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ABSTRACT 

 

SUBROSA: AN EXPERIMENTAL PLATFORM FOR STUDYING TIMING 

ANALYSIS OF REAL TIME ANONYMITY SYSTEMS 

 

Publication No. ______ 

 

Hatim Asger Daginawala, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Matthew K. Wright 

Timing analysis poses a significant challenge for the mix based anonymous 

systems that wish to support low-latency applications like web browsing, instant 

messaging and Voice over IP (VOIP). Research in this area so far has been done 

through simulations on ad hoc simulators or non practical local area networks. We 

developed SubRosa, an experimental platform for studying timing analysis of real time 

anonymity systems to facilitate the study of Tor like low-latency anonymous systems. 

We present results of experiments on a real distributed network test bed 

PlanetLab, where we studied timing analysis attacks and some of the defenses to protect 

against such attacks. We validate the simulated results obtained for defensive dropping 
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by Levine et al in 2004 on PlanetLab using SubRosa. We also propose a new light 

weight defense based on the basic mix principal called γ-buffering and evaluate the 

initial results from the experiments with γ-buffering on PlanetLab. 
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CHAPTER 1 

 

1 I�TRODUCTIO� 

 

 

Wide acceptance of the Internet as a popular communication medium and 

information resource has made concerns over the privacy and anonymity of network 

communication a prominent issue. Sexual abuse and other crime victims might want to 

seek information on the Internet or share information with other victims. A business 

might want to hide their communication from their competitors. Law enforcement 

agencies may want to encourage citizens to provide tips without revealing their 

identities.   Consumers may want to hide their purchasing patterns and habits from 

businesses. These are some of the reasons the Internet users might be interested in 

anonymous communication on the Internet. Also, systems like an electronic voting 

system will not be feasible without ensuring anonymity. 

The fundamental design of the Internet and the IP networks, along with the 

relative ease of usage monitoring, the ease of data collection & data mining abilities of 

computers, creates a challenge for applying anonymity over the Internet. IP networks 

use IP addresses to identify computers on the network; IP address is linked with a user’s 

real identity. Internet service providers (ISP) keep track of the relationship between the 

IP and the user. Anonymous systems try to hide this relationship so an IP address 

cannot be linked with the real user with certainty. 
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A mix, as Chaum [ 1] proposed in 1981, is a communication system used to hide 

the correspondences between its incoming and outgoing messages. The order of arrival 

is hidden by outputting the uniformly sized messages in lexicographically ordered 

batches. Many different mix architectures are proposed and exist. Since any given mix 

can be compromised, many systems proposed and developed for anonymous 

communications use a chain of mixes.  The number of mixes a message passes through 

is a system determined parameter. Tor, for instance, uses a path length of 3, which 

means a message is routed through three mixes before it is delivered to the final 

destination. 

Timing analysis attack refers to collecting timing of messages moving through 

the network and finding correlations with the objective of revealing senders' and 

receivers' identity. This study focuses on the timing analysis of low latency mix 

networks. Low latency mix networks are used for interactive applications like web 

browsing, instance messaging and voice data communication over IP network (VOIP). 

Various studies have proved timing analysis to be highly effective against low latency 

mix networks [ 2,  3,  20]. The stringent latency requirements of these applications make 

it challenging to hide timing correlation effectively and hence make it more vulnerable 

to the timing analysis attacks. 

 

1.1 Contributions 

 

Previous studies in this area have either been done on simulations [ 2,  3] or non 

realistic small local area networks [ 4]. We developed an application, SubRosa, to 
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emulate real application and to run on the distributed test bed PlanetLab. PlanetLab is a 

global research network that supports the development of new network services. 

PlanetLab is a collection of computers distributed over the globe and all of the machines 

are connected to the Internet. SubRosa consists of a server, client and sink component 

and emulates behavior of Tor like anonymity system [ 5]. Tor operates on TCP, whereas 

SubRosa uses UDP as the transport.  

