

THE APPLICATION OF DISCRETE-EVENT SIMULATION

FOR DEMINING STRATEGY EVALUATION

by

HUI-CHIAO JEN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2008

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Dr. Brian Huff,

for his keen insight of the research topic, his technical advice, and his friendly and

patient assistant to me in all aspects of this dissertation. I also would like to thank Dr.

Don Liles for providing financial support and, as a committee member, guidelines for

this research. Thank you to my other committee members- Dr.Rogers, Dr.Kim and

Dr.Dogan for their precious comments and advice through the dissertation process.

Thanks to my dear friends Joye Homles and Libby Leatherman for undertaking the

arduous task of reading and revising for this dissertation, and their superior

encouragement. I would like to thank Rory Cannaday who initially coded an

independent scout vehicle model on which this research was able to make further

development. I want to thank all that I have mentioned.

 Finally, I would like to thank all of my friends for their encouragement, advise,

and listening to me about this work. Most of all, I would like to express my gratitude to

my parents, my aunts, my brother, my sister in law, and my dear lover, Li-Chieh Hsiao,

for providing me the support, understanding and patience that I needed. I could not have

done this work without them.

April 17, 2008

ABSTRACT

THE APPLICATION OF DISCRETE-EVENT SIMULATION

FOR DEMINING STRATEGY EVALUATION

Hui-Chiao Jen, PhD.

The University of Texas at Arlington, 2008

Supervising Professor: Brian Huff

Teams of mobile autonomous robots have been proposed for the detection and

clearing of landmines. Several competing strategies for automated mine detection have

been proposed. This paper will discuss the development of a tool that will support the

quantitative analysis of various automated mine detection approaches used in

Humanitarian Demining and Military Mine Field Breaching. The approaches used to

model mine detection in a scout, breaching, and Humanitarian Demining scenario using

a discrete-event simulation analysis tool are discussed. The model assumes that each

UGV is autonomous rather than being directly controlled by a centralized command and

 iii

control system. The algorithm used to drive a single UGV along a simulated breach

path is presented. An alternative algorithm set is also proposed for the control of a

coordinated team of UGV's. The extension of the tool to support humanitarian mine

clearing and the use of multiple waves of automated mine detectors are also presented.

A simulation system constructed on the WITNESS® discrete-event simulation package

will be shown. This paper simulates the motion of multiple robots through a mock

minefield containing mines and obstacles that limit the motion of the autonomous

vehicles.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES... xii

Chapter Page

 1. INTRODUCTION ... 1

 1.1 Background and Motivation .. 1

 1.2 Research Objective .. 3

 1.3 Research Approach.. 4

 2. LITERATURE REVIEW .. 10

 2.1 Landmine Detection Technologies .. 10

 2.1.1 Sensor Technologies .. 11

 2.1.2 Robot Technologies .. 13

 2.2 Mobile Robot Team Concepts ... 14

 2.2.1 Robotic Behavior Control .. 14

 2.2.2 Searching Applications... 19

 2.3 Vehicle Routing Problem (VRP) ... 24

 3. MiCAT DESIGN CONCEPT.. 27

 v

 3.1 The Simulated Minefield ... 27

 3.2 The Simulated Mine Detection Vehicle .. 29

 4. MiCAT APPLICATION SCENARIOS .. 35

 4.1 Simulation of a Scout Vehicle ... 35

 4.2 Simulation of a Coordinated Team of Mine Detection Vehicles 43

 4.2.1 Military minefield breaching (MMB)....................................... 44

 4.2.2 Humanitarian Minefield Reclamation (HMR).......................... 50

 4.3 Point-to-Point Wave .. 62

 5. DISCUSSION OF MODEL GENERALIZATION 69

 5.1 Adjustable Grid Scaling and
 Shifting The Orientation of The Search Grid .. 69

 5.2 The Modeling of Vehicles of Different Sizes.. 75

 5.3 Alternative Vehicle Formations... 77

 6. ANALYSIS OF EXPERIMENTAL RESULTS AND DISSCUSSION....... 83

 6.1 Examples of MiCAT Use Scenarios... 86

 6.1.1 Analysis of Mine Detection Sensor Effectiveness.................... 86

 6.1.2 The Impact of Minefield Complexity on
 Search Performance .. 89

 6.1.3 Impact of the Number of Mine Detection Vehicles Used on
 Search Time .. 91

 6.2 The Use of MiCAT for HMR and MMB System Design 92

 6.3 The Use of MiCAT for the Comparison of
 HMR and MMB Strategies and Technologies.. 94

 6.3.1 Evaluation of Various Point-to-Point (P2P) Wave
 Deployment Strategies for HMR Operations 94

 vi

 6.3.2 Evaluation of Various Point-to-Point (P2P) Wave
 Deployment Strategies for MMB Operations........................... 96

 6.3.3 Evaluation of the Deployment of a
 Single Wave of High Capable Vehicle or Using
 Multiple Waves of Heterogeneous Vehicles 97

 6.4 The Use of MiCAT to verify
 HMR and MMB Simulation Algorithm ... 98

 6.4.1 The Development of Multi-Vehicle Control Algorithm........... 98

 6.4.2 The Development of Vehicle Re-Tasking Algorithm
 Response to Vehicle Loss... 99

 7. CONCLUSIONS AND FUTURE WORK.. 101

 7.1 Conclusion ... 101

 7.2 Future Work... 105

REFERENCES .. 108

BIOGRAPHICAL INFORMATION... 113

 vii

LIST OF ILLUSTRATIONS

Figure Page

 1.1 Scout Wave (Scout sweeps within the pre-plan path)..................................... 8

 1.2 Boustrophedon path... 8

 1.3 Example of Complete Coverage: The number of lanes is
 divisible by the numbers of vehicles ... 8

 1.4 Example of Complete Coverage: The number of lanes is
 not divisible by the numbers of vehicles... 9

 1.5 Coordinated Line wave for Breaching:
 The team will redefine the path to avoid hazard ... 9

 1.6 Point-to-Point Wave: The vehicle moves directly to locations
 identified by the previous wave .. 9

 2.1 Formation for four robots(a) line, (b) column, (c) diamond,
 and (d) wedge (Balch and Arkin 1998)... 16

 2.2 Zone for the computation of maintain-formation magnitude
 (Balch and Arkin 1998; Balch and Hybinette 2000)....................................... 17

