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ABSTRACT 

 

GAME THEORETICAL MODELS AND ALGORITHMS FOR RATE CONTROL  

IN VIDEO COMPRESSION 

 

 

 

Publication No. ______ 

 

Jiancong Luo, PhD. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Ishfaq Ahmad  

This thesis investigates game theory based rate control algorithms for 

optimizing the bit allocation in video compression. The first algorithm utilizes the 

cooperative bargaining game in a MB level rate control algorithm to optimize the 

perceptual quality while guaranteeing “fairness” in bit allocation among macroblocks.  

The algorithm first allocates the target bits to frames based on their coding complexity; 

a method to estimate the coding complexity of the remaining frames is proposed. Next, 

macroblocks of a frame play cooperative games such that each macroblock competes 

for a share of resources (bits) to optimize its quantization scale while considering the 
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human visual system (HVS) perceptual property. Since the whole frame is an entity 

perceived by viewers, macroblocks compete cooperatively under a global objective of 

achieving the best quality with the given bit constraint. The major advantage of the 

proposed approach is that the cooperative game leads to an optimal and fair bit 

allocation strategy based on the Nash Bargaining Solution. Another advantage is that it 

allows multi-objective optimization with multiple decision makers (e.g., macroblocks). 

The algorithm achieves accurate bit rate with good perceptual quality, and to maintain a 

stable buffer level. The second algorithm based on a non-cooperative strategic game is 

aimed for video object level bit allocation. We formulate a two-player bi-matrix game, 

in which the utilities of the players are pre-determined by a set of available strategies 

(i.e., the possible quantization parameters). The game is non-deterministic in which the 

players’ strategies are bound to a probability distribution over the set of available 

actions. The outcome of the game is a mixed strategy Nash equilibrium. The proposed 

algorithm achieves accurate bit rate regulation and smooth buffer occupancy. 



 v

 

 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS....................................................................................... ii 
 
ABSTRACT .............................................................................................................. iii 
 
LIST OF ILLUSTRATIONS..................................................................................... viii 
 
LIST OF TABLES..................................................................................................... x 
 
Chapter 
 
 1. INTRODUCTION ......................................................................................... 1 
 
  1.1 Video Coding Architecture...................................................................... 3 
 
  1.2 Digital Video Coding Standards.............................................................. 9 
 
  1.3 Rate Control Overview............................................................................ 16 
  
    1.3.1 Principles .................................................................................. 16 
   
    1.3.2 Rate Control Architecture......................................................... 19 
 
    1.3.3 Related Works .......................................................................... 21 
 
  1.4 Research Methodology ............................................................................ 23 
 
  1.5 Organization of the Dissertation.............................................................. 26 
   
 2. PERCEPTUALLY TUNED RATE CONTROL USING  
  COOPERATIVE GAME THEORY.............................................................. 27 
 
  2.1 Introduction.............................................................................................. 27 
 
  2.2 Frame-Level Bit Allocation..................................................................... 30 
 
  2.3 MB Level Bit Allocation ......................................................................... 32 



 vi

 
    2.3.1 Quadratic Rate-Distortion Model ............................................. 33 
 
    2.3.2 Solving Quantizer Optimization with Game Theory................ 33 
 
    2.3.3 Perceptually Tuned Quantizer .................................................. 39 
 
  2.4 Algorithm Summary ................................................................................ 43 
 
  2.5 Experiments and Results.......................................................................... 44 
 
    2.5.1 Bit Rate Accuracy and Percentage of Bits Saved..................... 46 
 
    2.5.2 Frame Skipping......................................................................... 47 
 
    2.5.3 PSNR and PSPNR .................................................................... 47 
 
  2.6 Summary .................................................................................................. 59 
 
 3. JOINT MULTIPLE VIDEO OBJECT RATE CONTROL USING  
  NON-COOPERATIVE GAME THEORY.................................................... 60 
 
  3.1 Introduction.............................................................................................. 60 
 
  3.2 Target Bit Estimation for a Time Instance .............................................. 62 
 
  3.3 Buffer Policy............................................................................................ 63 
 
  3.4 VOP Level Bit Allocation ....................................................................... 65 
 
  3.5 Quantization Level Calculation and Frame-skipping Control ................ 73 
   
  3.6 Experiments and Results.......................................................................... 74 
 
  3.7 Summary .................................................................................................. 94 
 
 4.  SUMMARY AND FUTURE WORKS......................................................... 95 
 
  4.1 Summary of Contributions ...................................................................... 95 
 
  4.2 Future Works ........................................................................................... 96 
 
    4.2.1 Joint Multiple Video Object Rate Control 
     using Cooperative Game.......................................................... 96 



 vii

 
    4.2.2 Improved Utility Function in Game Theoretical Models ......... 97 
 
    4.2.3 Game Theory Applications on Joint Source-Channel 
      Rate Control ............................................................................ 98 
 
REFERENCES .......................................................................................................... 100 
 
BIOGRAPHICAL INFORMATION......................................................................... 111 



 

 viii

 

 
LIST OF ILLUSTRATIONS 

Figure Page 
 
1.1 Block diagram of Hybrid DCT/DPCM coding scheme ..................................  4 
 
1.2 Distribution of DCT coefficients ....................................................................  5 
 
1.3 Motion vector ..................................................................................................  8 
 
1.4 MPEG-4 Encoder Architecture .......................................................................  14 
  
1.5 MPEG-4 Decoder Architecture.......................................................................  14 
 
1.6 Rate-distortion relation of DCT-based video encoder ....................................  17 
 
1.7 Distortion-quantization relation of DCT-based video encoder .......................  17 
 
2.1 The proposed algorithm embedded in a DCT-based video encoder ...............  29 
 
2.2 Matrix B ..........................................................................................................  41 
 
2.3 Matrix Gk  (a) G1 , (b) G2 , (c) G3 , (d) G4.......................................................  41 
 
2.4 Buffer occupancy in the coding of “Foreman” QCIF  
  at 64kbps and 30Hz with buffer size = 8kbits.................................................  53 
 
2.5 PSPNR in the coding of “Foreman” QCIF QCIF  
  at 64kbps and 30Hz with buffer size = 8kbits.................................................  54 
 
2.6 Buffer occupancy in the coding of “Stefan” QCIF  
  at 12kbps and 30Hz with buffer size = 14kbits...............................................  55 
 
2.7 PSPNR in the coding of “Stefan” QCIF  
  at 12kbps and 30Hz with buffer size = 14kbits...............................................  56 
 
2.8 Buffer occupancy in the coding of “Container” QCIF  
  at 192kbps and 30Hz with buffer size = 24kbits.............................................  57 
 
 



 

 ix

2.9 PSPNR in the coding of “Container” QCIF  
  at 192kbps and 30Hz with buffer size = 24kbits.............................................  58 
 
3.1 PID buffer control diagram .............................................................................  64 
 
3.2 A sample of bi-matrix game............................................................................  66 
 
3.3 The utility matrices (a) matrix of player 1 (b) matrix of player 2...................  68 
 
3.4 The simplified matrices by eliminating the dominated rows and columns, 

where ai>aj>0 and bi> bj>0, for i<j..................................................................  72 
 
3.5 Buffer occupancy in the coding of “news” at 30Hz and 256kbps ..................  79 
 
3.6 Buffer occupancy in the coding of “bream” at 30Hz and 256kbps.................  80 
 
3.7 Buffer occupancy in the coding of “coastguard” at 30Hz and 256kbps .........  81 
 
3.8 Buffer occupancy in the coding of “children” at 30Hz and 256kbps .............  82 
 
3.9 Buffer occupancy in the coding of “container” at 30Hz and 256kbps............  83 
 
3.10 PSNR of “news” using VM8 at 256kbps ........................................................  84 
 
3.11 PSNR of “news” using the proposed rate control at 256kbps.........................  85 
 
3.12 PSNR of “bream” using VM8 at 256kbps ......................................................  86 
 
3.13 PSNR of “bream” using the proposed rate control at 256kbps .......................  87 
 
3.14 PSNR of “coastguard” using VM8 at 256kbps ...............................................  88 
 
3.15 PSNR of “coastguard” using the proposed rate control at 256kbps................  89 
 
3.16 PSNR of “children” using VM8 at 256kbps ...................................................  90 
 
3.17 PSNR of “children” using the proposed rate control at 256kbps....................  91 
 
3.18 PSNR of “container” using VM8 at 256kbps..................................................  92 
 
3.19 PSNR of “container” using the proposed rate control at 256kbps ..................  93 



 

 x

LIST OF TABLES 

 
Table Page 
 
 2.1 Bit rate accuracy, PSNR, PSPNR and number of skipped frame 
  comparison between VM8 and the GT algorithm (QCIF sequences).............  49 
  
 2.2 Bit rate accuracy, PSNR, PSPNR and number of skipped frame 
  comparison between VM8 and the GT algorithm (CIF sequences)................  51 
 
 3.1 The performance comparison between game theory algorithm  
  and the VM8 reference algorithm ...................................................................  77 
 

 



 

 1

 

 
CHAPTER 1 

INTRODUCTION 

 

With the increasing demands of multimedia applications, such as HDTV system, 

video conferencing, video on demand and other kinds of video based interactive 

multimedia services, various digital videos need to be stored, processed and transmitted. 

Problem raises that the storage and bandwidth is not satisfied the requirement of storing 

and transmitting the raw video data.  

For instance, the Federal Commission (FCC) requires that the HDTV 

transmitted signal fits inside the same 6 MHz channel spacing as is currently used for 

today’s NTSC transmissions. This requirement implies that 1.5Gbits per second of 

video data need to be transmitted via a 6 MHz channel, which can support only about 

20Mbits per second. 

Another example is video phone applications. The common modem available 

today for PSTN can transmit at a bit rate of 56kbps, if the line condition is very good. A 

common format for such an application is the quarter common intermediate format 

(QCIF), which has a dimension of 176×144 pixels. For a 24-bit color sequence, which 

uses 24 bits for one pixel (8 bits for each red, green and blue channel respectively), and 

assuming that the frame rate is 30 frames per second, the size of one second video is 

176×144×24×30=18.3Mbits. That means that it requires transmitting video data of bite 
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rate at 18.3Mbps via a channel with a bandwidth of 56kbps. It is a 330 times larger 

bandwidth than what is available with PSTN. 

The storage and bandwidth requirements of the raw video data are nearly 

incomprehensible. For the sake of efficient bandwidth utilization, compression is 

inevitable. With the help of compression technology, the requirements can be reduced 

by a long way. Alternatively, instead of sending the raw video sequence at a given 

spatial and temporal resolution, one can send a higher resolution compressed video 

sequence in the same channel. 

Due to the high demands for video application, several international video 

compression standards have been or are being developed during the last two decades, 

such as MPEG-1 [15], MPEG-2 [16] , MPEG-4 [17], H.261 [20], H.263 [21]  and 

H.264 [23]. A series of different disciplines of digital signal processing principles, such 

as coding theory, rate-distortion theory, prediction techniques and control theory, have 

been applied cooperatively to improve the compression ratio, coding efficiency, picture 

quality and complexity, etc. In this work, we will focus on the bit rate control problem 

and aim to design rate-distortion efficient rate control schemes for frame-based and 

object-based video coding. 

The exchange of video information between remote sites requires that the digital 

video be encoded and transmitted through specified network connections. Due to the 

variable amount of redundancy and irrelevancy of video contents, the amount of 

compressed video data varies in a rather unpredictable manner. Therefore, the 

compressed video data rate is inherently variable and inconsistent with the channel 
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bandwidth. It may be lower than the available bandwidth, which leads to unnecessary 

degrading of visual quality and waste of bandwidth; or higher than the bandwidth 

constraints, resulting in traffic congestion and loss of data. Rate control is a mechanism 

that regulates the compressed video data rate to meet the channel requirement. It is 

critical in determining the encoding efficiency and video quality. This chapter will give 

an overview of video compression schemes with an emphasis on the rate control 

techniques. 