We used basics of the mix design and applied it to a low latency mix network. A 

new light-weight defense against timing analysis, γ-buffering, is implemented in 

SubRosa and studied on PlanetLab. γ-buffering is designed to remove timing correlation  

from the network stream without the over head of constant rate cover traffic. We also 

compare γ -buffering with no defense and defensive dropping [ 2] on PlanetLab. 

 

1.2 Outline 

 

In chapter 2, prior work and background in anonymous communication and 

timing analysis is discussed. Chapter 3 discusses new  γ -buffering algorithm in depth. 

Chapter 4 is an overview of SubRosa – test application, PlanetLab – test bed and 

experiment setup. Results are presented in chapter 5. Conclusions and future work are 

presented in chapter 6. 
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CHAPTER 2 

 

2 BACKGROU�D 

 

 Anonymity as defined in [ 6] “Anonymity is the state of being not identifiable 

within a set of subjects, the anonymity set. The anonymity set is the set of all possible 

subjects. With respect to acting entities, the anonymity set consists of the subjects who 

might cause an action. With respect to addressees, the anonymity set consists of the 

subjects who might be addressed.” In other words, subjects are more anonymous if they 

can hide in a larger set.  Anonymity on the Internet can be compromised by any 

observer who monitors the network stream, collects the timing of the input and output 

messages and successfully finds correlation between them. This is referred to as timing 

analysis attack. Timing analysis is described in more detail later in this section. 

 

2.1 Mix and Mix �etwork 

 

In an attempt to provide anonymity, Chaum, in 1981, proposed the mix. The 

mix is a system that hides the correspondence between inputs and outputs. In order to 

hide the correspondence, the mix applies cryptographic transformation to input 

messages to their appearance. The mix also delays and reorders messages, so that 

outputs cannot be correlated with inputs based on timing analysis. 



 

 5 

  Two broad categories of mix networks exist [ 9]. The original mix 

proposed by Chum collects n messages and outputs them to the network in a batch. This 

is the basics of the pool-mixes e.g. Mixmaster 10], Mixminion [ 11]. A Continuous mix 

or Stop-and-Go mix [ 12] stores the messages for a user specified delay and reorders 

messages based on the randomness of the delay distribution before sending it out on to 

the network, e. g. JAP[ 13]. Diaz at el has described variant of mixes along with their 

strengths and weaknesses in [ 9]. 

Using a single mix makes the entire anonymous system vulnerable to the 

compromise of this one mix and hence a chain of mixes are used for anonymous 

systems. Also, using multiple mixes increases anonymity of the entire system and 

protects the system from denial of service (DoS). Mix networks can be categorized into 

cascade networks and free route networks. In a cascade network, a message takes a 

predefined route determined by the system, e. g. JAP.  In a free route network, the path 

is the selection of mix to be used for routing is done by the user, e. g. Tor. 

 High latency applications, like emails and message boards, don't have 

strict timing requirements and can use high latency mixes, which delay the message to 

provide anonymity.  Low latency applications like web-browsing, instant messaging 

and VOIP have very stringent latency requirements.  Latency inducing mix networks 

can render these applications useless.  Empirical evidence shows that low latency 

anonymity systems attract more users as compared to the high latency systems [ 14]. A 

larger user base increases the anonymity set, which increases the anonymity of the mix 
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network. The mix network we focus on in this study is a free route, mix network for low 

latency applications. 

 

2.2 Timing Analysis: Attacks 

 

In over 25 years since Chum introduced mix, many systems have been proposed 

and exist for anonymous communication. Various studies have been done on breaking 

the anonymity and proving defenses against them. This study focuses on timing analysis 

attacks. 

Timing analysis attacks can be classified into active and passive. An active 

attack assumes a global active adversary, who not only can observe traffic on the entire 

network but can also delay and insert messages into the streams. The power of an active 

adversary is in the ability to insert and delay messages.  A passive adversary, on the 

other hand, does not have the ability of inserting or delaying messages on the network. 