 2.3 The staggered formation of a minesweeping team
 (Healey 2001; Ludwig 2000) .. 20

 3.1 The Simulated Minefield... 27

 4.1 Breach lane identifying procedure .. 43

 4.2 Simulation of a Scout Vehicle searching for a breach lane
 (A) three units wide and (B) five units.. 43

 4.3 Breach lane identifying procedure of a coordinated team............................... 49

 4.4 The three vehicle breaching team runs first
 providing 100% coverage for the breach lane... 50

 viii

 4.5 A Turning Point that causes the HMR search area to be decreased................ 51

 4.6 An example of HMR’s Lane Assignment for four vehicles............................ 52

 4.7 A Task Assignment procedures for HMR search.. 53

 4.8 A HMR search procedure.. 61

 4.9 (A) A HMR overlap strategy improves the percentage of the area
 (B) The survived vehicle supports the un-finished area
 that is left by the destroyed vehicle... 62

 4.10 (A) The three vehicle breaching team runs first providing 100%
 coverage for the breach lane, (B) a two-vehicle P2P team starts to
 work right after the Multi-Vehicle Wave begins its search. 62

 4.11 The P2P search flowchart.. 68

 5.1 A ZigZag shape minefield area ... 70

 5.2 An illustration of the shifting of minefield orientation 70

 5.3 A steep slop produces a sliding displacement or a fracture 74

 5.4 The required turning around radius
 from one piece to another piece of the minefield.. 75

 5.5 Two independent vehicles of different sizes
 (A) three units size and (B) seven units size ... 77

 5.6 A staggered vehicle formation .. 77

 5.7 Setting a virtual obstacle ... 79

 5.8 The vehicle team moves in the same direction to hold a breaching path........ 81

 5.9 The vehicle team separates while meeting a landmine 82

 5.10 The time control algorithm has made
 the vehicle able to move back while meeting a landmine............................... 82

 5.11 The time control algorithm has made
 the vehicle able to go around the virtual landmine ... 82

 ix

 6.1 MiCAT selection interface .. 84

 6.2 Parameters input interface... 84

 6.3 Obstacle (or landmine) Locations Input Interface in Excel 85

 6.4 The intended simulated minefield search scenario is loaded 85

 6.5 Data summary report... 85

 6.6 The search time increases when using lower mine detection sensor 88

 6.7 The amount of total steps taken is slight difference.. 88

 6.8 Simulation running results
 at detection probabilities of (A)100%(B) 75%. .. 89

 6.9 Simulation running results of (A) total steps (B) time taken
 at the different types of mine sensor. .. 90

 6.10 Simulation running results of (A) total steps (B) time taken
 at the different types of minefield. .. 90

 6.11 Simulation running results for each vehicle when using different types
 of mine sensor within (A) High (B) Medium complexity minefield. 91

 6.12 (A) the amount of total search steps
 (B) total search time taken, when using different number of vehicles
 within different type of simulated minefield... 92

 6.13 The trend line of the time taken .. 93

 6.14 (A) The amount of time (B) steps taken,
 between different multi-wave strategies. .. 96

 6.15 (A) The amount of time (B) steps taken,
 between different multi-wave strategies of MMB scenario. 97

 6.16 The search time comparison between a single and multiple waves................ 98

 6.17 The Virtual (A) and Non- Virtual obstacle (B) strategy 99

 6.18 The complete coverage search task at detection probability of 65%
 (A) Non- Support (B) Reassignment Support ... 100

 x

 6.19 The complete coverage search task at detection probability of 60%
 (A) Non- Support (B) Reassignment Support ... 100

 xi

LIST OF TABLES

Table Page

 3.1 Obstacles Generation Algorithm.. 29

 3.2 Eight Moving Directions Of The Vehicle .. 30

 3.3 Obstacle and Mine Detection Algorithm ... 33

 4.1 Scout Scanning Minefield Algorithm .. 38

 4.2 Scout Searching Desired Path Algorithm .. 39

 4.3 Keeping The Scout Stay On Current Route Algorithm.................................. 41

 4.4 Scout Bypass Landmine Algorithms.. 42

 4.5 Algorithms To Search The Breaching Lane... 46

 4.6 Algorithms To Stay On The Path For Breaching Team................................. 48

 4.7 Algorithms To Get HMR's First Lane Assignment.. 54

 4.8 Algorithms To Get HMR’s Lane Assignments.. 54

 4.9 Algorithms To Get Lane Assignments For Each HMR Vehicle.................... 55

 4.10 HMR Location Relationship ... 57

 4.11 HMR Searching Patterns... 57

 4.12 Algorithm To Determine A Search Pattern... 59

 4.13 Algorithm To Apply A HMR Search Pattern ... 59

 4.14 HMR Search Algorithms... 60

 4.15 HMR Reassign Search Task Algorithms .. 60

 xii

 4.16 Algorithms To Allocate The Potential Landmines 65

 4.17 Algorithms To Distribute The Potential Landmines To P2P Vehicles 65

 4.18 Point To Point Searching Patterns... 67

 4.19 Algorithms To Obtain A P2P Searching Patterns ... 67

 4.20 Algorithms To Obtain P2P Next Step ... 67

 5.1 Algorithms To Reset The Minefield ... 73

 5.2 Algorithms To Resize The Vehicle... 76

 5.3 Algorithms To Search The Entire Grids In Front of A Vehicle.................... 76

 5.4 Vehicle Movement Control Algorithm ... 78

 5.5 Vehicle Moving Direction Control Algorithm.. 80

 6.1 The Amount of Searches and Time taken
 at Different Probabilities of Mine Sensor Detection..................................... 87

 6.2 The Running Results Comparison
 at Different Probabilities of Mine Detection Sensor..................................... 87

 xiii

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Clearing minefields is a challenging task to manage. The exorbitant costs,

substantial labor, and considerable time it takes to administer removal applications

makes this a strenuous project. According to Foreign Affairs Canada (2005) land mines

are cheap and easy to use, but are expensive to remove. It costs between $300 and

$1,000 to safely remove just one mine, because of the skills and equipment required.

Additionally, the clearing speed is always slower than new mines being placed. There

are 10 new mines being placed for every one mine that is successfully cleared

(Gooneratne et al. 2004).

The most affected areas are Asia and Africa. Uncleared landmines pose a huge

problem for their economies, destroy their land usage and are dangerous to people who

must pass through the landmine explosion environment. Humanitarian organizations are

active in helping these countries in clearing landmines, and have established the

humanitarian minefield reclamation (HMR) application for the complete removal of all

types of mines. HMR operations are typically conducted after military conflict has

ceased. The speed with which the mines are detected and removed is not of primary

importance. Critical success factors for HMR applications are the complete removal of

 1

all mines, the safety of the demining crews, and the minimization of the overall cost of

the demining efforts (Habib 2001).

