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ABSTRACT
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The colossal amount of information available online has resulted in overloading

users who need to navigate this information for their routine requirements. Although

search engines have been effective in reducing this information overload, they support only

keyword searches and queries that use Boolean operators. There are certain application

domains where more expressive ways of searching are necessary. Consider searching a full-

text patent database for documents containing more than n occurrences of a particular

pattern, or for documents that have a particular pattern followed by another pattern

within a specified distance. Such complex patterns involving pattern frequency and

sequence of patterns, as well as patterns involving proximity, structural boundaries and

synonyms are not supported by current search engines. Users searching documents based

on focused, precise semantics may need to specify such patterns. This calls for a document

retrieval system (pattern specification language as well as an efficient detection engine)

that allows such expressive patterns.
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Presently, we have an expressive pattern specification language and detection algo-

rithms that work on stream data. That is, data coming as a stream of text (or converted

to a stream of text) is fed into the Pattern Detection Graph (PDG) using a dataflow

approach. This is suitable and required for searching patterns over frequently updated

data sources, such as news feeds, IP packets, etc., in order to ensure freshness of the

search results. However, this approach is inefficient and unwarranted for searching pat-

terns over data sources that are extremely large or relatively static, or where freshness

is not critical (e.g., Web repositories). For such large data sources, streaming approach

becomes impractical. One alternative is to use a pre-computed (or computed off-line)

index over the stored documents to efficiently detect expressive queries.

This thesis investigates the type of information needed as part of the index to detect

patterns that include frequency, proximity and sequence of patterns, phrases, synonyms,

etc. We present algorithms for each operator that uses the index and detects the pattern.

The thesis also deals with grouping of common subexpressions and their detection in an

efficient manner. We describe InfoSearch, a system for accepting complex patterns and

retrieving the documents that contain the patterns, by using an inverted index over

the document collection. InfoSearch allows specification of patterns that include word

frequency, proximity, sequence or structural boundaries using a Pattern Specification

Language (PSL). For searching these patterns and retrieving the matching documents,

InfoSearch uses Pattern Detection Graphs to filter the results returned by the index.

Interestingly, very little additional information is needed in the index to detect all

the patterns that were detected by the streaming approach. Furthermore, the complexity

of the algorithms is not very different from the earlier approach.
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CHAPTER 1

INTRODUCTION

A huge amount of information is available today in digital format. With the ex-

ponential rate of growth in the amount of electronic information, the problem of how to

access context relevant information has become an important one, and has received a lot

of attention in the last decade. Users want quick access to information which is relevant

to what they are looking for.

1.1 Information Access Methods

Database Management Systems (DBMS) were the first step in the direction of

organizing and accessing large amounts of information. They allow efficient storage of

data, and provide a query language such as SQL to effectively retrieve information from

the data store. However, since DBMSs use a relational model, they restrict the form

of the data being stored to be structured in nature. Second, the query languages for

DBMSs are structured, and not very easy to learn and use. Also, access to the DBMS

is typically permitted to only a small group of users, thus making it a tightly controlled

system.

A much larger volume of textual data resides in unstructured documents such as

text files, HTML files and documents created in various other formats. As a consequence,

Information Retrieval (IR) evolved as a mechanism to search such a collection of docu-

ments based on user queries. The Information Retrieval Query Languages (IRQLs) are

typically simpler to use than DBMS query languages. They allow users to specify queries

1
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using keywords and Boolean operators, thus making it easier and quicker to find the

required documents.

With the advent of the World Wide Web (WWW), the amount of information

available in document form has surged exponentially. Searching the WWW effectively

became a major research area, and brought IR to the forefront. Web Search engines

adapted IR techniques to satisfy information need on the WWW, and are discussed

below.

1.2 Search Engines

Search engines generally use a program called a crawler to fetch documents from

the Web. These documents are parsed to extract tokens (keywords). In some cases,

the documents themselves are stored [1]. The tokens generated from each document

are used to populate an inverted index. An inverted index essentially stores a mapping

from a keyword occurrence to a list of documents that contain that keyword. Billions of

documents are indexed by Search Engines, and hence the efficiency of the index is crucial.

It has to make efficient use of disk space, and also provide quick lookups for millions of

queries per day. User queries, specified mostly in the form of keywords, are evaluated

against this index using some variation of the vector similarity model [2]. The results of

the lookup are usually sorted in descending order of relevance, according to a ranking

algorithm. The Boolean operators AND, OR, and NOT, and exact phrase matching are

also allowed in some cases. Search Engines have been instrumental in enabling users to

quickly find the information they need on the Web from billions of documents. They

have become starting points for information exploration on the Web.
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1.3 Complex patterns

Although current Search Engines are convenient for doing keyword searches, in

domains such as federal intelligence, fugitive tracking and searching full-text patent in-

formation, there is a need to detect more complex patterns in data sources. Users in

these domains may have more precise requirements in terms of what they are searching

for, i.e., they may be searching for patterns that are more specific. These patterns may

involve term frequency (e.g., at least 5 occurrences of the phrase “protein clustering”),

proximity with sub-patterns (e.g., “peptide” near “saccharide”, in any order, within 5

words of each other), sequence of sub-patterns (e.g., “DNA” followed by “modification”)

and so on. Further, the patterns that need to be detected may be arbitrarily complex;

that is, they may need to be specified in terms of other patterns (e.g., (“militant” fol-

lowed by “bomb”) near “iraq”, separated by 5 positions or less). Current IR systems and

Search Engines do not provide a means to specify and detect such complex patterns. In

other words, the expressiveness of query specification provided by current Search Engines,

although satisfactory for general searches, is not adequate for certain applications.

1.4 Nature of data sources

The data sources over which these complex patterns need to be detected can be

divided into two categories. The first category is a dynamic data source, such as a news

feed, in which the data inflow is frequent and unpredictable. The second category is a

relatively static source of documents, which do not get updated on a very frequent basis,

e.g., Web repositories. Monitoring a dynamic source essentially entails streaming in the

data to detect the required patterns. In other words, to detect a pattern, the entire data

source must be read every time. This is expensive, but unavoidable, because of the fast-

changing nature of the data source. Also, if freshness of the search results are important



4

to the user, it becomes necessary to read the data source every time while processing a

query. However, if the data source is relatively static, it is redundant and inefficient to

read the entire source each time a pattern is to be detected. A better approach would

be to build and leverage some kind of meta data on the source. Specifically, the data

source could be indexed, as is done by Search Engines, and the information in the index

could be used for answering queries. Since the index would be computed off-line, this

approach may result in an occasional out-of-date search result. However, considering that

the data source is not a frequently updated one, we can assume this is acceptable to the

user. For such relatively static data sources, the gains in terms of efficiency of retrieval

that leveraging an index will bring outweigh the slight disadvantage of an occasional

out-of-date result.

1.5 Problem statement

Searching complex patterns over dynamic streams has been studied and shown to be

possible in [3], in which a suite of complex operators and their algorithms were developed

that detect complex patterns over stream data. However, for static data sources, none

of the known Search Engines support anything more complex than keyword searches

and simple Boolean compositions of keyword searches. It is possible to apply the same

technique that is used to detect complex patterns in dynamic sources, to detect patterns

over stored data repositories. That is, the stored data could be artificially converted

into a stream and fed to the detection engine each time a pattern is to be detected.

However, this is bound to be inefficient because of redundant reads of the data source

which is not updated very often. The inefficiency will be exacerbated as the data source

grows larger. Efficiently detecting complex patterns over large, static data repositories is

certainly required in many application domains like searching full-text patent databases,

federal intelligence, analysis of logs, etc.
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The technique for searching complex patterns over streams in [3] makes use of

the sequential inflow of patterns by reading the entire data source to detect a pattern.

However, if we use an index instead of streaming in the data, we lose the sequence of

occurrence of patterns in the data. This order of occurrence of patterns is the key to

detecting patterns based on proximity, containment, sequence, etc. The main objectives

of this thesis are to:

• Identify what information is needed in the index to correctly and efficiently detect

complex patterns which can presently be detected using a streaming approach.

• Investigate whether complex patterns, which can be detected by streaming in the

entire data source, can be detected using information stored in an index.

• Explore the extent of the complexity of the patterns that can be detected using

indexed information.

This thesis proposes a framework in the form of a system that allows specification

of complex patterns, and an efficient computation model for detecting these patterns over

a given document set.

1.6 Contributions

The main aim of this work is to answer the question: Given a collection of docu-

ments, how does one support search for complex patterns over the document collection

in an accurate and efficient manner? From the point of view of the user, enabling com-

plex pattern search allows for more expressive query specification. A system has been

developed that clearly separates pattern detection from index lookup. This facilitates

replacement of the index part without affecting the pattern detection part. A complete

set of operators, such as frequency, proximity, containment, non-containment, sequence

and synonyms, which work on stream data in the predecessor system, InfoFilter [3], have

been developed to work on data retrieved from an index. These operators are designed
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Figure 1.1 High level design of InfoSearch

such that they can take result sets from the index and generate output result sets accord-

ing to the semantics defined for that operator. Since the order of occurrence of patterns

is lost as a result of working with indexed information, the operators reconstruct this

order to generate appropriate result sets. Essentially, detection of arbitrarily complex

patterns is being enabled on a static document set, with a granularity of pattern specifi-

cation that is finer than that offered in current IR systems and Web Search Engines. Fig.

1.1 outlines the InfoSearch system, which takes the user query specified in an expressive

Pattern Specification Language (PSL), queries the integrated index, uses the WordNet

synonym tool to look up synonyms if required, and returns the output to the user.

The organization of the rest of this document is as follows: Chapter 2 reviews the

related work. Chapter 3 goes into the details of the working of InfoSearch operators.

Chapter 4 discusses the design of InfoSearch. Implementation aspects are discussed in

Chapter 5. Chapter 6 concludes the thesis and identifies some potential future directions.



CHAPTER 2

RELATED WORK

Research in the field of Information Retrieval (IR) started in the 1950s, as the need

for rapid access to stored documents was felt. In the last decade or so, there has been a

tremendous acceleration in research and development in IR, due to the proliferation of

electronic information on the World Wide Web. The models studied and developed for

traditional IR systems are the backbone for all modern Web Search Engines. The main

models are the Boolean model, the Vector Space model and the Probabilistic model,

which are described below.

2.1 The Boolean model for IR

Boolean models allow users to specify their queries using a composition of AND,

OR and NOT operators. The Boolean model is a clean and simple model, and hence

was used in initial IR systems [2]. The model has its basis in set theory - if a document

contains exactly the pattern specified by the query, then the document is selected as

being relevant. The AND operator essentially performs set intersection, OR does set

union and NOT does set difference. The disadvantage of the Boolean model is that it is

inherently precise - there is no room for partial matches to a query. For example, if there

is a query like “cancer” AND “treatment”, a document containing several occurrences of

“cancer” and “remedy”, but no occurrence of “treatment” will not be selected as relevant,

although it may potentially contain useful information regarding cancer treatment. The

Boolean model’s retrieval strategy is based on a binary decision criterion, i.e., a document

is either predicted to be relevant or non-relevant, without any notion of a grading scale.

7
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The vector space model sought to overcome this shortcoming of the Boolean model, and

is described next.

2.2 The Vector Space model

In the vector space model, documents and queries are represented as vectors in an

n dimensional space, where n is the number of terms in the entire vocabulary set [4].

Thus, if a term belongs to a document, it gets a non-zero value along the dimension

corresponding to the term.

