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ABSTRACT

STRATEGIC EXERCISE OF OPTIONS ON NON-TRADED ASSETS AND
STOCHASTIC VOLATILITY IN AN INCOMPLETE MARKET:

INDIFFERENCE PRICING AND ENTROPY METHODS

Publication No.

SingRu Hoe, PhD.

The University of Texas at Arlington, 2006

Supervising Professor: John David Diltz

The first study explores optimal investment policies for strategic option exercise
when the underlying project is not traded. A duopoly model captures strategic
interactions, while a partial spanning asset models market incompleteness. The option
value to invest is obtained through indifference pricing, i.e., certainty equivalent value.
I find that incompleteness narrows the gap between leader and follower entry dates. The
follower enters much sooner, and the leader delays slightly compared to classic real
options models. Modeling investment income stream as an Arithmetic Brownian motion
is a better fit than Geometric Brownian motion, while reducing the necessary numerical

approximations for obtaining the results in the incomplete market situation. As a

v



byproduct of modeling two different stochastic income streams, I investigate the impact
of market share and uncertainty on the relative investment trigger as well as the option
value to invest. Results are sensitive to these factors; thus, it is important to model
stochastic processes to accurately reflect the real world circumstances.

The second study explores the valuation consequences of incompleteness
resulting from stochastic volatility in a real options setting. The optimal policy is
obtained through g-optimal measures as well as indifference pricing. I examine the
efficacy of different approaches to finding and justifying a particular martingale
measure. Stochastic  volatility induced market incompleteness affects the
investment/abandonment decision in several important ways. In addition, I demonstrate
that indifference prices for the option value to invest and the abandonment option solve
quasilinear variational inequalities with obstacle terms. With the exponential utility
function, the utility-based indifference price admits a new pricing measure, which is the
minimal relative entropy martingale measure minimizing the relative entropy between
the historical measure and the Q martingale measure. I also show that the indifference
price is non-increasing with respect to risk aversion. As the risk aversion parameter
converges to zero, the indifference price converges to the unique bounded viscosity

solution of the linear variational inequality with obstacle term.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the primary functions of corporate finance is to properly identify firms’
optimal investment policies. Beginning with Myers’ (1977) path breaking realization
that growth opportunities can be viewed as “real options”, numerous developments have
appeared in the literature (see, for example, Brennan and Schwartz (1983, 1984, 1985),
McDonald and Siegel (1986), Paddock et al (1988)). Dixit and Pindyck’s (1994)
publication of the first text devoted to real options analysis signaled the growing
maturity of the field. The real options theory of corporate investment has developed to
the point that it is now in the mainstream of corporate finance.

As important as real options has become to corporate finance, it still rests upon
simplifying assumptions that may not hold in the real world. For example, the classical
real options model involves decision makers playing against nature rather than against
competitors, i.e., “an irreversible investment decision under monopoly”. The options
game model', integrating option pricing theory with game theory, has been developed to
address this limitation of the standard real options model. Strategic exercise of real

options is now an important topic of current research. Recent work suggests that the



fear of pre-emption leads to a significant erosion of the option value to delay
investment, with optimal policies approaching that of static net present value analysis.
Apart from the ongoing development of refinements to real options theory and
application, deeper unresolved issues still exist that may impact the efficacy of the
approach. Perhaps foremost among these issues rests with the question, “What if
managers are unable to create the project’s replicating portfolio?” In this case project
risks cannot be spanned by a portfolio of existing assets. Market incompleteness may
limit the utility of contingent claim analysis. The presence of an imperfect hedge still
exposes the investor to idiosyncratic risk, thus weakening seriously the risk neutrality
assumption lying at the heart of option pricing theory’. This incomplete market
problem arising from pricing claims written on non-traded assets is to date an
unresolved issue. There is considerable disagreement over the practical importance of
the non-traded asset issue, with top researchers appearing in both camps. Two general
methods are employed to price claims written on non-traded assets. One method,
known as mean-variance hedging, originated from work by Follmer and Sonderman

(1986). The other method is based on utility maximization. Important theoretical

! See, for example, Dixit and Pindyck (1994, Ch9), Grenadier (1996, 1999, 2002), Smets (1995),
Lambrech and Perraudin (1998), Huisman (2001), Smit and Trigeorgis (2004)...etc.

* McDonald and Siegel (1986) caveat their model by stating, “Risk aversion by investors is here
introduced by supposing that options to invest are owned by well-diversified investors, who need only be
compensated for the systematic component of the risk of projects and options to invest....Assuming that
investors are well diversified describes publicly owned corporations in the United States and simplifies
the computation of the option value.” Implicit in their statement and model is the notion that capital
markets are “complete”, i.e., that any pattern of risky cash flows may be spanned by existing securities.
The statement that “Capital markets are sufficiently complete and well diversified investors need only be
compensated for the systematic risk...” leads to Henderson’s (2005) assertion about McDonald and
Siegel’s model assumption of risk neutrality to idiosyncratic risk.
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groundwork pertaining to the underlying issues includes Follmer and Schweizer (1990),
Henderson (2002), Henderson and Hobson (2002), Karatzs and Shreve (2000), Musiela
and Zariphopoulou (2003) and Zariphopoulou (2004).

Stochastic volatility is an important issue in contingent claims analysis, and it is
especially important to handle volatility correctly in real options, given the long
maturities involved. Moreover, stochastic volatility may induce incompleteness
because stochastic volatility cannot be traded. Selecting the correct pricing measure in
these situations is equivalent to specifying the market price of volatility risk. Research
such as Biagini et al. (2000), Heath, Platen and Schweizer (2001), Henderson (2005),
Hobson (2004), Laurrent and Pham (1999), and Pham et al. (1998) contain approaches
to selecting a single equivalent martingale measure with which to price options.
Alternatively, the indifference pricing technique first proposed by Hodges and
Neuberger (1998) has been applied to stochastic volatility models in Sircar and
Zariphopoulou (2005). Frittelli (2000) analyzes the connection of the pricing rules of
agents with exponential utility to the arbitrage-free valuation under minimum entropy
martingale measure.

Pinches (1998) states, “one avenue for significant future research is that of
valuation of options in incomplete markets”. Extending real options theory to include
incompleteness has recently caught more and more attention worldwide (see, for
example, Henderson (2005), Hugonnier and Morellec (2004, 2005), Kadam et al (2004),
Miao and Wang (2005)) and will continue to be a burgeoning arena to be explored since

no clear unifying theory has yet been developed.



1.2 Purpose and Scope of the Study

Assets underlying real options are typically not traded. This characteristic
makes integrating incompleteness and risk aversion into the classical real options model
vital to the efficacy of the approach. Recent research has shown that optimal
investment policies obtained through the classical real options framework are
substantially altered if the market is incomplete. Further, if investors are averse to
idiosyncratic risks’, the effects are even greater. This dissertation attempts to extend the
existing research by exploring the impact of market incompleteness and managerial risk
aversion on the investment timing decision and option value to invest in strategic
exercise setting (i.e., duopoly). As an outgrowth of this work, it will be important to
explore the effect of stochastic volatility on such models.

Most real options have a maturity of several years, requiring the employment of
stochastic volatility. Stochastic volatility in turn induces incompleteness independent of
the non-tradability of the underlying asset. This makes it important to examine the
order of the option value to invest under g-optimal pricing measures, along with their
connection to indifference pricing.

The first issue addressed is the impact of market incompleteness and managerial
risk aversion on optimal investment policies if strategic interactions from other market
players are integrated into the real options model. Recent work (Henderson (2005),
Hugonnier and Morellec (2004, 2005), Kadam et al (2004), Miao and Wang (2005))

investigates optimal investment policies in incomplete markets. The consistent

3 See footnote 2.



conclusion is that with the lump-sum investment payoffs, incompleteness and
managerial risk aversion lower the option value to invest as well as the investment
threshold compared with those posited in classical complete market models. Just as
consistently, when flow (income stream) investment payoffs are assumed, the
abovementioned observation is reversed. Motivated by the extant literature, this
dissertation attempts to extend existing real options literature to include strategic
interactions. I aim to examine how market incompleteness, risk aversion and strategic
competition interact. An interesting question is whether lump-sum investment payoffs
and flow payoffs still yield reversed results when strategic interaction is considered
simultaneously.

The second issue examines the option value to invest under the class of g-
optimal measures with stochastic volatility. I also extend the study to include
indifference pricing to determine whether a connection exists between these two
different pricing techniques in real options setting.

1.3 Benefits of the Study

Managers may make investment decisions under conditions that resemble an
incomplete market due to nontradeability, stochastic volatility, or other factors.
Henderson (2005) posits, “There is little evidence that perfect spanning asset exists.”

Therefore, optimal investment policies obtained from an augmented model integrating

It is interesting to observe different optimal investment rules due to lump-sum investment payoffs
versus flow investment payoffs because they are the same in the standard real options model with
complete market setting (see Dixit and Pindyck (1994) Ch5 and Ch6.)
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incompleteness and aversion to idiosyncratic risk should result in better capital
investment decisions.

In addition, the incompleteness introduced by the stochastic volatility which
cannot be traded is an important issue for financial and real options alike. The selection
of different arbitrage-free pricing measures, i.e., market price of volatility risk, will
yield different investment timing decisions. The links to the alternative pricing
technique, indifference pricing, should also deserve study.

This research provides two major benefits. First, it extends the valuation of real
options in incomplete markets, which has been done so far by isolating strategic
interactions from the model, to include a game-theoretic setting. From the results of
this dissertation, both academics and practitioners will know better how the option to
invest and the investment timing decision may be distorted if the degree of spanning
assets obtainable is wrongly assumed. Second, it provides option value to invest under
g-optimal measures and under indifferent pricing technique when the standard real
options setting with constant volatility does not hold, rather the volatility is stochastic

and cannot be traded.



CHAPTER 2

LITERATURE REVIEW

Literature pertaining to this dissertation is organized along three lines. I begin
with research on real options in complete markets. I then summarize research
concerning options on non-traded assets and option pricing in incomplete markets.
Finally, I review relevant literature on stochastic volatility insofar as it relates to market
incompleteness.

2.1 Real Options in Complete Markets

Myers (1977) was apparently the first to write that many corporate assets,
particularly growth opportunities, may be viewed as call options. He coined the term,
“real options” to describe these assets. Brennan and Schwartz (1985) applied option
pricing techniques to the valuation and optimal operation of a copper mine. The owner
of an operating copper mine retains a put option to suspend operations should copper
prices fall below a threshold value. Similarly, the owner of a suspended operation
retains a call option to reopen the mine should copper prices rise above a higher
threshold. Fixed suspension and resumption costs drive a wedge between the respective
thresholds. This in turn leads to a path-dependent optimal policy and a “hysteresis”

effect. The threshold prices represent free boundary conditions from the solution to a



partial differential equation, so the solutions are sufficiently complex to require
numerical techniques.

A considerable volume of real options research appeared during the mid to late
1980s. McDonald and Siegel (1986) showed that if a capital investment project is
partially or totally irreversible and if there is flexibility in timing, the value of the option
to delay investment may exceed the value of the project in place. The familiar static net
present value criterion for capital investment should be replaced in many situations by
the criterion that net present value should exceed a project’s real option value before
assets are put in place. Paddock, Siegel, and Smith (1988) applied option pricing
techniques to offshore oil leases, comparing their results to estimates provided by the
U.S. Geological Survey. They demonstrate the efficacy of the option approach to lease
valuation, and they offer evidence to suggest that their approach is superior to the
discounted cash flow approach used by the USGS.

The earlier real options models did not consider optimal exercise policies with
the possibility of strategic interactions with competitors. Capital investment problems
quite often are more than a simple game against nature. Competitors may have a
significant impact on the optimal time to place assets. Game theory was combined with
real options to address managerial problems more realistically. Researchers discovered
by augmenting the real options framework with strategic considerations, some
predictions of the standard real option models are mitigated. The optimal investment
rule, as described in the classical real options literature, is to invest when the asset value

exceeds the investment cost by a potentially large option premium. However, if firms



fear pre-emption, then the option to delay investment is reduced, and project value
approaches traditional net present value. Trigeorgis (1991) studied the impact of
competition on the optimal timing of project initiation using option methodology, while
Ankum and Smit (1993) considered managerial strategies as a sequence of tactical
investment projects. Grenadier (1996) used a game-theoretical approach to option
exercise in the real estate market to explain cascades and “overbuilding” in real estate
markets; he extended the analysis in 1999 and 2002 to consider equilibrium strategies
with option exercise games. Smets (1995) provided a treatment of duopoly in a
multinational setting. Lambrech and Perraudin (1998) studied strategic behavior under
incomplete information. Grenadier (2000) edited a good selection of option games
papers. The first textbook covering real option games in continuous time setting
appeared in 2001 by Huisman, while Smit and Trigeorgis edited an option games
textbook in 2004 mainly focusing on discrete-time models with many practical
examples.

Agency problems and information asymmetries have been crucial issues in
corporate finance, especially in modern decentralized firm. The standard real options
paradigm assumes the options’ owner makes the exercise decision, but this is usually
not true in modern decentralized corporations, where options’ owners delegate the
investment decision to managers. Such delegation process possibly induces the agency
and information asymmetries problems. In view of this, Grenadier and Wang (2005)
augment standard real options model with the presence of agency conflicts and

information asymmetries, in which an underlying option to invest can be decomposed



into a manager’s option and an owner’s option. Their model predicts that the manager
will have a more valuable option to wait than the owner will, and the optimal contracts
depend explicitly on two factors, hidden information and hidden action’. Grenadier et
al. (2004) study the similar issues augmented by recursive optimal contracting and the
consideration of manager’s risk aversion. They find that the net effect of risk aversion is
to delay investment.

2.2 Real Options, Non-Traded Assets, and Incomplete Markets

Lurking in the background of earlier real options research was a concern over the
importance of actually being able to construct the delta hedge for a real option.
Brennan and Schwartz (1985) employed a self-financing replicating portfolio approach
to value a copper mine (see previous section). They cite the advantages of this
approach over conventional discounted cash flow techniques, with one important
caveat. They state, “When a replicating self-financing portfolio can be constructed, our
approach offers several advantages over the market equilibrium approach; not only does
it obviate the need for a discount rate derived from an inadequately supported model of
market equilibrium but, most important in the current context, it eliminates the need for
estimates of the expected rate of change of the underlying cash flow and therefore of the
output price.” Particularly significant is the phrase, “When a replicating self-financing

2

portfolio can be constructed....” Brennan and Schwartz have chosen an application
(i.e., copper mine) that allows them to actually construct a replicating portfolio.

Assuming that the convenience yield for copper may be written as a function of output

> They are measured by cost/benefit ratio. See Grenadier and Wang (2005).
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price alone and that the interest rate is non-stochastic, the presence of a futures market
for copper allows Brennan and Schwartz to construct a replicating portfolio.

McDonald and Siegel (1986) caveat their model similarly, stating, “Risk
aversion by investors is here introduced by supposing that options to invest are owned
by well-diversified investors, who need only be compensated for the systematic
component of the risk of projects and options to invest....Assuming that investors are
well diversified describes publicly owned corporations in the United States and
simplifies the computation of the option value.” Implicit in their work the notion that
either capital markets are complete, or that investors are risk neutral with respect to
idiosyncratic risk.

Paddock et al (1987) are also concerned with the replication / market
completeness issue. They state, “Most importantly, we show the necessity of
combining option pricing techniques with a model of equilibrium in the market for the
underlying asset (petroleum reserves).” Implicit in the above statement is the notion
that risk-neutral delta hedging may not be feasible. As with previous real options
studies, Paddock et al benefited from the fact that markets existed for both developed
and undeveloped petroleum reserves.

Dixit and Pindyck (1994) develop the classic real options models in a parallel
mode. That is, they describe a particular model by utilizing contingent claims style
delta hedging. They subsequently develop the same model using an optimal stopping
approach. It appears that concern over market incompleteness was the reason for the

parallel approach. In their Chapter 4, Section 3, they write in objective terms about the
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pros and cons of optimal stopping versus contingent claims, but then they editorialize.
They state that the contingent claims approach offers a better treatment of the discount
rate. They then go on to state that the contingent claims approach requires the existence
of a sufficiently rich set of markets in risky assets.

Valuing claims on non-traded assets represents a challenge to option pricing
theory that has recently attracted much academic attention. A natural way to approach
the problem is to choose another traded similar asset or index for use in the delta hedge.
If it is not possible to hedge all risk, the calculation of the option price as the expected
discounted payoff under a risk-neutral measure may not apply. Several approaches
have been suggested to solve this problem. Mean variance hedging (see Follmer and
Sonderman (1982)) is one suggestion, and there are two ways to implement the
approach. The analyst either minimizes sequential future risk exposure by relaxing the
self-financing strategy (also known as mean-self-financing strategy) or he/she
minimizes the tracking error at the terminal date and assumes there is a self-financing
strategy (see Duffie and Richardson (1991)).

Another well-known approach is based on utility maximization, which can be
viewed as a descendant of the seminal Merton (1969) contribution. Hodges and
Neuberger (1988) were the first to adapt the static certainty equivalence concept to the
expected utility maximization through dynamic hedging/trading, which is then known
as indifference pricing and there have been numerous papers study non-traded assets
and incomplete market utilizing this technique, see for example Duffie and

Zariphopolou (1993), Duffie et al. (1997), Henderson (2001, 2004, 2005), Henderson
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and Hobson (2002), Zariphopolou ( 2001, 2003, 2004), Zariphopolou and Sircar (2005)
...etc. and also the monograph by Karatzas and Shereve (2000).

Since there are infinitely many admissible pricing measures in the presence of
market frictions due to non-tradability, there is a substantial body of literature on how to
select the “best” equivalent martingale measure with which to price options (see for
example, Biagini et al. (2000), Heath, Platen and Schweizer (2001), Henderson (2005),
Hobson (2004), Laurrent and Pham (1999), and Pham et al. (1998)). Other potential
approaches include super-replication (see for example Hubalek and Schachermayer
(1997)), and convex risk measures (see for example Follmer and Schield (2004)).

Real options represent a particularly important application of the valuation of
claims in incomplete markets. Incompleteness is introduced by the fact that the option
is usually written on a non-traded asset, and it may be that no “twin security” can be
found. Hubalek and Schachermayer (2001) studied the non-tradability issues indicating
that using the assumption of no arbitrage alone would lead to no information about the
price of the claim. Observing the results presented by Hubalek and Schachermayer
(2001), Henderson and Hobson (2001) consider a utility-based approach to obtain the
reservation price as well as the optimal hedging strategy. More recent contributions are
Henderson (2005), Hugonnier and Morellec (2004, 2005), Kadam et al (2004), Miao
and Wang (2005).

Henderson (2005) considers a lump-sum payoff case for investment and
introduces the concept of time consistency utility function for valuation. Hugonnier and

Morellec (2004, 2005), Kadam et al (2004), Miao and Wang (2005) analyze both lump-
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sum and flow payoffs. The consensus is that with the lump-sum investment payoffs,
incompleteness and managerial risk aversion lower the option value to invest as well as
the investment threshold. When flow payoffs are considered, the consequence is
reversed.

2.3 Stochastic Volatility Models, Pricing Measures and Indifference Pricing

Hull and White (1987) introduced stochastic volatility to option pricing. Their
work was followed by Stein and Stein (1991) and Heston (1993). Since then, there has
been a growing body of research on option pricing techniques with stochastic volatility.
Incompleteness induced by stochastic volatility allows infinitely many admissible
option prices, consistent with the absence of arbitrage. Each admissible price
corresponds to a different martingale measure. Biagini et al. (2000), Heath, Platen and
Schweizer (2001), Henderson (2005), Hobson (2004), Laurrent and Pham (1999), and
Pham et al. (1998) contain approaches for selecting an equivalent martingale measure
with which to price options, where Henderson (2005) compares and analyzes the order
of option prices under q-optimal measures. The indifference pricing technique first
proposed by Hodges and Neuberger (1998) has been applied to stochastic volatility
models in Sircar and Zariphopoulou (2005). Frittelli (2000) analyzes the connection of
the pricing rules of agents with exponential utility with the arbitrage-free valuation

under minimum entropy martingale measure.
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CHAPTER 3

STRATEGIC EXERCISE OF OPTIONS ON NON-TRADED ASSETS
IN AN INCOMPLETE MARKET

3.1 Background

This research explores relations between strategic exercise of real options and
market completeness. I integrate the non-traded asset / incomplete market model of
Henderson (2005) with a Stackelberg leader/follower model similar to Dixit and
Pindyck (1994) and Grenadier (1996). From a classic game-theoretic real options
setting (see Dixit and Pindyck (1994) and Grenadier (1997)), I also model the
investment project value as a flow payoff from a stochastic demand shock. This enables
us to study how a market demand shock and demand elasticity interact with the market
incompleteness and the manager’s risk aversion. With the stochastic flow payoff
induced from the stochastic demand following geometric Brownian motion, the
stochastic investment stream payoff will be bounded from below by zero given no unit
variable costs. In view of the possibility from negative cash flows, I model the
stochastic investment income following arithmetic Brownian motion. Arithmetic
Brownian Motion allows some analytical closed form solutions for some ordinary
differential equations, thus reducing required ordinary differential equation
approximations for obtaining results. I find that incompleteness narrows the gap

between leader and follower entry dates. Relative to results in Dixit and Pindyck
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(1994), the follower enters much sooner, and the leader delays slightly. As a byproduct
of modeling two different stochastic income streams, I analyze the impact of market
share and uncertainty on the relative investment trigger as well as the option value.
Results are sensitive to these factors; thus, it is important to model stochastic processes
to reflect real world circumstances.
3.2 Motivation

Real options models depend on simplifying assumptions that may not hold in
practice. For example, the classical real options model involves decision makers versus
“nature” rather than against competitors, i.e., irreversible investment under monopoly.
The options game model®, integrating option pricing theory with game theory addresses
this limitation. Recent work suggests that fear of pre-emption leads to a significant
erosion of the option value to delay investment, with optimal policies approaching that
of static net present value analysis. This extension to non-traded assets is especially
important because assets underlying real options are typically not traded. This
characteristic makes integrating incompleteness and risk aversion into real options
models important to the efficacy of the approach. Recent research has shown that
optimal investment policies obtained through the classical real options framework are
substantially altered if the market is incomplete.

This chapter merges two lines of research. In one line, Dixit and Pindyck

(1994, Chapter 9), Grenadier (1996, 1999, 2002), and others have examined optimal

® See, for example, Dixit and Pindyck (1994, Ch9), Grenadier (1996, 1999, 2002), Smets (1995),
Lambrech and Perraudin (1998), Huisman (2001), Smit and Trigeorgis (2004)...etc.
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policies for exercise of options in a setting where fear of pre-emption induces one firm
to exercise the option to invest sooner than would be the case in a monopoly setting.
These models typically assume a Stackelburg leader-follower set up. Grenadier (1996),
for example, uses this type of model to explain cascades and overbuilding in real estate
markets.

The other line deals with the valuation of contingent claims when the underlying
asset is not traded. Under these circumstances, a unique martingale measure does not
exist. Various methods have been developed to study the option pricing under such
situations, including, on one hand, approaches to selecting an equivalent martingale
measure (see, for example, Follmer and Sonderman (1986), Duffie and Richardson
(1991), Schweizer (1991), Delbaen and Schachermayer (1996), and Fratelli (2000),
among others), and on the other hand, utility maximization and indifference pricing
(see, for example, Henderson (2002, 2005), Henderson and Hobson (2002), Musiela and
Zariphopoulou (2003), and Zariphopoulou (2004), among others) . Recent research has
shown that incompleteness and managerial risk aversion lower the option value to
invest as well as the investment threshold compared to in classical complete market
models when lump-sum investment payoffs are considered. In contrast, when flow
(income stream) investment payoffs are assumed, this observation is reversed.’ (see, for
example, Henderson (2005), Hugonnier and Morellec (2004, 2005), Kadam et al (2004),

Miao and Wang (2005)).

" 1t’s interesting to observe different optimal investment rules due to lump-sum investment payoffs versus
flow investment payoffs because they are the same in the standard real options model with complete
market setting (see Dixit and Pindyck (1994) ChS and Ch6.)
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In this chapter, I consider leader-follower Stackelberg option exercise games for
investment in an asset when the underlying asset’s risk may only be partially hedged. 1
employ the model documented in Dixit and Pindyck (1994, Chapter 9) to capture
strategic exercise. I combine this model with the partial hedging model of Henderson
(2005) to capture market incompleteness.  Following Henderson (2005) and
Zariphopoulou (2004), I employ an exponential utility function to solve for an
“indifference price” for project value and for the option to invest. With constant Sharpe
ratio, the minimal martingale measure and minimum entropy martingale measure
converge, as does the value of the investment opportunity under both measures.
Following much of the game-theoretic real options literature, I assume a stochastic
demand for the project’s output. This framework allows for a reasonable set of
possibilities, including strategic behaviors due to changes in market demand. This
particular formulation models investment payoff as as a stochastic cash flow stream. In
this case, I again employ the model documented in Dixit and Pindyck (1994, Chapter 9)
to capture strategic exercise considerations, and the utility maximization method
coupled with indifference pricing. In view of the possibility of negative cash flows, I
model the stochastic investment income as an arithmetic Brownian motion. This
reduces the required approximations for solution. As a byproduct of modeling two
different stochastic income streams, I analyze the impact of market share and

uncertainty on the relative investment trigger as well as option value.
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3.3 Optimal Policies for Duopolistic Competition by Project Values
(Lump-Sum Investment Payoffs)

I consider leader-follower Stackelberg option exercise games for investment in a
project when the underlying asset may only be partially hedged. I employ the model
documented in Dixit and Pindyck (1994, Chapter 9) to capture strategic exercise. I
combine this model with the partial hedging model of Henderson (2005) to capture
market incompleteness. Following Henderson (2005) and Zariphopoulou (2004), 1
employ an exponential utility function to solve for an “indifference price” for project
value and for the option value to invest.