Another demining application often used is military minefield breaching

(MMB). The objectives and philosophy of military demining are different from the

HMR application. In MMB applications, the primary objective is speed. Using this

method, casualties from mines and other weapons are expected. The military accept the

high risk that some of their vehicles and soldiers will still be destroyed and killed during

the breaching task. Tactical countermining is comprised of operations that allow an

attacking force to penetrate the minefield or avoid mines as it attacks a target or clears

an area speedily to sustain specific operations. The primary concern of MMB

application is time. A mine clearance or avoidance rate of 80% is generally considered

acceptable. (Habib 2001; Rajasekharan and Kambhampati 2003).

As the need for detecting and removing landmines has increased, several

researchers proposed the use of robotic systems to support demining operations

(Rajasekharan and Kambhampati 2003). Debenest et al. (2003) recommend the

automated buggy as a mine detection vehicle for several reasons. This small remotely

controlled vehicle has small dimensions and can be used on uneven terrain, narrow

roads, inside irrigation channels and urban areas. Also steering, gear changing,

accelerating and braking functions can be tele-operated by the controllers at a safe

distance from the minefield. Compared with other choices, automated buggy costs are

also relatively low (Debenest et al. 2003). The Autonomous Vehicles Laboratory (AVL)

at The University of Texas at Arlington (UTA) currently is also developing low-cost,

 2

man-portable autonomous/unmanned ground vehicles (AGV) that are capable of

supporting HMR and MMB mine detection applications. Many other organizations are

also exploring the use of unmanned or autonomous vehicles for mine detection

applications. It is highly unlikely that a universal autonomous mine detection system

can be developed for the wide variety and diversity of potential demining environments.

As a result, there is a need for a diverse set of technologies and strategies that can be

developed to support automated mine detection. This research attempts to develop a

tool that can be used to evaluate the merits of using unmanned or autonomous vehicles

to match potential mine detection systems and methods to specific demining

environments.

1.2 Research Objective

The primary objective of this research is to explore the feasibility of creating a

tool that will support the analysis and comparison of various mine detection strategies

and technologies. To answer this larger question, we must in turn determine if it is

possible to represent or model the minefield environment and processes associated with

humanitarian mine detection and removal activities or military minefield breaching

applications. These demining processes must be captured or codified within a series of

algorithms that describe the behaviors of the various elements within a landmine

detection and removal scenario. Once created, these algorithms must, in turn, be

embedded within the framework of a generalized analysis tool. The proposed analysis

tool must then be populated with information and data that represents the mine

detection scenario being studied.

 3

1.3 Research Approach

This paper presents the early effort of the development of a Mine Clearing

Analysis Tool (MiCAT) that is designed to support the analysis of various automated

mine detection strategies and technologies on both HMR and MMB applications. It is

designed to predict the speed, cost, and effectiveness of various automated mine

clearing technologies and practices. An immediate use of this type of tool would be to

help automated mine clearing technology developers explore and obtain system

performance estimates. These estimates would cover a wide variety of system designs

early in the design phase in order to identify efficient and cost effective mine clearing

solutions. After much development and refinement, this tool can be used as a planning

tool for tactical minefield clearing or breaching missions.

A simulator has been used for several decades to analyze and evaluate

conceptual ideals before they are implemented into practical applications. The proposed

MiCAT will be developed on a Discrete-Event Simulation package named WITNESS®.

WITNESS® is a commercial simulation package and has been successfully used to

simulate many manufacturing environments. With its high-level construction, flexibility,

and graphical representation of independent entity flows between processes, this

research can focus on constructing a minefield simulation environment rather than

developing a robust simulation engine. WITNESS® also provides a full suit of

statistical distribution tools to support multiple simulation experiments, and diversity of

system performance reporting tools. We believe that using a Commercial-Off-The-Shelf

(COTS) simulation development environment will stream line the transfer of our work

 4

to others in the demining community interested in using or expanding the capabilities of

the MiCAT.

Unlike conventional industrial automation that works in a structured

environment, autonomous mine detection vehicles have to work within an unstructured

and frequently hostile environment. Therefore, MiCAT minefield area is decomposed to

a series of lanes with an arbitrary array of cells in each lane based on a geometric

structure cellular decomposition (Acar et al. 2003). The cellular decomposition

represents a union of non-overlapping adjacency subregions (Acar et al. 2003), each

region is a cell (Choset. and Pignon 1997). In MiCAT, each cell represents (,)X Y , the

smallest patch of minefield, measured according to the size of the military vehicles.

Thus, the simulated vehicle can move from one cell to another. This problem for the

coverage within the polygonal and trapezoid environments has been discussed in many

papers (Acar et al. 2003; Choset. and Pignon 1997; Hu and Brady 1997; Huang 2000;

Kruusmaa 2003; Wong and MacDonald 2003). To limit the scope of this work and

concentrate on the analysis of strategies and technologies for the demining applications,

we will not explore the decomposition problem.

With MiCAT, we are attempting to investigate the relative merits of using

multi-sensor platforms capable of performing the mine detection task in a single pass or

using multiple waves of smaller, simpler and less expensive autonomous mine detection

vehicles. The multiple-wave scenario means using the information received from the

previous wave (e.g. environment information or potential mine locations) for the next

wave of searching. In this research there are three general classes of waves: the scout

 5

wave, the coordinated line wave, and the point-to-point wave within the multi-wave

scenario. Each wave will be applied one or more times in different mine detection

scenarios.

Most of the time the scouts are used in the military reconnaissance and

surveillance operations of hostage and survivor rescue missions, illicit drug raids, and

responses to chemical or toxic waste spills (Rybski et al. 2000). With the miniature

video camera the scout units have the ability to view and scan obstacles within a certain

distance. They can also carry sensors to propel themselves away from danger. The scout

wave in this research is designed to provide the MMB engineer with a means of

inspecting, and if necessary, re-routing the planned path from a location of relative

safety (see figure 1. 1).

