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ABSTRACT

ON PROGENITIVELY KOSZUL COMMUTATIVE RINGS

Publication No.

Paul Russell Stern, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: David Jorgensen

This paper introduces and identifies classes of progenitively Koszul rings. A

progenitively Koszul ring is a commutative ring R that admits a Koszul complex

A = K(R) that is formal, and such that the homology algebra H(A) generated by A

is a Koszul algebra. Local complete intersections, which yield exterior algebras (an

example of a Koszul algebra) for their homology algebras, serve as a prototype. It is

shown that the local complete intersections occupy only a small portion of the class

of progenitively Koszul rings.

The material in Chapter 1 will cover basic definitions and facts regarding free

resolutions, differential graded algebras, homology, lattices, Koszul algebras, and

PBW basis constructions. The results of Chapter 2 consist of applications of tensors

products of differential graded algebras, tensors of Koszul complexes, and tensors of

formal algebras to establish that the tensor product of progenitively Koszul rings is

itself a progenitively Koszul ring. Chapter 3 will classify several homology algebras
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based upon earlier work of Luchezar Avramov, Andrew Kustin, and Matthew Miller.

Many of these rings are shown to be progenitively Koszul, and are not restricted

to local complete intersections. Applying the results of Chapter 2 shows that any

arbitrary tensor of such rings will also yield a progenitively Koszul ring.
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CHAPTER 1

INTRODUCTION, TERMS AND DEFINITIONS

1.1 Introduction

Koszul algebras have been extensively studied over the past 40 years. The

initial paper on Koszul algebras by Stewart Priddy [27] investigated resolutions of

the Steenrod algebra. In his paper the cohomology of a Lie algebra L is computed

by applying an appropriate differential to U(L) ⊗ E(L), the tensor of the universal

enveloping algebra of L with the exterior algebra of L. The resolutions which result

are called Koszul resolutions. The algebras for which these resolutions are defined he

called Koszul algebras. For every Koszul algebra A there is a dual Koszul algebra

A!. Priddy’s paper also established connections between Koszul algebras and PBW

algebras. In 1978, I. Bernstein, I. Gelfand, and S. Gelfand [7] demonstrated the

symmetric algebra as (Koszul) dual to the exterior algebra. Their paper characterized

coherent sheaves on projective spaces in terms of modules over the exterior algebra

[25]. The category of modules over a symmetric algebra was shown to be dual to

the category of modules over the exterior algebra (Koszul pair). Later extensions

of the BGG correspondence have been done by D. Eisenbud [15], A. Beilinson, V.

Ginzburg, W. Soergel [6] and others with application to derived categories of graded

modules. One area of investigation has been the structure of the free resolutions of

finitely generated graded modules over an exterior algebra. In [6] a certain functor

establishes an equivalence from the category of graded modules over the symmetric

algebra to the category of linear compexes of free modules over the exterior algebra.
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Research done by Ralph Fröberg and Jörg Backelin [4], [5], [16] characterized

Koszul algebras further by Hilbert and Poincare series, linear minimal resolutions of

the field, and lattices. In their papers several equivalent properties of Koszul alge-

bras were demonstrated. Specifically, a quadratic algebra A is a Koszul algebra when

HA(z)PA(−z) = 1, or when TorA
i (k, k)j = 0, i 6= j, that is, the minimal resolution of

the field k over A is linear, or when the product ideal Aα
+I

βAγ
+, α+β+γ ≥ 0 generates

a distributive lattice. Several other equivalent characteristics of Koszul algebras are

known. Koszul algebras are relevant in other areas of mathematics, notably combi-

natorics [17], [10], [29], [1]; topology [23]; algebraic geometry [24], [19]; and quantum

theory [22], [30], [28]. The concept of a Koszul algebra has been extended to graded

algebras with relations in more than one degree [11].

The concept of a progenitively Koszul ring is motivated by considering that

while a ring may not be Koszul, its homology algebra may yet be a Koszul algebra,

and this may still allow one to obtain strong correspondence theories for such rings.

Specifically a progenitively Koszul ring is a commutative ring R that admits a Koszul

complex A = K(R) that is formal, and such that the homology algebra H(A) gen-

erated by A is a Koszul algebra. Local complete intersections, which yield exterior

algebras (an example of a Koszul algebra) for their homology algebras, serve as a pro-

totype. It is shown that the local complete intersections occupy only a small portion

of the class of progenitively Koszul rings. Current research that involves progenitively

Koszul rings in the classification of Ext modules over Ext algebras is developed in

“Reverse Homological Algebra over some Local Rings” by L. Avramov and D. Jor-

gensen [3]. Their paper establishes a duality of the derived category of differential

graded modules over a Koszul algebra with the derived category of differential graded
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modules over the Koszul dual. From there they prove if R is a PK local ring, then

one may classify in a strong sense the ExtR(k, k)-modules ExtR(M,k), for finitely

generated R-modules M .

Chapter 1 will briefly outline the major concepts that are necessary in identi-

fying classes of progenitively Koszul rings. The main reference for Koszul algebras is

the paper by R. Fröberg [16], with supplemental material from standard texts of G.

Boffi and D. Buchsbaum [9], D. Eisenbud [14], S. MacLane [21], A. Polischuk and

L. Positselski [25], and G. Birkhoff [8]. The seven sections: Graded Algebras; Free

Resolutions; Koszul Algebras; Differential Graded Algebras; Homology Algebras and

Formal Algebras; Progenitively Koszul Rings; PBW Algebras and Lattices will cover

the basic terms and development of the concepts used within the paper.

Chapter 2 will develop the main theorem used to construct progenitively Koszul

rings from other progenitively Koszul rings. The theorem will be given in 3 versions:

the first two will be formal and the third will be a constructive proof that allows

transparency in the relevant characteristics of the rings involved.

Chapter 3 will focus on rings of small projective dimension classifying which are

progenitively Koszul and which are not. The results are based upon previous work

done by L. Avramov, A. Kustin, and M. Miller. With the exception of two of the

classes of the rings considered, all are progenitively Koszul rings and most are not

complete intersections. By the results of chapter 2, any arbitrary tensor of such rings

will yield a progenitively Koszul ring and these again are not complete intersections if

their constituents are not. The classifications in chapter 3 will also use both lattices

and PBW basis constructions as developed by Jörg Backelin [4] and A. Polischuk,

and L. Positselski [25].
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All rings are assumed to have a unit element. All gradings are assumed to be

non-negative.

1.2 Graded Algebras

A graded ring is a ring A with a direct sum decomposition

A = A0 ⊕ A1 ⊕ A2 ⊕ · · · =
⊕
i≥0

Ai

such that each component Ai is an additive abelian group whose elements are called

homogeneous of degree i and where multiplication respects the grading, i.e., for a ∈ Ai

and b ∈ Aj the product ab is in Ai+j. The component Ai is called the homogeneous

component of degree i. For an element a ∈ Ai the degree of a is denoted by |a|. The

component A0 is itself a ring and 1A ∈ A0.

Let A be a graded ring. An A-module P is a graded module: P =
⊕

i≥0 Pi when

each Pi is an additive abelian group called the ith homogeneous component of P and

ring multiplication on P respects the following: for r ∈ Ai and m ∈ Pj, rm is in Pi+j.

Let k be a commutative ring. A k-algebra A is a ring with a ring homomor-

phism f : k → A (in which 1k 7→ 1A) and such that f(k) is contained in the center of

A. Every A-module M becomes a k-module via the multiplication: r ∈ k, m ∈ M ,

r ·m = f(r)m. If A is a commutative graded ring, it is a graded A0-algebra via the

natural inclusion: A0 ↪→ A.
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1.2.1 The Tensor Algebra

Let R be a commutative ring and N be any R-module. The tensor algebra on

N is defined as the free algebra

T (N) = R⊕N ⊕ (N ⊗N)⊕ (N ⊗N ⊗N)⊕ · · · .

T (N) is a graded R-algebra with Ti(N) =
⊗iN . The definition of multiplication on

simple tensors in T (N) is as follows:

Let a and b be simple tensors in T (N) of degree i and j (resp.):

a = a1 ⊗ · · · ⊗ ai ∈ T (N)i ; b = b1 ⊗ · · · ⊗ bj ∈ T (N)j .

The product a⊗ b is given by the following:

a⊗ b = a1 ⊗ · · · ⊗ ai ⊗ b1 ⊗ · · · ⊗ bj ∈ T (N)i+j .

Then multiplication in general is defined in T (N) by extending by linearity.

1.2.2 The Exterior Algebra

Let S be the two sided ideal in T (N) generated by the elements: x⊗ y+ y⊗ x,

x ⊗ x for x, y ∈ N . The exterior algebra
∧
N is defined as the free algebra T (N)

modulo S, i.e.
∧
N = T (N)/S. Since T (N) is graded and S is a homogeneous two-

sided ideal the exterior algebra is also a graded R-algebra. The coset a ⊗ b + S is

denoted by a∧b. The homogeneous component of degree i in
∧
N is denoted by

∧iN

and is generated by products of exactly i elements of N . Let a ∈
∧iN and b ∈

∧j N

be simple wedges, that is, a = a1 ∧ · · · ∧ ai and b = b1 ∧ · · · ∧ bj. Multiplication is

induced from that in T (N), thus the product a ∧ b is given by the following:

a ∧ b = a1 ∧ · · · ∧ ai ∧ b1 ∧ · · · ∧ bj ∈
i+j∧

N, .
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and the product in
∧
N in general is obtained by extending this rule by linearity. For

an R-module homomorphism f : N →M there is an induced map:∧
f :

∧pN →
∧pM

a1 ∧ · · · ∧ ap → f(a1) ∧ · · · ∧ f(ap) .

EXAMPLE: Let N be a free R-module of rank n with basis {e1, · · · , en}. Then∧iN is a free R-module of rank
(

n
i

)
with basis {ej1 ∧ · · · ∧ eji

: j1 < · · · < ji}.

1.2.3 The Hilbert Series

Let A =
⊕

i≥0Ai be a graded Noetherian ring with A0 a field k. In this case

each Ai is a finite dimensional vector space over k for all i ≥ 0.

The Hilbert series of A is defined as the generating function for the k-vector

space dimensions of the Ai

H(z) =
∑
i≥0

dimk Ai · zi

where z is a formal variable.

1.3 Free Resolutions

It is assumed that the reader is familiar with the definition of a projective

module and that free modules are projective. In what follows M will denote a module

over a ring R. Consider a sequence of homomorphisms of R-modules:

C : · · · → Cn+1
φn+1−−−→ Cn

φn−→ Cn−1 → · · · .
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The sequence C is a complex if the image of φn+1 is contained in the kernel of

φn for all n. The maps φi are referred to as the differentials. The homology H(C)

of C is the direct sum of the modules: Hi(C) = Ker(φi)/ Im(φi+1) ; Hi(C) is the ith

homology of C.

The sequence C is called exact when the image of φi+1 equals the kernel of φi

for all i, in other words, Hi(C) = 0 for all i. A projective resolution of the R-module

M is an exact sequence

P : · · · → Pn
φn−→ · · · φ2−→ P1

φ1−→ P0
φ0−→M → 0

such that all Pi are projective. IfM above is replaced by 0, then the resulting sequence

is called a deleted projective resolution of M . In the case that the projective modules

are free R-modules the above is called a free resolution of M . It is a standard fact

that if R is commutative and Noetherian, and M is finitely generated, then there

exists a free resolution of M of the form:

F : · · · → Rbn
φn−→ · · · φ2−→ Rb1 φ1−→ Rb0 φ0−→M → 0

where the bi in the expression are all non-negative integers, called the Betti numbers

of F.

By fixing bases of the Rbi the maps φi can be represented by matrices with

entries in R. In the case when R is graded, and all nonzero entries of the matrices are

homogeneous, F is called a graded resolution of M. Such a resolution exists if and only

if M is a graded R-module. When R is a graded ring, and all non-zero entries of each

map representing φi have positive degree, then F is a graded minimal free resolution.

When R is a local ring, then F is a minimal free resolution, uniquely determined by

M , when all entries of the matrices representing the maps lie in the maximal ideal of

7



A. In this case the Betti numbers of F are uniquely determined by M and are called

the Betti numbers of M .

1.3.1 The Poincaré Series

Let M and N both be R-modules. The derived functor TorR
∗ (M,N) is defined

by tensoring (over R) each module in a deleted projective resolution P of M with N

and subsequently evaluating homology of the induced complex:

TorR
i (M,N) = Hi(P⊗N) = Ker(φi ⊗N)/ Im(φi+1 ⊗N) .

Since free modules are also projective modules, the (above) definition applies to free

resolutions. Assume R is a local ring with residue field k. Consider the minimal free

R-resolution of M represented above by F. Let N be the field k. From the definition

of a minimal free resolution, φi⊗k = 0 for all i ≥ 1, hence TorR
i (M,k) ∼= Rbi⊗k ∼= kbi .