3.3.1. Model Set-Up and Assumptions

Two competing firms contemplate entry into a new market where operating
profitability is stochastic and the decision to enter the market is completely irreversible.
[ identify the firms as the Leader (Firm L) and Follower (Firm F), respectively®. Entry
yields a stochastic payoff resulting in a stochastic project value with which no perfectly
correlated portfolios can be found. The absence of perfect spanning assets forces the
manager to face unhedgeable idiosyncratic risk and an incomplete market.

Firm L enters the market by investing to receive a monopoly rent until Firm F
enters the market. Upon entry by Firm F, I assume that Firm L obtains a fraction a €

[2,1] of project value, leaving (1-a) V, for Firm F.

¥ I take Firm L and Firm L’s management to be synonymous with the implicit assumption that there is no
agency problem. I follow the same convention for Firm F.
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I fix a filtered probability space (Q,7,P) with a fixed c-algebra gc#, where

Brownian motion is defined and the expectation E{e}is computed. Let F =( F; )0 be

the augmented filtration of Brownian motion. The increasing c-algebras generated by
the pair of Brownian motions (Zs)s<: and (ZLS) s<t Where Ztis orthogonal to Z, satisfy the

usual conditions of right-continuity and completeness (i.e., include all the sets of

probability 0 in 7°). Let G = (60 t0be filtration generated by Z alone.

Non-traded Assets (The Project)™®

I assume that project value, Vt , evolves exogenously according to a geometric
Brownian motionl1:

dV, = @ Vdt 47V, dW, = gV, (S dt + dW) +1 Vi dt; Vi=v

where ¢ is the instantaneous conditional expected percentage change in V per

’ The completion by the null sets is important in particular for the following reason. If two random
variables X and Y are equal almost surely (X=Y P-a.s. means P{X=Y}=1) and if X is Ftmeasurable

(meaning that any event {X;<x} belongs to Ft) then Y is also Ft-measurable.

' Consistent with extant research on real options in incomplete markets, I assume the existence of three
assets, a non-traded asset, a traded risky asset and a traded riskless asset.

' have the process able to follow a more general form as dV, = a(V,, t)dt +n(V,, t) dW;; V, = v where
a(Vy, t) and n(V,, t) are measurable functions satisfying

D) |a,t) |+ |n(v,t) [ CA+|v]) ; ve R,0<t < T < oo for some constant C (0 < C < o)
Q|a,t)—a(x,t)|+|nv,t)—n(x,t)[£D|v—x];x,yeR,0<t <T <0 for some constant
D(0< D <)

, so that the existence and uniqueness solution of V| process is guaranteed.
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o-—-r

unit time, 1" is the project’s Sharpe ratio, m, is the instantaneous volatility, and

W is a standard Brownian motion having correlation # < =LD with Z. Thus, W = pZ +

Wz l, or equivalently, dW = p dZ +V1=7 rdz,
Traded Risky Security
There exists a partial spanning asset which follows the lognormal process':
dPi=pPidt+o PidZi=c P; (A dt+dZ) +rPdt; Pi=p

where u is the instantaneous conditional expected percentage change in P per

unit time, 4 =%"" is its Sharpe ratio is its Sharpe ratio, g is the instantaneous volatility,
o

and Z is a standard Brownian motion.

TradedRiskless Security

I also assume that a riskless bond B is available for trading. The riskless bond
with price process B growing in deterministic fashion at risk-free rate satisfies the
following dynamics:

dB:=rBt; B;=b

Trading Wealth Process and Utility Function

Realizing that markets are incomplete, the firm’s manager may hedge partially
using the traded asset P; and the riskless bond, generating trading wealth X, that follows:

dX, =6 (dP,/ P) + 1 (X, — 0) dt

12 Again, I can have the process follows more general forms satisfying all required technical conditions as
described in footnote 2 for the guarantee of uniqueness and existence solution to P process.
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where 6 is the cash amount invested in the partial spanning asset Py, and
remaining wealth is invested at riskless rate r.

The utility function employed is a concave mapping U: R->[-co,0) , strictly
increasing, strictly concave, and continuously differentiable on its domain satisfying:

(1) The half-line dom(U) = {x € R;U(x) > -} is a non-empty subset of [0,c0).

(i) U'(x)is continuous, positive and strictly decreasing on the interior of

dom(U), and satisfy the Inada condition:

U'(©)= lim U'(x)=0
X —®©

The standard CARA, CRRA and HARA utility functions satisfy the above

properties. Throughout the study, I employ the exponential utility function

U(x)= B | specify y > 0, i.e., the manager exhibits constant absolute risk-aversion.
Y

3.3.2 Firm F’s Value Function, Investment Timing Decision, and Certainty
Equivalence Value

Following Henderson (2005), I assume that investment cost, K, grows at a
riskless rate, r. Investment at time 7: 7 > t, yields the payoff [(1-a) V,— K €' =97,
The manager generates trading wealth, X; by dynamically adjusting the dollar amount
s for s > t in the partial spanning asset, and by consequence, the riskless bond.

Assume Firm L has already entered the market. Firm F will enter optimally
without fear of pre-emption. Therefore, the risk-averse manager’s problem becomes one

of maximizing expected utility of wealth over an infinite horizon. Wealth refers to both

the quantity X, generated by trading, and the payoff [(1-a) V.— K e "] received at
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the time of investment. That is, the manager chooses optimally the time to invest 7, and
hedge 6 in the partial spanning asset P;.

3.3.2 Proposition 1:

The value function for Firm F’s investment problem is given by the optimal

stopping problem:

F(x,v) =SUp SUp E[U.(X, +((-a)V, -Ke' ") | X, =x.V, =0].

t<r 6, t<usr
Employing a time consistent exponential utility function (see Henderson
(2005)),

1
-ty = (1)

U.(x)= —le%ir Te?
Y

, the value function can be rewritten as:

L
—A(r—t
5 (z=1)

1 (Tt ()t
F(x’v) = Sup Sup Et[_;e e T (s (1mayvp ke (D) e |Xz — X,Vt — V]

t<r 0, ,t<u<r
3.3.2 Proposition 2:

Firm F’s value function may be written as:

1
1 _r 2 2 ~
— L= (1 - e T Ry Y i 0,57
Flxv)= '

| SR ~
_;e "o y((1-a)v k);VE[VF,OO)]

where 8= 1- 26 =4p) and V" is the solution to the following:
n

In[l + WF(I—G)(l—pZ)].

1—a)yp" —K =
=y (1-p%) i
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v"is the solution to the free boundary problem; that is, Firm F’s investment

problem is to invest as soon as V reaches the threshold v .

Proof:

Through standard arguments, the corresponding Bellman equation for 3.3.2
Proposition 1 is given by:

_L(AF, + pvF,)*
2 F

XX

0

%/IZF +EVF, +%772v2FW

The value function derives by solving the above PDE with the following

boundary, value matching and smooth pasting conditions:

1 _
F(x,0)=——¢e™
YV
~F 1 -y (x+((1-a)¥" -K)*))
Fx,v')=——e
~SFN —y(x+((1-a)¥ " -K)"))
F (v = I{(l—a)anK}e )

. . ~ 1 _ —a)WvF—K)* .
In the stopping region, F(x,v')=——e 7= =0 and the optimal

investment 7 is given by 7 =inf {u=t: Vu > v e r(uft)}'

3.3.2 Proposition 3:
Firm F’s certainty equivalence valuation of the option value to invest is given

1 —y(1-a)v" - —p? v
by £ = nll = (e )

y(=p

where f=1— 2A6=4p) and v" is the solution to the following:
n
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(—a)" —K=— . 1n[1+WF(1_")(1_p2)]
y(l—p7) B

Remarks:
The certainty equivalent option value to invest can be found by equating the

value obtained by investing in P and the risk-free asset (receiving the amount F,(v)), to
the value obtained by retaining the option, or, F(x+ F,(v),0) = F(x,v).

Using the value function obtained from 3.3.2 Proposition 2 yields the following

parity relation:

1
1 _ I _ o (—a)FF —K (1 Vo g
;e PEHEO) = o — (1= a)v" -K)(1 pZ))(V_F)ﬂ]l o

Solve for F,(v) by taking natural logarithm of both sides and simplifying:

1

F(W)=—-—
O

In[l— (1— 7" K029y )/ 1 QED.
\%

3.3.2 Proposition 4:
Firm F’s certainty equivalence option value to invest can be expressed in terms
of pricing measure Q':

r(r—t) ((l—a)VT _Ker(r—t) )+ )

F,(v)=sup— InE? [e_m_p -

— V=]
t<r<o ]/(1 - p2) !
where E? denotes expectation with respect to pricing measure Q°, defined as

follows. For each  t < oo, the Radon-Nikodym density of Q° with respect to the

historical measure P is defined as:

dQ’ 1
d_P |E = exp(—ﬂ,Zt —Eﬂzt)
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dP, . ) .
Under Q°, Pt = rdt + odZ’ ,whereZ’ = Z, + At is a Q’-Brownian motion and

t
the independent Brownian motion Z;" is unchanged under Q". Under Q°, the project

value V; follows:

L~ (@-nphyii+(paz +1=pPaz;)

‘

The new pricing measure Q" is the minimal martingale measure of Follmer and
Schweizer (1990), which in this particular case also collapses to the minimal entropy
martingale measure.

3.3.3 Firm L’s Value Function, Investment Timing Decision, and Certainty
Equivalence Value

I begin prior to Firm L’s entry, and I assume Firm F will act optimally
according to the optimal stopping rule described above. Once Firm L has invested
K e" ™ Y at time T’ it has no further action to take. It enjoys monopolistic rents 7 until
Firm F enters, i.e., t < 7%, where 7* is Firm F’s entry point. Upon Firm F’s entry, Firm
L retains the portion a € ['%, 1] of project value leaving (1 — a) of project value to Firm
F. If Firm L’s management undertakes investment at time T’ (t < T’ < 7%*), the payoff is
(Vpr—Ke¢' (T 70) , where K €' (T" =Y i5 the investment cost and V1 includes the expected
monopoly rent. That is, the expected project value V- can be decomposed into two
parts:(1) expected project value even if the follower jumps in denoted as axVr ; and (2)

expected capitalized monopoly rent prior to Firm F’s entry denoted as Vp (7). The

manager’s problem is to maximize expected utility of wealth with the investment

strategy 6 by hedging partially using the traded asset P and the riskless bond.
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3.3.3 Proposition 1:

Firm L’s value function can be written as:

L(x,v)= sup E[U.(X,+aV.+V.(r)-Ke'"")| X, =x,V, =v]

6, t<r<0
Employing a time consistent exponential utility function (see Henderson

(2005)),

r(t—t)

U.(x)= —le’ye? ‘e
v

|3
—A" (-t
5 (1)

, the value function can be re-written as:

9%
r(7=t) r(t—t) —A (z—1)
(Xp+H(aVp+Vy (7)—Ke ) 2 _ _

| X, =x,V, =V]

L(x,v) = sup E,[—%e‘”

6, ,t<r<0
3.3.3 Proposition 2:

Firm L’s value function is given by:"

1
L R @ NN 8 1Ry e 0,57 ]
1%
L(x,v)=

—-—e

/4

e WKy e [V, 0]

2(E—4p)

where f=1- ,and V" is the investment trigger value corresponding to

Firm F’s optimal investment policy.

Proof
Assume Firm L has already entered the market and given V<v”, the

corresponding equation for 3.3.3 Proposition 1 is
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L L)
%ﬁL+@Wg+%n%ﬁw—%°%Xffm’”)+V@)=0

XX

The value function derives from the solution to the above PDE with the

following boundary and value matching conditions:

L(x,0) = —le”“
4

L(x,§") =Lt

3.3.3 Proposition 3:

Firm L’s certainty equivalence valuation prior to Firm F’s optimal entry is given

I
L (V)=
Wi

In[l = (14 v—e 7@ 02y Ty 4y
1%

where f=1- 2Ae=4p) and V' is the solution to the following:
n

(-ap —K=— 1 _pp s 700000
yd=p7) s

Remarks:

The certainty equivalent option value to invest can be found by equating the

value obtained by investing in P and the risk-free asset (receiving the amount L, (v) ), to

the value obtained by retaining the option, or L(x+ L,(v),0) = L(x,v).

13 At the final step, K appears in the exponential component because if firm L exercises the investment

option, the project value will decrease by Ke

" at that point.
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Using the value function obtained from 3.3.3 Proposition 2 yields the following

parity relation:
1

1 _ 1 _ (T KV (1 % 2
ety 1, Al-(+v—e r(av" -K)* (1 pz))(j)/)’ _H,]l '
7/ \%

Solve for L,(v) by taking natural logarithm of both sides and simplifying:

LJW:———l——mﬂ a+veﬁm-““Pn( )’ +v]~Q.E.D.
y(-p*)

3.3.3 Proposition 4:

Firm L’s investment trigger, v ", is the solution to the following equation:

1 _ —a »\;Fﬁ + _ 22 \’7L ﬂl
_ - ln[l—(l—(e 7[([(1=a)v" -K)" ](1-p ))(ﬁ) ]

y(d=p7)

1 G B
— —In[l— (147" e ““pb( ) +9"]

(-

which can be reduced to

~

(e—y[«I—awF—K)*](1—p2))(Z_F)ﬂl
= (- VL@ F-K)(1-p ))( )ﬂ1 +\7L]

2(E-4p)

where S, =1- ,and ¥ is the solution to the following:

i1+ 27 0= =pY),

1—a)y" -
(I=aw 1-p%) B
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Remarks:

The above proposition makes use of the fact that Firm L’s trigger value, v"*,
yields the same value for both firms with ¥ <% . Thatis, L(x,7") should be equal to
F(x,v").

3.3.4 Model Results Assuming Perfect Spanning (Complete Market)

I now demonstrate that the model reduces to standard results when the market is
complete. The market is complete if either perfect spanning holds, i.e., uncertainty over
project value, V, may be replicated by asset P (perfect correlation with V), or
equivalently, V itself is traded. Such a complete market version of the model creates a
“benchmark” for comparison to the incomplete market case.

3.3.4.1 Firm F’s Value Function and Investment Timing Decision (Complete
Market)

Assuming Firm L has already entered the market, Firm F will enter the market
optimally without fear of pre-emption. Under perfect spanning, Firm F’s value function
and investment trigger can thus be obtained through the following proposition.

3.3.4.1 Proposition 1:

Under perfect spanning, Firm F will exercise the option as soon as the project

5 (FC)

value approaches the investment threshold,v*"~’, from below. Firm F’s option value

may be expressed as:

v
7 FO

[(A-a)v " = K1) 5v €[0,97]

FC(v)=
(l—a)v—K;ve[V(FC),oo]
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where:

p=1-2"2) g0 By
n (-a)B-1)
Proof:

Under perfect spanning, Firm F’s option value to invest at the optimal stopping
time 7 (7 = t) follows from maximizing the expectation of the discounted value of

project payoff under the unique equivalent martingale measure, Q:

FC(v)=sup E°Te" " ((1-a)V, —Ke" ") |V, =v].

1<7<0

The corresponding Bellman equation for the above equation is given by:
FOvn(E =)+ FSvi* =0

I solve the above ODE with following boundary, value matching and smooth
pasting conditions:
F(0)=0
FCG"N=(1-aw™ -K
FfET)=(1-a)
The optimal investment 7 is given by 7 =inf {u = t: V,= v e "9},
I propose a solution of the form F€(v)= Av” where A is a constant to be

determined. Because F¢(v)= Av”, it immediately follows that F° = 48v"and

FS$=AB(B-1n". Substituting ~ back  into  the Bellman equation

Fvn(é—-2)+ %vavznz = (; the Bellman equation becomes
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BB =D + (&~ 2)=0

Solving for 3 yields 8 =0 or:

262
n

p=

The solution S = 0 may be rejected given the boundary conditions, and the

_26-4)
n

solution is of the form F¢(v)= Av/ with f=1 The constant A and

(CF)

investment trigger value v may be determined by invoking value matching and

smooth pasting conditions:

C ~(FC ~(FC ﬂ
FO0)=[0-a)7 - Kl T = K where
P
n
Remarks:

The proposed solution may be verified by comparison with Dixit and Pindyck
(1994), Chapter 9, if I assume that the capitalized project value is equivalent to the
discounted project cash flow.

3.3.4.2 Firm L’s Value Function and Investment Timing Decision (Complete
Market)

By design Firm L undertakes investment prior to Firm F’s entry. Firm L makes
its investment decision conditional on Firm F acting optimally according to the optimal

stopping rule described above.
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3.3.4.2 Proposition 1:

Firm L’s value function is:

~(FC)  ~(FC v . ~(FC
LC(V)= v+[av( g )](—V(CF))ﬁ—K,ve[O,v( )]

(FO)

av—K;ve[v'" o]

where S :I—M
n

(FC) _ B
A-a)(p-1)

and v K ,i.e., the investment trigger for Firm F.

Proof (I’ Version)

Upon investment at time t (t=t), Firm L expects to receive project value Vi,
which includes the expected monopoly rent. That is, the expected project value can be
decomposed into two parts: (1) expected project value even if the follower enters,
denoted as axV; and (2) expected capitalized monopoly rent prior to Firm F’s entry,

denoted as V.(x). L’s value function is the expected discounted project value

conditional on optimal behavior by Firm F under the unique equivalent martingale

measure, Q:
L°(v)=E°[e""(aV. +V.(x)—Ke' ") |V, =v] where 1 [t,oc}.

Assume Firm L has already entered the market and given V<", the Bellman

equation is:
Livn(E-A) +%Lfvv2772 +V(7)=0
With the fact that V() is a fraction of V, and with a slight abuse of notation:
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Livn(E-A) +%Lfvv2772 +hv=0 whereheR"

I solve the above ODE with the following boundary and value matching
conditions. The value matching condition requires Firm L’s value L°(V) to match the

value of simultaneous investment at the boundary V = 7

LC (;(FC)) — a‘*;(FC)
I propose a solution of the form L (V)= 4 v’ for the homogeneous part, plus a

particular solution for the non-homogenous part, where A is a constant to be
determined. The Bellman equation for the homogenous part is (similar to the previous

section):
B0 + (&~ 2)=0

_26-4)
n

with solutions =0 or £ =1

The solution 8 = 0 may be rejected based on the boundary conditions. One

candidate of particular solutions is (—L) > 0, which may be interpreted as

n(¢—4)
capitalized project value, V. Therefore, the solution should be the form of

L° (V)= AV’ for the homogenous part with =1 _2e=H , plus particular solution,
n

V. From the value matching condition, A may be determined, yielding Firm L’s value

ful’lCtiOl’l:
lC ~(FC ~(FC l p
(l) l [al o l ( )](N(FC))
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with f =1-2E=8 g0 P g
U (I-a)p-1)

Remarks:

It is easily verified that the value function obtained is the same as the
corresponding result from Dixit and Pindyck (1994), Chapter 9 by interpreting the
discounted cash flow as the capitalized project value.

Proof (2nd Version)

Firm L holds the project and sells an European call on (1-a)V expiring at the

v e " Y corresponding to Firm F’s optimal

stochastic time 7 = inf {u =t : V, =
entry, with zero exercise price. The sale of the European call is to account for the loss of
monopolistic rent following Firm F’s optimal entry. Therefore, Firm L’s portfolio value
at time t should be

L°(v) =v—-F[(1-a)v]

where F[(1—a)v] the value function for the call option

Using Firm F’s value function with zero exercise price obtained above, the
corresponding Firm L’s corresponding value function before and after Firm F’s optimal
entry is given by:

(i) Before Firm F’s optimal entry, that is, V<¥

L°(v)=v—-F[(1-a)v]
=v=[(1- a7 "))
v

~(FC)  ~(FC v
=v+[(av"O =7 )](‘7<Fc>)ﬁ
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(i) After Firm F’s optimal entry, that is, V=7

L“(v)=v-F[(1-a)v]
=v=[(1-a)]

=ayv

In sum, Firm L’s value function is:

~(FC)  ~(FC v ) ~(FC
() = v+[av” )—v(F)](W)ﬁ—K,ve[O,v(F)]
av—K e[V, 0]

Q.E.D

3.3.4.2 Proposition 2:

FLO)

Firm L’s investment trigger value v'""’is the solution to the following equation:

7O V(LC)

) K=l K]y

FEO 4 [av O — K(

where f = I—M and v :LK
7 (-a)pB-1)
Remarks:
The above proposition exploits the fact that Firm L’s trigger value, ¥*, yields

the same value for both firms with ¥ <v““ . That is, L(¥"““) should be equal to
FE@E).

3.4 Optimal Policies for Duopolistic Competition by Project Income Stream
(Flow Investment Payoffs I — Demand Shock with Geometric Brownian

Motion)

Following much of the game-theoretic real options literature, I assume a

stochastic demand for the project’s output. This framework allows for a reasonable set
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of possibilities, including strategic behaviors due to changes in market demand. This
particular formulation models investment payoff as a stochastic cash flow stream. In
this case, I again employ a Dixit and Pindyck (1994, Chapter 9) model to capture
strategic exercise considerations, and the utility maximization method coupled with
indifference pricing.

Following Dixit and Pindyck (1994) and Grenadier (1997), I model the
investment payoff as a stochastic flow arising from a stochastic demand shock. Two
competing firms are contemplating entry into a new market. As before, I identify the
firms as the Leader (Firm L) and Follower (Firm F), respectively. There are no variable
costs of production, and industry demand is assumed sufficiently elastic to ensure
capacity production. Project cash flows depend on a stochastic unit output price caused
by a demand shock process. The unit output price, P(t), fluctuates stochastically over
time so as to clear the market'*:

P(t) = Y(t)D[Q(D)]

where Y(t) is a multiplicative demand shock process, D[] is the inverse demand
function, and Q(i) is the industry supply process. The down-sloping inverse demand
function ensures the existence of a first mover advantage to investment. Q(i) may be
either 0, 1, or 2 depending on the number of active firms. Since the demand shock is not

traded, the manager faces unhedgeable idiosyncratic risk and an incomplete market.

' This is an indirect way to model the operating cash flow process made via a stochastic demand shock.
Alternatively, 1 can directly model the operating cash flow process with certain type of diffusion
processes, say for example arithmetic Brownian motion process to incorporate the “negative” operating

cash flow situations or more conventionally the geometric Brownian motion process.
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3.4.1 Model Set-Up and Assumptions

I fix a filtered probability space (,7,P) with a fixed c-algebra Gc#, where

Brownian motion is defined and the expectation E {e}is computed. Let F = (Ft0be
the augmented filtration of Brownian motion. The increasing c-algebras generated by
the pair of Brownian motions (Zs)s< and (ZLS) s<t Where Ztis orthogonal to Z, satisfy the

usual conditions of right-continuity and completeness (i.e., include all the sets of

probability 0 in ¥'°). Let G = (90 t0be filtration generated by Z alone.

Non-traded Assets (The Demand Shock)

Project cash flows depend on a stochastic unit output price caused by a demand
shock process. I let the multiplicative demand shock process, Y(t), follow the geometric
Brownian motion'®:

dYt=aYdt +o¥; dW;; Y=y

where « is the instantaneous conditional expected percentage change in Y per

unit time, ¢ is the instantaneous volatility, and W is a standard Brownian motion having

"> The completion by the null sets is important in particular for the following reason. If two random
variables X and Y are equal almost surely (X=Y P-a.s. means P{X=Y}=1) and if X is Ftmeasurable

(meaning that any event {X<x} belongs to Ft) then Y is also Ft-measurable.

' The process follows more general form as dY, = a(Y,, t)dt +n(Y, t) dW,; Y, =y where a(Y,, t) and
Nn(Y,, t) are measurable functions satisfying

M ay,) |+ n(y,t) KCA+|y]); ye R,0<t<T < oo for some constant C (0 < C < o0)

2 la,t)—axt)|+|n(y,t)—nx)<D|y—x|;xyeR0<t<T<ow for some

constant D (0 < D < o) , so that the existence and uniqueness solution of Y, process is guaranteed.
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251
correlation # €D with Z. For this, I can take W = pZ + V1= 27 or equivalently,

AW = p dz +\1-P"dZ"
Traded Risky Security
There exists a partial spanning asset which follows the lognormal process'’:
dSi=pu S; dt+y S;dZ; =y Si(ndt + dZt) + r Sidt ; Si=s
where # is the instantaneous conditional expected percentage change in S per

u-r

77 =
unit time, X s its Sharpe ratio, 7 is the instantaneous volatility, and Z is a

standard Brownian motion.

Traded Riskless Security

I also assume that a riskless bond B is available for trading. The riskless bond
with price process B satisfies the following dynamics:

dB;=rBdt; Bi=b

Utility Function

Realizing that markets are incomplete, the firm’s manager attempts to maximize

her expected utility. That is,

Maximize E [J.: e PU(X,)dt]

'7 Again, I can have the process follows more general forms satisfying all required technical conditions as
described in footnote 2 for the guarantee of uniqueness and existence solution to S, process.
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The utility function is a concave function U: R—[-c0,) , which is assumed to be
strictly increasing, strictly concave, and continuously differentiable on its domain
satistying:

(1) The half-line dom(U) = {x € R;U(x) > —»} is @ non-empty subset of [0,).

(1) U'(x)is continuous, positive, and strictly decreasing on the interior of

dom(U), and satisfy the Inada condition:

U'(©)= lim U'(x)=0
X —> 0

The standard CARA, CRRA and HARA utility functions satisfy the above

properties. Throughout the study, I assume the manager has the exponential utility

function U(x) = Lo specify y > 0, i.e., the manager exhibits constant absolute risk-
Ve

aversion.