Selection of a document against a query is done by assigning a score for the docu-

ment against the query. This score is computed by measuring the similarity of the query

with the document. Typically, the cosine of the angle between the query vector and the

document vector is taken as a measure of similarity: 1.0 implies a perfect match, and

0.0 implies orthogonality. Based on the importance of the terms in the query and the

documents, weights are assigned to every term in the query and document. How these

weights are assigned differs from system to system. Typically, the term frequency, tf

(number of times the term occurs in the document) and the inverse document frequency,

idf (in how many documents does the term occur? The more number of documents it

occurs in, the lesser is its discriminating power in identifying a document) are used to

compute weights for terms. If
−→
D is the document vector and

−→
Q is the query vector, the

similarity of document D with query Q is given by:

Sim(
−→
D,

−→
Q ) =

∑

ti∈Q, D

wtiQ · wtiD

where wtiQ is the weight of term i in the query, and wtiD is the weight of term i

in the document. Hence, the final score for the document depends on how many query

terms occur in the documents, and the weight of these terms in the document as well as

the query. Importantly, if one or more query terms do not occur in the document, the
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document can still have a score because of the presence of some other query terms. This

allows for partial matches.

The vector model has been found to be the most effective retrieval model for key-

word based searches, and hence a variation of this model is used in most of the current

IR systems.

2.3 Probabilistic models

Probabilistic models are motivated by the observation that the relevance of a docu-

ment to a query is related to the probability of the query terms occurring in the document.

Because true probabilities are not available to a system, the system has to estimate the

probability of relevance of documents to a query. The probability estimation technique

is the key part of the model, and different techniques have been proposed in the litera-

ture [5] [6]. Only the basis of the models is described here.

The probability of relevance of a document D can be represented by P (R|D). We

can rank documents based on logP (R|D)

logP (R|D)
, where P (R|D) is the probability that the docu-

ment is non-relevant. By applying Bayes’ transform to this ratio, we obtain P (D|R).P (R)

P (D|R).P (R)
.

Assuming that P (R) is independent of the document under consideration, P (R) and

P (R) are simply scaling factors for the final document scores, and hence can be canceled

out. This leaves us with P (D|R)

P (D|R)
as the score formula. After this point, different systems

diverge based on the assumption behind the estimation of P (D|R).

2.4 Applying IR techniques to the Web: Search Engines

Because the Web is an extremely large, heterogeneous and uncontrolled collection

of documents as opposed to the more controlled, smaller document repositories for which

standard IR techniques were designed, Search Engines have adapted and extended stan-
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dard IR models to be effective. The volume of documents on the Web is much higher than

that in controlled, closed IR systems, and hence standard IR techniques by themselves

do not produce good results. Standard IR techniques try to return the documents that

most closely match the query, given that both the query and document are represented

by their word occurrences. On the Web, this strategy returns very short documents that

contain the query plus a few words. Search Engines try to add other factors to the rank-

ing process for documents including external (meta) information about the documents,

references to documents from other documents, etc. Retrieval strategies of two popular

Search Engines, Lycos and Google are discussed in this section.

2.4.1 Lycos

Lycos was one of the earliest commercial Web Search Engines [7]. It uses a breadth

first technique for ”foraging” (crawling) the Web to locate documents. Once a document

is located, an automated “abstract” of the document is generated and stored. The

“abstract” contains a concise description of the documents, by including the 100 most

“weighty” words in the document. This results in space saving, because the “abstract”

is only about one-fifth of the actual document in size.

Lycos uses inverted file indexing, or a postings file, which stores a mapping from

a keyword to a list of documents that contain the keyword, along with additional infor-

mation such as a list of all positions in the document in which the word occurs. Storing

the positions allows the Search Engine to efficiently check proximity or adjacency during

retrieval, so that documents in which the query keywords appear closer can be ranked

higher. Inverted file indexing allows for much faster retrieval than a sequential scan of

the database. Lycos ranks the results according to a relevance ranking based on number

of query terms contained in the document, frequency of occurrence of these terms, prox-

imity of query terms, position of occurrence of the query terms, etc. Query support is in
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the form of keywords and Boolean compositions of keywords. Complex queries including

proximity, containment, etc. are currently not supported.

2.4.2 Google

Google [1] is perhaps the most popular Web Search Engine in existence today.

It uses highly optimized data structures in order to crawl, index and search the large

collection that the Web is. It stores the pages fetched by the crawler in compressed form

in a repository. It has a document index, which is a fixed width ISAM index, to keep

information about each document. It also has a lexicon, forward index and an inverted

index to facilitate rapid access to document lists.

Google maintains much more information about each document than other Search

Engines do. It maintains position, font and capitalization information for the keywords.

Google computes a PageRank [8] for each page that is indexed. The PageRank algorithm

uses the number of sites linking to a page as a measure of quality of that page. Essentially,

a hyperlink is like a citation, and the more the number of hyperlinks to a page, the more

popular and important it is assumed to be. Thus, a page can have a high PageRank if

there are many pages that point to it, or if there are some pages that point to it that

have a high PageRank. Google also associates anchor text (description of a hyperlink in

Web pages) to the page it is pointing to, because anchors often provide more accurate

descriptions of pages than the pages themselves. In order to rank a document with a

single word query, Google looks at the document’s “hit list” for that word. Each hit

can be one of several types (title, anchor, URL, large font, etc.), each of which has

its own type-weight. The count of each type of hit is converted into a count-weight.

The dot product of the vector of count-weights and the vector of type-weights is taken to

compute an IR score for the document. This score is combined with the PageRank to give

a final rank to the document. Keyword queries are supported in the main interface, and
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there is also a provision to specify Boolean compositions of queries and phrases using

an “Advanced Search” screen. However, complex queries based on pattern frequency,

proximity, non-occurrence of a pattern within two patterns are not currently supported.

2.5 The INQUERY retrieval system

INQUERY [9], developed at the University of Massachusetts at Amherst, is based

on a form of the probabilistic retrieval model called the inference net. Inference nets

[10] provide the capability to specify complex information needs, and compare them to

document representations. INQUERY uses a Bayesian inference network (or Bayes net),

which is a directed acyclic graph (DAG) in which nodes represent propositional variables

and arcs represent dependencies. The Bayes net in INQUERY consists of two component

networks: one for documents, and one for queries.

The operators supported by INQUERY include and, or, not, a phrase operator and

also an operator that handles proximity between patterns. In addition, one can specify

how the “beliefs” of the specified arguments are to be weighted by the system. In other

words, specification of a particular argument as being more important that the others

can be done. However, there are no operators for sequence of patterns, pattern frequency,

synonyms and containment.

2.6 InfoFilter: A system to detect complex patterns over text streams

InfoFilter [3], developed at The University of Texas at Arlington, enables complex

pattern detection over dynamic data sources. It supports a number of operators such

as proximity, sequence, pattern frequency, non-containment in addition to keyword and

phrase searches. It also has an option to look for occurrences of synonyms of a given

word, by making use of the WordNet synonym database [11]. InfoFilter continuously
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tokenizes incoming streams and uses a graph structure to detect user specified patterns

in real time. The architecture of InfoFilter is shown in Figure 2.1.

The user specifies a pattern using an expressive Pattern Specification Language

(PSL). The user pattern is validated and passed to the graph generator, which internally

represents the pattern as a Pattern Detection Graph (PDG). Leaf nodes of the PDG

correspond to simple patterns such as keywords, phrases and system defined patterns

such as structural boundaries. Internal nodes of the PDG correspond to operators. The

graph generator also extracts keywords and phrases from the user patterns and inserts

them into a data structure called a suffix trie. A suffix trie enables quick lookups of strings

or their suffixes [12]. The graph generator also interacts with the WordNet database to

extract synonyms for a keyword, if necessary. InfoFilter has a stream processor for each

kind of text stream it handles, such as text, e-mail, HTML, etc. The stream processor

parses the incoming stream and generates tokens. These tokens are looked up in the

suffix trie, and if a match is found, the corresponding leaf node in the PDG is triggered.

This means, information regarding the keyword or phrase occurrence is passed to the

PDG. The operators combine occurrences of their children to detect complex patterns

according to the Proximal-Unique semantics (refer Section 3.2).

This thesis (InfoSearch), extends the capabilities of InfoFilter to search over a stored

set of documents by using an index over the documents. Since the same operators are

used to specify patterns in InfoSearch, we give an overview of the operators below [3] [13]:

OR: Disjunction of two simple or complex patterns P1 and P2 is denoted by (P1 OR

P2) and occurs when either P1 or P2 occurs. For example, “information” OR “retrieval”

occurs when either one of the keywords occurs.

NOT: Non-occurrence of the pattern P2 in the interval formed between the end of the

pattern P3 and the beginning of the pattern P1 is denoted by NOT[/F](P2)(P1, P3). F

denotes the maximum number of permissible occurrences of P2 within P1 and P3, for
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the NOT expression to evaluate to true. For example, NOT/2(“filtering”)(“information”,

“retrieval”) occurs when “information” is followed by “retrieval” with “filtering” occur-

ring at most twice in between. If F is unspecified, the system operates with a default

value of 0.

NEAR: This operator is similar to a conjunctive (AND) operator, but it allows specifi-

cation of an optional distance. (P1 NEAR[/D] P2) occurs when the simple or complex

patterns P1 and P2 co-occur, in any order, separated by a maximum of D words. For ex-

ample, (“information NEAR/10 “retrieval”) will be detected if the two keywords co-occur

within a distance of 10. If D is unspecified, the system simply checks for co-occurrence

of the operands, without checking for distance (or the whole stream or document is used

as the distance).
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FOLLOWED BY: Sequence of two simple or complex patterns P1 and P2, denoted

by (P1 FOLLOWED BY[/D] P2) occurs when the occurrence of P1 is followed by the

occurrence of P2 within D words of each other. If D is unspecified, the operator will

detect the sequence irrespective of the distance separating the operands.

WITHIN: This operator is used for detecting containment of a pattern within predefined

structural boundaries. Occurrence of a simple or complex pattern P2 within structural

patterns P1 and P3 is denoted by (P2 WITHIN (P1, P3)). The pattern is detected

each time P2 occurs in the range formed by P1 and P3. For example, (“information

retrieval”) WITHIN (beginPara, endPara) is detected whenever the phrase “information

retrieval” occurs within the scope of a paragraph.

FREQUENCY: Multiple occurrences of a simple or complex pattern P that exceed or

are equal to F is denoted by (FREQUENCY/[F](P)). For example, the pattern FRE-

QUENCY/5(“information” NEAR “retrieval”) is detected whenever the enclosed NEAR

expression occurs 5 times or more.

SYN: This is an option used with single word patterns to specify lookup of either the

keyword itself or any of its synonyms. For example, (“mining”[SYN]) will result in the

same output as would (“mining” OR “excavation”): the system internally extracts the

synonyms and detects the pattern if either the word or any of its synonyms are found.

InfoFilter has been designed for detecting complex patterns over streaming data

sources. A näıve approach for detecting complex patterns over stored documents would

be to artificially convert the stored documents into a stream by reading the entire data

source and tokenizing it, and then feeding the resulting stream to InfoFilter. However,

since this approach requires reading of the entire data source every time to detect a

pattern, it is redundant for stored, slow-changing documents and inefficient for large

document collections. InfoSearch seeks to enable detection of complex patterns with
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the same semantics over a stored repository, by detecting patterns over an index on the

document store for efficiency.

2.7 Summary

IR systems started out with the intention of providing quick references to docu-

ments in a large collection. The Boolean model of IR, although simple, was found to be

simplistic for large collections, and was superseded by other models. The vector simi-

larity model was generally accepted as the best model, and is used in the core of most

IR systems in use at present. Initially, the document collection was relatively small and

controlled. With the advent of the Web, as the nature of the documents to be indexed

became heterogeneous and the number of documents soared to millions, new techniques

had to be devised to adapt traditional IR to the Web.

However, we observed that neither traditional IR systems nor Web search engines

support more than keyword lookups and Boolean operators over keywords, and in some

cases, phrases. Although this works fine for general purpose searching, certain applica-

tions like searching patent databases demand more expressive query support, which is

not provided in the current search systems. This problem has been addressed for stream

data in the previous work (InfoFilter) on extending the expressiveness of patterns. There

is a need for systems which can allow users to pose complex patterns, and detect these

patterns efficiently over a large document collection. Since using an index is an efficient

way for searching on keywords, we extend the index based approach to detect complex

patterns, hopefully preserving efficiency and at the same time enhancing the expressive-

ness of queries significantly.



