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ABSTRACT 

 

POWER AND DISTORTION OPTIMIZED VIDEO CODING FOR PERVASIVE 

COMPUTING APPLICATIONS 
 

Publication No. ______ 

 

YONGFANG LIANG, PhD. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Ishfaq Ahmad  

This dissertation investigates video encoding schemes for pervasive computing 

applications that must ensure low power consumption in addition to high compression 

efficiency. The contribution of the dissertation is the formulation of a theoretical 

problem that captures the joint optimization of power and distortion in video coding. 

The study of the complexity distribution of typical video encoders helps to develop a 

complexity-scalable video encoding architecture that includes several control 

parameters to adjust the power consumption of the major modules of the encoder. An 

analytic framework to model, control and optimize the power-rate-distortion is 

developed, which facilitates the development of optimization schemes to determine the 

best configuration of the complexity control parameters according to the either or both 



 iv

the power supply level of the device and the video presentation quality. The dissertation 

proposes complexity control schemes that dynamically adjust the control parameters. 

Using extensive simulations on an instruction set simulator, the accuracy of the model, 

and quality of the optimization schemes are investigated. For additional performance 

improvement, we propose algorithms that exploit the video content to reduce the power 

consumption and improve the video quality. This is done by obtaining and maintaining 

the “motion history” of a video sequence in a hierarchical fashion. By adaptively 

adjusting the complexity parameters according to the motion history information gained 

from the video sequence, the power is saved when the scene has little motion and 

consumed when the motion activity increases. Extensive experiments have been 

performed to show the validity and merits of the proposed techniques.  
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CHAPTER 1  

INTRODUCTION 

1.1 Ubiquitous Video Coding for Pervasive Computing Applications 

Video coding/compression is the key ingredient for cost-effective storage and 

transmission of video images over any digital communication link. There has been a 

progression over time in the study of video coding technologies. This progression has 

gone from video image difference coding, motion-compensated hybrid coding, to 

object-based coding. As the multimedia applications are becoming more sophisticated 

and complex, video coding technologies have to evolve in order to meet the ever-

increasing processing requirements. 

1.1.1 Digital Video Compression Overview 

A raw video stream tends to be quite demanding when it comes to storage 

requirements, and demands for high network capacity when being transferred. For 

example, an uncompressed HDTV picture with 2.2 million pixels and raw coding with 

24 bits per pixel (8 per color component) would require 1.5-3 Gbits/sec depending on 

the picture frequency. Therefore before being stored or transferred, the raw stream is 

usually transformed to a representation using compression. The purpose of video coding 

is to enable the transmission and storage of video in digital form with as small a 

bandwidth and as good a quality as possible. In the past several decades, the power of 
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computers and the advancement of mathematical algorithms for video compression 

have lead to a tremendous success in a diversity of video applications, such as 

multimedia authoring, entertainment, digital CATV, video conferencing, video on 

demand and digital direct broadcast satellite TV. 

Table 1.1 Video Codecs in various video services and applications 

Services and applications Video Codec 

MMS H.263 profile 0 level 10 

PSS Release 5 H.263 profile 0 level 10 

3GPP (3rd generation 

Partnership Project) 

PSS Release 6 N/A 

Circuit Switched Video 

Conferencing Services 

MPEG-4 Simple Profile Level 0 

and H.263 baseline 

3GPP2 

Packet Switched Video 

Conferencing Services 

MPEG-4 Visual or ITU-T H.263 

(or both) shall be supported 

3G-324M mobile videoconferencing H.263 baseline level 10 

H.320 videoconferencing H.261 QCIF 

H.323 videoconferencing H.261 QCIF (if have video service)

HD-DVD, Blue-ray DVD Microsoft VC-9 (VC-1), MPEG-2, 

MPEG-4 AVC (H.264)  

DVD MPEG-2 

Main Profile @ Main Level 

SVCD (Super Video CD) MPEG-2 MP @ Low Level 

MPEG-1 

VCD (Video CD) MPEG-1 

To ensure interoperability between different terminal devices when sharing 

video content and compliance when creating (or personalizing) video bitstreams, 

different video coding standards/recommendations have been proposed targeting 
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various application areas, including H.261/H.263/H.264 by ITU-T [55][56][57] and 

MPEG-1/MPEG-2/MPEG-4 by ISO/IEC [51][52][53]. The H.26x recommendations 

have been designed mostly for real-time video communication applications, such as 

video conferencing and video telephony. On the other hand, the MPEGx standards are 

designed to address the needs of video storage (DVD), broadcast video (broadcast TV), 

and video streaming. These standards/recommendations have been the engines behind 

the commercial success of various video services and applications, summarized in Table 

1.1, each of those was designed to fit a specific application and best suited to particular 

requirements. 

MPEG-1 [51] is a standard for the compression of moving pictures and audio up 

to 1.5 Mbits/sec. This was based on CD-ROM video applications, and is a popular 

standard for video on the Internet, transmitted as .mpg files. MPEG-1 is the standard of 

compression for VideoCD, the most popular video distribution format throughout much 

of Asia. In addition, level 3 of MPEG-1 is the most popular standard for digital 

compression of audio--known as MP3. MPEG-2 is based on MPEG-1, but designed for 

the compression and transmission of digital broadcast television. The most significant 

enhancement from MPEG-1 is its ability to efficiently compress interlaced video. 

MPEG-2 [52] can be used for application between 1.5 and 15 Mbits/sec such as Digital 

Television set top boxes and DVD movies. MPEG-2 scales well to HDTV resolution 

and bit rates, obviating the need for an MPEG-3. The focus and scope of MPEG-4 [53] 

was defined as the intersection of the traditional separate industries of   

telecommunications, computer, and file where audio-visual applications exist. It aims at 
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application such as Internet and intranet video, video e-mail, home movies, virtual 

reality games, simulation and training. MPEG-4 addresses the need [32] for: (1) 

Universal accessibility and robustness in error prone environments. (2) High interactive 

functionality. (3) Coding of natural and synthetic data. (4) Compression efficiency. 

Besides the new functionalities, MPEG-4 is also supporting the basic functionalities 

such as synchronization of audio and video, low delay mode, coding of a variety of 

audio types, interoperability with other audio-visual systems, support for interactivity, 

ability to efficiently operate in the 9.6 to 1024 Kbit/s range, and ability to operate in 

different media environments.  

H.261 [54] is an ITU standard designed for two-way communication over ISDN 

lines (video conferencing) and supports data rates that are multiples of 64Kbit/s. H.261 

uses intraframe and interframe compression. The algorithm is based on Discrete Cosine 

Transform (DCT) and can be implemented in hardware or software. H.261 supports CIF 

and QCIF resolutions. H.263 is based on its predecessor H.261, using the same hybrid 

block-based coding structure, with enhancements that improve video quality over 

modems. H.263 [55] was developed for low bit rate video coding between 20 and 

64kbps. H.263 supports CIF, QCIF, SQCIF, 4CIF and 16CIF resolutions. It has been 

widely used in videoconferencing and video-telephony applications. H.264 (also known 

as MPEG-4 AVC) [56] is the latest international video coding standard. It was jointly 

developed by the Video Coding Experts Group (VCEG) of the ITU-T and the Moving 

Picture Experts Group (MPEG) of ISO/IEC with an objective to create a single video-

coding standard, which simultaneously resulted in AVC (Advanced Video coding) of 
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MPEG-4 Part 10 and ITU-T H.264 recommendation. While using the same hybrid 

block-based motion compensation and transform-coding model as H.263, MPEG-2 and 

MPEG-4, H.264/AVC achieves a significant improvement in compression efficiency 

relative to prior standards, by applying a number of new features and capabilities. It can 

be used in a wide range of applications, including video telephony, video conferencing, 

TV, storage (DVD and/or hard disk based, especially high-definition DVD). 

1.1.2 Ubiquitous Video Coding 

At the turn of the last century, we witnessed the genesis of the “wireless and 

pervasive computing era,” in which the focus of telecommunications and computing 

started to change, from traditional wired telephony-oriented services and infrastructures 

to data-based services, and from desktop workstations to smart hand-held, personal 

digital assistants, and mobile computers [1]. With the advances in high-capacity 

memory storage, powerful microprocessor technologies and efficient video coding 

algorithms, pervasive video applications are likely to prevail in the next-generation 

wireless networks, providing exciting new services to users in a home or small office 

environment, such as mobile video conferencing or streaming on hand held devices like 

PDA (Personal Digital Assistants).  

Ubiquitous video encoding is envisioned for a wide range of applications, such 

as battlefield intelligence, surveillance, reconnaissance, security monitoring, emergency 

response, disaster rescue, environmental tracking, tele-medicine, and multimedia 

systems in consumer electronics [2]. One application example of ubiquitous video 

coding is the development of an Aware Home [50], which makes video and audio 
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sensing transparent to everyday activities and distributing it everywhere. By ubiquitous 

video coding, the system allows the users to communicate within a house using a 

videophone like device, control devices in the home using voice or gestures, and 

monitor children and pets anywhere in the house. Another example is the wireless 

camera flashlight used by police officers as part of a pervasive video surveillance 

system. The officers can use the flashlight to capture the crime scene, process it and 

communicate with the department for the purpose of criminal identification or 

archiving. 

While the video compression technology has matured in the realms of 

entertainment, television, and movie, current state-of-the-art is inadequate for the 

changing computing platforms and paradigms in the upcoming wireless and pervasive 

computing era. In ubiquitous video coding applications, video capture, compression and 

network streaming mostly operate on a device/sensor with limited energy. A primary 

factor in determining the utility or operational lifetime of the mobile communication 

device is how efficiently it manages its energy consumption. Traditional video coding 

technologies do not consider the power supply problem. Moreover, the coding 

environment is ubiquitous and the coding content may changes over time very 

frequently. These new video coding characteristics pose new research challenges to the 

researchers.  
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1.2 Research Challenges 

Video compression technologies in futuristic environments will have to meet the 

following challenges: (a) Aware of the Power of the underlying device; (b) Ensuring 

Quality-of-Service; (c) Catering to Rough and un-ideal environments; (d) Fast encoding 

Speed. We collectively refer to these research goals as the PQRS goals, which serve as 

the motivation of the research in this dissertation: 

• Power Awareness. In wireless pervasive video communication 

environments, one fundamental problem is how to efficiently manage the power 

consumption of the video encoding system, while preserving a well-perceived video 

presentation quality. The nickel-cadmium and lithium-ion batteries general used in 

mobile devices have increased their energy capacity roughly by 10 to 15 percent per 

year. However, it is conjectured that only another 15 to 25 percent increase is possible 

[74]. The implication of limited power on video encoding is two-fold. First, efficient 

video compression significantly reduces the amount of the video data to be transmitted, 

which, in turn, saves a significant amount of energy in data transmission. Second, more 

efficient video compression often requires higher computational complexity and larger 

power consumption in computing. To prolong the lifetime of the battery, a video 

encoding system capable of adjusting its energy consumption as demanded by the 

situation and its environment is highly desirable.   

• Ensuring Quality of Service. Another challenge is to ensure quality-of-

service (QoS), which in the context of video encoding is measured from two 

perspectives: First, the picture quality of motion picture must be optimized. Nothing 
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prevents a researcher to aim for better than HDTV quality on a handheld device, and the 

optimization pursuit may be without limit. Second, the available coding bits are best 

used when and where needed the most at limited transmission bandwidth. 

• Content Adaptive. Pervasive environments are far from ideal. They contain 

highly obscure and unintelligible data, which exert tremendous stress on an encoder, in 

terms of the computational requirements as well as the bit budget to encode the scene 

complexity. Therefore, we also need to develop effective adjustment techniques to 

consume minimal power while preserving desired video quality, according to the 

changes of the environment as well as the power supply level. 

• Fast Encoding Speed. Real-time video compression remains a 

computationally demanding problem. With limited CPU power available in pervasive 

computing devices, such as miniature cameras and sensors, another research challenge 

is to design fast algorithms without compromising on the solution and at the same time 

invent techniques to speed up the execution of the algorithms. 

  Unfortunately, not much research work and attention have been paid to the 

new requirements of video coding for pervasive computing applications, although some 

of these issues have been addressed separately in some related research areas with 

different goals, as reviewed in the following chapter. The focus of this dissertation is to 

make an attempt to meet the PQRS goals in ubiquitous video coding under power 

constraints, on techniques for efficiently utilizing the energy supply while preserving 

desirable video quality. We consider not only the video encoding architecture, but 

power and quality control schemes as well. Our intent is to develop video coding 
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technologies that sufficiently meet these new challenges, and to assess the best 

performance trade-offs as well as the collective impact of rate, distortion, and power. 
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CHAPTER 2  

A SURVEY ON RELATED RESEARCH WORKS 

2.1 Low Complexity Video Coding 

The source coding schemes recommended by the international standardization 

groups are very sophisticated in order to achieve high bit rate reduction under the 

constraint of the highest possible picture quality. These coding schemes will result in 

systems of high complexity, which usually lead to high power consumption. Thus cost 

effective implementation of these high complexity systems is one of the most important 

criteria for many signal-processing system designs, particularly in pervasive computing 

applications such as multimedia cellular applications and multimedia system on chip 

design that have limited processing power. This is usually known as fast/real-time video 

encoding/decoding.  

2.1.1 Low Level System Optimization 

Low-level system optimization is an important technique to reduce the power 

consumption. There have been many approaches to achieve this design goal at 

implementation levels ranging from very-large-scale-integration (VLSI) fabrication 

technology to parallel processing. 