Thus, each free module in the resolution becomes a finite dimensional vector space

after tensoring with k. The Poincaré series of A, PM
R (z), is the generating function

for the k-vector space dimensions (i.e. Betti numbers) of TorR
∗ (M,k)

PM
R (z) =

∑
i≥0

dimk TorR
i (M,k) · zi =

∑
i≥0

bi · zi .

1.3.2 Graded Resolutions

Suppose thatA is a graded ring. DefineA(−j) as the graded ring with (A(−j))n =

An−j. In this case each module Fi in the graded free resolution of a graded A-module

8



M is a direct sum of bi shifted copies of A. We let bi,j denote the number of copies

of A(−j) in Fi. Thus Fi =
⊕

j≥0A(−j)bi,j . A homogeneous element a ∈ Fi is said

to have homological degree i, and supposing that a ∈ (Fi)n, a is said to have internal

degree n. The resolution is now written as

F : · · · →
⊕
j≥0

A(−j)bn,j
φn−→ · · · φ2−→

⊕
j≥0

A(−j)b1,j
φ1−→

⊕
j≥0

A(−j)b0,j
φ0−→M → 0 .

In this graded case there is a refinement to the (above) Poincare series:

PM
A (x, y) =

∑
i,j

dimk(TorA
i (M,k))j · xiyj =

∑
i,j≥0

bi,j · xiyj

where the formal variable x records the homological degree i and y records the inter-

nal degree j.

1.3.3 The Koszul Complex

The following development of the Koszul complex closely follows the presenta-

tion in Boffi and Buchsbaum [9, pp.42-44]. Let R be a ring, L an R-module, and

f : L→ R an R-linear map. Let l1, . . . , ln be a sequence of elements of L. Recall the

definition of
∧
L from section 1.1. The assignment

(l1, . . . , ln)→
n∑

i=1

(−1)i+1f(li) · l1 ∧ · · · ∧ l̂i ∧ · · · ∧ ln

defines an alternating n-multilinear map Ln →
∧n−1 L where l̂i refers to the omission

of the element li from the exterior product. By the universal mapping property [13,

p.342] applied to the nth power of an exterior algebra, the following R-multilinear

map exists:

9



∂(f,n) :
∧n L→

∧n−1 L

∂(f,n)(l1 ∧ · · · ∧ ln)→
∑n

i=1(−1)i+1f(li) · l1 ∧ · · · ∧ l̂i ∧ · · · ∧ ln .

One can show ∂(f,n−1) ◦ ∂(f,n) = 0. For x ∈
∧p L and y ∈

∧q L,

∂f (x ∧ y) = ∂f (x) ∧ y + (−1)|x| · x ∧ ∂f (y)

which is referred to as the Leibniz rule.

In the case that L is a free R-module of rank s with basis {e1, . . . , en}, a map

f : L → R defined as: ei 7→ xi with x1, . . . , xs a fixed sequence of elements of R,

then
∧
L, together with the maps ∂f above, is called the Koszul complex on x1, . . . , xs

and is denoted by K(x1, . . . , xs). Note: The degree n component Kn(x1, . . . , xs) of

K(x1, . . . , xs) is a free R-module of rank
(

s
n

)
with basis {ei1 ∧ · · · ∧ ein : i1 < i2 <

. . . < in} and has the following degree −1 differential:

∂ = ∂(f,n) :

∂(ei1 ∧ · · · ∧ ein) =
n∑

r=1

(−1)r+1(xir) · ei1 ∧ · · · ∧ êir ∧ · · · ∧ ein .

In the case that a maximal ideal m of a regular local ring R is generated by a

sequence of elements x1, . . . , xs, it is well-known [14, 19.12] that the Koszul complex

K(x1, . . . , xs) is a minimal free R-resolution of the residue field k = R/m.

1.4 Koszul Algebras

Let V denote a vector space over a field k generated by a basis {x1, ..., xn}.

Recall the definition of T (V ) from section 1.1. Let I denote a two sided homogeneous

ideal in T (V ). The quotient algebra A = T (V )/I denotes a graded algebra with

grading induced by T (V ). If I is generated by homogeneous elements of degree 2,

10



then A is a quadratic algebra. A Koszul algebra is defined to be a quadratic algebra

such that TorA
i (k, k)j = 0 for i 6= j. This is equivalent to k having a linear free

resolution, as above, in which the nonzero entries of all matrices representing the

differentials have degree 1. The following are equivalent [16, p.4]:

1.HA(z) PA(−z) = 1 ;

2.HA(xy) PA(−x, y) = 1 ;

3. A is Koszul.

1.5 Differential Graded Algebras

A differential graded algebra over a commutative ring k (“DG k-algebra”) [21]

is a graded k-algebra A equipped with a graded k-module homomorphism ∂ : A→ A

of degree −1 with ∂2 = 0 such that the Leibniz formula :

∂(a1a2) = (∂a1)a2 + (−1)|a1|a1(∂a2)

is satisfied.

Let R be a commutative ring and x1, . . . , xs a sequence of elements of R. The

Koszul complex on x1, . . . , xs is an example of a DG R-algebra. Multiplication is

defined by concatenation of the wedge symbol “∧”.

EXAMPLE:

Consider the polynomial ring in five variables: R = k[x1, x2, x3, x4, x5].

Let {e1, . . . , e5} be the standard basis vectors of R5 and define f : R5 → R by

f(ei) = xi. Let a = e1 ∧ e3 and let b = e2 ∧ e4 ∧ e5.

The Leibniz rule will be verified in an example:

∂(ab) = ∂((e1 ∧ e3) · (e2 ∧ e4 ∧ e5))
11



= ∂(e1 ∧ e3)(e2 ∧ e4 ∧ e5) + (−1)|e1∧e3| (e1 ∧ e3)∂(e2 ∧ e4 ∧ e5)

= ((x1)e3−(x3)e1)(e2∧e4∧e5)+(−1)2(e1∧e3)((x2)e4∧e5−(x4)e2∧e5+(x5)e2∧e4)

= (x1)e3 ∧ e2 ∧ e4 ∧ e5 − (x3)e1 ∧ e2 ∧ e4 ∧ e5 + (x2)e1 ∧ e3 ∧ e4 ∧ e5

−(x4)e1 ∧ e3 ∧ e2 ∧ e5 + (x5)e1 ∧ e3 ∧ e2 ∧ e4

= ∂(e1 ∧ e3 ∧ e2 ∧ e4 ∧ e5) . Q.E.D.

1.6 The Homology Algebra

Associated to every DG A-algebra is its homology algebra H(A). Multiplication

in H(A) is induced by the multiplication in A and is well defined. Let x1, . . . , xs

be a sequence of elements in a commutative ring R. For the purposes of this thesis

the homology algebra H
(
K(x1, . . . , xs)

)
of the Koszul complex K(x1, . . . , xs) will be

referred to as the homology algebra of x1, . . . , xs. It is a standard fact about the

homology algebra that xi ·H
(
K(x1, . . . , xs)

)
= 0 for all i, and thus Hi(K(x1, . . . , xs))

is a module over R/(x1, . . . , xs) for all i.

1.6.1 Formal Algebras

Let F1 and F2 denote two complexes of R-modules. A chain map Φ : F1 → F2

is said to be a quasi-isomorphism if Φ induces an isomorphism on homology, i.e.

H(Φ) : H(F1)
∼=−→ H(F2) is an isomorphism in each degree. If two complexes have

a quasi-isomorphism between them they are said to be quasi-isomorphic [14, p.662].

Two complexes linked by a sequence of quasi-isomorphisms are said to be weakly
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equivalent. Quasi-isomorphisms will be denoted by '.

EXAMPLE: Every deleted free resolution of anR-module establishes a quasi-isomorphism

from the resolution to the module.

F : · · · φ3−→ F2
φ2−→ F1

φ1−→ F0 −→ 0

↓' ↓ ↓ ↓ π

F′ : · · · −→ 0 −→ 0 −→ M −→ 0

H0(F) = Ker(F0 → 0)/ Im(φ1) = F0/ Im(φ1) ∼= M = H0(F
′)

EXAMPLE: Let R be a local ring with residue field k. For an ideal I ⊂ Q, let

R = Q/I . Let F1 and F2 be minimal free resolutions of k and R (resp.) over Q.

Then the following complexes are quasi-isomorphic:

k ⊗Q F2
'←− F1 ⊗Q F2

'−→ F1 ⊗Q R

H(k ⊗Q F2) ∼= H(F1 ⊗Q F2) ∼= H(F1 ⊗Q R)

In this example the isomorphisms are the result of the balanced functor: TorQ(k,R).

A formal algebra is a DG k-algebra A which is weakly equivalent to its homology

algebra H(A). Specifically, A is a formal algebra when there exists a sequence of

quasi-isomorphisms linking A to H(A):

A
'←→ A1

'←→ A2
'←→ · · · '←→ Am

'←→ H(A) .

Note that the symbol
'←→ indicates the quasi-isomorphism may occur in either di-

rection.
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EXAMPLE: Let Q, F1, and F2 be as in the previous example. Let (F2)i denote the

ith free Q- module in the complex F2.

H(k ⊗Q F2)
∼=←− k ⊗Q F2

'←− F1 ⊗Q F2
'−→ F1 ⊗Q R

(Note: The left arrow
∼=←− is an isomorphism.)

In this example the isomorphism linking H(k⊗QF2) to k⊗QF2 is the result of tensor-

ing the minimal free resolution F2 with k, which forces all free Q-modules to become

vector spaces and all differentials to be the 0 map. Each free module k ⊗Q (F2)i is

the kernel of Idk ⊗ φi at degree i, and 0 is the image of Idk ⊗ φi+1. Thus,

Hi(k ⊗Q F2) = (k ⊗Q (F2)i/0) ∼= k ⊗Q (F2)i.

1.7 Progenitively Koszul Commutative Rings (PK Rings)

Let R be a ring and x1, . . . , xs be a sequence of elements of R generating a

maximal ideal m. Let k = R/m. Let A = K(x1, . . . , xs) be the Koszul complex

on the sequence x1, . . . , xs. If A is formal such that its homology algebra H(A) is

a Koszul algebra, then the ring R is said to be progenitively Koszul with respect to

x1, . . . , xs. Henceforth, these rings will be denoted as PK rings.

1.8 PBW Algebras and Lattices

The classification of PK rings in chapter 3 will depend upon the construction of

Poincare-Birkhoff-Witt bases as developed in ([25, pp.81-82]). The presentation has

been condensed to fit the specifics of this paper.

Let V be a vector space with a basis z1, . . . , zm. Let T (V ) be the tensor algebra
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on V and J ⊂ T (V ) be an ideal generated by homogeneous elements of degree 2.

Then A = T (V )/J is a quadratic algebra. Let I = {1, 2, . . . ,m}. Denote by α the

multiindex (i1, .., in) ∈ In = I × I × · · ·× I (n-times) and denote by zα the monomial

zi1zi2 · · · zin ∈ T (V ). For α = ∅ set z∅ = 1. Consider the lexicographic order on the

set of multiindices of length n: (i1, .., in) < (j1, ...jn) if and only if there exists a k

such that i1 = j1, ..., ik−1 = jk−1 and ik < jk.

LEMMA 1.1 [25, p.81]: Let V , T (V ), I and J be as stated (above). Consider the basis

of V ⊗ V generated by the degree 2 tensors: zi1 ⊗ zi2 (henceforth written as degree 2

monomials: zi1zi2). Let SJ be the subset of I2 consisting of all (i1, i2) ∈ I2 such that

zi1zi2 can not be represented as a linear combination of zj1zj2 with (j1, j2) < (i1, i2)

modulo J . Then the images of the elements zi1zi2 with (i1, i2) ∈ SJ form a basis of

(V ⊗ V )/J2 where J2 is the degree 2 component of J . The subset SJ is also uniquely

characterized by the property that there exists a basis of J2 of the form:

zj1zj2 −
∑

(i1,i2)<(j1,j2)
(i1,i2)∈SJ

ci1,i2
j1,j2

zi1zi2 , (j1, j2) ∈ I2 − SJ .

Let S(0) = ∅ and S(1) = {1, 2, . . . ,m}. For n ≥ 2, let S(n) denote the set of

multiindices:

S(n) = {(i1, · · · , in)|(i1, i2) ∈ SJ , (i2, i3) ∈ SJ , · · · (in−1, in) ∈ SJ}.

Elements z1, . . . , zm ∈ V are called PBW generators of A if the monomials zα with

α ∈
⋃

n≥0 S
(n) form a basis of A (PBW-basis of A). A PBW-algebra is a quadratic

algebra admitting a PBW basis. The monomial orderings determine the choice for
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generators of the bases ([25, p.82]).