Thread model in this study is the same as described in [ 2]; a passive adversary who is 

aware of and has access to the entry and exit nodes on a path. 
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Figure 2.1 - Timing Correlation analyses 

Figure 2.1 shows the basis of timing analysis; relative time difference (δ) 

between two consecutive packets remains the same throughout the network. In other 

words, δ of packets leaving the entry node will be approximately the same as that of a 

packet entering the exit node of a mix. This property of the network flow is used for 

timing analysis. Statistical correlation can be found between various distinct streams to 

determine the most likely sender and receiver of the stream and compromise the 
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anonymity [ 2,  3]. A dropped packet on the path, intentional or due to network 

congestion, will cause the timings of the packets to be off by one. As a result, the 

correlation will be calculated between the packets that do not match. To avoid this 

effect, the count of the number of packets received during a time window is used 

instead of timings of packets, as suggested in [ 2]. 

 

2.3 Timing Analysis: Defenses 

 

Constant rate cover traffic along the entire path is a known defense against 

timing analysis attacks. When all the participating nodes are synchronized and send data 

as the same constant rate, cover traffic makes all the streams look the same and makes it 

difficult to find correlation based on the time difference to isolate the streams. Pipenet 

[ 17] and ISDN-Mix [ 18] use end to end cover traffic where as Tarzan [ 15] uses hop by 

hop cover traffic. 

Constant rate cover traffic, however, adds tremendous overhead to the network. 

For the cover traffic to be fool proof, all the nodes must be synchronized and transmit 

the packets at the same constant rate. Even with synchronized constant rate cover traffic 

vulnerability to an active adversary still remains. For these reasons, and under the 

assumption that the routing infrastructure is uniformly busy, systems like Tor [ 5] and 

Freedom [ 16], does not use any cover traffic. 

Based on the idea of cover traffic, to reduce the timing correlations, various 

defense mechanisms have been proposed. In partial-route padding [ 19], all the cover 

traffic is dropped at a designated intermediate mix. Defensive dropping [ 2] generalizes 
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the idea of partial-route padding, where the initiator creates a dummy packet and marks 

it to be dropped at any intermediate mix at random. When the packets are dropped at 

random at a sufficiently large frequency, the timing correlation is reduced [ 2]. Adaptive 

padding [ 20] tried to reduce the timing correlation by inserting dummy packets in the 

network stream, instead of dropping the packets.  It is used to fill statistically unlikely 

gaps in the packet flow without adding latency.  A variant of adaptive padding has also 

been proposed by Shmatikov and Wang [ 20] to counter attack. 
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CHAPTER 3 

 

3 Γ -BUFFERI�G: BUFFERI�G FOR LOW-LATE�CY CO��ECTIO�S 

 

In the original mix design, each user must send one packet in each batching 

period. This has previously been extended to low-latency mixes by the use of constant 

rate traffic, in which each user emits packets at a constant rate, using dummy packets 

when real user traffic is not available. Constant rate traffic reduces the correlation 

between different flows since all the flows receive constant number of packets with the 

same time difference. In the design of real-world mixes, various batching approaches 

have been proposed [ 9]. This chapter introduces a new light weight defense based on 

the idea of constant rate traffic to prevent timing analysis attacks.  It is called γ-

Buffering. 

 

3.1 γ-Buffering 

 

γ-Buffering is a technique for buffering traffic that can be used to undermine 

traffic analysis attacks in low-latency anonymous communications systems. This 

technique is designed with the aim to maintain low latencies at the cost of some cover 

traffic and can be adapted for different levels of allowable latency and bandwidth use. 

The main insight behind this technique is that, with sufficiently high traffic 

rates, standard batching techniques from mixes can be used without slowing down 

traffic excessively. While low-latency mixes setup and utilize paths for streams of 
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packets, packet-level batching can effectively intertwine the streams' timing 

characteristics and destroy many of the patterns that attackers would seek to use in 

timing analysis. Random selection of packets from the batch during the send, 

independent of the packet arrival order and the latency introduced by buffering would 

reduce the timing correlation of packets making different streams have similar timing 

correlations. Furthermore, batching creates a variable intermediate delay that may be 

able to remove watermarking introduced by an active attacker.  