1.1 Video Coding Architecture 

Although many different video compression standards exist, they adopt a 

similar architecture: Hybrid DCT/DPCM coding scheme. This scheme employs 

Discrete Cosine Transform (DCT) and quantization to exploit the spatial correlation 

while utilizes inter-frame Differential Pulse Coding Modulation (DPCM) coding 

techniques to reduce the temporal redundancy. The common video processing functions 

in Hybrid DCT/DPCM coding are: DCT and Inverse DCT (DCT/ DCT-1), Quantization 

and De-quantization (Q/Q-1), Entropy Coding and Decoding (EC/ED), Motion 

Estimation (ME) and Motion Compensation (MC), and Rate Control (RC). Figure 1.1 

shows a generic block diagram for hybrid DCT/DPCM coding scheme. “FS” in Figure 

1.1 symbolizes the frame storage. 
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Figure 1.1 Block diagram of Hybrid DCT/DPCM coding scheme 

 

DCT Q 

Q-1 

DCT-1

EC Buffer 

MC 

ME 

FS 

Channel 

Buffer ED Q-1 DCT-1

MC FS 

RC 

Input Video 

Output Video 

Encoder

Decoder



 

 5

Discrete Cosine Transform (DCT) is a technique converting signals to frequency 

components. For 2D DCT transform, the lower-right DCT coefficients relate to low 

spatial frequencies within the image block and the upper-left DCT coefficients relate to 

the high spatial frequencies. Based on the human visual systems criteria, the human 

eyes are more sensitive to the components with low spatial frequencies than those with 

high spatial frequencies. This property is used to remove the subjective redundancies. 

Figure 1.2 depicts the variance distribution of 8x8-block DCT coefficients. Coefficients 

with small value are less significant for the reconstruction of the image blocks than 

coefficients with large variances. We can observe that the energy is concentrated around 

the upper-left corner, which corresponds to the low spatial frequencies. Most of the 

DCT coefficients are small enough to vanish in the quantization step and need not to be 

encoded and transmitted.  

 

 

Figure 1.2 Distribution of DCT coefficients 
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Quantization is the major source of data loss in DCT based compression 

algorithms. By converting amplitudes that fall in certain ranges to one in a set of pre-

determined levels, quantization reduces the amount of information required to represent 

the amplitudes. Although different types of quantization are proposed, for simplicity, all 

the standard image compression algorithms use linear quantization where the step size 

quantization levels are constant. Quantization in the frequency domain has many 

advantages over quantization in pixel domain. Quantization in pixel domain leads to 

"contour" artifact where small amplitude changes in a smoothly gradient area cause 

step-sized changes in the reconstructed amplitude. Some other quantization schemes 

have been reported in [55] [59]. 

Entropy coding is a lossless process based on statistics of the image or the 

motion picture sequence to be compressed. Although there is a variety of different 

implementation of entropy coding in the existing video compression standards, the 

underlying theory of entropy coding is to encode the most frequently occurring patterns 

with the shortest code word and encode the less frequently appearing patterns with 

longer code words. In this manner, data can be compressed by a factor of 3 or 4. 

Entropy coding for video compression applications is a two step process: Zero Run-

Length Coding (RLC) and Huffman coding. RLC data is an intermediate symbolic 

representation of the quantized bins which utilizes a pair of numbers. The first element 

is the number of consecutive zeros while the second element represents the non-zero 

value immediately following the previous run of zeros. For example, the RLC code (3, 

6) represents the sequence (0, 0, 0, 6) of numbers. Huffman coding assigns a variable 
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length code to the RLC data, producing variable length code word. The Huffman coding 

is a table-lookup process. A Huffman tables is pre-computed based on statistical 

properties of the image (as it is in JPEG) or pre-determined if a default table is to be 

used (as it is in H.261 and MPEG). The same table as used in encoding is used to 

decode the bitstream data. Since entropy coding produces variable length code word, 

the digital compressed stream has no specific boundaries or fixed length.  

In general, consecutive frames in a motion video tend to be highly correlated, 

i.e., the frames only change slightly over a small period of time, which implies that the 

difference between these frames is small. For this reason, compression ratios for motion 

video sequences may be increased by encoding the difference between two or more 

successive frames.  

In contrast, motions of objects increase the difference between frames. This 

implies that more bits are required to encode the sequence. To address this issue, motion 

estimation is utilized to determine the displacement of an object. 

Motion estimation (ME) is the process of finding motion vectors during the 

encoding process. In the block matching motion estimation, a frame is divided into 

16x16 blocks, called macro-block. Motion vectors encapsulate the displacements 

between the macro-blocks in the current frame and the best correlated macro-blocks in 

the past and/or future reference frames containing previously decoded pixels that are 

used to form the prediction and the error difference signal. Forward motion vectors refer 

to correlation with previous pictures. Backward motion vectors refer to correlation with 

future pictures. Full search algorithm exhaustively evaluates all possible displacements 
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within the predetermined or adaptive search range to find out the best matching 16x16 

block in the reference frame for a macro-block of the current frame. The advantage of 

full search block matching algorithm is accuracy. It always leads to the global minimum 

by looking at everywhere in the search area. The defect is also obvious. The 

computational complexity for a full search block matching algorithm is very heavy. The 

computational complexity of full search algorithm can be 60~80% of total computations 

in the encoding process involves in the purpose of full search algorithm [32] [55]. In 

order to reduce the computational complexity of the encoding algorithm, a number of 

fast ME (FME) algorithms are proposed. Extensive survey of FME has been included in 

[31]. The representative FME algorithms include [14] [24] [29] [36] [38] [40] [56] [70] 

[71] [79] [80].  

 

Figure 1.3 Motion vector 
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As mentioned above, video compression produces variable bit rate output 

streams due to the variable amount of redundancy and irrelevancy in the input 

sequences. This characteristic of video encoders inherently mismatches the constrained 

media channels. For example, the constant bit rate (CBR) channels require that a 

constant number of bits per time unit be sent to the channel, and the variable bit rate 

(VBR) channels require that a set of specified traffic parameters be met since otherwise 

data losses may occur. In both cases, bit rate regulation is necessary. The objective of 

rate control algorithms is to regulate the output bit rate to meet the channel constrains. 

Meanwhile rate control algorithms optimize the visual quality subject to the available 

transmission data rate and certain quality of service (QoS) requirements, such as delay, 

quality fluctuation, number of frame skipped, etc. 

Although the video coding standards designate the syntax of encoded 

presentation, the methods of generating the standard conformed bitstream is not defined. 

Rate control is critical to the visual quality and rate-distortion performance. It is not 

standardized and is an open issue for research. Our research focuses on the rate control 

problem.  

1.2 Digital Video Coding Standards 

Standardization of video compression facilitates manipulation and storage of 

motion video as a form of computer data, and its transmission over existing and future 

networks or over terrestrial broadcast channels. Furthermore, interchange and 

interoperation of video contents become possible only when the coded representations 

of video contents conform to the standards. To this end, ISO/IEC has published MPEG-
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1/2/4 targeting on different applications and ITU also proposed H.261/263/264, mainly 

aiming to real time video conferencing applications. 

Moving Picture Experts Group (MPEG) is an ISO/IEC working group, 

established in 1988 to develop standards for digital audio and video formats. Five 

MPEG standards are being used or in development. Each standard was designed for a 

specific application and bit rate, although MPEG compression scales well with 

increased bit rates. Telecommunication Standardization Sector of the International 

Telecommunications Union (ITU-T) also defined its own video compression standards. 

These standards are mainly focus on real time video applications, such as video phone 

and video conference. In the sequel, we will introduce the major video coding standards 

in the chronicle manner. 

The first video coding standard is H.261, which was ratified in 1990 by ITU. 

The increasingly obsolete H.261 was specifically designed for transmission over ISDN 

lines in that data rates are multiples of 64kbit/s. The standard supports CIF and QCIF 

video frames at resolutions of 352x288 and 176x144 respectively. The coding algorithm 

is a hybrid of inter-picture prediction, transform coding, and motion compensation. The 

data rate of the coding algorithm was designed to be able to be set to between 40Kbits/s 

and 2Mbits/s. 

MPEG-1 was completed in 1992 as the first MPEG standard for the 

compression of moving pictures and audio. It was designed for CD-ROM video 

applications and a bit rate of up to 1.5 Mbit/sec. MPEG-1 is also a popular standard for 

video on the Internet, transmitted as .mpg files. MPEG-1 is the standard of compression 
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for Video CD, the most popular video distribution format throughout much of Asia. 

Comparing with H.261, MPEG-1 employed some advanced techniques, such as bi-

directional prediction frame and half-pixel motion compensation. 

MPEG-2 is a standard on which Digital Television set top boxes and DVD 

compression is based. Ratified in 1994, MPEG-2 was based on and was a superset of 

MPEG-1 but specifically designed for the compression and transmission of digital 

broadcast television which applied higher bit rate (between 1.5 and 15 Mbit/sec). 

MPEG-2 supports some significant enhancement from MPEG-1, including efficient 

compression of interlaced video, data partitioning, SNR scalability, spatial and temporal 

scalability, etc. MPEG-2 supports flexible picture size and bit rate. It scales well to 

HDTV resolution and bit rates, obviating the need for an MPEG-3. 

H.263 is a video compression standard designed by the ITU-T as a low bit-rate 

encoding solution for videoconferencing. It was first designed to be utilized in H.323 

based systems, but now is finding use in RTSP (streaming media) and SIP (Internet 

conferencing) solutions as well. H.263 provides a suitable replacement for H.261 at all 

bit-rates. It has been superseded by H.263v2 (a.k.a. H.263+ or H.263 1998). H.263 

provides advanced coding modes, such as half-pixel motion compensation, optimized 

run length coding (VLC) table, unrestricted motion vector, PB frame mode, advanced 

motion vector prediction, arithmetic coding and enhanced error resilience, etc. H.263 

has a substantial improvement in video quality and coding efficiency compared with 

H.261.  

MPEG-4 was initiated for multimedia and Web compression. The motivation of 
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MPEG-4 is the convergence various multimedia technologies, such as computer graphic, 

TV and film industry, 3D image and video and telecommunications. MPEG-4 supports 

a wide range of bit rates (5kbps-5Mbps) and applications such as video conferencing, 

mobile videophone, multimedia cooperative work, tele-teaching and, last but not least, 

games. What distinguishes MPEG-4 from other video coding standards is the concept of 

object-based video coding. The new or improved functionalities of MPEG4 have been 

clustered in three sets - content-based interactivity, compression and universal 

accessibility [53]: 

Content-based interactivity 

- Content-based multimedia data access tools 

- Content-based manipulation and bitstream editing 

- Hybrid natural and synthetic data coding 

- Improved temporal random access 

Compression 

- Improved coding efficiency 

- Coding of multiple concurrent data streams 

Universal access  

- Robustness in error-prone environments 

- Content-based scalability  

 

The MPEG-4 video compression scheme is based on the block-based concept as 

used in the MPEG-1, MPEG-2 and H.261/263, but has been extended to support 
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arbitrarily-shaped video objects. Arbitrarily-shaped video objects are split up into 

macroblocks within a bounding box. An alpha-plane represents the shape of a video 

object. Alpha-plane can be gray-scale or binary image. Visual objects can be natural 

video object or synthetic objects. Every object is encoded and decoded by a difference 

encoder and decoder instance and may use different coding options. The video object at 

a time instance is called video object plane (VOP). Individual objects within a scene are 

encoded and decoded separately by different encoder and decoder instance and 

multiplexed together to create an MPEG4 file. This results in very efficient and very 

scalable compression. It also allows developers to control objects independently in a 

scene, and therefore introduce interactivity. 



 

 14

 

 

Figure 1.4 MPEG-4 Encoder Architecture 

 

 

Figure 1.5 MPEG-4 Decoder Architecture 
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Advanced Video Coding (AVC) is a high compression digital video 

compression standard written by the ITU-T Video Coding Experts Group (VCEG) 

together with the ISO/IEC Moving Picture Experts Group (MPEG) as the product of a 

collective effort known as the Joint Video Team (JVT). This standard is also known as 

H.264 and identical to ISO MPEG-4 part 10. As the latest video compression standard, 

AVC is already widely used for videoconferencing. It has also been preliminarily 

adopted as a mandatory part of the future DVD specification known as HD-DVD, now 

under development by the DVD Forum. A number of broadcasters in Japan and Korea 

have announced future support for the codec, and it is under consideration for other 

broadcast use -- for example, it is under consideration in the United States' Advanced 

Television Systems Committee (ATSC) and in Europe's Digital Video Broadcast (DVB) 

standards bodies. In the wireless world, it is under consideration for adoption by the 

3rd-Generation Partnership Project (3GPP).  