HMR and MMB applications in this research will apply the different searching

algorithms (Rajasekharan and Kambhampati 2003). The objective of the HMR

application is the complete removal of all the mines and, thereby recovering the

minefield. In order to complete landmine search, a Boustrophedon moving procedure

(figure 1.2) is used in the coordinated line of wave of HMR scenario. Boustrophedon

path is to make the vehicles able to move along the full length of the minefield in a

straight line, turn around, and then traces a new straight line path next to the previous

one continuously to complete the search (Choset. and Pignon 1997). The HMR scenario

would consist of multiple autonomous mine detection vehicles. The simulated minefield

contains a serious of lanes. Each vehicle is assigned to a predefined area. A point of

concern is how to divide the tasks among the vehicles equally. It is easy to equally

 6

divide the tasks if the number of lanes is divisible by the number of vehicles (e.g. figure

1.3). If not (e.g. figure 1.4), it has to find a better way to share the mine detection tasks.

The goal of MMB application is to clear a narrow path within a minefield to let

the military move troops and equipment within this path quietly and quickly. The

military does not care about the clearance outside this path. They are only concerned

with the clearance inside this narrow path and whether it is wide enough to hold the

military troop. The MMB coordinated line wave will utilize a coordinated team of

expendable vehicles carrying fast and simple sensors (e.g. conventional metal detectors)

to move in formation and to ensure complete coverage of the planned breach path (see

figure 1.5). The path width would be dictated by the size of military vehicle the breach

path is designed to support. To ensure the search vehicles can completely cover the

planned breach path, the reconnaissance result from the previous scout wave can

provide the MMB engineer with several paths to choose from rather than only one that

fits the exact size of the military vehicle team. Thus, if a mine or obstacle is detected,

the vehicle team will have room to attempt to re-define a breach path that will avoid the

hazard (see figure 1.5). If the width of the breaching path is not wide enough to keep the

vehicle team formation while avoiding the mine or obstacle then the mine will be

identified for removal or destruction by subsequent MMB resources.

Once a potential mine location has been identified, it might be beneficial to re-

test that location with an alternative mine detection technology. This re-testing can be

performed by another set of vehicles referred to as a point-to-point (P2P) wave. One or

more vehicles within a point-to-point wave would not attempt to re-search the entire

 7

area but would simply move directly to the high probability mine locations identified by

previous waves to either verify or deny the presence of a mine (figure 1.6). A point-to-

point wave would also be applicable for resources used to remove or destroy mines

detected by other waves.

Figure 1.1 Scout Wave (Scout sweeps within the pre-plan path)

Figure 1.2 Boustrophedon Path

Figure 1.3 Example of Complete Coverage:

The number of lanes is divisible by the numbers of vehicles

 8

Figure 1.4 Example of Complete Coverage:

The number of lanes is not divisible by the numbers of vehicles

Figure 1.5 Coordinated Line wave for Breaching:
The team will redefine the path to avoid hazard

Figure 1.6 Point-to-Point Wave:

The vehicle moves directly to locations identified by the previous wave

 9

CHAPTER 2

LITERATURE REVIEW

This chapter reviews relevant work associated with automated landmine

detection and removal technologies and practices. Associated search technologies and

optimization technologies are also reviewed. This body of knowledge has helped justify

the need and has shaped the design of the MiCAT demining analysis tool presented in

subsequent chapters.

2.1 Landmine Detection Technologies

According to Habib (2007), there are about 2000 different types of mines. There

are more than 100 million landmines installed in 68 different countries around the world.

In addition, two to five million new ones buried each year. Pressure, movement, sound,

magnetism, or vibration can trigger a landmine (Habib 2007). Advanced mines can even

be triggered by a magnetism without touching it, or by sensing the difference between

friendly and enemy types of vehicles by a built-in signature catalogue (Fruergaard-

Pedersen 2006). The more advanced the mine technology is, the more difficult the

demining task will be. In addition, the type of terrain, soil composition, and climate

variables might limit the capability of mine detection technologies. Mine may have also

been corroded, waterlogged, impregnated with mud or dirt (Habib 2007). Consequently,

modern mine technologies are not the only challenge associated with the demining task.

 10

Environmental conditions can increase the challenge during the demining task (Habib

2007).

2.1.1 Sensor Technologies

The mine clearing challenges include building a reliable mine detection sensor,

detection and clearing methods, searching strategies, and other advanced technologies

that can support the deminer to remove the landmines. For those challenges, the sensor

technology is most essential. Radar (ground penetrating (GPR), wideband, arrays,

synthetic aperture radar), infrared and microwave radiometry, explosive vapor sensors,

acoustic sensors, Electromagnetic Induction Metal detectors (EMI), magnetometers,

Acoustic Imaging, Thermal Neutron Activation (TNA), Photoacoustic Spectroscopy,

Nuclear Quadrupole Resonance (NQR), X-Ray Tomography, electrical impedance

tomography, Nneutron Back-scattering, Biosensors, and Commercial sniffers are some

of the techniques which have been investigated to increase the high detection rate

(quoted in Habib 2007; Rajasekharan and Kambhampati 2003). As there is no single

sensor technology that can attain a good level of detection, using several

complementary sensors and doing the sensor data fusion can approach the solution.

Several mathematical theories have been proposed to model the sensor data fusion

problem to improve mine detection rate, such as fuzzy logic, neural networks, statistical

approach, belief functions (BFs), Dempster-Shafer Theory (Habib 2007; Milisavljevic

and Bloch 2003; Ramaswamy et al. 2000).

Because the data are highly variable depending on the context and conditions,

and there is ambiguity between several types, it is better to collect more than 1000

 11

samples of each type of mine to analyze the mine sensor detection data (Milisavljevic

and Bloch 2003). Since it is impossible to model each mine object, the data are not

numerous enough to allow reliable statistical learning (quoted in Milisavljevic et al.

2000). The theory of belief functions (BFs) provides a non-Bayesian way of using

mathematical probability to make user able to assess probabilities for related questions.

The BFs user can then consider the implications of these probabilities for the question

they are interested in (Shafer 1990). The ignorance, uncertainty and ambiguity can also

be appropriately modeled (Milisavljevic and Bloch 2003). Milisavljevic and Bloch

(2003) build the sensor fusion problem based on belief functions (BFs) in the

framework of Dempster- Shafer (DS) theory. With BFs theory, Milisavljevic and Bloch

(2003) can explore possibilities of modeling the mine detection problem without any

statistical information on the data or on noise. The predicted mine sensor fusion result

should not be considered the final result. Thus, they provide the deminer as much

information as possible and leave the final decision to the deminer. Furthermore, the

deminer’s analysis also has been included for the modeling and combination process.