CHAPTER 3

INFOSEARCH OPERATORS

InfoSearch accepts complex queries from the user, searches an index built on a

collection of documents, and returns a list of documents that contain the specified pattern.

It also returns the starting and ending position of each pattern occurrence within a

document. The system can be broadly divided into two components. First, an expressive

query language through which the user can specify patterns involving term frequency,

sequences, proximity and containment is required. Second, a pattern detection engine

is required. This engine should be capable of getting the required information from the

index, and processing this information to generate results in response to a user query.

InfoSearch adopts the Pattern Specification Language (PSL) and its associated parser

and pattern validator used in InfoFilter [3], with some minor changes. Hence, we do not

describe the details of the Pattern Specification Language, other than the basic syntax for

specifying queries. The focus of this research is on the second part, namely the detection

of complex patterns over large document repositories.

3.1 Inverted indexes

One way of indexing a document collection is to store a mapping from each doc-

ument to all the words it contains. In this case, if we need to search for a keyword, it

becomes necessary to scan the word lists corresponding to each document and check if

the keyword occurs in the document. This results in a sequential scan of the database,

and would be inefficient as the size of the document collection increases. An alternative

is to use inverted indexes, which are described next.

17
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The inverted index (also called an inverted list) is the most common mechanism

used in Search Engines to maintain a mapping from a keyword to the documents that

contain the keyword. Given a collection of documents, document IDs are assigned to

each document. A document ID uniquely identifies a document. The basic information

stored in the inverted index is just a keyword - document ID mapping. For example,

a sample set of documents is shown in Table 3.1 and the corresponding inverted index

is shown in Table 3.2. This information is sufficient to answer simple keyword queries

and queries involving Boolean operators. In other words, given a keyword, we can return

document IDs of documents that contain at least one occurrence of that keyword. For

example, in the given example, if the user is searching for “information” AND “retrieval”,

the intersection of the document IDs corresponding to the keywords “information” and

“retrieval” gives us the desired result (documents 1 and 3 in this example).

Table 3.1 A sample set of documents

Document ID Document contents
1 information retrieval
2 Specifying complex queries
3 information on information retrieval

Table 3.2 Inverted index on documents in Table 3.1

Keyword Documents
information 1,3

retrieval 1,3
Specifying 2
complex 2
queries 2

on 3
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However, to answer queries involving proximity, sequences, frequency and con-

tainment, this information is not sufficient. First, the above scheme does not store

information about every occurrence of a keyword. It only provides information about

the presence or absence of a term within a document. Second, to answer such complex

queries, we need to compute the distance between two given patterns, and also the rel-

ative order of occurrence of these patterns. For example, a query such as “information”

NEAR/2 “retrieval” cannot be answered using information from such an index, because

the distance between occurrences of “information” and “retrieval” within a given docu-

ment needs to be computed. This distance cannot be computed given just the document

which the patterns belong to. The position of every occurrence of the keyword within a

document must also be provided by the index [14]. Table 3.3 shows an inverted index

generated on the documents in Table 3.1 with the position information stored.

Table 3.3 Inverted index with position information

Keyword Documents with position
information 1<1>, 3<1,3>

retrieval 1<2>, 3<4>
Specifying 2<1>
complex 2<2>
queries 2<3>

Hence, InfoSearch needs at least the document ID and the position of a given

keyword from the index with which it is integrated, in order to detect complex patterns.

One of the main goals of this research was to assess whether this information is sufficient

to enable complex pattern detection over an index, if the same patterns can be detected

by reading the data source in sequence. In other words, this thesis answers the proposition

“Can all the operators that are supported by systems which stream in the data source
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10 15 20 28 34

cell cell protein nucleic clustering nucleic

41

Figure 3.1 Example document for discussion of Proximal-Unique semantics

every time, be supported by leveraging an index over the documents containing the

document ID and position information of keywords?” affirmatively and presents the

algorithms for each operator which can be used to detect complex patterns.

3.2 Proximal-Unique semantics

Consider a document containing occurrences of words as shown in Figure 3.1. Sup-

pose we want to find occurrences of “cell” FOLLOWED BY “nucleic” within this docu-

ment. As seen in the figure, there are two occurrences of “cell”, one occurring at position

10, say cell1 and the other at position 15, say cell2. The occurrences of nucleic are at

position 28 and 41, say nucleic1 and nucleic2 respectively. We could combine either cell1

with nucleic1, or cell2 with nucleic1, or cell1 and cell2 both with nucleic1 as occurrences

of the combined pattern “cell” FOLLOWED BY “nucleic”. However, it makes more in-

tuitive sense to combine only the closest occurrences, because closely occurring patterns

are more likely to be of interest for a search as the correlation here is measured in terms of

proximity. Hence, we discard the occurrence of cell1 and combine cell2 with nucleic1. In

other words, occurrence of a pattern in a document supersedes its previous occurrence in

the document as far as semantics for combining with another pattern are concerned. In

the above example, cell2 is called the initiator because it initiates the pattern detection,

and nucleic1 is called the terminator, because its occurrence results in the pattern being

detected.



21

Second, sub-patterns once used are not used for detecting another instance of the

same pattern. For example, it does not make intuitive sense to combine cell2 with

nucleic2, because cell2 has already been used in a combination. Combining it with

nucleic2 will result in the detection of another instance of the same pattern using a

previously used sub-pattern. The Proximal-Unique semantics has been defined to take

this intuitive sense into consideration when detecting a pattern by applying restrictions on

the usage of sub-patterns. It is important to understand that the general interpretation

of the operators detects patterns that may not be intuitive.

As another example, suppose we want to find the occurrence of (“cell” FOLLOWED

BY ‘nucleic”) NEAR (“protein” FOLLOWED BY “clustering”). According to the se-

mantics discussed above, “cell” FOLLOWED BY ‘nucleic” occurs in the interval (15,

28) and “protein” FOLLOWED BY “clustering” occurs in the interval (20, 34). The

sub-patterns satisfy the condition of being proximal, and of being the most recent un-

combined occurrence of their type. However, it does not make intuitive sense to combine

them because they overlap each other. Hence, the pattern (“cell” FOLLOWED BY ‘nu-

cleic”) NEAR (“protein” FOLLOWED BY “clustering”) does not occur in the document,

because intuitively, only disjoint sub-patterns should be combined. The NEAR operator

used here assumes non-overlapping (disjoint) NEAR for composite patterns (This prob-

lem does not arise for a simple pattern or a word) and hence the above pattern is not

detected. It is also possible to define another NEAR operator that allows overlaps for

composite patterns. This thesis does not address the overlapping semantics.

InfoSearch operators use the Proximal-Unique semantics to combine patterns to

generate result sets.
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3.3 Pattern Detection Graphs

To facilitate detection of complex patterns, InfoSearch uses a data structure called

a Pattern Detection Graph (PDG). A query submitted to InfoSearch is converted into a

PDG. Leaf nodes of the PDG correspond to simple patterns such as keywords, phrases or

system defined patterns. Internal nodes correspond to complex patterns and encapsulate

the logic of the corresponding operator. For example, the PDG corresponding to the

pattern “Protein” FOLLOWED BY “clustering” is shown in Figure 3.2. The input to a

leaf node is a set corresponding to the index lookup for the term or phrase represented

by the leaf node. This set consists of <docID, start offset, end offset> tuples. For

example, the set of tuples for the keyword “information” from the index shown in Table

3.3 is shown in Table 3.4. Every node in a PDG has one or more parent nodes (also called

as subscriber nodes), except the root node. Leaf nodes propagate their input sets to their

parent nodes. A parent node, which corresponds to one of the InfoSearch operators such

as OR, NEAR, FOLLOWED BY, WITHIN or NOT, thus gets one or more sets of tuples

as its input. The operator merges its input sets according to its semantics to create

an output set. The InfoSearch operators use Proximal-Unique semantics to merge their

input tuples. After the merged set is created, it is propagated to the parent node of the

operator. This process of propagating merged sets continues all the way up to the root.

The merged output of the root operator corresponds to the result set for the query.

An important thing to note is that tuples corresponding to word occurrences in

a document are point tuples, i.e., the start offset and end offset of such tuples is the

same. This is because a word occurs at a single position within a document. On the

other hand, a tuple corresponding to a more complex pattern is an interval tuple, i.e.,

its start offset is smaller than its end offset. This is because a complex pattern such

as “Protein” FOLLOWED BY “Clustering” occurs in an interval within the document.

The range of this interval is the start offset of the initiating sub-pattern and end offset
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to parent

Clustering

FOLLOWED
BY

ProteinD1 <10, 10> D1 <12, 12>

D1 <10, 12>

Figure 3.2 PDG corresponding to “Protein” FOLLOWED BY “Clustering”

of the terminating sub-pattern. For example, in Figure 3.2, the tuples corresponding to

“Protein” and “Clustering” are point tuples, but the tuple corresponding to the combined

pattern “Protein” FOLLOWED BY “Clustering” is an interval tuple. Thus, operators in

InfoSearch may get either point tuples or interval tuples as their input, and their output

will be, in most cases, interval tuples.

Table 3.4 Set of tuples corresponding to occurrences of “information”

1<1,1>
3<1,1>
3<3,3>

3.4 Operator algorithms

To allow users to specify more expressive queries, InfoSearch supports the following

operators: OR, FREQUENCY, NEAR, FOLLOWED BY, WITHIN and NOT. The se-

mantics of these operators are almost identical to the corresponding InfoFilter operators
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described in Section 2.6. However, the working of InfoSearch operators is different from

that of the InfoFilter operators. InfoFilter operates by reading in the data source sequen-

tially, and passing simple pattern occurrences to the respective PDG nodes as and when

they occur while the data is being read. Because the data is read sequentially, simple

patterns are detected in their order of occurrence in the data source. As a result, at any

operator, the initiator is always available when the terminator arrives. The occurrences

can then be combined and propagated, or discarded, as per the semantics of the operator.

However, in InfoSearch the entire result set corresponding to a pattern is propagated

at once. This means that the relative order of occurrence of the operands is lost, because

each operand is a set containing all occurrences of the pattern corresponding to that

operand in the document collection. Hence, to generate correct results, the InfoSearch

operators need to restore the order of occurrence of patterns as in the original document.

This is crucial in order to determine which operand is the initiator and which one is the

terminator. Only when the relative order of occurrence and position of sub-patterns is

known, can a decision be made whether they can be combined or not.

The inputs to the operators are sets of tuples containing the document ID, start

offset, and end offset of the corresponding pattern. Each tuple represents a single oc-

currence of the corresponding pattern in the document collection. It is assumed that

these sets of tuples are sorted in ascending order of document ID. The operators have to

process the input sets tuple by tuple. First, they have to ensure that the tuples to be

merged have the same document ID. Second, they have to determine which tuple is the

initiator and which one is the terminator. Tuples satisfying the criteria of the operator

are combined and added to an output set. After the operator is done processing the

input sets, the output set is propagated to its parent.
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3.4.1 The OR operator

The input to the OR operator is two sets of tuples, sorted by document ID, corre-

sponding to the left operand and the right operand. The semantics of the OR operator

dictate that a pattern is detected whenever either of the operands is detected. Hence, the

output of the OR operator should be a union of its input sets, sorted by document ID. It

is necessary for the output set to be sorted by document ID and pattern position within

a document, because the parent nodes assume their inputs to be sorted. The algorithm

of the OR operator is shown below. It generates an output set sorted in ascending order

of the document ID. In cases where the document ID is the same, the output is sorted

in ascending order of the end offset. This is done because the end point of a pattern

determines its occurrence in a document, and the position where the pattern is detected

within a document is critical for the semantics of operators using the Proximal-Unique

context. The OR operator is a non-filtering operator: the number of tuples in its output

set is the sum of the number of tuples in its two input sets. In other words, no tuples

from the input are discarded. Essentially, the OR operator generates a sorted union of

its input sets. The sorting is done on document ID and end offset of the tuples.