2.1.1.1 VLSI Design 

VLSI technologies have now advanced to the point where the processing power 

and memory required to perform real time video compression and decompression can 
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be incorporated into a few silicon chips. Many VLSI design architectures for fast video 

coding have been proposed in the literature. Research works of low-power VLSI design 

in video coding are reported in [25]. In [35], the authors present an architectural 

enhancement to reduce the power consumption during full-search block-matching 

motion estimation. The proposed approach achieves power savings by disabling 

portions of the architecture that perform unnecessary computations. [34] compares 

different full-search motion estimation architectures targeted for low-power 

consumption. Each of the architectures is analyzed, and then compared to the others. In 

[7], five low-level circuit designs for the DCT/IDCT operations in an H.263 system are 

investigated for low-power improvements. The techniques include skipping low energy 

DCT input, slupping all-zero IDCT input, low precision constant multipliers, clock 

gating, and a low transition data path. Another two instances of low-power VLSI design 

for motion estimation can be found in [44] and [30]. An overview on architectures for 

VLSI implementations of video compression schemes is presented in [75]. 

2.1.1.2 Parallel Processing 

The latest developments in parallel and distributed systems promise a higher 

degree of performance at an affordable cost (such as a network of workstations or 

PC’s). [42] describes a software-based MPEG-4 video encoder, which is implemented 

using parallel processing on a cluster of workstations collectively working as a virtual 

machine. Another example of using multiprocessor parallel systems is the 

implementation of hybrid encoding of CIF video in [38]. An overview of techniques to 
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implement various image and video compression algorithms using parallel processing 

can be found in [80]. 

2.1.2 High Level Optimization 

A variety of recent work on power conservation in video encoding has focused 

on low-level device and circuit design. However, it has been generally recognized that 

high-level management of algorithms and architectures plays the most important role in 

power management of a mobile device. 

2.1.2.1 SIMD Utilization 

Most video coding algorithms operate on data that is highly capable of 

parallelism (such as motion estimation, motion compensation, and deblock filtering). 

Using the architectural characteristics of modern processors, the data level parallelism 

can be exploited by introducing additional logic to partition a higher precision data path 

to multiple pieces of packed, lower precision data and handling the pieces with a single 

instruction. SIMD (Single Instruction Multiple Data) is such a technique in which one 

instruction performs the same operation on multiple data elements, in parallel. Typical 

examples of parallel data processing with multimedia support are Intel's MMX 

(Multimedia Extension to the Intel architecture), and Sun Microsystem's VIS (Visual 

Instruction Extension to the sun UltraSPARC architecture). Both MMX and VIS exploit 

the parallelism inherent in many multimedia algorithms and can enhance the 

computational performance of the processor [4][47][48][90]. By using one single 

instruction to process the data in parallel, a significant number of instruction is saved, 

which results in a big power saving. However, the speedup of using SIMD instruction 
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set is usually restricted by the overhead operations including data alignment, data 

copying and data type convention.  

2.1.2.2 Algorithm Design 

When it comes to complexity reduction, it is always more desirable to develop a 

fast algorithm. For example, other types of optimizations probably cannot make linear 

sort (an O(N2) algorithm) compete with heapsort (O(Nlog(N))) for long sequences. 

Thus, algorithm design and optimization for video coding has been an import research 

topic for years, especially for video applications with limited CPU processing power. 

Since motion estimation and DCT/IDCT are the two most computationally intensive 

aspects of video coding, the design of fast motion estimation and DCT/IDCT algorithms 

abstains the main attention. 

Motion estimation (ME) is the process of finding motion vectors during the 

encoding process. Motion vectors provide displacements into the past and/or future 

reference frames containing previously decoded pixels that are used to form the 

prediction and the error difference signal. It is well known that the full search ME 

approach is computationally intensive, and therefore the search for an effective ME 

algorithm to reduce the computational complexity has been a challenging problem. A 

great amount of fast ME algorithms have been proposed in the literature [37].  As a 

summary, fast ME algorithms can be classified as shown in Figure 2.1 [61]. 
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 Motion estimation algorithms 

Time-domain algorithms Frequency-domain algorithms 

Matching algorithms Gradient based algorithms 

Block 
matching 

Feature 
matching 

Pel 
recursive 

Block 
recursive 

Phase 
correlation
(FDT) 

Match in 
wavelet 
domain 

Match in 
DCT 
domain 

 
Figure 2.1 Fast ME algorithms Classification. 

The discrete cosine transform (DCT) is a real-value frequency transform similar 

to the discrete Fourier transform (DFT). 2D DCT/IDCT has been widely used in video 

coding standards to remove the spatial redundancy of the video signal. The 2D 

DCT/IDCT can be computed using the row-column decomposition method by applying 

the 1D DCT/IDCT by rows and, then, by columns [71], [13], or directly computed 

without decomposing it into two successive 1D DCTs [24], [31], [36]. An alternative 

technique is based on the use of systolic architectures [19], [64]. In this case, the 

transformation is obtained by applying the 1D DCT twice. The book [77] provides an 

extensive introduction and an in-depth analysis of the properties, the various algorithms 

and the applications of the DCT. 

2.2 Power-Distortion Optimized Video Coding 

2.2.1 Design of Complexity Scalable Video Coding 

To allow flexible control on the video encoder, complexity scalability must be 

introduced. In complexity scalable video coding, the computational complexity of the 
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video encoder can be adjusted by changing its complexity parameters. The design of a 

complexity scalable video encoder includes software implementations and hardware 

implementations. 

In [21], a hierarchical block motion estimation algorithm based on partial 

distortion measure is proposed. It uses a coarse to fine approach to refine the search for 

each higher level, by dividing the motion vector search into several levels in a way that 

lower levels use partial distortions with higher decimation ratios. This algorithm can 

provide different computational complexities, i.e., different levels of power 

consumption, with different motion estimation precisions. In [49], a flexible framework 

is presented for DCT-based video encoding. In this framework, each of the encoding 

components (DCT and ME) features a set of parameters that can be used to control the 

computational complexity and performance and allow the encoder to run in real-time on 

machines with different computing power levels. [12] proposes a partially predefined 

configuration architecture for DCT and ME. [16] presents a low power video encoder 

with power, memory and bandwidth scalability for use in portable video applications. 

Scalable compression is achieved by using block transform based vector quantizer 

encoders implemented with table lookups. It can change its power consumption 

depending on the available channel bandwidth and can also trade-off bandwidth for 

power. In [20], the authors emphasize on optimizing the power consumption of the 

video coding co-processor design by minimizing computational units along the data 

path. Recently, in [3], depending on the battery power level, a number of B, P, I frames 

are discarded to reduce the transmission bits. The basic idea relies on conserving energy 
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by reducing the number of transmitted bits in a video stream. [63] utilizes a multi-stage 

coded modulation to accommodate rates in different modes. The authors state that, by 

judiciously selecting operating modes in response to mobile environment, lower energy 

consumption can be achieved.  

However, the complexity parameters in the reviewed methods are obtained 

empirically and are lack of adaptability to the coding environment. Moreover, the 

techniques are designed to meet specific requirements for specific applications and 

video coding standards. To achieve the best performance, these parameters need to be 

re-obtained for the specific encoder used in the applications. On the other hand, the 

reviewed encoders can only provide complexity scalability to some extents, which 

limits its applications. Until now, no general complexity scalable video-coding 

framework has been proposed. 

2.2.2 Modeling of Power Consumption and Rate-Distortion 

To better understand the power consumption behavior of a video encoder, a 

power-consumption model is desirable. The modeling provides an estimation of the 

actual consumed power, which helps system analysis and system design. A few research 

works are reported in this area. [62] describes a novel approach for power-aware 

scheduling of multimedia tasks in RTOSs (Real Time Operating System) that trades off 

computation deadlines against power consumption. The proposed approach uses 

history-based prediction of multimedia sample processing time to aggressively adapt the 

processor voltage and frequency for significant power consumption reduction. In [17], a 

set of experiments is performed to understand the energy usage pattern of handheld 
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devices while decoding and displaying MPEG compressed video in software. 

Experiments are designed so as to bring forth parameters that can be used to predict the 

energy requirement for MPEG playback. In [69], a linear model is used to model the 

power consumption required for computing motion estimation, DCT, and quantization, 

of a H.263 video encoder, running with different motion estimation algorithms. The 

power consumption model is validated by measurement data. 

For video coding under bit rate constraints, the goal is to maximize the picture 

quality, i.e., minimize the coding distortion, for a given bitrate budget. Thus, it is 

necessary to model the rate-distortion (R-D) relationship. R-D modeling based on 

statistical properties of the source data [41], [43], or empirical analysis on the observed 

data [66], [89] has been an active research activity in video coding and communication 

for the past few decades, and results in various bit rate control algorithms, such as [22], 

[15], [29]. However, only the relationship of rate and distortion was studied. In the 

increasing number of new pervasive computing applications, the complexity of the 

codec needs to be taken into account since these applications usually have strict 

complexity requirements. It is therefore desirable to develop appropriate models to 

study and understand the interaction and tradeoffs between rate, complexity, and 

distortion. 

2.2.3 Video Coding Optimization 

Depending on the application and its requirements, different constrained 

optimization problems have been formulated and analyzed. The optimization goal can 
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be the minimal distortion constrained by power supply and minimal power consumption 

constrained by expected distortion. 

2.2.3.1 Distortion Optimized Video Coding 

The problem in this category is to minimize the distortion or maximize the 

quality while the power supply is limited. The goal in [83] is to minimize the amount of 

distortion in the reconstructed video sequence under certain channel bandwidth and 

transmission power constraints, with transmission power allocated across packets. On 

the other hand, [84] considers the optimum allocation of transmission rate, source 

coding rate, and channel code rate under a given power constraint. In [18], a joint 

source coding and power control approach to simultaneously maximize the per-cell 

capacity while maximizing the quality of the delivered video to individual users subject 

to a constraint on the total available bandwidth is proposed. An interesting work is 

reported in [60], where a power-distortion optimized coding mode selection scheme is 

proposed for variable bit rate videos in wireless code-division multiple-access (CDMA) 

systems. The author proposes an optimum mode-selection algorithm for transmitting 

digital video over a CDMA channel, which minimizes the distortion for a given power 

consumption value. Unlike conventional R-D optimized mode-selection methods in 

which the Lagrangian multiplier depends on the channel conditions, the proposed 

scheme takes into account time-varying channels. 

2.2.3.2 Power Optimized Video Coding 

Currently, there is an active field of research that focuses on minimizing 

transmission energy/power under quality of service requirements for wireless video 
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communication, which is generally formulated as a constrained optimization problem to 

minimize the total end-to-end consumed power constrained by the video distortion and 

transmission bandwidth requirements. 

In [86], a joint source coding and transmission power allocation scheme is 

proposed. In this scheme, no channel coding is used, and the transmission power is 

allocated adaptively to different video segments based on their relative importance. The 

optimization problem is formulated such that the transmission energy required to 

transmit a video frame is minimized at some acceptable average decoded video quality. 

Alternatively, [33] formulates an optimization problem that corresponds to minimizing 

the energy required to transmit a video frame with an acceptable level of distortion. In 

[78], the transmitter wants to obtain a joint power and coding-rate selection in order to 

maximize a video quality metrics within an analytical model. An optimum power-

management scheme has been proposed, based on the model of the end-to-end 

distortion of INTRA frame refreshed image sequences. In [88] and [58], the authors 

consider the processing power for source coding and channel coding as well as 

transmission power for a given video quality and propose a power-minimized bit-

allocation scheme. By changing the accuracy of motion estimation, different power and 

distortion levels for a H.263 encoder are provided. The search parameter of ME, source 

rate, channel rate, and transmission bit energy are obtained by solving the optimization 

minimization problem to achieve the minimal power consumption for a given expected 

end-to-end distortion and available total rate. This work is extended in [87], considering 

the interference to other users when performing the optimization of power consumption. 
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In [59], the proposed scheme minimizes the transmit power subject to the distortion 

constraint resulted from the loss of each packet and the error propagation effect caused 

by the motion compensation. It implicitly controls the target bit-error rate (BER) of the 

video packet according to the importance of the packet and the channel-induced 

distortion. However, the processing power is not considered in this paper. In [68], the 

authors introduce an approach for minimizing the total power consumption of a mobile 

transmitter due to source compression, channel coding and transmission subject to a 

fixed end-to-end source distortion. Unlike other approaches using the distortion 

determined from actually coded and transmitted video sequences (albeit the 

transmission process is simulated based on some models), two parameters, the 

quantization step size and the INTRA update rate, are used to control the source coder 

bit rate and the power consumption. The end-to-end distortion is determined based on 

an analytical model reported in [82].  
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CHAPTER 3  

COMPLEXITY SCALABLE VIDEO CODING DESIGN 

3.1 Motivation 

As the first step of power and distortion optimized video coding, the encoder 

needs to be parameterized to enable flexible control on power consumption and video 

distortion. In other words, we need to introduce some complexity parameters into the 

encoder to control the coding behavior of the major encoding modules. Thus design of 

the complexity scalable video coding structure is one of the most important criteria for 

power consumption and video distortion control for pervasive computing applications. 

3.2 Video Coding Complexity Analysis  

3.2.1 Video Encoder Structure Overview 

Typical video encoders, including all the standard video encoding systems, such 

as MPEG-2, H.263, and MPEG-4, employ a hybrid motion compensated DCT encoding 

scheme, which is summarized as the following. A video frame is divided into 

macroblocks (MBs). Each MB consists of four blocks (8×8 pixels) of luminance and 

one block for each of the two-chroma components. The processing of a video frame is 

done at the MB level. To exploit the temporal dependencies of MBs between successive 

frames, ME/MC is done through inter picture prediction. Transform coding of the 

residual prediction error signal, such as the DCT, is used to exploit the spatial 
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redundancy. After DCT is performed, the coefficients are numbered in a zig-zag order 

from the top left to bottom right. Scalar quantization is then applied to the resultant DCT 

coefficient matrix. Quantization is the lossy component of video compression. It simply 

reduces the number of bits needed to store the transformed coefficients by reducing the 

precision of those values. The resulting data are entropy encoded using a Huffman 

variable word length scheme in a lossless manner to give better overall compression 

gain. To decompress the image, the process is carried out in reverse. Among all the 

coding operations of video coding, the ME and DCT has been shown to have high 

complexity.  