Ramaswamy et al. (2000) and Mudigonda et al. (2003) also model the multi-

sensor information fusion problem based on the DS theory. In the research of

Ramaswamy et al. (2000), they categorize the sensor information and use a supervised

feed-forward neural network to learn the causality between the cluster information and

the evidence of a given class of the buried object. Therefore, they can use DS evidential

reasoning to accumulate different evidence from sensor channels to detect and

differentiate between buried landmines and clusters.

 12

Mudigonda et al. (2003) explores the concepts of multi-sensor data fusion based

on the Dempster-Shafer (DS) evidential theory. They use a decision-level DS algorithm

to combine the evidence from multiple sensors of the landmine detection system. Their

research also operates a feature-level DS fusion algorithm on a set of features reported

by the ground penetrating radar (GPR) sensor of the system. Their results, based on DS

theory, yield that there is a higher probability of detection (Pd) value than other

algorithms developed by GD Canada (e.g. heuristic algorithm, Bayesian inference, and

Voting fusion concepts).

Therefore, in order to solve the sensor fusion model with less information, using

the DS concept can obtain higher reliability than other algorithms.

2.1.2 Robot Technologies

Several robots have been built to support landmine detections to reduce the

deminers’ difficulties. Depending on the purpose of the robot, they can be divided into:

Mine removal robots and Mine detection robots. Generally, the Mine removal robots are

used to remove UXO or probable bombs. Depending on their ability, they can be

divided into: the remote controlled and autonomous (Fruergaard-Pedersen 2006). Based

on the differences of minefield environment, diverse types of robots have been built.

The types include: wheeled robot, legged robot, and caterpillar robot. Usually, the

wheeled robots have two or three wheels, and can perform a linear motion in any

direction relative to its body. Mainly, the minefield environment is an unstructured

environment and it makes the wheeled robots perform poorly within this environment in

which the robots may face a vertical step or a discontinuous surface. Therefore, the

 13

legged robots are developed to overcome the environmental difficulties (Colon et al.

2007; Rajasekharan and Kambhampati 2003). Debenest et al. (2003) propose automated

buggies to perform anti-terrorism operations. Colon et al. (2007) also mention that

Belgian Army uses the automated caterpillar EOD (Explosive Ordnance Disposal)

platform for anti-terrorism operations. The caterpillar’s control system is computer

controlled through a micro-controller interface. Additionally, the scanning system, the

motion controller, and the visual tracking and location computer have been mounted on

the system to scan and acquire the scanned result.

2.2 Mobile Robot Team Concepts

Cooperative mobile robots have been used to solve complex problems that a

single robotic system has difficulties accomplishing. There are several important issues

concerning cooperative robotics research topic: traffic control, formation control,

cooperation, and robotic architecture (Cao et al. 1997). The relevant works associated

with robotics searches are reviewed in the following sections.

2.2.1 Robotic Behavior Control

The behavior-based architecture is almost identical to the reactive architecture.

It contains the properties or even components of a purely reactive system. However, the

computation of the behavior-based systems is beyond the reactive system. It can store

various forms of state and can execute different representations (quoted in Dollarhidea

and Agah 2003). Hence, by integrating several goal-oriented behaviors, simultaneously,

the behavior-based systems can be used to navigate the robot team to waypoints, avoid

hazards, and keep formation at the same time (Balch and Arkin 1998). As a result,

 14

behavioral control (or formation control) can be applied in the MiCAT applications to

make the UGV able to adapt the command to accomplish their committed tasks.

Typically, the behavioral control system is, computationally, in several parts, and the

sub-problem of the given assignment can be handled separately (Fruergaard-Pedersen

2006). The behavior consists of several separate components: inter-agent collision

avoidance (i.e. traffic control (Cao et al. 1997)), velocity matching and flock centering.

With a combination of these separate abilities, the robotic system can perform a specific

geometric movement. Several behavior motor schemas: move-to-goal, avoid-static-

obstacle, avoid-robot and maintain-formation are defined in Arkin and Balch (1998);

Balch and Arkin (1995); Balch and Arkin (1998) to make the robot able to maintain a

formation and move to a goal location, and protect it from hazard.

In the cooperative robotics discipline, the Formation and Marching Problems

are important studies. In general, a specified pattern is needed in order for the group to

move together (Cao et al. 1997). For example, the military-type formations can be lines,

columns, diamonds, or wedges (see figure 2.1) (Balch and Arkin 1998; Cook et al. 1996;

Hsu 2005; Hsu and Liu 2005a; Hsu and Liu 2005b; Hsu and Liu 2004). In order to form

a different formation above, each robot has an assigned position based on its own

identification number (ID) (Balch and Arkin 1998). Hsu and Liu (2005b) propose a

Taxonomy of Formation Control based on the controlled abstraction of formation

systems. They categorize the ground-based formation into: control abstraction (i.e.

formation shape, reference type, and robotic control), and distinguishing ability (i.e.

identification (marked as ID-formations) and anonymous (marked as ANO-formations)).

 15

The formation shape could be one of the formation types mentioned earlier. Choosing a

proper reference type depends on the robot’s distinguishing ability. If a robot is in an

AND-formation, generally the nearest or farthest neighbors are used as reference types,

because a robot cannot refer to one or more specific robots. The other reference types:

the virtual structure, unit-center, leader, neighbor, reference points, friend, directed edge,

and queue status are all ID-formation, used as reference types (quoted in Hsu and Liu

2005b). Within these reference types, leader strategy is the most frequently used, for

maintaining the mobile robot formation. Each robot can be directed to the correct

location within a team, based on leader’s or other robots’ location, which is depending

on which reference type it uses. Generally, the formation control research can be found

in the research of wheeled ground-based mobile robots, aircraft, spacecraft, or

underwater vehicles to support military missions (quoted in Hsu and Liu 2005b).

Figure 2.1 Formation for four robots (a) line, (b) column, (c) diamond, and (d) wedge

(Balch and Arkin 1998)

Balch and Arkin (1998) make a performance comparison between four

reference types. If one robot rotates, when using the unit-center type, the unit-center has

to recalculate. Thus, the other robots have to rotate also, in order to maintain in the edge

of the formation. This strategy makes the unit-center type has better performance than

 16

the leader-referenced type, while the team maintains the diamond formation, because

its smaller “moment of inertia”.

As mentioned earlier in Arkin and Balch (1998); Balch and Arkin (1995); Balch

and Arkin (1998), the robots have different motor schemas to maintain formation and

move to a goal location. The maintain-formation motor schema generates a movement

vector. Thus, they propose three zones (see figure 2.2) to gain the value of the

magnitude of speed and forward direction, and to maintain their motor schema. If the

robot is in the Ballistic zone, it will be given the maximum gain. On the contrary, if it is

in the Dead zone, zero magnitude will be given.