OR (leftSet, rightSet)

1: left ⇐ first tuple in leftSet

2: right ⇐ first tuple in rightSet

3: resultSet ⇐ {}

4: while exists(left) OR exists(right) do

5: while left.docID < right.docID do

6: resultSet ⇐ resultSet + left

7: left ⇐ left → next

8: while left.docID > right.docID do
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OR

D1 <10, 11>
D3 <15, 16>

.

.

D2 <13, 14>
D3 <25, 26>

D4 <1, 2>
.
.

D1 <10, 11>
D2 <13, 14>
D3 <15, 16>
D3 <25, 26>

D4 <1, 2>
.
.

"information retrieval"

"search engines"

"information retrieval" OR
"search engines"

Figure 3.3 An example of the working of the OR operator

9: resultSet ⇐ resultSet + right

10: right ⇐ right → next

11: while left.docID == right.docID do

12: if (left.endOffset < right.endOffset) then

13: resultSet ⇐ resultSet + left

14: left ⇐ left → next

15: else

16: resultSet ⇐ resultSet + right

17: right ⇐ right → next

As an example, Figure 3.3 demonstrates the working of the OR algorithm. The

inputs are sets of tuples corresponding to the phrases “information retrieval” and “search

engines”. The operator merges these input tuples to generate an output set corresponding

to “information retrieval” OR “search engines”, in which the tuples are the union of the

input sets, sorted on document ID and end offset.
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3.4.2 The FREQUENCY operator

The FREQUENCY operator is a unary operator; it has a single set of tuples as

its input. It is specified as FREQUENCY/n(P), which means all documents containing

more than n occurrences of pattern P should be selected. The operator essentially keeps

a count of the number of occurrences of P in a given document in the input set. For

every n occurrences of P in a given document, it adds a tuple to its output set. The

pseudocode for the merging done in the FREQUENCY operator is shown below. It is

assumed that if the input set is empty, it is not passed through this algorithm; in such a

case, the operator also propagates an empty set as its output. Using this operator, not

only can documents containing equal to or more than n occurrences of the pattern P be

retrieved, but sections within the document which contain these occurrences can also be

identified.

FREQUENCY (inputSet, n)

1: current ⇐ first tuple in inputSet

2: previous ⇐ null

3: Integer count ⇐ 0

4: Integer startV alue ⇐ − 1

5: outputSet ⇐ {}

6: Tuple outputTuple ⇐ null

7: repeat

8: if current.docID 6= previous.docID then

9: count ⇐ 0

10: startV alue ⇐ − 1

11: if startV alue == − 1 then

12: startV alue ⇐ current.startOffset
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13: count + +

14: if count == n then

15: outputTuple.docID ⇐ current.docID

16: outputTuple.startOffset ⇐ startV alue

17: outputTuple.endOffset ⇐ current.endOffset

18: outputSet ⇐ outputSet + outputTuple

19: count ⇐ 0

20: startV alue ⇐ − 1

21: previous ⇐ current

22: current ⇐ current → next

23: until current = EOF

Figure 3.4 shows an example of the working of the FREQUENCY operator. In the

example, when the counter for D6 becomes 3, the operator generates an output tuple

having the start offset of the first of the three tuples, and end offset of the last of the

three tuples. An output tuple will be generated for every three tuples occurring in one

document. Thus, if three more occurrences of “saccharide” occur in D6, another tuple

will be added in the output set.

3.4.3 The NEAR operator

The NEAR operator is a binary operator. It is specified as P1 NEAR[/d] P2, where

d is an optional distance. This means that occurrences of P1 and P2 within the same

document, separated by not more than d words, should be detected. If d is not specified,

the NEAR pattern is considered to be detected if P1 and P2 occur anywhere within

a document. The relative order of occurrence of P1 and P2 does not matter; P1 may

either follow or precede P2, but P1 and P2 may not overlap as we are currently using

disjoint semantics.
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.
.

"saccharide"

FREQUENCY/
3("saccharide")

Figure 3.4 An example of the working of the FREQUENCY operator

Since the order of occurrence of the operands does not matter, either one can be

the initiator. When the NEAR operator is processing two tuples from the input sets, it

has to make a decision whether the tuples are eligible for combination, and if not, decide

which one to keep and which one to discard. As mentioned earlier, the input tuples may

either be point tuples or interval tuples. To keep the forthcoming discussion generalized,

we assume that the input tuples are interval tuples. We now discuss the different cases

possible when we consider two input tuples, and the actions taken in each case.

3.4.3.1 Discussion of merging strategy in NEAR

The inputs to the NEAR operator are two sets of tuples corresponding to the left

child and the right child, and an optional distance. Let the left set be denoted by L and

the right set by R. Let the distance be denoted by d.

We arbitrarily assign the first tuple from L as initiator, and the first tuple from R

as terminator. Let is and ie denote the start offset and end offset of the initiator, and
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overlap i+1 precedes t i and t form closest pair

Figure 3.5 Some possibilities when ie < te

ts and te denote the start offset and end offset of the terminator. Let i + 1 be the next

tuple from the set which initiator belongs to, and t + 1 be the next tuple from the set

which terminator belongs to.

If initiator and terminator do not belong to the same docID, we advance the

pointer which is pointing to a smaller docID. Since the sets are sorted by docID, this

is similar to a sort-merge operation. When initiator and terminator point to tuples

belonging to the same docID, three cases are possible.

Case 1: ie < te

This means that the assumed initiator ends before the assumed terminator. The differ-

ent possibilities are shown in Figure 3.5. We perform the following sequence of actions:

if initiator and terminator overlap then

lookahead1 to determine new initiator and terminator

go to the beginning of this operation and re-process the new initiator and terminator

if i + 1e ≤ te then

make i + 1 the new initiator, and re-process the new initiator and terminator

else

1The Lookahead algorithm is explained in subsection 3.4.3.2
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ts te

is ie

overlap

ts te

is ie

no overlap

Figure 3.6 Some possibilities when te < ie

this means initiator completely precedes terminator, without any overlap, and there

is no other tuple from the initiator set occurring before terminator. Now, check if

the distance criteria is satisfied.

if ( ts - ie ) ≤ d then

combine initiator and terminator

advance initiator and terminator

else

does not satisfy distance

lookahead to determine new initiator and terminator, re-process them

Case 2: ie == te

This means initiator and terminator overlap (they have the same end offset). Perform

a lookahead, and re-process.

Case 3: ie > te

This means our assumption of initiator and terminator is wrong. The terminator pre-

cedes the initiator, either in an overlapping fashion, or a non-overlapping fashion as

shown in Figure 3.6. In this case, we swap the initiator and terminator pointers, and

re-process.
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3.4.3.2 Lookahead algorithm

A lookahead is done when the current initiator and terminator cannot be combined

due to an overlap, or because the distance criteria is not satisfied. At this point, we cannot

determine which one from initiator and terminator to keep, and which one to discard.

We look ahead one tuple from both sets, and assign the one that occurs first as the new

terminator. The older tuple from the opposite set becomes the new initiator. Three

possibilities exist when we consider the lookahead tuples:

Case I: i + 1e < t + 1e

This means the next tuple in the initiator set occurs before the next tuple in the

terminator set. (We assume they belong to the same docID).

Make old terminator the new initiator

Make i + 1 the new terminator

Case II: i + 1e == t + 1e

This means the next tuples have the same end offset. In this case, we look at the older

pair, and keep the one that occurs later as the new initiator.

if ie < te then

Make old terminator the new initiator

Make i + 1 the new terminator

else

This means initiator and terminator have the same end offset

Keep the initiator

Make t + 1 the new terminator

Case III: i + 1e > t + 1e

Keep the initiator
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Make t + 1 the new terminator

The NEAR operator pseudocode is shown below. It shows how processing of the in-

put sets is done as per the above discussion. The pseudocode for the lookahead routine

used in it is shown subsequently.

NEAR(L, R, d)

1: initiator ⇐ first tuple in L

2: terminator ⇐ first tuple in R

3: while exists(initiator) AND exists(terminator) do

4: while initiator.docID < terminator.docID do

5: initiator ⇐ initiator → next

6: while initiator.docID > terminator.docID do

7: terminator ⇐ terminator → next

8: if initiator.docID 6= terminator.docID then

9: initiator ⇐ initiator → next

10: terminator ⇐ terminator → next

11: continue

12: if initiator.endOffset ≤ terminator.endOffset then

13: if overlap(initiator, terminator) then

14: lookAhead(initiator, terminator)

15: continue

16: if initiator → next.endOffset ≤ terminator.endOffset then

17: initiator ⇐ initiator → next

18: else

19: if (terminator.startOffset − initiator.endOffset) ≤ d then
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20: combine(initiator, terminator)

21: initiator ⇐ initiator → next

22: terminator ⇐ terminator → next

23: else

24: lookAhead(initiator, terminator)

25: else

26: swap(initiator, terminator)

Lookahead

1: if (initiator → next).endOffset < (terminator → next).endOffset then

2: initiator ⇐ terminator

3: terminator ⇐ initiator → next

4: else if (initiator → next).endOffset == (terminator → next).endOffset then

5: if initiator.endOffset < terminator.endOffset then

6: initiator ⇐ terminator

7: terminator ⇐ initiator → next

8: else

9: terminator ⇐ terminator → next

10: else

11: terminator ⇐ terminator → next

Figure 3.7 shows an example of the working of the NEAR operator. To begin,

initiator points to D1 <10, 18> in the left set, and terminator points to D1 <28, 40> in

the right set. Since the next tuple in the initiator set lies completely before terminator,

it is assigned as the new initiator (initiator is advanced). Now, initiator and terminator

point to a proximal pair of tuples, and hence they are merged and added to the output

set as the tuple D1 <21, 40>. When initiator and terminator point to D2 <12, 18> and
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NEAR/
30

D1 <10, 18>
D1 <21, 25>
D2 <12, 18>
D2 <30, 35>
D3 <40, 47>
D4 <60, 80>

.

.

D1 <28, 40>
D2 <15, 20>
D2 <21, 24>
D3 <12, 19>
D4 <12, 20>

.

.

D1 <21, 40>
D2 <12, 24>
D3 <12, 47>

Figure 3.7 Example of the working of the NEAR operator

D2 <15, 20> respectively, an overlap is detected, and hence a lookahead is done in both

sets. The lookahead determines that the next tuple from the right set (D2 <21, 24>)

ends before the next tuple from the left set (D2 <30, 35>). Hence, D2 <21, 24> is made

the new terminator and D2 <12, 18> is retained as the initiator. They are combined

to form the output tuple D2 <12, 24>. Now, initiator points to a D2 tuple while

terminator points to a D3 tuple. Hence, initiator is advanced. Now, initiator (D3 <40,

47>) lies completely after terminator (D3 <12, 19>). Hence, initiator and terminator

are swapped. This makes initiator point to D3 <12, 19> and terminator point to D3

<40, 47>, which form a proximal pair and are merged to give D3 <12, 47> in the output

set. Finally, initiator points to D4 <12, 20>, and terminator points to D4 <12, 20>. In

this case, the distance between them is 40, which is greater than the maximum allowed

distance, i.e., 30. Hence, they are not combined, and a lookahead needs to be done to

determine which one of them should be discarded, and which one kept.
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3.4.4 The FOLLOWED BY operator

The FOLLOWED BY operator is a binary operator, specified as P1 FOLLOWED

BY[/d] P2. This means that documents containing P1 and P2 both, should be selected,

with the restriction that P1 should occur before P2. The occurrences should be separated

by at most d words. As with the NEAR operator, d is optional, and in its absence,

InfoSearch assumes that any occurrence of P1 followed by P2 in a document should be

detected, irrespective of the distance separating them.