DCT/IDCT is typically done on each 8x8 block (Note that in the new 

H.264/AVC, DCT is done on 4x4 blocks). 1-D DCT requires 64 multiplications and for 

an 8x8 block 8 1-D DCTs are needed. 2-D DCT requires 54 multiplications and 468 

additions and shifts. IDCT has similar complexity as DCT.  

The objective of ME is to find the best match of a reference block in the 

reference frame that yields the minimum block distortion measure (BDM) within a 

given search window. Because of its simplicity, the sum of absolute difference (SAD) 

between the reference block and current block is popularly used as the BDM. For the 

SAD-optimal ME problem, the search for the optimal motion vector (MV) can be 

expressed as: 

(u0, v0) = argmin SAD(u, v),                                     (3.1) 
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where (u0,v0) is the optimal MV, representing the horizontal and vertical displacement 

respectively, and  SAD(u, v) is the SAD value of the candidate motion vector (u, v) 

within the search window, given by: 
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where ft-r(·,·) and ft(·,·) refer to the blocks with size of M×N in the reference frame and 

current frame respectively. One SAD computation requires M×N subtractions, M×N 

absolute value operations, and (M×N - 1) additions. As 3.1 shows, the MV has the 

minimum distortion, chosen from a certain number of MV candidates. In full search 

ME, all the candidates within the search window need to be evaluated. Remember that 

evaluating each MV candidate in the search window requires one SAD computation, 

which makes the MV search quite computationally complex. 

Figure 3.1 illustrates the structure of a typical hybrid block based video encoder. 

There are several major encoding modules: motion estimation (ME) and compensation 

(COMP), DCT, quantization (QUANT), entropy encoding (ENC) of the quantized DCT 

coefficients, inverse quantization (DQUANT), inverse DCT (IDCT), picture 

reconstruction (RECON), and interpolation (INTERP) [81]. For the ease of exposition, 

the DCT, IDCT, QUANT, DQUANT and RECON modules are collectively referred to 

as PRECODING, which can be considered as the data representation module. In this 

way, the video encoder has only three major modules: ME, PRECODING, and ENC.  
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Figure 3.1 Video Coding Structure. 

3.2.2 Complexity Profile 

 In order to find out the most computational expensive component of a video 

encoder and obtain the maximum gain, it is necessary to perform “profiling”, i.e. 

analyzing the complexity distribution in different parts of the system. To analyze the 

run-time complexity of the major encoding modules, we run a MPEG-4 video encoder 

using full search ME on a Dell dimension 8200 PC, equipped with Intel Pentium 4@ 

2GHz, 1GB and profile its computational complexity, measured as the average 

processor cycles. The test video sequences are “Akiyo”, “Stefan”, “News”, and 

“Bream”. In Table 3.1 and Table 3.2, we list the percentage CPU occupancy of the 

major encoding modules for Simple Profile @ Level 1 and Core Profile @ Level 2 

respectively. Figure 3.2 and Figure 3.3 show the corresponding pie charts. We also run 
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the experiments on the new H.264/AVC encoder with QCIF format sequences encoded 

at 15 fps and QP = 27 using 1 reference frame and 5 reference frames respectively. The 

results are shown in Table 3.3, Table 3.4, Figure 3.4, and Figure 3.5. We have also 

evaluated the encoder CPU occupancy with other video sequences and different frame 

rate and bit rate settings. Only a slight difference has been observed. 

Table 3.1 CPU occupancy of the major encoding components for a MPEG-4 
encoder, Simple Profile @ level 1 

Sequences 
ME 

exclude 
SAD (%) 

SAD 
(%) 

FDCT 
(%) 

IDCT 
(%) 

TEXTURE 
CODING 

(%t) 

QUANT/
DEQUA
NT (%)

MISCE
LLAN
OUS 
(%) 

Total Time 
(ms) 

Akiyo 26.3 64.6 1.6 1.6 0.5 0.4 5.0 90944.4 

Stefan 13.3 82.3 1.0 1.0 1.0 0.2 1.2 289878.6 

Average 16.4 78.1 1.1 1.1 0.9 0.2 2.1  
 

MPEG4, simple @ level 1

ME (exclude SAD)
SAD
FDCT
IDCT
TEXTURE CODING
QUANT/DEQUANT
MISCELLANOUS

  
Figure 3.2 Complexity distribution of a MPEG-4 encoder, Simple@level1. 
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Table 3.2 CPU occupancy of the major encoding components for a MPEG-4 
encoder, Core Profile @ level 2 

Sequences 
ME 

exclude 
SAD (%) 

SAD 
(%) 

FDCT 
(%) 

IDCT 
(%) 

TEXTURE 
CODING 

(%t) 

QUANT/
DEQUA
NT (%)

MISCE
LLAN
OUS 
(%) 

Total Time 
(ms) 

News 25 28.1 2.6 2.7 11.1 0.5 30.0 344952.5
Bream 34.3 25 1.9 1.9 8.3 0.4 28.2 14182.6

Average 25.4 28.0 2.6 2.7 11.0 0.5 29.9 
 

MPEG4, core @ level 2

ME(Exclude SAD)

SAD

FDCT

IDCT

TEXTURE CODING

QUANT/DEQUANT

MISCELLANOUS

 

Figure 3.3 Complexity distribution of a MPEG-4 encoder, Core@Level2. 

Table 3.3 CPU occupancy of the major components for a H.264 encoder, ref=1  

Sequence 
(Ref =1) 

ME(exclude 
SAD) SAD Mode 

Decision
DCT/IDCT, 

QUANT/DEQUANT

Entropy 
Coding 

(CABAC)
MISCELLANOUS

Akiyo 47.80 37.20 2.70 3.10 4.60 4.60 
Stefan 47.20 33.80 2.60 3.40 8.50 4.50 

Average 47.50 35.50 2.65 3.25 6.55 4.55 
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SAD

Mode Deci si on

DCT/ I DCT,
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Figure 3.4 Complexity distribution of a H264 encoder, ref=1. 

Table 3.4 CPU occupancy of the major components for a H.264 encoder, ref=5 

Sequence 
(Ref =5) 

ME(exclude 
SAD) SAD Mode 

Decision
DCT/IDCT, 

QUANT/DEQUANT

Entropy 
Coding 

(CABAC)
MISCELLANOUS 

Akiyo 49.30  33.80 2.00  2.60  3.60  8.70  
Stefan 47.10  37.80 2.10  2.80  6.60  3.60  

Average 48.20  35.80 2.05  2.70  5.10  6.15  
 

Reference Frame = 5

ME(exclude SAD)

SAD

Mode Decision

DCT/IDCT,
QUANT/DEQUANT

Entropy Coding
(CABAC)

MISCELLANOUS 

 

Figure 3.5 Complexity distribution of a H264 encoder, ref=5. 



 

 28

It can be seen that the ME process, which includes the SAD computation, is the 

most computation-intensive module, consuming most of the processor cycles. 

Following ME, the PRECODING modules collectively take the second place of the 

total processor cycles consumption. The ENC module, which is basically a bit splicing 

engine, uses a relative small amount of the total CPU time. In addition, its 

computational complexity mainly depends on the coding bit rate. Moreover, since the 

output bitstream must be conformed to bitstream syntax defined by the specific video 

standard, parameterized coding is not performed in the component of entropy coding. 

Thus, to gain the maximum flexibility in complexity control, we introduce 

parameterized video coding into the ME module and the PRECODING module. 

3.3 A Complexity Scalable Video Encoder  

3.3.1 Complexity Scalable ME Design 

From 3.1, we can see that the ME process is simply a sequence of SAD 

computations to find the MV that has the minimum SAD. Note that the computational 

complexity of each SAD computation is a constant. Therefore, the overall 

computational complexity of the ME module is linearly proportional to the number of 

SAD computations, denoted by λME. In the proposed energy scalable framework, λME is 

determined by system-level power management and quality optimization. Since ME is 

performed on the MB level, therefore at the frame-level we need to allocate the current 

available λME SAD computations among the MBs in the video frame. 
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3.3.1.1 Dynamic Allocation of the SAD Computations 

It is well known that the moving objects in the video scene contribute most to 

the overall visual quality. This suggests that for ME with limited number of SAAD 

computations, we need to allocate the available λME SAD computations among the MBs 

according to their motion characteristics to optimize the overall picture quality. In this 

work, we use a motion history image (MHI) to allocate the SAD computations among 

the MBs.  

The MHI captures the history of motion activity. Each pixel (i,j) in an MHI 

corresponds to the spatial (i,j)th block in a sequence. The pixel intensity describes how 

long there has been no motion detected at that location since the last observed motion. 

Let Ik(i,j) be the pixel intensity at time index k. It is initially set to zero, i.e., I0(i,j) = 0. 

At each frame, the pixel intensity is updated by a simple rule, given by:  
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where (mvx
k(i,j), mvy

k(i,j)) is the MV of block (i,j) at frame k. As expressed by (3.3), the 

MHI can be considered to be a histogram of the areas of non-moving regions. For ease 

of expression, we omit k in the following. 

Figure 3.6 illustrates one example of the MHI of video sequence “Akiyo”. For 

display purpose, each pixel of the motion history image is depicted as one block. The 

pixel intensity is normalized to the range of 0 to 255. Note that the brightness represents 

how long no motion activity is detected since last witnessed motion. From Figure 3.6, 

we can observe that the motion history image not only contains motion history 
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information but also gives a good estimation of the spatial distribution of motion 

activity. The spatial distribution of motion activity indicates the location of “active” 

regions and static regions. Once these regions are identified, refined fast ME techniques 

can be applied to different regions in order to obtain better MVs with faster speed. 

Maintaining a MHI incurs low overhead because it can be obtained by using the MVs 

already determined after ME. Compared with some of the traditional region detection 

techniques [23], [73], no extra computation or expensive operations are required. 

 

Figure 3.6 Motion history image of sequence “Akiyo”. 

Let M=[mij]MR*MC denote the MHI, where MR and MC are the numbers of MB’s 

per row and per column, respectively. mij is the pixel intensity of MHI for the (i,j)th MB 

in current frame. The larger the value of mij, it is of higher probability that this MB is a 

static block, and less SAD computations can be allocated to this MB. The number of 

SAD computations allocated to the (i,j)th MB, denoted by nsadij, is determined by  
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where N is the number of MBs left so far that need to perform the motion estimation, 

and  NSAD is the available number of SAD computations. Here, N-1 is a normalization 

factor, because 
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Initially, Nsad is set to be λME. Suppose the motion search range is SR. If nsadij 

>= (2*SR+1)2; it means the computational power is enough to perform a full search for 

this block. Otherwise, the complexity controllable ME scheme described in the 

following is used to find the MV, whose complexity is controlled by nsadij. 

3.3.1.2 Complexity Controllable Motion Estimation Scheme 

The statistical behavior of the SAD error surface has a significant impact on the 

performance of the fast search algorithm for block matching motion estimation. Most 

conventional fast algorithms have explicitly or implicitly assumed that the error surface 

is unimodal over the search window. Unfortunately, this assumption is not always true 

in practical applications and the MV search is likely to get trapped into a local 

minimum. Thus, when the computation power is available, more search positions need 

to be checked to verify the MV in order to converge to the global minimum. In contrast, 

when the computation power is low, if the potential improvement in video quality by 
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searching more positions is not computationally justified then the search can be stopped 

earlier.  

The proposed adaptive search scheme is based on the popular media-bias 

diamond search wherein 4 points around the current minimum are searched to find the 

next minimum in every iteration (Figure 3.7 (a)). For a given number of pre-allocated 

SAD calculations nsadj, we denote SIj the number of search iterations during the MV 

search, i.e., the number of diamond search patterns we need to perform. It is 

approximated by a linear relationship, given by: 

SIj  = ψ * nsadj,      (3.6) 

The parameter ψ is adaptively updated for each block, since the motion 

characteristics and the SAD error surface are correlated to those of the adjacent blocks. 

Now, the proposed search strategy works as following. After the allocation of SAD 

computation, if nsadj is 0, which means we have no available computation power at all, 

the MV of the collocated MB in the previous coded frame is chosen as the MV for 

current block because of the high temporal correlation between current frame and the 

previous encoded frame. If nsadj equals to 1, the MV is chosen from the median MV 

predictor and the temporal previous MV that yields the smaller SAD value. In other 

cases, the number of search iteration is determined by Equation (3.6) and a 

parameterized search is used to find the motion vector, summarized as following: 

• Step 1: We start with the diamond search pattern with size 1, showed at 

Figure 3.7 (a), and continue the search until the search centre is found with the 
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minimum SAD. If the number of search iteration exceeds SIj, we stop the 

search. 

• Step 2: We switch to the diagonal search with the size of the current 

diamond size, showed at Figure 3.7 (b), and continue the search. If the search 

centre is found with minimum SAD, we increase the diamond size by 1. 

Otherwise the diamond size is reset to 1. Go back to Step 1. During the search, 

whenever the number of search iteration exceeds SIj, we stop the search.  

• Step 3: The motion vector is returned and the parameter ψ is updated. 

 

(a) (b) (c) 
 

Figure 3.7 The search patterns. The biggest point has the minimum distortion. (a) 
The diamond search with size equal to 1. (b) The diagonal search with size 1, the 
square points are checked. (c) The diamond size is changed to 2. The outermost 

round points are checked. 

Note that like other conventional fast ME algorithms, the partial distortion 

computation technique is also applied. In addition, the checked points during the search 

procedure are tracked to avoid the unnecessary checking when the search pattern 

moves. 
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3.3.2 Complexity Scalable PRECODING Design 

In this section, we present a parametric complexity scalability scheme to 

collectively control the computational complexity of the PRECODING modules, 

namely, the DCT, QUANT, DQUANT, IDCT, and RECON modules.  