End-to-end cover traffic can provide sufficiently high traffic rates. The amount 

of traffic entering a node at a given time, however, can still depend on the number of 

connections entering the node and the network conditions for each connection. We 

could require that each path send a packet, as proposed in Pipenet [ 17], but that could 

lead to long delays and denial-of-service (DoS) attacks. An adversary could prevent a 

mix from firing by preventing an initiator or number of initiators from sending 

messages to the mix.  

In an attempt to remove enough timing patterns without introducing such risks, 

γ-buffering uses a more flexible scheme. If there are p incoming connections to a node, 

then the node buffers at least γ*p packets before sending the batch, where γ is a fraction 

that can vary depending on the system needs. 

 When γ=1, each node will get an average of one packet from each incoming 

connection before sending the batch. For γ > 1, larger batch sizes help ensure security at 

the cost of higher average latencies. For γ < 1, we can ensure a low latency when no 

more than (1 – γ )* p connections are blocked or delayed. One of the primary benefits of 
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γ-buffering is in its flexibility. The buffering parameter γ can be controlled at the system 

level or by individual nodes. When controlled by nodes, different nodes may offer 

different γ values, allowing users to select paths with higher or lower amounts of 

buffering to suit their needs. If the ratio of users to nodes grows, meaning that there are 

more connections per node, then γ may be dropped due to greater cover traffic. 

 The other primary benefit of γ-buffering would be its resilience to changing 

network conditions and DoS attacks. When other users' connections fail or are delayed, 

this creates delays for the user. Some delay is good; if the user sends traffic too 

aggressively, then she will be subject to easier traffic analysis. The delay is bounded, 

however, as long as at least the user’s own traffic continues to reach the node. End-to-

end attacks will likely fail, even when conducted by a global adversary, as long as some 

other paths continue to operate. 

 Another way in which γ-buffering would be resilient to active attacks is that 

delays introduced along a user's path will multiply to show delay on many other paths in 

the system. The increased delay, introduced early in the path, will likely delay an entire 

batch of packets at the next node. These delayed packets cause further upstream delays, 

with an effect that is exponential in the length of the path. An attacker may observe a 

delay that has propagated along either the original path or one that has been introduced 

by the buffering, making it difficult to distinguish false positives from correct matches. 

Unlike the addition of random delays along the path, γ-buffering introduces delays 

simultaneous with other delays in the system, so that timing effects occur together and 

are much less useful to the attacker for differentiating between paths.
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CHAPTER 4 

 

4 EXPERIME�TS 

 

We created an application to work on a real network to collect our data. The 

experiments were conducted on the distributed platform PlanetLab. 

 

4.1 PlanetLab 

 

PlanetLab is a global research network that supports the development of new 

network services. PlanetLab is a collection of computers distributed over the globe [ 21]. 

Most of the machines are hosted by the participating research institutes and all of the 

machines are connected to the Internet. All the computers on PlanetLab run a Linux-

based operating system from a read-only media. The key objective of PlanetLab's 

software is to support distributed virtualization—the ability to allocate a slice of 

PlanetLab's network-wide hardware resources to an application. This allows an 

application to run across all (or some) of the machines distributed over the globe, where 

at any given time, multiple applications may be running in different slices of PlanetLab 

[ 21]. In order to provide consistent expected performance and dedicated resources on a 

community shared network, PlanetLab allows for reservation of resources through 

Sirius Calendar Service. Reservation entitles the slice a dedicated 25% of CPU capacity 

and 2 Mbps of link bandwidth.  All other active slices share the remaining resources 
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with equal priority.  Sirius is still under development and does not reliably schedule and 

allocate resources. PlanetLab has over 800 computers located in over 400 locations as 

of October 2007. 