The inputs to the FOLLOWED BY operator are two sets of tuples corresponding

to the left child and the right child. According to the semantics of the operator, the

left sub-pattern should occur before the right one in a valid detection; that is, only a

tuple from the left set can be the initiator. Hence, the algorithm for the FOLLOWED

BY operator is a simplified version of the NEAR operator algorithm. In the NEAR

algorithm, we had to perform a lookahead to determine the new initiator and terminator

in case of an overlap. This is not required in FOLLOWED BY, because we know that

only the tuple from the left set can be the initiator. We do not need to swap pointers

at any stage; we simply advance the right set pointer in case of an overlap, or if the

distance criteria is not satisfied. The pseudocode for the FOLLOWED BY operator is

given below.

FOLLOWED BY(L, R, d)

1: left ⇐ first tuple in L

2: right ⇐ first tuple in R

3: while exists(left) AND exists(right) do

4: while left.docID < right.docID do

5: left ⇐ left → next

6: while left.docID > right.docID do
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7: right ⇐ right → next

8: if left.docID 6= right.docID then

9: left ⇐ left → next

10: right ⇐ right → next

11: continue

12: if overlap(left, right) then

13: right ⇐ right → next

14: continue

15: if left.endOffset < right.endOffset then

16: if (left → next).endOffset < right.endOffset then

17: left ⇐ left → next

18: else

19: if satisfiesDistance(left, right) then

20: combine(left, right)

21: left ⇐ left → next

22: right ⇐ right → next

23: else

24: right ⇐ right → next

Figure 3.8 gives a simple example of the working of the FOLLOWED BY operator.

3.4.5 The WITHIN operator

The WITHIN operator is a ternary operator, specified as P2 WITHIN/[d](P1, P3).

This means that documents containing P1 followed by P3, with P2 occurring at least d

times in between, should be selected. d is optional, and if it is not specified, the system

assumes a default value of 1. The operator gets three sets as its inputs, corresponding to

the left, middle and right operand. As with the FOLLOWED BY operator, only a tuple
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FOLLOWED
_BY/6

D1 <10, 15>
D2 <21, 23>

D3 <5, 8>
.
.

D1 <20, 22>
D2 <11, 17>
D3 <21, 27>

.

.

D1 <10, 22>
.
.

Figure 3.8 Example of the working of the FOLLOWED BY operator

from the left set can be initiator. The operator has to look for occurrences of tuples from

the middle set occurring between a tuple from the left set and right set, all having the

same document IDs.

The pseudocode is shown below. Lines 3 through 10 align the left, right and middle

set pointers such that they point to tuples having the same document ID. It takes a left

and right tuple from each document, and checks whether the left tuple occurs before the

right tuple. If so, it checks if there are at least d complete, non-overlapping occurrences

of tuples from the middle set occurring in between. If d middle occurrences are found, it

combines the left and right tuple and adds it to the output set. The output tuple thus

contains the range of occurrence of the pattern.

WITHIN(L, R, M)

1: left ⇐ first tuple in L, right ⇐ first tuple in R, middle ⇐ first tuple in M

2: while exists(left) AND exists(right) AND exists(middle) do

3: while left.docID < middle.docID do
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4: left ⇐ left → next

5: while left.docID < right.docID do

6: left ⇐ left → next

7: while left.docID > middle.docID do

8: middle ⇐ middle → next

9: while left.docID > right.docID do

10: right ⇐ right → next

11: if overlap(left, right) then

12: right ⇐ right → next

13: continue

14: if left.endOffset < right.endOffset then

15: if (left → next).endOffset < right.endOffset then

16: left ⇐ left → next

17: else

18: count ⇐ 0

19: while middle.docID == left.docID do

20: if middle.liesBetween(left, right) then

21: count + +

22: if count == d then

23: combine(left, right)

24: middle ⇐ middle → next

25: break

26: middle ⇐ middle → next

27: if middle.liesAfter(right) then

28: middle ⇐ middle → next

29: break
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WITHIN/2

D1 <5, 10>
D2 <10, 12>

D3 <4, 6>

D1 <20, 25>
D2 <25, 30>
D3 <18, 20>

D1 <12, 16>
D2 <15, 18>
D2 <21, 23>
D3 <8, 12>

D3 <16, 19>

D2 <10, 30>

Figure 3.9 Example of the working of the WITHIN operator

30: else

31: middle ⇐ middle → next

32: left ⇐ left → next, right ⇐ right → next

33: else

34: right ⇐ right → next

An example of the working of the WITHIN operator can be seen in Figure 3.9.

3.4.6 The NOT operator

The NOT operator is used to specify a sequence of two patterns with the condition

that a certain pattern does not occur between them. It is specified as NOT[/d](P2)(P1,

P3), which means that documents containing P1 followed by P3, containing at most

d occurrences of P2 in between, should be selected. d is optional, and specifies the

maximum number of occurrences of P2 that can be allowed for NOT to be true. The

system assumes a value of zero for d if it is not specified (default).
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The NOT operator is a ternary operator: it receives as its inputs three sets cor-

responding to occurrences of the left pattern, the right pattern and the middle pattern.

In addition, it also receives an integer denoting the minimum allowable occurrences of

the middle pattern. The operator first tries to find closest, non-overlapping left-right

pairs, and then counts the number of occurrences of the middle pattern in between the

left-right pair. If there are no middle patterns in between, or if the number of middle

patterns are less than the specified number, the left and right pattern are merged and

added to the output set. If the number of middle occurrences is equal to or exceeds the

specified number, the left and right patterns cannot be merged, and we move on to the

next pair. In other words, the pattern is not detected. The pseudocode is shown below.

NOT(L, R, M , d)

1: left ⇐ first tuple in L, right ⇐ first tuple in R

2: while exists(left) AND exists(right) do

3: advance left, right in sort-merge fashion till they point to tuples with same docID

4: if overlap(left, right) then

5: right ⇐ right → next, continue

6: if left.endOffset < right.endOffset then

7: if (left → next).endOffset < right.endOffset then

8: left ⇐ left → next

9: else

10: middle ⇐ first tuple in M

11: noMiddleTuples = false

12: while middle.docID 6= left.docID do

13: if middle.docID > left.docID then

14: noMiddleTuples = true, break
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15: middle ⇐ middle → next

16: if noMiddleTuples then

17: combine(left, right)

18: left ⇐ left → next, right ⇐ right → next, continue

19: occurrenceCnt = 0

20: while middle.docID == left.docID do

21: if middle.liesBetween(left, right) then

22: occurrenceCnt + +

23: if (occurrenceCnt > d) OR (middle.liesAfter(right)) then

24: break

25: middle ⇐ middle → next

26: if occurrenceCnt ≤ d then

27: combine(left, right)

28: left ⇐ left → next, right ⇐ right → next, continue

29: else

30: right ⇐ right → next

An example of the working of the NOT operator can be seen in Figure 3.10. It can

be seen that for the containing tuples D1 <5, 10> and D1 <20, 25>, there are no tuples

from D1 that lie in between. Hence, NOT becomes true for this pair, and a merged

tuple D1 <5, 25> is added to the output. For the next pair of containing tuples, D2 <6,

8> and D2 <22, 28>, there is one tuple lying in between, and hence NOT again becomes

true, because the maximum number of middle tuples allowed is 1. For the containing

tuples D3 <8, 10> and D3 <22, 29 >, there are two tuples lying in between, and hence

NOT evaluates to false, and the tuples are not merged. Finally, for D4 <6, 10> and D4

<20, 30>, there is only one tuple that lies in between (D4 <11, 13>). It should be noted
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NOT/1

D1 <5, 10>
D2 <6, 8>

D3 <8, 10>
D4 <6, 10>

D1 <20, 25>
D2 <22, 28>
D3 <22, 29>
D4 <20, 30>

D2 <12, 20>
D3 <8, 14>

D3 <16, 20>
D4 <11, 13>
D4 <17, 24>

D1 <5, 25>
D2 <6, 28>
D4 <6, 30>

Figure 3.10 Example of the working of the NOT operator

that D4 <17, 24> is not considered to be lying in between, because it overlaps with the

right containing tuple. Since there is only one tuple lying in between, a merged tuple D4

<6, 30> is added to the output set.

3.5 Summary

In this chapter, we explained how a basic inverted index is inadequate to detect

complex patterns involving proximity, frequency, sequence, containment, etc., although

it suffices to answer keyword queries. To support detection of such complex patterns, the

index needs to store some additional information. Namely, it needs to store the position

of occurrence of every word within a document. We described how the Proximal-Unique

semantics corresponds to the intuitive detection of sub-patterns in a document that are

typically combined to form a complex pattern. The proximal-unique semantics is based

on closeness of the sub-patterns and avoids duplicate combinations. We introduced the

Pattern Detection Graph, which represents a user specified pattern.
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The operators OR, FREQUENCY, NEAR, FOLLOWED BY, WITHIN and NOT

were described along with their algorithms. The InfoSearch operators are presently de-

signed to support non-overlapping semantics, although another set of operators for over-

lapping semantics can be designed. These operators take sets of tuples as inputs from

their children, where a tuple represents a single occurrence of the child pattern in the

document collection. To enable efficient merging, these tuple sets have to be in sorted

form before being fed to the operators. The operators merge the input sets according to

the Proximal-Unique semantics, and generate a sorted set of tuples as their output.



CHAPTER 4

DESIGN OF INFOSEARCH

InfoSearch allows the user to specify complex queries and returns information about

every occurrence of the pattern specified in the query. The scope of the search is a

pre-indexed document collection (e.g., Web site), and the information returned is the

document (e.g., Web page) in which the pattern occurs, and the position of every occur-

rence of the pattern within each document. This process can be divided into two steps.

First, the user query must be parsed and validated to ensure that it conforms to the PSL

syntax, following which a PDG corresponding to the query must be constructed. Sec-

ond, the index must be looked up for detecting the occurrences of the pattern (including

complex patterns) that must be detected over the PDG to generate the query result.

This chapter reveals how the above steps are performed in InfoSearch, by describing its

underlying architecture. We also describe how queries involving phrases are handled. In

addition, we describe how queries that include synonym specification are processed.

4.1 InfoSearch architecture

The InfoSearch architecture is shown in Figure 4.1. InfoSearch has adopted some

modules from the InfoFilter architecture, added a few modules specific to index-based

retrieval and search, and modified the operators extensively to detect patterns over data

retreived from an index. The modules of InfoSearch include the pattern parser and

validator, pattern processor, graph generator, the pattern detection engine, and the index

interface. External modules such as the WordNet synonym database and the integrated

index are also shown in the figure. Of these modules, the pattern parser and validator

45
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Figure 4.1 InfoSearch architecture

have been almost completely adopted from InfoFilter. The Graph Generator has been

modified in order to store the keywords from the user query in a keyword buffer. The

pattern detection engine, which forms the core of the system and includes the operator

functionality has been changed to process inputs in the form of sets of tuples. In addition,

a generic index interface specification and design has been added. These modules are

described in more detail in the forthcoming sections.

InfoSearch uses the client-server architecture typically used in Search Engines. The

user specifies one or more queries using PSL, which are submitted to the InfoSearch server.
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The query is checked for syntax and parsed to extract tokens. The validator passes the

extracted tokens to the pattern processor, which pushes the tokens on to a stack (Postfix

notation) and passes the stack to the graph generator. The graph generator examines

the tokens and generates a PDG. Thus, each user query is represented as a PDG. As

mentioned before, leaf nodes of the PDG represent simple patterns such as keywords,

phrases or system defined patterns. Higher level nodes represent composite operators on

these leaf nodes, or on other composite nodes. While generating the graph, the graph

generator stores the keywords specified in the query in a keyword buffer.

Once the PDG is generated, the graph generator queries the index for each of the

keywords it has stored in its buffer. This is done through the index interface. The index

interface module is responsible for retrieving the “hits” for each keyword from the index.

These hits are wrapped into a set of “tuples” and passed on to the leaf node that repre-

sents the keyword. Leaf nodes propagate their input to their parent nodes. The parent

nodes, which correspond to one of the InfoSearch operators such as NEAR, FOLLOWED

BY, WITHIN, NOT, etc., merge their input sets according to the appropriate semantics

using the algorithms presented in Chapter 3. Thus, a monotonically decreasing set of

data propagates up the PDG, and the output of the root node is the answer to the query

which is returned to the user.