For the classifications in Chapter 3, the following Theorems will also be re-

quired:

Theorem [25, p.82]: If the cubic monomials zi1zi2zi3 with (i1, i2, i3) ∈ S(3) are linearly

independent in A3 then the same is true in any degree n. Therefore, in this case the

elements z1, . . . , zm are PBW generators of A.”

Theorem [27, p.51]: A quadratic PBW algebra is a Koszul algebra.

Note: Not every Koszul algebra will have a PBW basis ([25], p.84).

J.Backelin developed an alternative definition for Koszul algebras using the

concept of a distributive lattice from earlier work by V.E. Govorov. In his work ([4],

pp.21-30) an algebra A is Koszul when it is quadratic and the product ideal: Aα
+I

βAγ
+

generates a distributive lattice for non-negative values of α, β, γ. The ideal A0
+I

0A0
+

is defined in the lattice to be the tensor algebra T (V ) on the indeterminates in the

ring R = T (V )/I, and α+β+γ > 0 in the lattice ([4], pp.11,15). The following lattice

definition is due to G. Birkhoff ([8], pp.6-8): Let P denote a partially ordered set.

A lattice is a partially ordered set such that any two of its elements have a greatest

lower bound (“meet”) denoted by x ∩ y and a least upper bound

(“join”) denoted by x ∪ y. The operations ∩ and ∪ satisfy the following properties:

(i). x ∩ x = x ; x ∪ x = x .

(ii). x ∩ y = y ∩ x ; x ∪ y = y ∪ x .

(iii). x ∩ (y ∩ z) = (x ∩ y) ∩ z ; x ∪ (y ∪ z) = (x ∪ y) ∪ z .
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(iv). x ∩ (x ∪ y) = x ∪ (x ∩ y) = x .

A lattice is “modular” when it satisfies the following property:

If x ≤ z , then x ∪ (y ∩ z) = (x ∪ y) ∩ z .

A lattice is “distributive” when it satisfies the following property:

x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) ; x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) .

For purposes of this paper when considering lattices, “∩” will denote “intersection”

(of ideals) and “∪” will denote “sum” (of ideals).
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CHAPTER 2

TENSOR PRODUCTS OF PK RINGS

2.1 Introduction and the Main Theorem

The purpose of this chapter is to derive a method of generating PK rings from

other PK rings. The main theorem of this section is the following:

THEOREM (2.1): Let R1 and R2 both be commutative, Noetherian k-algebras where

k is a field. Let x1, . . . , xs and y1, . . . , yt be sequences of elements generating maximal

ideals m1 and m2 of R1 and R2 (resp.). Assume that R1/m1 and R2/m2 are both

isomorphic to k. If R1 and R2 are PK rings with respect to x1, . . . , xs and y1, . . . , yt

(resp.), then R1 ⊗k R2 is a PK ring with respect to {x1 ⊗ 1R2 , . . . , xs ⊗ 1R2 , 1R1 ⊗

y1, . . . , 1R1 ⊗ yt}.

The results of this chapter rely upon the special case of the Kunneth Theorem [18,

p.184]:

If C and D are complexes of vector spaces over a field k, then for all n there is an

isomorphism:

Hn(C ⊗D)→
⊕

p+q=n

Hp(C)⊗k Hq(D).
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2.2 The Tensor of DG k-Algebras is a DG k-Algebra

In this section k denotes any commutative ring. Let C and D be complexes of

k-modules. We define C ⊗k D, the tensor product of the two complexes C and D, as

follows:

(C ⊗k D)n =
⊕

p+q=n

Cp ⊗k Dq.

Let c ∈Cp, d ∈Dq . The differential ∂ = ∂C⊗D for C ⊗k D is defined as follows:

∂(c⊗ d) = ∂C(c)⊗ d+ (−1)pc⊗ ∂D(d),

where the symbol ∂∗ denotes the differential associated with the complex (∗). It is

trivial to show that, with the definition of the differential (above), C ⊗k D is a com-

plex and ∂ is k-linear.

Now let C and D be DG k-algebras. Multiplication in C ⊗k D is defined as

follows: For (c⊗ d)∈Cp ⊗k Dq and (c′ ⊗ d′)∈Cp′ ⊗k Dq′ ,

(c⊗ d)(c′ ⊗ d′) = (−1)p′q(cc′)⊗ (dd′).

With this multiplication, C ⊗k D is also a DG k-algebra, as demonstrated in the

following proposition:

PROPOSITION (2.2): If C and D are DG k-algebras, then C ⊗k D is also a

DG k-algebra.

PROOF: It will be shown that C ⊗k D with this multiplication satisfies the Leibniz

rule. In the first computation, the product will first be evaluated, followed by ap-
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plication of the differential; the second computation will first apply the differential,

followed by the evaluation of the product.

Let c ∈ Cp , c′ ∈ Cp′ , d ∈ Dq , and d′ ∈ Dq′ .

∂((c⊗ d)(c′ ⊗ d′)) = (−1)p′q∂ (cc′ ⊗ dd′)

= (−1)p′q
(
∂(cc′)⊗ (dd′) + (−1)p+p′(cc′)⊗ ∂(dd′)

)
= (−1)p′q((∂(c)c′ + (−1)pc∂(c′))⊗ dd′

+ (−1)p+p′(cc′ ⊗ (∂(d)d′ + (−1)qd∂(d′)))

= (−1)p′q(∂(c)c′ ⊗ dd′ + (−1)pc∂(c′)⊗ dd′

+ (−1)p+p′cc′ ⊗ ∂(d)d′ + (−1)p+p′+qcc′ ⊗ d∂(d′))

= (−1)p′q∂(c)c′ ⊗ dd′ + (−1)p′q+pc∂(c′)⊗ dd′

+ (−1)p′q+p+p′cc′ ⊗ ∂(d)d′ + (−1)p′q+p+p′+qcc′ ⊗ d∂(d′).

∂((c⊗ d)(c′ ⊗ d′)) = ∂ (c⊗ d) (c′ ⊗ d′) + (−1)|c⊗d| (c⊗ d)∂(c′ ⊗ d′)

= (∂(c)⊗ d+ (−1)pc⊗ ∂(d))(c′ ⊗ d′)

+ (−1)p+q(c⊗ d)
(
∂(c′)⊗ d′ + (−1)p′c′ ⊗ ∂(d′)

)
= (∂(c)⊗ d)(c′ ⊗ d′) + (−1)p(c⊗ ∂(d))(c′ ⊗ d′)

+ (−1)p+ q(c⊗ d) (∂(c′)⊗ d′) + (−1)p+q+p′(c⊗ d) (c′ ⊗ ∂(d′))

= (−1)p′q∂(c)c′ ⊗ dd′ + (−1)p+p′(q−1)cc′ ⊗ ∂(d)d′

+ (−1)p+q+(p′−1)qc∂(c′)⊗ dd′ + (−1)p+q+p′+p′qcc′ ⊗ d∂(d′).

The coefficients of all four terms match, as indicated in the following table. The

function notation, d.m., refers to the (composite) operation of first evaluating the
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Table 2.1. Coefficients of Terms

∗ ∂(c)c′⊗dd′ cc′⊗∂(d)d′ c∂(c′)⊗dd′ cc′⊗d∂(d′)

d.m. (−1)p′q (−1)p′q+p+p′ (−1)p′q+p (−1)p′q+p+p′+q

m.d. (−1)p′q (−1)p′q+p−p′ (−1)p′q+p (−1)p′q+p+p′+q

product by the definition for multiplication in the complex, followed by differentiation;

m.d. refers to the reverse order of the same two operations. The specific terms are

listed as column headers. The sign coefficients of the terms are listed beneath for

comparison with respect to the two different methods of evaluation. Q.E.D.

2.2.1 Extension to DG R1- and DG R2-Algebras

Let R1 and R2 both be k-algebras. The previous theorem will be extended to

DG R1- and DG R2-algebras.

PROPOSITION (2.3): Let F1 be a DG R1-algebra. Let F2 be a DG R2-algebra.

Then F1 ⊗k F2 is a DG R1 ⊗k R2-algebra.

PROOF: Let r1 ∈ R1, r2 ∈ R2, f1 ∈ F1, and f2 ∈ F2. By Proposition (2.2) it is

known that F1 ⊗k F2 is a DG k-algebra. Multiplication by R1 ⊗k R2 on F1 ⊗k F2 is

defined as follows:

(r1 ⊗ r2)(f1 ⊗ f2) = r1f1 ⊗ r2f2

and is extended by linearity.
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The preservation of addition by the map ∂ is trivial and will be omitted. The

R1 ⊗k R2-linearity of the differential will now be demonstrated.

∂((r1 ⊗ r2)(f1 ⊗ f2)) = ∂(r1f1 ⊗ r2f2)

= ∂(r1f1)⊗ r2f2 + (−1)|r1f1|r1f1 ⊗ ∂(r2f2)

= r1∂(f1)⊗ r2f2 + (−1)|f1|r1f1 ⊗ r2∂(f2)

= (r1 ⊗ r2)
(
∂f1 ⊗ f2 + (−1)|f1|f1 ⊗ ∂f2

)
= (r1 ⊗ r2)∂(f1 ⊗ f2).

By Proposition (2.2) and the R1 ⊗k R2- linearity of the differential, it is demon-

strated that differentiation commutes with multiplication; hence, Proposition (2.2) is

extended to DG R1- and DG R2-algebras. Q.E.D.

2.2.2 Tensors of Koszul Complexes over the field k

As a special case of the previous theorems the following proposition will be

required for later results.

PROPOSITION (2.4): Let R1 and R2 both be commutative k-algebras where k is

a field. Let S1 = x1, . . . , xs and S2 = y1, . . . , yt be sequences of elements from R1

and R2 (resp.) such that S1 generates a maximal ideal m1 in R1 and S2 generates a

maximal ideal m2 in R2. Assume that R1/m1 and R2/m2 are both isomorphic to k.

Consider the sequence of elements:

S = x1 ⊗ 1R2 , x2 ⊗ 1R2 , · · · , xs ⊗ 1R2 , 1R1 ⊗ y1, 1R1 ⊗ y2, · · · , 1R1 ⊗ yt.
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Let K(S1), K(S2), and K(S) denote the Koszul complexes generated by S1, S2, and

S (resp.). Then K(S1)⊗k K(S2) ∼= K(S) as DG k-algebras.

The following Lemma is required for the construction of the isomorphism

Φ : K(S1)⊗k K(S2)
∼=−→ K(S).

LEMMA (2.5): Let S1 and S2 be as stated in Proposition (2.4). Let m1 and m2

be the maximal ideals generated by the sequences of elements S1 and S2 (resp.) and

let k be the field (as in Proposition (2.4)). Let m = m1 ⊗k R2 + R1 ⊗k m2. Then m

is a maximal ideal in R1 ⊗k R2.

PROOF: Consider the canonical projection map π = π1 ⊗ π2:

R1 ⊗k R2 → k ⊗ k

π(a⊗ b) = ā⊗ b̄ .

Since Ker(π) = m1 ⊗k R2 +R1 ⊗k m2,

R1 ⊗k R2/(m1 ⊗k R2 +R1 ⊗k m2) ∼= k ⊗ k ∼= k .

Thus Ker(π) = m1 ⊗k R2 +R1 ⊗k m2 is a maximal ideal in R1 ⊗k R2. Q.E.D.

PROOF of (2.4):

Let {g1, g2, . . . , gs+t} be a basis for the free module (R1 ⊗k R2)
s+t. Then a basis for

Kp+q(S) is given by {gl1∧gl2∧· · ·∧glp+q | l1 < l2 < · · · < lp+q}. The Koszul differential

is given by:

∂K(S)(gl1 ∧ gl2 ∧ · · · ∧ glp+q) =

p+q∑
r=1

(−1)r+1zlr · gl1 ∧ gl2 ∧ · · · ∧ ĝlr ∧ · · · ∧ glp+q
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where zr = xr ⊗k 1R2 , 1 ≤ r ≤ s, and zr = 1R1 ⊗k y(r−s), s + 1 ≤ r ≤ s + t .

Let {e1, . . . , es} be a basis of the free module Rs
1. A basis for Kp(S1) is given by

{ei1 ∧ ei2 · · · ∧ eip | i1 < i2 < · · · < ip}. The Koszul differential for this complex is:

∂K(S1)(ei1 ∧ ei2 ∧ · · · ∧ eip) =

p∑
r=1

(−1)r+1xir · ei1 ∧ ei2 ∧ · · · ∧ êir ∧ · · · ∧ eip

Let {f1, . . . , ft} be a basis of the free module Rt
2. A basis for Kq(S2) is given by

{fj1 ∧ fj2 · · · ∧ fjq | j1 < j2 < · · · < jq}. The Koszul differential for this complex is:

∂K(S2)(fj1 ∧ fj2 ∧ · · · ∧ fjq) =

q∑
r=1

(−1)r+1yjr · fj1 ∧ fj2 ∧ · · · ∧ f̂jr ∧ · · · ∧ fjq

By the definition for the nth degree of the total complex

(K(S1)⊗k K(S2))n =
⊕

p+q=n

Kp(S1)⊗k Kq(S2) .