In typical video encoding as illustrated in Figure 3.1, DCT is applied to the 

difference MB after motion estimation and compensation, or the original MB if its 

coding mode is INTRA. After the DCT coefficients are quantized, DQUANT, IDCT, 

and RECON are performed to reconstruct the MB for motion prediction of the next 

frame. In transform coding of videos, especially at low coding bit rates, the DCT 

coefficients in the MB might become all zeros after quantization. We refer to this MB 

as an all-zero MB (AZMB). Otherwise, it is called a non-zero MB (NZMB). In 

international standards for video encoding, such as MPEG-2, H.263, and MPEG-4, 

“non-zeros” also means the CBP (coded block pattern) value of the MB is non-zero. If 

we can predict an MB to be AZMB, all the above PRECODING operations can be 

skipped, because the output of DQUANT and IDCT of an AZMB is still an AZMB, and 

the reconstructed MB is exactly the reference MB used in motion estimation and 

compensation. Therefore, the encoder can simply copy over the reference MB to 

reconstruct the current MB. This is a unique property of the AZMB, which can be used 

to reduce the computational complexity of the video encoder. 

In this work, the unique property of the AZMB is used to design a complexity 

scalability scheme for the PRECODING modules. Let {xnk | 0<=n, k<=7} be the 

coefficients in the different MB after motion estimation. For INTRA MB’s, {xnk} are the 
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original pixels in the video frame. Let {yij | 0<=n, k<=7} be the DCT coefficients. 

According to the definition of DCT, we have 
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We can see that 
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Note that the right-hand side is the SAD of the difference MB, which is already 

computed during the motion estimation. This suggests us that the SSD could be an 

efficient and low-cost measure to predict the AZMB. After motion estimation and 

compensation, let {SSDi| 1<= i <= M} be the SSD values of the M MBs in the video 

frame sorted in an ascending order. In the proposed complexity scalability scheme for 

PRECODING, We force the first M- λPRE MBs to be AZMBs, and treat the remaining 

λPRE MBs as NZMBs to which the PRECODING operations are applied. Let CNZMB be 

the number of processor cycles needed by the PRECODING operations to finish one 

NZMB. The value of CNZMB can be obtained either by theoretical cycle estimation of the 

PRECODING modules, or from simulation statistics. In practice, the value of CNZMB  

may vary slightly from MB to MB. Note that the power management and energy 

consumption control operate on a level much higher than the MB. For example, in real 
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world applications, it is sufficient to adjust the system power control parameters for 

every 5 seconds, which have 150 frames (if coded 30 frame per second) and thousands 

of MB’s. At this level, in its average sense, it is quite reasonable to assume CNZMB is a 

constant. The overall complexity of the PRECODING modules, denoted by CPRE is then 

given by: 

CPRE =  λPRE * CNZMB,,           (3.10) 

We refer to this type of complexity scalability scheme as λPRE scalability. As far 

as the subjective video quality is concerned, the proposed λPRE scalability performs 

reasonably well. As mentioned in previous Section 3.3.1.1, the moving objects in the 

scene contribute most to the video presentation quality, and have unique significance in 

subjective video quality evaluation. In motion estimation and compensation, these 

regions of the picture often correspond to blocks with relatively large SAD values. In 

the λPRE scalability and dynamic rate control scheme, the AZMB bits are added to these 

blocks, resulting in an improved visual quality in these regions.  

Figure 3.8 shows the 100th frame of “Foreman” encoded at 192 kbps, and the 

80-th frame of “Carphone” encoded at 64 kbps with 100% and 20% PRECODING 

complexity. Perceptually, we can hardly see much difference between them. It should 

also be noted that these blocks with SAD below the threshold often correspond to 

picture regions with smooth spatial or temporal variation. The slightly degraded quality 

in these regions can be easily restored by post-processing techniques, such as 

deblocking, deringing, or temporal smoothing, at the receiver side. 
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Figure 3.8 Coded video quality comparison for Frame 100 of “Foreman” and 
Frame 80 of “Carphone” when (A) Left: 100% blocks are encoded; (B) Right: 20% 

blocks are encoded. 

3.4 Concluding Remarks 

In this chapter, based on the complexity analysis of typical video encoding 

systems, we have developed a parametric video encoding architecture, which is fully 

scalable in power consumption. Unlike other research works, the proposed architecture 

can be applied to various video coding standards and used in different applications. 

Moreover, by using the dynamic SAD computation allocation and AZMBs allocation, 

we are able to fully control the coding complexity while maximizing the video quality. 
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CHAPTER 4  

POWER-RATE-DISTORTION ANALYSIS  

4.1 Motivation 

Video encoding and data transmission are the two dominant power-consuming 

operations in wireless video communication, especially over wireless LAN, where the 

typical transmission distance ranges from 50m to 100m. Experimental studies show that 

for relative small picture sizes, such as QCIF (176x144) videos, video encoding 

consumes about 2/3 of the total power for video communication over wireless LAN 

[3][67]. For pictures of higher resolutions, it is expected that the fraction of power 

consumption by video encoding will become even higher. From the power consumption 

perspective, the effect of video encoding is two-fold. First, efficient video compression 

significantly reduces the amount of the video data to be transmitted, which in turn saves 

a significant amount of energy in data transmission. Second, more efficient video 

compression often requires higher computational complexity and larger power 

consumption in computing. These two conflicting effects imply that in practical system 

design there is always a tradeoff among the bandwidth R, power consumption P, and 

video quality D. Here, the video quality is often measured by the mean square error 

(MSE) between the encoded picture and original one, also known as the source coding 
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distortion. To find the best trade-off solution, we need to develop an analytic framework 

to model the power-rate-distortion (P-R-D) behavior of the video encoding system.  

To our best knowledge, there has been no analytic framework for modeling the 

P-R-D behavior of the video encoding system. Rate-distortion (R-D) analysis has been 

one of the major research focus in information theory and communication for the past 

few decades, from the early Shannon’s source coding theorem for asymptotic R-D 

analysis of generic information data [9], to recent R-D modeling of modern video 

encoding systems [22], [45], [46], [26]. For video encoding on the mobile devices and 

streaming over the wireless network, it is needed to consider another dimension, the 

power consumption, to establish a theoretical basis for R-D analysis under energy 

constraints. In energy-aware video encoding, the coding distortion is not only a function 

of the encoding bit rate as in the traditional R-D analysis, but also a function of the 

power consumption P. In other words,  

D=D(R; P),      (4.1) 

which describes the P-R-D behavior of the video encoding system. The P-R-D model 

provides a theoretical basis, as well as a practical guideline, for system design and 

performance optimization. Using the P-R-D model, we can perform energy 

consumption control on the underlying device at the system level. For example in a 

wireless sensor network, we can perform across-node energy optimization and network 

lifetime maximization. 

In this chapter, we develop an analytic framework to model, control and 

optimize the P-R-D behavior of typical video encoding systems. We analyze the video 
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coding architecture presented in the previous chapter and perform R-D analysis of the 

ME and PRECODING modules. The integration of the R-D models for the complexity 

control parameters results in a comprehensive P-R-D model for the video coding 

system. Based on the P-R-D model, we develop a quality optimization scheme to 

determine the best configuration of complexity control parameters according to the 

power-supply level of the device to maximize the video presentation quality. 

4.2 Power Consumption Analysis  

As discussed in CHAPTER 3, we introduce several encoder parameters to 

control the computational complexity of the major encoding modules. Specifically, in 

this work, the complexity control parameter for the ME module is the number of SAD 

(sum of absolute difference) computations per frame, denoted by λME. The 

computational complexity of ME, denoted by CME, is simply given by: 

CME = λME × CSAD,      (4.2) 

where CSAD represents the complexity of one SAD computation between the current MB 

and its reference MB. Here, the computational complexity is measured by the number 

of processor cycles used by the operation.  

The computational complexity of all the PRECODING modules is controlled 

using one single parameter λPRE, which is the number of non-zero MB’s in the video 

frame. Let CNZMB and CPRE be the PRECODING computational complexity of one non-

zero MB (NZMB) and the whole video frame, respectively. From Section 3.3.2, we see 

that,  
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CPRE = λPRE . CNZMB      (4.3) 

The ENC module, as a variable length-coding (VLC) engine, mainly consists of 

VLC table look-up and bit splicing of the codewords. The computational complexity of 

the ENC module, denoted by CENC, is approximately proportional to R. Therefore, we 

have: 

 CENC = S* R * CBIT,,      (4.4) 

where CBIT is the per bit ENC complexity, and S is the size of the picture. Here, S is 

needed because R represents the coding bit rate in the unit of bits per pixel. The 

computational complexity of the video encoder, denoted by C and measured by the 

number of processor cycles per second, is given by: 

C(R; λME , λPRE , λF  )= λF×(CME+ CPRE +S×R×CBIT)    (4.5) 

where λF is the encoding frame rate. This model presents a complexity-scalable 

architecture for video encoding, whose computational complexity is mainly controlled 

by the parameter set {λME , λPRE , λF}. It can be seen that, in the proposed complexity 

scalable video coding design, we try to find the “atom operations” that have fixed 

computational complexity, and decompose the overall video encoding into these atom 

operations. Specifically in this work the atom operations are the MB SAD computation, 

the PRECODING of one MB, and the per-bit ENC operation. 

Let Φ be a mapping function to translate the computational complexity of the 

video coding system into corresponding power consumption. We can derive the 

relationship between the power consumption and the complexity control parameters,  

P= Φ(λF×(CME+ CPRE +S×R×CBIT)).    (4.6)  
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4.3 R-D Analysis  

4.3.1 ME Module R-D Analysis 

To analyze the R-D behavior of the complexity control parameter λME, we need 

to investigate the relation between λME and the frame SAD Sf, which is the average SAD 

per pixel in the motion compensated difference frame. To this end, we collect the frame 

SAD statistics for different λME from several test video sequences. Figure 4.1 plots the 

frame SAD Sf   as a function of λME for two QCIF video sequences: “Akiyo” and 

“Foreman”. The simulation results suggest the following relation between λME and Sf: 

 Sf(λME) = β0 + β1* e -β2x, x = λME / λmax
ME ,   (4.7) 

where the model parameters β0, β1, and β2 are estimated by the statistics of previous 

frames; and λmax
ME is the maximum value of λME. Besides the SAD, another operation 

called SSD (sum of square difference), which is the square difference between the 

current MB and its reference, is often used in motion estimation. In hardware design, 

the SSD is more advantageous than the SAD because the subtraction and multiplication 

operations can be completed by a single instruction. In motion estimation, SAD and 

SSD have similar performance because SSD linearly increases with the SAD. 

Therefore, the proposed complexity control is also applicable to the SSD based ME. 

Simulation with SSD yields similar result as shown in Figure 4.1, and the complexity 

model in (4.7) also applies to SSD. In this case, the frame SSD Sf becomes the variance 

of the difference frame. From Section 4.4  we will see that the final P-R-D model needs 

the variance information for R-D analysis. 
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Figure 4.1 Frame SAD as a function of λME. 

4.3.2 PRECODING R-D Analysis 

Using the mathematical framework for optimal bit allocation, we analyze the R-

D behavior of the complexity control parameter λPRE, as discussed in Section 3.3.2. The 

dynamic rate control is a near-optimal bit allocation process. Let {σi
2|1<= i <= M} be 

the variance of the MB's in the video frame sorted in an ascending order. Let R be the 

target coding bit rate in bits per pixel (bpp). According to the classic R-D distortion 

formula, the distortion of the ith MB is given by 

iR
iii RD γσ 22 2)( −⋅= ,     (4.8) 

where Ri is the bit rate of the ith MB, and is a model constant. The optimal bit allocation 

can be then formulated as 
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The minimum distortion obtained by the optimal bit allocation is: 
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In our complexity scalability scheme, the first M-λPRE MBs are encoded as 

AZMBs, while the remaining λPRE MB's are encoded as NZMBs. In this case, the bit 

rate of each AZMB is zero, and its coding distortion, denoted by Dz
i, is exactly the 

variance of the difference MB, i.e.,  

Dz
i =σ2

i * 2-2γ*0 = σ2
i ,   1<= i <=M-L,  (4.12) 

where L=λPRE is introduced to simplify the notation. Since all the coding bits are 

allocated among the NZMBs, according to (4.12), the coding distorting of each NZMB, 

denoted by Dnz
i, is given by 
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The overall distortion D of the video frame, which is average distortion of the 

AZMBs and NZMBs, is given by: 
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To derive the expression for D(L), we consider the continuous-time version of 

(4.14). Note that {σi
2|1<= i <= M} is an increasing series. Figure 4.2 shows {σi

2} for the 

100th frame of the "Foreman". Experiments on other video frames and other video 

sequences yield similar results.  

 

Figure 4.2 MB variances sorted in an ascending order for the 100th frame of 
“Foreman”. 

This suggests us that it is reasonable to model {σi
2} with the following linear 

function 

]1,0[,)( ∈⋅= ttAtξ ,      (4.15)  

such that  

 Mi
M
i

i ≤≤= 1),(2 ξσ      (4.16) 
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Here A is a positive constant. It should be noted that at the right end of the 

curve, the linear approximation is not accurate. However, since the R-D modeling is a 

statistical procedure to model the behavior of the whole frame, which has a large 

number of MBs, the approximation error within this small region will not affect much 

the performance of the whole model. Our simulation results that will be presented later 

confirm this observation. Similarly, we define y=L/M, and consider D(y) as the 

continuous-time version of {D(L)}, i.e.,  

D(y)=D(L/M)      (4.17) 

Note that the first term on the right-hand side of (4.21) can be written as: 
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where y=L/M represents the fraction of NZMBs in the video frame. Let L
M
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we have:  
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4.4 The Power-Rate-Distortion Model 

4.4.1 Parameters Estimation and Model Simplification  

The R-D model for the PRECODING modules given by (4.20) has one 

parameter A. Note that:  

∫∑ ==
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i
i ςσ .    (4.21) 

Therefore, A can be estimated by: 
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The R-D model in (4.20) will be used for energy consumption control and 

picture quality optimization. Since the model is highly nonlinear, it is not suitable for 

mathematical optimization. Therefore, we need to simplify the formulation , specifically 

the exponential term. Taylor expansion yields the following linear approximation,  

)1)(1()( 3131
)]1ln()1([
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.   (4.23) 

Figure 4.3 shows the nonlinear exponential function (solid line) and its linear 

approximation (dashed line). It can be seen that approximation error is relatively small. 