Pattern Validator

This module takes a user query as its input, and checks if the query is in the proper

syntax dictated by PSL. If there is an error in the syntax, a parser error is returned. After

the query is validated for syntax, it is decomposed into tokens. The tokens in a query can

be keywords, phrases, system defined patterns, operators and other delimiters allowed

by the language. These tokens are sent to the pattern processor.
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Pattern Processor

This module receives a set of tokens, in Infix notation, as its input. It converts the

Infix input into a Postfix expression, so that it can be easier to evaluate. The Postfix

expression is passed on to the graph generator.

4.1.1 Graph Generator

In InfoSearch, a user query is internally represented as a PDG. The task of the

graph generator is to take a stack of tokens from the pattern processor and generate the

PDG from it. The PDG is constructed recursively in a bottom-up fashion. The leaf nodes

are created first, followed by the operators defined on these leaf nodes. When a parent

node is created, it subscribes to its children. Essentially, this means that the reference

of the parent is given to the children, so that data can be passed from a child to its

parent. Thus, every node has a subscriber list that has a reference to each of its parents.

As a simple example, the pattern “protein” NEAR “clustering” is shown in Figure 4.2.

The leaf nodes in this example correspond to the keywords in the query, i.e., “protein”

and “clustering”, and they have references to their parent NEAR node. The number in

the subscriber list indicates the distance with which the parent has subscribed, and is

described next.

For operators such as NEAR and FOLLOWED BY, the user is allowed to specify a

distance, which indicates the maximum separation between the operands. This distance

is also stored in the subscriber list. For example, consider the query (“protein” NEAR/3

“clustering”) WITHIN(“DNA”, “modification”). The PDG corresponding to this query

is shown in Figure 4.3. Here, the WITHIN node subscribes to the NEAR node with a

distance of 3. In other words, there is a distance associated with the reference to the
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Clustering

NEAR

Protein-1 -1

Figure 4.2 PDG for “protein” NEAR “clustering” with subscriber lists

parent. In this example, the NEAR node sends only those tuples to the WITHIN node

that satisfy the criteria of the operands being separated by at most 3 words.

4.1.1.1 Sharing of PDG nodes

To optimize space requirements, the graph generator shares PDG nodes wherever

possible. This is achieved by keeping a single, common PDG or sub-PDG for a common

expression or sub-expression. This avoids creation of a new PDG, if a PDG has already

been created for a previous expression or sub-expression. For example, consider that

another query “peptide” FOLLOWED BY (“protein” NEAR/5 “clustering”) is specified

along with the query shown in Figure 4.3. The Graph Generator knows that a sub-PDG

for the sub-expression “protein” NEAR/3 “clustering” already exists. Hence, instead

of creating a new sub-PDG, it re-uses the sub-PDG, by having the new FOLLOWED

BY node subscribe to it as shown in Figure 4.4. This results in reduction of memory

requirements when several queries having common sub-expressions are processed together

in a batch. More importantly, the sub-pattern is computed once for all the distances and
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3
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Figure 4.3 PDG with subscriber list containing distance

corresponding output generated. Note that the subscriber list for the NEAR node has

been appended with the new distance for the FOLLOWED BY node.

During the Pattern Detection Graph generation phase, all the simple patterns (or

leaf node patterns) are stored in a buffer. This buffer is used to feed the index interface

for retrieving the appropriate “hits” from the index for detecting the pattern.

4.1.2 Index Interface

The detection engine of InfoFilter is designed to be generic and capable of working

with any kind of index. The index interface is the agent that cleanly separates the

InfoSearch system and the index which is being used. It is the only module which is

specific to the index being used. In other words, the index interface is the only module

that needs to be changed when InfoSearch needs to be integrated with a different kind of
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Figure 4.4 PDG with a shared node

index. The index interface accepts simple patterns from the graph generator and queries

the inverted index. It is responsible for wrapping the result returned by the index in

a set of <docID, start offset, end offset> tuples. The InfoSearch operators need their

input in the form of such tuples, and hence wrapping the output of the index into tuple

sets is an important function of the index interface. The set of tuples generated as the

index lookup for a keyword is then passed to the leaf node in the PDG that corresponds

to that keyword. Essentially, the index interface needs to have a capability to scan the

index for the required keywords, and subsequently wrap the index-specific results into a

form required by the InfoSearch system, namely <docID, start offset, end offset> tuples.

This is summarized in Figure 4.5.
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Figure 4.5 Data flow within the Index Interface

4.1.3 Pattern Detector

The flow of data up a PDG and the merging of tuples by the operators to de-

tect patterns in documents has a similarity with composite event detection using Event

Detection Graphs [15]. In the latter, event occurrences are propagated up an Event De-

tection Graph, in which the composite nodes merge their inputs based on criteria known

as parameter contexts. A node in the graph can be associated with a rule, which means

that a predefined action can be taken when that event node is triggered. Since there

is similarity in the data flow in the Event Detection System and InfoSearch, we use the

framework of such an Event Detection Engine, called the Local Event Detector (LED)

[16] as the backbone for our Pattern Detector. The paradigm of data flow has been kept,

with operators and semantics replaced to suit the domain of information searching and

retrieval.

When a leaf node in the pattern detector receives a set of tuples from the Index

Interface, it passes a reference to this set to its parent nodes. Similarly, when internal

nodes merge their input sets to create a merged output set, they pass a reference to

this set to their parents. The root node has a rule associated with it, which essentially
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Figure 4.6 Propagation of output to multiple parents by an OR node

directs the output of the pattern detection to the user through e-mail or other forms of

notification.

4.1.3.1 Propagation to multiple parents

In the case of leaf nodes, or operators which do not have any distance specification

such as OR, the reference to their output set is passed to all their parents. This is

illustrated in Figure 4.6. Here, the OR node has three subscribers, and it sends a reference

to its output set to all three.

However, when a node having a specified distance such as NEAR or FOLLOWED

BY has multiple parents, the results required by each parent may be different, because

each parent may have subscribed with a different distance. In this case, the operator

generates a different output set for each group of parents who have subscribed with a

particular distance. Consider the NEAR node in Figure 4.4, which has two subscribers,

one with distance 3 and the other with distance 5. Intuitively, a pattern satisfying the

smaller distance also satisfies all distances greater than it. For instance, if two tuples are

found to be 2 words apart from each other, they satisfy the distance of 3, and certainly
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satisfy the distance of 5 as well. However, those patterns that satisfy the distance of 5

may not satisfy the distance of 3. The larger distance set subsumes the smaller distance

set. While the operator is merging its input tuples, it checks the distance between

tuples. If it is found to satisfy a particular distance, the output tuple is put in all the

output sets which correspond to distances equal to or greater than the satisfied distance.

These distances are stored in a non-decreasing order in the subscriber list, making it

convenient to output a tuple to all sets corresponding to distances more than a certain

distance. After the processing is complete, references to the output sets are passed to

the respective subscribers.

4.1.4 Handling phrases as simple patterns

InfoSearch allows the user to specify queries having phrases. Since it is assumed

that the index only stores information on words, InfoSearch has to use the information

on the words in the phrase to detect whether the complete phrase occurs in the document

collection. When a query involving a phrase is given, the graph generator receives the

entire phrase as a token from the pattern processor, along with other tokens such as

operators and keywords. The graph generator stores the phrases in the keyword buffer.

While processing entries from the keyword buffer, the graph generator sends simple

keywords directly to the index interface for lookup, whereas phrases are sent to a separate

sub-module called the phrase processor.

The phrase processor further decomposes the phrase into its constituent keywords,

and queries the index interface to obtain a set of tuples for each constituent keyword

from the phrase. It iterates over these sets and merges only those tuples which conform

to the order of keywords in the phrase. In other words, the phrase processor generates

an intersection of these sets, with the merging criteria being that tuples should belong

to the same document ID, and the occurrences should be in the order dictated by the



55

keywordsGraph
Generator

Index Interface

Phrase
Processor

PDG

Pattern Detectorphrases

Inverted index

phrase
tuples

tuples

tuples constituent
keywords

Figure 4.7 Phrase handling by the Phrase Processor

phrase. The high level sequence of operations for generating a set corresponding to the

phrase occurrences is shown in Algorithm 1.

In the algorithm, we find the smallest set, and for each tuple in this set, we iterate

over all the other sets and check if the tuples are in the sequence dictated by the phrase.

If all tuples are from the same document ID and found to be adjacent as required, a tuple

is added to the output set with start offset equal to the start offset of the first keyword,

and end offset equal to the end offset of the last keyword in the phrase.

After the phrase processor generates the set of tuples corresponding to the phrase

occurrences, it passes a reference to this set to the leaf node in the PDG corresponding

to the phrase. Figure 4.7 shows how the graph generator sends simple keywords to the

index interface and groups of keywords in a phrase to the phrase processor, and the

phrase processor ’s interaction with the index interface and the PDG.
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Algorithm 1 generatePhraseTupleSet

1: Input: n sets corresponding to the n keywords in the phrase

2: 1st set corresponds to 1st keyword in the phrase, 2nd set to 2nd keyword and so on

3: Output: a set P containing tuples corresponding to the phrase occurrences

4: Find the smallest of the n sets, say S. Assume this is the ith set, where 0 ≤ i < n

5: for each set T from the remaining n − 1 sets do

6: currentTuple(T ) ⇐ first Tuple in T

7: for each tuple s in S do

8: setCnt ⇐ 0

9: for each set T from the remaining n − 1 sets do

10: Let T be the jth set, where 0 ≤ j < n, j 6= i

11: while currentTuple(T ).docID < s.docID do

12: currentTuple(T ) ⇐ next Tuple in T

13: while currentTuple(T ).docID == s.docID AND

currentTuple(T ).startOffset ≤ s.startOffset + (j − i) do

14: if s.startOffset − currentTuple(T ).startOffset == i − j then

15: setCnt + +

16: break

17: currentTuple ⇐ next Tuple in T

18: if setCnt == n − 1 then

19: P ⇐ P + new tuple(s.docID, s.startOffset − i, s.startOffset + n − i)
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4.1.5 Processing queries involving synonyms

InfoSearch provides an option for users to expand their search for a particular

keyword by looking up occurrences of synonyms of that keyword in addition to the

keyword itself. This can be specified in the query by appending “[Syn]” to the desired

keyword. For example, the query “Cancer” NEAR/3 “medicine”[Syn] means “Find all

occurrences of “Cancer” near “medicine” or any of its synonyms, not separated by more

than 3 words”.

As indicated before, InfoSearch uses the WordNet synonym database to look up

synonyms for a given word. The number of synonyms to be considered is a configurable

parameter in InfoSearch. Since the user is querying for occurrences of the given keyword

or any of its synonyms, we need to query the index for the synonyms as well as the

original keyword. Also, it is required that the final output be sorted by document ID,

because it may be the input to another operator. In order to perform this task, InfoSearch

has a special operator to process synonyms, called the SYN operator.

Unlike the other operators which have one, two or three sets as their input, the

SYN operator can have n sets as its input. Leaf nodes are created for the keyword and its

synonyms, and a SYN node is created which subscribes to these leaf nodes. For example,

the query “Cancer” NEAR “medicine”[Syn] is shown in Figure 4.8. The SYN operator

generates a union of its input sets, sorted by document ID and position. The output of

the SYN operator is a set corresponding to all occurrences of the keyword or any of its

synonyms in the document collection.

The algorithm of the SYN operator is shown in Algorithm 2. Initially, pointers are

set to point to the first tuple from each set. The tuple having the smallest docID and end

offset is added to the output set, and the pointer for that set is advanced. The process

is repeated until there are no more unprocessed tuples in any of the input sets. Thus,
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Figure 4.8 Synonym operator with 3 children

the number of tuples in the output set is the sum of the number of tuples in the n input

sets.