A basis for the free module
(
K(S1)⊗k K(S2)

)
n

is

⋃
p+q=n

{ei1 ∧ ei2 · · · ∧ eip ⊗k fj1 ∧ fj2 · · · ∧ fjq | i1 < i2 < · · · < ip, j1 < j2 < · · · < jq}

Let Φ : K(S1)⊗k K(S2)→ K(S) be defined as:

ei1 ∧ ei2 ∧ · · · ∧ eip ⊗ fj1 ∧ fj2 ∧ · · · ∧ fjq 7→ gl1 ∧ gl2 ∧ · · · ∧ glp+q

Φ(xir) 7→ xir ⊗ 1R2 Φ(yjr) 7→ 1R1 ⊗ yjr

where lα = iα for 1 ≤ α ≤ p and lα = s+ j(α−p) for p+ 1 ≤ α ≤ p+ q.

It will now be demonstrated that the differentials commute with Φ.

From the definitions of the Koszul differential and Φ,

Φ ◦ ∂K(S1)⊗kK(S2)(ei1 ∧ ei2 ∧ · · · ∧ eip ⊗ fj1 ∧ fj2 ∧ · · · ∧ fjq)

= Φ
(
(∂K(S1)ei1∧· · ·∧eip)⊗fj1∧· · ·∧fjq +(−1)pei1∧· · ·∧eip⊗(∂K(S2)fj1∧· · ·∧fjq)

)
= Φ

(
(
∑

(−1)r+1xir · ei1 ∧ · · · ∧ êir ∧ · · · eip)⊗ fj1 ∧ · · · ∧ fjq

+ (−1)pei1 ∧ · · · ∧ eip ⊗ (
∑

(−1)r+1yjr · fj1 ∧ · · · f̂jr ∧ · · · ∧ fjq)
)
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=
∑p

r=1(−1)r+1(xir ⊗k 1R2) · gl1 ∧ · · · ĝlr ∧ · · · ∧ glp+q

+
∑p+q

r=p+1(−1)r+1(1R1 ⊗k yjr) · gl1 ∧ · · · ĝlr ∧ · · · ∧ glp+q

=
∑p+q

r=1(−1)r+1zlr · gl1 ∧ · · · ĝlr ∧ · · · ∧ glp+q .

∂K(S) ◦ Φ(ei1 ∧ · · · ∧ eip ⊗ fj1 ∧ · · · ∧ fjq)

= ∂K(S)(gl1 ∧ · · · ∧ glp ∧ glp+1 · · · ∧ glp+q)

=
∑p+q

r=1(−1)r+1zlr · gl1 ∧ · · · ĝlr ∧ · · · ∧ glp+q

The previous computations show that Φ ◦ ∂K(S1)⊗kK(S2) = ∂K(S) ◦ Φ. Thus, Φ is

a chain map.

It remains to be shown that Φ(ab) = Φ(a)Φ(b).

Let a = ei1 ∧ · · · ∧ eip ⊗ fj1 ∧ · · · ∧ fjq and b = ei′1
∧ · · · ∧ ei′

p′
⊗ fj′1

∧ · · · ∧ fj′
q′
.

Let Φ(a) = gl1 ∧ · · · ∧ glp+q and Φ(b) = gl′1
∧ · · · ∧ gl′

p′+q′
.

For the elements of Φ(b) a similar assignment as that used in the previous demon-

stration will also be required. Specifically:

l′α′ = i′α′ for 1 ≤ α′ ≤ p′ ≤ s and l′α′ = s+ j′(α′−p′) for s+ 1 ≤ p′ + 1 ≤ α′ ≤ p′ + q′ ≤ s+ t.

For purposes of economy in representation of those components of Φ(a) and Φ(b) that

are mapped by the action of Φ on K(S1) and K(S2), let

gl(1→p)
= Φ(ei1 ∧ · · · ∧ eip);

gl(p+1→p+q)
= Φ(fj1 ∧ · · · ∧ fjq);

gl′
(1→p′)

= Φ(ei′1
∧ · · · ∧ ei′

p′
);

gl′
(p′+1→p′+q′)

= Φ(fj′1
∧ · · · ∧ fj′

q′
).
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Thus

Φ(a) = gl(1→p)
∧ gl(p+1→p+q)

= gl(1→p+q)
and Φ(b) = gl′

(1→p′)
∧ gl′

(p′+1→p′+q′)
= gl′

(1→p′+q′)
.

Φ(ab) = Φ
(
(−1)p′q · ei1 ∧ · · ·∧ eip ∧ ei′1

∧ · · ·∧ ei′
p′
⊗fj1 ∧ · · ·∧fjq ∧fj′1

∧ · · ·∧fj′
q′

)
= (−1)p′q · gl(1→p)

∧ gl′
(1→p′)

∧ gl(p+1→p+q)
∧ gl′

(p′+1→p′+q′)

= (−1)2p′q · gl(1→p)
∧ gl(p+1→p+q)

∧ gl′
(1→p′)

∧ gl′
(p′+1→p′+q′)

= gl(1→p+q)
∧ gl′

(1→p′+q′)

= Φ(a)Φ(b). Q.E.D.

PROPOSITION (2.6): Let A, B, C, be DG k-algebras where k is a field. Addi-

tionally, suppose that A is quasi-isomorphic to B. Then A⊗k C is quasi-isomorphic

to B ⊗k C.

PROOF: Suppose, without loss of generality, that there exists a quasi-isomorphism

Φ : A
'−→ B. Then H(Φ) is an isomorphism H(A)

∼=−→ H(B). Also note that Φ⊗ IdC

is a chain map: A⊗C '−→ B⊗C. By the Kunneth relation there exist isomorphisms:

Ψ1 : H(A⊗k C)
∼=−→ H(A)⊗k H(C) and Ψ2 : H(B ⊗k C)

∼=−→ H(B)⊗k H(C).

Since H(Φ) is an isomorphism, H(Φ)⊗k IdH(C) is also an isomorphism:

H(Φ)⊗k IdH(C) : H(A)⊗k H(C)
∼=−→ H(B)⊗k H(C).

It is clear that H(Φ⊗k IdC) is the isomorphism:

Ψ−1
2 ◦ H(Φ)⊗k IdH(C) ◦Ψ1 : H(A⊗k C)

∼=−→ H(B ⊗k C)

described by the commutative diagram:

H(A⊗k C)
H(Φ⊗Idc)−→ H(B ⊗k C)

Ψ1 ↓ ↓ Ψ2

H(A)⊗k H(C)
H(Φ)⊗IdH(C)−→ H(B)⊗k H(C)
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This demonstrates that Φ⊗k IdC is a quasi-isomorphism between complexes A⊗k C

and B ⊗k C. Q.E.D.

2.2.3 Proof of the Main Theorem

PROOF of (2.1):

Theorems (2.4) and (2.6) established the following sequence of maps:

K(S)
∼=−→ K(S1)⊗k K(S2)

'←→ H(K(S1)) ⊗k K(S2)
'←→ H(K(S1))⊗k H(K(S2))

∼=−→ H(K(S1 ⊗k S2))
∼=−→ H(K(S)) .

The first isomorphism is Proposition (2.4), the second quasi-isomorphism is by sub-

stitution of K(S1) for A and K(S2) for C in Proposition (2.6), the third quasi-

isomorphism is by substituting H(S1) for C and K(S2) for A (with A⊗kB ∼= B⊗kA),

the fourth isomorphism is by the Kunneth relation, and the fifth isomorphism was

determined by Theorem (2.4).

The previous sequence of maps proves only that if K(S1) and K(S2) are formal,

then K(S1 ⊗k S2) ∼= K(S) is formal. Theorem (2.1) is completed by the following

theorem of Jörg Backelin and Ralph Fröberg. Since H(K(S1)) and H(K(S2)) are

Koszul, then H(K(S1)) ⊗ H(K(S2) ∼= H(K(S1 ⊗ S2)) ∼= H(K(S)) is Koszul.Thus,

R1 ⊗k R2 is PK and Theorem (2.1) is proved. Q.E.D.

THEOREM 2 [16, p.7] [5, p.91]: A ⊗k B is a Koszul algebra if and only if A and B

are both Koszul algebras (or, for this special case) H(K(S1))⊗kH(K(S2)) is a Koszul

algebra if and only if H(K(S1)) and H(K(S2)) are both Koszul algebras.

As a special case, the following will be proved as a consequence of Theorem (2.1):
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COROLLARY (2.7): Let Q1 and Q2 be regular local rings over a common residue

field k. Let mQ1 and mQ2 be maximal ideals in Q1 and Q2 (resp.). Let I1 and I2 be

ideals of Q1 and Q2 (resp.) such that I1 ⊂ m2
Q1

and I2 ⊂ m2
Q2

. Let R1 = Q1/I1 and

R2 = Q2/I2. Let m1 = (x1, . . . , xs) and m2 = (y1, . . . , yt) be the maximal ideals in R1

and R2 (resp.). Assume that the minimal free resolutions G1 of R1 over Q1 and G2

of R2 over Q2 have algebra structures, that is, they are DG Q-algebras. Further as-

sume that their respective homology algebras: H(K(x1, . . . , xs)) and H(K(y1, . . . , yt))

are Koszul. Then R1 ⊗k R2 is a PK ring with respect to the sequence of elements

x1 ⊗k 1R2 , . . . , xs ⊗k 1R2 , 1R1 ⊗k y1, . . . , 1R1 ⊗k yt.

This corollary will require the following lemma:

LEMMA (2.8): Let Q be a Noetherian commutative ring having a maximal ideal

mQ = (x1, . . . , xs) generated by a Q-regular sequence x1, . . . , xs, and k = Q/mQ

(a field). Let I be an ideal of Q such that mR = (x̄1, . . . , x̄s) is a maximal ideal

of R = Q/I. Then k ∼= R/mR. Assume that (G, d) is a DG Q-algebra quasi-

isomorphic to R such that Im(di) ⊆ (x1, . . . , xs)Gi−1 for all i. If the homology algebra

H(K(x̄1, . . . , x̄s)) is Koszul, then R is a PK ring with respect to x̄1, . . . , x̄s.

PROOF: Recall from section 1.2 that the Koszul complex on x1, . . . , xs is isomorphic

to the minimal free resolution of the field k over Q. Let F denote this minimal free

resolution of the field k over Q; let G denote the free resolution of R over Q with

an algebra structure, that is, a DG Q-algebra quasi-isomorphic to R. The following

maps, in conjunction with the definition of a PK ring, justify the lemma.
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k ⊗Q G
'←− F ⊗Q G

'−→ F ⊗Q R

↓∼= ↓ ↓

H(k ⊗Q G) ∼= H(F ⊗Q G) ∼= H(F ⊗Q R)

The top row is the sequence of quasi-isomorphisms. The Koszul complex is F ⊗Q R,

and therefore the homology algebra of R is H(F ⊗Q R). The bottom row is justified

by the balanced Tor functor. As indicated in an earlier example (section 1.6) the

isomorphism k⊗QG
∼=−→ H(k⊗QG) is forced by tensoring G over Q with the field k,

making all maps in H(k ⊗Q G) trivial, and thus isomorphic to k ⊗Q G. Q.E.D.

PROOF of Corollary (2.7): Assume that the conditions of the corollary are satisfied.

Since the homology algebras, H(K(x1, . . . , xs) and H(K(y1, . . . , yt) of the corollary

are both Koszul, therefore, by the lemma, both R1 and R2 are PK rings. Then, by

Theorem (2.1), R1 ⊗k R2 is PK ring. Q.E.D.

It will be useful for future applications to have a direct and constructive proof of

the Corollary. The following Propositions will allow for a direct substitution of terms

from the statement of the Corollary.

2.3 Isomorphisms of Tensored Complexes

Let R1 and R2 be k-algebras. Let F1, G1, be DG R1-algebras; let F2, G2 be DG

R2-algebras. Then it is immediate that F1, G1, F2, G2 are all DG k-algebras. The

following are a consequence of Propositions (2.2) and (2.3):
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(i). F1 ⊗k F2 is a DG R1 ⊗k R2-algebra;

(ii). G1 ⊗k G2 is a DG R1 ⊗k R2-algebra;

(iii). F1 ⊗R1 G1 is a DG R1-algebra;

(iv). F2 ⊗R2 G2 is a DG R2-algebra;

(v). (F1 ⊗k F2)⊗R1⊗kR2 (G1 ⊗k G2) is a DG R1 ⊗k R2-algebra;

(vi). (F1 ⊗R1 G1)⊗k (F2 ⊗R2 G2) is a DG R1 ⊗k R2-algebra.