3.4.2 Firm F’s Value Function, Investment Timing Decision, and Certainty
Equivalence Value

Assume Firm L has already exercised its option, and thus Firm F may construct
its optimal investment policy without fear of pre-emption. Firm F’s management may
undertake investment at time 7 (7 = t), receiving perpetual profit flow Y x D(2). The
manager’s problem is to maximize expected utility of consumption with respect to
stopping time 7 and investment strategy 6 by hedging partially using the traded asset S
and the riskless bond. The dynamics of the wealth process X; are:

dX =6, (dS;/ Sp) + 1 (X; - 6) dt -Cdt+[Yd (=ry D(2)-K(t-7)] dt

lift=t

0 otherwise

5(t—r)={
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where 6, is the cash amount invested in the partial spanning asset S, and
remaining wealth is invested at riskless rate, r, and C is the consumption rate.

3.4.2 Proposition 1:

The value function for Firm F’s investment problem is given by the optimal

stopping problem:
F(x,y) = sup E[[ ~~e e ds| X, =7, = ]
6,.C,t 0 Y

I
=sup  sup E[J‘——e’/”“e”c‘ds+e"8’F1(XT,YT)|X0 =x,Y, =y]
A 4

r {C,.0,,0<s<r

where F(x,y)is Firm F’s value function after exercising the investment

decision.

Proof:

(See Appendix)

Firm F’s Value Function

I use backward induction to solve Firm F’s problem. I first assume that Firm F

has already begun receiving the cash flow Y x D(2) and has already paid investment

cost K.

The follower maximizes expected utility, given by:

o0 1 ‘ 0 1 ' i
F(x,y)=sup E[I——e"ﬁ("’)e‘ycf ds] =sup E[I——e'ﬂ*e 1 ds]
oc 7 oc Y
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Proof:

Fl (X,y) =sup E[I_le-ﬁ'(s—t)e—yq ds];
c.o t 7/

= sup E[J'—le‘ﬂ”e_yc’*“du];u =s5—t
0.c 5 Y

0

= sup E[J'—le_ﬂ“e’?c" du]; Relabel {C,, } as{C,}
4
0

0.C

Fact:

If the process{X,}.,is time homogeneous, {X'*} _ and {X )} _ have the

same P’ -distributions. ( P"is the probability law of Brownian motion, B,, starting at t

Define a time homogeneous Ito diffusion process of the form
dX,=b(X,)dt+o(X,)dB, , s>2t;X,=x

satisfying the Lipschitz condition |b(x) —b(y)|+|o(x)—o(y)|<D|x—-y|;Dis

some constant and x, y € R ; therefore, the unique solution X, = X", s >¢ does exist.

Note that

t+h t+h

X7 =x+ j b(X " )du + j o (X")dB,

t+h

t+v t+v

h h
=x+[b(X[})dv+ [o(X[)dB, ;v=u-tandB, =B, B,
0 0

h h
X7 =x+ [B(X)dv+[ (X )")dB,
0 0
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Since {B,} .,and {B}, ., have the same P'-distributions, it follows by the weak
uniqueness of the solution of the stochastic differential equation
dX,=b(X,)dt+o0(X,)dB, ,X,=x
that {X"}}_,and {X)},.,have the same P’-distributions, equivalently,
{X,},.,1s time homogeneous.

Therefore, the manager’s problem is:
[
F(x.y) =sup B[ [ - —¢ e 7 ds]
0.c 5 7

Subject to

Yo=y,X,=x

dXi=6; (dS;/ Sy) + r (X - 6) dt +YD(2) dt-C; dt

The Bellman Equation (i.e., Hamilton, Jacobi, Bellman equation) associated

with the value function F(x,y)1is:
B (x.9) = supl—-¢ 7 + F, (0,1 r(x =0 + yD(2)~C))
oc ¥
fF Ly F 0 4L F
lya.y 2 Z 2

Ixx ™t lyyo-z.y2 + E,vypal);et]

Taking first-order conditions for optimal consumption C and investment

strategy 0, I obtain:

C = —llnle
y

t

Fu-Fr+F 0y +F pyo=0
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o :_le(,u—r) _ leypay
t F;szz F‘lXXZ

Incorporating first order conditions in the Bellman equation gives

E (u-r) Fy,py
R R
E,(u-r) F,py
F ;(2 F_ 7

1xx 1xx

1 Fx -r Fx p@
"'F]yOO""_lex(— l(luz)_ Lxy

2 Fox Fox

E (u-r) Fy,py

Rt Fux

ﬂFl(x,y)z[—%e” FFL(- Vit

)+ yD(2)) + L1
V4

r(x—(— InF|,

v

l 2.2
+5Eyyo- y + F}xypoj;(_ )Z]

By solving the above equation coupled with transversality condition

;1_1)2 E[e*ﬁTe—r}’Wr-}’YrD(Z)] =0,

I conjecture that  the value function takes the form

2 pa—
F(x,y)= —iexp[—ry(x +f(y)+ 2’:27/ +’BFT;)] 1'® where f(») can be interpreted as

the implied project value through certainty equivalence value and

f () solves the following equation

(@ - p1o)yf'(v) +%y2f"<y> —%a — ) () =1 (v)+ ¥yD(2) =0

with transversality condition

lim E[e e ™" 7P = 0
T—ow

'® The form of the ansatz solution is based on the form of Merton (1969) solution with the variable
separable property of the exponential function.
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I now solve the complete problem as follows. Firm F’s utility maximization

problem is:

Tl
F (o) =swp L[~ e e ds| X, =%, =]
0

6.t
subject to
dXt = Qt (dSt / St) +r (Xt - Qt) dt +[YtI {tZT}D(z)-KS(t-T)-Ct] dt
lift=t

ot—r1)=
0 otherwise

By making use of F(x,y), I can write the complete problem as:

3
F(x,y) = sup E[j—;e’ﬁse’?q ds| X, =x,Y, = y]
0

0,C,t

=sup sup E[J.—le’ﬂse"ycfds+e’ﬁTFl(X,,Y,)|XO =x,Y, =]

r {6,,C,0<s<r} 0 V4

The Bellman equation associated with the value function F(x, y)is:

xx Tt

P ) =SBl F O r(x-0)~C)t Fay + S P07+ F, 0% 4 ooyt ]

Taking first-order conditions for solving optimal consumption C and investment

strategy 0, I obtain:

¢ =—1mF,
y
0* :_Fx(/u_r) _ F)fypoy
' F.x'  F.x
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I conjecture that the value function takes the form

2 J—
F(x,y)= —% exp[-ry(x+g(y) +2Z—27/+%)]] then g(y) may be viewed as the

certainty equivalent value of the option value to invest. Using the conjectured solution

for C, and @, and substituting into H-J-B equation, I obtain

2

rg(y) =(a—pna)yg’(y)+%y2g"(y)—%<l—pz)yzg'(y)z

subject to

lim g(y) =0 (absorbing barrier)
Y-

g'(»")=f'(»") (smooth pasting)
g(y") = f(»")-K (value matching)

The option value to invest, g(») , is solved by invoking certainty equivalence

and y” is the investment trigger for Firm F’s optimal entry.

3.4.3 Firm L’s Value Function, Investment Timing Decision, and Certainty
Equivalence Value

Firm L’s management expects to receive profit flow Y x D(1) after undertaking
investment and prior to Firm F’s entry; after Firm F’s entry, Firm L receives perpetual
profit flow Y x D(2). The manager’s problem is to maximize her expected utility of
consumption with the investment strategy 6 by hedging partially using the traded asset S
and the riskless bond. The dynamics of wealth process X; are:

dXi=6;(dS:/ Sy +r (X - 6) dt +[Yd j< 27, D(D)+Y (27, D(2)

KS(t-T)-C{] dt
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1ift=T

5(t-T) ={ |
0 otherwise

where T is the time when Firm L undertakes investment, C; is the consumption
process, and 6 is the cash amount invested in the partial spanning asset S, and
remaining wealth is invested at riskless rate, r.

I first assume that the manager has already invested K, has already started to
receive the cash flow Y; x D(1), and expects to receive Y x D(2) forever following
Firm F’s entry at time t".

3.4.3 Proposition 1:

Firm L manager’s problem is to maximize her expected utility of consumption

with the investment strategy 6 by hedging partially using the traded asset S and the

riskless bond conditional on Firm F’s optimal entry, at time t', where
" =inf{t:Y(t)> y"}and yp"is the investment trigger for Firm F. That is,

L(x,y)=sup E[J-—le_ﬁsef’c”ds]
0.c 5V

TF

= sup E[J.—le_ﬁse_yc“ds+e_ﬁ’FFl(x,y)]

C.0,,08ssty Gy Y

Subject to

Yo=y,Xyg=x

dXt = Ht (dSt / S) +r (Xt - Ht) dt +[YtI {t< Z'F }D(1)+Ytl {t> z‘F }D(Z)-C] dt
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Remarks

The second equality derives from Lemma for the proof of 3.4.2 Proposition 1
(see Appendix) and the fact that after the follower enters, the two firms share the market
and hence the value function if homogeneous expectation/utility function is assumed.

Firm L’s Value Function

Assume Firm L has already entered the market and given Y(¢) < y”, I then

solve the equation by using H-J-B, the standard arguments yield:
1 1
PLxy) =supl— e e T 4 L (Ot r(x=0)+ yDO)=C)+ Loy + 2 L0 7
oc ¥y

1
+5Llyyo-2y2 +L1xypoj}9tl]

Solve for L(x,y)

Taking first-order conditions for solving optimal consumption C and investment

strategy 0, I obtain:

Ct* = _l(lnl‘lx)
e

9* — _ le(/’l_r) _ LIXypO)}
t lexlz lexl

I conjecture that  the value function takes the form

. B-

2r2]/ +rT;/r)] where 4(y) has the interpretation as

L(x,y)= —iexp{—ry(x Fh()+

the certainty equivalence value, and solves the following non-linear second order ODE
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2

0 o’ , 0 ryc?
a- — h(y)+— > ——h(y) -
(¢ —pno)y & ) 7Y 0y )

2

0
(1= p*)y* (= h(»))’ = rh(y)
0y
+yD(1)=0
with (") = f(»")
where f(y)solves the followig equation (see 3.4.2 Firm F’s value function for

details)
(@ - p1o)yf'(v) +%y2f"<y) —%a — ) () =1 (v)+¥D(2) =0

with transversality condition

lim E[e ™" e ™" 7P = 0
T—ow

and " is the optimal investment trigger for Firm F’s entry.
The investment trigger for Firm L occurs at the point where value function for

Firm L is equal to the value function for Firm F with y<y”. That is,
h(y")—K = g(y"), where g(y) is the Firm F’s option value to invest and y“ is Firm

L’s investment trigger value.

3.4.4 Model Results Assuming Perfect Spanning (Complete Market)

I consider a complete market version of the model to create a “benchmark” for
comparison to the incomplete market cases. The market is complete if either perfect
spanning holds, i.e., uncertainty over the income stream, Y, may be replicated by asset
S (perfect correlation with Y), or equivalently, Y itself is traded. Such a complete
market version of the model creates a “benchmark” for comparison to the incomplete

market case.
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3.4.4.1 Firm F’s Value Function and Investment Timing Decision

Assuming Firm L has already entered the market, Firm F will enter the market
optimally without fear of pre-emption. Under the complete market, Firm F’s value
function and investment trigger can thus be obtained through the following
propositions.

3.4.4.1 Proposition 1: (Y itself is traded.)

Firm F manager’s value function may be written as:

(=2 D@ —K)(2)5yel0,y"]
FE(y)= ;(‘2;’ Y

P28 _Kiyely”, o]

r—a

(24

1 (04 1 2 2r F ﬂ r—ao
where f=———+./(——-=)"+— and )" =
p 2 o’ \/(0'2 2) o’ Y

(-1 D)

x K

y"is the solution to the free boundary. Thus Firm F’s optimal policy is to

invest the first time Y reaches the threshold y” .

Proof:

Following standard arguments, the corresponding Bellman equation for Firm F
is

ayFy +%azy2F}§ —rF =0

I solve the above ODE with following boundary, value matching, and smooth

pasting conditions:

FC0)=0
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y"'D(2) K

FO(" )=

FC(yF)=£

y

The value matching condition is obtained by the fact that after investment Firm
F’s expected project value is the discounted expected present value of the duopoly
cashflow, YD(2), in perpetuity. That is, assuming that the firm stops at time t, the value

of the project equals:

Ve(y)= E[T e Y (s)D(2)ds]

_E[I —r(s— Z)Y(t) (a— 0' Y s=)+o (W (s t))D(z)dS]
=E[I —luy(t)e(a ‘7 )““’O'(W(“))D(z)du]; u=s—t
0
= Y(t)D(2)E[ j g O
_Y(@)D(2)
r—a

The optimal stopping time 7'is given by 7" = inf { t : Y, > y"}. I propose a
solution of the form F“(y) = Ay” where A is a constant to be determined.
Covy= AvP it i : c_ (D
Because F"(y)=4y”, it immediately follows that F~ =Apy"" ’and

=AB(B-1)y”. Substituting into the Bellman equation,

ayFy +%02 y’F,, —rF¢ =0, the Bellman equation becomes

%azﬂ(ﬂ—l)+aﬂ—r20
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Solving for (3 in the above characteristic equation yields

-2 \/(———) +—>1 or

1
e T

The solution S < 0 may be rejected given the boundary conditions, and the

solution is of the form F(y) = 4y” with B = 1 —%Jr \/(% —l)2 2 . The constant
2 o o 2 o’

A and investment trigger value y” may be determined by invoking value matching and
smooth pasting conditions, yielding Firm F’s value function and trigger value:

FD(z)

FO) === -K)(=,
y

whereﬂ:%_%+\/(ﬂz_%)z+2_z and yF:—(,Bﬂ 1)><;_(20;x
o o o _

3.4.4.1 Proposition 2: (The perfect spanning asset, S, exists.)

Firm F manager’s value function may be written as:

&—K](%)ﬁ;ye[o,yﬁ

FC( ): r_(a_o-n) y
L(z)_[(;ye[yF,oo]
r—(a—on)

1 (a—-no a—-no) 1 2r
Where ,BZE—( O_? )+\/(( O_? )—5)24'?

p_ r-(a-no) .

Y =5 b
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y"is the solution to the free boundary. Thus Firm F’s optimal policy is to

invest the first time Y reaches the threshold y” .

Proof:

Following standard arguments, the corresponding Bellman equation for Firm F
is

(a—on)yF, +%azy2FyS -rF =0

I solve the above ODE with following boundary, value matching, and smooth

pasting conditions:

FC0)=0

cor__ Y D2
F(y )—r_(a_m)
c,.ryv___ D@2
B e e

The value matching condition is obtained by the fact that after investment Firm
F’s expected project value is the discounted expected present value of the duopoly
cashflow, YD(2), in perpetuity. That is, assuming that the firm stops at time t, the value

of the project equals:
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Ve(y)=E®° [T eV Y (s)D(2)ds]

T (
= EQ[J. Y (He

t

a—o‘n—%az Ys—1)+o(Z9 (s-1))

D(2)ds]

a—o‘n—%o‘z )u+6(ZQ (u))

= EQ[T e_’"Y(t)e( D22)dul,u=s—t

(a—o‘)]—%cz)wro‘(lg(u))

= Y(t)D(2)EQ[T e e du]

_ Y()D(Q2)
- (ax—on)

where E°denotes expectation with respect to unique martingale measure Q,
defined as follows. For each t < oo, the Radon-Nikodym density of Q with respect to

the historical measure P is defined as:

do 1,
— |, =exp(-nZ,——nt
P |, = exp(-nZ, 57 )
ds, 0 0 . . .
Under Q, S rdt + ydZ 7 ,whereZ: = Z, +nt is a Q-Brownian motion and the

t

project stochastic demand follows:

dY, =(a-no)Ydt+oY.dZ?

The optimal stopping time 7'is given by 7 = inf { t : Y, > y"}. I propose a
solution of the form F“(y) = Ay” where A is a constant to be determined.

Because F(y)=A4y”, it immediately follows that ch = Apy"”" " and

C _ ﬂ . . . .
F,=4p(B-Dy". Substituting nto the Bellman equation,

1 :
(ax—on) yF}C + 502 ysz(; —rF¢ =0, the Bellman equation becomes
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%azﬂ(ﬂ—l)+(a—an)ﬂ—r=0

Solving for 3 in the above characteristic equation yields

1 (a¢—no) \/ (a—no) 1, 2r
=—— + -—) +—>lor
p 2 o’ ( o’ 2) o’

ﬂ=l— (a_?g) —\/((a_?a) —1)2 +2—Z <0
2 o o 2 o

The solution 8 < 0 may be rejected given the boundary conditions, and the

solution is of the form FC(y)= Ay’ with /3:1—(“_270)+\/((“_27°')-1)2+2_Z,
2 o o 2 o}

The constant A and investment trigger value y” may be determined by invoking value
matching and smooth pasting conditions, yielding Firm F’s value function and trigger

value:

o VD2 Y
FO)=L2 K

,Whe’”eﬁ:l_(a_no-)+\/((a_770-)—l)2+£ and y" = P Xr—(a—na)xK
2 0'2 0_2 2 O_z (ﬂ—l) D(2)

3.4.4.2 Firm L’s Value Function and Investment Timing Decision
By design Firm L undertakes investment prior to Firm F’s entry. Firm L makes
its investment decision conditional on Firm F acting optimally according to the optimal

stopping rule described above.
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3.4.4.2 Proposition 1: (Y itself is traded.)

Firm L’s value function is:

yD() , [yFD(2) R

12 —K;ye[0,y"]
y

r—a  r-a r-a
L(y)= D)
P22 Kiyely o]
r—a
where ﬂ=l—i2+\/(i2—l)2+2—’; and y" =ixr_axK
2 2 Ve 2 s (B-1) DQ)

Proof:

Following standard arguments, with the assumption that Firm L has already
entered the market and given y < y”, the corresponding Bellman equation for Firm L is
1
c 2.27C c _
ayL, +50' y°L,—rL"+yD(1)=0

I solve the above ODE with following boundary and value matching conditions:

_y'D(Q2)

L")

I propose a solution of the form L°(y) = Ayﬂ for the homogeneous part, and a

particular solution for the non-homogenous part, where A is a constant to be
determined. The Bellman equation for the homogenous part is (derivation is the same

as the previous section):
1,
50‘ BL-D+af-r=0

Solving for (3 in the above characteristic equation yields
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p=——— \/(———) +—>1 or

]l «
2

ﬂ=————\/(———) +25<0
(ox O'

o)

2r

The solution 8 < 0 may be rejected given the boundary condition. One candidate

particular solution is &(1) Therefore, the solution should be the form of
r—o

L°(y) = Ay’ for the homogenous part with ,B———O_— \/(———) g plus
yD()

particular solution,

r—o

. From the value matching condition, A may be determined,

yielding Firm L’s value function:

Lc(y):yD(1)+[y D(2) 'y 1Ly K

r—a

1
where f=—
P 2

F

r—«o r—ao

i e
“(B-) D)

\/(———) +—2 and y"

3.4.4.2 Proposition 2: (Y itself is traded.)

Firm L’s investment trigger value y”is the solution to the following equation:

y'DM)  y'DR) Y vty VDR ¥
r—a *l r—a r—a]( 2 r-a KIew

1 o a 1, 2r ﬂ e
where /3— \/( ) + - and y” (,5 1) D(2)
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Remarks:

The above proposition makes use of the fact that Firm L’s trigger value, y*,

yields the same value for both firms with y < . That is, L(»") should be equal to

FC(y").

3.4.4.2 Proposition 3: (The perfect spanning asset, S, exists.)

Firm L’s value function is:

22 O yoe) v 12y Ky e[0,7]
c,n_)r—(a@-no) r—(a—-no) r—(a-no) " ’ ’
L (y)= oA

y—()_K;ye[yF,OO]
r—(a-no)

1 (a-n0) \/ (a—no) 1, 2r
where f=—- + -——) +—
P 2 o’ ( o’ 2) o’

ro B r-(@—no)
-1~ DO

and y

Proof:

Following standard arguments, with the assumption that Firm L has already

entered the market and given y < y”, the corresponding Bellman equation for Firm L is

(a—no)yL; + %JzyzLSy —rL +yD(1) =0

I solve the above ODE with following boundary and value matching conditions:

y"D(2)

L (y )=—r_(a_n0)
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I propose a solution of the form L°(y)= Ayﬂ for the homogeneous part, and a

particular solution for the non-homogenous part, where A is a constant to be
determined. The Bellman equation for the homogenous part is (derivation is the same

as the previous section):
1
50 pB-D+(a—omf-r=0

Solving for B3 in the above characteristic equation yields

1 (a-no) \/(0{—770) 1, 2r
=—=— + ——) +—>lor
p 2 o’ ( o’ 2) o’

ﬂzl_m—go)_\/((a—ga)_l)z+2_’;<o
2 o o 2 o

The solution S < 0 may be rejected given the boundary condition. One candidate

yD()

Therefore, the solution should be the form of
r—(a—on)

particular solution is

L°(y) = Ayﬁ for the homogenous part with f = l— (@ _;70-) +\/((0{ _276) _1)2 +2_’; ,
2 O O 2 o

yD(1)

. From the value matching condition, A may be
r—(a—no)

plus particular solution,

determined, yielding Firm L’s value function:

¢ yD) y'DR) T Vs
R S p ey pes S

1 (a—-no a-no) 1 2r
where ﬂ=5—( 0'27 )+\/(( G? )—E)2+?
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p_ r-(a=no) .

dy =
1 Y6

3.4.4.2 Proposition 4: (The perfect spanning asset, S, exists.)

Firm L’s investment trigger value y”is the solution to the following equation:

Yo VD@ Yt e
r—(a-no) r—(a-no) r—(a-no) y"

[M_K](%)ﬂ
r—(a-no) y

1 (a-no a-no) 1 2r
where ,6’:5—( 0'27 )+\/(( 0'27 )—E)z+?

and " = s xr_(a_na)xK
(F-1) D(2)

Remarks:

The above proposition makes use of the fact that Firm L’s trigger value, y*,
yields the same value for both firms with y <y”. That is, L°(y") should be equal to
FE(").

3.5 Optimal Policies for Duopolistic Competition by Project Income Stream
(Flow Investment Pavoffs II — Income Stream with Arithmetic Brownian

Motion)

The previous section showed that modeling a stochastic investment payoff
through a multiplicative demand shock following a geometric Brownian motion process
yields many ordinary differential equation approximations. The chosen approximation
must be carefully examined to ensure stability and convergence. Motivated by Miao

and Wang (2005) and Henderson (2005), I model the stochastic investment payoff as an
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arithmetic Brownian motion process. Negative values from the arithmetic Brownian
motion may be interpreted as a loss generated from operations.

As before, two competing firms are contemplating entry into a new market, and
I identify the firms as the Leader (Firm L) and Follower (Firm F), respectively. Firm L
enters the market by investing to receive a monopoly rent until Firm F enters the
market. Upon entry by Firm F, I assume that Firm L obtains a fraction a € ['5,1] of
project income, leaving (1-a)=a2 of project income for Firm F.

3.5.1 Model Set-Up and Assumptions

I fix a filtered probability space (,7,P) with a fixed c-algebra Gc#, where

Brownian motion is defined and the expectation E {e}is computed. Let F = (F)t0be
the augmented filtration of Brownian motion. The increasing c-algebras generated by
the pair of Brownian motions (Zs)s<: and (ZLS) s<t Where Ztis orthogonal to Z, satisfy the

usual conditions of right-continuity and completeness (i.e., include all the sets of

probability 0 in '°). Let G = (60 &0be filtration generated by Z alone.

Non-traded Assets (The Investment Income)

Project cash flows Y(t) follows the arithmetic Brownian motion”’:

' The completion by the null sets is important in particular for the following reason. If two random
variables X and Y are equal almost surely (X=Y P-a.s. means P{X=Y}=1) and if X is Ftmeasurable

(meaning that any event {X,<x} belongs to ) then Y is also ¥t-measurable.

0 Assume it follows certain regularity conditions to guarantee the uniqueness and existence solution to
the Y process.
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dY:= adt +tadWy; Yi=y
where « is the drift rate per unit time, o is the instantaneous volatility, and W is

a standard Brownian motion having correlation # < LD Wwith Z. For this, I can take W

=pZ+ l_pzzl, or equivalently, dW = p dZ +mdzi.
Traded Risky Security
There exists a partial spanning asset which follows the lognormal process21:
dSi=pu S; dt+y S;dZt =y S; (ndt + dZt) + r Sidt ; S;=s
where # is the instantaneous conditional expected percentage change in S per

H—r

77 =
unit time, X is its Sharpe ratio, y is the instantaneous volatility, and Z is a

standard Brownian motion.

Traded Riskless Security

I also assume that a riskless bond B is available for trading. The riskless bond
with price process B satisfies the following dynamics:

dB;=rBdt; Bi=b

Utility Function

Realizing that markets are incomplete, the firm’s manager attempts to maximize

her expected utility. That is,

Maximize E [j: e "U(X,)dt]

2! Again, I can have the process follows more general forms satisfying all required technical conditions as
described in footnote 2 for the guarantee of uniqueness and existence solution to S, process.
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The utility function is a concave function U: R—[-c0,0) , which is assumed to be
strictly increasing, strictly concave, and continuously differentiable on its domain
satistying:

(1) The half-line dom(U) = {x € R;U(x) > —} is @ non-empty subset of [0,).

(1) U'(x)is continuous, positive, and strictly decreasing on the interior of

dom(U), and satisfy the Inada condition:

U'(©)= lim U'(x)=0
X —> 0

The standard CARA, CRRA and HARA utility functions satisfy the above

properties. Throughout the study, I assume the manager has the exponential utility

function U(x) = LS| specify y > 0, i.e., the manager exhibits constant absolute risk-
Ve

aversion.

3.5.2 Firm F’s Value Function, Investment Timing Decision, and Certainty
Equivalence Value

Assume Firm L has already exercised its option, and thus Firm F may construct
its optimal investment policy without fear of pre-emption. Firm F’s management may
undertake investment at time 7 (7 = t), receiving perpetual profit flow Y x (1-a). The
manager’s problem is to maximize expected utility of consumption with respect to
stopping time 7 and investment strategy 6 by hedging partially using the traded asset S
and the riskless bond. The dynamics of the wealth process X; are:

dX( =6, (dS;/ S¢) + 1 (X; - 6) dt -Cdt+[(1-a) Y (=r;-KS(t-7)] dt

lift=t

0 otherwise

5(t—2')={
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where 6, is the cash amount invested in the partial spanning asset S, and
remaining wealth is invested at riskless rate, r, and C is the consumption rate.