With the linear approximation, the PRECODING C-R-D model becomes, 
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where a0=e-1+e-3-1.  
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Figure 4.3 Linear approximation of 
)]1ln()1([1 yyy

ye
−−+−

.  

4.4.2 Integrated Power-Rate-Distortion Model  

For a complexity target of λME SSD computations, the average MB variance is 

given by 
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According to (4.29) and the PRECODING C-R-D model in (4.31), we have 
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where x and y=λPRE/M are the normalized complexity control parameters. Both x and y 

range from 0 to 1, with 0 and 1 representing the lowest and highest computational 

complexity, respectively. It should be noted that the distortion in (4.26) only measures 

the quality for a single frame. The research in video quality evaluation suggests that the 
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video presentation quality should be measured not only by the spatial quality of a single 

frame, but also by the temporal quality in motion smoothness [6]. Therefore, the 

encoding frame rate λF plays a very important role in quality evaluation. It is also a key 

parameter in energy consumption control. For example, at lower frame rates, more 

energy can be allocated to each frame to improve the spatial quality. However, in this 

case, the temporal video quality degrades. Although many results have been published 

in subjective video quality evaluation, most of them focus on experimental studies. For 

quality optimization of video coding, we need an analytic, mathematically tractable 

model to describe the video presentation quality. The experimental results in [6] suggest 

that the video presentation quality Dv should consist of two parts: the spatial quality of a 

single picture Dspatil and the temporal motion quality Dtemporal. Dspatil given by (4.26). 

Dtemporal depends on the encoding frame rate. In typical video decoding and display, if a 

video frame is skipped, the previous decoded picture stays on the screen until the next 

frame is decoded. In other words, the decoder reconstruction of the skipped frame is the 

copy of its previous decoded frame. From the video encoder point of view, the ME 

complexity x, the PRECODING complexity y, and the bit rate R of the skipped video 

frame are all zeros. Therefore, from (4.26), we can see that its coding distortion is given 

by 

100,0,0|),;( ββ +== === yxRtemporal yxRDD ,    (4.27) 

which is the MSE between the skipped frame and its previous reconstruction. Let ωs 

and ωt be the perceptual weight on the spatial quality and temporal quality, respectively. 

The experimental results in [6] suggest that ωs and ωt should be a function of the frame 
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rate. For example, if the video encoder encodes only one frame per minute, although 

each picture has very high quality, the viewer will complain about the bad video 

streaming service because he has missed a lot of important motion information and the 

spatial information in between. In this work, we choose the perceptual weight as 

follows, 

 ϖt=(1-z)2; ϖs=1 - ϖt;     (4.28) 

where z=λF/fmax, and fmax is the maximum frame rate with a default value of 30 fps. 

Therefore, the video presentation quality is defined as 
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 Let C1, C2, and C3 be the constants in 4.6, we have the power consumption 

computed as:  

P= Φ(z(C1x+C2y+C3R)),     (4.30)  

For a given power supply level P and a given rate R, we need to find the best 

configuration of the complexity parameters for the ME and PRECODING modules to 

maximize the picture quality. Mathematically, this can be formulated as: 

)((  .. ),,,;(min 321},,{
RcycxczPtszyxRDvzyx

++= φ .    (4.31) 

The minimization parameters (x, y, z) can be obtained using binary search of the 

minimum point. Note that the battery often has an operational lifetime of several hours, 

several days, or even several weeks. Therefore, there is no need to adjust the power 

control parameters too often, say every second, because the power supply condition 
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doesn't change that quickly. Suppose the adjustment period is five seconds. This means 

we only need solve the R-D optimized power control problem in (4.31) once per five 

second. Therefore, the overhead of the power control is relatively small. In our future 

work, we shall investigate the possibility of further simplification of the model and its 

solution as well.  

4.4.3 R-D Optimized Power-Scalable Video Encoding  

Using the P-R-D model and the optimal configuration of the power control 

parameters, the video encoder is able to achieve the R-D optimized power consumption 

scalability. The R-D optimized power-scalable video encoder system operates as 

follows:  

Step 1:  Determining the model parameters: In (4.31), the ME model parameters 

β0, β1, β2 are estimated from the statistics of previous frames using linear regression. a0 

is a constant determined by (4.26). The model parameter is also determined from the R-

D statistics of the previous frames. At beginning stage, for example the first second of 

video encoding, no power control is applied, because the system has sufficient power 

supply.  

Step 2: Optimization: Find the optimal complexity control parameters {x,y,z} 

using (4.31). This step is executed only if the power control is triggered according to the 

adjustment frequency, for example, once per five seconds.  

Step 3: Frame rate and ME complexity control: Set the encoding frame rate to 

be λF=z·fmax. The available SSD computations for ME is given by λME =x·λME
max . Using 

the MHI-based allocation scheme presented in Section 3.3.1.1 to allocate the SSD 
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computation among the MB's. Using the fast and efficient diamond ME scheme to find 

the motion vector and the minimum SSD for each MB. The number of diamond search 

layers is controlled by the allocated SSD computations.  

Step 4: PRECODING complexity control: Find the (1-y)·M MB's with the 

smallest SSD values and forces them to be AZMBs. The PRECODING operation is 

applied to the remaining NZMBs. Dynamic rate control is used to reallocate the bits 

from the AZMBs to the NZMBs. It can be seen that the complexity of the major 

encoding modules is controlled by the parameter set {x,y,z} to match the power supply 

level of the mobile device. At the same time, these parameters are configured according 

to the P-R-D model such that the overall video quality is optimized.  

4.5 Experimental Results 

To evaluate the performance of the P-R-D model and the power-scaling video 

encoding system, we implement the proposed P-R-D model and power scalability 

scheme in the public domain H.263+ encoder. Similar performance is expected for other 

coding systems, such as MPEG-2 and MPEG-4. In our simulations, the maximum 

search points for each MB λME
max is 50, and the maximum frame rate fmax=30 fps. To 

test the accuracy of the P-R-D model, we run the video encoder over the "Foreman" 

QCIF sequence at 128 kbps and 15 fps for different complexity control parameters (x,y) 

and measure the corresponding distortion. Figure 4.4 shows the actual distortion 

function D(x, y). The estimation given by the P-R-D model is shown in Figure 4.5. We 

can see that model estimation is quite accurate. Simulations over other test videos yield 
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similar results. For a given bit rate Rand device power supply level, using (4.31) the 

encoder can find the best configuration of complexity control parameters to maximize 

the video quality. Figure 4.6, Figure 4.7, and Figure 4.8 show the picture distortion, and 

the optimal control parameters {x,y,z} as functions of the percentage of power 

consumption for different coding bit rates R. Some interesting observations can be 

made: (1) As the encoder scales down its power consumption, as a percentage of its 

maximum power consumption level, the video quality degrades. The video encoding 

automatically changes from high quality motion video coding (when the energy supply 

is plenty) to still image coding (when the device is running out of energy). (2) At lower 

bit rates, the ME wins over the PRECODING in power allocation, because the ME is 

computation-hungry but the PRECODING is bit-rate-hungry; hence, as shown in Figure 

4.6, the complexity for the ME is high but the complexity for the PRECODING is low. 

Figure 4.9 shows the achievable minimum distortion D as a function of R and the power 

P. Figure 4.10 shows the "Carphone" QCIF video coded at 64 kbps and 15 fps for 

different power consumption levels. We can see the picture quality degradation is very 

graceful. We can see that the P-R-D model has direct applications in energy 

management, resource allocation, and QoS provisioning in wireless video 

communication, especially over wireless video sensor networks. 
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Figure 4.4 Actual complexity-distortion surface D(x,y). 

 

Figure 4.5 The complexity-distortion surface estimated by the P-R-D model. 
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Figure 4.6 R-D optimized power control for the “Football” CIF video at R=0.1bpp. 

 

Figure 4.7 R-D optimized power control for the “Football” CIF video at R=0.5bpp. 
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Figure 4.8 R-D optimized power control for the “Football” CIF video at R=1bpp. 

 

Figure 4.9 The P-R-D Model. 
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Figure 4.10 The encoded “Carphone” QCIF sequence at 64 kbps and 15 fps for 
different power supply level. 

4.6 Concluding Remarks 

In this chapter, we have successfully extended the traditional R-D analysis by 

considering another dimension, the power consumption, and established the P-R-D 

analysis framework for video encoding and communication under energy constraints. 

Using the P-R-D model, given a power supply level and a bit rate, the power-scalable 

video encoder is able to find the best configuration of complexity control parameters to 

maximize the video quality. The P-R-D analysis establishes a theoretical basis and 

provides a practical guideline in system design and performance optimization for 

wireless video communication under energy constraints.  
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CHAPTER 5  

POWER AND DISTORTION OPTIMIZED VIDEO CODING 

5.1 Motivation 

Traditional power-conserving video processing techniques usually focus on 

low-power device and circuit design, such as [8], [11]. Recently, some research works 

on high-level management of algorithms and architectures have been reported, 

including power-aware design techniques that attempt to adjust the source-coding 

parameters to maximize the performance under power dissipation constraints [63], [65] 

and low-power design techniques that try to lower the intensive complexity of video 

encoding with or without a desired performance target [5], [67], [87], [88]. In futuristic 

pervasive video coding, a well designed video encoder should be able to provide high 

quality of service, which is measured from two perspectives: First, the video quality at a 

given bit rate must be optimized; Second, it should be able to efficiently utilize its 

power supply to prolong the battery operating time. In other words, it should be able to 

achieve low power consumption and video distortion. However, the existing work only 

focuses on achieving minimal power consumption or minimal video distortion, and the 

power-distortion optimization problem has received little attention.  

In power-distortion optimized video coding, the coding complexity needs to be 

taken into account since it affects both the power consumption and the video distortion. 
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This in turn requires developing an appropriate R-C-D model to study and understand 

the interaction and tradeoffs between rate, complexity, and distortion. An appropriate 

model helps to provide valuable insights into the power-distortion optimization 

problem. Some tradeoffs of power and complexity have been addressed. In [82], using 

the percentage of INTRA coded macroblocks as the complexity parameter, a distortion-

rate (DR) model with six model parameters is presented to describe the video coding 

DR performance for error-prone video transmission. This DR model is used in [67] for 

adaptive minimization of the total power consumption of wireless video 

communications subject to a given end-to-end distortion. In [40], a distortion–

computation function is defined in a systematic way to study the complexity-distortion 

relationship. Research works on R-C-D modeling are also reported in [63], [79]. In our 

previous work in [43], based on the analysis of power consumption, bitrate, and 

distortion behavior, a video system that is able to minimize the distortion under a given 

power consumption constraint is developed. However, the little reported works are 

either ad hoc, in that they depends on the coding behavior of a specific coding 

algorithm, or they propose complex models so that estimation of model parameters 

might become a formidable task. Up until now no general R-C-D model has been 

proposed. 

Unlike the work in CHAPTER 5 in which the P-R-D model is basically a 

distortion minimization problem constrained by power consumption. This chapter 

addresses the issues of power-distortion optimized video coding. Our focus is on 

techniques for efficiently utilizing the energy supply while preserving desirable video 
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quality. In fact, we can see later that the problem in CHAPTER 5 is a sub-problem of 

the problem addressed in this chapter. To accomplish this goal, we first formulate a 

multiple objective optimization problem to model the behavior of power-distortion 

optimized video coding. Then, as the first attempt, we develop a R-C-D model to 

describe the general R-C-D behavior of video coding. Based on the proposed model and 

the analysis of power consumption, optimization strategies are developed to achieve 

good video quality while maximizing the battery service life. 

5.2 The Power-Distortion Optimization Problem 

5.2.1 Parametric Video Encoder Design 

The coding procedure can be simply decomposed into three consecutive parts: 

(1) ME/MC; (2) Mode selection; (3) Entropy coding. The first two parts produce the 

quantized transform coefficients. The third part is responsible for converting the 

symbols of quantized transform coefficients into a standard compliant bitstream. 

Parameterization can be introduced into these parts, since video coding standards only 

define the bitstream syntax, or decoder operation, parametric video coding causes no 

conflict. Parametric ME can be achieved by controlling the motion estimation precision 

[21], the size of the motion vector (MV) search window [85], or the number of search 

points during the searching for the MVs [43]. Parametric mode selection can be 

achieved by controlling the λPRE parameter, which is the fraction of non-SKIP MBs in 

the video frame [43], or limiting the number of available coding modes, or the INTRA 

ratio parameter, which is the fraction of INTRA MBs in the video frame [82], [67]. By 
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pre-setting/ skipping the coding modes, a great amount of coding operations involved in 

mode decision can be saved. Parametric control can also be applied on DCT and 

quantization, such as the technique proposed in [70]. Since the output bitstream must be 

conformed to bitstream syntax defined by the specific video standard, parameterized 

coding is not performed in the component of entropy coding. 

Let C = {c1, c2, … , cN} be the parameter set of the parametric encoder where N 

is the total number of parameters. For example, we may have parameter c1 for ME, 

which is the size of the search window, and c2 for mode selection, which is the INTRA 

ratio parameter. Without loss of generality, each element ci is normalized to lie between 

0 and 1, measuring the level of coding complexity, wherein 0 and 1 corresponds to no 

and full coding complexity, respectively. The larger the value, the higher the coding 

complexity is. In the following, ci is referred as the complexity parameter. 