For the proof of the Corollary, (v) and (vi) will be shown to be isomorphic com-

plexes of R1 ⊗k R2-algebras.

THEOREM (2.9): Let F1 and G1 be R1-modules; let F2 and G2 be R2-modules.

Then with the R1 ⊗k R2 coefficient action, there exists an R1 ⊗k R2-module isomor-

phism,

Φ : (F1 ⊗k F2)⊗R1⊗kR2 (G1 ⊗k G2)−→(F1 ⊗R1 G1)⊗k (F2 ⊗R2 G2)

Φ(f1 ⊗ f2 ⊗ g1 ⊗ g2) = f1 ⊗ g1 ⊗ f2 ⊗ g2.

PROOF: Both the map Φ and its inverse:

Ψ : (F1 ⊗R1 G1)⊗k (F2 ⊗R2 G2)−→(F1 ⊗k F2)⊗R1⊗kR2 (G1 ⊗k G2)

Ψ((f1⊗g1)⊗(f2⊗g2)) = (f1⊗f2)⊗(g1⊗g2).

are constructed by repeated use of the Universal Mapping Property of tensor products.

Proposition (2.10), which follows, is required for the completion of Theorem (2.9).
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PROPOSITION (2.10): Φ is an R1 ⊗k R2-linear map.

PROOF: Let r1 ⊗ r2 and r′1 ⊗ r′2 be elements of R1 ⊗k R2.

Φ((r1 ⊗ r2 + r′1 ⊗ r′2)(f1 ⊗ f2 ⊗ g1 ⊗ g2))

= Φ ((r1 ⊗ r2)f1 ⊗ f2 ⊗ g1 ⊗ g2 + (r′1 ⊗ r′2)f1 ⊗ f2 ⊗ g1 ⊗ g2)

= Φ ((r1f1 ⊗ r2f2 ⊗ g1 ⊗ g2) + (r′1f1 ⊗ r′2f2 ⊗ g1 ⊗ g2))

= (−1)|f2||g1|r1f1 ⊗ r2f2 ⊗ g1 ⊗ g2 + (−1)|f2||g1|r1f1 ⊗ r2f2 ⊗ g1 ⊗ g2

= (−1)|f2||g1|(r1 ⊗ r2)f1 ⊗ f2 ⊗ g1 ⊗ g2 + (−1)|f2||g1|(r′1 ⊗ r′2)f1 ⊗ f2 ⊗ g1 ⊗ g2

= (r1 ⊗ r2 + r1 ⊗ r2)
(
(−1)|f2||g1|f1 ⊗ f2 ⊗ g1 ⊗ g2

)
= (r1 ⊗ r2 + r1 ⊗ r2)Φ(f1 ⊗ f2 ⊗ g1 ⊗ g2). Q.E.D.

2.3.1 Extending the Theorem from Modules to Complexes

The previous proof will be extended from modules to complexes. This is ac-

complished with minor changes in statement and architecture of proof. Additionally,

it will be demonstrated that the isomorphisms commute with the differential for total

complexes.

PROPOSITION (2.11): Let F1 and G1 be complexes of R1 modules; let F2 and

G2 be complexes of R2 modules. Then (F1 ⊗k F2)⊗R1⊗kR2 (G1 ⊗k G2) and

(F1 ⊗R1 G1)⊗k (F2 ⊗R2 G2) are isomorphic as complexes of modules over R1⊗kR2.

PROOF: Substitute complexes for the modules in the proof of Proposition (2.9).

Define the isomorphisms Φ and Ψ acting on an arbitrary degree n simple tensor in

the total complex as before except with coefficient adjustments of (−1)|f2|·|g1| for Φ

((−1)|g1|·|f2| for Ψ) to account for the transpositions across the tensor symbols.
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Φ : f1 ⊗ f2 ⊗ g1 ⊗ g2 −→ (−1)|f2|·|g1|f1 ⊗ g1 ⊗ f2 ⊗ g2

Ψ : f1 ⊗ g1 ⊗ f2 ⊗ g2 −→ (−1)|g1|·|f2|f1 ⊗ f2 ⊗ g1 ⊗ g2. Q.E.D.

2.3.2 Φ is a Chain Map

PROPOSITION (2.12): Let Φ be the map defined on complexes from the previous

theorem:

Φ : (F1 ⊗k F2)⊗R1⊗kR2 (G1 ⊗k G2) −→ (F1 ⊗R1 G1)⊗k (F2 ⊗R2 G2) .

Let ∂ be the total differential defined on (F1⊗k F2)⊗R1⊗kR2 (G1⊗k G2). Let ∂′ be the

total differential defined on (F1 ⊗R1 G1) ⊗k (F2 ⊗R2 G2). Then Φ ◦ ∂ = ∂′ ◦ Φ (the

differential commutes with the isomorphism).

PROOF: Consider the sequence of maps: Φ ◦ ∂ acting on a simple degree n element,

f1 ⊗ f2 ⊗ g1 ⊗ g2 of

((F1⊗k F2)⊗R1⊗kR2 (G1⊗k G2))n =
⊕

p+q+r+s=n

(F1,p⊗k F2,q)⊗R1⊗kR2 (G1,r ⊗k G2,s) :

∂(f1 ⊗ f2 ⊗ g1 ⊗ g2)

= ∂F1⊗kF2(f1 ⊗ f2)⊗ (g1 ⊗ g2) + (−1)|f1⊗f2|(f1 ⊗ f2)⊗ ∂G1⊗kG2(g1 ⊗ g2)

=
(
∂F1(f1)⊗ f2 + (−1)|f1|f1 ⊗ ∂F2(f2)

)
⊗ (g1 ⊗ g2)

+(−1)|f1⊗f2|(f1 ⊗ f2)⊗
(
∂G1(g1)⊗ g2 + (−1)|g1|g1 ⊗ ∂G2(g2)

)
.

After expanding terms linearly, the previous expression becomes:

∂F1(f1)⊗ f2 ⊗ g1 ⊗ g2 + (−1)pf1 ⊗ ∂F2(f2)⊗ g1 ⊗ g2
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+(−1)p+qf1 ⊗ f2 ⊗ ∂G1(g1)⊗ g2 + (−1)p+q+rf1 ⊗ f2 ⊗ g1 ⊗ ∂G2(g2).

Apply Φ (termwise) to the previous expression:

Φ(∂F1(f1)⊗ f2 ⊗ g1 ⊗ g2) = (−1)qr∂F1(f1)⊗ g1 ⊗ f2 ⊗ g2;

Φ((−1)pf1 ⊗ ∂F2(f2)⊗ g1 ⊗ g2) = (−1)p+(q−1)rf1 ⊗ g1 ⊗ ∂F2(f2)⊗ g2;

Φ((−1)p+qf1 ⊗ f2 ⊗ ∂G1(g1)⊗ g2) = (−1)p+q+q(r−1)f1 ⊗ ∂G1(g1)⊗ f2 ⊗ g2;

Φ((−1)p+q+rf1 ⊗ f2 ⊗ g1 ⊗ ∂G2(g2)) = (−1)p+q+r+qrf1 ⊗ g1 ⊗ f2 ⊗ ∂G2(g2).

The sequence of operations ∂′ ◦ Φ will be evaluated on f1 ⊗ f2 ⊗ g1 ⊗ g2:

Φ(f1 ⊗ f2 ⊗ g1 ⊗ g2) = (−1)qrf1 ⊗ g1 ⊗ f2 ⊗ g2;

∂′ ((−1)qrf1 ⊗ g1 ⊗ f2 ⊗ g2)

= (−1)qr
(
∂′F1⊗R1

G1(f1 ⊗ g1)⊗ (f2 ⊗ g2)
)

+(−1)qr
(
(−1)|f1⊗g1|(f1 ⊗ g1)⊗ ∂′F2⊗R1

G2(f2 ⊗ g2)
)

= (−1)qr
(
∂′F1(f1)⊗ g1 + (−1)|f1|f1 ⊗ ∂′G1(g1)

)
⊗ (f2 ⊗ g2)

+(−1)|f1⊗g1|+qr(f1 ⊗ g1)⊗
(
∂′F2(f2)⊗ g2 + (−1)|f2|f2 ⊗ ∂′G2(g2)

)
= (−1)qr∂′F1(f1)⊗ g1 ⊗ f2 ⊗ g2 + (−1)qr+pf1 ⊗ ∂′G1(g1)⊗ f2 ⊗ g2

+(−1)qr+p+rf1 ⊗ g1 ⊗ ∂′F2(f2)⊗ g2 + (−1)qr+p+r+qf1 ⊗ g1 ⊗ f2 ⊗ ∂′G1(g2).

Comparing terms from the two operations on the same element indicates that

(Φ ◦ ∂)(f1 ⊗ f2 ⊗ g1 ⊗ g2) = (∂′ ◦ Φ)(f1 ⊗ f2 ⊗ g1 ⊗ g2) since

(−1)p+(q−1)rf1 ⊗ g1 ⊗ ∂F2(f2)⊗ g2 = (−1)qr+p+rf1 ⊗ g1 ⊗ ∂′F2(f2)⊗ g2

and

(−1)p+q+q(r−1)f1 ⊗ ∂G1(g1)⊗ f2 ⊗ g2 = (−1)qr+pf1 ⊗ ∂′G1(g1)⊗ f2 ⊗ g2.

The proof that Ψ ◦ ∂′ = ∂ ◦Ψ is similar. Q.E.D.
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2.3.3 Φ and Ψ are Isomorphisms of DG Algebras

At this stage all that has been demonstrated is the commutativity of the iso-

morphisms (of the complexes) with the differentials. It remains to be shown that

these are isomorphisms of differential graded algebras. To accomplish this the differ-

entials ∂ and ∂′ will be shown to be R1⊗kR2-linear. The map Φ will also be shown to

commute with multiplication in the complex. The demonstration that Ψ commutes

with multiplication is similar and will not be given. All of the above will suffice to

show that the maps Φ and Ψ are both differential graded algebra homomorphisms

with respect to R1 ⊗k R2 and k coefficient actions.

2.3.4 The R1 ⊗k R2-Linearity of the Differentials

PROPOSITION (2.13): ∂ is R1 ⊗k R2-linear.

PROOF: Consider the arbitrary simple tensor f1 ⊗ f2 ⊗ g1 ⊗ g2 of the complex

F1 ⊗k F2 ⊗R1⊗kR2 G1 ⊗k G2.

Let the degrees of the elements of the tensor be as follows:

|f1| = p; |g1| = r; |f2| = q; |g2| = s. The following will be shown:

∂((r1 ⊗ r2)(f1 ⊗ f2 ⊗ g1 ⊗ g2)) = (r1 ⊗ r2)∂(f1 ⊗ f2 ⊗ g1 ⊗ g2).

∂((r1 ⊗ r2)(f1 ⊗ f2 ⊗ g1 ⊗ g2)) = ∂(r1f1 ⊗ r2f2 ⊗ g1 ⊗ g2)

= (∂(r1f1 ⊗ r2f2))⊗ (g1 ⊗ g2) + (−1)p+q(r1f1 ⊗ r2f2)⊗ (∂(g1 ⊗ g2))

= (∂(r1f1)⊗ (r2f2) + (−1)p(r1f1)⊗ ∂(r2f2))⊗ (g1 ⊗ g2)

+(−1)p+q(r1f1 ⊗ r2f2)⊗ ((∂g1)⊗ g2 + (−1)rg1 ⊗ (∂g2))

= ∂(r1f1)⊗ (r2f2)⊗ (g1 ⊗ g2) + (−1)p(r1f1)⊗ ∂(r2f2)⊗ (g1 ⊗ g2)

34



+(−1)p+q(r1f1 ⊗ r2f2)⊗ ((∂g1)⊗ g2) + (−1)p+q+r(r1f1 ⊗ r2f2)⊗ (g1 ⊗ (∂g2))

= r1(∂f1)⊗ r2(f2)⊗ (g1 ⊗ g2) + (−1)p(r1(f1)⊗ r2(∂f2))⊗ (g1 ⊗ g2)

+(−1)p+qr1(f1)⊗ r2(f2)⊗ ∂(g1)⊗ g2 + (−1)p+q+rr1(f1)⊗ r2(f2)⊗ (g1 ⊗ ∂(g2)).

By the previous calculation :

∂(f1 ⊗ f2 ⊗ g1 ⊗ g2) = (∂f1)⊗ f2 ⊗ g1 ⊗ g2 + (−1)pf1 ⊗ (∂f2)⊗ g1 ⊗ g2

+(−1)p+qf1 ⊗ f2 ⊗ (∂g1)⊗ g2 + (−1)p+q+rf1 ⊗ f2 ⊗ g1 ⊗ (∂g2)

and by the defined R1 ⊗k R2 coefficient action on F1 ⊗k F2 ⊗R1⊗kR2 G1 ⊗k G2 the

proposition has been proved. Thus ∂ is R1 ⊗k R2-linear. Q.E.D.