3.5.2 Proposition 1:

The value function for Firm F’s investment problem is given by the optimal

stopping problem:
F(x,y) = sup E[[ ~~e e ds| X, =7, = ]
6,.C,t 0 Y

I
=sup  sup E[J‘——e’ﬂ‘e”c‘afs+e"5’F1(XT,YT)|XO =x,Y, =y]
4

7z {C,,0,,0s5<7

where F(x,y)is Firm F’s value function after exercising the investment

decision.

Proof:

(See Appendix)

Firm F’s Value Function

I use backward induction to solve Firm F’s problem. I first assume that Firm F

has already begun receiving the cash flow Y; x (1-a) and has already paid investment

cost K.

The follower maximizes expected utility, given by:

) 1 ‘ oo 1 |
Fi(x,y) =sup E[I——e"ﬂ“")e‘ﬂv ds] = sup E[J.——e‘f’*e‘ﬁs ds]
o.c 7 oc Y
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Proof:

!
Fi(x,y) =supE, [[-—e e ds];
c,o 4
[ —pu =G
= supEx[I——e e"dulu=s—t

0

= sup EX[J.—le"ﬁ”e_W" du]; Relabel {C,,, } as{C,}
4

0

Therefore, the manager’s problem is:
Fi(x, ) = sup B[ [~ e e db]
o o 7

Subject to
Yo=y,Xo=x
dXt = Qt (dSt / St) +r (Xt - Gt) dt +(1-3)Ytdt-ctdt

The Bellman Equation (i.e., Hamilton, Jacobi, Bellman equation) associated

with the value function F(x,y) is:

ﬂFl(x,y)zsup[—%e‘”f VE(Ou+r(x-8)+(1-a)y-C)
0,C
1xx“t

+F1ya+%F 0y +%Eyy0'2 +F,,px0,0]

Taking first-order conditions for optimal consumption C and investment

strategy 0, I obtain:

C = —llnF]x
y

t

Exﬂ_Exr+F

Ixx

O’ +F,pro=0
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0* :_le(/u_r) _leypa
t Flexlz Fixxl

Incorporating first order conditions in the Bellman equation gives

F;x(/'l_r) _ F;x)"po-
F.x° F.x

ﬁE(x,y)z[—%e’C FFL( Vit

rom (W=D PPy gy B
V4

EXXZ FIXXZ
— F_po
+F a+ ( x(/u 27") _ lx}p )212 +lF;yvo_2
E}QCZ Flex/l/ 2 i
F —-r Fx pO'
+F,,px(= e > ) Do )o]

By solving the above equation coupled with transversality condition

lim E[e# ¢~ 70| = 0
T—ow

I conjecture that  the value function takes the form

)]22 where f(») can be interpreted

E(x,y)=—$exp[—r7(X+f(y)+2;72 ohse

as the implied project value through certainty equivalence value and

f () solves the followig equation

(a—pno)f (y)+ I )- (1 P —1f (N +(1-a)y=0

with transversality condition

lim E[e " ¢ 7P ] = 0
T—w

22 The form of ansatz solution is based on the form of Merton (1969) solution with the variable separable
property of the exponential function.
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Lean find f(»)="9 ,, (@=pno)i-a) yo'(l-p’)i-a)’
r

r’ 2r?
I now solve the complete problem as follows. Firm F’s utility maximization

problem is:

Tl
F (o) =swp [~ e e ds| X, =%, =]
0

6.t
subject to
dXt = Qt (dSt / S) +r (Xt - Qt) dt +[YtI {tZT}(l-a)-KS(t-T)-Ct] dt
lift=t

ot—r1)=
0 otherwise

By making use of F(x,y), | can write the complete problem as:

0,C,t

3
F(x,y) = sup E[j—;e’ﬁse’?q ds| X, =x,Y, = y]
0

=sup sup E[J.—le’ﬂse"ycfds+e’ﬁTFl(X,,Y,)|XO =x,Y, =]

. {0,,C,0<s<r} 0 V4

The Bellman equation associated with the value function F(x, y)is:
1 el 1 2.2 1 2
ﬂF(xay):Sup[_ie +Fx(ez/u_i_r(x_et)_cz)"'Fya+§Frx91Z +5Fvyy0 +vap}(0[0]
oc )y ’ ’

Taking first-order conditions for solving optimal consumption C and investment

strategy 0, I obtain:

C = —llan

%

G*Z_Fx(,u—l’)_nypO_
F;(2 F_y

t
XX XX
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I conjecture that the value function takes the form

(B
272 2
V4 ry

F(x, y):—iexp[—r}/()ﬁ gy + )] then g(y) may be viewed as the

certainty equivalent value of the option value to invest. Using the ansatz solution for
C’ and 8, and substituting into H-J-B equation, I obtain

2

rg(y) =(a—pna)g'(y)+%g"(y>—%(l—p2>g'<y)2

subject to

lim g(y) =0 (absorbing barrier)
Y-

g'(y)= (l;ra) (smooth pasting)

e(F) = fF) -k =179 +(a—pmzf)(l—a)_702(1—/322)(1—61)2 %
r r 2r

(value matching)

The option value to invest, g(y), is solved by invoking certainty equivalence

and y” is the investment trigger for Firm F’s optimal entry.

3.5.3 Firm L’s Value Function, Investment Timing Decision, and Certainty
Equivalence Value

Firm L’s management expects to receive profit flow Y, after undertaking
investment and prior to Firm F’s entry; after Firm F’s entry, Firm L receives perpetual
profit flow Y; x a. The manager’s problem is to maximize her expected utility of
consumption with the investment strategy 6 by hedging partially using the traded asset S

and the riskless bond. The dynamics of wealth process X; are:
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dX; =6, (dS:/ Sp) + 1 (X - ) dt +H[ YAl ir 1Y (o7 12
KS(t-T)-Cy] dt

1ift=T

5(t~T) ={ |
0 otherwise

where T is the time when Firm L undertakes investment, C; is the consumption
process, and 6 is the cash amount invested in the partial spanning asset S, and
remaining wealth is invested at riskless rate, r.

I first assume that the manager has already invested K, has already started to
receive the cash flow Y, and expects to receive Y xa forever following Firm F’s entry
at time 7'

3.5.3 Proposition 1:

Firm L manager’s problem is to maximize her expected utility of consumption
with the investment strategy 6 by hedging partially using the traded asset S and the

riskless bond conditional on Firm F’s optimal entry, at time t', where

" =inf{t:Y(t)> y"}and yp"is the investment trigger for Firm F. That is,

L(x,y)=sup E[J-—le_ﬁsefyc”ds]
0.c 5V

TF

= sup E[J.—le_ﬁse_yc“ ds+ e_ﬁTFF](x, 321
{C;,0,,0<s<7} 0 7
Subject to
Yo=y,Xg=x
dXt = Ht (dSt / S) +r (Xt - Ht) dt +[YtI {t< Z'F }31+Yt1 {t= ‘[F }a-C] dt
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Remarks

The second equality derives from Lemma 2, Section 3.5.2 and the fact that after
follower enters, the two firms share the market and hence the value function if
homogeneous expectation/utility function is assumed.

Firm L’s Value Function

Assume Firm L has already entered the market and given Y(¢) <y, I then

solve the equation by using H-J-B, the standard arguments yield:
1 Bt _—iC, 1 2,2
PL(x,y)=sup[——e e " + L (Ou+r(x-0)+y-C)+L,a +5Lm0, 4
6c Y

1
+5L o’ +L,,pyob,x]

Lyy

Solve for L(x,y)
Taking first-order conditions for solving optimal consumption C and investment

strategy 0, I obtain:

C = —l(lnle)
4

t

0* = — le (lLl — V) _ le)’po-
t lexlz lexZ

I conjecture that the value function takes the form
1 n’ (-1 : :
L(x,y)=——cexp[-ry(x+h(y)+—5—+-——)] where A(y) has the interpretation as
ry 2rey ry

the certainty equivalence value, and solves the following non-linear second order ODE
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0 o’ 0 ryc’
— p10) L)+ Ly -
(a Pﬂo')ay ») 2 ooy ») 2

( —p2>(§ H()) —rh(y)
4

+y=0

_ 201 23,2
with h(y") = f(") =2y + @ pzna)“—w =P This is the value
r

r 2r?
matching condition indicating Firm L’s project value after Firm F’s entry. It differs
from Firm F’s project value obtained in the previous section because of the difference in

market share.

(u=pnola _yo’(1-p*)a’
+ 2 2

.(see 3.5.2 Firm F’s value
2r

where f(y)="y
r

function for details™)
and y" is the optimal investment trigger for Firm F’s entry.
The investment trigger for Firm L occurs at the point where value function for

Firm L is equal to the value function for Firm F with y<y”. That is,

h(y")-K = g(y"), where g(y) is Firm F’s option value to invest and y* is Firm L’s

investment trigger value.

3.5.4 Model Results Assuming Perfect Spanning (Complete Market)

I consider a complete market version of the model to create a “benchmark” for
comparison to the incomplete market cases. The market is complete if either perfect
spanning holds, i.e., uncertainty over the income stream, Y, may be replicated by asset

S (perfect correlation with Y), or equivalently, Y itself is traded. Such a complete

3 1t differs from Firm F’s project value obtained in the previous section due to the difference in the
market share.
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market version of the model creates a “benchmark” for comparison to the incomplete
market case.

3.5.4.1 Firm F’s Value Function and Investment Timing Decision

Assuming Firm L has already entered the market, Firm F will enter the market
optimally without fear of pre-emption. Under the complete market, Firm F’s value
function and investment trigger can thus be obtained through the following proposition.

3.5.4.1 Proposition 1: (Y itself is traded.)

Firm F manager’s value function may be written as:

1;’: "y el0,y"]
PO ey d-a)
DY, fa—K;yE[yF,OO]
r r

a [ a, 2r r 1 a 1K
where f=——+./(—) +— and -z
d o’ (0'2) o’ 4 g r l-a

y"is the solution to the free boundary. Thus Firm F’s optimal policy is to

invest the first time Y reaches the threshold y” .

Proof:
Following standard arguments, the corresponding Bellman equation for Firm F

1S

aF ¢ +102F? —rF¢ =0
Yy 2 Yy

I solve the above ODE with following boundary, value matching, and smooth

pasting conditions:
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lim FC(y)=0

y—>—o0

FOO )= (l—j)y +(1—r§t)a K

C F 1—61
F (y )ZT

The value matching condition obtains from the fact that after investment Firm
F’s expected project value is the discounted expected present value of the duopoly
cashflow, (1-a)Y, in perpetuity. That is, assuming that the firm stops at time t, the value

of the project equals:
Ve =E [T e Y (s)(1 - a)ds]
= E[T et 1—a) Y (1) +(a —%az )(s — 1)+ oW (s —1))ds]
= E[;ij (I-a)e™(Y(t)+( —%O'Z)u +oW(u))dul;u=s—t

=(1- a)[T e "Y(t)du+ Te’“audu]

~(raf- T v-a L
r r

-a-a 0 %
r r

The optimal stopping time 7'is given by 7 = inf { t : Y, > y"}. I propose a

solution of the form F(y)= Ae*” where A is a constant to be determined.
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Because F(y)=dA4e’”’, it immediately follows that ch = Afe’’ and
Fyi = AB’e””. Substituting into the Bellman equation, aFyC -I-%O'szi —rF€ =0, it
becomes

%azﬂz +aff-r=0

Solving for [ in the above characteristic equation yields

ﬂ:—%+ ‘/(%)2 +2—Z >0 or
o o o
a a ., 2r

p - w/(az) -

The solution S < 0 may be rejected given the boundary conditions, and the

. ) / 2
solution is of the form F€(y)= Ae*’ with S = —%-‘r (%)2 +U—’;. The constant A

and investment trigger value y” may be determined by invoking value matching and

smooth pasting conditions, yielding Firm F’s value function and trigger value:

l-a F o a 2r 1 a K
FC(y)=—=e"") where z3’=——+1/ )Y+ and y' =——-Z+
) pr o’ (02) o’ 4 p r l-a
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3.5.4.1 Proposition 2: (The perfect spanning asset, S, exists.)

Firm F manager’s value function may be written as:

1; ey €0, y"]
O ey d-aya—ro)
—a —ad — o

p - = 19) _K;yel[y",o]

where ,8:—(0{_?77)+\/(a_2m7)2+£ and yF =l_(0‘_770)+ rkK
o o

2
O

r l-a
y"is the solution to the free boundary. Thus Firm F’s optimal policy is to

invest the first time Y reaches the threshold y” .
Proof:
Following standard arguments, the corresponding Bellman equation for Firm F
is
1
(a—on)Fy +502F; —rF=0

I solve the above ODE with following boundary, value matching, and smooth

pasting conditions:

lim F€(y)=0

y—>-0w0

2

Fc(yp):(l—c:)y +(1—a)(ra—770)_K

c . Fy_1—a
F,(y')=—

The value matching condition is obtained by the fact that after investment Firm

F’s expected project value is the discounted expected present value of the duopoly
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cashflow, (1-a)Y, in perpetuity. That is, assuming that the firm stops at time t, the value

of the project equals:

Ve(y)= EQ[]g e Y ()1 -a)ds]

= EQ[T e 1-a)Y(t)+(ax—on —%o*z V(s —1)+0Z%(s—1))ds]

t

:EQ[T(l—a)e_m(Y(t)+(0(—0'77—%0‘2)M+O'ZQ(u))du];u =s5—t

=(1- a)[]2 e Y (t)du+ T e "(a—on)udu]

Y( ) o e (1+rt)

= (laf-—2e ™ [; H(~(a-om—5")[7]

(- )(Y(t) a— 0'77

)

where E¢denotes expectation with respect to unique martingale measure Q,
defined as follows. For each t < oo, the Radon-Nikodym density of Q with respect to

the historical measure P is defined as:

do 1,
— |p=exp(-nZ,——n"t
dPIF, p(-7Z, 277)

S rdr+ 2dZ° ,whereZ® = Z +nt is a Q-Brownian motion and the

t

project stochastic income follows:
dY, = (a-no)dt+odZ’
The optimal stopping time 7'is given by 7" = inf { t : Y, > y"}. I propose a

solution of the form F°(y)= Ae’” where A is a constant to be determined.
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Because FC(y)=A4e’”, it immediately follows that ch = Afe’” and

C _ 2 ﬂ . . . .
F, =Ap%e". Substituting nto the Bellman equation,
1 .
(a— my)FyC + Easzg —rF“ =0, the Bellman equation becomes

%azﬂz +(a-no)B-r=0

Solving for (3 in the above characteristic equation yields

ﬂ:_(a—;m) +\/(a—§777)2+2_;;>0 or
o o o

a—o a—o 2r
ﬂ:_( 277)_\/( 277)2+_2<0
(2 (o2 (o2

The solution S < 0 may be rejected given the boundary conditions, and the

a=on The

. . (a—on) 2r
solution is of the form F€(y)= A4e’’ with f=- - +.4/( )+

0_2
constant A and investment trigger value y” may be determined by invoking value

matching and smooth pasting conditions, yielding Firm F’s value function and

investment trigger:

1- F
FC(y) — ﬂra Py

l_(a—m])+ rK

2

whereﬂz—(a;zo-n)+\/(a;zo-n)2+% and ' = p -
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3.5.4.2 Firm L’s Value Function and Investment Timing Decision

By design Firm L undertakes investment prior to Firm F’s entry. Firm L makes
its investment decision conditional on Firm F acting optimally according to the optimal
stopping rule described above.

3.5.4.2 Proposition 1: (Y itself is traded.)

Firm L’s value function is:

" -1 F
C ((a r)y +(ar2)a)eﬁ(y—y)+Z+%_K;ye[0,y1~"]
L (y)=
Y ay aa F
—+——K;ye[y", o]
ror

a [ a ., 2r r 1 a 1K
where f=——+./(—) +— and =——_Z4 7
d o’ (0'2) o’ 4 g r l-a

Proof:

Following standard arguments, the corresponding Bellman equation for Firm L
is

aLf +%O‘2Liy —rLf+y=0

I solve the above ODE subject to the following boundary condition:

F
£H)=2_ 4%
r

’/,2
I propose a solution of the form L'(y)= 4e’ 7 for the homogeneous part, and a
particular solution for the non-homogenous part, where A is a constant to be

determined. The Bellman equation for the homogenous part is (derivation is the same

as the previous section):
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%azﬂz +(a-no)B-r=0

Solving for B in the above characteristic equation yields

= [y 2 oo
(o2 (@2 (o)

p=—tm 2 <0
O'

The solution 8 < 0 may be rejected given the boundary condition. One candidate

Y

: . o :
particular solution is =+ —-. Therefore, the solution should be the form of

r r

) 2
L“(y)= Ae’” for the homogenous part with = —%-F (%)2 =

>, plus particular
o

. a : . . e
solution, Z+—2. From the value matching condition, A may be determined, yielding

r r

Firm L’s value function:

LC( )= ((a Dy (a 1)0[) ply=y" )+y+%—Kwith the consideration of
P’ ror

. a a 2r Il o K
investment costs, where f = ——+.|(—)’+— and y" =——-—+ .
o o o p r l-a

3.5.4.2 Proposition 2: (Y itself is traded.)

Firm L’s investment trigger value y”is the solution to the following equation:

((a—l)y (a— 1)05) I >+)’L PRI el )
r r’ roor pr

where ,B——j 1/(—) +§_— and y %—%—i—lr_Ka.
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Remarks:

The above proposition makes use of the fact that Firm L’s trigger value, y*,

yields the same value for both firms. Thatis, L (y") should be equal to F(y").

1S

3.5.4.2 Proposition 3: (The perfect spanning asset, S, exists.)

Firm L’s value function is:

F ) —
C a :)y L (a 1)(;5 Gn))em—yw+%+@_K;ye[o,y*“]
L =
) ay a(a—on) F
7+r—2—K;y€[y ’OO]

where ﬂ:_(a—;ﬂ])Jr\/(a—;m)erE and " =l_(0‘_770')+ rK
o) o

2
(o}

r l-a

Proof:

Following standard arguments, the corresponding Bellman equation for Firm L

(a —0'77)L§ +%02Liy —rL +y=0

I solve the above ODE subject to the following boundary condition:

ClF ala—no
LC(yF)= .i + ( 277 )

I propose a solution of the form L'(y)= 4e” 7 for the homogeneous part, and a

particular solution for the non-homogenous part, where A is a constant to be

determined. The Bellman equation for the homogenous part is (derivation is the same

as the previous section):
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%azﬂz +(a@-no)B-r=0

Solving for B in the above characteristic equation yields

ﬂ=_(a_?77) +\/(a—§)'77)2+2_;;>0 or
o o

o)

a—o o—o 2r
ﬂ:_( 277)_\/( 277)2+_2<0
o o o

The solution S < 0 may be rejected given the boundary condition. One candidate

particular solution is Z+(0[_—2m7). Therefore, the solution should be the form of
r r

L°(y) = Ae’” for the homogenous part with f=— (@- 077) \/(a 2077) +%, plus

y, (a—zna)

r r

particular solution, . From the value matching condition, A may be

determined, yielding Firm L’s value function:

£ == l)y TGl o L IR C =2/ By QT the
r r r
: : : - - 2
consideration of investment costs, where f=— (@ 2077) + \/ (a 2077)2 + —’; and
o o o

yF:l (a- 770)
p r 1 a

3.5.4.2 Proposition 4: (The perfect spanning asset, S, exists.)

Firm L’s investment trigger value y”*is the solution to the following equation:

((a_l)y (Cl 1)(&2 776)) ByE—yF )+ (a 2770-) Kzl_aeﬂ(yL—yF)
r r r r pr
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where ﬂ:_(a—fn)+\/(a—2o-n)2+z and yF:l_(a_UU)+ rK
o o

2
o

r l-a’
Remarks:
The above proposition makes use of the fact that Firm L’s trigger value, y*,
yields the same value for both firms with y <y”. That is, L°(y") should be equal to
FE(").

3.6 Quantitative Results Analysis

I consider a capital investment project with the following base case parameter
values:

Investment cost (K) =1,

Project volatility () =0.4,

h-px a=ET

s(=

) is set at —0.3, fixing § = 2.5,
o

Leader market share, a, ranges from 0.5 to 0.8 upon entry by Firm F.
All trigger values reported below are “discounted” values.

3.6.1 The Impact of Market Completeness on the Investment Timing Decision
and Option Value to Invest

Holding constant p and vy, I find that the lower Firm L’s market share following
Firm F’s entry, the lower the trigger investment value for the follower. That is, Firm F
has greater incentive to enter the market the greater the anticipated market share. When
the firms are able to hedge completely the project risk, Firm L’s investment trigger

value is negatively correlated with its market share. Moreover, option value to invest
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becomes smaller as L’s market share increases. That is, Firm L enters immediately to
secure the pre-emptive advantage.

I find that the higher the degree of completeness (measured by p), the greater is
the follower’s option value to invest, a result consistent with Henderson (2005). The
leader’s option value for investment, as well as project value, is higher than is the case
when perfect hedging is possible. Considering simultaneously the market
incompleteness and the leader’s fear of pre-emption, it appears that Firm L displays
behavior closer to the classic real option models relative to the case in which perfect
hedging is possible. I conjecture that Firm L’s management has greater concern for the
risk involved in the imperfect hedge than for the risk of pre-emption.

I next focus on Firm L’s market share, a. If Firms L and F expect to share the
market equally, they will enter the market nearly simultaneously. This result conflicts
with classical model results in a complete market setting. However, if Firm L
anticipates a market share greater than 50% upon F’s entry, Firm L will enter the market
slightly earlier than F but not as fast as would be the case in a complete market. These
results reflect in part our specification of the leader’s value function. I anticipate
verifying and refining this specification in future versions of the paper. Results are
summarized in Table 1.

3.6.2 The Impact of Risk Aversion on Investment Timing Decision and Option
Value to Invest

The greater the risk aversion coefficient, the lower is the investment option

value for both firms. This result suggests that the more risk-averse managers may be

83



more concerned about the unhedgeable risks, placing relatively less value in the option
to delay investment. Results are summarized in Table 2.

3.7 Does Stochastic Process Matter? Geometric Brownian Motion vs.
Arithmetic Brownian Motion (GBM vs. ABM)

I investigate how the stochastic process specification impacts the decision rule.
It may not be appropriate to compare the static trigger values and option values for two
different stochastic processes. Schwartz (1997) indicates the importance of mean-
reverting process vs. non-reverting process in the capital budgeting investment problem.
Trajanowska and Kort (2005) compare the equilibrium in a strategic real-option game
under arithmetic Brownian motion with Grenadier (2002) under geometric Brownian
motion. They exponentiate arithmetic Brownian motion results to make “reasonable”
static comparisons between the two.

3.7.1 Firm F’s and Firm L’s Value Functions under Geometric Brownian
Motion versus Arithmetic Brownian Motion

As presented in section 3.4, modeling stochastic investment payoff through a
multiplicative demand shock following a GBM process assuming zero variable cost
yields a GBM investment income stream. I model directly the stochastic income stream
following (first) GBM and (second) ABM respectively. That is, the stochastic income
stream either follows process (A) or the process (B):

(A) GBM: dY = aYdt +taYdWy; Y=y

(B) ABM: dY; = adt +cdWy; Y=y

As before, two competing firms are contemplating entry into a new market, and

I identify the firms as the Leader (Firm L) and Follower (Firm F), respectively. Firm L
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enters the market by investing to receive a monopoly rent until Firm F enters the
market. Upon entry by Firm F, I assume that Firm L obtains a fraction a € ['5,1] of
project income, leaving (1-a)=a2 of project income for Firm F.

The corresponding Firm F’s and Firm L’s value functions under two different

stochastic processes are summarized as:

(C) GBM:
20D Xy eqo, ]
FS(y) = lr‘“ Y
u—K;yE[yF,OOJ
r—a

a-Dy"
y_ la=by (yLF)ﬁ—K;yE[O,yF]

Lc(y): r—a r—aoa

N SR

r—ao

_l__ a 1 F:Lxr—ax
where [ 55 \/( )+ - andy -1 D) K
(D) ABM:

I'B_a ﬂ(yy )’ye[oy ]

PO - D& 1y
p syely’,

(4 @Dty o 2L %o,

LC(y)_ r 7" r r

a a
L _Kiyelyt o]
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a a ., 2r r 1 a K
where f=——+./(—) +— and =— =4
d o’ V(az) o’ 4 B r l-a

3.7.2 Uncertainty Impact

I focus on the uncertainty variable, i.e., income stream volatility. Holding all
else constant, I find that increasing uncertainty delays Firm L’s investment trigger in
both stochastic processes. However, the sensitivity is quite different. Firm L’s
investment trigger value is more sensitive to the uncertainty in the GBM case, while
Firm L’s option value is more sensitive to the uncertainty in the ABM case. However,
for Firm F’s investment trigger and option value to invest, they are both more sensitive
to the uncertainty in the GBM case and less sensitive in the ABM case. (See Table 6, 7,
8.)

3.7.3 Market Share Impact

Focus on varying Firm L’s market share after Firm F’s entry, holding all else
constant, I find that the lower the Firm F’s market share after its entry, the higher the
investment trigger for Firm F in both stochastic processes. However, with the GBM
investment income stream, Firm F’s option value to invest does not vary with the
market share as its investment trigger appears. On the contrary, with the ABM
investment income stream, Firm F’s option value to invest varies with the market share
as its investment trigger appears. The phenomenon can be justified through the
following equation:

With GBM, Firm F’s option value to invest is

Feoy =259 gy Ly
r—a y
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,Whereﬂ:l—%+\/(i2_l)2+2_’; andyF: p Xr—axK
20 Vo 2o (A=) 1-a

To observe how the market share impacts the option value to invest, take

derivative of F°(y)with respect to the market share parameter, (1-a ), evaluated at the

trigger point, yielding:

P =Dty = KLy
Y p-1 "y

OF (»)
" o(1-a)

Thus |

y=}7F

That is, Firm F’s option value to invest is independent of the market share
though the investment trigger increases as its market share decreases.