AVC employs a series of new technologies. The major enhancements include: 

multiple reference frame motion compensation prediction in inter mode, Intra prediction, 

multiple block size from 4x4 to 16x16, sub-pixel motion compensation (down to 1/8 

pixel), rate-distortion optimized (RDO) mode decision and motion estimation,  4x4 

integer DCT/IDCT, support both Context-based Adaptive Binary Arithmetic Coding and 

Variable Length Coding, advanced in-loop filter, etc. AVC offers significantly better 

coding efficiency than the previous ITU and MPEG standards.  
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1.3 Rate Control Overview 

1.3.1 Principles 

Limited bandwidth network usually is used as the infrastructure of the digital 

video communication and transmission. Though the network is capable to provide a 

wide rage service from narrow bandwidth to wide bandwidth, the video data generally 

are transmitted over a constant bit rate (CBR) channels. In CBR channels, a 

transmission buffer is used to accommodate the variable data rate nature of the 

compressed video. Therefore, the possibility of buffer overflow or underflow exists. In 

this channel mode, the target of the rate control is to regulate the output bit rate to avoid 

buffer overflow and underflow. Some network service, such as B-ISDN [9], also 

supports variable bit rate (VBR) channel. The buffer is not necessary in VBR channel 

since the network can accommodate the variable rate video data. But network 

congestion still can happen since the burst of peak rate of the video data may exceed the 

network capacity. In VBR channel, rate control is still required to avoid network 

congestion. Overall, the objective of rate control is to regulate the output bit rate of a 

video encoder to the bandwidth requirement, meanwhile, depending on the required 

data rate to maintain a satisfactory reconstructed quality.  

In lossy video coding, rate-distortion function can well embody the behavior of 

video encoder. The output bit rate can be increased by increasing the distortion level, 

and vice versa. Figure 1.6 illustrates the rate-distortion relation of a generic video 

encoder. Therefore, by choosing the proper operation point on the rate-distortion curve, 

the output bit rate of and encoder can be controlled.  
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Figure 1.6 Rate-distortion relation of DCT-based video encoder 

 

 

Figure 1.7 Distortion-quantization relation of DCT-based video encoder 
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rate of a DCT-based video encoder is typically controlled by choosing a proper 

quantization scale. A larger quantization scale masks more DCT coefficients, therefore, 

saves more bits, but at the expense of picture quality. A finer quantization scale 

produces more bits but results in better perceptual quality. 

Depend on the control granularity, rate control algorithms can be classified into 

the following categories: 

(1) Frame-level rate control: a uniform quantization parameter (QP) is 

assigned to all the MBs in a frame. The control unit is a frame. 

(2) Macroblock-level rate control: QPs for macroblocks can be different. The 

control unit is a macroblock. 

For the multiple-video-object (MVO) coding, VOP-level rate control can be 

employed where different QPs can be assigned to video object plane (VOP), but a 

uniform QP is used for all MBs within a VOP. 

Compare with frame-level rate control, Macroblock-level rate control has the 

following advantages: 1) macroblock-level rate control is able to achieve more accurate 

bit rate, since macroblock-level rate control use a smaller basic control unit, which 

generally leads to better responds to the change in video characteristics and model 

parameters. 2) With macroblock-level rate control, it is possible to compute QP for each 

macroblock to optimize the visual quality of a frame, whereas using a uniform QP may 

not be optimal in the rate-distortion (R-D) sense. The defects of macroblock-level rate 

control include: 1) it requires extra bits to encode the change of QP. In the other word, 

in the same bit rate, macroblock-level rate control assigns less bits to encode the DCT 
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coefficients compare with frame layer rate control, which may lead to the lower visual 

quality, especially in low bit rate coding environment. 2) A macroblock-level rate 

control usually is more complicate that a frame-level rate control. 

The rate control algorithms can also be categorized frame-based rate control and 

object-based rate control, depending on the encoding infrastructure. Frame-based rate 

control algorithms are employed in the frame-based video encoding such as MPEG-1 

and MPEG-2, whilst the object-based rate control algorithms are utilized in the object-

based video coding framework which supports the encoding the arbitrary shape object, 

such as MPEG-4. Compared with frame-based algorithms, the object-based rate control 

algorithms deals with additional issues including data for shape coding (coding of alpha 

plane), coding of scene description information and bit allocation for multiple objects. 

For the object-based video coding such as MPEG-4, different rate control 

strategies can be employed. In the independent rate control, each object encoder has its 

own rate controller.  The objects are encoded separately at independent constant bit 

rates or quality. In the joint multiple-video-object (JMVO) rate control, data rate of 

object encoders are jointly considered. Multiple object encoders share a total data rate. 

Efficient resource allocation among objects is required. 

1.3.2 Rate Control Architecture 

The following rate control architecture is commonly used in most of the current 

video applications: A buffer is placed between the encoder and the channel in order to 

absorb the variation of the output bit rate and stabilize the output bit rate.  

Generally, the rate control algorithm consists of the following steps: 
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1. Target bit allocation 

The target bit constraint allocated prior to the encoding of a frame, a VOP or a 

macroblock. The allocation can be based on the available bits, remaining frames, buffer 

status and the statistic of previous coded units. 

2. Quantization parameter determination 

A proper quantization parameter for the coding unit is obtained in this step. The 

quantization parameter is estimated such that the output bit rate meets the target bit 

constraints determined in step 1. Depending on the control granularity, the quantization 

parameter can be for a frame, an object or a macroblock. The popular approach of 

obtaining the quantization parameter is the utilization of R-D models. 

3. Post-Encoding Processing 

After encoding a frame, an object or a macroblock, the encoder status is updated 

in this step. These values include available bits, remaining coding unit, buffer 

occupancy, R-D model parameters, etc. The updated values are used for the encoding of 

the next coding unit. 

Several aspects strongly affect the performance of a rate control algorithm.  

– Quality fluctuations. Fluctuations in image quality between consecutive 

time instances can be visually annoying and thus should be reduced as much as 

possible. 

– Buffer occupancy. Smaller buffer occupancy leads to lower delay.  

– Buffer overflow. Buffer overflow occurs when the encoder output bit rate is 

too high such that the accumulate bits is more than the buffer capacity. In this case, the 
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excess bits will be dropped. Buffer overflow always causes loss of data, therefore must 

be avoided. 

– Buffer underflow. Buffer underflow usually occurs when the encoder output 

bit rate is lower than the dripping bit rate of the buffer. In this case, not enough bits are 

dripped to the channel, which results in sub-optimal use of the channel. It is not as 

critical as buffer overflow but should also be avoided. 

– Traffic contract. In VBR networks, like ATM networks, packets transmitted 

outside the bounds established by the negotiated contract may be discarded if traffic 

congestion occurs resulting in loss of data which must be avoided. 

1.3.3 Related Works 

Several rate control algorithms have been proposed and utilized in video 

compression standards and applications. In the early rate control algorithms, such as 

H.263 Test Model Near-term version 5 (TMN5) [22], a fixed bit allocation for each 

frame is employed. The target bit budget for each frame is obtained by dividing the 

target bit rate by the frame rate. MPEG Test Model 5 (TM5) [18] rate control employs a 

hierarchical bit allocation scheme, the target number of bits is decided for the GOP 

layer first. Constrained by the GOP bit budget, target number of bits for a frame is then 

calculated. Target bits for I, P, B frame are allocated according to the complexity of the 

previous frame. With respect to the model-based quantization scale decision, early rate 

control algorithms, such as TM5, adopt a linear rate-distortion model. Thereafter, 

various rate-distortion models have been utilized to improve the accuracy of the 

quantization scale estimation. Chiang and Zhang proposed a quadratic rate-distortion 
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model that can be applied to both DCT and wavelet-based coders [4]. An improvement 

of [4] has been proposed by Pan et al. to fine tune the bit allocation according to the 

position of a frame in a GOP [52]. Based on [4], Ngan, Meier and Chen have introduced 

a new constraint for the least-mean-square estimation of the model parameter of the 

rate-distortion function [49]. Cheng and Huang have proposed an adaptive piecewise 

linear model [2]. He and Mitra have modeled the rate and distortion as the functions of 

ρ, which is the percentage of zeros among the quantized DCT coefficients, and an 

optimized bit allocation has been proposed based on this model [10] [11] [12]. Chiang, 

Lee and Zhang have proposed a scheme for MB level bit allocation and two distinct 

models for high bit rate and low bit rate situations respectively [3]. The model used in 

high bit rate adapts the quantization scale with the energy of the block by using finer 

quantization for MB of flatter image regions. The model used in low bit rate maintains a 

near-constant quantization scales, in order to minimize the overhead bits for DQUANT, 

which is to define the change of quantization scale. Another MB level rat-distortion 

model has been addressed by Oehler and Webb [50]. Ribas-Corbera and Lei have 

proposed a rate-distortion model, which was adopted in the H.263+ testing model 

TMN8 [62]. Based on [62], Tsai and Hsieh have proposed to modify the encoding order 

of MBs to favor the more complex MBs [70]. For object-based video coding, Lee, 

Chiang and Zhang have proposed an algorithm that is scalable for various bit rates, 

spatial and temporal resolution [33] [34]. Vetro and Sun also developed a scheme for 

multiple video objects in [73] [74]. Lee et al. has proposed models for coded frames and 

objects as well as skipped frame and objects [35]. Other rate control algorithms have 
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been proposed in [27] [38] [68] [78], etc. The above rate control algorithms reportedly 

achieve efficient bit rate regulation. What distinguishes our approach from these works 

is that we define a new criterion of optimizing the rate-distortion efficiency under the 

bit rate and “fairness” constraints, and propose an efficient solution. 

Since the quantization scale can refer the distortion of the decoded frame, some 

rate control algorithms seek optimal quantization to maximize the aggregate perceptual 

quality or minimize the aggregate distortion subject to the bit rate constraints, using 

Lagrange multiplier or dynamic programming [58] [60] [62] [65] [77]. Although these 

algorithms address the rate-distortion optimization problem, the perceptual redundancy 

of human vision system has not been efficiently exploited. Moreover, the fairness of bit 

allocation among the macroblocks has not been discussed. 

1.4 Research Methodology 

Although rate control is a well studied topic in video compression and several 

efficient schemes have been widely used in standards, there still are different methods 

that have not been explored and improvement can be achieved by using new approaches. 

E.g. a few algorithms have considered the rate-distortion optimization problem; the 

perceptual redundancy of human vision system has not been efficiently exploited; the 

“fairness” of bit allocation has not been considered. 

The objective of our research is to define a new criterion of optimizing the rate-

distortion efficiency under the bit rate and “fairness” constraints, and propose an 

efficient solution. Towards this goal, our study applied cooperative and non-cooperative 

game theory approaches for rate control.  
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Game theory deals with the decision making problems. A game is a 

mathematical model of an interactive decision problem – a situation in which the 

outcome is determined by the choices of two or more parties, who are called decision 

makers or players. Game can be found in everyday life. E.g., when you are driving, you 

need to make decisions depending on the behaviors of the other drivers on the road, thus 

you are playing a game with other drivers; when you are bidding in an auction, your 

decision is based on how you value the item and the money in your pocket, sometimes 

estimation of other bidders’ bids, thus you are playing with other bidders. Each player 

may of may not be fully informed about the other players’ choices, and is assumed to 

react only in his/her own interests. Players can act simultaneously or sequentially, once 

or repetitively. Players may or may not communicate and may make binding 

agreements. In every game we look for a “solution”, which is the decisions each player 

makes and their corresponding outcomes. 

Two classes of games are distinguished, called cooperative and non-cooperative. 

In cooperative games, players can communicate and make binding commitments. The 

units of analysis (primitives) are groups. They are supposed to be able to reach 

cooperatively some desirable gains (for the group and each player). The question in 

cooperative games is how the players share the gains from their cooperation. In non-

cooperative games, no communications and binding commitments are allowed. Each 

player is treated as a “selfish” individual who cares about maximizing its own utility in 

presence of strategic interdependences. 

The history of game theory is not long. It is widely thought to have originated in 
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the early twentieth century, when von Neumann laid the groundwork by proving the 

min-max theorem in a paper in 1928 [47]. However, it was not until 1944 when Von 

Neumann and Morgenstern’s classic book The Theory of Game and Economic 

Behaviors [48] appeared, that the world realized the power of game theory for studying 

the behaviors in Economy, Political Science, Social Science and Biology. Others had 

anticipated some of the ideas. Later, many economists and mathematicians made 

innovative contributions.  Some of the most pioneering results were reported within a 

year, when Nobel Laureate John Nash made seminal contributions to both cooperative 

and non-cooperative games. In [45], Nash proved the existence of a strategic 

equilibrium for non-cooperative games (Nash Equilibrium). He also proposed that 

cooperative games were reducible to non-cooperative games. He accomplished that by 

pioneering the axiomatic bargaining theory and proved the existence of the Nash 

Bargaining Solution (NBS) for cooperative games (a notion similar to the Nash 

Equilibrium) [43]. The remarkable property of Game Theory is its abstractly defined 

mathematics and notions of optimality. In no other branch of Sciences do we find so 

many understandable definitions and levels of optimality [51]. Game Theory has been 

used as a powerful method to solve and analyze problems that contain natural 

competition in several areas of social sciences [29], Biology [13], Political Science [42] 

Economics [41], etc. In computer science, a few applications of Game Theory applied 

to job scheduling and networking problems have been documented [61].  Recently, 

auction theory is being recognized as the emerging solution for problems in 

microeconomics [41], and agent-based systems [64].  
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Cooperative and non-cooperative games are applied in our study of game 

theoretical rate control. We formulate the bit allocation problems in rate control to 

different types of games and derive the bit allocation strategies from the solutions. 