PROPOSITION (2.14): ∂′ is R1 ⊗k R2-linear.

PROOF: Consider an arbitrary tensor f1 ⊗ g1 ⊗ f2 ⊗ g2 of the complex

F1 ⊗R1 G1 ⊗k F2 ⊗R2 G2. Let the degree of each element of the tensor be as in the

previous theorem:

|f1| = p; |g1| = r; |f2| = q; |g2| = s.

∂′((r1 ⊗ r2)(f1 ⊗ g1 ⊗ f2 ⊗ g2)) = ∂′((r1f1 ⊗ g1)⊗ (r2f2 ⊗ g2))

= (∂′(r1f1 ⊗ g1))⊗ (r2f2 ⊗ g2) + (−1)p+r(r1f1 ⊗ g1)⊗ (∂′(r2f2 ⊗ g2))

= (∂′(r1f1)⊗ g1 + (−1)p(r1f1)⊗ (∂′g1))⊗ (r2f2 ⊗ g2)

+(−1)p+r(r1f1 ⊗ g1)⊗ (∂′(r2f2)⊗ g2 + (−1)q(r2f2)⊗ (∂′g2))

= (∂′(r1f1)⊗ g1)⊗ (r2f2 ⊗ g2) + (−1)p((r1f1)⊗ ∂′g1)⊗ (r2f2 ⊗ g2)

+(−1)p+r(r1f1 ⊗ g1 ⊗ ∂′(r2f2)⊗ g2 + (−1)p+r+q(r1f1 ⊗ g1)⊗ (r2f2 ⊗ ∂′g2).

By the previous calculation for the action of ∂′:

∂′(f1 ⊗ g1 ⊗ f2 ⊗ g2)

= (∂′f1)⊗ g1 ⊗ f2 ⊗ g2 + (−1)pf1 ⊗ (∂′g1)⊗ f2 ⊗ g2

+(−1)p+rf1 ⊗ g1 ⊗ (∂′f2)⊗ g2 + (−1)p+r+qf1 ⊗ g1 ⊗ f2 ⊗ (∂′g2)
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and the defined R1 ⊗k R2 coefficient action, the following has been shown:

∂′((r1 ⊗ r2)(f1 ⊗ g1 ⊗ f2 ⊗ g2) = (r1 ⊗ r2)∂′(f1 ⊗ g1 ⊗ f2 ⊗ g2).

Hence, ∂′ is R1 ⊗k R2-linear. Q.E.D.

2.3.5 Multiplicative Structure of the Complexes

PROPOSITION (2.15): The chain maps Φ and Ψ commute with multiplication.

PROOF: Let the tensors f1 ⊗ f2 ⊗ g1 ⊗ g2 and f ′1 ⊗ f ′2 ⊗ g′1 ⊗ g′2 be elements of

F1 ⊗k F2 ⊗R1⊗kR2 G1 ⊗k G2 with the following degrees:

|f1| = p1; |f2| = q1; |g1| = r1; |g2| = s1;

|f ′1| = p2; |f ′2| = q2; |g′1| = r2; |g′2| = s2;

Φ ((f1 ⊗ f2 ⊗ g1 ⊗ g2)(f
′
1 ⊗ f ′2 ⊗ g′1 ⊗ g′2))

= (−1)(r1+s1)(p2+q2)Φ (((f1 ⊗ f2)(f
′
1 ⊗ f ′2))⊗ ((g1 ⊗ g2)(g

′
1 ⊗ g′2)))

= (−1)(r1+s1)(p2+q2)+p2q1+r2s1Φ ((f1f
′
1)⊗ (f2f

′
2)⊗ (g1g

′
1)⊗ (g2g

′
2))

= (−1)(r1+s1)(p2+q2)+p2q1+r2s1+(r1+r2)(q1+q2)(f1f
′
1)⊗ (g1g

′
1)⊗ (f2f

′
2)⊗ (g2g

′
2)

= (−1)r1(p2+q1)+s1(p2+q2+r2)+q1(p2+r2)+r2q2 ((f1f
′
1)⊗ (g1g

′
1)⊗ (f2f

′
2)⊗ (g2g

′
2)).

Φ(f1 ⊗ f2 ⊗ g1 ⊗ g2) = (−1)r1q1f1 ⊗ g1 ⊗ f2 ⊗ g2;

Φ(f ′1 ⊗ f ′2 ⊗ g′1 ⊗ g′2) = (−1)r2q2f ′1 ⊗ g′1 ⊗ f ′2 ⊗ g′2;

Φ (f1 ⊗ f2 ⊗ g1 ⊗ g2) Φ (f ′1 ⊗ f ′2 ⊗ g′1 ⊗ g′2)

= (−1)r1q1+r2q2(f1 ⊗ g1 ⊗ f2 ⊗ g2)(f
′
1 ⊗ g′1 ⊗ f ′2 ⊗ g′2)

= (−1)r1q1+r2q2+(p2+r2)(q1+s1) ((f1 ⊗ g1)(f
′
1 ⊗ g′1))⊗ ((f2 ⊗ g2)(f

′
2 ⊗ g′2))

= (−1)r1q1+r2q2+(p2+r2)(q1+s1)+p2r1+s1q2 ((f1f
′
1)⊗ (g1g

′
1)⊗ (f2f

′
2)⊗ (g2g

′
2))
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= (−1)r1(p2+q1)+s1(p2+q2+r2)+q1(p2+r2)+r2q2 ((f1f
′
1)⊗ (g1g

′
1)⊗ (f2f

′
2)⊗ (g2g

′
2)).

Q.E.D.

The proof for Ψ commuting with multiplication is similar and will not be given.

2.4 The Homology Algebra of the Complex

The classification of rings by homology algebras will require extending the pre-

vious theorems by considering the tensor of a free module complex with another free

module complex: F1 ⊗k F2. This tensor of complexes will constructively be tensored

again with another tensor of complexes: G1 ⊗k G2. Homology will subsequently be

defined on this “tensor of tensored complexes”:

(F1 ⊗k F2)⊗R1⊗kR2 (G1 ⊗k G2),

from which the definition of the homology algebra of

(F1 ⊗k F2) ⊗R1⊗kR2 (G1 ⊗k G2) and its isomorphism to the tensor of the homology

algebras (of the complexes: F1 ⊗k F2 and G1 ⊗k G2) will be obtained by using the

Kunneth relation.

PROPOSITION (2.16):

Hn(F1 ⊗k F2 ⊗R1⊗kR2 G1 ⊗k G2) ∼=
⊕

p+q=n

Hp(F1 ⊗R1 G1)⊗k Hq(F2 ⊗R2 G2).

PROOF: The isomorphism Φ : (F1 ⊗k F2) ⊗R1⊗kR2 (G1 ⊗k G2)
∼=−→ (F1 ⊗R1 G1) ⊗k

(F2 ⊗R2 G2) was established in section 2.3. Thus, for any specific degree n,

Hn

(
(F1⊗kF2)⊗R1⊗kR2 (G1⊗kG2)

) ∼=−→ Hn

(
(F1⊗R1G1)⊗k(F2⊗R2G2)

)
. The following
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isomorphism is obtained from the definition of the total complex in section 2.1 by

application of the Kunneth relation:

Hn

(
(F1 ⊗R1 G1)⊗k (F2 ⊗R2 G2)

) ∼= ⊕
p+q=n

Hp(F1 ⊗R1 G1)⊗k Hq(F2 ⊗R2 G2).

Q.E.D.

PROOF of Corollary (2.7): Let Q1, Q2, I1, I2, R1, R2, m1, and m2 be as in-

dicated in the statement of (2.7). The proof will be by substitution. Let F1 denote

the free resolution of k over Q1. Let F2 denote the free resolution of k over Q2. Let

G1 denote the free resolution of R1 over Q1 and G2 denote the free resolution of R2

over Q2. By Proposition (2.11) and the Kunneth relation, the following isomorphisms

were established:

H
(
(F1 ⊗k F2)⊗Q1⊗kQ2 (G1 ⊗k G2)

) ∼= H
(
(F1 ⊗Q1 G1)⊗k (F2 ⊗Q2 G2)

)
∼= H(F1 ⊗Q1 G1)⊗k H(F2 ⊗Q2 G2).

By the balanced Tor functor:

H(F1 ⊗Q1 G1)⊗k H(F2 ⊗Q2 G2) ∼= H(F1 ⊗Q1 R1)⊗k H(F2 ⊗Q2 R2).

By definition: H(F1⊗Q1R1) = H
(
K(x1, . . . , xs)

)
and H(F2⊗Q2R2) = H

(
K(y1, . . . , yt)

)
.

By Proposition (2.4) F1 ⊗k F2
∼= F where F is the free resolution of k with respect

to the sequence {x1 ⊗ 1R2 , . . . , xs ⊗ 1R2 , 1R1 ⊗ y1, . . . , 1R1 ⊗ yt}; hence,

H
(
(F1 ⊗k F2)⊗Q1⊗kQ2 (G1 ⊗k G2)

) ∼= H
(
F ⊗Q1⊗kQ2 (G1 ⊗k G2)

)
.

By the balanced Tor functor: H
(
F ⊗Q1⊗kQ2 (G1⊗k G2)

) ∼= H
(
F ⊗Q1⊗kQ2 (R1⊗k R2).

By definition of the Koszul complex and Proposition (2.4)

H
(
F ⊗Q1⊗kQ2 (R1 ⊗k R2)

)
= H

(
K(x1 ⊗ 1R2 , . . . , xs ⊗ 1R2 , 1R1 ⊗ y1, . . . , 1R1 ⊗ yt)

)
.

The conditions of the Corollary assume that H(F1 ⊗Q1 R1) = H
(
K(x1, . . . , xs)

)
and

H(F2 ⊗Q2 R2) = H
(
K(y1, . . . , yt)

)
are both Koszul algebras. By Theorem 2 of Back-
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elin and Fröberg (above), this implies that H
(
F ⊗Q1⊗kQ2 (R1 ⊗k R2)

)
= H

(
K(x1 ⊗ 1R2 , . . . , xs ⊗ 1R2 , 1R1 ⊗ y1, . . . , 1R1 ⊗ yt)

)
is also Koszul.

It remains to show that R1 ⊗k R2 is formal. Recall the the quasi-isomorphism

of the bi-complex:

k ⊗Q1⊗kQ2 G1 ⊗k G2
'←− F ⊗Q1⊗kQ2 (G1 ⊗k G2)

'−→ F ⊗Q1⊗kQ2 (R1 ⊗k R2).

Since G1 ⊗k G2 is tensored with the field k over Q1 ⊗k Q2, therefore

k ⊗Q1⊗kQ2 (G1 ⊗k G2) ∼= H
(
k ⊗Q1⊗kQ2 G1 ⊗k G2

)
as in section 1.5. The following

diagram summarizes the previous argument. The symbol Q will be used to denote

the ring Q1 ⊗k Q2 for purposes of economy of space.

k ⊗Q (G1 ⊗k G2)
'←− F ⊗Q (G1 ⊗k G2)

'−→ F ⊗Q (R1 ⊗k R2)

↓∼= ↓ ↓

H(k ⊗Q G1 ⊗k G2) ∼= H
(
F ⊗Q (G1 ⊗k G2)

) ∼= H
(
F ⊗Q (R1 ⊗k R2)

)
The bottom row is a special case of the balanced Tor functor. Since the Koszul

complex F ⊗Q1⊗kQ2 (R1⊗kR2) is linked to the homology algebra H
(
F ⊗Q1⊗kQ2 (R1⊗k

R2)
)

by a sequence of quasi-isomorphisms, and since H
(
F ⊗Q1⊗kQ2 (R1 ⊗k R2)

)
was

shown to be a Koszul algebra, therefore R1 ⊗k R2 has been shown to satisfy the

Lemma (2.8) and is a PK ring. Q.E.D.
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CHAPTER 3

COMMUTATIVE RINGS OF SMALL PROJECTIVE DIMENSION

3.1 Introduction

This section will classify some rings of small projective dimension as PK using

previous work by L. Avramov [2, pp. 51-52] and Andrew R. Kustin and Matthew

Miller [20, pp.348-349]. The archetype of PK rings are the local complete intersec-

tions. As a result of the classifications in this chapter it will be shown that PK rings

are not restricted to the local complete intersections and, thus by the results of Chap-

ter 2, arbitrary tensors of the rings classified in this chapter will yield other examples

of PK rings. Throughout this section R = Q/I where Q is a regular local ring, mQ

is the maximal ideal in Q, and I ⊆ m2
Q. The classification proceeds according to

the projective dimension of R over Q. Throughout H denotes the homology algebra

of R with respect to a minimal set of generators of the maximal ideal of R. It is

well-known that all rings R considered in this section have minimal free resolutions

over Q which admit an algebra structure. Thus, by the results of Chapter 2, their

Koszul complexes are formal, and to show that they are PK, it only must be shown

that the their homology algebras H are Koszul algebras.