With ABM, Firm F’s option value to invest is

1-a F o a 2r 1 a rK
FC(y)=—=e"""), ==+ () +=5 and y" =———+—
) Pr P o’ (0'2) o’ Y p r l-a

To observe how the market share impacts the option value to invest, take
derivative of F“(y)with respect to the market share parameter, (1-a ), evaluated at the
trigger point, yielding:

OF € (y) 1

=—2>0
o(l—a) "™ pr

That is, Firm F’s option value to invest decreases as its market share decreases
upon entry, whereas its investment trigger increases as its market share decreases.
Moreover, it shows that Firm F’s option value to invest and its market share decrease at

approximately the same rate.
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Firm F’s trigger exhibits the same sensitivity to market share in both stochastic
processes. However, Firm L’s investment trigger is more sensitive to the market share
in the GBM case, while Firm L’s option value to invest is more sensitive to market
share in the ABM case. Results are summarized in Table 1, 2, and 3.

3.7.4 Conclusion

Sensitivity analyses indicate that the choice of process specification, ABM or

GBM, has a material impact on project value and option value to invest.
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CHAPTER 4

REAL OPTIONS UNDER STOCHASTIC VOLATILITY

4.1 Backeground

This chapter explores the valuation consequences of incompleteness resulting
from stochastic volatility in a real options setting. I examine the efficacy of different
approaches to finding and justifying a particular martingale measure. This research
provides insight into how choice of equivalent martingale measures impacts the real
option values, relative to complete market models.

Stochastic ~ volatility induced market incompleteness affects the
investment/abandonment decision in important ways. The optimal investment/
abandonment decision rule changes, as do the corresponding option values, as follows:

(1) With non-zero correlation between the project randomness and volatility

randomness, the option values to invest/abandonment option value under g-optimal
measures will decrease (respectively, increase) in q if £(¢,0)” increases (respectively,

decreases) ino . Thus, the difference between NPV and option value to invest (also
project value with option to abandon®') under q-optimal measures will decrease

(respectively, increase) in q if £(¢,0)” increases (respectively, decreases) ino .

 Project value with option to abandon = Static net present value + Abandonment option premium
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(2) With zero correlation between the project randomness and volatility

randomness, A% (z,0) will be non-decreasing (respectively, non-increasing) in q if

£(t,0)* is non-decreasing (respectively, non-increasing) ino. As a result, option
values to invest/abandonment option value under g-optimal measures will decrease
(respectively, increase) in q if £(t,0)” increases (respectively, decreases) ino . The

difference between NPV and the option values to invest (also project value with option
to abandon) under g-optimal measures will increase (respectively, decrease) in q if
&(t,0)* is non- increasing (respectively, non-decreasing) ino .

(3) With a non-zero correlation between the project randomness and volatility
randomness, the optimal investment trigger under q-optimal measures decreases
(respectively, increases) in q if £(f,0)” increases (respectively, decreases) ino. The
optimal abandonment trigger is reversed.

(4) With zero correlation between the project randomness and volatility
randomness, the optimal investment trigger under g-optimal measures decrease
(respectively, increase) in q if &(z,0)” increases (respectively, decreases) ino . The
optimal abandonment trigger is reversed.

(5) There are no conclusive relations between the option value to invest/
abandonment option value under g-optimal measures and the correlation between the
project randomness and volatility randomness.

I demonstrate the indifference prices for the option value to invest and the

abandonment option solve quasilinear variational inequalities with obstacle terms. With
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the choice of the exponential utility function, the utility-based indifference price admits
a new pricing measure, which is the minimal relative entropy martingale measure
minimizing the relative entropy between the historical measure and the equivalent Q
martingale measure. I also show that the indifference price for the option value to invest
and the abandonment option (also, project value with abandonment option) is non-
increasing with respect to the risk aversion parameter. As the risk aversion parameter
converges to zero, the indifference price converges to the unique bounded viscosity
solution of the linear variational inequality with obstacle term.
4.2 Motivation

Stochastic volatility is important in contingent claims analysis because it
represents an unhedgeable risk. It is especially important with respect to real options,
given long maturities and concern over tradability of the underlying asset. There is no
longer a unique martingale measure, and the choice of pricing measure is no longer
preference free. It depends on the utility of investors, or on a criterion depending on
some measure of pricing error. Relatively little attention has been paid to comparisons
between proposed measures. Heath et al. (2001) examined numerically obtained option
price orderings from different martingale measures. Henderson (2005) and Henderson
et al. (2004) obtained an ordering of option prices under several g-optimal measures,
minimizing the qth moment of the Radon-Nikodym derivative of the pricing measure
with respect to the original real-world measure. Henderson et al demonstrated that the

ordering proposed in Heath et al. (2001) was incorrect.
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Indifference pricing technique represents an alternative to the q-optimal
approach. An arbitrage free price is selected according to the investment optimality
criteria of a risk averse investor. First proposed by Hodges and Neuberger (1998),
indifference pricing has been applied to stochastic volatility models. (see Sircar and
Zariphopoulou (2005)).

Classic real options models typically assume constant volatility (e.g., Dixit and
Pindyck (1994)). Long investment horizons make the assumption problematic in real
options. Motivated by this concern, I extend the classical real options model to
incorporate stochastic volatility. I focus on the option value to invest and abandonment
option value under the class of g-optimal measures. Henderson (2005) and Henderson
et al. (2004) show that when volatility is stochastic, option prices with convex payoffs
decrease in q. That is, option prices under the minimal martingale measure (q = 0) are
at least as large as option prices under the minimal entropy martingale measures (q =1),
which in turn are at least as large as option prices under the variance optimal martingale
measure (q = 2). The comparisons were derived for European options, and I contend
that they also apply to American options.

This chapter examines three issues pertaining to the option value to invest and
also abandonment option under both g-optimal measures and indifference pricing.
First, 1 examine how the choice of g-optimal measure affects the optimal
investment/abandonment policy. Second, I explore how the correlation between the
volatility and project value alters option value under g-optimal measures. Third, I

compare option values under g-optimal measures to the investment decision derived
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from traditional net present value. Henderson (2005) and Henderson et al. (2004)
propose the existence of links between pricing under the q-optimal measure and utility
indifference pricing under a power-law utility for q # 0, 1. For q < 1, the price under
the g-optimal measure corresponds to the marginal utility indifference price for an agent
with power-law utility with constant relative risk aversion. For q =0, it corresponds to
logarithmic utility ( i.e., unity risk aversion coefficient in the power utility function).

Motivated by Sircar and Zariphopoulou (2005), I employ indifference pricing
for an agent with absolute risk aversion to determine: (1) whether a connection exists
between these two pricing techniques in a real options setting, and (2) the nature of the
interaction among risk aversion, correlation and g-optimal measures. It has been noted
that the zero risk aversion limit of the indifference price corresponds to the minimal
entropy martingale measure price.

4.3 The General Standard Stochastic Volatility Model and the Class of
g-Optimal Measures

I fix a filtered probability space (Q.7,F,P) with F= (F,)s0, the increasing o-

algebras generated by the pair of Brownian motions (Bs)s<x and (Bls) s<t Where Bt is
orthogonal to B, satisfying the usual conditions of right-continuity and completeness.
Let V be the project value, with volatility 6. Assuming a non-stochastic risk-free
interest rate, there is no loss of generality using discounted quantities. Thus, V
represents the discounted project value process. Under the real world measure, P, V

and o follow a stochastic process with coefficients satisfying sufficient regularity
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conditions to ensure the existence of a unique solution with the Strong Markov
Property, as follows:

dv,

=0,(5(0,,0)dt +dB,) (1

do, = a(o ,0)dt + B0, 0)0dW, = (0 ,1)dt + (0, 1)(pdB, + B ) -w--rwnrev @)

where B and W are independent Brownian motions having correlation pe(-11).
For this, I can take W = pB + 4/1— p>B* = pB+ pB*, or equivalently, dW = pdB

+pdB* . £(o,,t) may be interpreted as the Sharpe ratio or equity risk premium.

I assume the existence of perfect spanning assets, so I do not consider
incompleteness caused by the non-tradability of the project. However, G is not traded,
so the market is incomplete and there is no unique martingale measure. Following the
analysis in Frey (1997), I characterize the family of equivalent local martingale
measures. Let © denote the set of such measures and © # .

Under the proposed project value process, a probability measure Q € O

equivalent to P on F; is a local martingale measure for V on F, if and only if there is a
T
progressively measurable process A =(4,),.,., With IO Ads <o P as. such that the

local martingale (Z,),.,., with

B ¢ 1 ¢ ) ¢ n 1 )
Z, —exp(—jof(u,au)dBu —Ejof(u,au) du — jo 2, dBy = Aidu)
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satisfies E[Zr]=1 and Zr = z—gon F.. If Z is of the form of the above

equation, V is a Q-local martingale, and if Z is a true P-martingale, Q is a probability
measure. K; = I;f(u,ou)zdu is the mean-variance tradeoff process typical in the

finance literature.

By Girsanov’s theorem, Brownian motions B and B* under Q are given as:
! 1 n !
BY =B, +| &(u,0,)du and B =B +| ,du

Under Q € O, V and ¢ follow the processes:

dVVf = 0,dB° 3)

t

do, =[a(o 1)~ pE(0,.)B(0,.0) ~ PAB(o,.Dldt + pB(o,.0)dBE + pp(o,.1)dB; 2 ~(4)
Under Q, the change of drift 4, on the Brownian motion B is called the market

price of B risk, the associated change of drift on W is pé&(o,,t)+ pA, and the change

of drift on o is (p&(o,,t)+ pA,)p(o,,t). I call the stochastic process p&(o,,t)+ pA,

the volatility risk premium, or the market price of volatility risk. The first term
represents the effect of the market price of B risk, and the second term represents the

effect of the market price of B* risk. From Girsanov’s theorem, there is a one-to-one
T
correspondence between (4,),.,., (such that IO Ads <o) and the generic martingale

measure. Thus the option pricing problem reduces to the selection of the volatility risk

premium, or equivalently, the associated martingale pricing measure.
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Remark:

The case A,= 0 corresponds to the minimal martingale measure of Follmer and

Schweizer (1991), known as the local risk minimization measure. In this case, the Q is

defined Viaj—g|FT= exp(—jo’ E(u,o,)dB, —% jo E(u,0,)du), which makes the traded

assets into martingales, leaving the drifts of Brownian motions which are orthogonal to
the traded assets unchanged. In other words, it means the unhedgeable risk is not priced.

The g-optimal measure is the equivalent martingale measure which is closest to
the original real world measure P based on a distance metric of the qth moment of the
relative density. In order to calculate the g-optimal measure, it is necessary to know the
real world dynamics and the real world probability measure P. Following the techniques
in Hobson (2004) and the analysis in Henderson (2005) and Henderson et al. (2004), I
define the following such that for ¢ € Rthe g-optimal measure is the measure Q7

minimizing relative entropy H (P, Q).

For g € R\{0,1}

q a7:
Hq(P’Q):{E[F(ZT) ]lfQ<<P

oo otherwise
For ¢g € {0,1}

E[(—l)“" ZIIn(Z))if Q<< P
oo otherwise

H,(P,0)={
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Remarks:

Through this definition, I infer®:

For q = 0, by definition, I have H,(P,Q) = E[-1Z;In(Z,)] = E[-1In(Z,)]
Y
=E[-In ( )] = H(P,Q), which is the reverse relative entropy of H(Q, P).

The idea of considering H(P,Q) instead of H(Q, P) is first presented by Platen
et al. (1996). They define arbitrage information as the information obtained from the
difference between the objective (real world) probability measure and the minimal

equivalent martingale (risk neutral) pricing measure for the contingent claim processes.

Following Platen et al., I define Radon-Nikodym derivative as (Z—IQJ), and
Kullback-Leibler information process as h={h, :t, <t <o} where
h, = (dQ) T n(—= Q)* then for time ¢ €[¢,,0), the total information functional at time

dP

t, of P withrespectto O can be defined as

E,lh | F, hen 4, is O - integrabl
(PQ):{ olh | F,)1  whenh isQ %negra e
o0 otherwise

Consequently,/, ,(P,Q)=Ey[h, | F, 1= E[—log(j—g) | F,, ] Vit=t, represents

the information up to time t at time ¢, of the objective probability measure P with

respect to the martingale measure Q. 7, ,(P,Q)is called the arbitrage information up to

25 For detailed proofs see Hobson 2004.
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time t at time . It can be seen that the arbitrage information is equivalent to negative

relative entropy, and thus I can interpret it as a measure of free energy in terms of
relative entropy. The relative entropy can be related to the characterization of the
minimal equivalent martingale measure defined in Follmer and Schweizer (1991).

Schweizer (1999) shows that the minimal martingale measure, defined through
the Radon-Nikodym derivative exp(—jo’ E(u,o,)dB, —% jo E(u,0,)>du) in my diffusion

model with respect to objective probability measure, minimizes the reverse relative
entropy of H(P,0). In my setting the minimal martingale measure Q" = Q°

corresponding to 4,= 0.

I have H,(P,Q) = E[1Z, In(Z,)] = E[j—gln(j—IQ) 1= H(Q,P) when q = 1, which

is the relative entropy. By invoking results from Delbaen and Schachermayer (1996),
Grandits and Rheinlander (2002), and Frittelli (2000), Hobson (2004) shows the

existence and optimality of the candidate measure Q' defined through the

representative form of g-optimal measure. If q=1, it is the minimal relative entropy
martingale measure.

For q = 2, I have-the variance-optimal measure. The variance optimal measure

having minimal L*(P) -norm. In fact,

is defined as the density d0
dP
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vamdQ )=zqu —zqu 7’ = EﬁKz 1> -1, that is Eﬁ§1—42=
dP dP dP dP dP
Var(dQ )+1; equivalently, a0 = \/ Var(dQ )+1 .
dP 2 dP

To calculate the option price under the g-optimal measure, it is necessary to be

able to characterize the measure. Following Hobson’s (2004) g-optimal representation

equations, the identification of the q-optimal measure Q'?’ is given via the market price

of unhedgeable randomness B risk,
A7 (t,O't) = ﬂ(o-t ’t)ﬁga (¢, O-t)

where

0 ifq=0

T
g(t,o)= —%log E[exp(—%RJ‘ E(u,0,) du)| o, =c] otherwise with R # 0 --
t

Elexp(] [£.0,)’du) |0, =0] R=0

where R =1-¢p’

Under measure P, the dynamics of o are modified to become

do, =[a(o,0) = gp&(o,,0)B(o,,Ddt + f(o,,0)dW,
Note that P corresponds to the real world probability measure if g=0 or p=0.

If R = 0, from the Feynman-Kac formula g solves the following representation

equation
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%5(1, 0)’ —qpf(t,0)E(t,0)g, +alt,o)g, + %ﬂ(t,a)zgw +g=0--(6)

with g(T,0)=0.
If R # 0, from the Feynman-Kac formula g solves the following representation

equation:

%5(% o)’ —qpP(t,0)(t,0)g, —gﬂ(h 0)’(g,) +al(t,o)g,
-(7)

+P0Y g, + =0
with g(T,0)=0.

Under 09, the dynamics of ¢ and V in equation (3) and (4) become

dv, g
L= GldBtQ( )

t

do, =[a(o,t) - p&(o,,1)f(0,,0)~ p* B (0,08, (t,0,)ldt + pB(c,,1)dBE"
+pp(o,.t)dB2"

where B?" =B, + J.; E(u,0,)du and B+?" = B + J.; pPu,oc,)g,(u,0,)du.

4.4 Option Value to Invest — g-Optimal Measures

This section investigates the option value to invest under q-optimal measures. I
first formulate the investment problem and propose the corresponding model. I then
show the ordering results for option value to invest under g-optimal measures.

4.4.1 Investment Problem Formulation and the Model

I assume that the manager faces an investment timing problem in which the

investment cost, K, grows at the risk free rate. [ specify the manager’s investment
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problem, and I find the option value to invest by solving the following maximization

problem (fixing some Q € O):

p'(v.0)=sup EZ " [¢" (V. ~Ke ") |V, =v,0, = 0]

t<r<o 26

= sup E,Q(q)[(VT -K)' |V, =v,0, =0]

1<7<00
where 7 denotes the forward process of discount process V,, that is the original

process.
The option value to invest will vary with different choices for Q, i.e., different

choices for the market price of volatility risk. I focus on the market price of volatility

2% (1) It will never be optimal to early exercise American call option if the underlying asset does not pay
dividends.

(2) To capture the early exercise property of the American call option, it is assumed that the asset pays
“continuous dividend yield”, (in the investment opportunity problem formulation presented, i.e., the real
options problem, it is termed “service flow”.) The general discounted process defined in equation (1)

dv,
v,

t

=0,(&(o,,t)dt +dB,) will have o,(&(0,,t)) = u(o,,t)—k(0o,,t), where K(0,,t)is the

continuous dividend yield. For tractability, we keep k(o /sl ) constant. For the Girsanov’s transformation
for equivalent martingale measure, if we specify

!
(i) BIQ =B + J; &(u,0,)du, then V, and o, process are still the same specified in equation (3) and
/,l((ft N ) —-K

t

(4) with different &(o,,t) specification. £(0,, 1) = rather than the one with no dividend

)= Ho,,1)

o,

yield &(o,,

(i) BZQ =B + J‘;@du =B, +j0t G, du, then V, and 0O,in equation (3) and (4) become

!
t

av,

= —xdt + ,dB° with

t

dO't = [CZ(O't, t) - pg(Ut s t)ﬂ(Ut ’ t) - ﬁ/ltﬂ(at s t)]dt + pﬂ(at ’ t)dBtQ + /518(0-19 t)dBtL’Q
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risk, and in particular, the market price of unhedgeable randomness (i.e., B ) risk. The

g-optimal measure market price of volatility risk is related to q through the A’ equation
and fundamental representation equation presented in the previous section.

Consistent with Hobson (2004), I assume a finite time horizon. Later, I will
consider the perpetual American option in the classical real option setting. The

manager’s investment problem is revised as follows

pI(V,O',t) = sup E[Q(‘” [eﬂ‘(r—t)(ﬁ _Ke—r(r—t))+ ‘ V, =v,0, = O']

t<r<T

=sup E2"[(V, -K)* |V, =v,0, = o]

t<r<T
where V' denotes the forward process of discount process V,, that is the original
process.

Invoking the general model dynamics for the class of g-optimal measures, the

problem then reduces to satisfying the following variational inequality®’:

The parameterization is different (also presented in the corresponding variational inequality), but it will
not affect the analysis result.

7 As pointed out in the footnote 26, the variational inequality will be a little different due to the
parameterization.
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I _
P, +§0z2szPi +la(o,0) - pé(o,.0)f(0,,0)~p f(0,.1)g,(t.0)]p,

+p0,ﬂ(0[,t)Plg+%ﬂ2(0mt)pfw <0,t€[0,T, v>0, p'(v,0,0) 2 (v=K)'

{p +%0,2prl +la(o,0)-pé(o,.0p(0,.0)-p B (0,08, (t,0)]p,

+p0,B(,,0)D,, +%ﬂz(dt,t)l?fm}X[pl(v,a,T)—(v—K)+] =0,r€[0, 7T, v>0

[pl(V’O-’T)_(V_K)+]:O

where g(t,0)1s defined in equation (5), f or R=0 g(¢,0) solves the
representation equation (6) , for R#0, g(¢,0) solves the representation equation (7).

It reduces to solving the following equations

p'(t,v,o)=v—K forv> Vy(t,0)

For v<V,(t,0)

1 _
P+ Eafopl +la(o,t) - pE(o,,t) B(o,,t) - p B (0,,1)g, (t,0)]p)
+p0 (G, 0P+ (0,0pl, =0
with
pl(T,V,G) = (V_K)+
Vo(T,0)=K

In addition, the following boundary and smooth pasting conditions:
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pl(taV*(: Vﬂ)(t,O'),O') = (V* _I<)+

op'(t,v' (= V,(t,0)),0) 4
o'

P (1 =V, 0)0)
oo -

apl(taV* (: Vfb (ta O'),O_) d apl(taV* (: Vfb (ta O'),O_)
; , an ‘

assure that p'(V.,o ,u),
p,,o,.u) Py oy

are continuous across the boundary V, (¢,0).

The partial differential equation cannot be solved analytically for a closed form
solution. I must resort to numerical techniques. By considering different q (i.e.,
different market prices of volatility risk), the investment trigger and option value to
invest will vary.

4.4.2 Ordering Results for Option Value to Invest under q-Optimal Measures

The convexity of option value is used for generating the ordering results. The
American call option value with stochastic volatility is strictly convex in the
continuation region.”®

4.4.2 Proposition 1:
The convex option prices are decreasing in the market price of B" risk

parameter A, , or equivalently the market price of volatility risk. The reason is that, with

a selected pricing measure, the dynamic presented in equation (4) shows that an

%% This statement can be proven by applying Touzi (1999) Lemma 2.3 for the American put option with
stochastic volatility.
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increase in either A, or the market price of volatility risk corresponds to a decrease in

the drift of the volatility.

Proof:

I prove the proposition in two steps. I first show that the model with higher
volatility drift term yields the higher option price. I then induce the relationship between
option prices and market price of volatility risk.

(1) Let the asset price process V and volatility o satisfy

v, _ o,dB,

t

do, =a(c,t)dt+ (o, t)dW, = a(c ,t)dt + B(o,,t)(pdB, + pdB;")

Suppose that the drift on the volatility either takes the form of
a(c,ty=a’(o,t) or a(o,t)=a (o,t) where a'(o,t)>a (o,t), and let
E" (respectively E~) denote the model with drift " (o ,¢) (respectively a (o ,t)). For
a payoff function / define

JH(t,v,0) = SUP E' TV V, = v,0, = o1,

t<r<T

and J(1,v,0) = SUPE ThV)]| ¥, = v,0, = o]

t<r<T
J(t,v,o)and J (t,v,o0)are the price of American options. It’s known that

American option, VA°, may be expressed as the counterpart of a European option,

denoted V=, plus the early exercise premium, denoted V™. That is, V%= VEO + VP
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In addition, the early exercise premium, VP, is itself the value process of a

European option (Karatzas and Shreve (1998) Ch2 Theorem 5.8, Remark 5.10).

Therefore, I re-express J ' (¢,v,0)and J (t,v,0) as:

J'(t,v,0) =Sup E'[h(V )NV, =v,0,=0]=V" +V"

t<r<T

VAW, | o
V(u)

= E'[h(V)OIV, =v,0, =cl+E, [h(V )]V, =v,0, = 0]

erp
=L"(t,v,o)+L. (t,v,0)

erp

= E' TRV, IV, =v.0, = o)+ V(OE"[

where dA(t) =1 d(t)

W )>V ()}

where the third equality makes use of the definition of European options and the
early exercise premium from Karatzas and Shreve (1998) Ch 2 Theorem 5.8, Remark
5.10. The fourth equality replaces the second term of the third equality with the fact that
the early exercise premium is the value process of the European options (e.g. Karatzas
and Shreve (1998) Ch2 Proposition 2.3).

Fact:

Touzi (1999, p. 415) shows the suitability of applying Karatzas and Shreve’s
theorem and proposition in complete market case (constant volatility) to the model with
stochastic volatility by assuming some options are traded on the market additionally to
the underlying risky asset and the riskless one.

Similarly,
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J (t,v,0) =sup E [h(V)1V, =v,0,=0]=V™ + V"

V(u)dA(u) V =v,0 =o]
(u)

=E[hVOIV, =v,0, =0+ E, [h(V)I|V, =v,0, = 0]

=L (t,v,o)+ L, (t,v,0)

erp

= EThV)IYV, =v,0, =01+ V(OE [

J(tv,0)-J (t,v,0)=L(t,v,o)— L (t,v,0)+ L (t,v,0)—L (t,v,0)

erp erp

Following Henderson et. al. (2004), by making use of the fact from the
European option that L'(¢,v,0) (L (t,v,0) respectively) satisfies AL (¢,v,0)=0
(AL (t,v,0) = Orespectively) subject to L' (T,v,0)=h(v) (L (T,v,0)=h(v)
respectively), where A"(A4 )is the infinitesmall generator, and by defining a new
function L(¢,v,0) = L' (t,v,0) — L (t,v,0) subject to L(T,v,0) =0

with

A Lt,v,0)= A (L' (t,v,0)~ L (1,v,0))
=AL" (t,v,0)-A L (t,v,0)— (A" — AL (t,v,0)

=—(a’(o,t)—a (o,1)L, .

From the application of Feynman-Kac formula,

L(t,v,0)= E_[J-(of(a,u)—a_(O',u))L;(u,VM,O'u)du |V, =v,0, =0].

Thus  L(t,v,0) = L' (t,v,0)— L (t,v,0) >0 because L' (1,v,0)>0 (e.g.

Romano and Touzi (1997)).
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I can apply the same proof to L (t,v,0)-L,(tv,0) since

N _ : . .
L,,(tv,0)(L,,(t,v,0) respectively) is a value process of a European option.

Therefore, J'(¢,v,0)—J (¢,v,0)>0. In other words, the model with higher
volatility drift term yields the higher option price.

(2) I now proceed to the induction of the relationship between option prices and
market price of volatility risk.

Define two candidate pricing measures, Q" and Q~, with associated market
price of B* risk parameter A" and A respectively, where 1~ > A4~

By definition, with the stochastic volatility model specified in equation (1) and

(2), the  volatility drift terms corresponding to Q" and QO  are
[a(0,1) - p&(0,,1)B(0,1) — PA"B(o, D) and [a(c 1) - p&(o,,) B(0,0) ~ pA 1 S(0,,1)]
respectively. It follows that [a(o,t)— p&(o,,t)f(o,,t)— pl f(o,,1)]<
la(o,1) - pé(o,,0)B(o,,t) = pAf(o,,)] since 2" > 1.