A distributed and geographically disperse Linux-based real network test bed 

was an ideal platform for collecting data for this research. Global distribution of 

PlanetLab nodes allows for real network latency and provides a real test bed to test and 

create robust applications. A slice was created with over 300 nodes for our experiments 

on PlanetLab. Sites with Internet2 connection were excluded. PlanetLab has various 

deployment and monitoring tools available, but we developed our own to meet our 

needs as the existing tools were lacking features needed to manage our experiments. 

 

4.2 SubRosa 

 

4.2.1 Overview     

 

An application, SubRosa, was developed to run on PlanetLab to collect data for 

this research. We designed SubRosa to emulate the behavior of a Tor-like network over 

the unreliable UDP transport. It is written from scratch without borrowing code or 

design from Tor.  The primary objective of SubRosa is to collect timing data for our 

research and hence, encryption is not implemented. Only information visible to an 

adversary in the presence of encryption has been used to perform timing analysis in our 

experiments. The Tor project's existing proposal for implementing Tor over UDP, as 

well as Voice over IP (VOIP) traffic, were factors in choosing UDP as the transport for 

this application and the research.  However, due to the restriction placed by the 
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community-shared, non-dedicated resources of PlanetLab, no experiments were 

conducted for VOIP data. 

SubRosa is written entirely in C and consists of various components; namely, 

subrosa, srserver, srclient and srsink.  subrosa is the controller program.  It starts, stops 

and checks the status of the server, client and sink.  The Controller is also used to create 

a daemon of the server, client and sink.  subrosa keeps track of the versions of all 

components in the system including the configuration file used to run the application. 

subrosa was used to deploy the application on PlanetLab and keep track of the versions 

while conducting experiments. 

• srsink is the destination of the data.  It is a simple UDP echo server designed 

simplistically for high throughput.  Since sink is not a required component 

for this research, in order to simplify the data collection process and not to 

waste shared resources, it was not deployed during the experiments. 

• srserver is the server piece of the application.  It can act as first, last or any 

intermediary node on the path. The server is discussed in greater detail later 

in this section. 

• srclient is the client piece of the application.  It represents the client and is 

responsible for generating data on the network. The client is discussed in 

greater detail later in this section. 

 SubRosa is designed to collect timing data for various defense algorithms 

against timing analysis and, hence, it is versatile. Hooks and exits are designed to 

collect timing data as well as easily implement different algorithms for collecting data. 
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All the variable parameters are read from the configuration file. Appendix A lists the 

configurable parameters. 

Algorithms currently implemented: 

• No Defense 

• Defensive Dropping 

• γ Buffering 

Implemented packet generators: 

• Constant Bit Rate 

• Exponential 

Figure 4.1 - Data flow in a mix network  

Data flow in an Onion Router network is shown in Figure 4.1. N represents 

srserver, C represents srclient and S represents srsink. The client selects the path length 

C – Clients 

N – Mix Node 

S – Sink 
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and the nodes on the path.  After selection, the client starts the circuit building process. 

Steps involved in the circuit building process are as listed and shown in Figure 4.2 and 

described here: 

Step – 1 establishes the connection with the first node on the path (N1) 

Step – 2 extends the connection to the second node on the path (N2) through N1 

Step – 3 extends the connection to the third node on the path N3 through N2 

using N1 as a relay 

Step – 4 opens connection to the destination (S) through N3, using N1 and N2 

as a relay N3 on receiving response from S, forwards the response to C, using N2 and 

N1as a relay 

Step – 5 once the circuit is established, C uses N1, N2 and N3 to communicate 

with S using the same circuit. S is unaware of this handshake. 

 

Figure 4.2 - Circuit building process – Steps as described above 
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4.2.2 Methodology 

 

In our experiments, we fixed the path length to three.   Since we did not use the 

sink, the exit node on the path acts as a sink and generates the response. All the traffic 

generated for the experiments was constant bit rate. 

 Five PlanetLab nodes were selected based on the load and the available 

bandwidth to act as servers for our experiments. Due to the nature of the test bed, if and 

when a node was not available or was heavily loaded, that node was replaced by another 

carefully chosen node. Uptime of more then 3 days, no bandwidth restrictions and less 

then 0.5 seconds response time were the criteria used for selection of the server nodes. 