3.2 Classification of Projective Dimension 2 Rings

In the case that R has projective dimension two over Q, it is known that the

homology algebra has trivial multiplication, and is therefore Koszul. Below is pro-

vided a different proof. It relies on the Hilbert-Burch Theorem (see D. Eisenbud: [14,
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pp.506-507]):

If the complex

F : 0 −→ Qn φ2−→ Qn+1 φ1−→ Q −→ R −→ 0

is exact, then there exists a nonzerodivisor a such that I = aIn(φ2) where In(φ2)

refers to the ideal generated by minors of size n × n in the matrix representing the

map φ2. The ith entry of the matrix for φ1 is (−1)ia times the minor obtained from

φ2 by leaving out the ith row. The ideal In(φ2) has depth exactly 2.

THEOREM (3.1): If the local ring R has projective dimension 2 then it is a PK

ring.

PROOF: Let {x1, . . . , xd} be a minimal generating set for mQ. Consider the free

resolution of R = Q/I over Q:

F : 0 −→ Qn φ2−→ Qn+1 φ1−→ Q −→ R −→ 0

The matrix representing the map φ1 is comprised of the generators of I. By the

Hilbert-Burch Theorem, φ2 is represented by a (n+1)×n matrix M . We can assume

that n ≥ 2. Otherwise the ring will be a complete intersection and the homology

algebra will be the exterior algebra, the case which is already known to be PK. The

proof will be by considering two cases: Case (1): The nonzerodivisor a is not a unit;

Case (2): The nonzerodivisor a is a unit. In both cases it will be demonstrated that

the homology algebra is the trivial algebra, i.e., all products of homology generators

are 0. The proof that projective dimension 2 rings are PK will follow from observing

that the homology algebras are PBW algebras and are thus Koszul.
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Case (1): Each generator in I is a nonzerodivisor a times the determinant of an

n×n submatrix Mr, where the submatrix Mr is formed by eliminating the rth row of

M . Each generator of I therefore has a common factor of a and may all be written

as products of a: fi = a · f ′i . The factor a may be written a =
∑d

l=1 xl · pl where pl

is a polynomial in the ring Q. A preimage zr ∈ Q · e1 ⊕ · · · ⊕ Q · ed of a degree 1

homology generator [zr], that is associated with fr, may be obtained by substituting

an exterior algebra basis vector el for xl in the terms of a. Denote this substitution

by a′. Thus, the representation of zr may be chosen such that zr = a′ · f ′r. Then any

two preimages zr, zs of homology generators of degree 1 of the homology algebra will

have their product zrzs = (a′ · f ′r)∧ (a′ · f ′s) = (a′ ∧ a′) · (f ′rf ′s) = 0 since a′ ∧ a′ = 0 in

the exterior algebra. Hence, [zr][zs] = 0 in the homology algebra H(K(x̄1, . . . , x̄d)),

where ideal (x̄1, . . . , x̄d) is maximal in R.

Case (2): For a a unit, we let the elements yi,j of Q represent entries of M , the

matrix representing φ2 in the Hilbert-Burch theorem. In this case the Hilbert-Burch

Theorem will be used to show that any product of degree 1 generators of the ho-

mology algebra will be zero. As in Case 1, the development will be done in Q with

preimages of homology generators, and the final results will be obtained after ten-

soring the preimages in Q · e1 ⊕ · · · ⊕ Q · ed with R over Q to obtain the homology

generators in R · e1 ⊕ · · · ⊕R · ed.

Before this is done, it will be shown that the choice of preimage of homology

generator zr is independent modulo boundaries. Two facts will be recalled:

1. The determinant of a n × n matrix of indeterminates yi,j (without repetition) is

a homogeneous polynomial of degree n, with each term denoting a transversal of the
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matrix;

2. The Koszul differential ∂2 acting on an arbitrary degree 2 basis vector ep ∧ eq in

the exterior algebra Λ2Q has form ∂2(ep ∧ eq) = xpeq − xqep.

LEMMA (3.2): Let Mr be as stated in the Hilbert-Burch Theorem and let zr be

as stated above. Let F denote the Koszul resolution of the field k = Q/mQ over Q.

Then the difference in any two representations of zr lies in the Im(ψ2) where ψ2 is

the second map in F . Thus, any two different representations of the same generator

z̄r are homologically equivalent in F ⊗Q R.

PROOF: A preimage zr of degree 1 is obtained from a generator fr of I by substituting

an exterior algebra basis vector for a degree 1 factor in each term of fr. Let yi,j =
∑

l pl

where pl ∈ Q are elements not all of degree < 2. There will be more than one

way to factor the monomial terms of degree ≥ 2 in yi,j as products of degree 1

factors. Fix any row i in Mr and consider the substitution map: λ1
i,1 : yi,1 7→ y′i,1

where y′i,1 =
∑d

α=1 eα · p′l (exterior algebra vector eα is substituted for xα). Similar

substitution maps λ1
i,2, . . . , λ

1
i,n may be defined for the remaining elements in row i

of Mr. Let M ′
r denote the new matrix after these substitutions. Now consider the

substitution map: λ2
i,1 : yi,1 7→ y′′i,1 where y′′i,1 =

∑d
β=1 eβ · p′′l (exterior algebra vector

eβ is substituted for xβ where xβ 6= xα). Similar substitution maps λ2
i,2, . . . , λ

2
i,n may

be defined for the remaining elements in row i of Mr. Let M ′′
r denote the new matrix

after these substitutions.

Thus two different representations of zr: z
′
r and z′′r may be obtained from |M ′

r|

and |M ′′
r | (the determinants of M ′

r and M ′′
r ). (Note: The substitution map λ2

i,j could
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similarly have been defined by fixing a column j and substituting y′1,j, . . . , y
′
n,j for

y1,j, . . . , yn,j (resp.).

The problem of independence of representation of zr therefore reduces to show-

ing that the difference of any two representations of zr: z
′
r − z′′r (|M ′

r| − |M ′′
r |) lies

in the image of ψ2, and thus, after tensoring with R over Q, represents the same

cycle in homology. The proof is immediate upon considering the following: Any two

different cofactor evaluations of the determinant |Mr| yield the same degree n poly-

nomial. Thus, the two different representations are distinguished by different choices

for degree 1 substitutions in each term of |Mr|. The map ψ2 is comprised entirely of

the differences of all pairs of such substitutions (as column vectors - refer to fact 2

above). Each term of z′r − z′′r will therefore occur in ψ2 as polynomial combinations

of column vectors in ψ2, i.e., z′r − z′′r ∈ Im(ψ2). Q.E.D.

EXAMPLE: Let yi,j ∈ Q = k[x1, . . . , x6] be an element in φ2; let term t in the

determinant polynomial of Mr be x1x3x5x6; let t′1 = x1e3x5x6 be the substituted

term in the first representation of z; let t′2 = x1x3x5e6 be the substituted term in the

second representation of z. Then t′1 − t′2 = (−x1x5)(x6e3 − x3e6) = (−x1x5)· column

12 of ψ2 (the second map in the Koszul resolution of k over Q).

Consider the matrices Mr,Ms,Mt which occur as n×n submatrices in M after

removing row(s) r, s, t (resp.) from M . Any two of the three matrices will have all

rows except one in common. Let Rowcom(α, β) denote the set of common rows of

matrices Mα and Mβ. All rows of Rowcom(r, s) may be written with the same order

as the first n − 1 rows in both Mr and Ms, leaving row n in Mr and Ms to be the
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row where they differ. The assumptions on matrices M,Mr,Ms,Mt will force the

submatrix Mt to have n − 2 rows in Rowcom(r, s), with the nth rows of Mr and Ms

as the two remaining rows of Mt. Without loss of generality, Mt may be represented

with the first n− 2 rows from Rowcom(r, s) with row n from Mr and row n from Ms

being rows n− 1 and n of Mt (resp.).

By the previous lemma, the choice of representation of a homology generator

preimage z is invariant. Therefore, without loss of generality, the exterior algebra

substitutions yi,j 7→ y′i,j may be taken along row t, which is in Rowcom(r, s). Degree 1

preimages zr, zs will be obtained from |M ′
r| and |M ′

s| (resp.). The product of preim-

ages zr · zs will be the product of the determinants |M ′
r| · |M ′

s|. The following lemma

will show that any degree 2 wedge product in y′t,j1 ∧ y
′
t,j2

will have as a coefficient the

product of the determinant of Mt with a polynomial, and thus will be in the ideal I.

Hence, after tensoring with R over Q, z̄rz̄s = 0.

LEMMA (3.3): Let Mr,Ms,Mt be matrices (as indicated above) such that any two

of them differ in only one row. Let m∗[i1, . . . , in|j1, . . . , jm] denote the minor of M∗

with rows i1, . . . , in and columns j1, . . . , jm removed. Then for elements yt,j1 , yt,j2 in

row t of Mr and Ms, the following is the case:

mr[t|j1]ms[t|j2]−mr[t|j2]ms[t|j1] = mt[n− 1, n|j1, j2]|Mt|.

PROOF: Without loss of generality, it will be assumed that row t may be swapped

to row 1 in both Mr and Ms and additionally, columns j1 and j2 will be swapped to
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columns 1 and 2 (resp.) in Mr, Ms and Mt. This will allow for the use of Laplacian

cofactor expansions ([26, pp.10,11]) since the sum of the row and column transposi-

tions, T , will be the same for both Mr and Ms. Thus, any corrective sign (−1)T (mod)2

in evaluating the determinants M ′
r and M ′

s will cancel out in the product of the co-

factors. The minors will be evaluated by cofactors. Elements in Mr,Ms,Mt will be

denoted by ai,j, bi,j, ci,j (resp.).

mr[1|1] = (−1)n+2an,2 ·mr[1, n|1, 2] + (−1)n+3an,3 ·mr[1, n|1, 3] + . . .

+ (−1)n+nan,n ·mr[1, n|1, n];

ms[1|2] = (−1)n+1bn,1 ·ms[1, n|1, 2] + (−1)n+3bn,3 ·ms[1, n|2, 3] + . . .

+ (−1)n+nbn,n ·ms[1, n|2, n];

mr[1|2] = (−1)n+1an,1 ·mr[1, n|1, 2] + (−1)n+3an,3 ·mr[1, n|2, 3] + . . .

+ (−1)n+nan,n ·mr[1, n|2, n];

ms[1|1] = (−1)n+2bn,2 ·ms[1, n|1, 2] + (−1)n+3bn,3 ·ms[1, n|1, 3] + . . .

+ (−1)n+nbn,n ·ms[1, n|1, n];

By the way Mr,Ms,Mt were arranged, the following is also the case:

mr[1|1] = (−1)n+2cn−1,2 ·mt[n− 1, n|1, 2] + (−1)n+3cn−1,3 ·mt[n− 1, n|1, 3] + . . .

+ (−1)n+ncn−1,n ·mt[n− 1, n|1, n];

ms[1|2] = (−1)n+1cn,1 ·mt[n− 1, n|1, 2] + (−1)n+3cn,3 ·mt[n− 1, n|2, 3] + . . .

+ (−1)n+ncn,n ·mt[n− 1, n|2, n];

mr[1|2] = (−1)n+1cn−1,1 ·mt[n− 1, n|1, 2] + (−1)n+3cn−1,3 ·mt[n− 1, n|2, 3] + . . .

+ (−1)n+ncn,n ·mt[n− 1, n|2, n];
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ms[1|1] = (−1)n+2cn,2 ·mt[n− 1, n|1, 2] + (−1)n+3cn,3 ·mt[n− 1, n|1, 3] + . . .

+ (−1)n+ncn,n ·mt[n− 1, n|1, n];

Evaluating the expression and arranging the terms:

mr[1|1] ·ms[1|2]−mr[1|2] ·ms[1|1] =

(cn−1,1cn,2 − cn,1cn−1,2)mt[n− 1, n|1, 2] ·mt[n− 1, n|1, 2]

+(cn−1,1cn,3 − cn,1cn−1,3)mt[n− 1, n|1, 2] ·mt[n− 1, n|1, 3]

+(cn−1,1cn,4 − cn,1cn−1,4)mt[n− 1, n|1, 2] ·mt[n− 1, n|1, 4]

. . .

+(cn−1,n−1cn,n − cn,n−1cn−1,n)mt[n− 1, n|1, 2] ·mt[n− 1, n|n− 1, n].