With the result from the step 1 that the model with higher volatility drift term

yields the higher option price, it shows that the pricing measure with higher market
price of B*risk, A ,yields lower option prices.
Alternatively, since the whole process pé(o,,t)+ pA, is termed volatility risk

premium or market price of volatility risk, it can be said that the pricing measure with

higher market price of volatility risk yields lower option prices. [
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From the above proposition, I know that the convex option prices are decreasing

in the market price of B* risk parameter A,, or equivalently the market price of
volatility risk. Since the identification of the q-optimal measure Q'“ is given via the
market price of B risk with A”(¢,0,) = B(c,,t)pg,(t,0,), the comparison of option

prices under g-optimal measures can be performed through A% (z,0). As pointed out in

the Henderson et al (2004) Theorem 2, the sign of A9 (¢,0,)(= B(c,,H)pg, (t,0,)) is

0g&(t,0)”

oo

related to through the link to the first derivative of the function g(z,0) with

respect to o>, &(t,0)is the project Sharpe ratio and g(z,o) is the solution to the

29 (A) Henderson et al (2004) shows that with volatility dynamics specified in equation (2) and
A0(t,0,)= Po,.0)pg, (t,0,).

(1) If R # 0 with the transformation f =e ™ subject to f(I,0) = land Feynman-Kac
T s

formula, it is able to arrive g, = %E[ [z, frexo([ (@, -appz, - apiB, —%Raz)du)ds].
t t

Since f >0, it is shown that (i) ¢g&& >0—>g_ >0¢G) ¢g&& <0—> g <O0diii
qé:fa :0_>ga :0

(2) If R=0 subject to g(7T,0)=1and Feynman-Kac formula, it is able to arrive

T K
g, = qE[[ &2, exp([ (@, - apPE, — qpEB,)du)ds] . 1t is shown that (i) g&&, >0 — g, >0

(i) 55, <0 = g, <0 gcc, =0 —> g, =0.

(3) Since A9(t,0,) = B(o,,t)pg,(t,0,) with >0 and p > 0, the sign of 1'9(¢,5,)
hinges on g&& .
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representative equation. A7 (¢,0) > 0 (respectively < 0) iff ¢&(t,0)” is non-decreasing
in o (respectively non-increasing in o). The strict equality holds iff ¢&(z,0)%is
strictly non-decreasing in o (respectively strictly non-increasing in o).

4.4.2 Proposition 1 shows that the convex option payoffs in American options

yield the same relationship displayed in European options between option prices and the

market price of B* risk parameter A,, or equivalently the market price of volatility

risk. It shows that the convex option prices are decreasing in the market price of B*
risk parameter A, , or equivalently the market price of volatility risk. Incorporating 4.4.2
proposition 1 and Theorem 2 in Henderson et al (2004), I am able to arrive following
propositions.

4.4.2 Proposition 2:

With non-zero correlation between the project randomness and volatility
randomness, I conjecture that the option values to invest (i.e., prices of American call
options) under g-optimal measures will be decreasing (respectively. increasing) in q if

£(t,0)* is increasing (respectively, decreasing) in o as conjectured in Henderson et al

(2004) and postulated in Henderson (2005) for European option case.

0qé(t,0)°
oo
2¢E(t,0)E, >0, equivalently g&(t,0)E, > 0. Therefore, A9(t,0,) > 0if q&(t,0)is non-

decreasing in O .

(B) It is straightforward that if g&(¢,0)” is non-decreasing in &, i.c., > 0, then it has

(C) The reverse inequality and strict inequality is proven by the same argument.
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Proof:

(1) Henderson et al (2004) Corollary 3 proposes that (i) if £(¢,0)"is increasing
in o, then for ¢ > 0, European option prices under the g-optimal measure are less than
those under minimal martingale measure, and for ¢ < 0, European option prices under
the q-optimal measure are greater than those under minimal martingale measure.™ (ii) if
&(t,0)’ is decreasing in o, then for ¢ > 0, European option prices under the q-optimal
measure are greater than those under minimal martingale measure, and for ¢ <0,

European option prices under the g-optimal measure are less than those under minimal

martingale measure.”'

2
(D) To sum up, the sign of A'”'(z, o,)(=p(o,,t)pg, (t,0,)) is related to —aqfa(l‘,O') )
O

2
(1) ég(t,o')zis increasing in o > %g—ﬁ-)
(o2

>0 E(t,0)E, > 0. The sign of A7 (¢,0,) hinges

on gEE . For ¢ > 0and E(t,0)E, > 0, it implies that A (¢,5,) > 0.

(2) In the g-optimal measure setting, minimal martingale measure means ﬁ,(q)(t R Gt) =0.

(3) For the volatility dynamic specified in equation (2), it shows under the g-optimal measure, the
volatility drift under g-optimal measure [a(0,t) — p&(0,,t)p(0,,t)— pA B(0,,t)]is lower than

that under minimal martingale measure, [@(0 ,t) — p&(o,,t) B(0,,1) 1.

(4) Therefore, the option prices under the g-optimal measure are less than those under minimal
martingale measure if £(¢,0)” is increasing in & and ¢ > 0, meaning 1 (¢,5,) > 0.

(5) The same argument applies to the case where ¢ < 0. In this case, ﬂ(")(t,a,) < 0, therefore, all the

arguments are reversed.

31 (1) £(t,0) is decreasing in & > <0>&(t,0)E, < 0. The sign of A9(¢,0,) hinges

0&(t.0)°
oo
on gEE . For ¢ > 0and &(t,0)E, < 0, it implies that A (¢,0,) < 0.
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(2) As in Henderson et al (2004), linking the relationship observed in the zero

correlation case in Henderson (2005), they conjecture that European option prices under
q-optimal measures will be decreasing (respectively, increasing) in q if &£(¢,0)° is

increasing (respectively, decreasing) in o .

3)

(a) T apply the proof for 4.4.2 Proposition 1 showing that the convex option
prices are decreasing in the market price of B* risk parameter A, ( or equivalently the
market price of wvolatility risk given American options setting), [ have

pt,v(t,o” (A (t,0)), 0 (A (t,0)); A (t,0)) <
p(t.v(t,o” (A" (t,0)), 07 (A" (t,0));A(1,0))

if A(t,0)> A2)(t,0), where p(;e) is the option price under market price of

volatility risk e.
(b) As in Henderson et al (2004), I employ the strong relations observed in the

zero correlation case in Henderson (2005) that A“'(¢,0) will be non-decreasing

(2) In the g-optimal measure setting, minimal martingale measure means A0 (t,0,)=0.

(3) For the volatility dynamic specified in equation (2), it shows under the g-optimal measure, the
volatility drift under q-optimal measure [a(0 ,t) — p&(0,,1) B(0,,t) — pA,[(0,,t)]is greater than

that under minimal martingale measure, [Q/(0 ,f) — pé‘(O't R t)ﬂ(O't D) 1.

(4) Therefore, the option prices under the g-optimal measure are less than those under minimal
martingale measure if é’(t,O')2 is decreasing in o and ¢ > 0, meaning i(q)(l‘,O't) <0.

(5) The same argument applies to the case where ¢ < 0. In this case, AP (t,0,) > 0, therefore, all the
arguments are reversed.
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(respectively, non-increasing) in q if £(¢,0)° is non-decreasing (respectively, non-
increasing) in o .

(0 From (b) I find that A9(,0)> 1 (t,0) (respectively,
A9(t,0)< A (t,0)) with g, > g, (respectively ¢, < ¢q,) if £(t,0)" is non-decreasing
(respectively non-increasing) in o . Incorporate this relation with (a), I have

pt,v(t,o” (A (t,0)), 0 (A (t,0)); A (t,0)) <
p(t. vt (A" (t,0)),07 (A" (t,0));A(1,0))

: pv(t,o” (A"(1,0)), 07 (A"(1,0)); A7 (1,0)) =
(respectively,
p(t,v(t,oc (A7 (t,0)),07 (A (t,0)); A (t,0))

if 1(t,0)> A (t,0) (respectively, A7 (t,0) < A% (t,0)).

(d) Therefore, I conjecture that the option values to invest (i.e., prices of
American call options) under g-optimal measures will be decreasing (respectively.
increasing) in q if £(¢,0)° is increasing (respectively, decreasing) in o . [

4.4.2 Corollary 1:

With non-zero correlation between the project randomness and volatility

randomness, the difference between NPV and option value to invest under q-optimal
measures will be will be decreasing (respectively. increasing) in q if &(t,0)° is

increasing (respectively, decreasing) in o .
4.4.2 Corrollary 2:
With non-zero correlation between the project randomness and volatility

randomness, there are no conclusive relations between the option value to invest under
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q-optimal measures and the correlation between the project randomness and volatility

randomness.

Proof:
(1) Under the general stochastic volatility setting, the stochastic volatility

process under g-optimal measures is:

do, =[a(c,t) - pé(a,,1)f(c,.0) - P B(o,,0)g.(t,0,)]dt
+pp(o,0dBY" + pp(o,.0)dB "

The change in correlation changes (p&(o,,t)+pA!)p(o,,t), where
A9(t,0,) = B(o,,t)pg.(t,0,),and g(t,o,)is defined in equation (5).

(2) Vpe(0,]), pT— (1-p*)=p> L .1t indicates that increases in p increases the
first term, pé(o,,t)B(o,,t) while decreasing the second term, pA! f(o,,t).

(3) Vpe(0,), given q, as p increases and the change in first term,
pé(o,,t)B(o,,t), dominates the change in the second term, pA!fB(o,,t), by applying

the proof of 4.4.2 Proposition 1 result (1), it shows that the option price due to increases
in the correlation between the project randomness and volatility randomness decreases,
and vice versa.

(4) Vp e (-1,0), above results are reversed.

(5) Thus, there are no conclusive relations between the project randomness and
volatility randomness, there are no conclusive relations between the option value to
invest under g-optimal measures and the correlation between the project randomness

and volatility randomness. [
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4.4.2 Proposition 3:

With zero correlation between the project randomness and volatility
randomness, 1 propose that A'?(¢,0) will be non-decreasing (respectively, non-
increasing) in q if &(¢,0)” is non-decreasing (respectively, non-increasing) in o as
postulated in Henderson (2005). As a result, option values to invest under g-optimal
measures will decrease (respectively, increase) in q if &(t,0)° is increasing
(respectively, decreasing) in o .

Proof:

(1) Henderson (2005) Theorem 4 shows that A (¢,o) will be non-decreasing

(respectively, non-increasing) in q if &(¢,0)> is non-decreasing (respectively, non-

increasing) in o .*

32

() For p=0, A”(t,0,) = B(c,,t)g,(t,0,), where g(t,0) solves the following representation

equation:

1 1
%i(t, o)’ - Eﬂ(t,a)z(ga)z +a(t,o)g, + Eﬂ(t,a)zgw + & =0, or equivalently by

T
Feynman-Kac formula g(¢,0) = —log E[exp(—%jf(u,au Y'du) | o, = o] . The main idea is to
t

analyze the q dependence of g .
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~ 1 t 2 q t 2
£ j £(,0,)"du exp(— j E(u,0,) du]

og(t,
@ g(a LB .
I Elexp(~ [£(e.0, du)]
. T t q T
vetoy L [0,y du exp(=7 [ £u,0,)"du] ]
>2 ga =1 - L - Show the dependence of 6_g on
I Efexp(~1 [ £u.0,)"du) I
O.

(3) Following Henderson (2005),
T

(a) Fix t=0 and re-write Jf (u,0,)* du as mean-variance tradeoff process K ,, I obtain
0

2 q
) 02(0,0) _ E[K, exp(_EKT]

oq

E[exp(—%KT]

(b) From Hobson (2004), there exists a process ¢ and a finite constant such that

T T
q 2 1 2
=K. = u,c,)dW +—\s(u,0,) du+c.
2 T _!g( u) u 2_([g( )

b PO K)  ep(-0K)

(¢) Define a new measure ﬁ by ZT =— = = . Then

e Bexp(- K]

N o ¢ 1
Z =E[Z, |F]= exp(—jg(u, o) dw, —Ejg(u, o)’ du) by making use of the equation in (b).
0 0

>
!

2 q
E[K, eXp(_E T d

2ag(070-) — :EKT

(d) Therefore 5 7
T Hew- K]

>

T
=EK,=E j E(u,0,) du.
0
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(2) The market price of B* risk parameter A, , or equivalently the market price

of volatility risk may be negative if q<0. **However, this will not affect the relations
shown in step (1).

3)

(a) By step (1): A?(z,0) will be non-decreasing in q if &(¢,0)*> is non-
decreasing in o . That is, A" (t,0)> A(t,0) with ¢, >gq, if &(,0)* is non-
decreasing in o .

(b) From 4.4.2 Proposition 1, I show that the convex option prices are

decreasing in the market price of B risk parameter A, (or equivalently the market

T
(e) Invoking Henderson (2005) Lemma 3 with m( f) = Ié (u, f')’du , it states that if
0

T
m(f)= J-f(u, f)?du is non-decreasing (respectively, non-increasing) in f
0

Em(f,) = E[&(u, f,du > Em(f,) = E [ £(u, £,) du (respectively,

T T
Em(fl) = Ejgg(u,ﬁ)zdu < Em(fz) = E.[gg(u,fz)zdu)with f> = f,. That is the dependence of
0 0

0

8_g on O is non-decreasing (respectively, non-increasing) in o if &(t ,0)2 is non-decreasing
q

(respectively, non-increasing) in o . The proof is completed.

33 Henderson (2005) Remrk 5 points out the index option data for a negative market price of volatility risk
A1 (o, t) (Bakshi and Kapadia (2003)). (1) When &2(0,¢) (project Sharpe ratio) non-decreases in o,

the negative market price of volatility risk (i.e., A?(0,t)<0) is consistent with pricing under q-optimal
measures with q<0. (2) When & 2(O', t) (project Sharpe ratio) non-increases in O , the negative market
price of volatility risk (i.e., A7 (0,¢) <0 is consistent with q>0.
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price of wvolatility risk given an American options setting). That is,

Pt (6,07 (A (1,0)), (A7 (1,0)); A (1,0)) <
p(t,v(t, 0" (A" (t,0)), 07 (A (1,0)); A" (t,0))

if 29(t,0)> A%2)(t,0), where p(;) means the option price under market price
of volatility risk e.

(c) Combine (a) and (b): If &(t,0)> is non-decreasing in o, then
A (t,0)> A% (t,0) with ¢9,>2q,, which in  turn  leads to

pt,v(t,o” (A (t,0)), 0 (A" (t,0)); A (t,0)) <
p(t, (6,67 (A (1,0)), 7 (A2 (1,0)); A% (1,0))

In other words, the option price, equivalently option value to invest, under g-
optimal measures decreases in q if £(¢,0)” is non-decreasing in o .

(d) Applying the same procedures to the case where £(¢,0)° is non- increasing
in o, | am able to derive the option values to invest under q-optimal measures will

increase in q. [

4.4.2 Corollary 3:
With zero correlation between the project randomness and volatility

randomness, the difference between NPV and the option values to invest under g-
optimal measures will increase (respectively, decrease) in q if &(t,0)° is non-

increasing (respectively, non-decreasing) in o .
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4.4.2 Proposition 4:
(1) With a non-zero correlation between the project randomness and volatility

randomness, from 4.4.2 Proposition 2, I conjecture that the optimal investment trigger
under g-optimal measures decrease (respectively, increase) in q if £(¢,0)° is increasing

(respectively, decreasing) in o .
(2) With zero correlation between the project randomness and volatility

randomness, from 4.4.2 Proposition 3, I propose that the optimal investment trigger
under g-optimal measures decrease (respectively, increase) in q if £(¢,0)° is increasing

(respectively, decreasing) in o .

Proof:

(1) From 4.4.2 Proposition 2 and Proposition 3 I know that if £(¢,0)° is non-
decreasing in o, then A"(t,0)> A%(t,0) with ¢, >g,, which in turn leads to

p(t,v(t,o™ (ﬂ(q‘)(t, o)),o”" (ﬂ(ql)(t, 0)); Ala) (t,0)) <
p(t,v(t, 07 (A% (1,0)), 07 (A (1,0)); A (t,0))

(2) By the definition of exercise boundary,
V(o (A (t,0)) <v(t,07 (A (t,0)). In other words, the optimal investment trigger
under g-optimal measures decreases in q if £(¢,0)” is non-decreasing in o .

(3) Applying the same the same procedure to the case where &(f,0)” is non-
increasing in o, I am able to show the optimal investment trigger under q-optimal

measures increases in q if £(¢,0)” is non-increasing in o . [
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4.4.2 Proposition 5:

From the above considerations, I deduce that the optimal investment policy
varies with choice of g-optimal measures (which directly link to different market price
of non-hedgeable volatility randomness, B*, risk).

4.5 Abandonment Option Value — g-Optimal Measures

This section investigates the abandonment option value (also project value with
option to abandon) under g-optimal measures. | first formulate the investment problem
and propose the corresponding model. I then show the ordering results for the
abandonment option value (also project value with option to abandon) under q-optimal
measures.

4.5.1 Investment Problem Formulation and the Model

I assume that the manager faces the abandonment timing problem in which the
salvage value, K, grows at the risk free rate. I specify the manager’s abandonment
problem, and I find the abandonment option value by solving the following

maximization problem (fixing some Q € ©):

p'(v.0)=sup E2"[e" I (Ke' " —V.)" |V, =v,0,=0]

1<7<00

= sup EC"[(K-V,)" |V, =v,0,=0]
1<7<00
where 7 denotes the forward process of discount process V., that is the original
process.

Again, as in section 4.4, the abandonment option value will vary with different

choices for Q, i.e., different choices for the market price of volatility risk. The market
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price of volatility risk, and in particular, the market price of unhedgeable randomness
(i.e., B") risk, is my focus. The g-optimal measure market price of volatility risk is
related to q through the A’ equation and fundamental representation equation presented
in the previous section.

Consistent with Hobson (2004), I assume a finite time horizon. Later, I will
consider the perpetual American option in the classical real option setting. The

manager’s investment problem is revised as follows

pahn (V,O',t) = sup E[Q(‘” [eﬂ‘(r—t)(Ker(r—t) _ IZ)+ ‘ V, =v,0, = O']

t<r<T

= sup E2"[(K-V,)" |V, =v,0,=0]

t<r<T
where V' denotes the forward process of discount process V;, that is the original

process.
Invoking the general model dynamics for the class of g-optimal measures, the

problem then reduces to satisfying the following variational inequality:
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pf”w;ozw " Ha(o, 1) - pé(o,,0 (0,0~ p B (0,08, (t,0)]p;"

+,00,3(0,,f)pf§"+ B (o, t)pe 0,6 €[0,T[, v>0, p™(v,0,0) 2 (K -v)"

(1 42 V2P (e, e D@0 - 570,008, 00,

+p0'ﬁ(0',,t)pfg”+ i) (o;,z‘)p“b”} x[p “b”(v,O',T)—(K—v)+]=0,te[0,T[, v>0

[pabn(V’G’T)_(K_v)+]:

where g(t,0)1s defined in equation (5), f or R=0 g(¢,0) solves the
representation equation (6) , for R#0, g(¢,0) solves the representation equation (7).

The problem reduces to solving the following equations

p(t,v,0)=K —v for v< Vy(t,0)

For v>V,(t,0)

abn 1 aon aobn
p 5 oV pi" +la(o,0) - pE(o,.0) (o,.0) - p° B (0,.0)8,(t,0)]p
+po, (o, )py += ﬂ (0,.0)po =
with
p"(T,v,0)=(K-v)"
ij (T,O_) = K

In addition, the following boundary and smooth pasting conditions:
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P (Y (=Y, (t,0),0) = (K=v')

p" (v (=, (t0).0)

- -1
ov
apl(t>V*(: V_/b (t,O'),(T) 0
oo -
op“ (v (=V, (t,0),0
assure that p™”V,,0,,u), Py ( *ﬁ'( ) ), and

ov

apabﬂ (t: V* (: Vfb (ts O-)o O-)
oo

are continuous across the boundary V,(7,0). The free

boundary becomes a surface.

The partial differential equation cannot be solved analytically for a closed form
solution. I must resort to numerical techniques. By considering different q (i.e.,
different market prices of volatility risk), the optimal abandonment trigger and
abandonment option value will vary.

4.5.2 Ordering Results for Abandonment Option Value under q-Optimal
Measures

The convexity of option value is used for generating the ordering results. The
American put option value with stochastic volatility is strictly convex in the
. . . 34
continuation region.
4.5.2 Proposition 1:

The convex option prices are decreasing in the market price of B* risk

parameter A, or equivalently the market price of volatility risk. The reason is that, with

** See Touzi (1999) Lema 2.3 for the American put option with stochastic volatility.
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a selected pricing measure, the dynamic presented in equation (4) shows that an
increase in either A, or the market price of volatility risk corresponds to a decrease in
the drift of the volatility.

Proof:
(1) With the convexity of the American put option premium, Touzi (1999)

Proposition 3.1 shows that in the continuation region, the American put option premium
is increasing with respect to the volatility variable. Thatis p®” > 0.

(2) With a selected pricing measure, the dynamic presented in equation 4 shows
that an increase in either A, or the market price of volatility risk corresponds to a
decrease in the drift of the volatility.

(3) Combine step (1) and (2); the convex American put option premium
decreases in the market price of B* risk parameter A, , or equivalently the market price
of volatility risk. [']

4.5.2 Proposition 2:

With a non-zero correlation between the project randomness and volatility

randomness, corresponding to 4.4.2 Proposition 2, I conjecture that the abandonment

option values (i.e., prices of American put options) under q-optimal measures will be
decreasing (respectively. increasing) in q if &(t,0)> is increasing (respectively,

decreasing) in o .
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Proof:

(1) Make use of the observed relations between A (¢,0) and &(f,0)” under
different q.

(2) Incorporate 4.5.2 Proposition 1. [

4.5.2 Corollary 1:

With non-zero correlation between the project randomness and volatility
randomness, the difference between NPV and project value with abandonment option
under g-optimal measures will be will be decreasing (respectively. increasing) in q if
£(t,0)° is increasing (respectively, decreasing) in o .

4.5.2 Corollary 2:

With non-zero correlation between the project randomness and volatility
randomness, there are no conclusive relations between the abandonment option value
(also project value with option to abandon) under g-optimal measures and the
correlation between the project randomness and volatility randomness.

Proof:

Same as 4.4.2 Proposition 2. []

4.5.2 Proposition 3:

With zero correlation between the project randomness and volatility
randomness, corresponding to 4.4.2 Proposition 3, I propose that abandonment option

values under g-optimal measures will decrease (respectively, increase) in q if £(¢,0)> is

increasing (respectively, decreasing) in o .
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Proof:

Same as 4.5.2 Proposition 2. []

4.5.2 Corollary 3:

With zero correlation between the project randomness and volatility

randomness, the difference between NPV and the project values with option to abandon
under q-optimal measures will increase (respectively, decrease) in q if &(¢,0)” is non-

increasing (respectively, non-decreasing) in o .
4.5.2 Proposition 4:
(1) With non-zero correlation between the project randomness and volatility

randomness, from 4.5.2 Proposition 2, I conjecture that the optimal abandonment
trigger under q-optimal measures increase (respectively, decrease) in q if &(¢,0)° is

increasing (respectively, decreasing) in o .
(2) With zero correlation between the project randomness and volatility

randomness, from 4.5.2 Proposition 3, I propose that the optimal abandonment trigger
under g-optimal measures increase (respectively, decrease) in q if £(t,5)” is increasing

(respectively, decreasing) in o .

Proof:

(1) From 4.5.2 Proposition 2 and Proposition 3 I know that if £(¢,5)° is non-
decreasing in o, then 1“’(t,0)> 1'(t,0) with ¢,>¢,, which in turn leads to

p(t,v(t, o (A (t,0)), 07 (A (t,0)); A (t,0)) <
Pt V(1,07 (A (1,0)), 0T (A (1,0)); A7) (t,0))
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(2) By the definition of exercise boundary,
V(o (A (t,0) 2 v(t,07 (A (t,0)). In other words, the optimal abandonment
trigger under q-optimal measures increases in q if £(¢,0)” is non-decreasing in o .

(3) Apply the same the same procedure to the case where &(¢,0)° is non-
increasing in o ; [ am able to arrive the optimal abandonment trigger under q-optimal
measures decreases in q if £(¢,0)° is non-increasing in o . [

4.5.2 Proposition 5:

From the above considerations, I deduce that different choice of g-optimal

measures, which directly link to different market price of non-hedgeable volatility

randomness, B, risk, will alter the optimal abandonment policy.

4.6 General Stochastic Volatility Model and Indifference Pricing

Delbaen et al. (2002) show that the indifference price of a contingent claim
under exponential utility is related via the dual problem to the solution of a minimum
entropy problem. As the coefficient of risk aversion approaches zero, the utility
indifference price approaches the expected value under the minimum entropy
martingale measure. Sircar and Zariphopoulou (2005) apply indifference pricing in a
stochastic volatility setting. 1 extend this technique to a real options setting, and I

investigate the interaction among risk aversion, and certain g-optimal measures.
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4.6.1 Option Value to Invest — Investment Problem Formulation and the Model

[ fix a filtered probability space (.7, F,P) with ¥ = (00 the increasing o-

algebras generated by the pair of Brownian motions (Bs)s«t and (BLS) <t Where Bt is
orthogonal to B, satisfying the usual conditions of right-continuity and completeness.
Let V be the project value and o be the volatility of project value. Throughout the
analysis, [ assume that the riskless interest rate is equal to zero. Under the real world
measure P, V and o follow a stochastic process with coefficients satisfying sufficient
regularity conditions to ensure the existence of a unique solution with the Strong

Markov Property, as follows:

dVVf —o,(&(o i +dB); V= (1)
t
4o, = (o 1)t + B0, ()W, = (o y1)di+ B(G, 1) pdB, + PAB); G, = & ~weeeemr(2)

33 (1) It will never be optimal to early exercise American call option if the underlying asset does not pay

dividends.