Servers were selected by manual use of CoMon monitoring infrastructure for PlanetLab. 

All the servers were closely monitored during the experiments using CoTop slice based 

top for PlanetLab. Results were not considered in the analysis if the node did not 

perform consistently for the duration of the experiment.  

 More then 300 nodes were added to the slice to act as a client.  For each 

experiment, clients were chosen at random.  At the startup, clients randomly choose 

three out of five available nodes. Circuits are then established with those three nodes on 

the path. 

 The duration of our experiments was approximately 15 minutes each. Logs were 

collected for analysis after each experiment. Timing data were extracted from the logs 

using Perl scripts. Timing data were converted to zero base time to avoid time zone 

issues and to accommodate the scripts for analyzing the data which were provided by 
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[ 2]. Experiments were conducted for 25, 50, 75 and 100 clients and packets were 

generated every 300ms and 100ms. Data was also collected for various run with same 

parameters to take the average. 

 

4.2.3 γ Buffering 

 

γ Buffering is implemented on the servers.  Multiplier γ is configured at the start 

of the application. γ is multiplied with the number of active circuits on the node to 

obtain the number of packets to buffer, before queuing it on the send queue. During the 

buffering period all the packets received are stored in a list in random order. Once the 

desired number of packets is buffered, the packets from the list are put on the send 

queue and sent out using a pool of threads. The thread pool is created at the startup and 

is kept alive for the life of the application to avoid overhead and improve the response 

time. Five threads pool were used for γ buffering. γ buffering was implemented with a 

delay of 180 seconds after the server started, to avoid lockups during the circuit 

building process. The packets sent during the first 4 minutes were discarded to 

compensate for the startup delay. γ values of 0.5, 1.0 and 1.5 were used for the 

experiments. 

 

4.2.4 Defensive Dropping 

 

 Defensive dropping is initiated by the client.  The client, at random, selects the 

packets to be dropped and marks it to be dropped at the intermediary node. The drop 

command is set in the header for the intermediary node and, hence, no other nodes on 
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the path are aware of the dropped packets. To drop a certain percent of packets, a 

random number between (0, 1] is compared with the configured drop rate.  If the 

number is less then the drop rate, a packet is marked to be dropped at the intermediary 

node.  The server upon receiving a packet with a drop command set, logs the packet and 

stops further processing of the packet by discarding it form the receive queue. Drop 

rates of 20 percent and 50 percent were used for the experiments. 

 

4.2.5 �o Defense 

 

Base line data without any defense against the timing analysis were also 

collected for all the 25, 50, 75 and 100 nodes. Packets were generated at every 100 

milliseconds and 300 milliseconds other parameters were kept in line with other 

experiments. 
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CHAPTER 5 

 

5 RESULTS 

 

In this section, we present the results of our experiments on timing analysis of a 

Tor like network. We show relative effectiveness of various defenses and also compare 

it against the timing analysis of anonymity systems without any defense. 

We collected data using 25, 50, 75 and 100 clients for various defenses. Data 

was also collected without implementing any defense against timing analysis to 

establish the base line for comparisons 

A Receiver Operator Characteristic (ROC) curve is a graphical representation of 

the trade off between the false negative and false positive rates for every possible cut 

off (threshold). Conventionally, the ROC curves show the false positive rate on the X-

axis and 1 – the false negative rate on the Y-axis. We follow the same convention in 

representing the ROC curves. We plot different ROC curves on the same graph to 

visualize the relative comparison.  Curves that are closer to the upper left-hand corner 

are better, in our case, better for an adversary and the worse case for an adversary would 

be a 45
o
 diagonal. Figure 5.1 shows the ROC curve for 100 client configurations for 

various defenses. 
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Figure 5.1 – Timing Analysis: Defense comparison for 100 nodes 

We can see from Figure 5.1 how various defenses compare with no defense. 