The evaluation shows that the final expression is the product of the maximal common

cofactor mt[n − 1, n|1, 2] (found in mr[1|1], ms[1|2], mr[1|2], ms[1|1], and Mt) with

the Laplacian cofactor expansion of |Mt|. Thus, any product of preimages of degree

1 homology generators zrzs will have terms y′i,j1 ∧ y
′
i,j2

such that all degree 2 wedge

products have coefficients in the ideal I. Therefore, after tensoring with R over Q,

[zr][zs] = 0 . Q.E.D.

To complete the proof of Theorem (3.1) consider the following: Since the homol-

ogy algebra is concerned only with the “word length” of a generator and not the

homological degree, each degree 1 generator in the homology algebra of a projective

dimension 2 ring is assigned word length 1. All products of degree 1 generators are

quadratic monomial relations of the type [zr][zs] = 0 for all r, s. Thus, there exists a

PBW basis on the algebra defined by these quadratic monomial relations consisting

47



only of degree 1 “words”. This algebra is therefore a PBW algebra and is Koszul

([27, p.51]). The proof of Theorem (3.1) is now complete. Q.E.D.

3.3 Classification of Codimension 3 Rings

The classification of projective dimension 3 rings will depend upon the M3-N5

theorem in lattice theory ([12, pp.134-138]); (Note: Other texts list the Hasse dia-

grams from which this theorem derives as N5 and M5 [8, p.11]).

THEOREM 6.10 (M3-N5)[12, pp.134-138]: Let L be a lattice. Then:

(i) L is non-modular if and only if N5 ↪→ L.

(ii) L is non-distributive if and only if N5 ↪→ L or M3 ↪→ L.

Classifications of the rings B, G(r), H(p,q) will be immediate upon showing that

their defining relations force all degree 3 monomials in their respective algebras to

cancel to zero. The application of Backelin’s condition for Koszulness of an algebra

will then be used to show that these algebras can not embed either the N5 or M3

Hasse diagram interpreted as a product ideal substructure.

3.4 Lattice criteria for Koszul Algebras

The lattice generated by Aαi
+ I

βiAγi
+ , (αi, βi, γi ∈ N≥0) is a modular lattice [4,

p.1]. Thus, with regard to the N5-M3 theorem, it is only necessary to show that

M3 can not be embedded into the lattice. Let M3 be the Hasse lattice diagram that

minimally violates distributivity of a lattice. Let Aαi
+ I

βiAγi
+ , (αi, βi, γi ∈ N≥0) denote

the product ideal of an algebra, where A+ denotes the maximal ideal of a quadratic
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algebra A, and I denotes the ideal of generating relations of A.

LEMMA (3.4): If the cubic monomials of a quadratic algebra all cancel to 0 then

the algebra is distributive.

PROOF: Failure of distributivity can only occur if M3 is embedded in the lattice

structure of the algebra. If the lattice is generated by the (above) product ideal with

inclusion as the partial order [4, p.12] then each of the nodes of M3 may be labeled

by the “signature”: [αi, βi, γi], where αi, βi, γi range over the positive integer powers

of the ideals : A+ and I in the product ideal Aαi
+ I

βiAγi
+ . Since the cubic monomials

all cancel to 0, this implies Aαi
+ I

βiAγi
+ is non-trivial iff αi + βi + γi < 3. The only

possible signatures for the product ideal are: [1, 0, 0] ; [2, 0, 0] ; [0, 1, 0] .

Inspection shows that: If the order relation is defined as inclusion, then M3 can not

be realized as a substructure within the lattice. Q.E.D.

It therefore remains to show that the algebras: B, G(r), H(p,q) all have trivial cubic

monomials. This is exhibited by the defining relations and in the multiplication table

of the generators of each of the algebras. The relations of B, G(r), H(p,q) are given

below, where the stronger condition of being a quadratic PBW algebra is proved.

Since all of these algebras are quadratic, and since they are all distributive, they are

Koszul ([4, p.23]).
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3.5 Classification of PBW Algebras

The previous definitions given in Chapter 1 will allow the construction of PBW

bases for three of the following four classes of homology algebras, with respect to

minimal generating sets of the maximal ideal, taken from the paper by Avramov

([2, p.51]). The relations given below are for the non-trivial part of the homology

algebras. Basis elements for the homology generators are denoted by: e1, . . . , es for

degree 1 homology; f1, . . . , ft for degree 2 homology; and g1, . . . , gu for degree 3 ho-

mology. Since the trivial extensions contribute no nontrivial relations to the total set

of ideal relations in the homology algebra ideal by which additional PBW generators

may be obtained, the following Proposition will establish that once a PBW basis has

been found for the nontrivial part of the algebra, then this basis will serve the entire

algebra.

PROPOSITION (3.5): Let A = B ⊕ T be a graded k-algebra where B is a graded

k-algebra, BT = TB = 0, and T 2 = 0, that is, A is a trivial extension of B by T . If

B is a PBW k-algebra, then A is as well.

PROOF: Let the word length 1 generators of B be the set {b1, . . . , bn} and the word

length 1 generators of T be the set {t1, . . . , tm}. Without loss of generality the ordering

of the generators may be lexicographic with order as follows: {b1, . . . , bn, t1, . . . , tm}.

Then for any bi and any tj the following is true: bitj = 0, tjbi = 0, titj = 0 for all

i, j. It follows that Ap = Bp for p ≥ 2, and the label sets S(p)(A) for A and S(p)(B)

50



of B are the same for p ≥ 2. Thus A is a PBW algebra if B is a PBW algebra. Q.E.D.

It should be recalled that the homology algebra is obtained from only the word

length of the generators and does not consider their homological (internal) degree.

Those generators that are not obtained or expressible as products of lower homological

degree generators will be referred to in this section as emergent generators. Homo-

logical degree 1 generators and emergent generators will always have word length 1.

TYPE TE: (truncated exterior algebra) In this algebra s = t = 3; u = 0. The

generators have the following non-trivial relations:

e1e2 = f3; e2e3 = f1; e3e1 = f2.

As these relations generate a cubic relation in the algebra:

e1e2e3 = 0

this algebra may therefore be classified as non−Koszul.

TYPE B: In this algebra, s = 2; t = 3; u = 1. The generators for the PBW ba-

sis are: e1, e2, f1, f2, f3, g1. Let the generators have degrees and monomial ordering as

given in the following table:

Table 3.1. TYPE B: Ordering of Generators

Generator e1 e2 f1 f2 f3 g1

order 1 2 3 4 5 6
degree 1 1 2 2 2 3

The algebra is determined by the following four relations:
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e1e2 + e2e1; e1f1 − f1e1; e2f2 − f2e2; e1f1 − e2f2.

The degree 1 generators include e1, e2 and the emergent degree 2 generators f1, f2.

The degree 2 label set S(2) corresponds to the elements e1e2 e1f1, which form basis

of H2. Since there do not exist non-trivial cubic monomial generators in this algebra,

this algebra represents a quadratic PBW algebra; hence, is Koszul.

TYPE G(r): In this algebra s = t = r ≥ 2; u = 1. The defining relations are:

eifi = g1, 1 ≤ i ≤ r.

The label set S(1) corresponds to the homological degree 1 generators and the ho-

mological degree 2 generators (as the degree 2 generators are all emergent). After

assigning a straight lexicographic ordering to these 2 · r generators:

o(ei) = i, 1 ≤ i ≤ r; o(fi) = r + i, 1 ≤ i ≤ r; o(g) = 2r + 1

the degree 2 label set S(2) has only one corresponding generator: e1f1. There do

not exist nontrivial cubic generators in this algebra. Hence, it is a quadratic PBW

algebra, and thus Koszul.

TYPE H(p,q): In this algebra s = p+ 1; t = p+ q; u = q.

The defining relations are: ep+1ei = fi, 1 ≤ i ≤ p ; ep+1fp+j = gj, 1 ≤ j ≤ q.

Let the variables have the order indicated:

Table 3.2. TYPE H(p,q): Ordering of Generators

Generator ei ep+1 fp+j

order i p+1 p+j+1
degree 1 1 2
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With this generator ordering, S(1) will correspond to the degree 1 generators

and the emergent degree 2 generators: {ei : 1 ≤ i ≤ p+1; fj : p+1 ≤ j ≤ p+ q} in

lexicographic order. The degree 2 label set S(2) corresponds to {eiep+1}∪ {ep+1fp+j},

and this is a basis of H2. Again, since there exist no non-trivial cubic monomials in

this algebra, H(p,q) is a quadratic PBW algebra, hence is Koszul.

3.6 Classification of Codimension 4 Gorenstein Rings

The following classification of codimension 4 Gorenstein rings is derived from

the classification relations and table found in the paper of Kustin and Miller [20,

pp.348-349]. In this paper the following relations are given for four classes of homol-

ogy algebras derived from codimension 4 Gorenstein rings:

THEOREM 2.2 [20, pp.348-349]: Let R, m, k be a Gorenstein local ring in which 2

is a unit and assume that k has square roots. Let I be a grade four Gorenstein ideal

in R, and H = H(K(S)) where S is a sequence of minimal generators of a maximal

ideal of R. Then there are bases {x1, ..., xn} for H1, {y1, ...yn−1, y
′
1, ..., y

′
n−1} for H2,

{z1, ..., zn} for H3, and {w} for H4 so that the multiplication Hi × H4−i → H4 = k

is given by xizj = δi,jw , yiy
′
j = δi,jw , yiyj = 0 = y′iy

′
j and other products in H∗ are

given by one of the following cases:

(A) the ideal I is generated by a regular sequence, in which case H∗ is the exterior

algebra on the vector space
⊕4

i=1 kxi .

(B) all products in H1H1 and H1H2 are zero.

(C) all products in H1H1 and H1H2 are zero except those indicated in the following
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multiplication table(s):

Table 3.3. Kustin-Miller: Non-trivial Codim.4 Gorenstein Products

mult. x1 x2 x3 y′1 y′2 y′3
x1 0 y3 −y2 0 z3 −z2

x2 −y3 0 y1 −z3 0 z1

x3 y2 −y1 0 z2 −z1 0

(D) there is an integer p such that xp+1xi = yi , xiy
′
i = zp+1 , xp+1y

′
i = −zi for

1 ≤ i ≤ p

and all other products in H1H1 and H1H2 are zero.

Case (A): The homology algebra is the exterior algebra. This algebra is a com-

plete intersection and is Koszul by being the dual of the free resolution of the field with

respect to the regular ring, which is known to be Koszul (see R. Froberg [16, pp.3-4]).

Case (B): The homology algebra yields nontrivial products, all scalar multiples

of each other, in the blocks associated with products HiH4−i for 1 ≤ i ≤ 3 . A PBW

basis may be constructed using degree lexicographic monomial ordering of generators

of H∗ . The S(2) label set corresponds to only one generator: x1z1 . By the relations

in ideal I and the product table, it is easily seen that the S(3) label set is zero. Hence,

by either the Backelin lattice condition and/or the construction of a quadratic PBW

basis, this algebra is Koszul.
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Case (C): Cubic relations are immediately found in the product table blocks

associated with H1H1 and H1H2 . This homology algebra is thus non−Koszul.

Case (D): Consider the lexicographic ordering across the degree 1 generators:

x1, . . . , xp+1 and emergent degree 2 generators y′1, . . . , y
′
p with x∗ < y′∗. Then S(1)

corresponds to the basis {x1, . . . , xp+1, y
′
1, . . . , y

′
p} of H1, S

(2) corresponds the the ba-

sis {xixp+1 : 1 ≤ i ≤ p , x1y
′
1, xp+1y

′
i : 1 ≤ i ≤ p} of H2, and S(3) corresponds

to the basis {x1xp+1y
′
1} of H3. There is only one word length 3 generator in S(3),

therefore the elements of S(3) have no linear relations. There exists a PBW basis for

the entire algebra (Theorem 2.1, [25, p.82]) and the relations in the homology ideal

are quadratic. Therefore this is a Koszul algebra ([27, p.51]).

From the above analysis of relations, only the algebra TE in codimension 3 and

case C in codimension 4 (Gorenstein) yield non-Koszul homology algebras. All other

codimension 2, 3, and 4 rings considered in this section are PK rings and, by the

previous section, any arbitrary tensors of these rings will also be PK rings.
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triangulations, and koszul algebras. Journal fur die reine und angewandte Math-

ematik, 1997.

[11] Thomas Cassidy and Brad Shelton. Generalizing the notion of a koszul algebra.

arXiv:0704.3752v1 [math.RA], 2007.

[12] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge

U. Press, Great Britain, 1992.

[13] David Dummit and Richard Foote. Abstract Algebra. John Wiley and Sons, New

York, 1999.

[14] David Eisenbud. Commutative Algebra with a View Towards Algebraic Geome-

try. Springer, New York, 1995.

[15] David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer. Sheaf cohomology

and free resolutions over exterior algebras. Trans. Amer. Math. Soc., 355 No.11,

2003.
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