms are not always well known, it

provides a platform to test the efficacy of granular model abstraction based on

available knowledge, on the behavior at a systems level.

In the rest of the section, we start with a brief description of the wet lab experi-

mental system, moving on to present the detailed results of simulation. We show how

the discrete event simulation framework can be used for hypothesis-driven analysis of

different conditions for the PhoPQ system.

4.2.1 The wet lab experimental system

The experimental setup, explained in details in [185], consists of reporting the phe-

notypic output of the virulence gene expression pathway (measured in terms of expression

level of the phoP gene). Fluorescence measure of expression of destabilized green fluores-

cence protein (dEGFP) under the control of a PhoPp (phosphorylated PhoP) responsive

promoter was used as the reporter system. Thus, the system measure of the dEGFP was
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in essence an indication of the PhoPp concentration in the system. In the experimental

system, low Mg2+ was maintained for a period of 60 mins, during which the system

output increased, after which the signal was toggled to high Mg2+. The measurements

of the fluorometer were taken every 15 mins for the positive activation state.

Fig. 4.4 shows the system output of the cell culture in time, both for high-magnesium

as well as low-magnesium conditions, representing the “switching effect” of the magne-

sium signal. Fig. 4.5 shows the system behavior as observed when the cells were in

a culture of low (8 microgram) magnesium medium, highlighting the activation of the

PhoPQ pathway (as shown by increase in concentration of PhoPp protein). Similarly,

Fig. 4.6 shows the toggling effect of the ’on-off’ switch mechanism when the system state

was changed from high to low magnesium medium.

Based on these experiments, we run the discrete event simulation to generate sim-

ulation results which capture the system output in time. The simulation initialization

with different resource and system parameters are key to the success of the model. Also,

the platform provides flexibility in changing these conditions and resources to generate

synthetic, hypothetical results for a better understanding of the test system. In the next

subsection, we outline the system and simulation parameters and present the results of

the in silico experiment.

4.2.1.1 In Silico validation

In this section, we setup the ’dry-lab’ experimental system for the signal trans-

duction and subsequent gene regulation pathway involved in the test-bed. The in silico

experiment is initialized with the system molecular resources and biological parameters

associated with the probability distribution functions of the different event holding time

modules. In this experiment, we focused on parameters associated with the Salmonella

bacterial cell based on the CCDB database [170] which are summarized in Table 4.1.
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Figure 4.4. Effect of Mg2+ on the system output.

The simulation also initializes other resource parameters like the number of molecules

(in terms of concentration) for the different species involved in the system (e.g. ATP,

ADP, PhoP, PhoQ, extracellular Mg2+ ions) and the gene regulatory pathway informa-

tion extracted during the PhoPQ pathway creation phase. Once the system is initialized,

the event queue is populated with the initial event list which determines the snapshot of

the biological environment at simulation start time and the simulation engine is triggered.

For the current system, the simulation focused on tracing the effects of signaling

events (Mg2+ ion arrival and departures) on the expression dynamics of the PhoPQ

pathway. Also, as a reporter protein (GFP) has been used in the wet-lab scenario to

trace the system behavior, our results are focused primarily on PhoPp as the main

resource whose dynamic temporal behavior was observed in the simulation. Although,

the simulation can be configured to monitor and generate results for a wide range of
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Figure 4.5. Effect of low Mg2+ (8microM) on the system output).

system resources, PhoPp was chosen primarily to verify the wet-lab tests. The simulation

experimental results denote resource states averaged over 100 runs of the simulation under

the same initial conditions.

In order to simulate similar conditions, the simulation was configured to run with

low Mg2+ for 60mins, during which no resource conflicts or starvation were assumed

(i.e the simulation would not stop due to lack of any resource). As seen in Fig. 4.7, the

simulation responds with continuous growth in PhoPp concentration, implying increasing

dEGFP fluorescence.
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Figure 4.6. Effect on the system output of Mg. switch.

In another simulation experiment, the system was started with high Mg2+ which

was switched to low Mg2+ at 20mins which was kept low for 30 mins. and toggled back to

high. Fig. 4.8 captures the system response under this scenario, recreating the “toggling

effect” of the Mg2+ signal on the pathway. The condition of no resource starvation shows

relative smoothness in output as obtained from continuous system models since the effect

of low copy number of molecules on stochasticity [112] is not displayed.

The simulation platform allows the analysis of the effects of stochasticity on the

model by varying the resource states of the molecules involved in the simulation and
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Table 4.1. Experimental parameters for the Salmonella bacterial cell

Biological Parameter (Bacteria) Value
1 Length Of Genome 4857432
2 Number Of Genes 4451
3 Rate Of Transcription 50 Nucleotides/Sec

4 Rate Of Translation 18 Residues/Sec

5 Area Of Cell 6*10-12 Sq.M

6 Volume Of Cell 1*10-15 L
7 Diffusion Co-Efficient Of Magnesium Ion 1*10-9

8
Diffusion Co-Efficient Of A Protein
Molecule

7.7*10-6

9 Avg. Mass Of A Protein Molecule 25kda
10 Avg. Diameter Of A Avg. Protein Molecule 5 Nm
11 Millimolar Conc. Of Mg 1.0*10-3
12 Micromolar Conc. Of Mg 8.0*10-6

13 Phosphorylation Reaction Time

5.6*10-9/ (No. Of
Reactant
Molecules) Secs

14
Avg. Delay Between Diffusion Of Two Mg.
Molecules

8.5*10-10 Secs

also the sensitivity of the system outputs to the different parameters governing the event

holding time distributions. In the next sub-section, we present a systematic analysis of

the different hypothesis tests.

4.2.2 In silico hypothesis testing

The in silico simulation model allows the modeler to test the system under various

synthetic conditions, in terms of system resource states, initial conditions and different

combinations of environmental cues driving the systems (for example, the diffusion of

magnesium ions through the cell membrane in our case study).

In order to capture the effects of varying the rate of diffusion of magnesium on

the system output, we ran the simulation with increasing magnesium ion diffusion times

(100ms, 1ms,10ms) and reported the results for two key system resources, the proteins
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Figure 4.7. Effect of low Mg2+ on the in silico system.

PhoQ, which is the sensory protein responsible for binding to magnesium ions, and the

PhoP protein, which controls the dynamics of the gene expression. Fig. 4.9 shows how

the rate of decrease in the concentration of inactive PhoQ (phoQ molecule bound to a

magnesium ion) is damped with increasing delay in the diffusion of magnesium ions out

of the membrane. Also, capture in this graph is the effect of resource starvation on the

biological system. As the Mg. ion initiated signal activates the PhoPQ pathway, the

sensory PhoQ proteins are consumed by the system, thereby shutting down the pathway

when all phoQ molecules available to the system have been used. Similarly, Fig. 4.10

captures the effect of the same conditions on PhoP.

An interesting observation, not capture in the wet-test lab results, is the orches-

tration of the positive feedback loop of PhoP, as identified in the knowledge extraction

phase. As seen in Fig. 4.10, the concentration of PhoP in the system decreases initially;
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Figure 4.8. Simulation results on the ‘switching effect” of Mg2+ signal.
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Figure 4.9. Change in conc. of membrane PhoQ.
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Figure 4.12. In silico gene expression profile.

but once, the expression of genes is triggered by phoPp (phosphorylated PhoP), PhoP

starts appearing in the system. The corresponding effect on PhoPp, which increases in

concentration when magnesium ions depart from the membrane (activating the path-

way) is captured in Fig. 4.11. In both the graphs, the slowest rate diffusion does not

bring the system into resource shortage phases while the other diffusion rates locks the

system (plateau on Fig. 4.11) due to non-availability of phosphorylated PhoP molecules.

These results show how the tuning of different parameters (in this diffusion rates) can be

synthetically manipulated to study different behaviors of the systems.

Another in silico result, which is possible in our simulation framework is the pro-

filing of different resources, which though key to the system as a whole, but may not

be the focus of a current experiment. For example, it is possible to profile metabolites

and energy molecules like ATP and ADP, to name a few. Also, the expression profile
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of a whole range of gene products, like proteins and enzymes can be traced in the sim-

ulation, providing a gene profiling microarray. In Fig. 4.12, we show the protein profile

of 3 proteins in our test bed pathway, as they unfold in time. The protein expression

profile captures the stochastic fluctuations of the PhoP molecule as the system progresses

in time, triggering the positive feedback effect of the phoP gene on the two-component

pathway.

4.3 Summary

The in silico results on the test-bed pathway demonstrate the efficacy of the model-

ing and simulation approach for study single cell dynamics. Particularly, the flexibility in

event scheduling and resource state specifications allows a modeler to validate the effects

of high and low copy number of molecules on different parts of the biological system.

This flexibility allows the simulation to be computationally efficient depending on the

required granularity of the biological model and the resource state space considered. In

the next chapter, we show how the simulation framework is capable of capturing high

level details of granularity in terms of modeling biological events using the fundamental

process of gene expression in prokaryotes as the model system.



CHAPTER 5

MODELING PROKARYOTIC GENE EXPRESSION

One of the salient features of an event based modeling paradigm is the ability to

abstract biological complexity of a particular function at different levels of granularity

depending on available knowledge. In the previous chapter, the events of the two com-

ponent system included gene expression and protein generation as two functional blocks

which were modeled with constant holding time based on experimental rate parameters

for transcription and translation. However, the process of gene expression, which forms

the central dogma of molecular biology, involves complex interactions between a large

number of molecular actors. In order to capture these details in a parametric form, it

is pertinent to model transcription and translation processes at a higher level of granu-

larity while incorporating the available biological knowledge. In this chapter, we focus

on developing a stochastic model for prokaryotic gene expression and study its dynamics

using the discrete event simulation technique elucidated in the previous chapters.

Fluctuations in protein number (noise) caused by the stochasticity in gene expres-

sion plays a central role in the dynamic behavior of cellular pathways. Deterministic

models capture average cell population behavior and are limited in their relevance in

modeling stochastic deviations of gene expression in single cells. In this chapter, we

develop a birth and death Markov chain model to capture the discrete biological events

of transcription and translation in prokaryotic cells. Section 5.1 gives a brief overview

of the prokaryotic gene expression process while section 5.2 outlines existing modeling

approaches. We derive mathematical models for the expression ’burst frequency’ distri-

bution as well as the number of protein molecules per burst in section 5.3. We validate

61
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our stochastic models with recent single cell experiments on the lacZ gene in Escherichia

Coli(E.Coli) in section 5.4 and characterize expression noise sensitivity to biological pa-

rameters like gene activation ratio in section 5.5. Further, we build a discrete-event

stochastic simulation system to study the transient dynamics of lacZ gene expression in

section 5.6, quantifying the role of promoters in controlling the ‘burstiness’ of protein

synthesis in section 5.7.

5.1 Dynamics of gene expression

One of the key goals in studying complex cellular pathways is the understanding

of the dynamic interaction between the cell’s gene regulatory and metabolic networks.