4.2 Summary

In this chapter, we described the architecture of the InfoFilter system and explained

the details of its modules. Some modules such as the pattern validator and pattern

processor were re-used from the predecessor system. The process of PDG construction

by the graph generator was explained with details on how the distance specification is

incorporated, and also how common sub-patterns are grouped together in a single PDG.

This grouping results in a space saving, and also reduces the number of computations by

propagating output tuples in a batch, based on a distance group. The index interface,

which is a link between InfoSearch and the inverted index being used was described.

The pattern detection engine receives sets of tuples from the index interface, which get

progressively filtered as they propagate up the PDG. An algorithm for phrase detection

which performs a constrained intersection of tuple sets corresponding to the constituent
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Algorithm 2 Syn

1: Input: n sets corresponding to base keyword and n − 1 synonyms

2: Required output: A sorted union of these n sets

3: for each set S do

4: currentTuple(S) ⇐ first Tuple in S

5: minTuple ⇐ currentTuple(0)

6: min ⇐ 0

7: while exists(minTuple) do

8: for (i = 0 ; i < n, i 6= min ; i + +) do

9: if minTuple.docID < currentTuple(i).docID then

10: continue

11: if minTuple.docID == currentTuple(i).docID then

12: if minTuple.endOffset < currentTuple(i).endOffset then

13: continue

14: else

15: minTuple ⇐ currentTuple(i)

16: min ⇐ i

17: if minTuple.docID > currentTuple(i).docID then

18: minTuple ⇐ currentTuple(i)

19: min ⇐ i

20: resultSet ⇐ resultSet + minTuple

21: if set min has more tuples then

22: minTuple ⇐ next Tuple in min

23: else

24: arbitrarily assign current tuple of some unexhausted set to minTuple

25: assign that set number to min



60

words was explained. To detect patterns specifying synonyms, a special operator called

SYN was described, which generates a sorted union of its input sets.



CHAPTER 5

IMPLEMENTATION OF INFOSEARCH

This chapter elaborates on the implementation aspects of the InfoSearch modules.

The pattern validator and pattern processor modules have been almost entirely adopted

from the previous work, and hence will not be described in much detail. The focus will be

on the details of implementation of the graph generator, index interface and the pattern

detection engine. The data structure used to pass information up the Pattern Detection

Graphs (PDGs) and the operations on it will be described in detail. In addition, we

will also look at the choice of inverted index for the first cut of this system, reasons for

that choice and how the chosen index is integrated with the InfoSearch system. We will

describe how documents are indexed and the mechanism used to retrieve information

from the index.

Since there are a number of common modules in InfoSearch and InfoFilter, the

implementation of InfoSearch has been integrated with InfoFilter. Modules such as the

pattern input client, pattern validator and processor are almost exactly identical for both

systems. In other modules such as the graph generator and pattern detection engine

which have some parts specific to InfoFilter and some to InfoSearch, a configuration

parameter is used which determines whether the system is being run in “filter” mode

or “search” mode. This parameter can be set in the system configuration file, which is

loaded at system start-up (refer Appendix A).

61
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5.1 Pattern Parser, Validator, and Processor

The pattern parser is implemented using a JavaCC parser [17]. It generates the

appropriate tokens from the input query as per the specifications of the Pattern Specifi-

cation Language (PSL). The tokens include simple patterns (words, phrases), operators,

and other options allowed by the language. If the input query does not conform to the

PSL syntax, a Java Exception called ParseException is thrown. The pattern validator

enqueues the tokens in Infix notation and passes this queue to the pattern processor.

The pattern processor takes the queue of tokens and converts it into Postfix notation

preserving the precedence of operators specified by the user. The Postfix notation allows

for easier processing of operands. The pattern processor sends this stack to the graph

generator.

5.2 Graph Generator

As mentioned in Chapter 4, the framework of an Event Specification and Detection

system called the Local Event Detector (LED) has been used in InfoSearch. The graph

generator uses the Event Specification API of the LED [16] to generate the PDGs. This

API allows creation of primitive events, which correspond to leaf nodes in a PDG. It

also allows creation of composite events, which correspond to parent nodes in a PDG.

The graph generator from InfoFilter has been used here with minor extensions. The

graph generator pops a token from its input stack, and depending on the type of token,

calls the LED API to create that particular node. If the token is a keyword, phrase

or system defined pattern, a leaf node is created for that token. This node is named

after the keyword, phrase or system defined pattern that it corresponds to. If the token

is an operator, the graph generator creates a composite node for this operator, which

subscribes to the leaf nodes which are the children of this operator. This node is also



63

named uniquely. The operator type and the name of the children are used to compose the

name for the node. The names of these nodes are stored in a hashtable, with a reference

to the node.

Before creating a primitive or composite node, the graph generator checks the

hashtable to see whether a node with the given name already exists. If the node does not

exist in the hashtable, a new node is created and an entry is made into the hashtable.

If the node already exists, the reference to the node is obtained from the hashtable and

used to represent the PDG or sub-PDG. This allows for sharing of nodes as described in

Chapter 4. Thus, common sub-expressions in a given group of queries correspond to a

single PDG or sub-PDG in the system.

The main extension to the graph generator for this thesis is the addition of a

buffer to store keywords. Whenever the graph generator comes across a token which is a

keyword or a phrase, it stores this token in a Vector object called the keyword buffer.

The keywords in the buffer are passed to the index interface after the PDG construction

is complete, whereas the phrases are passed to the phrase processor. The reason for

having a keyword buffer is that it is essential that the PDG is completely constructed

before the index can be queried for the keywords. If the keywords are passed to the

index interface or phrase processor by the graph generator as and when it pops them off

the stack, they will return the results from the index to the PDG possibly before it is

completely constructed. Thus, the keyword buffer is essential to avoid triggering of PDG

nodes by the index interface while the PDG is being constructed.

If the synonyms option is chosen for any keyword in the query, the graph generator

queries the WordNet synonym database to get synonyms for the keyword. This is done

through an API called the Java WordNet Library (JWNL) [18]. The number of syn-

onyms to be considered can be configured in InfoSearch (using a parameter in the system
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configuration file). This is done to limit the number of synonyms to be processed1. For

each synonym, a leaf node is constructed, and finally a SYN operator node is constructed

which subscribes to the original keyword and all its synonyms.

Every PDG constructed in the system is encapsulated under a WITHIN(BeginIndex,

EndIndex) construct introduced by the graph generator. This is shown in Figure 5.1.

Here, BeginIndex and EndIndex are system defined patterns, and are internally trig-

gered when an index scan begins. This encapsulation of a PDG is done to identify the

scope of the pattern detection with respect to which index the detection originated from.

Although the current implementation uses only one index, it can be imagined that several

indexes can be integrated into the system. In such a scenario, it might be useful to know

which index is providing the information to the Pattern Detector. This encapsulation is

done after the PDG corresponding to the query is constructed. The top WITHIN node

also handles the notification of the result set to the user. When it receives the output

of the pattern detection from the root of the PDG corresponding to the query, which is

its middle child, the rule associated with the WITHIN node sends this result to the user

who has issued the query. Note that rules are associated with the root node of the PDG.

Multiple rules can be associated if independent actions need to be taken.

5.3 Index Interface

The index interface is the bridge between the (inverted) index and the InfoSearch

system. This module is specific to the index being integrated with the system. From

the point of view of the rest of the InfoSearch system, it can be seen as an index driver.

The index interface has to provide standard methods to access data from the integrated

index, and deliver the results to the pattern detector is a specific format. As such, it does

1Currently, only single word synonyms are processed
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Figure 5.1 Encapsulation of query PDG by a top level WITHIN node

not matter if the index being integrated is an inverted index, or any other kind of index,

say a B-tree index, as long as an index interface for it is developed. In other words, if

a new index has to be integrated with InfoSearch, an index interface for that index has

to be created which will support the required calls from InfoSearch, and return data to

it in the expected format. The following standard methods are essential in the index

interface:

initialize. This can be a part of the index interface constructor, or a separate

method. This method initializes the inverted index, i.e., essentially brings it “online”

with the configured parameters. InfoSearch calls this method at start up, and passes

it a reference to the pattern detector. In terms of the LED API, this is a reference to

the ECAAgent. In the LED API, ECAAgent encapsulates the event specification and

primitive event detection methods [16]. A reference to the pattern detector is needed by

the index interface to send data to leaf nodes of PDGs in response to keyword queries.
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query. This routine accepts a keyword, and scans the index for the keyword. The

data returned by the index has to be wrapped in a Vector of <docID, start offset, end

offset> tuples. This is the standard data format expected by the PDG nodes. Hence,

this routine may need to convert the native format of data returned by the index into the

standard tuple format. This routine creates this Vector of tuples, and passes a reference

to this object to the leaf node corresponding to the keyword in the pattern detector. This

is done by calling the raiseBeginEvent method in the given ECAAgent, which is used

to indicate detection of a primitive event in the LED [16]. A reference to the Vector

of tuples is passed as a parameter in the raiseBeginEvent call. This call results in the

primitive (leaf) node, which corresponds to the occurrence of the keyword, passing this

reference to its parent node. It is important to note that references to result sets from

the index are propagated up the PDG, and not the result sets themselves. This is very

important from the view of efficiency, because passing entire result sets would be very

inefficient as the size of these result sets increases.

getTuples. A method is also needed which can take in a keyword, generate the

tuple Vector and return this object to the caller. This method does not trigger the PDG

nodes itself but just returns the Vector of tuples to the calling routine. This method is

useful for modules like the phrase processor, which needs the tuple sets corresponding to

the constituent keywords of a phrase, subsequently merges these sets and then triggers

the leaf node in the PDG corresponding to the phrase.

5.4 Tuple operations

Because the tuple is an important data structure used to represent information

about a pattern occurrence, a Java class called Tuple has been defined, which encapsulates

the tuple properties and methods. A Tuple has a numeric docID, which uniquely identifies

a document in the collection. It has a numeric startOffset and endOffset, which represent
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that starting position and ending position of the occurrence that the Tuple represents.

Obviously, for a tuple representing a keyword occurrence, startOffset and endOffset will

be the same.

Some commonly performed operations and checks on tuples have been provided as

methods in theTuple class. These methods are:

endsBefore: It is very often required to know if a Tuple occurs before another

Tuple. Essentially, this method returns an appropriate value based on whether the Tuple

has a smaller, same or greater offset than another Tuple.

overlaps: A key consideration in merging tuples in operators is that the tuples

should not be overlapping. If the Tuple has a startOffset greater than the endOffset of

the other Tuple, or an endOffset smaller than startOffset of the other Tuple, the two

tuples do not overlap. This method uses this criteria to check for overlap between two

Tuples and returns an appropriate Boolean value.

liesBetween: For containment operators such as WITHIN and NOT, it becomes

necessary to know if a pattern occurrence lies between two other patterns completely, that

is, without any overlap. A Tuple lies between two other Tuples (termed first and second)

if startOffset of the Tuple is greater than endOffset of the first Tuple, and endOffset of

the Tuple is smaller that startOffset of the second Tuple. This assumes that the tuples

between which we are checking for containment are in the required order. liesBetween

returns a Boolean value based on its decision.

liesAfter: This method checks if the Tuple lies completely after a given Tuple. If

startOffset of the Tuple is greater than endOffset of the given Tuple, it means that the

Tuple lies after the given Tuple.
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5.5 Pattern Detection Engine

The pattern detection engine is responsible for processing the result sets from the

index. This is done over PDGs: every internal node of a PDG is an operator, which

encapsulates the logic to process its input according to the operator semantics. Leaf level

nodes represent simple patterns such as keywords, phrases and system-defined patterns.

The index interface passes a reference to a Vector of Tuples corresponding to a keyword

to the leaf node corresponding to the keyword. Similarly, leaf nodes corresponding to

phrases are triggered by the phrase processor, and leaf nodes corresponding to system

defined patterns are internally triggered by the system. Leaf nodes do not have any

storage or processing capability; they simply propagate their input, which is a reference

to a Vector of Tuples to the parent nodes. By passing just references, we avoid entire

result sets being propagated at every level of the PDG.