5.2.2 The Problem 

The complexity parameters affect the compression performance in terms of 

power consumption and video distortion. Let P(R,C), D(R,C) denote the power 

consumption and video distortion with parameter set C at coding bit rate R; detailed 

analysis will be given in the next section. In power-distortion optimized video coding, 

the objective is to find a parameter set that minimizes both the power consumption and 

the video distortion, which can be formulated as a multiple objective optimization 

(MOO) problem, given by 
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where Pc is the power supply constraint for video coding. We assume Pc is attainable 

either through low-level circuits design or pre-determined by system-level power 

allocation. This assumption can be worked around by using techniques proposed in the 

literature, such as estimating the remaining power using microcontroller [11] and the 

"state-of-charge" techniques [14]. For simplicity, we only consider the case that bit rate 

is given as a constant and controlled by a rate control scheme. 

 

B

A

feasible objective 
space 

P(R,C) 

D(R, C) 

 

Figure 5.1 Illustration of the MOO problem. 

In general, higher coding complexity results in smaller distortion, but consumes 

more energy. In contrast, lower coding complexity has lower power consumption, but at 

the expense of larger distortion. Thus, the objective functions in (5.1) are 

incommensurate and in conflict with one another with respect to their minimum goals. 

For such a MOO problem, there is no unique solution [28]. Figure 5.1 illustrates the 

concept of the MOO problem with conflict objective functions. Curve AB is the pareto-

optimal frontier, along which no further improvement can be done on power 

consumption P or video distortion D without sacrificing the other one. Hence, the goal 
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is to search for a tradeoff between the distortion and the power consumption to ensure a 

satisfactory design. 

5.3 Problem Analysis and Optimization Strategy 

5.3.1 Power Consumption Analysis 

To model the power consumption of a parametric video encoder, ideally we 

could perform a theoretical analysis at the instruction level. However, this approach 

depends upon the platform on which the video encoder is implemented and how the 

encoder is implemented. Many factors, such as the instruction set, supply voltage and 

CPU frequency, would influence the analysis. To present the main concept, we model 

the power consumption at higher levels of abstraction (algorithmic and architectural 

levels). 

The video coding operations are decomposed into two parts: 1) Residual error 

prediction and transform; 2) Entropy coding. The first part includes coding operations 

such as ME, DCT, IDCT, MC, etc, wherein the complexity parameter is usually 

introduced, as discussed in the previous section. Obviously, the energy consumed by 

this part depends on the embedded complexity parameters. The energy consumption of 

entropy coding is approximately proportional to the coding bit rate R [69]. We model 

the energy consumption (with units of Joules) of encoding one frame by 

Ef = E0 + Er ·R + Ec,       (5.2) 

where E0 accounts for miscellaneous energy overheads, such as energy cost for I/O, and 

Er is a linear factor constant. Ec is the energy consumption of the parametric coding 
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operations.  In this work, we consider Ec as the summation of the energy consumption 

of individual modules: 

∑
=

=
N

i
iic cECE

1
)( ,       (5.3) 

where Ei is the energy consumption for module i. Let fs denote the coding frame rate 

(frames/second), the power consumption (with units of Watts) is given by 

P(R, C) = fs · Ef  = fs · (E0 + Ec(C) + Er · R) = P0 +Pc(C) + PrR.  (5.4) 

Note that changing the complexity parameters and bit rate affects the 

miscellaneous energy overheads. We observe, however, even if efficient models of 

energy overheads are available, the dependence is not obvious making a comprehensive 

compositional model potentially complex. Thus, in this work, we ignore this effect and 

E0 is treated as a constant. Because the complexity parameters are normalized values 

and bounded by 1, P is also bounded. When the video encoder runs at full complexity 

(ci = 1), P is the maximum, denoted by Pmax. 

5.3.2 R-C-D Modeling  

For a parametric video encoder, D is not only a function of R, but also the 

complexity parameters. To model the R-C-D behavior, we begin the analysis by 

considering only one complexity parameter c in the video encoder. In this case, D(R, C) 

= D(R, c). Two implementations of parametric video coding are investigated. In the first 

implementation, we use the search range of full search ME as the complexity parameter 

with maximum value 15. When the search range decreases, the complexity decreases 

since we have less search points for MV search. In the second implementation, we use 
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the INTRA refresh rate as the complexity parameter with maximum value 10. In this 

approach, if the consecutive times of one MB being coded as an INTER MB are bigger 

than the INTRA refresh rate, this MB will be forced as INTRA coded. As the refresh 

rate decreases, the complexity of the encoder decreases since the MBs are more 

frequently coded as INTRA MBs for which ME is not required. In Figure 5.2 and 

Figure 5.3, the R-D curves of frame 0~99 of “Stefan” sequence at different constant 

values of c (c1 < c2 < c3 < c4) are plotted. Note that c is a normalized value.  

 

Figure 5.2 R-D curves of “Stefan” sequence with ME search range control. 
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Figure 5.3 R-D curves of “Stefan” sequence with INTRA refresh rate control. 

As can be seen from Figure 5.2 and Figure 5.3, the R-D performance 

deteriorates as c decreases. Based on the assumption of independent identically 

distributed (i.i.d.) memoryless source for the quantized transform coefficients, typical 

R-D model under the mean square distortion criterion is 

D(R)  = ε2·σx
2· e-αR ,      (5.5) 

where ε2 is a source dependent parameter equal to 1 for uniform distribution, 1.4 for 

Gaussian distribution, and 1.2 for Laplacian distribution. σx
2 denotes signal variance. 

The parameter α equals to 1.386 for uniform, Gaussian and Laplacian distribution [41]. 

Similar to the R-D model, but taking into account of the impact of c on the R-D 

performance, we model the R-C-D behavior with 

D(R, c) = ε2 · σx
2 · c -β · e-αR = γ · c -β · e-αR, 0<c≤1, α > 0 and β > 0,   (5.6) 
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where α, β, and γ are model parameters and can be obtained by using linear regression 

techniques. When we have constant complexity, the R-C-D model becomes the classical 

R-D model. It is worth to mention that different implementation of parametric video 

coding has different impact on the video distortion. For example, the video distortion is 

less sensitive to parametric ME control than to parametric DCT/Quantization control 

where the distortion mainly comes from. Parameter β accounts for this difference. For a 

specific video encoder, it is possible to have a more accurate (but potentially more 

complex) R-C-D model through theoretic R-D analysis. However, this theoretic R-C-D 

model is only valid for the specific video encoder, which limits its application. In 

contrast, the proposed R-C-D is a general model. As we show in the following, it 

remains valid for different video encoders. The simplicity of the model significantly 

increases its usability and provides valuable insights into the R-C-D tradeoffs in power-

distortion optimization.  

We empirically evaluate the accuracy of the proposed R-C-D model, using the 

ME search range control and INTRA refresh rate control. For each implementation, we 

vary the complexity parameter and the quantization factor to obtain the output bit rate 

and distortion. We perform data fitting by minimizing the sum of squared MSE 

differences between the model and the measured data. Figure 5.4 ~ Figure 5.7 present 

the results of the actual R-C-D surfaces and the results estimated from the model. One 

may notice that the actual R-D relation are more heavily damped at low bit rates than 

the proposed model, this is because the assumption of i.i.d. memoryless source is not 

typically found in real sequences. We can see that different implementations of 
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parametric video coding have significantly different forms of R-C-D surfaces. For 

example, the surface of complexity control using ME search range is more flat than the 

one using the INTRA refresh rate. Nevertheless, the proposed R-C-D model still fits the 

actual data well. Simulations over other test video sequences yield similar results. The 

average prediction accuracy is given in Table 5.1. The proposed model is accurate 

enough to appropriately describe the R-C-D behavior of video coding. 

 

Figure 5.4 R-C-D surface using INTRA refresh-rate control for “Foreman” QCIF. 
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Figure 5.5 Data generated by the proposed R-C-D model using INTRA refresh rate 
control for “Foreman” QCIF sequence. 

 

Figure 5.6 R-C-D surface using ME search range control for “Foreman” QCIF. 
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Figure 5.7 Data generated by with the proposed R-C-D model using ME search 
range control for “Foreman” QCIF sequence. 

Table 5.1 Average Prediction Accuracy of the R-C-D Model 

Parametric Video 
Coding Foreman Carphone Akiyo 

ME search range 
control 83% 82% 89% 

INTRA refresh rate 
control 82% 81% 80% 

 
Now we consider the case when the parametric encoder has multiple complexity 

parameters: C={c1, c2, … cN}. Since the encoder can be regarded as a nonlinear system, 

the overall distortion is not simply a linear addition of the individual effects of ci. As 

discussed above, the complexity parameters are usually separately applied to different 

coding modules. We observe that the effects of various complexity parameters can be 

described in a separable manner. Based on the observation, we model the R-C-D using 
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where N is the number of complexity parameters. A larger model parameter βi indicates 

ci has more contribution/effect on the overall distortion. 

5.3.3 Optimization Strategy 

Because the energy drawn from a battery is not always equivalent to the energy 

consumed in device circuits, understanding the battery discharge behavior is essential 

for optimal system design. Figure 5.8 gives an example of the discharge characteristic 

of the Lithium-ion battery [76], which is used widely in today’s mobile devices because 

of its high energy density and capacity. 

 

Figure 5.8 Lithium-ion battery discharge characteristics. 

Observation 1: As the battery discharges, its voltage drops. There is an inflexion 

point on the discharge curve, after this point the power will run out quickly. In this case, 

the video quality will degrade quickly due to insufficient power supply. 
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Observation 2: The effective battery capacity is increased if the average 

discharge current from the battery decreases, which suggests that reducing the discharge 

current, i.e., lowering the complexity is essential for battery lifetime extension. 

According to these observations, we have different preferences for the distortion 

versus power consumption during the whole battery lifetime. Thus, we apply the 

constraint-oriented strategy to solve the above MOO problem. In this strategy, one 

objective function is used as the main objective and the other is treated as the secondary 

objective. 

5.3.3.1 Distortion Preference  

When we do not have enough power supply to perform full complexity 

encoding, i.e., Pc < Pmax, we substitute problem (5.1) by 

min D(R, C), s.t. P(R, C) < Pc ,    (5.8) 

which is a distortion optimization problem with a power consumption constraint. Using 

the Lagrange multiplier method to solve the problem, we have the Kuhn-Tucker 

conditions as 
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where λ is the Lagrange multiplier controlling the P-D tradeoffs. From the last condition 

(5.9.b), either λ = 0 or P(R, C) = Pc. If λ = 0, from (5.9.a), we should have 
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∂
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which is conflict with the following equation derived from the R-C-D model: 
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As a result, we have 

P(R, C) = Pc.       (5.12) 

Remark 1: In the distortion-preferred optimization problem, the optimal solution 

is at the boundary of the constraint where the power consumption is maximized to the 

given upper bound. That is, the video encoder has to consume all the available energy to 

get the minimal distortion.  

The solution can be obtained by solving (5.9.a) and (5.12). As an example, 

suppose we have two complexity parameters, c1 and c2, we have 

RPcPcPPPeccD r
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When only one complexity is used, the solution can be easily obtained without 

solving the unconstrained problem. The optimal complexity parameter is given by 

 copt = (Pc – P0 - PrR) / P1.      (5.15) 

5.3.3.2 Power Consumption Preference 

When Pc ≥ Pmax, to preserve power, we substitute problem (5.1) by 

min P(R, C), s.t. D(R, C) ≤ D*,    (5.16) 
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where D* is a given upper bound distortion. Notice that different from (5.1), here the 

power constraint is released. Analysis on the Kuhn-Tucker conditions results in a 

similar conclusion: 

Remark 2: minimal power consumption is achieved when the video distortion is 

maximized to the upper bound value, in other words, when 

D(R, C) = D*.      (5.17) 

Figure 5.9 gives one example of how the upper bound distortion affects the 

solution. The power consumption is measured by the percentage of power compared 

with that is consumed by running at full coding complexity. 

 

Figure 5.9 P-D curves for “Foreman” QCIF sequence using INTRA refresh control 
under different distortion constraints. 

From Figure 5.9, we notice that as the distortion constraint increases, the video 

encoder can run at lower coding complexity for smaller power consumption. Also 

notice that as the expected distortion decreases constraint more, bigger complexity 
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parameters, and thus higher power consumption is required. In some cases, it is even 

not feasible, as shown in the figures, the complexity parameter bigger than 1 and Power 

Consumption higher than 100%. 

Considering the human being can tolerate some video distortion, this 

degradation in perceived video quality may be negligible with respect to the 

improvement in power saving. As the curve shows, this improvement in power 

consumption by increasing the distortion constraint will get saturate. Therefore the 

selection of an appropriate distortion constraint is crucial for power consumption 

saving. However, the constraint of distortion is very subjective and application 

dependent, which makes it quite difficult to pre-determine the distortion constraint 

before encoding the sequence. It is desirable to have a dynamic control to attack this 

challenge.  

Remark 3: From (5.11), each complexity parameter has different influence on 

the overall distortion according to their importance, reflected by their model parameter 

βi. For a same amount of complexity change, the larger the value of βi, the more 

changes in the distortion.  

Remark 4: For a given amount of complexity change, the smaller the value of ci, 

the larger the decrement of distortion is. Thus, as the encoder slows down, (ci becomes 

smaller), the distortion becomes more sensitive to the change of complexity.  

Based on Remark 3 and Remark 4, instead of pre-determining the distortion 

constraint, we apply a progressive control approach. Each parameter is adjusted 

individually according to their importance. Note that for a given bit rate, the minimum 
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distortion can always be achieved by running at full complexity from Remark 1. We 

start running the video encoder at full coding complexity, and progressively lower the 

complexity to preserve power. According to Remark 4, it is desirable to promptly 

increase the complexity when the video quality begins to deteriorate. The advantage of 

the progressive control is that we do not need accurate model parameters to solve the 

minimization problem. Also, since a predefined upper bound distortion is not required, 

this approach is adaptive to various coding content. 