In particular, the dynamics of protein-coding genes play a vital role in controlling the

expression patterns of other genes encoding regulatory proteins and metabolic enzymes.

Continuous and deterministic differential equation-based models representing the discrete

events of transcription and translation have been traditionally used to study gene expres-

sion in cell populations [80]. However, the inherent stochasticity in molecular interactions

limits the applicability of these models in studying single cell expression deviations and

observed cell-to-cell variability [80, 106, 79].

Stochastic fluctuations in the expression pattern of genes have been mathematically

studied by Arkin et. al [1, 72] and experimentally observed in [98, 93]. In particular,

the ‘burstiness’ in protein production i.e. proteins are produced in random bursts of

short duration rather than in a continuous manner, have been studied by various re-

searchers [80, 106, 109, 4]. The random fluctuations in the number of proteins, termed

‘noise’, stems from the interplay of a large number of factors: discrete, random nature

of molecular interactions like promoter binding and transcription open-complex forma-

tion, low copy number of key transcriptional and translational machineries like RNA

polymerase, transcription factors, ribosomal units etc., and the random nature of signals
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triggering gene expression. We provide an overview of stochastic models, primarily based

on Monte Carlo simulation of the biochemical reactions involved in gene expression [7, 4],

in the next section.

We model the events of transcription and translation for prokaryotic cells as dis-

crete space, continuous time Markov processes, computing the probability distribution

of the two key parameters characterizing the expression of proteins from a gene [93]:

(a) frequency of messenger RNA (mRNA) bursts per cell cycle, and (b) the number of

proteins molecules per burst. To understand the transient dynamics, we further integrate

our mathematical equations into a stochastic discrete event simulation of coupled gene

transcription and translation events.

5.2 Stochastic models of gene expression

As mentioned in the previous section, gene expression is an inherently stochastic

process, governed by random association and dissociation of transcription factors, RNAP

polymerases, ribosomes and degradosomes (RNase E). etc. caused by the low copy num-

ber of molecular entities. In this section, we briefly overview Monte Carlo simulation and

other stochastic models for prokaryotic gene expression, focusing on the molecular actors

involved in transcription and translation events as depicted in Fig. 5.1.

Specifically, the events of gene activation followed by transcription initiation, elon-

gation and termination leading to the production of an mRNA molecule are considered.

With respect to the translational machinery, the molecular events involved in transla-

tion initiation by ribosome binding/unbinding, mRNA decay by degradosome binding,

translation elongation and termination are accounted for.

A common theme driving mathematical models studying the stochastic dynamics of

gene expression is the elucidation of the different molecular actors affecting transcription

and translation through a set of bio-chemical equations. In Fig. 5.2, we provide a listing
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Figure 5.1. Molecular events involved in bacterial gene expression.

of the set of reactions involved in gene expression, including mRNA and protein decay,

which have used (in different partial sets) in various reaction models [4, 109, 92, 27].

The reaction model has been generated using the Chemical Model Definition Language

(CMDL) format provided by Dizzy [161]. Once the reaction set is defined together

with rate constants estimated from experimental and available data, stochastic Monte

Carlo simulations (Gillespie algorithm [40]) are used to study their behavioral dynamics.

McAdams and Arkin [72] combined a continuous model of transcription initiation with

a stochastic model for subsequent processing and protein synthesis capturing the race

between translation initiation and mRNA degradation. Kierzek et. al [7] systematically

studied the effects of transcription and translation efficiencies for bacterial gene expres-

sion through Monte Carlo simulations. In [27], the authors have developed stochastic

pi-calculus based techniques for studying gene expression dynamics. Paulsson [92] pro-

vides a comprehensive review of different models of gene expression and protein noise

analysis, giving a common Fluctuation-Dissipation Theorem (FDT) based framework to

encompass various models. Noise characterizations (intrinsic and extrinsic) in single cell

gene expressions have also been in studied in [80, 109].
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Figure 5.2. Reaction model implementation.
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We consider the molecular process of prokaryotic gene expression as a complex

stochastic system and abstract the process through probability distributions for the rate

of mRNA and protein synthesis. While the estimation of the various kinetic parameters

involved in reaction models pose a challenge under different conditions, our stochastic

model captures the available information to quantitatively characterize the gene expres-

sion process in terms of the average rates of mRNA synthesis and protein generation.

5.3 Birth-death markov chain model of gene expression

In this section, we build a stochastic model for gene expression, considering the

molecular actors affecting expression dynamics. Stochastic behavior arises in cellular

reactions from the individual randomness of molecules in motion and the activation

energy required to form the complex when two molecules come close to each other. Our

modeling approach is motivated by the fact that the system dynamics of such processes

can be captured by algebra of random numbers.

To make the process mathematical tractable, we use the following set of assump-

tions:

• The effect of promoter arrangement, as in an operon, or regulon or tandem pro-

moters has not been considered.

• The transcription machinery is not limited by the number of RNA polymerase

(RNAP), transcription factors etc. available in the system.

• The process of ribosome assembly is not considered and translation is assumed to

be initiated by an active ribosome. The translation process is not rate limited by

the number of ribosome or amino acids present in the system.

Table. 5.1 outlines the notations used in our models together with their definitions.
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Table 5.1. Mathematical notation table

Notation Definition

XmR(t) denote the number of RNAP molecules attached
to the gene-coding region of the DNA at time t

SmR set of possible states of RNAP molecules
NRNAP max. no. of RNAP molecules attached
Lgene length of genes (bp)

RNAPfootprint spacing between RNAP molecules
λmR

i transcription birth rate
µmR

i transcription death rate
Tbinding RNAP molecule binding time
Tclearance RNAP molecule clearance time

kmR
elong transcript elongation rate constant

kmR
on transcription activation rate constant

kmRNA
decay transcript decay rate constant

PmR
n probability of n RNAP molecules attached to a

transcript
R̄mR Avg. rate of transcript synthesis

σ
mR

Variance of transcript synthesis rate

Xp(t) denote the number of ribosome molecules at-
tached to a transcript at time t

Sp set of possible states of ribosome molecules
Nribosome max. no. of ribosome molecules attached
Lribosome length of protein (residue)

λp
i translation birth rate

µp
i translation death rate

kp
elong translation elongation rate constant

kmR
on ribosome activation rate constant
P p

n probability of n ribosomes molecules attached to
a transcript

R̄p Avg. rate of protein synthesis
σ
p

Variance of protein synthesis rate

Finter(τp) Inter-arrival time between protein molecules
< P (t) > Ensemble average of number of protein molecules

produced at time t
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5.3.1 Modeling transcriptional dynamics

In modeling the dynamics of prokaryotic transcription, we consider the key pro-

cesses involved: gene activation and deactivation, transcription initiation and RNAP

recruitment, mRNA chain elongation, and finally transcription termination. We observe

the ‘concurrency’ involved in the transcriptional process [20], i.e. each gene is simulta-

neously transcribed by several RNAP molecules, which can be visualized as a combed

structure, with the gene-encoding region of the DNA forming the backbone, and the

transcripts of increasing length (left-to-right) forming the teeth [20]. Thus, in order to

calculate the average number of mRNA transcripts, i.e. the burst frequency distribution,

we model the system in terms of the number of RNAP molecules attached to the gene

at any instant of time.

Let XmR(t)denote the number of RNAP molecules attached to the gene-coding

region of the DNA for a particular gene at time t. XmR(t) can take values in the discrete

state space

SmR = {0, 1, ..... Nmax
RNAP} where,

Nmax
RNAP =

⌊
Lgene

RNAPfootprint

⌋
(5.1)

and, Lgene = length of the gene ( in base-pair length)

RNAPfootprint = promoter clearance, or distance between two RNAP molecules.

At any time t, the system starts at state 0, i.e., no RNAP is attached to the gene.

Once the promoter is activated and an RNAP molecule is recruited, the system moves to

state 1. Now, assuming at some time t
′
, the system is in state k, i.e. k RNAP molecules

are attached to the gene, the following events can occur, ( transition steps are captured

in Fig. 5.3:
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Figure 5.3. Different events in the transcription process.

(i) The gene may be activated again and another RNAP molecule is recruited,

taking the system to state k + 1.

(ii) An RNAP molecule reaches the terminator sequence releasing an mRNA tran-

script for translation, taking the system to state k − 1.

(iii) A repressor may exclude further RNAP molecules from binding to the promoter

region, deactivating the gene and taking the system to an inactive state (Dgene).

We now consider a continuous parameter, discrete space Markov chain [63, 123],

χmR = {XmR(t), t ∈ T} and T = {t : 0 ≤ t < ∞} where XmR(t)is the state of

the system at time t, with a finite state space SmR.
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For initial solution, let us neglect the dead stateDgene, and use standard birth and

death modeling technique to derive the probability of states,

χmR = {XmR(t)}, t ∈ T = {t : 0 ≤ t < ∞} (5.2)

where XmR(t) is a birth-death Markov chain where the intensity matrix [123] Q is

defined as,

Q =





−λmR
0 λmR

0 0 0 ...

µmR
1 −(λmR

1 + µmR
1 ) λmR

1 0 ...

0 µmR
2 −(λmR

2 + µmR
2 ) λmR

2 ...

. . . . .

. . . . .





(5.3)

Figure 5.4. Birth-death Markov chain for transcription.

λmR
i is defined as the birth-rate while µmR

i is defined as the death rate of the process,

which is depicted in Fig. 5.4 along with the possible states. The birth and death rates

encompass the dynamics of the different biological actors affecting transcription and are

defined as follows:

(i) Birth rate (λmR
i ): defines the rate at which new RNAP molecules arrive in the

system, which is given by,λmR
i = 1

TmR
where, TmR is the sum of the average time taken for
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gene activation, RNAP-promoter binding, open-complex formation and the time taken

for the previous RNAP molecule to clear the promoter for the next RNAP molecule

(promoter clearance time), i.e.,

TmR = Tactivation + Tbinding + Tinit + Tclearance (5.4)

TmR =
1

λ+
+ 1

kmR
on

+ 1
kmR

init
+

RNAPfootprint

kmR
elong

(5.5)

It may be noted here that the arrival rate of the first RNAP molecule does not

include the promoter clearance time and is given by,

λmR
0 =

1

TmR
where TmR = Tactivation + Tbinding + Tinit (5.6)

(ii) Death Rate (µmR
i ) : defines the rate at which RNAP molecules leave the system,

i.e. the rate at which mRNA transcripts are released and is governed by the time taken

by the RNAP molecule to elongate the chain and reach the terminator sequence. Now, at

the ith. state, any one of the i RNAP molecules can release a transcript with probability

p and i RNAP molecules are working in parallel to produce mRNA molecules. Thus,

µmR
i = i× 1

TmR
elong

× p where TmR
elong =

Lgene

kmR
elong

(5.7)

With the birth and death rates computed as above, the birth-death process can

be characterized by the set of differential-difference equations for the state probabilities

(obtained from the Chapman-Kolmogorov forward equations [51]),

dpmR
j (t)

dt
= −(λmR

j + µmR
j )pmR

j (t) + λmR
j−1p

mR
j−1(t) + µmR

j+1p
mR
j+1(t), (j ≥ 1) (5.8)
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dpmR
0 (t)

dt
= −λmR

0 pmR
0 (t) + µmR

1 pmR
1 (t) (5.9)

where pmR
j (t) = probability of being in state j at time t. Applying the stochastic

balance procedure [123], the stationary state probabilities can be obtained from Eqn. 5.8

and 5.9 for the chain in Fig. 5.4 as,

PmR
n =

(
λmR
0 (λmR)n−1

n!(µmR)n

)
PmR

0 where

λmR
n = λmR , µmR

n = µmR, n = 1, 2..NRNAP

(5.10)

and

PmR
0 =

1
∑NRNAP

n=1
λmR
0 (λmR)n−1

n!(µmR)n

(5.11)

In the above formulation, the cessation of the transcription process by a repressor

molecule has not been considered. As mentioned earlier, the repressor binding can prevent

access of the RNAP molecule to the promoter region, thereby taking the system to an

inactive state, Dgene. As this can happen from any state in the system, the modified

Markov chain is represented by Fig. 5.5.