Internal nodes of the PDG correspond to one of the InfoSearch operators such

as OR, NEAR, FOLLOWED BY, WITHIN, NOT, FREQUENCY and SYN. They get

references to one or more Vectors from their children. They operate on these Vectors

and merge them to produce an output Vector. This merging is done as per the operator

semantics described in Chapter 3. A reference to the output Vector is passed to the

parent node. In this manner, conceptually, a non-increasing set of data propagates up

the PDG, getting progressively filtered at each level. The root node has a rule associated

with it, which is to return the results to the user.

5.6 The Inverted Index

The focus of this thesis was on how to use information stored in an index to detect

complex patterns over a document collection. We did not place too much emphasis on the

actual index being used, since the system was designed to be capable of working with any
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kind of index. For the first release of this system, it was necessary that the inverted index

to be used should be easy to use and integrate, and yet provide the required information

needed by InfoSearch. Hence, we built a simple inverted index built using the Berkeley

DB Java Edition [19], and integrated it with InfoSearch. Since the Berkeley DB API is

in Java, it was convenient to develop an index interface for it, because the rest of the

InfoSearch system was also developed in Java.

5.6.1 Overview of Berkeley DB Java Edition

Berkeley DB Java Edition is an in-process storage manager written in Java. This

means that unlike the commonly known database servers which run as a separate process,

a Berkeley DB database runs in the same process as the application which uses it. All

interaction with the storage manager is done using the API provided by BerkeleyDB.

It supports B-trees and transactions. It is a replacement for a traditional database

management system, when an efficient in-process solution is required.

5.6.2 Creating the inverted index

To create the inverted index, we have created a Java program called DocumentIn-

dexer which takes a given folder of documents, reads the documents, and builds an

inverted index over those documents. For every keyword in each document, it stores a

“hit” in the inverted index, which contains the path of the document the keyword is

from, and the position of the keyword in that document. The index initially appears as

a single file in a pre-specified directory, and can span multiple files as its size increases.

To index a given collection of documents, the documents must be placed in a

single directory, and the path of the documents (essentially the path of the containing

directory) must be passed to DocumentIndexer. This will result in the documents being
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indexed, and the index file will be placed in the directory specified in the Berkeley DB

configuration file (refer Appendix A).

The index created above stores the entire path of a document in each hit. If we use

the index in this form, a tuple would consist of the document path along with the position

information. The path of a document can be fairly large (e.g., a Web page reference),

and hence the size of a set of such tuples would be correspondingly large. Also, at the

PDG operator nodes, comparisons are done between tuples to check if they belong to

the same document. If this comparison has to be done between document paths, which

are essentially Java Strings, they will be computationally very expensive. Comparisons

between numbers are always computationally cheaper than lexicographic comparison of

strings. Hence, we need to have a numeric document ID for each document to reduce the

size of a tuple, and also to enable fast comparison. We also need to maintain a mapping

from a document ID to the document it corresponds to.

To achieve this, as the inverted index is being constructed, a parallel index (using

Berkeley DB itself) is built, which stores a unique document ID for each document.

This is stored as a separate database in Berkeley DB. We call this parallel index the

documentID map, because it stores a mapping from DocumentID to the document path.

In the actual inverted index, we now store just the document ID along with the position

information, for each keyword. Thus, only the numeric document ID information is

incorporated in tuples which are propagated up a PDG. After the result is obtained from

the root node of the PDG, the documentID Map is looked up to get the document path

from the document ID, and this path along with the position information, is returned to

the user.

BerkeleyDB has the capability to store the hits internally sorted by document ID

and position. Hence, the tuples generated from the index results are automatically sorted

by documentID and position. This property of the tuples being sorted is very useful while
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merging tuples in the operators. The operators have to ensure that their output is also

sorted, in order for the higher level nodes in the PDG to function properly.

5.6.3 Retrieving information from the inverted index

The interaction of InfoSearch with the inverted index is through the index interface.

The index interface is invoked at server start-up to bring the inverted index “online”.

This essentially entails reading of the configuration file to look up the location of the

index file, loading the necessary environment, etc. The index is brought online in read-

only mode, which means that the transactional mode of the index is turned off. This is

done to make the index performance as high as possible.

When the index interface receives a keyword to query the index with, it opens a

Cursor on the index. The Cursor is part of the API provided by Berkeley DB JE. Using

the Cursor, we get a handle on the result set from the index, which is zero or more

“hits”. We iterate through the result set using the Cursor, convert each hit retrieved

into a Tuple, and keep adding Tuples to a Vector. When the Cursor is done iterating

over the result set, the Vector of Tuples is returned.

5.7 Summary

In this chapter, we described the implementation aspects of the various InfoSearch

modules. The pattern validator and pattern processor were adapted from the predecessor

system, InfoFilter, with almost no changes. The graph generator was modified to incor-

porate a keyword buffer to store words and phrases from the user specified pattern before

they can be retrieved from the index. An index interface module, its method specifica-

tions and an implementation for an inverted index using Berkeley DB were developed.

Essentially, a different index interface is required for each type of index being integrated,

but the methods supported by each one are the same to ensure a uniform interface to
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InfoSearch. The first inverted index chosen to be integrated was an inverted index using

Berkeley DB, owing to its simplicity of use. The said index was successfully integrated

with InfoSearch.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we discussed InfoSearch, a system designed to search complex pat-

terns over a document collection. It was observed that current search systems are some-

what restrictive in the expressiveness of patterns that can be specified by the user. Such

expressive patterns may need to be specified in certain domains such as searching full-text

patent databases, analysis of logs, intelligence and tracking applications, etc. InfoSearch

is an attempt to facilitate searching of complex patterns involving proximity, frequency,

containment and sequences over a given document collection.

One alternative for detecting complex patterns over stored documents is to read the

entire data source, tokenize it, and feed it into the Pattern Detection Graph to detect

the pattern. This has been explored earlier in [3]. Although this is useful in certain

domains, such as news feeds and other applications where data is generated inherently

as a stream, there are other domains where artificial streaming is inherently inefficient,

especially when the source does not change frequently or accuracy can be traded off for

response time. For such relatively static documents, it is much more efficient to use an

index over the document collection (as has been demonstrated by IR and Web Search

Engines) to search for patterns.

The question that we raised in the beginning as to what kind of information is

needed as part of the index and what information would be sufficient to detect complex

patterns specified in PSL so as to obtain the same result as stream processing, has been

answered in the affirmative in this thesis. We have shown that the offset information is

73
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sufficient for all the operators of PSL to detect patterns and that the Proximal-Unique

context can be applied in conjunction with the operator semantics (which are independent

of whether we process a stream or a static data set).

Complete algorithms were developed for complex operators including OR, NEAR,

FREQUENCY, FOLLOWED BY, NOT, WITHIN and also a SYN operator for process-

ing synonyms. Phrases can be handled as well. These operators work on sets of “tuples”

of pattern occurrences. Appropriate semantics for pattern detection were reviewed to

ensure that the pattern detection made intuitive sense. The Proximal-Unique context

of pattern detection, used by all InfoSearch operators, ensures that duplicate pattern

occurrences are not reported, and only the closest constituents of a pattern are com-

bined. It was found that it is indeed possible to detect complex patterns using indexed

information, if the index provides the document ID and position of every word occurring

in the document collection.

This work extends the previous work and has modified a few modules and added

several modules that are specific to index-based pattern detection. Various modules of

the system including the pattern detector and index interface were developed as part of

this thesis using the Java platform, and were integrated with the pattern parser, pattern

processor and graph generator (with minor modifications), of the predecessor system,

InfoFilter. The WordNet synonyms database was used for handling the synonym option.

Since the focus of the research was on the process and algorithms for pattern detection

from indexed information, the actual index chosen for the first cut was a simple inverted

index. The objective was to choose an index which would be easy to use and integrate,

but still store and provide the desired information. An index interface was developed for

the index, and the index was successfully integrated with the rest of the system.
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6.2 Future Work

There are two areas where a search system can always be improved upon: quality

of the results, and performance. Presently, InfoSearch gives the result of the query in

sorted order of document ID. A ranking strategy can be developed, which delivers the

results in descending order of how “closely” the results match the specified query. The

criteria and quantification of “relevance” of a result to a query can be researched upon.

Also, partial matches to a query can be reported.

To improve performance, strategies to selectively cache the result sets can be de-

veloped. The operator algorithms need to be more rigorously analyzed to assess their

complexity, and improved, if possible, for efficiency. Also, presently the propagation of

result sets up the Pattern Detection Graphs is through main memory data structures.

Using file based propagation of result sets can certainly increase the scalability of the

system. The merging of input sets at the operator nodes, which is presently being done

sequentially, can be sped up using parallel processing.
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In this appendix, we describe some of the important system configuration parame-

ters used in the integrated InfoFilter / InfoSearch system. These parameters are specified

in a file called System.config, which resides in the same directory from which the InfoFilter

/ InfoSearch server is being launched.

We also describe some configuration parameters for Berkeley DB.

System.config parameters:

• PORT: This parameter specifies the port number on which the InfoFilter / InfoS-

earch server will listen. If unspecified, the system listens on port 7000 (default).

• SYN: This parameter indicates the maximum number of synonyms that will be

processed by the system. The graph generator uses this value while creating leaf

nodes corresponding to the synonyms, for the SYN operator.

• MODE: This parameter decides whether the system is being run as InfoFilter, or

InfoSearch. It can be set to either FILTER or SEARCH. If this parameter is not

specified, InfoFilter is launched by default.

There are some other configuration parameters in System.config, which are self explana-

tory.

berkeley db.config parameters:

This file also resides in the same folder from which the server is launched.

• DATABASE DIR: This parameter specifies the folder in which the database files

for BerkeleyDB reside. In InfoSearch, these database files contain the inverted

index and the documentID Map.

• FILE MODE: This parameter is used to launch the index interface in debug mode.

In this mode, the index interface does not query BerkeleyDB, but instead gets in-

put from a dummy input, a text file called pseudo.idx. This file resides in the same



78

folder from which the server is launched, and contains keyword - documentID and

position mappings. The syntax for entering mappings in pseudo.idx is as follows:

Each line in the file represents “hits” for a keyword. Each line has a keyword fol-

lowed by a tab, followed by a documentID, followed by the positions of occurrence

of the keyword in that document, separated by commas. Any number of such doc-

ument IDs can be entered on a line. Any number of lines can be present in the file.
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The primary reason for developing operators to detect complex patterns over in-

dexed data was that it was inefficient to detect the same patterns by streaming in the

same data instead of using an index. Certainly, after the size of the document set in-

creases beyond a certain point, we would natually expect the indexed approach to perform

better. The crossover point (at what point, in terms of number of words in the document

collection, would the indexed approach perform better than the streaming approach?)

was the first parameter of interest. An initial experiment was performed with a very

small number of documents. This was like a sanity check, to prove that the indexed

approach outperforms the streaming approach for even small document collections.

A set of 20 documents of around 1.5 kB each were selected from the Reuters

dataset. The total number of words in this collection was around 2600. The documents

were artificially converted into a stream, fed to InfoFilter and patterns involving all the

operators were detected over this stream. The time taken to process the stream was

noted. Subsequently, the same documents were indexed, and InfoSearch was used to

detect the same patterns as in the previous case. In this case, the time taken for the

result set to reach the root node was noted. The time taken by the two systems, for each

of the operators, is shown in Figure B.1.

This experiment shows that using an index to detect complex patterns outperforms

the streaming approach even for relatively small document collections. Of course, the

time taken to index the documents is not considered in the above comparison, but that

can be considered as a pre-processing step, and does not come into the picture once the

documents are indexed and the index is brought online.

Other experiments related to performance and scalability of the current implemen-

tation of InfoSearch are currently in progress at the time of writing.
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Performance of Stream based detection vs. Index-based 
detection
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Figure B.1 Comparison of system performance over 2600 words
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