5.4 Power and Distortion Optimized Video Coding 

In this section, based on the optimization strategies presented in the previous 

section, we demonstrate how to achieve power-distortion optimized video coding in a 

practical parametric video encoder, developed in CHAPTER 5. We use ME and model 

selection as the candidates for complexity control, since they significantly affect both 

the video distortion and power consumption. For the ME module, the computational 

complexity is determined by the number of SAD (sum of absolute difference) 

computations associated with each frame, denoted by c1. The available number of SAD 

computations is dynamically allocated throughout the frame among the MB’s according 

to the motion intensity. For the mode selection control, the fraction of MBs being coded 

as none zero MB (NZMBs) is used as another complexity parameter, denoted by c2. 

Remember that when a MB is code as a zero MB, coding operations including 

DCT/IDCT quantization/dequantization are skipped. For more detail, refer to 

CHAPTER 5. Different adjustments are applied on c1 and c2. 
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5.4.1 Progressive Complexity Adjustment 

5.4.1.1 Scene Change 

After applying the ME and mode selection control, which will be described 

below, the encoder might be in “sleep” (if the scene has been idle for a while), therefore 

it is necessary to “wake up” the encoder when with rapid motion or sudden scene 

change. A variety of techniques have been proposed to perform detection of scene 

changes. Considering the requirement of low computational complexity in the research, 

we use the percentage of INTRA coding MBs to detect scene change. This approach has 

low computational overhead, but still have pretty good performance. When scene 

change occurs, the video coding will restart at the highest complexity level in order to 

re-understand the content and choose another optimal parameter set. 

5.4.1.2 Greedy Motion Estimation 

We propose a greedy adjustment on the complexity scalable ME. We start with 

the highest complexity parameter value and keep reducing the value until we obtain a 

performance level that is no longer acceptable. Because of its simplicity, the sum of 

SADs of all the MBs is used as the distortion measure. 

Note that the process of ME can be simply considered as a sequence of SAD 

computations. For each MV candidate, one SAD value is calculated and compared with 

the previous minimal SAD. A smaller value of SAD indicates a better MV. As the 

search for the optimal MV continues, more SAD computations are required and smaller 

SAD may be obtained. Denote mSAD and '
mSAD  the last SAD value and the second last 

SAD during the MV search for the mth MB. At frame i, let 
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mi SADSSADSADSSAD '', be the sum of SAD and the sum of second last SAD 

respectively. Clearly, iSSAD  needs more computation than '
iSSAD . If iSSAD  is smaller 

than '
iSSAD , it implies we may get smaller distortion if we increase c1 at frame i+1. Let 

ce
i, ca

i, denote the estimated and actual complexity parameter for frame i, respectively. 

The greedy ME control is given in Figure 5.10. We exponentially increase the 

complexity when we can get a performance improvement. 

 if (SSADi  –SSADi’ < Thresold) 
/* We may get improvement by increasing the complexity */ 
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Figure 5.10 Greedy ME control. 

The threshold in Figure 5.10 controls the C-D tradeoff. In the experiments, we 

use the extreme value threshold = 0. Figure 5.11 shows the results of greedy ME 

complexity control for three different sequences, representing motion characteristic 

from low motion to high motion respectively. The “Akiyo” sequence is a typical head-

and-shoulder sequence and has very little motion. The camera is assumed to be 

stationary. From Figure 5.11(a) we can observe that the ME complexity parameter c1 is 

gradually lowered to preserve power and finally stays in constant when the encoder 

only consumes computation on the active region (the news reporter). The “Foreman” 
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sequence has medium motion with camera motion. In Figure 5.11(b), the encoder resets 

the complexity parameter to the highest value when a scene change is detected and 

starts another greedy search. “Stefan” represents a typical sports sequence with fast 

motion. In “Stefan”, from the 180th frame, the camera moves very quickly to focus on 

the sportsman. The proposed control is able to increase the complexity parameter 

promptly when the scene switches to such a fast motion, as shown in Figure 5.11(c).  

 

(a) (b)

(c)  

Figure 5.11 Results of greedy ME complexity control. (a) Akiyo QCIF; (b) Forman 
QCIF; (c) Stefan QCIF. 

5.4.1.3 Optimal Mode Selection 

Offline simulation shows that the model parameter of model selection is much 

bigger than that of ME, i.e., β2 > β1. This is valid because in video coding, the 
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quantization process, affected by the procedure of mode selection, mainly causes the 

distortion. Instead of using progressive control as ME, we try to find the optimal value 

for c2.  

In a block based video encoder, the residual error after motion compensation is 

transformed into the frequency domain using certain type of transform, such as DCT. 

After that, the transform coefficients are quantized by a predetermined quantization 

parameter for further entropy compression. We denote r, R as the residual error and the 

transform coefficients respectively. r can be the input MB for INTRA coding. The 

transform can be described by 

R = ArAT,      (5.18) 

where A is the transform matrix. The distribution of the residual error can be 

approximated by a Laplacian distribution with zero mean and a separable covariance 

[72]:  

r(m,n) = σr 2 ρ|m| ρ|n|,      (5.19) 

where m and n are the horizontal and vertical distances between two pixels respectively, 

σr is the variance of the residual errors. ρ (|ρ|<1) is the correlation coefficient. Typical 

value of ρ ranges from 0.6 to 0.75.  Let L denote the matrix of the correlation 

coefficients, given by 
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Let Q be the quantization parameter and EM be an estimation matrix, of which 

the element EM(u,v) is given by 
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= ,    (5.21) 

where K is a constant and n is a confidence parameter. We can estimate the probability 

of R(u, v) being zero by: 

),( vuEMSAD < ,     (5.22) 

where SAD is the SAD value after ME. When (5.22) is satisfied, R(u,v) will be 

quantized to zero with probability 68%, 94%, and 99% with n = 1, n = 2, and n = 3 

respectively [72].  

Since the DC coefficient dominates the transform coefficients, when the 

quantized DC coefficient becomes zero, we can assume that all the quantized transform 

coefficients are zero. This assumption will not influence the reconstructed video quality 

apparently, because the human eyes are more sensitive to low frequency coefficients. 

Therefore, if SAD < EM(0,0), then R(0,0), which is the DC coefficient, all the quantized 

transform coefficients are zero, which implies the MB will be a zero MB.  After doing 

this for each MB, we can calculate the percentage of zero MBs and determine c2. Being 

able to determine c2, the number of complexity parameter is reduced to one, which can 

be calculated by (5.15). This significantly reduces the complexity of solving the 

distortion-preferred optimization problem, as discussed in the previous section. 
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5.4.2 System Architecture 

Figure 5.12 shows the architecture of the proposed video coding system, which 

includes four major modules: the “parametric coding modules”, the “analysis and 

adjustment” module, the “energy monitoring” module, and the “bit allocation” module. 

In the system, the coding modules demanding high computational power are complexity 

scalable and can be adjusted by the embedded parameter c1 and c2. The “analysis and 

adjustment” modules model the R-C-D behavior of the system and apply the 

progressive control, aiming to determine a control parameter set for the coding modules. 

The “energy-monitoring” module provides the current power supply of the system, i.e., 

the power constraint of this power sensitive platform. The "bit allocation" module 

determines the number of bits to encode the next frame or group of frames according to 

the available bit rate determined by the transmission bandwidth. 

The optimized video encoder operates as follows:  

Step 1. Estimate the model constants of (5.4) from theoretical analysis or 

experimental profiling.  

Step 2. Complexity parameters adjustment: apply the greedy ME control to the 

ME module. The SAD value is used as the video quality measure. We calculate the 

complexity parameter c2 for mode selection. The model parameters α, γ, β1, and β2 are 

estimated from the statistics of previous frame using linear regression. If scene changes 

occur, we restart the encoding at full complexity. 

Step 3. Check the constraint of power consumption. When distortion-optimized 

is preferred, get the complexity parameters using (5.15). 
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Figure 5.12 Power-distortion optimized video encoder. 

5.5 Experimental Results 

In this section, we evaluate the performance of the power-distortion optimized 

vide coding. The public domain H.263+ encoder is tested in the experiments. The 

approach is generally applicable to other standards and similar performance is expected. 

The video distortion is measured by peak signal to noise ration (PSNR). To compare 

with the traditional fast video coding approach, the fast ME method in the reference 

software is tested in the experiments, referred as the FastME approach in the following. 

The TMN8 rate control algorithm is used. In the simulations, the power consumption is 

measured using the linear model, given by (5.2). The complexity ratios are obtained 

through run-time complexity profile analysis. The maximum ME complexity 
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corresponds to 50 search points for each MB and therefore the full search ME will use a 

ME complexity parameter much higher than 1.  

Figure 5.13, Figure 5.14, and Figure 5.15 illustrate the comparisons of 

reconstructed video quality and power consumption for the tested sequences. We can 

observe that the proposed PDO (power-distortion optimization) video coding achieves 

significant power saving while maintaining similar video quality compared with the 

referenced video encoder. The proposed method has much better performance than the 

referenced encoder in term of power saving. For the “Akiyo” sequence, these methods 

achieve similar video quality performance. From the power saving perspective, the 

PDO has the best performance, followed by the FastME method. This is because in the 

PDO control method, the video encoder eventually only spends some computation on 

the talking women, saving a great amount of energy.  In Figure 5.14 and Figure 5.15, 

the FastME and the PDO approaches have similar performance on power saving. 

However, the PDO approach achieves much better video quality, close to that of the ref 

video encoder, especially for fast motion sequence “Stefan”. The FastME method 

reduces the power consumption at the expense of degraded video quality. From the 

results, we can see that the PDO video coding not only significantly reduces the power 

consumption, but also maintains the video quality for different motion sequences. 
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Figure 5.13 PSNR and power consumption comparison for “Akiyo” sequence. 
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Figure 5.14 PSNR and power consumption comparison for “Foreman” sequence. 

Stefan QCIF 192kbps

22

24

26

28

30

32

34

4 24 44 64 84 104 124 144 164 184 204 224 244 264 284

Frame Number

PS
N

R
(d

B
)

Fast ME Referenced Power distortion optimized

 

Stefan QCIF 192kbps

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 24 44 64 84 104 124 144 164 184 204 224 244 264 284

Frame Number

R
eq

ui
re

d 
P

ow
er

 S
up

pl
y

Fast ME Referenced Power distortion optimized

 

Figure 5.15 PSNR and power consumption comparison for “Stefan” sequence. 
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We further evaluate the performance of the proposed ideas using Simwattch, an 

instruction-set simulator enhanced with an instruction-level power model [10], to 

estimate the actual power consumption. Simwattch currently estimates the power 

consumption in a complete system simulation environment. It supports the analysis of 

power-efficient micro-architecture, application, compiler and operating system design 

decisions. In the experiments, we use the default setting assuming a 0.18-micron 

process technology at 600MHz. One of the advantages of using complexity scalable 

encoders is that they can achieve better performance on variable voltage processors, 

including Transmeta’s Crusoe, AMD’s K-6, TI OMAP processor family, and the IBM 

PowerPC 405LP.  Such processors can operate at different clock frequencies and supply 

voltages, known as dynamic voltage and frequency scaling (DVS). In Simwattch, the 

dynamic power consumption of CMOS microprocessors is modeled as 

Pd = CVdd
2αF,      (5.23) 

where C is the load capacitance, Vdd is the supply voltage, and F is the clock frequency. 

The activity factor, α, is a fraction between 0 and 1 indicating how often clock ticks 

lead to switching activity on average. Lowering the voltage results in a significant 

power reduction, since power is related to the square of the input voltage. In the 

experiments, we modify Simwattch and linearly relate Vdd, to the overall computation 

complexity in order to apply the DVS techniques. 

Table 5.2 presents the output of Simwattch for different test sequences using 

different approaches. The sequences are QCIF sequences coded at 15fps, 128kbps for 

200 frames. The results verify that the PDO approach significantly reduces the power 
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consumption while preserving good video quality. When applying the DVS technique, 

we can save more power consumption. 

Table 5.2 Power consumption (PC) comparison using Simwattch 

Approach  akiyo stefan salesman hall foreman carphone

PC  5.26x1011 7.89 x1011 6.11 x1011 5.04 x10116.91 x1011 6.07 x1011

Referenced 
PSNR(db) 44.09 26.75 39.57 39.87 33.99 36.93 

PC 2.21 x1011 3.22 x1011 2.35 x1011 2.22 x10113.02 x1011 2.72 x1011

Fast ME 
PSNR(db) 44.10 25.66 39.56 39.89 33.91 36.90 

PC 2.20 x1011 3.54 x1011 2.49 x1011 2.26 x10113.36 x1011 2.99 x1011

PC 

with DVS 
1.30 x1011 2.15 x1011 1.31 x1011 1.18 x10112.33 x1011 1.96 x1011PDO 

PSNR(db) 44.13 26.53 39.60 39.90 33.95 36.88 

 

Figure 5.16 shows the results of the PDO approach when the power supply 

changes. In (a), the x-axis is the time and the y-axis is the normalized power supply. 

One can observe that the proposed PDO approach is able to automatically adjust the 

system complexity according to the power supply level, which helps to extend the 

battery lifetime. As the power supply decreases, the video quality decreases gracefully. 