Moreover, we incorporate the human visual property into the game theoretical 

frameworks. The perpetual visual quality is optimized under the bit rate and “fairness” 

constraint. To our knowledge, this work is the first attempt to apply game theory in 

video compression. 

1.5 Organization of the Dissertation 

The dissertation organized as follows: 

In chapter 2, a macroblock level rate control schemes using cooperative game 

theory is presented.  

In chapter 3, a JMVO rate control schemes using non-cooperative game theory 

in object level bit allocation is proposed. 

Chapter 4 summarizes the studies and research presented in this dissertation, 

and discusses the possible future research. 

 



 

 27

 

 
CHAPTER 2 

PERCEPTUALLY TUNED RATE CONTROL USING  
COOPERATIVE GAME THEORY 

 

2.1 Introduction 

Most rate-distortion optimization algorithms optimize a unique objective 

function, which is typically the perceptual quality or distortion of an entire frame. While 

such an approach allows an overall good visual quality, the same objective function may 

not yield the best results for the whole video frame or a sequence. This work presents a 

game theory based rate allocation strategy that allows multi-objective optimization with 

multiple decision makers (e.g., blocks), while working under an overall constraint (e.g., 

a given bit budget for a frame).  The proposed approach is based on cooperative game 

theory, under which each decision maker has its own objective function, which is its 

own perceptual quality measure. The solution for the cooperative game yields the 

optimal bit allocation that is fair to each macroblock (MB) under the give constraints. 

The proposed rate control algorithm has two stages. In the first stage, target bits are 

allocated at the frame level. In the second stage, the quantization scale for each MB is 

determined by using a game theoretical approach.  

At the frame level, the algorithm allocates target bits to the current frame based 

on the coding complexity of the frame, which is the mean absolute prediction error. 

Since the remaining frames are unavailable, we propose a method to estimate the coding 
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complexity of the remaining frames from the encoded frames. The target number of bits 

of the current frame is optimized by using the current frame coding complexity as well 

as the estimated coding complexity of the remaining frames. 

At the MB level, the algorithm utilizes game theory for bit allocation. We 

formulate the bit allocation as a bargaining problem [44]. Each MB competes for a 

share of resources, which are the target bits for a frame. Based on Nash Bargaining 

Solution [46], we derive a cooperative optimal quantization scale for each MB. 

Furthermore, we incorporate the human visual system (HVS) perceptual property in the 

game theory framework. Initial visual quality of the game setting, which is guaranteed 

for each MB, is determined proportional to the perceptible distortion, which is the 

distortion that exceeds the Just-Noticeable-Distortion (JND) threshold [24]. Figure 2.1 

shows the block diagram of the proposed rate control algorithm that can be embedded in 

a DCT-based video encoder. The gray box in the diagram shows the modules of the 

proposed algorithm. 

The rest of this chapter is organized as follows: Section 2 presents the related 

work on rate control algorithms reported in the literature. Section 3 describes the 

proposed frame level bit allocation scheme and the proposed game theoretical 

formulation for MB layer quantizer optimization. Section 4 presents simulation results 

of the proposed scheme including a comparison to the quadratic rate control proposed 

by [4] and recommended by MPEG-4 VM8 [19]. Finally, Section 5 concludes the work 

with some final remarks.  
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Figure 2.1 The proposed algorithm embedded in a DCT-based video encoder 

 

Output 
bitstream

Input 
sequence 

Q 

Q-1 

DCT-1 

VLC 

Motion Estimation & 
Motion Compensation

Frame 
reconstruction 

Frame 
Delay 

Prediction Error 
Computation 

Buffer 

Frame Layer 

Bit Allocation 

Noticeable 
distortion 

computation 

MAD

Initial 
quality 

computation

MB level  
Game theoretic 
QP computation

Motion Vectors

Reconstructed frame

Compensated
frame 

DCT 

Buffer 
fullness 



 

 30

2.2 Frame-Level Bit Allocation 

The visual quality of an encoded frame is related to the bits it consumes. To 

maintain stable quality throughout the video sequence, one needs to consider the 

distribution of the bit budget for each frame. Since it takes more bits to encode a 

complex frame than a simple frame to obtain the same visual quality, we propose an 

approach to tune the frame level target bit budget according to the estimated coding 

complexity of the frame. We measure the coding complexity of a frame using the mean 

absolute prediction error, denoted by mad:  

∑∑
= =

−
⋅

=
W

x

H

y
yxpyxp

HW
mad

0 0
),(ˆ),(1                                  (2.1) 

where (x,y) is the pixel coordinate, W and H are the width and height of the 

frame in pixel. The target bit budget is allocated proportional to the coding complexity 

of the current coding frame. Therefore, we need to know the coding complexity of the 

remaining frames. Since the encoder only contain the current frame and the reference 

frame due to the memory and delay constraints, we estimate the coding complexity of 

the remaining frame by computing the weighted mean of the coding complexity of the 

previous coded frames.  Suppose we are encoding a frame at time t. The estimated 

coding complexity of the remaining frames is denoted by mad_rt. and given by: 
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where madi is the coding complexity of frame at time i. The number of bits allocated to 

a frame at time t is given by: 

t
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−                                             (2.3) 

where Et-1 and Nt-1 are the numbers of remaining bits and remaining P frames after 

encoding the frame at time t-1. 

Initially, I frame at time 0 is encoded using an external input quantization scale. 

The number of the remaining bits after encoding the first I frame is: 

fRLBrR −⋅=0                                                (2.4) 

where Br is the target bit rate of the sequence, L is the total length of the sequence in 

unit of second. Rf is the number of bits used to encode the first I frame. 

We need to further adjust the target bits Tt’ to the current buffer fullness with the 

following equation: 
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where B is the buffer size and Bt is the buffer fullness at time t. (2.5) intends to maintain 

the buffer fullness in the middle of the buffer. If the buffer fullness is lower than the 

middle level, more bits will be allocated to the current frame. Otherwise, fewer bits will 

be allocated.  

Finally, the target number of bits is bounded by: 
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max,2min                                       (2.6) 

where F is the frame rate. Br/F is the average bits for a frame (2.6) intends to avoid 

allocating extremely large or extremely small number of target bits to a frame, in order 

to prevent the buffer overflow or under flow. The upper bound of target number of bits 

for a frame is two times of average bits for a frame and the lower bound is a quarter of 

the average bits for a frame. 

2.3 MB Level Bit Allocation 

The problem to identify the optimal quantization scale is equivalent to find an 

optimal allocation of the frame target bits to maximize the perceptual quality, which is a 

resource optimization problem. Each MB competes for a share of resources to optimize 

its own performance. Since the whole frame is an entity perceived by the viewers, MBs 

need to work cooperatively. We solve the problem by playing a multiple-player 

cooperative game. An optimal and fair bit allocation strategy is derived based on the 

Nash bargaining solution. 
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2.3.1 Quadratic Rate-Distortion Model 

We propose a quadratic rate-distortion model to formulate the relation of the 

consumed bits and the quantization scale used to encode a MB. The proposed model is 

plugged in to the game theoretical framework presented in section 0, to determine the 

optimal quantization scale. The model is given by: 

2
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=α                                                         (2.7) 

where ri is the number of bits spend to encode the ith MB, mi is the standard deviation 

of prediction errors of the ith MB, Qi is the quantization step size for the ith MB, K are 

model parameters. α is a constant (α=0.8).  

The rate-distortion model is updated after the encoding of each MB. The rate-

distortion model parameter K for the (i+1)th MB will be updated as the following: 
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where Ai is the actual bits used to encode the ith MB, ns is the number of skipped MBs. 

The initial value K0 is set to 3000. 

2.3.2 Solving Quantizer Optimization with Game Theory 

In the proposed MB level bit allocation, the bargaining game is configured as 

following: 
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Players: Each frame contains N uncoded MBs. Each MB is regarded as a player 

in the game. N players compete for the use of a fixed resource, which is the target bit 

budget Rt for the frame at time t.  

Strategies: The strategy of a player is the number of bits it requests for, denoted 

by ri. Since the target number of bits for a frame is constrained, the sum of the bits 

requested by the N remaining MBs should be no more than the remaining bits for a 

frame, i.e.: 

c

N

i
i Rr ≤∑

=1

                   (2.9) 

where Rc is the remaining bits for the N MBs. 

Preference: A utility function ui for each player i reflects its preference. We use 

the visual quality as a measure of utility. Higher visual quality is more preferable. Given 

a combination of strategies carried out by all the MBs r = (r1 ,r2 ,…,rN), u = (u1(r), 

u2(r), …, uN(r)) is the utility of the game. Since in the DCT video coding, the visual 

quality of a MB is related only to the number of bits it obtained, the utility can be 

represented by u=(u1(r1), u2(r2), …, uN(rN)). 

Initial utility: The initial utility of the ith MB, denoted by di, is the initial 

perceptual quality that required to be guaranteed. The initial quality is determined 

according to the perceptible distortion of each MB, which is defined in section 0. 

Denote the initial quality of the game d=(d1, d2, …, dN), we have u>d. Define the 

number of bits achieving di as ri
0. Since u>d, we have r > r0 , where r0 = (r1

0 , r2
0 ,…, 

rN
0), which means: 
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0
ii rr >                                                     (2.10) 

Define U the set of achievable utilities. Tuple <U, d> represents the game 

setting. 

Nash bargaining solution (NBS) is a unique solution that satisfies a set of 

axioms for fair bargain [46]. Let strategy r* be the NBS of the game <U, d>, the 

corresponding utility ),(* >< dUu is called the Nash bargaining point. The following 

axioms define a unique NBS: 

Efficiency: The Nash bargaining solution is Pareto optimal, i.e., there is no 

other solution produces better utility for one player without hurting another player. 

Linearity: Given a monotonous increasing linear transform function F, Nash 

bargaining point u* satisfies that: ),(*())(),((* ><=>< dUuFdFUFu  

Independence of irrelevant alternatives: Let X, Y are sets of attainable 

utilities, and YX ⊆ . If XdYu ∈>< ),(* , then ),(*),(* ><=>< dXudYu .  

Symmetry: If U is symmetric with respect to any two players in the game, and 

if their initial utility is equally preferable, then exchange the two players will not affect 

the solution.  

The efficiency axiom states that the Nash bargaining solution is cooperatively 

optimal. The linearity axiom implies that the NBS will not change if the player’s 

objective is linearly transformed. The irrelevant alternatives axiom expressed that if we 

remove the irrelevant subset (the subset does not contain the Nash bargaining point), the 

NBS of the game will not change. The symmetry axiom says that the solution is only 

depended on the players’ initial utilities and their utility functions. The last three axioms 
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are the axioms of fairness. 

NBS for a multiple players bargaining game is characterized by the following 

property [66]: 

The solution r* is a NBS if and only if ∏∏ −≥−
i

ii
i

ii drudru ))(())(( *  for all Hr∈ , 

where H is the set of all feasible combination of strategies. 

Therefore, to find the Nash bargaining solution, we need to solve the following 

maximization problem: 

( ) c

N

i
iii

N

i
iii Rrrrdru ≤>− ∑∏

== 1

0

1

   ,  s.t.         )(max                          (2.11) 

The conditions in (2.11) are constraints from (2.9) and (2.10). 