Figure 2.2 Zone for the computation of maintain-formation magnitude

(Balch and Arkin 1998; Balch and Hybinette 2000)

A similar algorithm has been proposed in Liu et al. (2006). They use potential-

based avoidance and following-wall behavior to make the robot able to avoid the

obstacles. There is a difference between Balch and Arkin (1998) and Liu et al. (2006),

Liu et al. define a repel force and a following-wall behavior to go around obstacle.

This repel force is defined as . It makes the robot gain a maximum

 17

repel force when it approaches to the obstacle. If the robot is not on the same side of the

target and needs to go around the obstacle, the following-wall behavior is turned on.

The repel algorithm, used to control the team’s formation and to avoid collisions, has

also been discussed in Chen and Luh (1994) and Hsu and Liu (2005a).

Dollarhidea and Agah (2003) also propose a robot control rule to gain the robot

movement magnitude. In their research, each robot can sense eight directions, and each

of their control rules is made by a bit string of “141 X n” length. Each direction has two

distance values and an entity value (a DDE) to decide the score. By matching the gained

score with the rule set, the robot’s action is decided. In addition, their collision

prevention is based on the angle of the detected obstacle. In order to prevent collision

with a detected obstacle, a redirection is established. In addition to the formation control

in one team’s movement, multi-team formation control can be found in Hsu (2005); Hsu

and Liu (2005a); Hsu and Liu (2004)

 There are several challenges associated with ground-based formation control.

Those challenges include communication, stability, scalability, formation establishment,

formation switch and multi-team control. Formation stabilization is a big challenge as

the number of robots increase. This is usually due to communication problems, such as

bandwidth limits, time delays, data losses, and broken links in an unstructured

environment. ANO-formation is generally scalable to change the size of the team. Well-

designed ID-formation has scalability to adapt to the formation changing. However,

considering the cost of formation establishment and operation, ID-formation is larger

than the AND-formation. It is due to the fact that the robots with specific IDs are

 18

required to be at their specific position. Without considering the specific location, the

AND-formation robot can move to the nearest positions. However, it has multiple

configuration problems. Thus, if dynamic ID assignment is available, the cost could be

reduced (Hsu 2005). Over and above, it has been observed in most formation control

research that knowing the relative position between robots (e.g. the farthest, nearest

neighbors, vector, leader) can prevent collisions, point the robot toward the goal,

maintain the formation, and achieve the task.

2.2.2 Searching Applications

Researchers have proposed the use of robotic teams with formation control to

perform military missions and rescue operations. Healey (2001); Ludwig (2000)

propose a team of vehicles that sweep the minefield with a lawnmower search pattern

(same as Boustrophedon path in figure 1.2). The vehicles maintain a defined space

between each, side by side, to sweep the minefield. Depending on the user’s defined

percentage of overlap, the spacing could be either positive (i.e. gaps) or negative (i.e.

overlap). Their initial idea is that, if with a higher overlap percentage, the minefield

sweeping could get a higher coverage rate of the minefield. However, their experiment

shows the opposite result. Because the spacing is smaller, the sweeping time will be

higher. Also, this increases the required search time. In order to balance the task among

the vehicles, they make the team move together in a row to perform the demining. Their

strategy is that, if one of the vehicles is killed, the one next to it will replace its position

and ID. Their result also shows that the formation could become staggered sometimes,

 19

because communication could be a little bit delayed, after the start of a new formation

(see figure 2.3).

Figure 2.3 The staggered formation of a minesweeping team (Healey 2001; Ludwig

2000)

Other than the specific formation control problems above, swarm formation has

been applied in natural heuristics to solve the combinational optimization problems

(Bonabeau 1999). It has also been proposed to solve many kinds of landmine detection

problems (see Cassinis et al. 1999; Chapman and Sahin 2004; Kumar and Sahin 2003;

Munirajan et al. 2004; etc). Swarm intelligence is inspired by a natural behavior. As we

know, the social insect societies are autonomous individuals, and they can transmit the

information to each other. As a result, by grouping, the sensors information can be

combined to maximize the chance of detecting predators or food (Balch and Arkin

1998).

Cassinis et al. (1999) propose strategies for the navigation of robot swarms for

landmine detection. They describe several strategies for demining (e.g. Random, relay

 20

clustering, flocking, swarming, formation, and comb movement). Their strategy

requires robots capable of avoiding obstacles, finding mines, following a path, and

maintaining a formation. The vectorial movements have been used to make the robots

capable of these basic behaviors. For example, the vector is used to avoid obstacles, to

achieve a goal, to maintain the position in a specific formation, and for maintaining the

robot direction. Cassinis et al. (1999) make a comparison concerning the minefield

environment and the appropriate demining strategy. A random formation performance

is worse than having a specific formation in different minefield situations (contains

many obstacles or not). But when many mines are undetected, the uncoordinated

strategies are more efficient than the coordinated one. The relay clustering formation

strategy can perform more efficient if the mines of the same kind are gathering together

in the minefield.

Fruergaard-Pedersen (2006) also proposes a landmine detection strategy, using a

swarm of low-cost robotic devices. In this research, a large robot, containing many

features, is used to locate and clear mines. One of the features is a dynamic map of the

area. This feature makes it able to distribute the tasks among the small robots. This

research also proposes an alternateBot strategy to determine if possible mine locations

contain mine or not. Further, there are two types of mission: area demining and road

demining in this research. In general, the robot will not meet obstructions during the

road demining task because they work on a certain road. Thus, the overlap is different

between these two missions.

 21

Likewise, the ant motion theory is also inspired by the natural behavior. It has

been applied to many optimization problems. Munirajan et al. (2004) apply ant-colony

foraging behavior on the mine detection problem. Their mine detection algorithm is a

combination of stochastic, which is used in the foraging stage, and deterministic

methods. After an ant enters a scent area, during the forging period, it moves toward a

randomly generated point in a deterministic manner. The ant’s strategy is to follow the

route along which the scent increases. Supposedly, the ant can find the mine position at

the peak scent. The system can be more effective through inter robot communication.

However, some difficulties may exist in implementing the simulated algorithm to the

real world because the complexity of the situation requires a high degree of precision

and resources.