(2) To capture the “early exercise” characteristics of the American call option,
o,(é(o,,t)) = u(o,,t)—«(o,,t), where k(0,,t)is the continuous dividend yield. For simplicity
and tractability, I keep £/ and K constant.

(3) For the Girsanov’s transformation for equivalent martingale measure, if we specify

t - K
(i) B’ =B, + J.o &(u,0,)du , then V, will be a martingale with &(0o,,t) = luG rather than the one

with no dividend yield &(o,,t) = L2y
o

t
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I further assume a twin security exists, and the manager generates trading
wealth through dynamically adjusting the amount invested in the twin security for 65 for
s > t and riskless bond, yielding constant interest rater =0. I assume that no
intermediate consumption nor infusion of extraneous funds is allowed. The trading
wealth process under real world probability measure P is:

dX, =0 u(o,,t)ydt+60,dB, ; X, =x (3)

The single control variable 6; is called admissible if it is ¥Smeasurable and

T
satisfies the integrability constraint E _[ o(s,0,)*0’ds < 0.

t

I assume the manager has exponential utility function U(x) = L specify y
v

> 0, i.e., the manager exhibits constant absolute risk-aversion.

The risk-averse manager’s investment problem is to maximize her expected
utility of wealth with optimally exercising investment decision with investment cost K
during the investment horizon, [t,T]. I assume the manager has a one time irreversible

investment opportunity. Prior to exercising the investment option, time 7, the wealth

dv,
(i) B =B + J.;Mdu =B, + J.Ot ¢, du , then V, becomes 7’ = —Kdt + o,dB? which itself
(o3

t t
is not a martingale, rather the process with dividend revisted in the underlying asset becomes the

martingale.

(4) For tractability, we adopt (i).
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refers to the quantity X, the manager generates by following investment policy @, at
the time of investment, 7, the manager’s wealth X_increases to X, +[V.-K]"™°, and

after time 7, the manager faces the same investment opportunities and continues trading
between the twin security and the bond till the end of investment horizon T.

4.6.2 Option Value to Invest — Indifference Pricing

In order to construct the indifference price, I introduce two stochastic
optimization problems. I first define the value function with no investment opportunities
presented, i.e., a classical Merton portfolio problem modified to accommodate

stochastic volatility:

V(X,O',t)zsupE[U(XT)|X,=x,0',20'] 4)

where the single control variable 6;is called admissible if it is Fsmeasurable and

T
satisfies the integrability constraint £ _[ o(s,0,)*0’ds < o.
t

I then introduce the investment opportunity into the optimization problem.

When the manager faces the investment opportunity, the Dynamic Programming

(5) In the American put option case, I leave o,(&(0,,t)) = u(o,,t), that is, £(0o,,t) is the project
Sharpe ratio. Again for simplicity and tractability, I keep 4 and K constant.

3% (1) 1t is assumed the payoff is bounded. For an unbounded payoff, e.g. traditional calls, regularization
technique, that is, regularizing payoff, is resorted (See for example, Fouque et. al . (2003), Ilhan and
Sircar (2004)). It does not affect the analysis framework.

(2) Or we may follow Frey and Sin (1999) by assuming (V-K)" is locally bounded.
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Optimality Principle®’ yields that at time 7, the manager’s expected utility payoff is

given by:

J(x,v,o,t)=EV(X. +(V.-K)",0)| X, =x,V, =v,0, =0] 5)
Therefore, the manager’s value function is then defined for 0 <7 <T as

F(x,v,o,t)=supJ(x,v,0,t)
A

=sup E[V (X, +(V,-K)",7)| X, =x,V,=v,0,=0]
A
where

T
A={(0,7): 06, is ¥, — progressively measurable, E_[ 0.0(c,,s)’ <w,and 7 € I,}, and

I, 1,1s the set of all stopping times of Filtration #.

Combined with the classical Merton portfolio problem, appropriately modified
to accommodate stochastic volatility, defined in equation (4), the manager’s

indifference price of this investment opportunity, /(x,v,o,t), is defined by:

V(x,o,t)=F(x—-h(x,v,0,t),v,0,t) (7)

It states that the manager is indifferent between paying nothing and not having

the investment opportunity versus paying A(x,v,o,t)to hold the investment opportunity.
Equivalently, equation (7) can be expressed as V(x+h(x,v,0,t),x,0,t) = F(x,v,0,t)

which states that the manager is indifferent between having the wealth

37 Bellman and Dreyfus (1962), P15 “An optimal sequence of decisions in a multistage decision process
problem has the property that whatever the initial stage, state, and decision are, the remaining decisions
must constitute an optimal sequence of decisions for the remaining problem, with the stage and state
resulting from the first decision considered as initial conditions.
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x+h(x,v,o,t)and having wealth xwhile simultaneously holding the investment
opportunity.
When early exercise is not allowed, that is the investment can only be made at

time T, the manager’s optimization problem in equation (6) becomes

F(x,v,0,t)=sup E[V (X, +(V, —-K)",T)| X, =x,V, =v,0, = 0]
Ay

1 _ _ +
=sup E[-—e 7R X = x V. =v,0, = 0]

where the set of A4, takes the set of 4 by restricting 7=T.

Thus, the manager’s indifference price of this investment opportunity fixed at

time T is defined by

V(x,0,t)=F(x—H(x,v,0,t),v,0,t) 9)

H(x,v,o,t)is the manager’s indifference price of investment opportunity fixed

at time T.

To facilitate presentation, I introduce the following operators and Hamiltonians:

AF = %O'(a, t)Y'V’F, + po(c,t) (o, t)VF,, +% B(o, )’ F,,

+o(o,t)¢(o,tWF, +a(o,t)F,
A°F = % B(o,t)’F,_+a(c,t)F,

where A4°and A" are actually the infinitesimal generators of the Markov

process o and (V,o) respectively.

132



H*(F.,F,,F,,F.)= Sup{—HZO'(O',t)zFH+t90'(0',t)2vav+6?p0'(0',t)ﬂ(0',t)Fm

(o) F)

L°F = %O‘(O‘, t)zszW + po(o,t) (o, t)VF, +%,8(0',Z)ZFM -k (0o,t)VF,

+a(o.0)-p” )ﬂ( o.1)F,
a(
[°F = 4°F - p 4% t; B(o.0)F,

2 2

r T
RT,.,I ,I= %a(a,z‘)zv2 ?”+ po(o,t)p(o,t)v VFU Jr%,ozﬂ(oyt)2

4.6.2 Theorem 1:

From Sircar and Zariphopoulou 2005 Theorem 2.7, the indifference price for the

manager’s investment opportunity fixed at time T, H(x,v,o0,t), (more specifically

H(v,o,t) because the exponential utility function allows us to separate “wealth” from

utility indifference pricing), is the unique C>*'(R* xR x[0,T]) bounded solution of the

following pricing equation

H,+ LH + (1= p) (.0, H, — 7(1= p) (o) HE =0
Hv,0,T)=(v-K)"

where ¢(o,t,T)solves

. u(o,1)
eV C e
¢(o,T,T)=0
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It is given by

1 1 v (v,o.t) 1
H(v,0,t) = ——ln% =S =y (o +—¢(o.D)
y e y e y

where ¢(o,t,T)1s defined above and y(o,¢,T) solves

1 u(o,t)
+ L%y +—y(1-p) (o, )yl =—"—""—
v, v+ rA=p)po Dy, 20 (0.1)
v(v,o0,T)=(v—-K)"
4.6.2 Proposition 1:
As pointed out in equation (4), the classical Merton portfolio problem,

appropriately modified to accommodate stochastic volatility, defines the following

value function:

V(X,o.0)=SUp E[U(X;) | X, =x,0,=0]
[
The value function V' (x,o,¢) solves the Hamilton-Jacobi-Bellman equation

V4 SUP 5 0°0(0,0°, + 00,0 B0V, + Ou( Y.} +2 (@) Y,
0

+a(o,t)V,)=0

1
Vix,o,T)=——¢e™"
/4

With the optimal &, the above becomes

(o), + po(o,0)flo,0)V,,)" |1 . o
v 20(0, t)2 V. + ) Plo, )V +a(o,t)V )=0 (10)

Vix,o,T)= —le_”‘
v
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Propose the form of the solution V(x,o,t) = —le"” G(o,t)
v
After simplification, I have

2
G +L“G—1MG—lp2ﬂ(a,t)2%=o

Linearize the above non-linear HIB by Hopf-Cole-type transformation®® and set

G(o,t)=g(o,t)° with 6 = 1% yielding
-p

1 w(o,t)’
+o——(1-p) 5222 _o0=0
g+Llg 2( p)a(a’t)zg
g(o,T)=1

To sum up, the value function is given by

1

V(600 =~ e G0 t) = - L e P g(eu1) (11)
y y

where g(o,¢) solves

, 1 N CA)
g +L g_E(l_p)O'(U,t)zg_ for (o,t) e Rx[t,T].
g(o,T)=1

4.6.2 Proposition 2:
Following Oberman and Zariphopoulou (2003) Theorem 6 and Zariphopoulou

and Davis (1995), the manager’s value function F(x,v,o,t)defined in equation (5) is

the unique viscosity solution of the Hamilton-Jacobi-Bellman equation

¥ The idea was introduced by Zariphopoulou (1983) with the terminology distortion.
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min(-F, - SUP 0’0 (0.1)'F, +00(,0)"VF, + 0po(a,0f(@.E,,
7
FOU(OF) - o0V E, + po(a.0f(E,

+ %ﬂ(m 1)’ F,, + p(o,t)VF, = k(0,0)VF, + a(0,1)F,),

Fx,v,o,t)-V(x+(v-K)' )=0————————— —— —— —— —— 12)
Fxv,o0,T)=V(x+(v-K)",T)= _le—Y(JH-(v—K)*)
4

where F(x,v,0,t)=V(x+(v—K)",t)is in the class of functions that are

concave and increasing in the spatial argument x and bounded in (v—K)".*

4.6.2 Proposition 3:
The manager’s early exercise indifference price (i.e., option value to invest) is
the unique bounded viscosity solution of the quasilinear variational inequality with

terminal conditions

min (~h, ~L""h—(1- p*) B0, 1), h, + %y(l P B(o.1) B h(v,0,1)

—(=K)")=0
h(v,o,T)=(v—-K)*

Proof:
Using the pricing equality (7) and the HJB equation (12), evaluated at the point

(x —h(v,0,t),v,0,t), the HIB becomes

* Following Frey and Sin (1999), we assume that (V, — K)" is locally bounded.
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min(-V, ~SUP £ 0°0(0,0)° V. + o@D (@.F,, + Gule.F.}
+V.dh(v,o,t)— %ﬂ(a,t)2 F_—a(o,t)F,),V(x,v,0,t)=V(x—=h(v,0,t)
+(v=K)",t))=0-———(13)

With the optimal &, the above becomes

(u(o, )V, + po(o,0)f(o,0)V,,)’
20(c, 1)V,

NV(x,v,0,t)-V(x—h(v,o,t)+(v—K)",1))=0

min(-V, +

+V.dh(v,o,t) —%ﬂ(a, t)2 V., —a(o,t)V,

That is,

(,Ll(G,t)VX + pG(O’,t)ﬂ(G,t)Vm.)z _l 2 _
20(o, t)szx 5 Bo, )V, —a(o,t)lV,

+ V. (=h, =L h— (1= p*) B(c, )¢, h, + % y(1=p*)B(o.0)’ k),

V(x,v,0,t)=V(x—h(v,o,t)+ (v=K)",1))=0

min(-V, +

For the first part of the above variational inequality, when evaluated at the

optimal &, the term

_ (lLl(J’ I)Vx +,00(O',t)ﬂ(0, t)an)z _l 2 _ _
V. + 2000V 5 Lo, )V, —a(o,t)V, =0(see

equation (10))

1

By equation (11)V(x,0,t)= —le_”g(a,t)g ,g(o,t)must be positive
4

1

sinceV (x,o,t) is negative. As a result, I see that V_ =e™ g(O',t)l‘p2 > (. Combining the

above two arguments, h(v,o,t) satisfies
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(=h, =L h—(1- p*)B(o, 00, h, +%7<1 e V. ) i 50 B E— (14)

for (x,v,0,t) e RxRxRx[0,T].

On the other hand, the monotonicity of V(x,o,¢)with respect to the spatial
argument x and the form of the obstacle term in equation (13) yield

x—(x+h—-(v-K)")20— h(v,0,t) =2 (v—K)"

for (x,v,0,t) e RxRxRx[0,T].---(15)

Combining the inequalities (14) and (15) yields:

min (=h, = L""h = (1= p*) B(c.0)¢,h, + % y(1=p*)B(o.t)h;

L h(v,o,t)-(v—=K)")=0
h(v,o,T)=(v—-K)"

Remark: Viscosity Solution and Some Properties*

Frequently, the value function might not be smooth, and we must relax the
notion of solutions to the H-J-B equation. A rich class of weak solutions to the H-J-B
are known as viscosity solutions. They were introduced by Crandall and Lions (1983)
for the first order non-linear PDE and by Lions (1983) for the second order case. The
viscosity solution provides rigorous characterization of the value function as the unique

solution to the H-J-B equation. Strong stability properties provide excellent

0 References:
(1) Fleming, Wendell H. and H. Mete Soner (1992): Controlled Markov Processes and Viscosity
Solutions. Springer-Verlag

(2) Nizar Touzi (2002): Stochastic Control Problems, Viscosity Solutions and Application to
Finance
(3) Thaleia Zariphopolou (2001): Stochastic Control Methods in Asset Pricing
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convergence results for a large class of numerical schemes for the value function and
the optimal policies. The basic ideas are presented as follows:

Consider a nonlinear second order PDE of the form

F(x,u(x), Du(x),D’u(x)) =0 for x € Q

where Q is an open subset of R”, Du(x)and D’u(x)denote the gradient vector
and the second derivative matrix of u(x), and the function F is continuous in all its
arguments and degenerate elliptic; that is

F(x,r,p,A) < F(x,r, p,B) whenever 4> B

Definition (1): A function u :Q — R is a classical supersolution (respectively,
subsolution) of F(x,u(x), Du(x),D*u(x))=0 if u € C*(Q) and

F(x,u(x), Du(x), D*u(x)) > (respectively,<)0 for x € Q

Definition (2): Let u be a C*(Q)function. Then the following claims are

equivalents:

() wuis a classical supersolution (respectively, subsolution) of
F(x,u(x), Du(x),D’u(x))=0.

(I) For all pairs (x,,9) € QxC*(Q)such that x, is a minimizer (respectively,
maximizer) of the difference (u—o) on Q, we have

F(xy,u(x,), Dp(x,), D*0(x,)) 2 (respectively,<)0.
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The formal definition of viscosity solution is presented as follows:

For a locally bounded function u : Q — R, denote u and u the lower and upper

semicontinuous envelopes of u and

u=liminfu(x'), u =limsupu(x')

Observe that the definition (II) does not involve the regularity of u . It therefore

suggests the following weak notion of solution to F(x,u(x), Du(x), D*u(x))=0.

Definition (3): For a locally bounded function u:Q — R,

D uis a (discontinuous) viscosity supersolution of

F(x,u(x), Du(x),D’u(x))=0 if F(x,,u(x,)),Dp(x,),D°p(x,))>0 For all pairs
(x,,9) € Qx C*(Q) such that x, is a minimizer of the difference (u—¢@) on Q.

(II) u is a (discontinuous) viscosity subsolution of
F(x,u(x), Du(x),D’u(x)) =0 if F(x,,u(x,),Dp(x,),D°p(x,))<0 For all pairs
(x,,9) € Qx C*(Q) such that x, is a maximizer of the difference (i —¢) on Q.

(IIT) u is a (discontinuous) viscosity solution of F(x,u(x), Du(x),D*u(x)) =0
if it is both a viscosity supersolution and subsolution of F(x,u(x), Du(x), D*u(x))=0.

4.6.3 Option Value to Invest, Indifference Pricing and Pricing Measure
The indifference pricing equation for the manager’s investment opportunity

fixed at time T,

H,+ L7 + (= p) B0, H, — 1(1= p) (ot HE =0
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or the corresponding early exercise indifference price, 4(v,o,t), the solution of

the unique bounded viscosity solution of the quasilinear variational inequality with

terminal conditions

min (—h, — L'“h—(1- o) (o) h, +%y(l B

,h(v,o,t)—-(v—K)")=0
h(v,o,T)=(v—-K)"

admits a new pricing measure Q:

dQ t 1 2 L1 )
d—P:eXp(—.([ g(a,,t)dB,—E { &0, 1) dt+£ AMo,,1)dB; = { Ao, 0)dr)

where - A(o,,t)is a particular market price of volatility risk. In the above
pricing formula, A(o,,.t)=pp(c,,t)¢, (o,,t). By Girsanov’s theorem, Brownian
motions B and B under Q are given as:
0-p 4+ du and B2 =B —[ A,d
B, —BI+J.0§(u,aM) u and B~ =B, L JAu

Under Q, V and o follow the processes:

dVV’ = o,dB’

t

do, =[a(o,)- pé(o,.0)(o,.t)+ pAB(o, Ot + pB(c,,)dB + pp(c,,)dB;*
=[a(o,)- pé(o,.)(0,.0)+p’ B(o,.0)¢,(0,,0ldt + pB(c,,0)dB] + pp(c,.t)dB;*
=[a(o,0)-(pE(0,.0) = p°¢,(0,.0)B(o,.)ldt + pB(0,.1)dB’ + pp(o,,1)dB,*

Under the new pricing measure Q, the market price of volatility risk premium,

or the market price of volatility risk is (p&(o,,t)—p @, (c,,t)). This new pricing
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measure is actually the minimal entropy martingale measure which minimizes the
relative entropy of pricing measure Q with respect to the historical pricing measure P In
terms of g-optimal measures discussed previously, it yields gq=1. Several papers
describe the link between maximizing exponential utility function and the minimal
entropy martingale measure (see for example Fritelli (2000), Delbaen et. al. (2002)
etc.). There are also several studies involving this issue with the stochastic volatility
presented (e.g. Sircar and Zariphopoulou (2005) and Ilhan and Sircar (2005)). The
following briefly sketches the proof and assertion from Sircar and Zariphopoulou
(2005) and Ilhan and Sircar (2005).

Sircar and Zariphopoulou (2005) present the view from “relative entropy
penalization”. The indifference pricing obtained admits a new pricing measure under
which V and o follow the processes:

V.
dV L = o,dB’

t

do, =[a(c,t)~ p&(o,,0) f(0,.t)+ pAS(c,,0ldt + pB(c,,0)dBP + pf(o,,)dB,"°
=[a(c,0)~ p&(o,,0)f(0,.t)+p’ B(o,.0)¢,(0,,0)dt + pf(c,,0)dB + pf(o,,1)dB;*
= [a(o-ﬁ t) _(pé:(o-z’t) _:52¢o— (O-z’t))ﬂ(o-tﬂt)]dt + pﬂ(o-tﬁt)dBtQ +:Bﬂ(o-z’t)dBtLQ

That is

i—g = eXp(—_([f(G,,t)dBt —%!;f(ﬁt,t)zdt +£/1(at,t)dBti _%gﬂ(ﬁ,,t)zdt)

with B? = B, + [ &(u,0,)du and B¢ = B! [ 4,du
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Now let P*be any equivalent local martingale measure with some progressively

T
measurable process L =(L,),.,., with J;) Lds < Q a.s. such that

L

dP T o 17 2 o plLl _plo
0 —exp(—-([L(at,t)dB, = { L(o,,1)*dr) with B = B*9 + jo L, du

The dynamics of ¢ becomes

do, =[a(o,t)~ ps(a,,0)f(0,,t)+ pp(o,.t)(4 — L,)]dt
+pB(o,.)dB? + pp(o,,)dB;"

Through the direct calculation of relative entropy H(P" | Q), it yields
L 5l
H(P|Q)=E" [[Ld]
0

It shows that when picking up the other new pricing measure rather than Q, it

will yield a quadratic penalization on the additional volatility risk premium L, .

Ilhan and Sircar (2005) approach the problem by finding the minimal entropy

martingale measure. Let Q be any equivalent local martingale measure with some

progressively measurable process 4 =(4,),.,, With .[OT Ads <o P a.s. such that

% = exp(— ! &(o,,1)dB, —% ! E(o, 1) dt+ ! A(o,,t)dB? —% ! Ao, 0) df)

with BY = B, + [ £(u,0,)du and BC =B~ [ A,du

The entropy of measure Q with respect to P is
1

H(Q|P)= E°[[(§(0,,0)" + 2]
0
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The stochastic control problem related to maximizing the negative of relative

entropy gives:

Ho)= sup B[ (&0 + 2

AeH? (Q)
Through H-J-B and direct calculation, it yields that
AMo,,t)=pp(o,,t)¢, (o,,t), with ¢(o,t)solving
b+ 90 P06 =20
¢(o,T,T)=0
Next invoking the Proposition 3.2 of Grandits and Rheinlander (2002)",
applying Ito’s formula to ¢(o,f) and through direct calculation, it yields that A, is

equal to the parameter solution to the minimal entropy martingale measure and Q is the

minimal entropy martingale measure.

*! Grandits and Rheinlander (2002) Proposition 3.2:
Notation

M* (P): Space of all signed martingale measures.
M (P): The elements of M’ (P) eith non-negative density.
M °(P): The subset of M (P) consisting probability measures which are equivalent to P.

Proposition 3.2: Assume there exists QO € M °(P) with H(Q,P) < . Then O = Q" , where O is
the minimal martingale measure iff the following holds

1) cj{—g =c exp((J. 1dX), ) for a constant ¢ and an X-integrable 77.
(i) £°[([ ndX);1=0 for 0=0,0"
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4.6.4 Option Value to Invest, Indifference Pricing and Risk Aversion

With the obtained result that the manager’s early exercise indifference price
(i.e., option value to invest) solves the variational inequality with obstacle terms, this
section shows the relationship between the manager’s early exercise indifference price
(i.e., option value to invest) and the risk aversion parameter.

4.6.4 Proposition 1:

The manager’s early exercise indifference price (i.e., option value to invest) is

decreasing with respect to the risk aversion parameter. As y — 0, the manager’s early

exercise indifference price (i.e., option value to invest) satisfies the unique bounded

viscosity solution of the variational inequality with termianl conditions*

min (k' —L"h° —(1- p*) B(o,)p b, b’ (v,o,t)—(v—K)") =0
hv,0,T)=(v-K)"

Proof:
(1) The comparison principle for viscosity solutions implies that subsolutions of

the relevant equation are dominated by its solution.
(2) Denote the manager’s early exercise indifference by 4" and A", where y,
and y, represent the corresponding risk aversion coefficients satisfying 0<y, <y,.

(3) The nonlinear term in the variational inequality

* The superscript for A(v, o, ¢ ) represents for the risk aversion parameter.
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min (-1, = 7= (1= p)B(0. 00, b, + (1= p) Bl R

,h(v,o,t)—(v—K)")=0

is monotone with respect to y while the rest of the differential expression is
independent of y. Thus,

0=min (~h/" ~L""h" —(1- p*) f(c, 1), k" +%71 (=) B0y (h) )

' (v,0,0)-(v=K)")

<min (k" = Lk —(1- p*) f(o. 1), h! +%72(l -p)pla,0*(h])?,

h'(v,o,t)-(v—K)")

The terminal condition does not depend on risk aversion. Combining the above
differential inequality, /4”' is a subsolution to the variational inequality satisfied by A" .

(4) Combining (3) with (1), I find that the manager’s early exercise indifference
price is decreasing with respect to the risk aversion parameter.

(5) Since A" are uniformly bounded with respect to y, {h”} converge along with

subsequences. It is thus observed that as ¥ — 0 the pricing equation

min (-1, = 7= (1= p)B(0. 00, b, + (1= p) B0 R
,h(v,o,t)—(v—K)")=0

converges, locally uniformly bounded in ¥, to the linear variational inequality
min (—=h' — Lk’ —(1- p*) B(o, ) 2, b’ (v,0,t)—(v—K)" ) =0.

Classical optimal stopping results (see Ishii and Lions (1990)) imply that the

above variational inequality has a unique viscosity solution in the class of bounded

functions. In addition, the stability of viscosity solutions (see Lions(1983)) yields that as
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y =0 {h”}, along with subsequences, converge to A° locally uniformly bounded in
y. Therefore, the desired result that as y — 0, the manager’s early exercise

indifference price satisfies the unique bounded viscosity solution of the variational

inequality with terminal conditions

. 3,0 _gvop0 2 0 0 _ _ Y —
{mm( B =L = (1= p) .0 o h (v, 0.0 = (v =K) ) =0

h,o0,T)=Wv-K)"

4.6.5 Abandonment Option - Investment Problem Formulation and the Model

As a by-product of the previous section, I propose the indifference price for
the abandonment option. The project value with the option to abandon can be viewed as
the summation of static net present value and the abandonment option premium. I
modify one assumption and the manager’s investment problem holding all else the same
as the previous section.

First, the manager’s investment problem is modified as follows. The risk-averse
manager’s investment problem is to maximize her expected utility of wealth with
respect to the optimal exercise abandonment decision. She receives salvage value K if
she exercises during the investment horizon, [t,T]. It is a one time irreversible
investment decision. Prior to exercising the investment decision, time 7, the wealth

refers to the quantity X the manager generates by following investment policy @, at
the time of investment, 7, the manager’s wealth X_increases to X, +[K-V.]", and after

time 7, the manager faces the same investment opportunities and continues trading

between the twin security and the bond till the end of investment horizon T.
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Second, I do not consider the “dividend yield™* for the project value process,
equivalently, the twin security process. Thus the, wealth process and the twin security
process will not differ by the dividend yield in the drift rate.

d;/’ =0,(&(o,,t)dt+dB,);V, =v

t

do, = a(c,t)dt + B(o,,t)dW, = a(o ,t)dt + B(o,,t)(pdB, + pdB;"); o, =0

dX, =6 u(o,,t)dt+00,dB,; X, =x

4.6.6 Abandonment Option Value — Indifference Pricing

By making use of the indifference pricing result for the manager’s option value
to invest, it is able to establish the indifference pricing for the manager’s abandonment
option value.