The approximate mean square error (MSE) distortion of the ith MB is 

12/2QDi = [8].  Therefore, we defined the visual quality of the ith MB by: 
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Since ui is concave and injective, ln(ui) is strictly concave. The above problem is 

equivalent with the following problem: 
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The above inequality constrained optimization problem can be solved by 

maximizing the following Lagrangean, using the theorem of Kuhn and Tucker [67].  
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where λ and θi are the Lagrange multiplier. 
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Since 
c

N

i
i Rr <∑

=1

0 , there must be a solution r that strictly superior to r0, so that 

00 >− ii rr . Therefore, 0=iθ .  From (2.15), we have 
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Therefore, the NBS for the game is given by: 
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And the optimal quantization step size is given by: 
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Proof of fairness: 

An assignment of resource s = (s1 ,s2 ,…,sN) is said to be proportionally fair 

with respect to a utility function f, if for any other feasible allocation s’, the aggregate 

proportional changes is zero or negative [26].  
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Denote r* the allocation from NBS. Consider a small changes of r* to r’, 

where **' iii rrr Δ+= . In the context of our game setting, the proportional fairness criteria 

can be rewritten as 
[ ] [ ]∑

=

≤
−

−−−N

i iii

iiiiii

dru
drudru

1
*

*

0
)(

)()'(
 

Replace u with (2.12), we have 
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Let ( )iiiii drurv −= )(ln)( . Since r* is the optimal solution for (2.13), any 

change in r* will make a zero or negative change in∑
=

N

i
ii rv

1
)( . Therefore, we have 
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Plug (2.12) into (2.24), we have 
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2.3.3 Perceptually Tuned Quantizer 

The perceptual redundancy is inherent in video signals. It is found that the 

human visual system is insensitive to the signals in some spatial frequencies. Moreover, 

the human vision is much easier to detect the luminance difference rather than the 

absolute intensity. And the sensitivity to the luminance contrast is depended on the 

average background intensity. Due to the above observation, a metric of just-noticeable-

distortion (JND) is proposed in [24] to measure the perceptual lower bound of the signal 

distortion. JND is a threshold below which the distortion is imperceptible. The 

computation of JND of a pixel at (x,y) is given by [5]: 
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where T0, γ and λ are 17, 3/128 and 1/2, respectively. 

bg(x,y) and mg(x,y) represent the average background luminance and the 

maximum weighted average of luminance differences around the pixel at (x,y). The 

calculations of bg(x,y) and mg(x,y) are given below: 
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where p(x,y) is the luminance of pixel at (x,y). B(i,j), (i,j=1,..,5), is a matrix of weights, 

which is shown in Figure 2.2. mg is the maximum gradient among different directions. 

kgrad  represents the gradient in direction k, where k={1,2,3,4} is one of the following 

four directions, 1: vertical, 2: diagonal (upper-left to lower-right), 3: horizontal, 4: 

diagonal (upper-right to lower-left). kgrad  is computed with (2.33). 
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Figure 2.2 Matrix B 

 

 

             

(a)                                                 (b) 

             

(c)                                                  (d) 

Figure 2.3 Matrix Gk  (a) G1 , (b) G2 , (c) G3 , (d) G4 
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}),(max{),( yxgradyxmg k=                               (2.32) 
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where Gk is the matrices of weights in four directions, which is given in Figure 2.3. 

In (2.19), a factor that affects the optimal quantization step size Qi is the initial 

quality di. In the proposed algorithm, the initial quality of a MB is proportional to its 

noticeable distortion e. The noticeable distortion in the ith MB is given by: 
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where (u, v) is the top-left corner of the ith MB, and 

),(ˆ),(),( yxpyxpyxh −=                                  (2.35) 
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Due to the bit rate constraint, the total bits corresponding to the initial quality of 

the N uncoded MBs in a frame cannot exceed the remaining bits, i.e., c

N

i
i Rr <∑

=1

0 . 

Therefore, we bound the initial quality by a scale factor C, such that the total bits 

corresponding to the initial quality are bounded by a half of the remaining bits for the N 

uncoded MBs (0.5Rc). C is computed as follows: 
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The initial quality for the ith MB is given below:  

ii eCd ⋅=                                             (2.38) 

 

2.4 Algorithm Summary 

The proposed algorithm, name Game Theoretic (GT) algorithm, is embedded in 

a DCT-based video encoder (e.g. H.263 or MPEG-4), as shown in Figure 2.1. The 

functionality of each block in the diagram is introduced in the previous sections. We 

summarize the GT algorithm in the following steps: 

(1) Frame layer bit allocation will be performed prior to the encoding of a 

frame. The mean absolute prediction error of the current frame is computed with (2.2) 

and (2.3), in order to determine the initial estimation of the target number of bits Tt’. 

The Buffer fullness feedback further tunes Tt’ with (2.5). Then Tt” is further adjusted 

with (4.6) to get Tt. 

(2) Before encoding a frame, Rc is initially set to Tt. The noticeable 

distortion for each MB in the frame is calculated with (2.34). 

(3) Based on the noticeable distortion and remaining bits Rc, the initial 

qualities for the remaining MBs are computed with (2.37) and (2.38). 

(4) The quantization step size of current MB is computed based on the 

derived game theoretical formulation, given by (2.19). 
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(5) After encoding each MB, the quadratic rate-distortion model is updated 

with (2.8). Rc is updated as Rc=Rc-Ai. Go to step 6 if all the MBs in the frame is 

finished, otherwise go to step 3. 

(6) Update the buffer status after encoding each frame. Stop if all the frames 

are encoded, otherwise go to step 1. 

2.5 Experiments and Results 

First, we compare the GT algorithm to the quadratic rate control algorithm 

suggested by MPEG-4 VM8 [19]. Both comparing algorithms are implemented in 

Momusys encoder for MPEG-4 Verification Model. To be consistent with the VM8 rate 

control algorithm, we set the buffer size to Br/8, which means the maximum delay is 

125ms. The initial buffer fullness is Br/16.  

The performance of a rate control algorithm is evaluated by the following 

metrics.  

I. The bit rate accuracy 

II. Percentage of bits saved 

III. The number of skipped frames 

IV. The peak-signal-to-noise ratio (PSNR) 

V. The peak-signal-to-perceptible-noise ratio (PSPNR) 

A good rate control algorithm should be able to control the actual bit rate as 

close as possible to the target bit rate. We measure the bit rate accuracy with the 

following equation: 
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−
−=                             (2.39) 

where Ractual and Rtarget are the actual bit rate and the target bit rate respectively. Besides 

the bit rate accuracy, we also measure the percentage of bits saved of the GT algorithm 

compared to the VM8 algorithm. For the same visual quality, lower bit consumption 

means the higher rate-distortion efficiency.  

Frame skip technique is employed to avoid the buffer overflow. Once the buffer 

fullness is over a threshold, the encoding of the next frame will be skipped and will not 

be buffer in order to cut down the buffer fullness level. In the decoder side, the skipped 

frame will be replaced by a duplication of the previous frame in order to maintain the 

continuity of the video decoding. However, a frame skip will degrade the signal quality. 

A good rate control algorithm should be able to avoid the buffer overflow and minimize 

the number of skipped frames.  

PSNR is a widely adopted metric to measure visual quality. PSNR averages the 

noise of all pixels in a frame, regardless if it is perceptible to human visual system or 

not. PSPNR proposed by Chou and Li [5] measures the perceptible visual quality 

incorporating the human perceptual property. PSPNR only take account of the 

perceptible noise and is defined as: 
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where h(x,y) and δ(x,y) and is defined in (2.35) and (2.36) respectively. According to 

the MPEG-4 core experiment, the PSNR (and PSPNR) of the skipped frame is 
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computed by considering the skipped frame as the duplication of the previous decoded 

frame in the decoded sequence [62] [63].  

We encode QCIF and CIF format test sequences at various target bit rates. The 

frame rate in the experiments is 30 frames per second.  For each sequence, 100 frames 

are encoded. The temporal prediction structure used in the experiment is IPPP…, i.e., 

only the first frame is encoded as I-frame and the remaining frames are encoded as P-

frame (IPP…). It is to be noted that the GT algorithm is not limited to P frames, and 

easily extended to the frame level bit allocation for I frame and B frame. The reason of 

using this temporal prediction structure in the experiment is that the comparative 

algorithm (VM8) supports only this structure. To be consistent with VM8 in the 

comparison, we adopt IPPP… structure in the experiment. The detailed simulation 

results and the comparisons are shown in Table 2.1 and 2.2. Table 2.1 shows the results 

of QCIF format and Table 2.2 shows the results of CIF format.  

2.5.1 Bit Rate Accuracy and Percentage of Bits Saved 

From Table 2.1, we observe that the GT rate control algorithm produces fewer 

bits and achieves more accurate bit rate than the VM8 algorithm in most test cases. The 

average bit rate accuracy of VM8 is 96.45% for CIF format and 96.61 for QCIF format 

while the GT algorithm achieves 99.95% for CIF format and 99.93% for QCIF format. 

Compare to VM8, the GT algorithm saves 3.57% and 3.39% bits for CIF format and 

QCIF format respectively. 

One can note that the GT algorithm uses fewer bits in the situation that without 

frame skipped. That means, comparing with VM8 that skips a certain number of frames 
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to achieve the target bit rate, the proposed algorithm averagely use even less bits to 

encode a frame. 

2.5.2 Frame Skipping 

On the number of skipped frames comparison, one can notice that various 

numbers of frames are skipped when using VM8 algorithm. On the contrast, there is no 

frame skips in the experiments when using the GT rate control algorithm. The 

advantage of the GT algorithm is especially prominent in the low bit rate tests. For 

example, in the “Table” QCIF 64Kbps test and “Stefan” QCIF 96Kbps test, VM8 skips 

3 frames and 5 frames respectively, while the GT algorithm does not skip any frame. 

The reason of improvement of frame skipping is because the GT can maintain a 

stable buffer level, which thanks to the accurate estimation of frame level target bit 

budge and the high accuracy of MB level rate control. 

Figure 2.4, Figure 2.6 and Figure 2.8 illustrate the frame-to-frame comparison 

on buffer fullness. One can observe that the proposed algorithm has less fluctuation on 

buffer level and is able to control the buffer fullness around the middle of the buffer size. 

The buffer fullness level is maintained within a safe margin to avoid frame skipping. 

2.5.3 PSNR and PSPNR 

The overall visual quality is measure by the average PSNR and PSPNR. 

Different rate control algorithm may lead to different number of frame to be skipped. If 

a rate control algorithm skips more frames than the other one, more bits are used to 

encode the non-skipped frame, which will lead to a higher PSNR and PSPNR value on 

the non-skipped frame. Therefore, it is unfair to compare the average PSNR and PSPNR 
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only taking into account the encoded frame. The distortion of the skipped frame should 

be considered to for a fair comparison. In the MPEG-4 decoder, a skipped frame will be 

repeated by the previous encoded frame. Hence, in the MPEG-4 rate control test the 

previous frame is used in the PSNR and PSPNR computation when a frame is skipped 

[62].  

Table 2.1 shows the PSNR and PSPNR comparison between VM8 and the 

proposed algorithm. It can be observed that the GT algorithm achieves higher PSNR 

than its counterpart in the PSNR comparison, although the GT algorithm is optimized 

for the PSPNR. 

With regard to the perceptible distortion comparison, the GT algorithm 

successfully masks the imperceptible distortion. This is due to the bit allocation based 

on the noticeable distortion. Therefore, the algorithm produces substantial improvement 

in perceptual quality, compared to the VM8 algorithm. For example, the PSPNR 

improves by 1.68dB in the “Container” qcif 384kbps test, and by 2.23dB in the “Akiyo” 

qcif 384kbps test. The GT algorithm outperforms the VM8 algorithm in terms of both 

the bit rate and the visual quality. 

Figure 2.4 to Figure 2.9 show detailed results of buffer fullness level and 

PSPNR values of each frame achieved by the two algorithms. One can observe that the 

GT algorithm achieves higher PSPNR and maintains the buffer fullness level within a 

safe margin to avoid frame skipping. 
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Table 2.1 Bit rate accuracy, PSNR, PSPNR and number of skipped frame 
comparison between VM8 and the GT algorithm (QCIF sequences) 

 
Bit rate video 

sequence Algorithm 
Target Actual

bit rate 
accuracy

bits 
saved 

Average 
PSNR_Y

Average 
PSPNR_Y

Frame 
skipped 

PSNR 
gain 
(dB) 

PSPNR 
gain 
(dB) 

VM8 64 66.64 95.88%  28.88 32.38 3   

GT 64 64.1 99.84% 3.96% 29.04 32.6 0 0.15 0.22 

VM8 96 99.24 96.63%  30.26 34.36 3   

GT 96 96 100.00% 3.37% 30.34 34.48 0 0.08 0.12 

VM8 128 131.54 97.23%  31.2 35.76 2   

Table 

GT 128 128 100.00% 2.77% 31.34 35.98 0 0.15 0.22 

VM8 96 101.54 94.23%  24.45 26.87 5   

GT 96 96.12 99.88% 5.64% 24.51 26.94 0 0.06 0.07 

VM8 112 119.81 93.03%  24.86 27.39 6   

GT 112 111.98 99.98% 6.99% 25.03 27.61 0 0.17 0.22 

VM8 128 135.9 93.83%  25.34 28.03 5   

Stefan 

GT 128 128.05 99.96% 6.13% 25.46 28.18 0 0.11 0.14 

VM8 64 69.7 91.09%  29.73 33.56 8   

GT 64 64.04 99.94% 8.84% 29.84 33.7 0 0.11 0.14 

VM8 128 131.99 96.88%  32.53 37.93 2   

GT 128 127.94 99.95% 3.17% 32.62 38.23 0 0.09 0.31 

VM8 192 195.27 98.30%  34.27 40.98 1   

Foreman 

GT 192 191.79 99.89% 1.81% 34.32 41.29 0 0.05 0.31 

VM8 192 199.06 96.32%  38.15 47.46 3   

GT 192 192.09 99.95% 3.63% 38.48 47.81 0 0.33 0.36 

VM8 384 386.87 99.25%  41.15 54.62 0   

GT 384 384.12 99.97% 0.72% 41.95 56.3 0 0.79 1.68 

VM8 512 512.01 100.00%  41.96 56.84 0   

container 

GT 512 512.2 99.96% -0.04% 42.99 58.78 0 1.03 1.93 
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Table 2.1 – Continued 