Figure 5.5. Birth-death Markov chain with killing state for transcription.

The Markov chain in Fig. 5.5 represents a special birth-death process with killing [50,

156]. Based on Karlin and McGregor’s integral representation for the transition proba-
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bilities (Q matrix), it has been shown in [156] that the representation can be extended

in case where transition to the death state occurs from any other state, as in Fig. 5.4.

Also, [51] shows that at as long as killing is possible from a finite number of states and the

criteria of certain absorption and positive decay parameter are maintained, existence of

quasi-stationary distributions for a birth-death process with killing are maintained. This

particular chain can now be analyzed in a quasi-stationary manner as shown in [51] and

reduced to a simple birth-death process with the following mapping for the birth-death

process representing the chain,

∼
µmR

0 = 0,
∼

λmR
0 = λmR

0 +λ−
∼

µmR
i = (λmR

i−1/
∼

λmR
i−1)µ

mR
i

,
∼

λmR
i = λmR

i
+ λ− + µmR

i
−

∼
µmR

i

Using the above transformations for the modified birth and death rates, the indi-

vidual state probabilities,PmR
n can be computed. Now, PmR

n gives the probability of n

RNAP molecules in the system producing transcripts at the rate µmR
n = n× 1

T mR
elong

× p.

Thus, the average rate of transcript synthesis, R̄mR is given by,

R̄mR =

NRNAP∑
n=0

PmR
n µmR

n (5.12)

and the variance is given by,

σ
mR

=

NRNAP∑
n=0

(µmR
n − R̄mR)2

PmR
n

(5.13)

The first and second moments [50] i.e. mean and variance respectively, specified

by Eqn. 5.12 and 5.13 characterize the probability distribution of mRNA synthesis rate

or frequency of transcript generation. In the next sub-section, we develop the model for

the distribution of the number of proteins synthesized from an mRNA molecule.
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5.3.2 Modeling translation dynamics

Once an mRNA molecule is transcribed, the translation machinery is recruited

to initiate the synthesis of proteins. Although translation can be initiated even before

the transcription machinery has released the mRNA in prokaryotic cell, we consider the

recruitment of the translation machinery after the complete transcription of an mRNA

molecule in this model.

We observe a commonality in the role of the ribosomal unit in translation as played

by the RNAP molecule in transcription. Translation is initiated by a ribosome macro-

molecule binding to the ribosome binding site (RBS) on the mRNA. The ribosome then

reads out the genetic code from mRNA in three-letter codons corresponding to the amino

acids, assembling them into a growing chain of amino acids which subsequently fold into

a functional protein.

Concurrency is also observed [14] in the translation process, with multiple ribo-

somes (forming polysomes) reading out simultaneously from a transcript. Another char-

acteristic in the translation machinery is the competition between a ribosome and a

degradosome (RNaseE) molecule to bind to the RBS and initiate translation or decay of

mRNA respectively, as shown in Fig. 5.6.

Figure 5.6. Competition and state-space of translation.

Based on the above observations and the fact that the number of ribosomes attached

to an mRNA governs the count of protein molecules synthesized before decay of the
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mRNA, we considerXp(t), the number of ribosomes attached to the mRNA at time t.

The maximum number of ribosomes (ribosome load) simultaneously processing an mRNA

depends on the length of the gene and the inter-ribosome spacing (Lribosome) and is given

by, Nribosome =
⌊

Lgene

Lribosome

⌋
i.e. Xp(t) takes values in the discrete state space, Sprotein =

{0, 1, ..... Nribosome}. Analyzing the events which can occur at a state Xp(t) = k as in the

case of transcription (as shown in Fig. 5.6), we have,

(i) After the time taken for the ribosome to move Lribosome base pairs, another ribo-

some can get attached to the mRNA depending on the association rate of the ribosome

and takes the system to state k + 1.

(ii) A previously attached ribosome can complete the process of protein generation

and gets released from the system bringing it to state k − 1.

(iii) An RNaseE molecule can get attached to the RBS and start the decay process

taking the system to a ‘death’ or ‘killing’ state.

We now define a Markov chain, χP = {XP (t)} and {t ∈ T} where Xp(t) is the

state of the system at time t. As in the case of transcription, the Markov chain can be

analyzed as a birth-death process with a killing or decay state, for translation. The main

differences are the computation of birth and death rate of the translation process and

the computation of the maximum possible states of the system. (i) Computation of birth

rate λp
i : The birth-rate captures the rate at which the system moves forward in state,

i.e. another ribosome unit binds to the RBS successfully. This event occurs after the

time taken for the ribosome unit bound to the RBS in the previous (k-1 ) th. state to

move Lribosome units along the mRNA chain to clear the next ribosome for association at

the RBS, together with the time taken for the ribosome to bind to the RBS and initiate

translation. Thus,

λp
i =

1

Tbinding + Tclearance

=
1

1
kp

on
+ Lribosome

kp
elong

(5.14)
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It may be noted here that,λp
0 = 1

Tbinding
= kp

on, since ribosome clearance time is not

required for the first ribosome binding to the RBS.

(ii) Computation of death rate µp
i : The death event signifies a ribosomal unit suc-

cessfully completing the synthesis of a protein molecule and getting released from the

system. This can be computed on the same lines at the birth-rate with the observation

that the ribosome here has to traverse 3 more codons to generate the last amino acid

in the chain and stop the synthesis of the protein. At the ith. state, any one of the

i proteins can successfully complete protein chain synthesis with probability pribosome .

The assembly of the protein in the ribosomal complex is progressing in parallel, so the

rate of protein production will be multiplication of the number of parallel production

stations (ribosome units) to the rate of an individual unit to complete production of a

protein. Thus, death rate is given by,

µp
i = i× 1

T p
elong

× pribosome where T p
elong =

Lgene+3

kp
elong

(5.15)

(ii) Decay Rate (kmRNA
decay ) : The decay rate is defined by the binding rate of the

RNase E molecule to the RBS which triggers the mRNA decay process.

Based on the above rates, the stationary state probability of the states, P p
n as,

P p
n =

(
λp

0(λp)
n−1

n!(µp)n

)
P p

0 (5.16)

where λp
n = λp , µp

n = µp, n = 1, 2..Nribosome (5.17)

and

P p
0 =

1
∑Nribosome

n=1
λp
0(λp)n−1

n!(µp)n

(5.18)
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Once the state probabilities are computed, we observe that at the nth. state, the

rate of protein synthesis is given by µp
n and the probability of this synthesis rate at that

state isP p
n . The average rate of protein synthesis, R̄p, can thus be computed as

R̄p =

Nribosome∑
n=0

P p
nµp

n (5.19)

and the variance is given by,

σ
p

=

Nribosome∑
n=0

(µp
n − R̄p)

2
P p

n
(5.20)

Based on the above equations, we characterize the probability distribution of the

number of proteins available from a mRNA or the burst size distribution for protein

synthesis.

5.3.3 Combined model of protein synthesis

As mentioned earlier, the process of gene expression is marked by coupling be-

tween the processes of transcription and translation. Thus, the probability distribution

for protein synthesis is a combined process arising out of the two stochastic processes of

transcription and translation elucidated in the previous sub-sections. Now, the proba-

bility distribution of protein arrival, specifically the time between two protein molecules

being synthesized will depend on the number of mRNA molecules present in the system.

In order to compute the stationary probability of k mRNA molecules being present in

the system, we consider the transcript arrival and decay process as a birth-death Markov

chain with infinite state space, where the arrival rate is given by R̄mR computed earlier,

and death rate is the mRNA decay rate or kmRNA
decay .
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Solving the Markov chain, the probability of k mRNA/transcript in the system is

given by

P transcript
k =

(
(R̄mR)n

n!(µmRNA
decay

)n

)
P transcript

0 (5.21)

P trancript
0 =

1∑∞
n=1

(R̄mR)n−1

n!(µmRNA
decay )n

(5.22)

Now, each of these k transcripts has a corresponding protein synthesis distribution

with average rate R̄p. Thus, we can define the distribution for the time-interval between

two protein molecules (inter-arrival time) released in the combined system by an Erlang

distribution [51] with shape parameter k and rate parameterR̄p, i.e. Ferlang(x, k, R̄p).

Specifically, the cumulative density function (CDF) of protein inter-arrival time is given

by,

Finter(τp) =
∞∑

k=1

P transcript
k .Ferlang(τp, k, R̄p) (5.23)

5.3.4 Modeling noise dynamics

The quantification of the fluctuation in the number of proteins produced is a key

component in understanding the stochasticity of gene expression. Generically, this fluc-

tuation can be defined as the ratio of the variance over mean squared which allows

separation of noise sources [13]. If P(t) is the protein concentration at time t, then the

protein noise η(t)is given as,

η(t) =
〈P (t)2〉 − 〈P (t)〉2

〈P (t)〉2 (5.24)

where 〈P (t)〉 is the ensemble average.
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In [92], the author has elucidated that the classification of noise components in

terms of ‘extrinsic’ or ‘intrinsic’ depends on the definition of the system versus the en-

vironment. Thus, the noise contribution of the transcription machinery is intrinsic to

transcriptional noise while extrinsic to translation noise. Based on our probability distri-

bution for burst frequency and size, we can characterize the total protein noise (ηprotein)

as sum of transcriptional noise (ηtranscription) and translational noise (ηtranslation), given

as,

ηprotein = ηtranscription + ηtranslation (5.25)

where,

ηtranscription =
σmR

(R̄mR)2
, ηtranslation =

σp

(R̄p)2
(5.26)

In the next section, we estimate the burst frequency and size distributions based on

our model and validate it with experimental data obtained from single cell experiments

in E.Coli.