4.6.6 Proposition 1:

The manager’s early exercise indifference price (i.e., the abandonment option
value) is the unique bounded viscosity solution of the quasilinear variational inequality

with terminal conditions

min(-h, —L""h—(1- p*) f(c.1)¢,h, +%7(l A CRIN

,h(v,o,t)—(K-v)")=0
h(v,o,T)=(K —v)"

® Thatis x(0o,t) =0.
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Proof:

Same as 4.6.2 Proposition 3.

4.6.7 Abandonment Option Value, Indifference Pricing and Pricing Measure

The indifference pricing equality (for fixed time abandonment decision (i.e.,
traditional European put) or the indifferencing pricing variational inequality does not
change (except for the obstacle term presented in the early exercise situation); therefore,
as the discussion shown in 4.5.4, the indifference pricing admits a new pricing measure
which minimize the relative entropy between the new pricing measure and the historical
measure.

4.6.8 Abandonment Option Value, Indifference Pricing and Risk Aversion

With the obtained result that the manager’s early exercise indifference price
(i.e., the abandonment option value) solves the variational inequality with obstacle
terms, this section shows the relationship between the manager’s early exercise
indifference price (i.e., the abandonment option value) and the risk aversion parameter.

4.6.8 Proposition 1:

The manager’s early exercise indifference price (i.e., the abandonment option
value)™ is decreasing with respect to the risk aversion parameter. As y — 0, the
manager’s early exercise indifference price (i.e., the abandonment option value)
satisfies the unique bounded viscosity solution of the variational inequality with

terminal conditions

* The same relationship can be inferred for the project value with the abandonment option by the equality
Project value with option to abandon = Static net present value + Abandonment option premium
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min (k' —L"h° —(1- p*) B(o, ). b, b’ (v,o,t)— (K —=v)") =0
hv,0,T)=(K-v)"

Proof:

Same as 4.6.6 Proposition 1
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CHAPTER 5

CONCLUSION

5.1 Conclusion

The real options theory of corporate investment has developed to the point that
it is now in the mainstream of corporate finance. The classical real options approach
relies on one of the following assumptions: (1) the tradability of real investment
opportunity, (2) the existence of perfect spanning traded assets, or (3) the risk neutrality.
It is noted that if a capital investment project is partially or totally irreversible and if
there is flexibility in timing, the value of the option to delay investment may exceed the
value of the project in place. The familiar static net present value criterion for capital
investment should be replaced in many situations by the criterion that net present value
should exceed a project’s real option value before assets are put in place.

If one or more assumptions is violated, the classical options valuation technique
may require modification. Hubalek and Schachermayer (2001) studied the non-
tradability issues indicating that using the assumption of no arbitrage alone would lead
to no information about the price of the claim. There has been much study in pricing
claims written on non-traded assets.

This research explores the market incompleteness issue presented in the capital

budgeting problem with real options setting. The incompleteness is presented in two
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different scenarios. The first incomplete market problem arises from pricing claims
written on non-traded assets with the existence of partial spanning assets. This problem
has been studied by many researchers and has been extended specifically to the capital
budgeting problems in real options setting. Recent papers include Henderson (2005),
Hugonnier and Morellec (2004, 2005), Kadam et al (2004), Miao and Wang (2005) etc.
I extend existing real options literature in an incomplete market setting to include
strategic interactions for exploring relations between market incompleteness and
strategic exercise of real options in a Stackelberg model. I find that incompleteness
narrows the gap between leader and follower entry dates. Relative to results in Dixit and
Pindyck (1994), the follower enters much sooner, and the leader delays slightly. I
conjecture that Firm L’s management has greater concern for the risk involved in the
imperfect hedge than for the risk of pre-emption. Thus, the incompleteness coupled with
strategic interactions alters the corporate capital investment decision. The more detailed
results are summarized as:

(A) Market share, investment timing decision, and option value to invest:

Holding market completeness correlation coefficient and risk parameter constant, I find
that the lower Firm L’s market share following Firm F’s entry, the lower the trigger
investment value for the follower. That is, Firm F has greater incentive to enter the
market the greater the anticipated market share. When the firms are able to hedge
completely the project risk, Firm L’s investment trigger value is negatively correlated

with its market share. Moreover, option value to invest becomes smaller as L’s market
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share increases. That is, Firm L enters immediately to secure the pre-emptive
advantage.

(B) Degree of completeness, investment timing and option value to invest:

Focusing on the degree of completeness, I find that the higher the degree of
completeness, the greater is the follower’s option value to invest, a result consistent
with Henderson (2005). The leader’s option value for investment is higher than is the
case when perfect hedging is possible. Considering simultaneously the market
incompleteness and the leader’s fear of pre-emption, it appears that Firm L displays
behavior closer to the classic real option models relative to the case in which perfect
hedging is possible. I next focus on Firm L’s market share. If Firms L and F expect to
share the market equally, they will enter the market nearly simultaneously. This result
conflicts with classical model results in a complete market setting. However, if Firm L
anticipates a market share greater than 50% upon F’s entry, Firm L will enter the market
slightly earlier than F but not as fast as would be the case in a complete market. These
results reflect in part our specification of the leader’s value function.

(C) Managerial Risk aversion, investment timing and option value to invest:

Regarding managerial risk preferences, the greater the risk aversion coefficient, the
lower is the investment option value for both firms. This result suggests that the more
risk-averse managers may be more concerned about the unhedgeable risks, placing
relatively less value in the option to delay investment.

In addition, as a byproduct of this research, I analyze the impact of market share

and uncertainty on the relative investment trigger as well as option value through
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modeling two different stochastic income streams. The senstivity analysis indicates that
the choice of the process specification has a material impact both on Firm L’s and Firm
F’s project value and option value to invest. This result is consistent with Schwartz’s
(1997) assertion about the importance of mean-reverting process vs. non-reverting
process in the capital budgeting investment problem. Therefore, it is important to model
stochastic processes to reflect the real world circumstances.

The second incomplete market problem arises from the stochastic volatility
since the volatility itself is not traded. I explore this problem through two approaches.
Since it is noted that there are infinitely many admissible pricing measures in the
presence of market frictions due to non-tradability, the option pricing problem reduces
to selection of a measure with which to price options. Therefore, I first work through g-
optimal measures selected to investigate optimal investment/ abandonment decision rule
and the the corresponding option values as well as project value. The optimal
investment/ abandonment decision rule changes, so do the corresponding option values
as well as project value as follows:

(1) With non-zero correlation between the project randomness and volatility

randomness, the option values to invest/abandonment option value under g-optimal
measures will decrease (respectively, increase) in q if £(¢,0)” increases (respectively,

decreases) ino . Thus, the difference between NPV and option value to invest (also
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project value with option to abandon®™) under q-optimal measures will decrease
(respectively, increase) in q if £(¢,0)” increases (respectively, decreases) ino .
(2) With zero correlation between the project randomness and volatility

randomness, A'?(¢,0) will be non-decreasing (respectively, non-increasing) in q if

£(t,0)* is non-decreasing (respectively, non-increasing) inc. As a result, option
values to invest/abandonment option value under g-optimal measures will decrease
(respectively, increase) in q if &(z,0)” increases (respectively, decreases) ino . The

difference between NPV and the option values to invest (also project value with option

to abandon) under g-optimal measures will increase (respectively, decrease) in q if
£(t,0)? is non- increasing (respectively, non-decreasing) ino .

(3) With a non-zero correlation between the project randomness and volatility
randomness, the optimal investment trigger under q-optimal measures decreases
(respectively, increases) in q if £(¢,0)> increases (respectively, decreases) ino. The

optimal abandonment trigger is reversed.
(4) With zero correlation between the project randomness and volatility

randomness, the optimal investment trigger under g-optimal measures decrease
(respectively, increase) in q if £(¢,0)° increases (respectively, decreases) ino . The

optimal abandonment trigger is reversed.

* Project value with option to abandon = Static net present value + Abandonment option premium
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(5) There are no conclusive relations between the option value to invest/
abandonment option value under g-optimal measures and the correlation between the
project randomness and volatility randomness.

I then use utility maximization approach to price the option value to invest and
the abandonment option. I demonstrate the indifference prices for the option value to
invest and the abandonment option solve quasilinear variational inequalitites with
obstacle terms. Assuming an exponential utility function, the utility-based indifference
price admits a new pricing measure, which is the minimal relative entropy martingale
measure minimizing the relative entropy between the historical measure and the Q
martingale measure. I also show that the indifference price for the option value to invest
and the abandonment option (also, project value with abandonment option)* is non-
increasing with respect to the risk aversion parameter. As the risk aversion parameter
converges to zero, the indifference price converges to the unique bounded viscosity
solution of the linear variational inequality with obstacle term.

5.2 Limitation and Future Research

The first study presents the model incorporating market incompleteness with
strategic behavior through the Stackleberg leader follower model. I will extend the
analysis to incorporate the “collusion” and “collaboration” strategy and also extend the
model to consider other game-theoretic settings. I will consider how the stochastic
interest rate affects the result of current analysis. An efficient and stable approximation

numerical scheme will be developed.
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The second study presents the model with stochastic volatility. For q-optimal
measure valuation, I currently focus on the finite time horizon under current model.
There are three items for the future research: (1) Find out the sufficient/necessary
conditions for current model with g-optimal measure valuations to be extended to the
infinite time horizon. (2) Find out manager’s optimal hedging strategies under q-optimal
measures with the investment opportunity and or abandonment option presented. (3)
Develop the efficient and stable computational scheme for approximations.

For indifference pricing, I will investigate in detail how other q-optimal
measures penalize the indifference pricing other than the minimal entropy martingale
measure, that is q =0, under the exponential utility function. Also what is the impact
with other class of HARA utility functions? Finally, I would like to develop the
efficient and stable computational scheme for approximations.

Since assets underlying real options are typically not traded and the fact that
long investment horizons make the constant volatility assumption problematic in real
options, the study and development of valuation technique under market incompleteness
are inevitable for providing better capital investment policy and hedging strategies for

the modern corporation.

* The project value with the abandonment option is inferred from the valuation equality: Project value
with the abandonment option = Static Net Present Value + Abandonment Option Premium.
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APPENDIX A

PROOF OF 3.4.2 PROPOSITION 1
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Appendix A Proof of 3.4.2 Proposition 1

4
Lemma®*’

T
Define: J(¢,x;u) = E,,x[j e 7D P(s, X (s),u(s))ds +e” Ty (T, X (T))]

Vit,x)= sup J(t,x;u)
u(-)el(t,x)

Let (¢,x) €[0,7)x R be given. Then for every stopping time 7 valued in [t, T] I

have

V(t,x)= sup E, .[ P Ppis, X (s),u(s))ds + e POV (r, X ()]

u(-)el(t,x)

Proof :

(1) By the tower law, I have
J(t,x;u) = Et,x[j e P P(s, X(5),u(s))ds +e "I (r, X (r),u)]

(2) By definition I have V(r,X(r)) = sup J(r,X(r);u), implying
u(-)el(t,x)

Vir,X(r))=J(r,X(r)u).

(3) Therefore, I have

V(t,x)= sup sz[j PED (s, X(s),u(s))ds +e PO I (r, X (r),u)]

u(-)el(t,x)

< sup E [j P60 P(s, X(s),u(s))ds +e POV (r, X ()]

u(-)el (t,x)

" References:
(1) Fleming, Wendell H. and H. Mete Soner (1992): Controlled Markov Processes
and Viscosity Solutions. Springer-Verlag
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(4) Definition for & -optimal control X'(s) for V(r, X (r))

For any & >0, choose an admissible control u'(-) € U(r, X (r)) such that

T
V(r X ()~ 8 <E, o [ ¢ Ps, X' (5)u' ())ds + €Ty (T, X' (T)]
=J(r, X (r),u')
Here X'(s)is the state at time s corresponding to the control »'() and initial

condition (7, X (7)) . Such a control «'(-) is called & -optimal.

Define an admissible control u(:) e U(z,x) by

Let ¥(s) be the state corresponding tou(-) with initial condition (z,x) .

I have
Vt,x)>J(t,X;u)

T
=E, [[e " P(s, X (s),ii (s))ds + e "y (T, X (T)]
= EZ’X[J‘ e PUP(s, x(s),u(s))ds +e "0 J(r, X (r),u)]
> wa[.[ e PO P(s, x(s),u(s))ds + e PV (1, x(r))]—e P8

(5) For a small positive &, choose a ¢ -optimal admissible control u(-) e U(t,x).

Then I have

(2) Nizar Touzi (2002): Stochastic Control Problems, Viscosity Solutions and
Application to Finance
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V(t,x)=>J(t, x;u)

= E,’X[J. e 7D P(s, x(s),u(s))ds + e Py (T, X(T))]
= E,’x[j. e P P(s, x(s),u(s))ds +e P I (r, X (r),u)]
>E,, [j- e P P(s, x(s),u(s))ds + e PV (r, X (r)]-e P8

(6) Since ¢ is arbitrary, I have proved the following:

Vt,x)= sup J(t,x;u)

u(-)el(t,x)

= sup E,[ j P60 P(s, x(s),u(s))ds + e P Ty (T, X(T))]

u(-)el(t,x)

= sup E, [ I D (s, x(s),u(s))ds +e P I (r, X (r),u)]

u()el(t,x)

> sup E,,x[_[ e P P(s, x(s),u(s))ds +e "V (r, X ()]

u(-)el (t,x)

(7) Since I have already shown the reverse inequality, the equality holds, i.e.,

V(t,x)= sup E, Y[J‘ e P (s, X (5),u(s))ds +e " Ty (T, X(T))]

u(-)el(t,x)

= sup E,X[j P60 (s, X (s),u(s))ds + e PV (r, X ()]

u(-)el(t,x)

Q.ED.

In addition, it can be shown that an optimal control «"()) e U(r,x) maximizes the
above equation at every r. Therefore, I can choose r arbitrarily close to t.
(2) By invoking the lemma with the specification of t = 0, T = oo, no bequest

function, and optimal stopping time 7 , Firm F’s value function:
Tl
F(x,y)= supE[J‘——e’ﬂ‘e’Cé ds| X,=x,Y, =y]
0,7 0 V4
may be written as:
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T 1 ) §
F(ry)=sup sup E[[-—e e ds+e ™ F(X,.Y,)| X, =xY, =]

r {6,,0ss<r} 0 V4
where F|(x,y)is Firm F manager’s value function after exercising the investment

decision. Q.E.D.
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Table 1

~Simulation Results

The Impact of Market Incompleteness on the Investment Timing Decision and the Option Value to Invest

Correlation =1, Risk Aversion=10

Market Share Follower's Trigger Follower's Option Value |Leader's Trigger|Leader's Option Value
0.5 3.33 0.67 1.17 0.0487
0.6 4.14 0.67 1.08 0.02279
0.7 5.56 0.67 1.03 0.00998
0.8 8.33 0.67 1.01 0.0034

Correlation =0.99, Risk Aversion=10

Market Share Follower's Trigger Follower's Option Value |Leader's Trigger|Leader's Option Value
0.5 3.207 0.60372 3.207 0.60372
0.6 4.009 0.60372 3.944 0.578073
0.7 5.345 0.60372 5.193 0.55958
0.8 8.019 0.60372 7.743 0.550373

Correlation =0.90, Risk Aversion=10

Market Share

Follower's Trigger

Follower's Option Value

Leader's Trigger|

Leader's Option Value

0.5 2.7538 0.37689 2.7538 0.37689
0.6 3.4424 0.37689 3.4173 0.367071
0.7 4.5897 0.37689 4.554 0.3664
0.8 6.88448 0.37689 6.844 0.368975
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Table 2 The Impact of Risk Aversion on the Investment Timing Decision and the Option Value to Invest

~ Simulation Results

Correlation =0.90, Risk Aversion=10

Market Sahre Follower's Trigger Follower's Option Value [Leader's Trigger|Leader's Option Value
0.5 2.7538 0.37689 2.7538 0.37689
0.6 3.4424 0.37689 3.4173 0.367071
0.7 4.5897 0.37689 4.554 0.3664
0.8 6.88448 0.37689 6.844 0.368975

Correlation =0.90, Risk Aversion=5

Market Sahre Follower's Trigger Follower's Option Value [Leader's Trigger|Leader's Option Value
0.5 2.9323 0.466159 2.9323 0.466159
0.6 3.6554 0.466159 3.60197 0.441411
0.7 4.8872 0.466159 477157 0.433634

0.8 7.3308 0.466159 7.19127 0.439004
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Table 3 Geometric Brownian Motion Process v.s. Arithmetic Brownian Motion Process ~ Volatility v.s. Option Value v.s.

Investment Trigger (Leader

Market Share: 50%)

(A) After F's Entry: L and F co-share the market.

Geometric Brownian Motion

\Volatility L's Trigger L's Option Value F's Trigger F's Option Value
0.25 4.21697 0.563793 11.6157 10.5677
0.5 5.54222 3.2679 17.0298 24.8152
0.75 7.53495 8.01664 24.3534 44.088
% Change in Volatility % Change in L's Trigger|% Change in L's Option Value|% Change in F's Trigger/% Change in F's Option Value
100.00% 31.43% 479.63% 46.61% 134.82%
200.00% 78.68% 1321.91% 109.66% 317.20%
Arithmetic Brownian Motion
\Volatility L's Trigger L's Option Value F's Trigger F's Option Value
0.25 3.95012 0.000029 8.37107 1.05269
0.5 3.963382 0.0056683 8.76596 2.03991
0.75 4.02502 0.0435887 9.16112 3.02779
% Change in Volatility % Change in L's Trigger/% Change in L's Option Value[% Change in F's Trigger|% Change in F's Option Value
100.00% 0.34% 19445.86% 4.72% 93.78%
200.00% 1.90% 150205.86% 9.44% 187.62%

Base Parameters: r=0.2, @=0.01,K=20
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Table 4 Geometric Brownian Motion Process v.s. Arithmetic Brownian Motion Process~ Volatility v.s. Option Value v.s.

Investment Trigger (Leader

Market Share: 60%)

(B) After F's Entry: L owns 60% maket share, while F owns 40% market share

Geometric Brownian Motion

Volatility L's Trigger L's Option Value F's Trigger F's Option Value
0.25 3.98576 0.251167 14.5196 10.5677
0.5 4.64708 1.58888 21.2872 24.8152
0.75 5.51594 3.68076 30.4418 44.088
% Change in Volatility % Change in L's Trigger|% Change in L's Option Value|% Change in F's Trigger/% Change in F's Option Value
100.00% 16.59% 532.60% 46.61% 134.82%
200.00% 38.39% 1365.46% 109.66% 317.20%
Arithmetic Brownian Motion
\Volatility L's Trigger L's Option Value F's Trigger F's Option Value
0.25 3.95 0.0000002 10.3711 0.842149
0.5 3.9511 0.000385044 10.766 1.63193
0.75 3.96303 0.00635414 11.1611 2.4224
% Change in Volatility % Change in L's Trigger/% Change in L's Option Value[% Change in F's Trigger|% Change in F's Option Value
100% 0.03% 192422.00% 3.81% 93.78%
200% 0.33% 3176970.00% 7.62% 187.65%

Base Parameters: r=0.2, @=0.01,K=20
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Table 5 Geometric Brownian Motion Process v.s. Arithmetic Brownian Motion Process~ Volatility v.s. Option Value v.s.

Investment Trigger (Leader

Market Share: 70%)

After F's Entry: L owns 70% maket share, while F owns 30% market share

Geometric Brownian Motion

Volatility L's Trigger L's Option Value F's Trigger F's Option Value
0.25 3.87447 0.100692 19.3595 10.5677
0.5 4.22407 0.795429 28.383 24.8152
0.75 4.6931 1.91573 40.5891 44.088
% Change in Volatility % Change in L's Trigger|% Change in L's Option Value|% Change in F's Trigger/% Change in F's Option Value
100% 9.02% 689.96% 46.61% 134.82%
200% 21.13% 1802.56% 109.66% 317.20%

Arithmetic Brownian Motion
L's Option Value

\Volatility L's Trigger F's Trigger F's Option Value
0.25 3.95/close to zero 13.7044 0.631612
0.5 3.95002 4.8511E-06 14.0993 1.22395
0.75 3.95078 0.000300902 14.4945 1.81668
% Change in Volatility % Change in L's Trigger/% Change in L's Option Value[% Change in F's Trigger|% Change in F's Option Value
100% 0.00%|Huge 2.88% 93.78%
200% 0.02%|Huge 5.77% 187.63%

Base Parameters: r=0.2, @=0.01,K=20
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Table 6 Geometric Brownian Motion Process v.s. Arithmetic Brownian Motion Process ~ Market Share v.s. Option Value v.s.

Investment Trigger (Volatility at 25%)

(A) Volatility= 0.25

Geometric Brownian Motion

F's Market Share L's Trigger L's Option Value F's Trigger F's Option Value
0.5 4.21697 0.563793 11.6157 10.5677
0.4 3.98576 0.251167 14.5196 10.5677
0.3 3.87447 0.100692 19.3595 10.5677
% Change in Market Share % Change in L's Trigger |% Change in L's Option Value (% Change inF's Trigger|% Change in F's Option Value
-20.00% -5.48% -55.45% 25.00% 0.00%
-40.00% -8.12% -82.14% 66.67% 0.00%
Arithmetic Brownian Motion
F's Market Share L's Trigger L's Option Value F's Trigger F's Option Value
0.5 3.95012 0.000029 8.37107 1.05269
0.4 3.95 0.0000002 10.3711 0.842149
0.3 3.95|close to zero 13.7044 0.631612
% Change in Market Share % Change in L's Trigger|% Change in L's Option Value (% Change inF's Trigger/% Change in F's Option Value
-20.00% 0.00% -99.31% 23.89% -20.00%
-40.00% 0.00%|nearly -100% 63.71% -40.00%

Base Parameters: r=0.2, =0.01,K=20
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Table 7 Geometric Brownian Motion Process v.s. Arithmetic Brownian Motion Process~ Market Share v.s. Option Value v.s.

Investment Trigger (Volatility at 50%)

(B) Volatility=0.5

Geometric Brownian Motion

F's Market Share L's Trigger L's Option Value F's Trigger F's Option Value
0.5 5.54222 3.2679 17.0298 24.8152
0.4 4.64708 1.58888 21.2872 24.8152
0.3 4.22407 0.795429 28.383 24.8152
% Change in Market Share % Change in L's Trigger |% Change in L's Option Value (% Change inF's Trigger|% Change in F's Option Value
-20.00% -16.15% -51.38% 25.00% 0.00%
-40.00% -23.78% -75.66% 66.67% 0.00%
Arithmetic Brownian Motion
F's Market Share L's Trigger L's Option Value F's Trigger F's Option Value
0.5 3.963382 0.0056683 8.76596 2.03991
0.4 3.9511 0.000385044 10.766 1.63193
0.3 3.95002 4.8511E-06 14.0993 1.22395
% Change in Market Share % Change in L's Trigger|% Change in L's Option Value (% Change inF's Trigger/% Change in F's Option Value
-20.00% -0.31% -93.21% 22.82% -20.00%
-40.00% -0.34% -99.91% 60.84% -40.00%

Base Parameters: r=0.2, =0.01,K=20
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Table 8 Geometric Brownian Motion Process v.s. Arithmetic Brownian Motion Process ~ Market Share v.s. Option Value

v.s. Investment Trigger (Volatility at 75%)

(C) Volatility = 0.75

Geometric Brownian Motion

F's Market Share L's Trigger L's Option Value F's Trigger F's Option Value
0.5 7.53495 8.01664 24.3534 44.088
0.4 5.51594 3.68076 30.4418 44.088
0.3 4.6931 1.91573 40.5891 44.088
% Change in Market Share % Change in L's Trigger|% Change in L's Option Value (% Change inF's Trigger/% Change in F's Option Value
-20.00% -26.80% -54.09% 25.00% 0.00%
-40.00% -37.72% -76.10% 66.67% 0.00%
Arithmetic Brownian Motion
F's Market Share L's Trigger L's Option Value F's Trigger F's Option Value
0.5 4.02502 0.0435887 9.16112 3.02779
0.4 3.96303 0.00635414 11.1611 2.4224
0.3 3.95078 0.000300902 14.4945 1.81668
% Change in Market Share % Change in L's Trigger |% Change in L's Option Value (% Change inF's Trigger|(% Change in F's Option Value
-20.00% -1.54% -85.42% 21.83% -19.99%
-40.00% -1.84% -99.31% 58.22% -40.00%

Base Parameters: r=0.2, a=0.01,K=20
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Figure 1 Leader’s/Follower’s Value Functions in the Complete Market
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Figure 2 Follower’s Value Function in the Incomplete Market (Representative)
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Figure 3 Leader’s/Follower’s Value Functions in the Incomplete Market

(If Leader keeps larger market share upon Follower’s Entry)
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Figure 4 Geometric Brownian Motion Process ~ Volatility v.s. Option Value v.s. Investment Trigger (Co-share Market)

a) L
Value | /
20 L
30 35
-20
Project Trigger Value

Blue- Volatility:0.25; Red- Volatility:0.5; Light Blue- Volatility:0.75
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Figure 5 Arithmetic Brownian Motion Process ~ Volatility v.s. Option Value v.s. Investment Trigger (Co-share Market)

Value

10 |

Blue- Volatility:0.25; Red- Volatility:0.5; Light Blue- Volatility:0.75

Project Trigger Value

PS: The figure assumes the lower bound of the investment income stream is bounded below from zero.
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