Other than using behavior control to perform search applications, probabilistic

approaches have also been proposed. Probabilistic search has been adopted by Acar et

al. (2003); Gelenbe and Cao (1998); Zhang (2004); Zhang et al. (2001); Zhang et al.

(2002). Probabilistic search in an unknown environment leads to two types of problems:

one concerns the efficient construction of a mine distribution map, and the other

concerns the use of this distribution map to generate an optimal search path (Acar et al.

2003). As the spatial distributions of mines will impact on how to deploy and move the

mine sensors and detectors in the minefield, Gelenbe and Cao (1998) study directing

autonomous searches using spatio-temporal distributions in order to utilize sensors and

autonomous agents in the field efficiently. Therefore, they store the type, location and

likelihood density of mines, and the type and location of agents in the “Scenes” as the

 22

information units. These “Scenes” are “typically multi-sensory representations of the

area in which mines are being sought and localized”. Therefore, the next move can be

learned in an on-line manner with the prior information of the “Scenes” and the local

information sensed by the individual robot. In order to optimize “the rate at which

potential mine locations are being visited”, the rate into the “infinite horizon” at each

step is calculated with Simplified Infinite Horizon Optimization (SIHO) algorithm. The

SIHO algorithm is also used to avoid unnecessary repeated visits of the robot to the

same points. This algorithm computes the transition rate at each ith step

in order to find the long run probability (after jth step). It makes the probability of a

robot visit to a point in a search area match closely to the probability of finding a mine

at that point. A Markovian field is estimated with the SIHO algorithm to direct the robot

to the locations that probably contain mines. Compared to the work of Gelenbe and Cao

(1998), and Zhang (2004), Zhang focuses on building a probabilistic map of mine

locations. The probabilistic map is built based on two types of dispersion pattern models

of the minefield. One is regular and the other one is scatterable patterns. Zhang builds a

three level hierarchical spatial statistics model to show that the actual mine position

differs from the intended mine position. He reproduces regular pattern by six scale and

rotation parameters. His concern is how to use the collected information, inside the

covered region, efficiently, to estimate the pattern parameters. A Bayesian approach is

adopted in order to calculate the posterior distribution of the pattern parameters. After

that, a model-partitioning algorithm, identifying all of the possible local maxima, is

used to avoid the estimation becoming trapped in a local maximum or accepting

)},,,({ vuyxiμ

 23

proposed parameters with near zero probability. With this algorithm, a global maximum

is guaranteed. The Metropolis-Hastings algorithm is able to use local maximum

likelihood information and limited computing resources to estimate global parameters

of a regular pattern minefield. Zhang constructs a five-level hierarchical spatial point

process model, for scatterable patterns, in order to model the location of unexploded

submunitions dispersed from cluster bombs, fragments of the exploded submunitions,

and the scattered metal particles unrelated to the cluster bombs. Having these

probabilistic maps, a robot is able to implement full coverage of a sample of the target

area.

2.3 Vehicle Routing Problem (VRP)

There is an abundant literature dealing with vehicle routing problems (VRP),

such as: Alvarenga et al. (2007); Bräysy (2001); Bräysy and Gendreau (2002); Choi and

Tcha (2007); Cordeau et al. (2001); Gribkovskaia et al. (2007); Li et al. (2006); Potvin

and Bengio (1996); Potvin et al. (1996); Prins (2004); Shaw (1998); Tavakkoli-

Moghaddam et al. (2007). The vehicle routing problem (VRP) can be stated as follows:

using a set of vehicles to visit a set of customers exactly once with a prescribed

constraint. “The goal is to produce a low cost routing plan specifying for each vehicle,

the order of the customer visits they make” (Shaw 1998). This problem is an extension

of the shortest path problem and the traveling salesman problem. In general, within

VRP, each vehicle has a capacity constraint. Capacitated VRP (CVRP) is the base of the

VRP problem (Russell and Lamont 2005). Shaw (1998) uses Large Neighborhood

Search (LNS) to solve VRP problem. The VRP problem is defined as open VRP

 24

(OVRP) if the constraint is that a vehicle does not return to the depot after servicing the

customers (Li et al. 2006). Other extensions of VRP are: Vehicle Routing Problems

with Time Windows (VRPTWs), the Periodic Vehicle Routing Problem with Time

Windows (PVRPTW), and the Multi-Depot Vehicle Routing Problem with Time

Windows (MDVRPTW) (Cordeau et al. 2001). According to the literature, several

algorithms can be used to solve the VRP problem: Cluster first, route second (CFRS),

Tabu search algorithm (TSA), Adaptive memory-based tabu search (BR), Backtracking

adaptive threshold accepting (BATA), List-based threshold accepting (LBTA), Tabu

search heuristic (TS), Adaptive large neighborhood search (ALNS), Evolutionary

Strategies, parallel approach, fuzzy logic, branch-and-bound techniques, problem

simplification, Genetic algorithm (GA), ant algorithms and simulated annealing (SA)

(quoted in Li et al. (2006); Prins (2004) and Russell and Lamont (2005)).

Tabu search starts from an initial given solution. Next, each Tabu search

iteration moves from the current solution to the best one in its neighborhood. In order to

avoid cycling, the forbidden solutions of the neighborhood are used. In addition, several

features are applied to enhance intensification and diversification mechanisms to

explore a broad portion of the solution space (Cordeau et al. 2001). With these special

characteristics, it has been proven that Tabu search (TS) outperforms other meta-

heuristic approaches. Prins (2004) presents a simple but effective hybrid GA which can

compete with TS. Besides the procedures of crossover or mutation, used to weaken the

genetic transmission of information from parents to children, a special splitting

 25

procedure is used to convert a chromosome into an optimal VRP solution at any time in

his research.

The graph modeling formulation of VRP definition is the base of many

combinatorial problems that run in real-time, like the Unmanned Aerial Vehicle (UAV)

routing problem (quoted in Russell and Lamont (2005)). The UAV routing problem has

been considered as VRP problem in Russell and Lamont (2005), Berger et al. (2007);

Brown (2001); Harder (2000); Kinney (2000); O'Rourke et al. (1999); Russell and

Lamont (2005); Ryan (1998). Berger et al. (2007) use a hybrid genetic approach.

Kinney (2000) applies a Hybrid Jump Search and Tabu Search. O'Rourke et al. (1999)

and Ryan (1998) apply Reactive Tabu search. Russell and Lamont (2005) apply a

Genetic Algorithm to model their UAV problem. As a result, finding minimized vehicle

traveling costs and time, the point to point (P2P) wave as proposed in Chapter 1 can be

thought of as a VRP problem, by substituting the highly developed mine detection

vehicle for delivery vehicles, and the potential landmine locations for depots.