5.4 Model validation

In this section, we validate our stochastic models for gene expression with exper-

imental data obtained from recent single cell experiments. Specifically, we estimate the

average rate of mRNA synthesis and protein generation from our model and validate the

distributions with actual experiments data. In [98, 93] measurements at the single cell

level were reported on the average transcript synthesis rate and protein number distri-

butions for the lacZ gene expression in E.Coli cells. We briefly overview the lac operon

system in E.Coli, before presenting the model parameters and validation results.
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5.4.1 The lac operon experimental system

The lac operon, which encodes a set of genes for the lactose permease, has been

extensively used in experimental and analytical systems. The native lacZ gene is the

first in the operon and is translated into monomers composing of the catalytic protein,

β- galactosidase and galactose. The native operon is positively regulated in the presence

of lactose and negatively regulated by glucose. The lac operon also encodes LacY (lactose

permease) and LacA (galactosidase acetyltranderfase) apart from LacI which encodes a

regulatory protein. The lac operon, together with the gene products is depicted in

Fig. 5.7. We focus on the first gene of the operon, lacZ, to validate our model against

experimental data obtained on single cell experiments for protein synthesis for the lacZ

system [98, 93].

Figure 5.7. The lac operon system.

5.4.2 Model parameter estimation and validation

The stochastic model for gene expression elucidated in the previous section com-

putes the distributions for mRNA synthesis (burst frequency) and protein synthesis (burst

size) characterized in terms of their mean and variance. The mathematical expression
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for the average rates involve different biological parameters which are obtained from

available literature and databases to estimate the model parameters. Based on single

cell experiments of gene expression in E.Coli, the average number of mRNA bursts was

estimated as 1.2 bursts/cell cycle in [98, 93]. The model estimate forR̄mR, using the

computed parameter values was calculated as 1.03 ±0.85 burst/cell cycle time.

Based on the fluorescent β-galactosidase reporter molecules, details of which are

provide in [93], the authors obtain an average burst size of 4.2 ± 1.8 protein molecules.

Now, the authors also showed that a burst of proteins occurred from a single mRNA (0.037

± 0.013) where the average life-time of the mRNA is 1.5 ± 0.2mins. Thus, assuming that

4.2 protein molecules are produced from a single mRNA during its life time, we obtain

an average protein generation experimental rate of 0.046/s for ]barRp. Based on R̄p and

the associated probability, PmR
n , Fig. 5.8 shows the probability distribution for burst

size of proteins computed from the model (Fig. 5.8(b)) and compared with experimental

data (Fig. 5.8(a)) [93]. Thus, the validated protein burst size distribution and mean rate

estimated from the model provides a mathematical tool for systematically studying the

effect of different parameters, which we elucidate next.

5.5 Sensitivity analysis of model parameters

The parameterized models of gene transcription and translation provide a mathe-

matical foundation for systematically studying the sensitivity of the average rate of these

events on the different biological parameters. Based on the biological process underly-

ing gene expression encompassed in the scope of our model, we analyze the parameters

potentially controlling the burst frequency and size distributions for prokaryotic cells.

For completeness, we elucidate sensitivity analysis of all parameters in the following

sub-sections.
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Figure 5.8. Burst size distribution (a) experimental system, (b) Markov model.

5.5.1 Effect of activation ratio on transcription rate

The activation ratio, defined as the ratio of the gene activation rate to the deacti-

vation rate, quantifies the strength of the transcription factor. Fig. 5.9 shows the effect

of increasing activation ratio on the transcript production rate and the corresponding

transcriptional noise. As seen from the plot, increasing activation ratio, increases the ef-

ficiency of the transcriptional machinery thereby increasing the average rate of transcript

production and decreasing the transcriptional noise.

5.5.2 Effect of transcription initiation ratio on transcription rate

The rate of binding of the RNAP molecule to the promoter region exerts control on

the rate of transcription by increasing the efficiency of the transcription process. Thus, as

seen from Fig. 5.10, increase in the rate of transcription initiation increases the average

rate of transcript synthesis and decreases . It may be noted here that the activation ratio

has a greater effect on the efficiency of transcription as seen from the slope of the curves

in Fig. 5.9 and Fig. 5.10 and noted in earlier work [7].
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Figure 5.9. Sensitivity of gene transcription to activation ratio.

5.5.3 Effect of promoter on transcription rate

The effect of the promoter clearance region, on the transcriptional machinery effi-

ciency is closely coupled with the activity of the promoter for a gene. A strong promoter

will activate gene at a faster rate, recruiting RNAP molecules which can get ‘queued’

up due to a large clearance footprint of RNAP molecules already bound to the DNA,

Fig. 5.11. The effect would not be significant for weak promoters which recruit RNAP

molecules at a much slower rate providing sufficient time gap for clearing the promoter

region, as illustrated in Fig. 5.12.
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Figure 5.10. Sensitivity of gene transcription to transcription initiation efficiency.

5.5.4 Effect of ribosome binding on translation rate

The rate of ribosome binding to the RBS region of the mRNA molecule controls

the efficiency of translation. With an increase in the value of ribosome binding rate,

the average rate of protein synthesis (burst size) increases and the noise in translation

decreases, as shown in Fig. 5.13.

5.5.5 Effect of ribosome spacing on translation rate

The clearance region of the ribosome on the mRNA controls the number of ribo-

somal units (ribosome load) that can concurrently translate an active mRNA molecule.

By increasing the spacing between two ribosome molecules, the load decreases, thereby
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Figure 5.11. Promoter clearance effect (strong promoter).

decreasing the protein synthesis rate and increasing translational noise, depicted in

Fig. 5.14.

5.5.6 Effect of competition on translation rate

As mentioned earlier, the degradosome competes with the ribosome for binding to

the RBS on the mRNA molecule. Thus, increasing the degradosome binding rate will

increase the mRNA degradation event rate thereby decreasing the protein synthesis rate,

as shown in Fig. 5.15. However, the dynamics of the overall competition are controlled by

the ribosome binding rate and the degradosome binding rate. In Fig. 5.16, we show the



86

Figure 5.12. Promoter clearance effect (weak promoter).

interplay of these two effects as a surface plot. As seen from the graph, for the lacZ gene

parameters, the ribosome exerts greater control on the protein synthesis rate compared

to the degradosome.

In this section, we have systematically studied the effect of the various biological

parameters on the gene transcription and translation processes. One observation of par-

ticular interest in this study is the emergence of “queueing effect” of RNA polymerase

molecules recruited by strong promoters due to high ribosome clearance. Also, the inter-
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Figure 5.13. Sensitivity of translational machinery to ribosome binding rate.

play of the competition between RNA polymerase and degradosome shows the greater

control of the ribosome over the degradosome for binding to the RBS of a transcript.

5.6 Simulation framework

In this section, we outline the framework of a in silico discrete event based computa-

tional framework to study the dynamic interactions of the events involved in prokaryotic

gene expression. The stochastic models of gene transcription and translation provide

parameterized mathematical expressions for the probability distribution of the number
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Figure 5.14. Sensitivity of translational machinery to ribosome load.

of mRNA transcripts obtained from a single gene activation event (burst frequency dis-

tribution) and the number of proteins obtained from a single transcript (burst size dis-

tribution). The distributions are characterized by their mean and variance measures as

outlined in the first part of this chapter. In a bacterial cell, the process of gene expres-

sion involves a dynamic interaction of the transcription and translation events and their

complex “coupling” [20] governs the cellular behavior. Moreover, other cellular events,

specifically signalling events and decay events (transcript and protein decay) exert fur-

ther control on the over-all system dynamics. In order to quantitatively study the fine

granular interactions of these events, it is pertinent to build a computational simulation
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Figure 5.15. Sensitivity of translational machinery to degradosome binding rate.
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Figure 5.16. Dynamics of competition on translation machinery.

platform which is amenable to perturbations of the different system parameters while

capturing the stochastic behavior of the biological process.

The stochastic modeling of cellular events, each characterized by the mean and

variance of their probability distributions, lends itself to a computational treatment at

a system level. We employ the discrete event based simulation framework elucidated in

Chapter 3 to build an in silico environment for studying the gene expression process of

the lacZ system in E.Coli.

5.6.1 Event implementation

A discrete event simulation provides flexibility in modeling biological processes at

different granularities depending on available knowledge. In Chapter 4, we developed

a simulation model for studying the dynamics of signal transduction in bacterial cells.

In this section, we focus on the key events associated with the process of bacterial gene

expression (lacZ system in E.Coli) as part of the simulation study. The key events

associated with the gene expression process, as depicted in Fig. 5.17, are:
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Figure 5.17. Event interaction graph for gene expression.

• Transcription event : This event represents the triggering of transcription by the

activation of a gene and the eventual release of a mRNA molecule in the system.

The probability distribution characterizing the time taken for the event (holding

time) is defined by the first and second moments, R̄mR and σ̄mR respectively with

time between two transcription events is represented by the random variable τmR.

This can be obtained from existing reaction models [106] or from rate constants for

reaction models.
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• Transcript decay event : This event represents the decay of a transcript and is

characterized by an exponential distribution with half-life mdecay obtained from

experimental data. The random variable τD
mR represents the time between two

decay events.

• Translation event : This event captures the process of protein synthesis from a

single mRNA molecule characterized by the probability distribution of its time,

with mean R̄P and variance σ̄P . τp represents the random variable for time between

two translation events.

• Protein decay event : This event represents the decay of a protein characterized by

an exponential distribution with half life of mprotein.

5.6.2 Simulation process implementation

Once the events involved in gene expression have been characterized, the main

simulation engine is implemented to capture the temporal interaction of these events in

silico. As outlined in Chapter 3, the simulation engine consists of the event model library

storing the holding time distribution of the events, the molecular resources database

which captures the change in molecular count of the different biological entities in time

through the simulation run and the event scheduler which controls the engine.

5.6.3 Simulation runs

As the discrete event simulator captures the behavior of the system (in this case,

prokaryotic protein synthesis) in the probabilistic domain, the simulation results are re-

ported over multiple runs. Each simulation run characterizes the system (captured in

the change in molecular resource counts with time) for a specified simulation run-time.

The simulation results, presented in the next section are the average values over 50-100

runs for the lacZ system.
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Figure 5.18. Event dynamics (simulation with experimental parameters).

5.7 Simulation study of gene expression dynamics

Once the simulation platform is built, we conducted several in silico studies to

quantify the temporal interaction of the different events outlined in Fig. 5.17, specifically

focussing on the contribution of the sensitive biological parameters identified earlier on

the overall dynamics of protein generation.

5.7.1 Burstiness of protein generation

In the first simulation case study, we observe the system dynamics in time for exper-

imentally validated transcriptional burst frequency and protein burst size distributions.