VM8 192 198.22 96.76%  42.31 55.97 2   

GT 192 191.88 99.94% 3.30% 42.42 58.05 0 0.11 2.07 

VM8 384 384.91 99.76%  44.16 60.62 0   

GT 384 383.41 99.85% 0.39% 44.72 62.85 0 0.56 2.23 

VM8 512 511.99 100.00%  45.39 64.18 0   

Akiyo 

GT 512 511.32 99.87% 0.13% 46.25 67.71 0 0.86 3.53 
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Table 2.2 Bit rate accuracy, PSNR, PSPNR and number of skipped frame 
comparison between VM8 and the GT algorithm (CIF sequences) 
 

Bit rate video 
sequence Algorithm 

Target Actual
bit rate 

accuracy
bits 

saved 
Average 
PSNR_Y

Average 
PSPNR_Y

Frame 
skippe

d 

PSNR 
gain 
(dB) 

PSPNR 
gain 
(dB) 

VM8 192 193.32 99.31%  32.54 37.33 0   

GT 192 191.82 99.91% 0.78% 32.57 37.42 0 0.03 0.09 

VM8 256 263.35 97.13%  33.37 38.64 2   

GT 256 256.12 99.95% 2.82% 33.44 38.80 0 0.06 0.16 

VM8 384 400.84 95.61%  34.86 41.26 4   

container 

GT 384 384.32 99.92% 4.30% 34.90 41.32 0 0.04 0.05 

VM8 256 270.36 94.39%  27.40 30.86 5   

GT 256 256.04 99.98% 5.59% 27.43 30.88 0 0.03 0.02 

VM8 384 395.19 97.09%  28.69 32.67 2   

GT 384 383.95 99.99% 2.93% 28.79 32.77 0 0.10 0.10 

VM8 512 521.55 98.13%  29.73 34.10 1   

Coastguard 

GT 512 511.88 99.98% 1.89% 29.78 34.15 0 0.05 0.05 

VM8 256 271.10 94.10%  32.05 36.42 5   

GT 256 255.82 99.93% 5.97% 32.35 36.97 0 0.30 0.55 

VM8 384 398.17 96.31%  33.57 38.98 3   

GT 384 383.48 99.86% 3.83% 33.69 39.18 0 0.12 0.21 

VM8 512 522.32 97.98%  34.59 40.79 1   

foreman 

GT 512 511.41 99.89% 2.13% 34.64 40.81 0 0.05 0.02 

VM8 384 397.00 96.61%  30.80 34.89 3   

GT 384 383.77 99.94% 3.45% 31.08 35.29 0 0.27 0.40 

VM8 512 522.09 98.03%  31.93 36.56 1   

GT 512 511.99 100.00% 1.97% 32.07 36.80 0 0.14 0.24 

VM8 640 648.14 98.73%  32.75 37.85 1   

table 

GT 640 640.03 100.00% 1.27% 32.88 38.04 0 0.12 0.20 
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Table 2.2 – Continued 

VM8 512 548.51 92.87%  24.10 27.01 6   

GT 512 512.33 99.94% 7.06% 24.17 27.10 0 0.07 0.09 

VM8 640 674.20 94.66%  24.88 28.07 4   

GT 640 640.19 99.97% 5.31% 24.95 28.16 0 0.07 0.09 

VM8 768 800.36 95.79%  25.56 29.01 3   

Mobile 

GT 768 768.16 99.98% 4.19% 25.62 29.09 0 0.06 0.08 
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Figure 2.4 Buffer occupancy in the coding of “Foreman” QCIF at 64kbps and 30Hz 
with buffer size = 8kbits 
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Figure 2.5 PSPNR in the coding of “Foreman” QCIF QCIF at 64kbps and 30Hz  
with buffer size = 8kbits 



 

 55

 

 

 

 

1 50 99 
Frame

0 
2000 
4000 
6000 
8000 

10000 
12000 
14000 

Buffer 
level 
(bits) 

VM8 
GT 

 
Figure 2.6 Buffer occupancy in the coding of “Stefan” QCIF at 12kbps and 30Hz  

with buffer size = 14kbits 
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Figure 2.7 PSPNR in the coding of “Stefan” QCIF at 12kbps and 30Hz  

with buffer size = 14kbits 
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Figure 2.8 Buffer occupancy in the coding of “Container” QCIF at 192kbps and 30Hz 
with buffer size = 24kbits 
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Figure 2.9 PSPNR in the coding of “Container” QCIF at 192kbps and 30Hz  

with buffer size = 24kbits 
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2.6 Summary 

In this proposal, we propose adaptive and perceptually tuned motion estimation 

and rate control schemes for a new paradigm of video compression called content 

adaptive video compression. By adapting to the video characteristics extracted by a 

online video analysis process, the proposed motion estimation scheme outscores the 

other predictive motion estimation algorithms in terms of computational cost and visual 

quality, while showing the adaptability to various types of scenes and abrupt scene 

change occasions. This scheme has the best overall performance among the compared 

algorithms after considering the overhead introduced by the video analysis process. This 

proposed rate control algorithm utilizes a game theoretical approach. The algorithm 

models the bit allocation problem on the MB level as a bargaining problem. Bit 

allocation and quantization scale of each MB are decided based on the Nash Bargaining 

Solution. The proposed algorithm masks the imperceptible distortions by adjusting the 

initial quality of each MB based on noticeable distortion. The algorithm includes an 

efficient frame level bit allocation according to the frame coding complexity. The 

proposed rate control algorithm outperforms the VM8 rate control algorithm in terms of 

several aspects, including bit rate accuracy, PSNR, PSPNR and the buffer stability. 
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CHAPTER 3 

JOINT MULTIPLE VIDEO OBJECT RATE CONTROL USING 
NON-COOPERATIVE GAME THEORY 

 

3.1 Introduction  

As a standard for multimedia and Web compression, MPEG-4 supports object-

based interactivity, high compression, and universal accessibility [28]. In MPEG-4 

standard, a scene is composed of one or more audio-video objects, which are separately 

tracked and compressed but multiplexed into a single MPEG-4 bit stream for 

transmission. This scheme leads to efficient and scalable compression, and makes 

MPEG-4 able to support interactive functionalities, such as the manipulation and 

control of individual objects. Because of the difference with the conventional frame-

based standards, such as MPEG-2 and H.263, the rate control algorithms for MPEG-4 

need to be redesigned to accommodate to the MVO coding functionality, in order to 

provide the maximum efficiency. In [3] and [4], Chiang and Zhang have reported a 

scalable rate control algorithm for both DCT and wavelet-based coders. Vetro and Sun 

extended this framework with a scheme for JMVO rate control [73], [74]. Their scheme 

distributes the target bits to video objects proportional to the normalized factors of 

object size, motion and variance. Ronda and Eckert focused on rate control in real-time 

applications [63]. The goal was to minimize the average distortion of the objects, to 
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guarantee desired qualities to the most relevant ones, and to keep constant ratios among 

the object qualities.  

The core of JMVO rate control is the bit rate allocation among video objects 

subject to constraint data rate. The allocation scheme strongly impacts the coding 

efficiency, the quality of individual audio-visual objects and the overall bit rate accuracy.  

In this chapter, we propose a JMVO rate control algorithm that distributes bits 

to VOPs based on the mixed strategy Nash equilibrium of a non-cooperative bi-matrix 

game.  

For the reason of simplicity, most of the current rate control algorithm adopts a 

hierarchical bit allocation scheme, where the target bits are first distributed in coarser 

level then in finer level [3] [34] [35] [52] [73] [74]. In our algorithm, hierarchical 

structure is employed. The total available bits for a video sequence, which are computed 

based on the bit rate requirement, are firstly distributed for each time instance; then the 

bits for a time instance are further allocated to VOPs. The quantization parameter for 

each VOP is calculated from a rate-distortion model. In each level, we utilize efficient 

bit allocation schemes to regulate the bits in order to meet the bit rate requirement while 

optimizing the visual quality. In the time instance level, the number of bits allocated is 

depended on the number of remaining bits for the remaining VOPs as well as the 

number of bits used for the previous time instance. In the object level, a non-

cooperative matrix game is employed, where each VOP is regarded as a rational player. 

The bi-matrix strategic game simulates the behaviors of non-cooperative players 

competing for available bits to optimize their own performance. We look for the 
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“solution” of the game, the mixed strategy Nash Equilibrium, which is the probability 

distribution of the actions carried by players that optimizes their expected utility, the 

number of bits. The game is played iteratively. The expected utility of each play will be 

accumulated. The game will terminate when all available bits for the specified time 

instance are distributed to VOPs. 

3.2 Target Bit Estimation for a Time Instance  

The bit allocation scheme in the proposed rate control algorithm is hierarchical. 

In this section, we describe an approach that estimate the target number of bits for all 

VOPs in a time instance. This simple yet efficient approach is first appeared in [33], 

[34].  

First, the estimation of target number of bits for each VOP is initially estimated 

from the remaining bits by: 

r
i nN

RT
×

=                                                       (3.1) 

where N is the number of video objects and nr is the number of remaining VOPs. 

Taking account of the actual bits consumption for the previous VOP, the initial 

estimation is further adjusted by Eq. (3.2) in order to maintain a smooth change in target 

bit budget: 

iii STT 2.08.0 +×=′                                                (3.2) 

where Si is the actual bits for the previous VOP of the ith video object.  

Finally, the number of bits for a specific time instance is the sum of estimated 

bits for all VOPs: 
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3.3 Buffer Policy  

A buffer is placed between encoder and the transmission channel to 

accommodate bit rate variation in the CBR channel mode. In order to maintain an 

accurate regulation and avoid buffer overflow and underflow, the buffer control tries to 

keep buffer fullness in the middle level. The buffer control system can be regarded as a 

tracking system where the actual buffer fullness level traces the target buffer level, 

which is a half of the buffer size. Close-loop control is widely used in tracking systems. 

The feedback of the buffer status is used to adjust the target bit estimation. 

Proportional-Integral-Derivative (PID) control is widely used in the feedback control 

systems [7] [54]. It combines to the proportional, integral and derivative feedback 

compensation components to improve the steady state response and transient response. 

In this work, we adopt the PID buffer feedback control in our related works [75]. A 

block diagram of the PID buffer control system is shown in figure 3.1. 

The PID buffer feedback adjustment can be formulated as following:  
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                  (3.4) 

where Bs is the buffer size, Bt is the buffer fullness at time t, Kp, Ki and Kd are the 

proportional, integral and derivative control parameters. They are set to 1, 0.01 and 0.4 

respectively. The proportional feedback has the intension to reduce the error between 

the actual buffer level and the target buffer level. The integral feedback intends to 



 

 64

eliminate the steady-state error. The negative feedback will increase along the 

increasing of the accumulated error. Generally, the integral feedback improves the 

steady-state response but degrades the system’s transient response, i.e. the system will 

overshoot to the accumulated error, such that the feedback keeps increasing while the 

error is decreasing, which makes the system slowly responding to the current error. To 

compensate it, a derivative compensator is used to add more stability to the system by 

reducing the overshoot. Combining the proportional, integral and derivative 

compensator, and choosing proper control parameters, the buffer level can be accurately 

control to the desired level. 

 

 

Figure 3.1 PID buffer control diagram 

 

After the PID buffer feedback adjustment, the number of target bits is bounded 

by [0.25Br/Fr, 2Br/Fr], where Br is the target bit rate and Fr is the frame rate. Br/Fr is 

… 
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the average number of bits for a time instance. The objective of this adjustment is to 

avoid the buffer overflow and guarantee a minimum quality. 

3.4 VOP Level Bit Allocation  

Given the bit target for a specified time instance, bits are further distributed to 

VOPs at this time instance. Most current existing rate control algorithms for MVO 

coding distribute bits proportional to the linear combination of several factors, such as 

video object size, residual data complexity, motion vector length, etc. This approach is 

based on the assumption that these factors are linear related to the bit consumption of 

encoding an object. The target is to obtain a balance visual quality over all objects.  

From another point of view to look at the bit allocation problem, we proposed a 

non-cooperative game approach for bit allocation among VOPs. In the MVO coding, 

each VOP is encoded with a quantization parameter, which is related to the encoded bits. 