The curve on the top represents the base line data without any defense, which is the best 

for an adversary. The defensive dropping curve is almost a diagonal at 45
o
 making 

defensive dropping the strongest defense among the ones compared. γ-Buffering does 

not perform as well as defensive dropping as a defense against timing analysis.  With 

the increase in value of γ, the ROC curve is drifting away from the upper left-hand 

corner, which looks promising. However, due to the lack of data with higher γ values, 

the effectiveness of γ-buffering is not very clear. 
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Figure 5.2 – Timing Analysis: 20% Defensive Drop 

 

Figure 5.3 – Timing Analysis: 50% Defensive Drop 
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Figure 5.2 compares the effectiveness of the 20% defensive dropping rate 

against the timing analysis attacks with the varying number of clients. All the curves are 

very close to each other and almost at a diagonal. We can infer from Figure 5.2 that 

number of clients does not impact the defense. Figure 5.3 shows data for 50% defensive 

dropping rate with similar results.  

Figures 5.4 - 5.6 compare the effectiveness of various γ values against the 

timing analysis with the varying number of clients. We see a consistent trend of 

improved defense with the increase in the value of γ.  For γ=1, a 100 client network has 

the best defense. However, for γ=1.5 25 and 50 nodes seems to have better defense then 

100 nodes. The results are not consistent in this regard for γ-buffering as they are with 

defensive dropping. Similar inconsistencies are also observed in the results for 25, 50 

and 75 nodes, which are not shown here. Characteristics of the test bed, PlanetLab may 

be the factor for the inconsistency. The traffic on the network for γ-buffering was 

substantially greater than defensive dropping. In defensive dropping, up to 50% of the 

packets were dropped at the intermediate node. 

Figure 5.7 displays the comparison of timing correlation of the base line data for 

various nodes. Even though over all, the base line data does not seem to have much 

protection against timing analysis attacks, the inconsistencies mentioned above still 

exist with 25 nodes networks being the worse and 50 nodes networks being the best, 

with 75 and 100 nodes falling in between.  
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Figure 5.4 – Timing Analysis: γ-buffering for γ=0.5 

 

Figure 5.5 – Timing Analysis: γ-buffering for γ=1.0 
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Figure 5.6 – Timing Analysis: γ-buffering for γ=1.5 

 

Figure 5.7 – Timing Analysis: No Defense 
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We conducted more experiments with the same configuration. Data was 

analyzed collectively to obtain average ROC curve. We kept the number of clients 

constant at 25. Figure 5.8 – Figure 5.11 shows the average ROC curves of various 

configurations for 25 clients. 

Figure 5.8 shows ROC curve when no defense was used. The curve is on the 

upper left-hand corner as expected. Figure 5.9 compares 20% defensive dropping with 

50% defensive dropping. We can see that 50% drop is marginally better then 20%. 

Hence 50% drop provides more anonymity at the cost of significantly higher 

bandwidth. 

Figure 5.10 compares various γ values, the results are consistent, but the 

improvement with the increase in γ is marginal. The variation for ROC of γ=3 can be 

attributed to the changed network characteristics since this particular result was taken 

on a different day using the different set of servers. It is clear that even though 

γ=buffering has good properties to provide anonymity, it did not perform well as 

implemented in SubRosa. We assume compromised entry and exit node as a threat 

model in our study.  Delaying packets on all the nodes on the path may provide much 

needed additional information to the adversary. γ-buffering might perform better if 

implemented only at the intermediately node, i. e. the delay should occur only at the 

intermediate node rather than all the nodes. However, we do not have any data at this 

point to validate the hypothesis and we leave this as a future work. 