In particular, we show the burstiness in protein production reported in experimental
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Figure 5.19. Protein profile (simulation with experimental parameters).

work conducted on the lacZ gene in E.Coli. Fig. 5.18 shows the event dynamics for

the gene expression process, focusing on the rare transcription events which drive the

burstiness in protein generation. In Fig. 5.19, we show the time-course of protein gener-

ation from the lacZ gene for the simulation results (averaged over 100 simulation runs)

which validate the wet-lab data obtained from [51, 123] over a 3 cell cycle period. The

results indicate that the in silico simulations validate the experimental observations of

protein burstiness. Fig. 5.20 shows the low number of mRNA molecules produced during

the simulated time, indicating the rarity of transcription events while the noise profile

reflects the fluctuations in protein count with the bursts. The protein and noise profiles

together characterize the dynamics of gene expression for the lacZ system. Next, we
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Figure 5.20. Noise and transcript profile.

conduct a suite of simulation studies to analyze the nature of “burstiness” and identify

the contribution of the different molecular factors in controlling it.
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Figure 5.21. Event dynamics (increased transcription rate).

5.7.2 Effect of promoter strength on protein burstiness

Previously, we showed the strength of the promoter exerts control on the rate of

transcript synthesis. In order to study its effect on the system level generation of proteins,

we conducted simulation study with increased rate of mRNA synthesis, i.e. the arrival

rate of transcription events is increased. Fig. 5.21 shows the changing event dynamics

for this case. Due to the decreased inter-arrival times between transcripts, the protein

generation machinery becomes more efficient, thereby decreasing the bursty nature of

protein production (shown in Fig. 5.22 with corresponding mRNA and noise profiles

in Fig. 5.23) while increasing the number of mRNA molecules produced for the same

simulated time of 3 cell cycles.
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Figure 5.22. Protein profile (increased transcription rate).

5.7.3 Effect of mRNA decay on protein burstiness

The simulation environment provides a platform to conduct further experiments

on the effect of other parameters on the number of proteins generated. Specifically,

we focus on the role of the decay rates of mRNA and proteins on the gene expression

phenomena. Fig. 5.24 shows the protein profile for the case study with increased mRNA

life, where it can be observed that proteins are produced in a continuous manner with rare

occurrences of “bursts”. This observation can be explained in terms of the longer life of

a single mRNA molecule. Although the transcription events occur at large intervals due

to their rarity, the longer life-span of a single mRNA results in more number of proteins

being synthesized from it by the translational machinery. This effective improvement

of the translational machinery also results in decreased bursts (and therefore noise in

protein production Fig. 5.25) although the number of mRNA molecules generated is low

as shown in Fig. 5.25.

The previous two simulation studies highlight the fact that control of protein gener-

ation bursts can be executed through increased efficiency of the transcription machinery
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Figure 5.23. Noise and transcript profile (increased transcription rate).

(increased transcript synthesis rate) or indirect increase of translation machinery effi-

ciency. These simulation studies provide insight into various alternate pathways for

controlling protein generation rates which can serve as potential therapeutic alternatives

for controlling the expression level of various disease genes.
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Figure 5.24. Protein profile (increased transcript lifetime).

Figure 5.25. Noise and transcript profile (increased transcript lifetime).
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5.8 Summary

Bacterial gene expression involves a complex process of interaction between multiple

molecular actors acting individually or in a concurrent fashion. These actors contribute

to the temporal fluctuations in the number of proteins produced in a cell. In this chapter,

we have modeled the stochastic process of gene expression, incorporating the effect of

various actors in parameterized probability distributions for mRNA and protein synthesis.

The parameterized distributions help in systematically analyzing the sensitivity of the

noise in protein production to the different molecular actors.

Till this point of time, we have focused on modeling biological events associated

with signal transduction and gene regulation. However, for a genome scale study of

cell behavior, it is mandatory to include the dynamics of the metabolic network into

the overall picture. In the next chapter, we delve into the unique features of metabolic

network modeling and outline a hybrid simulation paradigm, which extends the existing

discrete event framework to provide a holistic view of cell dynamics.



CHAPTER 6

A HYBRID SIMULATION APPROACH

Comprehending the fine-grained signal specificity, gene regulation and feedback

mechanisms which control the complex molecular choreography within the cell remain

a fundamental theme in systems biology. The complexity of regulatory and metabolic

networks coupled with the cross-talk, noise and spatio-temporal variations make genome-

scale study of their interaction dynamics a particularly challenging computational prob-

lem.

The central issue in understanding the system dynamics of a living cell is to capture

the interaction of gene regulatory, signal transduction and metabolic pathways in an

integrated in silico platform. Such a platform requires systematic integration of different

databases and the ability to capture the complex characteristics in a computational

framework. Specifically, with the difference in time-scale of regulatory and metabolic

events, the problem of “stiffness”, i.e. inability to simulate the effects of fast time-scale

reactions in conjunction with slow reaction models, affect the efficiency and performance

of different in silico approaches.

In this chapter, we propose a novel hybrid simulation approach to tackle the in-

teraction dynamics of biological networks. In section 6.1, we identify the major com-

putational challenges in developing integrated network models. We delve into the root

causes of the stiffness problem, outlining existing works for the study of metabolic net-

works and their characteristics in section 6.2. Based on an extension of the discrete event

simulation approach outlined in the first part of the dissertation, we present the hybrid

simulation architecture, called HimSim in section 6.3. The hybrid algorithm incorporates

101
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the stochastic model based discrete event simulation with a flow-based computation of

metabolic event dynamics to simulate the interplay between these networks. Section

6.4 outlines the implementation details of the hybrid extension to the existing software

platform together with the database model. Section 6.5 and 6.6 show experimental

validation and in silico results for the bacterial cell Escherichia Coli, particularly the

interplay of signal transduction, gene regulatory and metabolic networks involved in the

central metabolism components of this bacterial cell under different growth conditions.

We conclude this chapter in Section 6.7.

6.1 Interplay of regulatory and metabolic networks

From a biological perspective, the ability to trace the behavior of cellular pathways

at a molecular level opens the window towards holistic understanding of living systems.

While reductionist approaches provides detailed molecular mechanisms of specific parts

of a cell, e.g. signalling molecules and their interactions, or protein-protein interaction

leading to gene expression dynamics, a complete picture of cellar mechanisms arise from

collating these disparate components in a continuous spectrum [57], [129].

Recent experimental work on studying cellular networks at a systems level [163]

have shown that phenotypic behavior in a cell emerges from complex, non-linear interac-

tions between various molecular entities located in different parts of the cell. Microarray

experiments [120] on global gene expression analysis and metabolic engineering have

shown that the metabolic flux (defined as the change in the number of metabolites for

a metabolic reaction) is controlled by the regulation of metabolic genes which influences

the number of active enzymes available in the cell. The genes are further controlled by

the complex interaction of other genes in a gene regulatory network structure. In [68],

the authors reconstructed the transcriptional regulatory network for the bacterial cell Es-
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cherichia Coli, identifying the key global transcription factors which employ fine-grained

control of genomic and metabolic phenotypes.

Figure 6.1. Interplay between signaling, gene regulatory and metabolic networks.

While the closely coupled dependance between gene regulatory and metabolic net-

works in a cell has been identified, one of the other major players in global cellular control

is the signaling network. The signaling network, or signal transduction network, governs

the behavior of the cell in response to various internal and external environmental condi-

tions. The cross-talk and transduction of signals through a variety of membrane-bound

and cytoplasmic protein signaling molecules add further complexity to the dynamics

controlling cell behavior. In Fig. 6.1 [101], we show a schematic view of the interplay

between the various networks in a cell which work in tandem for a cell’s function and

growth, in response to external signals (environmental change in ion or nutrient concen-

trations, stress etc.). In building a computational framework which allows the study of
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cellular dynamics on a genomic-scale, it is pertinent to develop models and algorithms

which systematically capture the interaction between the molecular entities outlined in

the schematic.

Figure 6.2. Temporal variation in biological phenomena.

6.2 Computational approaches to the study of cellular networks

While the need for an integrated platform has been realized, particularly in the light

of ever-increasing proteomic and genomic data from high throughput experiments and

pathway databases, the constructing of such a framework pose several challenges - both

from a computational perspective as well from a biological viewpoint. In this section,

we briefly outline the key issues before delving into the advantages and limitations of

existing techniques.
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6.2.1 Challenges in integrated modeling of cellular networks

Some of the major issues in building an integrated platform for in silico modeling

can be classified as follows:

• Different temporal scales of biological phenomena : In order to study biological sys-

tems at a holistic level, it is important to realize that different biological processes

operate on time-scales which are 10 or more order of magnitude different. As shown

in Fig. 6.2 [127], there exists orders of magnitude difference between signaling path-

ways, gene regulations (which are typically slower) and metabolic reactions which

operate of milliseconds and less scale. This difference in time presents a major com-

putational challenge in simulating a system which involves thousands of reactions

of these various networks.

Specifically, as identified in [55], [113], the difference in the rate constants for

signaling and metabolic reactions causes “stiffness”, i.e. the simulation spends more

time in the fast reaction space without simulating the dynamics of the slow time-

scale reactions, in classical ordinary differential equation (ODE) based techniques.

The problem compounds manifold when the simulation has to scale further orders

of magnitude to capture the dynamics of inter-cellular, inter-tissue and organ level

interactions.

• Knowledge gap in the biology of different pathways : Another problem, from a biolog-

ical perspective, is the existence of knowledge gap in understanding the molecular

mechanisms governing various biological processes. For example, while a particu-

lar gene regulatory mechanism may be well understood biologically, the upstream

signal triggering the gene regulation may have significant gaps, rendering the de-

velopment of integrated models challenging.

• Disparate sources of pathway information: While the recent surge of genome scale

experimental techniques and bioinformatic tools have opened a huge collection of
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databases storing data on different molecular entities and their interactions, lack of

common interface poses severe challenges in communication between the disparate

resources. Each experimental or computational tool employs its own database

schema and structure which caters to the specific needs of the biological system,

for example signaling network data in KEGG [96], or metabolic reaction networks

in EcoCyc [52]. In the absence of common schema or interface between the dif-

ferent databases, integrating the information across various platforms is a major

computational issue. The challenge here is to create a balance between the differ-

ent database structures and the global usability of the information contained them,

which were not incorporated in the initial design of the databases.

• Lack of common computational modeling and simulation tools : Closely linked with

the disparity in data storage and retrieval technique, is the existence of a wide

variety of computational modeling and simulation tools. As outlined in Chapter 2,

different modeling techniques cater to specific biological systems. While classical

ODE models capture chemical reactions at a molecular level, it is computationally

infeasible to scale such system of equations for an integrated model. Most of the

database information is structured in a network graph form for pathways, signal

transaction networks and metabolic reactions. On the other hand, for differential

equation based models, the system is represented by a set of linear differential

equation of molecular reactions. The mapping of these two structures is a difficult

task requiring human intervention. It is necessary to develop tools which allow the

dynamism hidden in these networks to be captured automatically in the simulation

framework.
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Figure 6.3. Regulatory flux balance analysis approach.