According to the rate-quantization relation, using a smaller quantization parameter can 

achieve higher visual quality but produce more bits. Assume the VOPs can choose their 

quantization parameters independently. They need to consider the other VOPs’ choices. 

If a VOP chooses a small quantization parameter in order to obtain a high quality, it 

may happen that the other VOPs also choose small quantization parameter such that the 

total number of bits consume will exceed the target bit budget. On the other hand, if a 

VOP chooses a large quantization parameter while the other VOPs choose small ones, 

then it will lose most of the bits. Assuming each VOP is a rational player, the behaviors 

of the VOPs can be modeled by a bi-matrix strategic game. 
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In all game theory models the basic entity is a player. A player is an individual 

or a group of individual making decision. A strategic game is a game in which each 

player chooses his plan of action once and for all, and all players’ decisions are made 

simultaneously. When choosing an action, each player is not informed the actions 

chosen by other players. Each player is “rational” in the sense that he is aware of his 

available strategies and the preference on these strategies, thus he chooses to carry out 

an action that will maximize his utility. The utility of a player is a function of the 

combination of actions that carry out by all players. 

A strategic game can be described conveniently by a matrix. Figure 3.2 shows 

an example of two player strategic game. One player’s actions are identified with the 

row and the other player’s actions with the column. In each entry of the matrix are the 

utilities of player A and player B given they choose the corresponding actions. 

 

 H L 

H a1,b1 a2,b2 

L a3,b3 a4,b4 

 

Figure 3.2 A sample of bi-matrix game 

 

An interpretation of game in Figure 3.2 is that: Both player (player A in column 

and player B in row) have a strategy space {H, L}. When player A chooses H and 
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player B choose H, player A’s utility is a1 and player B’s is b1. When player A chooses 

H and player B chose L, player A’s utility is a2 while player B’s is b2.  

A strategic game can be utilized to model the behaviors of VOPs. We define a 

strategic game as following. For the ease of description, we limit the number of objects 

to two. More objects can be applied in the same framework, but the computational 

complexity will increase accordingly. In this game, the objects are regard as players. 

The strategy space of the player is defined on the set of quantization parameters. In the 

MPEG-4 environment, the strategy space is {1,..,31}. Each entry in the matrix contains 

the utilities of players given corresponding combination of actions taken by the two 

players. The utility is defined as follow: 

⎩
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where u1 and u2 are utilities of player 1 and player 2 respectively. R1 and R2 are the rate 

quantization functions of player 1 and player 2. q1 and q2 represent the strategies chosen 

by player 1 and player 2. s is the number of remaining bits for texture coding.  

∑−=
i

ihdrTTs ,                                                      (3.7) 

where Thdr,i is the total number of bits used for coding the shape, motion and header of 

the previous VOP of the ith video object. 

Different rate-quantization functions have been proposed in the literatures to 

model the rate quantization relation [6] [27] [69] [76]. In our work, we employ a 
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quadratic model which first appeared in [4], due to its wide usage and accuracy. The 

rate quantization function is shown in (3.8) 

2
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×
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=                                       (3.8) 

where X1,i and X2,i are the model parameters for video object i. 

 

  Player 2 

  1 2 … 31 

1 u1(1,1) u1 (1,2) … u1 (1,31) 

2 u1(2,1) u1 (2,2) … u1 (2,31) 

… … … … … Pl
ay

er
 1

 

31 u1(31,1) u1 (31,2) … u1 (31,31) 

(a) 

  Player 2 

  1 2 … 31 

1 u2(1,1) u2 (1,2) … u2 (1,31) 

2 u2(2,1) u2 (2,2) … u2 (2,31) 

… … … … … Pl
ay

er
 1

 

31 u2(31,1) u2 (31,2) … u2 (31,31) 

(b) 

Figure 3.3 The utility matrices (a) matrix of player 1 (b) matrix of player 2 
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The utilities defined (3.5) and (3.6) can be interpreted as follows: the utility of a 

player is the number of bits required to encode it with a chosen quantization level; if the 

total number of bits requested by both players is exceeding the total available bits for 

both players, both players get nothing.  

The strategic game for VOP level bit allocation can be described as in figure 3.3. 

Each entry of the matrix contains a tuple <u1, u2>. Therefore, it is also called a bi-matrix 

game. We can also use two matrices: one represents the utilities of player 1 and the 

other represents player 2. 

Assume the players’ choices are nondeterministic, i.e., the players have some 

probability distributions over the set of strategies. The probability distribution is called 

a mixed strategy of a player. For example, if x (x= ( )3121 xxx L , xi≥0 and 

1=∑
i

ix ) is the mixed strategy of player 1 in the game of Figure 3.3, x1 is the 

probability of player 1 choosing 1 and x2 is the probability of player 1 choosing 2. 

Obviously, the expect utility of each player is depended on both players’ mixed 

strategies. Assume A is the matrix of player 1’s utilities and B is player 2’s. The 

expected utilities of player 1 and player 2 are TxAy and ByxT , where x is the mixed 

strategy of player 1 and y is the mixed strategy of player 2. Assuming all players are 

rational, the game is expected to converge to equilibrium. A pair of mixed strategies (x*, 

y*) for a bi-matrix game (A, B) is said to be in equilibrium if, for any other mixed 

strategies, x and y: 

TT xAyAyx *** ≥  and TT ByxByx *** ≥                                 (3.9) 
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(x*, y*) is called mixed strategy Nash equilibrium. In other words, a mixed strategy is 

said to be Nash equilibrium if no player has any positive reason for changing his mixed 

strategy, assuming none of the other players will change their mixed strategy. TAyx **  

and TByx **  are the expected utilities.  

In each play of the game, the players will choose the mixed strategy Nash 

equilibrium, since it is the optimal strategy for a player in the “Nash” sense. The 

expected utilities of the equilibrium are allocated to player 1 and player 2 respectively. 

The game is played iteratively. After each play, the remaining number of bits is updated 

by taking out the number of bits allocated and the bi-matrix is updated accordingly. The 

game will terminate when all the remaining bits are allocated. 

(3.9) can be converted to the form of linear complementary problem (LCP). 

LCP can be solved by a complementary pivot algorithm due to Lemke [37]. According 

to the characteristics of this game, we derive a simple process that simplifies the 

computation of expected utility. 

Assume we have constructed matrix A and B based on the rate-quantization 

function and the available bits. In matrix A, if there exists some k, such that u1(i,j)≤ 

u1(k,j) for all j, then action i of player 1 is said to be dominated by action k. i is the 

dominated strategy and k is the dominant strategy, i.e., row i is the dominated by row k. 

Similarly, in matrix B, if there exists if there exists some k, such that u2(i,j)≤ u2(i,k) for 

all i, then strategy j of player 2 is said to be dominated by strategy k, i.e., column j is the 

dominated by column k. From the definition of Nash equilibrium, we know that if a 

strategy of a player is dominated by other strategies of the same player, there is no 
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positive reason the player will play this strategy since there is always a better choice. 

Thus, the probability of the player carrying out this strategy is zero. Therefore, we can 

eliminate the dominated row and column in the matrices without interfere the solution 

of game. 

If the total bits in an entry do not exceed the available bits, the following 

relations are held: 

1. u1(i,j)≥u1(m,j) for i≤m, and u2(i,j)≥u2(n,j) for j≤n, since the rate-quantization 

function is monotonously decreasing;  

2. u1(i,j)=u1(i,m) for any j and m, and u2(i,j)=u2(n,j) for any i and n, since a 

object’s bits is only related to its own quantization level. 

Therefore, after eliminating the dominated row and column, matrix A and B will 

be simplified to a form as shown in Figure 3.4. 

A pair of mixed strategy (x,y) is a Nash equilibrium, if AyT=ken
T and xB=ren. 

Proof:  xAyT = x’AyT =k for any x’ and xByT = xBy’T =r for any y’; according to the 

definition of mixed strategy Nash equilibrium in (3.9), mixed strategy (x,y) is a Nash 

equilibrium.  

With matrices in the above form, (x,y) with such property can be find by solving 

equations: 
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  Player 2 

  q1 q2 … qn-1 qn 

p1 0 0 … 0 a1 

p2 0 0 … a2 a2 
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pn-1 0 an-1 … an-1 an-1 
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pn an an … an an 

   

  Player 2 

  q1 q2 … qn-1 qn 

p1 0 0 … 0 bn 

p2 0 0 … bn-1 bn 

… … … … … … 

pn-1 0 b2 … bn-1 bn 
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 1

 

pn b1 b2 … bn-1 bn 

 

Figure 3.4 The simplified matrices by eliminating the dominated rows and 
columns, where ai>aj>0 and bi> bj>0, for i<j 
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Solving these equations, we have: 
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The expected utility of (x,y) is (an, bn). 

The following procedure distributes the bits to the VOPs: 

1. Construct matrix A and B, based on the objects’ rate-quantization functions 

and the remaining bits for texture coding. 

2. Eliminate the dominated rows and columns. 

3. Distribute the bits according to the expected utility of the mixed strategy 

Nash equilibrium to the VOPs. 

4. Subtract the distributed bits from the remaining bits. If there are bits 

available, go to step 1. 

3.5 Quantization Level Calculation and Frame-skipping Control 

Given the model parameter X1,i and X2,i  and MADi, with the estimated number 

of bits for VOPi the quantization parameter QP for the VOPi can be calculated using 

(3.8). To maintain a smooth change of visual quality, the change of QP is restricted to 

25% of the VOP in the previous time instance. Conforming to the standard the QP is 

limited to vary between 1 and 31.  

To avoid buffer overflow, the encoder will skip encoding and transmitting one 

or more frames when the buffer occupancy is too high. The same method as VM8 [74] 
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is employed for frame-skipping control. Frame-skipping controls are performed in both 

pre-encoding stage and post-encoding stage. In pre-encoding stage, if the VOP header 

coding consumes too many bits such that there are no bits for the texture coding, frames 

will be skipped. In the post-encoding stage, if the buffer occupancy is higher than 80% 

of the buffer size, frames will be skipped to avoid buffer overflow. 

3.6 Experiments and Results 

We implement the proposed algorithm on the Momusys MPEG-4 software 

verification model (VM 8.0). Five common test sequences are used in the experiments. 

They are the first two objects of “news”, “bream”, “coastguard”, “Children” and 

“container”. For all sequences, we encode the first 150 frames and the frame rate is 

30Hz. Different target bit rate are tested, from 128Kbps to 384Kbps with a step of 

64Kbps.  

First, the bit rate accuracy is evaluated. As shown in Table 2.1, the results 

verified that our algorithms can accurately control the bit rate to the desired value. The 

bit rate accuracy maintains above 98%. Compared with VM8 JMVO rate control 

algorithm, our algorithm achieves a similar accuracy level in bit rate control. 

Rate control has strong impacts on the visual quality of the reconstructed video 

signal. Peak-signal-to-noise-ratio (PSNR) is widely used to evaluate the reconstructed 

signal quality. We measure the PSNR of each VOP and average the PSNR values of all 

the VOP in a video object to obtain the reconstructed PSNR of a video object. As 

reported in Table 2.1, with the bit allocation among video objects based on the non-

cooperative strategic game, our rate control algorithm can properly distribute the bits to 
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video object. The distribution is closely related to the utility function of each video 

object. For example, in the coding of “news” sequence at 30Hz and 128kbps, the 

foreground object (video object 1) obtains a larger portion of bit budget through the 

competition with the background object (video object 2). The coding complexity of 

video object 1 is higher than video object 2. By taking the same action; video object 1 

consumes more bits than video object 2.  Thus, video object 1 is more aggressive to 

obtain bits than the video object 2, which is embodied by their utility functions.  

Therefore, video object 1 wins more bits than video object 2. 

The buffer occupancy is examined and plotted in Figure 3.5-3.9. The detail 

frame by frame buffer occupancy curve shows the fluctuation of buffer fullness. If the 

fluctuation level is large, the algorithm is much easier to overflow or underflow the 

buffer. From the buffer occupancy figure, it can be observed that our rate control 

algorithm efficiently maintains the buffer fullness around the middle level of the buffer. 

The buffer occupancy is maintained around 40%-60% of the buffer size. Comparing 

with VM8 JMVO rate control algorithm, the buffer occupancy of proposed algorithm is 

smoother and has fewer fluctuations. For example, in the coding of “news” sequence at 

30Hz and 256kbps, the buffer occupancy with VM8 JMVO rate control algorithm 

fluctuates around 30%-70%, while the buffer occupancy with our rate control algorithm 

is around 40%-65%. Another example is the coding of “container” sequence at 30Hz 

and 256kbps. With VM8 rate control algorithm, the buffer occupancy varies form 10%-

60%, and our algorithm produces a smoother change of the buffer fullness level and the 

variation is about 15%-20% around the middle of the buffer size. Thanks to the PID 
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control, our rate control algorithm produces a quick response to the buffer level change. 