Note that for the referenced encoder and the FastME approach, they cannot adapt to the 

power supply level. Frames have to be dropped when the power supply is insufficient.  
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                                         (a)                                                                                (b)  
 Figure 5.16 PSNR and power consumption with insufficient power supply. (a) 

Power consumption, (b) Reconstructed video quality 

5.6 Concluding Remarks 

This chapter addresses the problem of how to efficiently manage the power 

consumption while preserving high video quality for video coding in futuristic 

ubiquitous environments. As opposed to the traditional video compression schemes, the 

power consumption and video distortion are considered jointly in this work. The work 

in this paper has two major parts. First, we show that the power-distortion optimized 

video coding can be considered as a multiple objective optimization problem. Similar to 

the rate-distortion model, we propose a R-C-D model that sufficiently describes the 

relationship between rate, complexity, and distortion. Second, valuable remarks on 

power-distortion optimization are provided and effective schemes are developed, which 

make us able to achieve good video quality while maximizing the battery service life. 

Being the first research effort, we believe the work here provides valuable insights into 
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the new power-distortion optimization research problem in futuristic ubiquitous 

environments. 
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CHAPTER 6  

POWER-DISTORTION OPTIMIZED VIDEO CODING USING MOTION HISTORY 
INFORMATION 

6.1 Motivation 

In the upcoming pervasive computing era, wireless sensor networks are 

expected to rapidly emerge as a framework to carry out distributed and pervasive video 

applications such as environmental monitoring, battle field investigation, and video-

surveillance, just to mention a few. In these environments, the small-size and low-cost 

tiny nodes, each equipped with a sensing device that collects information from the 

environment and a video coding device to transmit the information it through the 

network. Video cameras and monitors may be encountered in many places to observe 

ongoing activities and individuals. The vast accumulation of digital data requires new 

classes of video coding schemes to extend the battery operation time. 

It is worth noticing that, unlike typical video applications on general platform, 

video applications in these scenarios are often characterized by low motion, in 

particular when no object is expected to move within the scene but in case of anomalies. 

When there is no motion, we can significantly slow down the coding procedure to 

preserve more power. The approach in Chapter 6 is shown to yield very good results but 

does no take this advantage into consideration, thus does not provide an optimal 

favorable energy/performance trade-off. In the context of video coding of a low-motion 
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scene, such as pervasive video surveillance, we expect to gain more power saving if the 

motion information of the coding video content can be achieved.  

In this coding scenario, understanding the coding video content is an essential 

part to improve the performance. In this chapter, the goal is to develop schemes to 

capture the video content characteristics for power-distortion optimized video coding. 

Exploiting meta information with a broader scope can be potentially more effective, 

provided the overhead to obtain and maintain such information is low.  

6.2 Hierarchical History of Motion Intensity  

Similar to the way a video sequence is represented in block-based video coding, 

the motion intensity is determined hierarchically at block level, frame level, and 

sequence level, expressed by Ωb, Ωf, and Ωs, respectively. We classify the intensity at 

each level to be in one of the following three distinct categories: low, medium, and high 

motion intensity. For simplicity, we only use the information from P frames to 

determine the motion intensity. 

6.2.1 Block Level Motion Intensity:  

The block level motion intensity (Ωb) describes the intensity of motion 

correlation between current block and its neighboring left, top, and top-right blocks. Let 

Φ denote the local MV field that represents the set of MVs of the neighboring blocks. 

The smoother the local MV field, the higher motion correlation exists. In this case, the 

probability that the current block’s MV has similar value as its neighboring blocks is 
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high. We define a parameter α to measure the smoothness of the local MV field as 

follows: 

Φ∈−−= ),(|},||,max{| ''''
yxyyxx mvmvmvmvmvmvα ,  (6.1) 

where mv   is the average MV of Φ.  Based on this measure, Ωb is given by: 
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where L1 and L2 are two block-level thresholds to be determined experimentally. In the 

experiments, we empirically set L1 = 1 and L2 = 4 for most video sequences. 

6.2.2 Frame Level Motion Intensity:  

The frame level motion intensity (Ωf) describes the intensity of motion activity 

of one video frame. The intensity of motion activity of one block (ω) is classified into 

three categories: 
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where d is the magnitude of its associated MV (mvx, mvy), given by: 

d = |mvx|+|mvy|.      (6.4) 

The percentages of blocks with different values of ω are calculated as 

p(ω=low), p(ω=medium), and p(ω=high), respectively. For simplicity, we write p(l), 

p(m) and p(h). Now, we calculate the average intensity of motion activity for all the 

blocks. Let X be a random variable on a finite integer set χ={x1, x2, x3}, which 
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corresponds to the set of classification levels {low, medium, high}, with probability 

distribution function pk=P(X=xk) that is given by the computed percentage distribution. 

We have p1=p(l), p2=p(m), and p3=p(h). The expected value of X is given by: 

 ∑
=

=
3

1

)(
k

kk pxXE .      (6.5) 

We define ω  as the expected intensity level, which is equal to low, medium, or 

high, depending upon the quantized value of E(X). ω  can be used to estimate the 

intensity of motion activity of one frame, but may result in low estimation accuracy. 

Figure 6.1 and Figure 6.2 give two examples of the MV fields for video sequences 

“Akiyo” and “Stefan”, at frame 37 and 91, respectively. The MVs were obtained by 

using full search ME with 16-pixel-size search region on 4x4 block. Figure 6.1 

represents a typical head and shoulder scene with weak motion activity. Figure 6.2 

contains fast-moving objects with strong motion activity. Notice that in Figure 6.1, the 

MV field is smooth, i.e., neighboring MVs do not differ a lot in direction and 

magnitude. Since most of the MVs are close to zero, a satisfactory result of low motion 

intensity at frame level is expected by averaging the intensities of block motion 

activities. In contrast, as seen in Figure 6.2, the MV field is more chaotic. The averaging 

may not reflect the presence of strong motion activity. We take this uncertainty into 

consideration when determining the frame level motion intensity. 
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Figure 6.1 Motion vector field for “Akiyo” at frame 37. 

 

Figure 6.2 Motion vector field for “Stefan” at frame 91. 

Given that the entropy is a measure of the uncertainty about the outcome of the 

random variable [27], we use the entropy to refine the classification of frame level 

motion intensity. The Shannon’s entropy H(X) of X is defined as: 
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Note that the entropy only depends on the probability distribution function of X. 

The frame level motion intensity is determined as following: 
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where TFL and TFH are frame-level low and high thresholds. Experiments showed that 

TFL and TFH correspond to 0.35 and 0.6, respectively, for most video sequences. 

6.2.3 Sequence Level Motion Intensity:  

The sequence level motion intensity, denoted as Ωs, represents the motion 

intensity of the whole sequence. Because the motion of one sequence tends to be similar 

continuously in time, the dominant frame level motion intensity can represent the 

motion characteristic of a sequence. Let MIH be the histogram of frame level motion 

intensity. MIH = [p0, p1, p2], where   p0, p1, and p2 are the percentages of frames with Ωf 

equal to low, medium, and high intensity, respectively. Ωs is determined by the 

dominant frame level motion intensity that has the maximum percentage in MIH. Table 

6.1 provides the statistic data of the frame level motion intensities for various sequences 

with 200 frames. The last column shows the corresponding classified sequence level 

motion intensity. The results verify that descriptor Ωs is efficient to describe the motion 

characteristics at sequence level. 
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Table 6.1 Sequence level motion intensity for typical sequences 

Sequence  

PERCENTAGE OF 

LOW MOTION 

INTENSITY FRAMES 

(%) 

Percentage of 
medium 
motion 

intensity 
frames (%) 

Percentage of 
high motion 

intensity 
frames (%) 

 
Ωs 

Akiyo 0.838384 0.161616 0 low 
Hall Monitor 0.79798 0.20202 0 low 

Sean 0.747475 0.252525 0 low 
Mother Daughter 0.151515 0.525253 0.323232 medium 

Silent Voice 0.151515 0.666667 0.181818 medium 
Table Tennis 0.050505 0.444444 0.505051 high 

Stefan 0.010101 0.080808 0.909091 high 
Mobile & 
Calendar 0 0.020202 0.979798 high 

6.3 Using the Motion History Information 

The hierarchical motion history structure enables better motion information 

retrieval of the coding video content, and therefore allows more aggressive complexity 

control. In this section, we will use this meta information to further save the 

computational power. 

Remember that the block level motion intensity indicates the spatial motion 

correlation; the frame level motion intensity represents the average intensity of motion 

activity and the sequence level motion intensity shows the average motion intensity of 

the sequence. As a result, when the motion intensity at block level is high, and the 

motion intensities at frame and sequence level are both low, it indicates strong low 

motion present of the coding MB, and most probably it is a background MB. Therefore 



 

 

 

97

we can apply more aggressive control and skip most of the time-consuming operation, 

after the dynamic complexity control is applied.  

The proposed complexity control using motion history information works as 

follows: 

Step 1: Initially, the motion intensity at each level is considered as low. The 

motion history image is initialized to 0. 

Step 2: Get the frame level, and sequence level motion intensities for current 

MB. 

Step 3: For current coding MB, compute block level motion intensity, if the 

motion intensity at block, frame, sequence level is high, low and low, we mark this MB 

to be a static or background low motion MB. 

Step 4: During the greedy ME control, we only check the position with MV(0, 

0). The SAD value is used later in INTRA / INTER coding selection. 

Step 5: For AZMB determination of optimal mode selection in 5.21, we set n 

equal to 2 if the current MB is marked, otherwise n equal to 3 is used. 

Step 6: Continue this procedure for the rest of MBs. Update the frame level and 

sequence level motion intensities accordingly. Here, we use the percentage MBs with 

low activity to determine the frame level intensity instead of using the entropy 

computation because of its simplicity. 

In the proposed approach, the computational overhead introduced by the 

preprocessing of the hierarchical motion intensity framework includes two parts: update 

of the motion history image and computation of the motion intensities. The first part 



 

 

 

98

only contains one addition and one comparison operation for each block. The second 

part builds up from the computation of block level motion intensity, which involves at 

most 6 subtractions, 3 additions, 6 absolute-value computations (for 3 neighboring 

MVs) and 1 comparison for a block. Compared with one SAD computation that requires 

N subtractions, N absolute values, and (N - 1) additions, where N is number of pixels in 

the block, this computation introduces low additional complexity. Remember that the 

computations of frame and sequence level motion intensities are performed only once 

for each frame and it mostly involves simple addition (for calculation of both the 

percentage distribution and the histogram) and comparison operations (for intensity 

classification). Overall, the preprocessing overhead on the hierarchical framework in the 

complexity control using motion history information is small and can be ignored. 

6.4 Experimental Results 

In this section, we evaluate the performance of the power-distortion optimized 

vide coding combined with the proposed hierarchical motion history structure. The 

power-distortion optimized H.263+ encoder is tested in the experiments. We compare 

the performance of video quality in term of y-PSNR value, power consumption in term 

of complexity, and output coding bit rate. The setup of the simulation is similar to the 

environments described in CHAPTER 5 Section 5.5 . The experiments are targeting the 

pervasive computing applications that will run for a long time, such as pervasive video 

surveillance on tiny sensors. We choose sequence “Hall_Moniotor” in the experiments 

since it is a typical sequence with content of video monitoring. We simulate one-hour 
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operation time in the experiments. Within the first 25 minutes, the video content is 

inactive and the camera captures the hall background with noise. In the next 15 minutes, 

two people are working in the hall and then leave, followed by another 10 minutes 

inactive status. The first 10 frames of “Hall_Monitor” sequence are used as the inactive 

content and the whole sequence is used as the active content. The experiments are 

perform individually for Full Search, Fast ME, Complexity control without using 

motion history information (CC only), and Complexity control using motion history 

information (CC with MHI) at 15fps, coding bit rate 384kbps and 64kbps, respectively. 

Figure 6.3 and Figure 6.4 shows the luminance video quality at 384kbps and 

64kbps respectively. We can observe that the dynamic complexity control with/without 

using the motion history information outperforms both the fast ME approach and the 

full search approach. This is because these two schemes can allocate the SAD 

computations more accurately to the areas where it is needed and thus improve the 

overall video quality. It is worth to note that although the full search approach can find 

the minimum distortion, but with a much more chaos motion vector field, which affects 

the compression efficiency, especially in high coding bit rates, shown in Figure 6.3. On 

the other hand, the approach of complexity control using motion history information has 

video quality close to complexity control without using the motion history information. 

It is even better within the inactive period at low bit rates 64kbps, since the 

computational power is more intelligently distributed according to the motion history 

information. 
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Figure 6.5 shows the complexity comparisons. We can notice that the proposed 

complexity control with/without using the motion history information outperforms the 

fast ME approach. (It is easy to understand that it has the highest complexity. For 

simplify purpose, the complexity of full search is not shown here.)  One can also easily 

observe that the proposed dynamic complexity control when combined with exploiting 

the motion history information significantly reduce the video coding complexity, 

compared to not using it. Results concerning the number of bits used are shown in 

Figure 6.6 and Figure 6.7. The results verify that the proposed complexity control 

with/without using the motion history information does not affect the robustness of the 

rate control algorithm. It is interesting to see that using the motion history information 

produces a little less bit rate than other approaches.  

 

Figure 6.3 Y-PSNR comparisons, coding bit rate at 384kbps, 15fps.  
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Figure 6.4 Y-PSNR comparisons, coding bit rate at 64kbps, 15fps. 

 

  Figure 6.5 Complexity comparisons, coding bit rate at 384kbps, 15fps. 
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Figure 6.6 Output coding bit rates, target coding bit rate 384kbps. 

 

Figure 6.7 Output coding bit rates, target coding bit rate 64kbps. 
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6.5 Concluding Remarks 

The proposed hierarchical motion history structure framework effectively 

captures, retrieves and exploits the subtle motion information of a video sequence. This 

motion history information provides a better understanding of the video content the 

video encoder is encoding. It can be used in fast motion estimation, video segmentation, 

video analysis, etc.  In this chapter, the motion history hierarchy is combined with the 

dynamic complexity control for power-distortion optimized video coding in order to 

gain more power saving. The experimental results certify that the meta information 

contained in the hierarchy can be very useful in improving the power saving 

performance for persuasive computing applications.  
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