6.2.2 Existing computational approaches

Significant efforts have been undertaken in reconstructing genome-scale metabolic

and regulatory networks together with computational approaches for the systematic study

of their behavioral dynamics [57, 60, 150, 122]. Specifically, constraint-based metabolic

models, which employ stoichiometry, thermodynamics and flux capacity to compute the

possible distribution of flux across a given network of reactions have been successful in

predicting metabolic phenotypes of model organisms like E.Coli and yeast [150].
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Flux balance analysis (FBA) [150, 117] employs a linear optimization technique

to compute the optimal flux distribution across a system of reactions. Based on the

assumption that metabolic reactions occur under steady-state conditions and that the cell

works towards optimization of a particular cellular entities (typically maximizing biomass

yield), FBA formulates the problem of flux computation as a optimization problem where

the thermodynamic and stoichiometric properties of the system serve as constraints.

While this particular technique has the advantage of being computationally fast

on account of not employing dynamic simulations, it does not take into account the reg-

ulatory constraints governing the metabolic reactions. In recent years, several studies

have developed integrated models incorporating regulatory constraints on the FBA mod-

els [119, 118, 181]. Two basic approaches are used for the hybrid study of such networks:

(i) In a regulatory FBA or rFBA approach, outlined by Palsson et.al [120], the flux

optimization problem is augmented with a dynamically changing constraint profile based

on the regulation of metabolic genes. Thus, the optimization search space changes in

every predefined time-step, depending on the gene expression profiles. In this approach,

the gene expression dynamics are captured through a boolean matrix formulation (rep-

resenting with 1 or 0 depending on whether the gene is active or inactive respectively),

as outlined in Fig. 6.3. (ii) Extreme Pathway Analysis (EPA) [150] based approach for

the identification of consistent, steady-state metabolic and regulatory flux for a given

constant environmental signal.

While these techniques have been successful in predicting observed metabolic fluxes

for specific systems, the assumption of boolean expression levels for the genes is not

reflective of actual cellular conditions where gene expressions changes continuously based

on upstream signals. In the FBA approach, this continuous change in gene expression

levels is abstracted by a boolean variable, which is set to an arbitrary “on-off” state

based on the biological knowledge to constraint the metabolic reaction fluxes. Thus,
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the transient dynamics of the change in enzyme concentration are not captured in the

binary representation. As elucidated in the next section, the hybrid approach allows the

incorporation of gene regulatory effects on metabolic flux distributions on a continuous

time-scale.

Also, many enzymes are formed from multiple protein complexes under transcrip-

tional regulation of different genes whose relative abundance governs the number of avail-

able enzymes for a metabolic reaction. In a recent work, Shlomi et. al [90] extends the

rFBA model to incorporate signaling events as upstream triggers for determining the state

of a gene. However, the signaling logic is also expressed in terms of boolean expressions

and does not consider their transient molecular dynamics.

In [188], Wise et.al developed a discrete event based metabolic simulator based

on an algebraic data flow model wherein a metabolic reaction is modeled as a discrete

event and the flux of the metabolites emerges as the sum of molecules produced or

consumed by reactions involving the metabolites. The reaction velocities and enzyme

activity coefficients determine the number of reactions executed in each step. However,

the data-flow model is only applicable for metabolic reactions and the does not provide

an integrated computational framework.

In the next section, we outline the detailed of a hybrid simulation technique, which

incorporates a discrete metabolic model based on algebraic data-flow together with the

discrete event based stochastic simulation of signaling networks to provide a common

platform for integrated study of cell behavior.

6.3 HimSim : A hybrid simulation approach

In this section, we elucidate the details of the hybrid simulation algorithm which

allows the study of the interaction between slow time-scale regulatory reactions and fast
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time-scale metabolic reactions. Before outlining the algorithm, we make some observa-

tions which motivate the hybrid approach:

Figure 6.4. Interaction of events in an integrated model.

• In a discrete event based approach, the entire system is viewed as the interaction

of events of different types, signaling, protein-protein interactions etc. Thus, the

metabolic reactions can be viewed in this domain as metabolic events with the

reactants and products being input and output resources respectively. This event

interaction view of the system is depicted in Fig. 6.4. The key issue is to capture

the time taken for a metabolic reaction which causes change in metabolite flux

depending on reaction stoichiometry.

• Since the metabolic events are executed in a couple of orders of magnitude less

time-scale compared to the other regulatory events, it is possible to view their

behavior as being a change in the total number of molecule count of metabolites
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at a given instance of time. The change, however, is governed by the dynamics of

the gene expression profiles and enzyme concentrations.

• In order to capture the effects of the cross-talk between the different pathways in

an integrated model, it is pertinent to develop a common database schema which

stores the information of pathway interactions and provides a consistent interface

to query their interaction networks.

Based on the observations outlined above, we develop a hybrid simulation approach,

called HimSim. The driving intuition behind the approach is the fact that the interplay

between signaling and metabolic networks can be captured in time by abstracting the

system as the interaction of the respective events.

6.3.1 Stochastic simulation of signaling and regulatory events

Since the dynamics of signaling and downstream gene regulatory events evolve

through stochastic interaction of the molecular entities, their behavior is captured through

the discrete event based simulation approach outlined in the previous chapters. The in-

terplay between these events show the temporal change in the system state, in terms of

number of genes and gene products which are expressed or repressed as a result of exter-

nal signaling events. As the molecular concentration of these gene products and enzymes

change, they effect the flux of the metabolic reactions controlled by these enzymes, which

need to be computed next.

6.3.2 Freezing the system time to capture metabolic events

As mentioned earlier, the metabolic reaction events typically occur on much faster

time scales compared to the regulatory events. Thus, at a given instance in time, the

metabolic reactions which are “fireable” [188], i.e. whose reaction stoichiometries and

enzymatic count allow the reactions to be executed, can be assumed to occur during a
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given fixed time-interval. This time interval, called the metabolic event interval (τmetab),

determines the inter-arrival time between two metabolic events. It is important to note

here that the number of metabolic reactions and their types, are different for every

instance of a metabolic event. This is governed by the dynamics of the gene regulatory

networks (which govern the enzyme count) together with the metabolite counts and

enzyme activity at the particular event execution time. In other words, the simulation

is “frozen” in time at a metabolic event, wherein all the fireable reactions and executed

and molecular resources updated. At the end of metabolic event execution, the control

is passed back to the discrete event scheduler to execute the next event (which can be

other regulatory or signaling events).

Figure 6.5. Interaction of simulation modules.

In this manner, by defining the metabolic event interval and freezing the simulation

during its execution, the hybrid simulation overcomes the problem of “stiffness” associ-

ated with ODE based models of integrated reaction networks. Fig. 6.5 pictorially depicts

the interaction of the DES and discrete metabolic analysis (DMA) module.
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6.3.3 The discrete metabolic analysis (DMA) algorithm

Figure 6.6. Flowchart of DMA algorithm.

The discrete metabolic analysis (DMA) module computes the change in the number

of metabolites (i.e. the flux across each reaction) taking into account reaction stoichiom-

etry, metabolite count and the number of available enzymes depending on the state of

the signaling and regulatory system. Our algorithm for computation of metabolic flux

is based on the data-flow model [188], wherein the flux is not a numerical value arising

out of an optimization step as in FBA approach, but reflects the change in actual molec-

ular count of metabolites depending on their role (reactants or products) in the set of
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metabolic reactions being executed. The steps of the DMA algorithm, the flowchart of

which is outlined in Fig. 6.6, are:

• Active Enzyme Computation: In the first step, the total number of active

enzymes is computed depending on the state of the corresponding proteins which

form the enzyme. The list of all active enzymes is computed. It may be noted here

that the list of active enzymes (based on the count of the corresponding proteins)

gives the state of the signaling and regulatory part of the system at the initiation

of the metabolic event. Since the number of enzymes depends on the active protein

component count, the transcriptional regulatory control on the metabolic flux is

captured in this step. Thus, instead of using boolean variables to represent the state

of the regulatory network as in the FBA approach, the number of active enzyme

count provides the dynamic link between these networks.

• Fireable reactions computation: Once the active enzyme list is computed,

the next step is to determine the metabolic reactions which are fireable, based on

the active enzymes which catalyze these reactions. It may be noted here that at

any metabolic event execution, the metabolic reactions which are catalyzed by the

active enzymes are fireable.

Since the number of fireable reactions depends on the previous step, the enzyme

count constraints the part of the metabolic network which would be executed in a

particular instance of a metabolic event. For every instance of the metabolic event,

this step captures the dynamically changing nature of the metabolic network.

• Determination of Reaction directionality: From the list of fireable metabolic

reactions, the computation of the directionality of the reaction is performed for all

reversible reactions to determine whether the forward or backward reactions will be

executed. This will govern the stoichiometry of the reactants and products involved

in the fireable reaction list.
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• Building stoichiometric matrix: Once the directions have been identified, the

stoichiometric matrix of the active enzymes can be built based on the K reactions

and corresponding M metabolites in the system. The stoichiometric matrix can be

viewed as a bipartite graph with the reactions in one set and metabolites in another

with directed edges determining the state of a metabolite as a reactant or product.

• Enzyme driven reaction count: The number of reactions fired depends on the

catalytic activity of the enzyme together with the stoichiometry and count of the

metabolites. Each enzyme is characterized by the turnover number TE, which is

defined as the number of substrate molecules catalyzed per second by each enzyme

molecule [188].

• Stoichiometry driven reaction count: While the previous step gives the max-

imum reaction count from the catalytic activity of the enzyme, the stoichiometry

of the metabolites determines the other bound on the reactions and gives the max-

imum number of reactions possible from the the stoichiometry point of view of the

system.

• Actual number of reactions fired: From the above two steps, the actual number

of metabolic reactions fired is determined.

• Computation of metabolic flux: Now, based on the stoichiometric matrix and

the actual reaction count, the metabolic flux for each metabolite is computed and

updated in this last step of the DMA.

The hybrid algorithm, together with the discrete event simulation of slow time-

scale events builds the integrated simulation environment. Next, we outline the imple-

mentation architecture of the hybrid algorithm based on the extension of the iSimBioSys

framework.
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6.4 Hybrid simulation architecture

The HimSim framework has been built on the discrete event based iSimBioSys

platform outlined in Chapter 3. Specifically, the hybrid simulation algorithm has been

developed as a pluggable modular object which interacts with the discrete event (DES)

engine under the control of the central event schedular. Moreover, the hybrid module

interfaces with an integrated database to incorporate the pathway knowledge of the

different networks into the combined simulation platform.