Figure 5.11 compares various defenses with no defense showing the 

effectiveness of defensive dropping and non effectiveness of γ-buffering. 
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Figure 5.8 – Timing Analysis: No Defense – 25 Nodes 

 

 

Figure 5.9 – Timing Analysis: Defensive Dropping – 25 Nodes 
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Figure 5.10 – Timing Analysis: γ-buffering – 25 Nodes 

 

 

Figure 5.11 – Timing Analysis: Defense comparison – 25 Nodes
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CHAPTER 6 

 

6 CO�CLUSIO�S 

 

To facilitate the research of low latency anonymous systems in general and 

timing analysis on low latency systems in particular, we developed SubRosa, an 

application to study timing analysis of real time anonymity systems.  We modeled 

SubRosa on Tor like systems but choose UDP as the transport protocol with low latency 

real time application like VOIP in view. 

We ran experiments on a real distributed network PlanetLab and collected 

network timing data. We also performed successful timing analysis attack on the data 

collected from PlanetLab and implemented known defenses to avoid the attack. We 

proposed a light weight defense against timing analysis attack on a low latency system, 

γ-buffering, based on the principle of mix design. 

We studied relative comparison of defensive dropping and γ-buffering with no 

defense. Our results proved defensive dropping to be the best defense against timing 

analysis attack on a low latency mix network by a passive adversary. 

 

6.1 Future Work 

 

Results presented in this work are not consistent, especially for γ-buffering. 

More data needs to be collected to prove effectiveness of γ-buffering against timing 
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analysis attack. Better collection of data could be facilitated by developing tools to 

automate the data collection process on PlanetLab. SubRosa needs to be evaluated in 

order to eliminate starvation of the packets in the queues for the inconsistent results of 

γ-buffering defense. 
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APPE�DIX A 

 

A. SUBROSA CO�FIGURATIO� PARAMETERS 
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S. �o Section Parameter Value Default Description 

 Common    [COMMON] section of 

configuration file 

1  MaxSendQueue Integer 1024 Maximum number of packets in the 

send queue 

2  MaxRecvQueue Integer 1024 Maximum number of packets in the 

receive queue 

 Server    [SERVER] section of configuration 

file 

3  BindIP String Loopback IP on which server listens to, if 

blank, IP will be determined from 

hostname 

4  ListenPort Integer Random Port on which server listens to, if 

blank, random port greater then 

1024 will be used 

5  SendBufferType Integer 0 0 – No buffering, 1 – Fixed number 

of packets, 2 – packets based on γ 
multiplier 

6  MaxSendPoolWorker Integer 1 Number of threads in the thread 

pool for sending data. 

7  MaximumSendBuffer Integer 1024 Maximum number of packets to 

buffer, value obtained by γ 
multiplier must be less then this 

value. 

8  Buffer γ Float 0.0 γ buffer multiplier, used only when 

SendBufferType = 2 

 Client    [CLIENT] section of configuration 

file 

9  BindIP String Loopback IP on which client listens to, if 

blank, IP will be determined from 

hostname 

10  ListenPort Integer Random Port on which client listens to, if 

blank, random port greater then 

1024 will be used 

11  NoOfHops Integer 3 Path Length 

12  HOP String None List of server nodes to select route 

from in the pattern 

HOPn=hostname:port, n > 0, n < 11 

13  Destination String Loopback Destination address 

14  PacketGenerationType Integer 1 Packet Generation:1 – Constant, 2 - 

Exponential  

15  PacketGenerationRate Integer 100 Packet generation rate in 
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S. �o Section Parameter Value Default Description 

milliseconds 

16  PacketDropRate Float 0.0 Percentage of packets to be dropped 

17  BackoffPacketGen Boolean No Stop generating packets if response 

is not received within 10 seconds 

18  RetryCircuit Boolean No Retry circuit building process if 

circuit was not established in 30 

seconds 

 Log    [LOG] section of configuration file 

19  LogPath String . Log output directory 

20  NetLog Boolean Off Network log on/off 

21  NetLogFile String - Network log file name, if blank, 

IP.nlog for 

server,N1_N2_N3_IP.nlog for client 

22  NetLogSize Integer 0  

23  SysLog Boolean Off System log on/off 

24  SysLogFile String - System log file name 

25  SysLogSize Integer 0  

26  LogLvl Integer 4 Log level: 0 – 7, 0 – Least details,7 

– Most details 
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