For instance, in the coding of “coastguard” at 30Hz and 256kbps as shown in figure 3.7, 

our algorithm much quickly responds to the buffer error than the VM8 MVO rate 

control algorithm. 

Besides the average PSNR of each video object, the frame to frame PSNR 

fluctuation is also a measure of video quality. Large PSNR fluctuation between 

consecutive encoding frames will degrade the visual quality. Figure 3.10-3.19 shows the 

frame to frame PSNR curves. In this comparison, the proposed algorithm and VM8 

algorithm have similar level of fluctuation. 

Table 2.1 also shows the number of skipped frames. Due to the smooth buffer 

control and proper bit allocation, fewer frames are skipped with our algorithm 

compared with VM8 JMVO rate control. For example, in the coding of “children” 

sequence, our algorithm skipped few frames compared with VM8 JMVO rate control. 
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Table 3.1 The performance comparison between game theory algorithm  
and the VM8 reference algorithm 

 

  Target Actual Bit Rate skipped PSNR 

Sequence Alg. Bits Rate VO1 VO2 Total Accuracy frames VO1 VO2 

 VM8 384 205.1 177.2 382.2 99.5% 2 41.18 41.44 

 GT 384 242.7 139.7 382.4 99.6% 0 42.10 40.07 

 VM8 320 172.0 145.1 317.0 99.1% 0 39.91 40.20 

 GT 320 202.6 114.2 316.8 99.0% 0 40.90 38.88 

news VM8 256 137.9 117.4 255.4 99.8% 0 38.42 39.14 

 GT 256 165.1 88.7 253.8 99.1% 0 39.56 37.12 

 VM8 192 98.2 92.6 190.8 99.4% 0 36.16 37.33 

 GT 192 117.9 72.8 190.7 99.3% 0 37.22 35.78 

 VM8 128 63.8 63.4 127.1 99.3% 0 33.59 34.92 

 GT 128 75.2 51.7 126.8 99.1% 0 34.51 33.70 

 VM8 384 89.1 297.0 386.1 99.5% 0 44.93 33.69 

 GT 384 97.5 284.2 381.7 99.4% 0 45.33 33.38 

 VM8 320 56.0 263.0 319.0 99.7% 0 43.93 32.89 

 GT 320 61.1 258.2 319.2 99.8% 0 44.30 32.74 

bream VM8 256 52.4 203.1 255.6 99.8% 0 43.71 31.22 

 GT 256 54.9 200.9 255.8 99.9% 0 44.05 31.10 

 VM8 192 40.9 150.4 191.3 99.6% 0 42.98 29.34 

 GT 192 39.8 151.8 191.5 99.8% 0 43.04 29.43 

 VM8 128 28.8 99.0 127.8 99.9% 0 42.26 27.02 

 GT 128 28.6 98.3 126.8 99.1% 0 42.22 26.91 
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Table 3.1 - Continued 

 VM8 384 192.9 188.2 381.1 99.3% 0 39.05 40.95 

 GT 384 215.8 165.0 380.8 99.2% 0 39.86 39.87 

 VM8 320 163.2 153.7 316.9 99.0% 0 37.68 39.22 

 GT 320 177.8 139.2 317.0 99.1% 0 38.33 38.42 

coastguard VM8 256 135.1 118.9 254.0 99.2% 0 36.21 37.23 

 GT 256 147.2 106.4 253.6 99.1% 0 36.79 36.16 

 VM8 192 102.6 87.4 190.0 98.9% 0 34.25 34.62 

 GT 192 112.0 78.3 190.3 99.1% 0 34.76 33.79 

 VM8 128 68.7 58.1 126.8 99.0% 0 31.36 31.79 

 GT 128 75.6 51.4 127.0 99.2% 0 31.91 30.89 

 VM8 384 207.2 171.7 379.0 98.7% 10 29.94 34.51 

 GT 384 239.7 138.3 378.0 98.4% 5 30.97 30.85 

 VM8 320 183.6 131.8 315.5 98.6% 6 28.90 30.46 

 GT 320 190.3 125.8 316.1 98.8% 4 29.08 29.71 

children VM8 256 145.8 107.0 252.8 98.7% 7 27.40 28.88 

 GT 256 149.7 102.8 252.5 98.6% 5 27.47 28.27 

 VM8 192 105.8 83.9 189.7 98.8% 9 25.50 27.74 

 GT 192 110.4 79.5 190.0 99.0% 6 25.70 25.65 

 VM8 128 72.1 54.6 126.6 98.9% 6 23.14 23.32 

 GT 128 75.6 50.9 126.6 98.9% 3 23.40 21.69 
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Figure 3.5 Buffer occupancy in the coding of “news” at 30Hz and 256kbps 
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Figure 3.6 Buffer occupancy in the coding of “bream” at 30Hz and 256kbps 
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Figure 3.7 Buffer occupancy in the coding of “coastguard” at 30Hz and 256kbps 
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Figure 3.8 Buffer occupancy in the coding of “children” at 30Hz and 256kbps 
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Figure 3.9 Buffer occupancy in the coding of “container” at 30Hz and 256kbps 
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Figure 3.10 PSNR of “news” using VM8 at 256kbps 
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Figure 3.11 PSNR of “news” using the proposed rate control at 256kbps 
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Figure 3.12 PSNR of “bream” using VM8 rate control at 256kbps 
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Figure 3.13 PSNR of “bream” using the proposed rate control at 256kbps 
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Figure 3.14 PSNR of “coastguard” using VM8 rate control at 256kbps 
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Figure 3.15 PSNR of “coastguard” using the proposed rate control at 256kbps 
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Figure 3.16 PSNR of “children” using VM8 rate control at 256kbps 
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Figure 3.17 PSNR of “children” using the proposed rate control at 256kbps 
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Figure 3.18 PSNR of “container” using VM8 rate control at 256kbps 
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Figure 3.19 PSNR of “container” using the proposed rate control at 256kbps 
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3.7 Summary 

In this chapter, a JMVO rate control algorithm based on non-cooperative game 

theory is proposed. A bi-matrix strategic game is employed to model the behavior of 

VOPs. The utility functions are defined based on the rate-quantization relations of video 

objects. The game is non-deterministic. The mixed strategy Nash equilibrium solution is 

used to compute the bit allocation. Based on the characteristics of the game, a simple 

approach computing the mixed strategy Nash equilibrium is derived.  

The experiment results show that the proposed game theory algorithm achieves 

accurate bit rate control and smooth buffer occupancy to avoid buffer overflow and 

underflow. The proposed algorithm can automatically and properly allocate bits among 

video objects based on the non-cooperative game.  
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CHAPTER 4 

SUMMARY AND FUTURE WORKS 

 

Rate control plays an important role in the video compression and 

communication. It has strong impact on the visual quality and the bandwidth utility. 

Towards the goal of optimizing the current existing video compression algorithms, we 

have presented and discussed several motion estimation and rate control algorithms. As 

a conclusion, we will summarize the major contributions followed by the discussion of 

future research. 

4.1 Summary of Contributions  

Realizing the power of game theory in solving multiple objective optimization 

problems with multiple decision makers, we designed cooperative and non-cooperative 

games for rate control in video coding.  To our knowledge, our work is the first attempt 

to game theory to solve the video compression problems. Two algorithms have been 

proposed in our study, based on cooperative and non-cooperative game theory 

respectively. 

In the first algorithm, we formulated the MB level rate control problem as a 

multiple objective optimization problem. We converted the problem to a bargaining 

game and derived an optimal and fair bit allocation strategy from the Nash Bargaining 

Solution. Due to the non-uniform distortion visibility of human eyes, the perceptual 
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redundancy can be further explored by incorporating the perceptual sensitivity of 

human vision system into the cooperative game theoretical rate control framework. The 

proposed algorithm successively achieves accurate bit rate control, smooth buffer 

fullness and promising visual quality. 

Object-based video coding, such as MPEG-4, support the coding and 

transmission of independent video objects. JMVO rate control is a efficient rate control 

scheme for MVO coding. We extended our work to cope with the MVO coding. The 

attempt of using non-cooperative matrix game for object level bit allocation is made. 

Each VOP is regarded as a player. Players play the game by non-cooperative choosing a 

proper quantization strategy to optimize its expected utility, which is the expected 

number of bit obtained. The game repeats until all the bits are distributed. It leads to a 

bit allocation corresponding to the mixed strategy Nash equilibrium, a steady status that 

both players will converge to. Our JMVO rate control algorithm achieves accurate bit 

rate control and smooth buffer occupancy to avoid buffer overflow and underflow.  

4.2 Future Works 

4.2.1 Joint Multiple Video Object Rate Control using Cooperative Game 

In chapter 3, we have presented an object level rate control algorithm that 

employs non-cooperative game theory to model the behaviors of the VOPs and solves 

the bit allocation problem using a bi-matrix strategic game. In a non-cooperative game, 

there is no communication and binding commitment allowed. Individual players play 

selfishly to maximizing their own utilities. On the contrary, cooperative game allows 

communications and binding commitments among players. The players play 
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cooperatively. The utilities are optimized for a group of players. In chapter 2, we 

proposed a cooperative game for MB level rate control, which optimizes the perceptual 

quality under the constraint of fair bit allocation among MBs in a frame. In the future 

research, we plan to explore cooperative game theory models for the object level bit 

allocation in MVO coding.  In MVO coding, such as MPEG-4, video objects are 

encoded separately but composite together into a scene. The human vision system 

perceives a scene composition instead the individual objects. Therefore, cooperation in 

the video object coding may benefit the visual quality. Refer to the cooperative game 

theory framework for MB level rate control in chapter 3, we can apply cooperative 

game in object level rate control. Due to the disparity of the object characteristics and 

the user’s recognition, video objects may have different importance to the observer. The 

bit allocation problem among multiple objects can be mapped into a generalized 

bargaining problem with asymmetric players. The axiom of symmetry in the Nash 

bargaining solution can be relaxed in a generalized bargaining problem such that the 

players can have different powers in the bargaining.  By translating the importance into 

the bargaining power, Nash bargaining solution can be used to solve the object level bit 

allocation problem in MVO coding. 

4.2.2 Improved Utility Function in Game Theoretical Models 

A virtue of game theoretical models and algorithms for rate control is the joint 

optimization of multiple utility functions by multiple decision makers. By taking 

advantage of this property, in chapter 2 we have proposed the utility functions that are 

associated with MB’s perceptual redundancies of human vision system. But the current 
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criterion for quantitative perceptual redundancy only takes into account the spatial 

redundancy which is originally developed for the image instead of video. While images 

have only the spatial dimension, the video contents have both spatial and temporal 

dimension. The perceptual property in temporal dimension has not been exploited in the 

utility functions in the game theory framework. As one of our potential researches, we 

will explore proper criteria for subjective quality of video contents. The new criteria 

should account for the human visual sensitivity and perceptual property for video 

contents, in spatial dimension (for instance, size, texture complexity, luminance and 

position in the scene composition, etc.) as well as temporal dimension (for instance, 

motions and changes in luminance, size and position, etc.). In the game theoretical 

models, different utility functions in can be defined for different players, based on their 

individual subjective quality.  

4.2.3 Game Theory Applications on Joint Source-Channel Rate Control 

The video communication over wired network presumes that there is zero 

channel error during the transmission. Most of the existing rate control algorithms are 

designed based on this channel model. However, this assumption is no longer true when 

the data is transmitting through the error prone wireless channels. The video data 

transmission is strongly interfered by the condition of the wireless channel, which the 

current rate-distortion is not apt for. Efficient mechanism is required to adapt the rate 

control algorithm to the channel condition. Channel coding is commonly used in error 

prone environment. Redundancies are added to the data streams before transmission 

such that channel error can be detected and corrected to some extent. The more bits are 
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devoted to the channel coding, the lower error rate occurs in the receiver end, thus 

better reconstruction visual quality can be achieved. But due to the constrained data rate, 

this implies a lower bit rate for the video encoder, which leads to the higher 

compression ratio and lower visual quality. To optimize the over all quality, proper 

bandwidth allocation between source coding and channel coding is necessary. Potential 

research can be done on using the game theory models for the bandwidth allocation 

among source coding and channel coding. Each video encoder or channel encoder can 

be regarded as a player, who bids for bandwidth in an auction. The objective is to 

optimize the overall quality at the receiver end under the constraint of channel condition, 

by jointly controlling the bit rate consumption of source encoders and channel encoders. 
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