As outlined previously, one of the major hurdles in building an integrated modeling

framework is the lack of coherence in storage and retrieval of pathway information stored

across disparate databases. As part of the HimSim framework, we have developed a

custom database schema for storing data on signaling, gene and metabolic networks

curated from different databases, like KEGG [96], EcoCyc [52] and CellSignaling [30].

The major schemas of the database are outlined below:

• Signaling event database: The signaling events database stores the events associated

with a particular signaling pathway. Each entry in the signaling database consists

of a list of events associated with the pathway (each event being characterized by

the input and output molecular resources and the biological model). The events and

the signaling pathway are curated from existing databases and literature search.

• Gene regulatory network database: The gene regulatory network (GRN) database

stores the transcription factors for a model organism (in this case bacterial cell

E.Coli) together with a known list of genes which are upregulated and down-

regulated by the transcription factor. As elucidated later, the GRN database can

be automatically populated from flat files and gene regulatory information stored

in System Biology Markup language (SBML) schema formats.

• Metabolic network database: Once the signaling molecules and genes have been

identified, the database schema for the metabolic reaction network (MTN) is de-
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fined, consisting of the reactants, products, stoichiometry and the list of enzymes

associated with a particular reaction. Since each enzyme is formed of multiple pro-

teins (regulated by genes in the GRN), a protein-protein interaction (PPI) table is

defined which stores the list of enzymes together with the gene-products associated

with the particular enzyme.

It may be mentioned here that the database has been currently implemented on an

object-oriented (OO) database management schema (DBMS) which provides a middle-

layer for storing and querying entries through objects defined in the database. As men-

tioned earlier, such an integrated database schema provides a single interface for simu-

lating cellular pathways and in identifying possible knowledge gaps.

The overall architecture of the hybrid simulation framework is outlined in Fig. 6.7.

As shown in the figure, the core simulation engine consists of the DES module and the

DMA module which interact with each other to capture the dynamics of the system

through the different signaling, regulatory and metabolic events. Specifically, the events

database interacts with these modules which in term communicate with the different

pathway databases to simulate the system in time.

6.4.1 Discrete metabolic analysis (DMA) simulation engine

The DMA engine forms the heart of the hybrid simulator and implements the hy-

brid simulation algorithm elucidated in the previous section. When the central event

scheduler schedules a metabolic event object, an instance of the DMA engine is invoked.

The DMA engine then queries the database to obtain the dynamics of the various gene

products and enzymes and computes the fireable metabolic reactions and their molec-

ular concentrations based enzymatic activities and reaction stoichiometries. Once the

metabolic reactions have been determined and the flux across each metabolite computed,

the DMA engine updates the molecular resources and hands back control to the DES
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Figure 6.7. The hybrid simulation architecture.

module to continue the simulation of the signal transduction and regulatory pathways.

In this way, through the interactions of the two engines and the corresponding database,

the simulation traces the temporal evolution of the biological network (in terms of change

in the molecular concentration of the different gene products and metabolites).

6.5 Experimental validation

In the previous sections, we have systematically built the basic building blocks of

the hybrid simulation framework. The HimSim architecture provides a generic platform

for developing database and simulation models for studying cellular pathways of model

organisms. In this section, we develop a detailed genome-scale pathway database for

the bacterial cell Escherichia Coli, outlining the specific signaling, gene regulatory and
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metabolic reaction networks which have been studied as part of this dissertation, both

for validation with experimental results as well generating in silico predictions.

6.5.1 Regulation of central metabolism in E.Coli

The model organism chosen as part of the study in this work is the single cell

bacteria, Escherichia Coli(E.Coli), particularly the K-12 MG1655 strain with a circular

chromosome of length 4639675 base pairs [97], 4243 protein genes and 157 RNA genes.

Because of the long history of research on E. Coli, both in the biological and computa-

tional communities, a wealth of information on the gene regulatory and signaling networks

of the cell are available [117, 90]. Moreover, biological evidence on the metabolic reaction

network of the bacteria, particularly metabolite flux data as well as recent microarray

data on global gene expression profiles [120, 11, 117] are readily available.

In particular, we focus on the key metabolic reaction pathways involved in central

metabolism of E. Coli (glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate

pathway, serine biosynthesis, pyruvate oxidation). Together the central metabolic net-

work consists of approximately 500 metabolic reactions, 450 enzymes which are regulated

by 800 gene under the control of 7 global transcription factors. The major signal trans-

duction pathways, gene regulatory networks and the metabolic reactions together with

the relevant resources are outlined next.

6.5.1.1 Signal transduction pathways

Based on existing literature, [117, 120, 74, 190] on the signal transduction pathways

inducing transcriptional regulation on central metabolism, four key signaling networks

were identified, which regulate downstream metabolic genes under different concentration

of carbon source(mainly glucose medium growth condition) and oxygen source (aerobic

and anaerobic growth media).
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Escherichia coli has several elaborate sensing mechanisms for response to the avail-

ability of oxygen and the presence of other electron acceptors. The adaptive responses

are coordinated by a group of global regulators, which includes the one component FNR

(fumarate, nitrate reduction) protein, and the two-component Arc (aerobic respiration

control) system. With the initial onset of anaerobiosis ArcA is activated, and if these

conditions persist, FNR is activated leading in turn to the upregulation of ArcA and the

amplification of its effect.

The Arc system is a two-component regulatory system composed of ArcA, the

cytosolic response regulator, and ArcB, the transmembrane histidine kinase sensor. ArcB

is activated during the transition from aerobic to microanaerobic growth, and remains in

the activated state during anaerobic growth. The increased level of phosphorylated ArcA

represses the synthesis of some enzymes, such as the citric acid cycle enzymes, succinate

dehydrogenases, lactate dehydrogenase, fumarase, pyruvate dehydrogenase, and the low

oxygen affinity cytochrome oxidase, while it activates the expression of other enzymes

such as cytochrome deoxidase and enzymes involved in fermentative metabolism [163].

The FNR protein contains an Fe-S cluster that serves as a redox sensor. The FNR

system is active under microaerobic to anaerobic conditions and induces the expression

of genes that permit anaerobically growing E. coli to transfer electrons to alternative

terminal acceptors. It also represses the aerobic genes, cytochrome deoxidase, and NADH

dehydrogenase II. It acts as a positive regulator of genes expressed under anaerobic

fermentative conditions such as aspartase, formate hydrogenase, fumarate reductase, and

pyruvate formate lyase [163]. Fig. 6.8 shows the effect of oxygen on the regulation of

metabolic genes involved in central metabolism in E.Coli.

Another important pathway which controls glucose uptake and the regulation of

genes involved in the phosphotransferase system (PTS) is the glucose mediated Mlc sys-

tem. As shown in Fig. 6.9, glucose transporter IICB-Glc stimulates the transcription
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Figure 6.8. The ArcAB two component system.

of several genes involved in PTS by acting as membrane sequester for the Mlc, thereby

relieving the negative effects of the global repressor factor. In high glucose, Mlc is se-

questered and is not available for regulation of genes like crr and ptsGHI.

Glucose also causes catabolic repression by lowering the levels of intracellular cAMP

and CRP proteins. Thus, under high glucose conditions, CRP proteins are repressed

thereby lowering the expression level of genes involved in pyruvate oxidation. However,

under low glucose, the pyruvate pathway is activated leading to utilization of acetate as
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Figure 6.9. Mlc sequestration in glucose media.

the growth medium due to increase in CRP levels which cause down-regulation of cra

genes. Fig. 6.10 captures the effect of the CRP pathway under glucose medium.

6.5.1.2 Gene regulatory pathways

In order to build the gene regulatory network involving the key transcription factors

controlling regulation in E.Coli, we reconstruct the network based on data provided by

Ma. et. al in [68]. Genome-wide study by Shen. et. al [162] together with data from

public databases, reveal a multi-layer hierarchical structure for the entire gene regulatory

network which are under the control of around 7 key global regulators including Mlc,

ArcAB, CRP, FoxS etc. Recent experiments [11] elucidated the role of these global
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Figure 6.10. Regulation of cAMP and CRP proteins.

regulators in controlling the distribution of metabolic fluxes across the central metabolism

network in E.Coli. The gene regulatory network used in this study consists of 1024 genes

and 2065 interactions under the control of the global transcription factors (data obtained
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from EcocCyc and flat files provided by Ma et.al in [68]). An important observation in

this regard, is the fact the existence of a multi-tier hierarchy facilitates the building of

the signaling networks. Constructing the signal transduction events for the global factors

outlined above and establishing the association with the gene regulatory pathways in an

integrated database helps to capture the interplay between these pathways.

Figure 6.11. Global map of central metabolism and its regulation in E.Coli.

6.5.1.3 Metabolic reaction pathways

The Ecocyc [52] database provides a comprehensive map of the core reactions

involved in central metabolism of E.Coli. Reactions, together with their enzymes and

protein complexes were curated from the Ecocyc database (available in flat files format

from the Ecocyc website [52]) were generated and parsed into the metabolic network

database outlined previously. The comprehensive map of the signaling networks, together
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with associated gene and the corresponding metabolic network for E.Coli (under glucose

and oxygen media) is depicted in Fig. 6.11.

6.5.2 Dynamics of aerobic growth on glucose

We study the regulation of central metabolism in E.Coli under glucose media and

oxygen conditions to capture the effects of the metabolic genes controlling the flux across

the glycolysis and pyruvate oxidation pathways. The specific network consists of a subset

of the global system, with 80 metabolic reactions and 100 genes regulated by the ArcAB

and FnR signals under oxygen medium and CRP/Mlc system under glucose growth

media. The reduced network is depicted in Fig. 6.12. In [120], Covert. et.al applied

the rFBA approach to validate experimentally observed dynamics of the flux across

glucose, acetate and ethanol together with the expression patterns for the metabolic

genes (expressed in boolean form).

In the first set of simulations, the dynamics of central metabolism were observed

across the glycolysis pathway (in terms of change in glucose concentration) along with

acetate flux under aerobic growth on glucose media. Fig. 6.13 shows the uptake of extra-

cellular glucose by the cell (both experimental observations as well as hybrid simulation

results 1.

As shown from the figure, glucose concentration decreases over time as the cell

uses glucose as the primary source of carbon. This causes the flux across the glycolysis

pathway to increase as glucose is converted to pyruvate through the glycolytic path. The

increase in pyruvate causes the activation of the pyruvate oxidation chain thereby leading

to an increase in acetate concentration (shown in Fig. 6.14). As observed in experiments

and reproduced in the hybrid simulation, depletion of glucose leads to the reutilization

1The simulation results report the observations over 100 runs with the error bar depicted the average

value with the 95% error margins
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Figure 6.12. Network of central metabolism in E.Coli.

of acetate as the growth substrate, causing a decrease in the acetate concentration. The

simulation results on glucose uptake and acetate reutilization reproduce the experimen-

tally observed results within the bounds of simulation error (Fig. 6.13 and Fig. 6.14 for

the flux distribution across these metabolites).

6.5.3 Dynamics of anaerobic growth on glucose

In another experimental scenario, the same network of signaling pathways and

metabolic reactions were subjected to growth on glucose medium, but under anaerobic

conditions. The glucose uptake and acetate flux profiles observed under these low oxy-

gen concentrations were experimentally observed and reported in [120]. Fig. 6.15 and



127

Figure 6.13. Glucose uptake under aerobic conditions.

Figure 6.14. Acetate growth and reutilization.

Fig. 6.16 show the simulation results vis-a-vis the experimental data. The simulation

results captures the observed effect of glucose uptake and corresponding increase in flux

across acetate within the error bounds of the simulation. It may be noted that under

the conditions of anaerobic growth, the acetate reutilization is not invoked on glucose



128

Figure 6.15. Glucose uptake under anaerobic growth.

Figure 6.16. Acetate flux under anaerobic growth.

depletion. However, anaerobic conditions trigger the activation of the ArcBA and FnR

pathway as the cell senses the lack of oxygen in its environment. The FnR pathway

becomes active under complete anaerobic conditions triggering the expression of genes
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Figure 6.17. Ethanol flux under anaerobic growth.

Figure 6.18. ArcB concentration change under anaerobic conditions.

regulating the enzymes catalyzing the conversion of pyruvate to acetaldehyde and ethanol
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(specifically adhE and adhF genes). Thus, as shown in Fig. 6.17, the increase in ethanol

flux is marked by an initial delay owing to the regulatory effect of FnR.

On the other hand, the ArcAB system is a two-component signaling pathway ac-

tivated by the low oxygen concentration. This activation leads to a decrease in the

number of membrane bound (unphosphorylated) sensory ArcB molecules in the system

with time (shown in Fig 6.18). The activation of the ArcAB system causes expression of

genes involved in the TCA cycle leading to an increase in flux across it, as reported in

the increase in malate concentration in Fig. 6.19.

Figure 6.19. Flux across malate (TCA cycle).

6.6 In Silico results

The hybrid simulation approach provides a global holistic picture of the dynamical

interplay of the different signals and molecules. Such a picture provides detailed insights
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into the inner working of pathways and signals and facilitates design of further in silico

experimental protocols.

6.6.1 Gene expression profiles for growth on glucose media

In the previous section, we validated experimentally observed flux distributions for

the different metabolites involved in central metabolism of E.Coli under growth and oxy-

gen conditions. While the hybrid simulation was successful in reproducing the dynamics

of flux change for the metabolites, it also allows the study of time-course evolution of

the different metabolic genes and thus identify the effect of signal transduction and gene

regulation on the metabolic network.

In the experiments on flux change for anaerobic growth on glucose, it was observed

that depletion of glucose leads to the reutilization of acetate as the growth substrate,

causing a decrease in the acetate concentration. From a system level pathway perspective,

this phenomena can be traced to the activation of the CRP signaling pathway under low

glucose which causes an upregulation of the acs gene responsible for the production of

the acetylCoA synthetase protein which increases the flux across acetyl-CoA (refer to

Fig. 6.12). The hybrid simulation quantitatively captures the effect of the genes and

their expression levels through time-course evolution of their molecular concentrations.

Fig. 6.20 shows the gene expression profile for Acs protein under anaerobic growth on

glucose media, indicating how the protein profile increases due to the CRP signal.

It is important to note here that the hybrid simulation allows tracing the temporal

dynamics of the changing concentration of the genes instead of providing a boolean high-

low value for the expression. This allows the study of in silico gene expression array which

can profile different genes as concentration changes instead of boolean values. Fig. 6.21

shows the profile of the gene AceA under glucose growth conditions. The aceA gene

is upregulated by the transcription factor Cra which is inhibited by CRP. Thus, under
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Figure 6.20. Acs expression dynamics under aerobic growth on glucose.

Figure 6.21. AceA gene expression dynamics under CRP signal.

high glucose, CRP is inactive leading to upregulation of AceA by Cra. When glucose

becomes depleted, CRP is activated down regulating Cra and its positive regulatory

effect on AceA. In Fig. 6.22 and Fig. 6.23, the effect of the Mlc sequestration pathway is

outlined together with its effect on the gene crr. Under glucose rich media, active Mlc
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decreases due to sequestration effect of the glucose transporter IICB-Glc molecules as

reported experimentally in [190] causing inhibition of Mlc positive-regulatory effect on

Crr protein leading to a decrease in its concentration.

Figure 6.22. Mlc sequestration effects.

Figure 6.23. Effect of Mlc signal on crr expression.
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These gene expression profiles illustrate the efficacy of the hybrid simulation tech-

nique in capturing the simultaneous effect of multiple signaling cascades on downstream

genes and the corresponding regulation of metabolic phenotypes.

6.6.1.1 In silico analysis of gene deletion effects on aerobic growth

As the effect of CRP on Acs was identified as the key driver of acetate reutilization

in the previous experiments, we conducted in silico simulation under CRP gene deletion

(null mutant) conditions. Knockout of the CRP strain causes the acetate reutilization

phenomena to disappear as shown in Fig. 6.24. An interesting observation in this gene

deletion simulation was the decreased growth rate of acetate under the same glucose rich

media. This can be explained by noting the fact that two of the enzymes controlling

glycolytic flux, gapA and pgk are positively regulated by CRP. Thus, knockout of CRP

causes these proteins and their corresponding enzymes to operate at basal levels only

instead of higher levels under CRP non-mutant conditions causing the flux across acetate

to decrease.

Figure 6.24. Effect of CRP gene knockout on acetate flux.
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6.6.1.2 In silico analysis of pyruvate oxidation pathway on anaerobic growth

With the dynamics of metabolic flux distribution across central metabolism val-

idated against experimental data under conditions of anaerobic growth on glucose, we

focused on specific control of other pathways by the ArcAB system, which is activated

under such conditions and is a critical regulator of several metabolic genes. ArcAB posi-

tively regulates the acetate kinase genes (ackA and ackB) which control acetylphosphate

formation from acetate in the pyruvate oxidation pathway. In order to quantify the effect

of this pathway on the metabolic flux across acetylphosphate, simulations were conducted

with anaerobic conditions followed by aerobic conditions leading to shutdown of the path-

way. As seen in Fig. 6.25, the fluctuation in oxygen signal causes the AckB gene to be

transiently upregulated followed by its decrease when the ArcAB signal switches off. This

causes the corresponding flux across acetylphosphate to increase briefly but maintain its

basal value once the gene has been turned off, Fig. 6.26.

Figure 6.25. AckA gene regulation by ArcAB system.
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Figure 6.26. Effect of ArcAB signal on acetylphosphate flux.

Thus, the hybrid simulation platform allows the study of gene deletions effects as

well obtaining granular quantification of the role of specific signals on their downstream

genes and metabolites.

6.7 Summary

In this chapter, we outlined the fundamental challenges in building genome-scale

simulation models of the dynamical interaction of different molecules pathways operat-

ing in different time-scales. With the limitations of current approaches and techniques in

perspective, we developed a hybrid computational framework, called HimSim, which in-

corporates stochastic DES with flow-based algebraic model of metabolic analysis (DMA).

The interaction of stochastic signaling and regulatory events with fixed time interval

metabolic events overcome the “stiffness” of building multi-time scale simulations. We

also elucidated on the detailed of an integrated database schema which serves as a com-
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mon interface for different pathway databases and interacts with HimSim to provide a

genome-scale cell simulation platform. The efficacy of the hybrid technique is illustrated

through a detailed model of central metabolism in E.Coli cells, incorporating compre-

hensive data on signals, genes and metabolites curated from disparate sources. The

simulation experiments on glucose and oxygen growth media illustrate the feasibility of

the hybrid simulation technique in both validating experimental data as well as provid-

ing biologically relevant insights into the fine-grained control of signaling and regulatory

systems on metabolic networks and their phenotypes.



CHAPTER 7

CONCLUSION

A discrete event based stochastic biosimulation platform provides a generic compu-

tational framework to study temporal variations in cellular processes at single molecule

level. It allows systematic analysis of different bio-molecular events and their interac-

tions in an effort to unravel biological intelligence in silico. The event paradigm provides

flexibility in abstracting system at a micro, meso or macro scale within a common com-

putational model.

In this thesis, we have outlined the framework of discrete event based simula-

tion and modeling, building the computational artefact and implementing the simulation

engine. Using the platform, we developed in silico models of biological processes, span-

ning from a top-down signalling network system to a bottom-up mechanistic modeling

of prokaryotic gene regulation. Moreover, the hybrid simulation framework, allows the

genome-scale study of the interplay between gene regulation, signal transduction and

metabolic reaction networks as outlined for the case studies involving the regulation

of central metabolism in carbon-rich and oxygen-limited growth environments for the

bacteria cell Escherichia Coli.

Discrete event based modeling techniques can give computational advantages for

molecular level study of biologic pathways and the impact of stochasticity in them. In

applying discrete event simulation techniques in the study of biological systems , it is

of foremost importance to map available knowledge into parameterized model of events.

Also, with different order of time-scales for biological events (typically, between gene reg-
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ulatory and metabolic reaction events), a hybrid discrete event based approach provides

the flexibility of capturing their interactions in time.

It is pertinent to keep in perspective that for building comprehensive, system-wide

computational models of complex disease pathophysiologies, different modeling tech-

niques, from top-down physiological models to bottom-up atomic and molecular interac-

tion techniques, have to integrated in a common platform. In this light, a discrete event

paradigm, provides a “middle-out” approach by allowing the characterizing of biological

functions through events at different levels of granularity.

This approach is particularly promising for the pharmaceutical industry, as one of

the key challenges in the drug discovery process is the prohibitively expensive process of

target attrition. With the simulation and modeling framework outlined in this work, it

would be possible to study various drug targets at the molecular level while incorporating

physiologically relevant information at the level of organs and tissues. The flexibility in

developing models at different levels of granularity facilitates capturing network pathway

information in a common computational platform.

7.1 Future research directions

A fundamental requirement for application of a discrete event based stochastic

computational framework for large scale disease modeling is the ability to scale the sim-

ulation across a distributed computing architecture. While the focus of this work has

been primarily on the development of the simulation and modeling framework for a sin-

gle processor architecture, future work would involve extending the architecture over a

distributed platform.

It is also important to note that the various techniques of computational biomod-

eling and simulation cater to specific biological systems and processes. While each of

the techniques make their own assumptions of the system view, linking them together
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through well-defined, inter-operable interfaces to render a coherent global view remains

the holy grail for developing the next generation of personalized medicine. Rapidly chang-

ing interpretations of existing knowledge gaps, lack of common standards for collating

information from a wide gamut of databases are a few of the computational challenges

engineers and scientists working in this field have to overcome in their strive towards

comprehending the complexity of cellular processes.
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