 26

CHAPTER 3

MiCAT DESIGN CONCEPT

This chapter is going to discuss the implementation of Mine Clearing Analysis

Tool (MiCAT) within WITNESS®. The abilities of major variables, attributes,

functions that will be used to build the MiCAT will be explained in this chapter.

3.1 The Simulated Minefield

A series of “Machines” as lanes, each lane having arbitrary lengths, has been

modeled to represent a discrete area or patch of a two-dimensional minefield. The

number and length of the lane depends on the width of the minefield. Each machine

element (cell) represents the smallest patch of the minefield. The lanes are ordered from

bottom to top as the Y coordinates and cells are ordered from left to right as X

coordinates (shown in figure 3.1). Different icons are added to the simulated minefield

to represent the landmine detection vehicles, obstacles, or landmines. The black square

 represents a stone, icon represents a tree, icon represents an undetected

landmine.

Figure 3.1 The Simulated Minefield

 27

The MiCAT interface provides two methods for placing mines and obstacles in

the simulated minefield. The first technique allows the tool to automatically place a

specified number of mines or obstacles in the model using random distributions to

determine their location. The second method allows the user to explicitly define the

location of obstacles or mines within the minefield prior to each simulation run. This

ability to design the minefield layout gives the analyst the opportunity to test a given

mine detection resource scenario against a particular simulated landform. The MiCAT

interface will also allow users to simultaneously use both methods of specifying the

locations of mines and obstacles. In order to represent the landforms in MiCAT,

“Machine” elements will carry the attributes (Obj_Trap_Mine_Metal (i)) that specify

the actual state of the simulated minefield element. These attributes are categorized into

four types of status: obstacle (stone or tree), trap, mine (detected or under detected), and

metal. Letter “i” represents the type of object: obstacles (could either be a stone or tree,

where i 1), trap (where i 2), mine (detected or under detected, where i 3), or metal

(where i 4). Three algorithms have been created to specify the state of the simulated

minefield element when the minefield model is initialized. One is to randomly define

the state of an element as an obstacle. One is to randomly specify the state of an element

as a landmine. The last one can explicitly define the certain elements as the obstacles

(or landmine). The specific obstacle (or landmine) locations, type of the simulated

object, mine number, obstacle number, sensor process time, transition point, turning

degree, random seed (i.e. X_OBSTACLE, Y_OBSTACLE, X_MINE, or Y_MINE), are

asked to input MiCAT Excel interface at the beginning of the model. These data are

 28

loaded from EXCEL via the function XLReadArray (a WITNESS® built-in function)

and stored in the variable Minefeild_Data. According to the random seeds, the

simulated landmine and obstacle can be placed in a specific (either randomly generated

or specific) location (X,Y). “WHILE LOOP” or “FOR LOOP” logic is used to

distribute the desired number of mines (represented with the variable NUM_MINE) or

obstacles (represented with variable the NUM_OBSTACLES) into the model. An

excerpt of the code that expresses the obstacle (or landmine) generation algorithm is

shown in Table 3.1.

Table 3.1 Obstacles Generation Algorithm
Algorithm: RandObjDistribution ()

for i 1 to maximum _lane do {
for j 1 to 100 do {

if MatrixMap(i,j) =1 then
 MatrixMap(i,j) at 0:Obj_Trap_Mine_Metal (i) 1
 SET ICON of MatrixMap(i,j) to 88 /*Represented by a black box*/
elseif MatrixMap(i,j) =2 then
 MatrixMap(i,j) at 0:Obj_Trap_Mine_Metal (i) 1
 SET ICON of MatrixMap(i,j) to 87 /*Represented by a tree icon*/

 }
}

3.2 The Simulated Mine Detection Vehicle

In order to visualize the moving action of the mine detection vehicle, it is

represented as a simulation entity referred to as a Part within WITNESS® simulation

package. Within the fixed grid of simulated minefield elements, each vehicle has eight

potential moves within the minefield grid: a) forward in its current lane, b) diagonally

forward and into the lane to the vehicle's right, c) diagonally forward and into the lane

to the vehicle's left, d) laterally to the lane on the right, e) laterally to the lane on the left,

 29

f) backwards and into the lane on the right, g) backwards and into the lane on the left,

and h) retreating backwards within its current lane. In order to visualize its moving

action, eight symbols are used to represent these directions (shown in 2nd line of each

row in the Table 3.2).

Table 3.2 Eight Moving Directions Of The Vehicle
(7) (-1,1) (8) (0,1) (1) (1,1)

 (g) (e) (c)
 (6) (-1,0) (2) (1,0)
 (h) (a)

 (5) (-1,-1) (4) (0,-1) (3) (1,-1)
 (f) (d) (b)

Each vehicle carries attributes to indicate its identification number, types of

mine detection sensor that are onboard, assigned sweeping area or lane, and the

performance data that will be sent back to the control center. The “Part” in WITNESS®

has limited power; therefore the “Machine” performs the functionality of the mine

detection sensor(s) and decision processing. When the vehicle “Parts” progress through

the minefield element machines, the machine decision processor reads the attributes

associated with the vehicles to populate the “Machine” cycle time and the stochastic

mine detection logic.

It is difficult to find a single sensor for mine detection that can reach the

necessarily high detection rate in all possible scenarios. For that reason, this paper

simulates the ability of a vehicle to carry multiple complementary sensors to support the

single sensor (Milisavljevic and Bloch 2003). The “Machine” element is modeled as a

five-cycle activity in order to represent multiple mine sensor detection activities. In one

of the cycles, the simulated vehicle searches the adjacent minefield elements prior to

 30

moving into that potential location (NTA & LTA) (it represents the coordinate of

intended moving element) with the search logics. One function is defined to receive the

values of the potential move (i.e. parameter pos and are shown in 1st line of each row in

the Table 3.2) in order to earn two values: Lane_Assignment_Index is defined as a

movement at Y-axis direction (1: makes upward movement (e.g. +y), -1: makes

downward movement (e.g. -y)) and N_Index is defined as a movement along X-axis

direction (1: makes forward movement (e.g. +x), -1: makes backward movement (e.g. -

x)). Attribute N and Lane_Number are defined as current X and Y respectively.

Therefore, (N+N_Index, Lane_Number + Lane_Assignment_Index) represents the

coordinate of each potential intended moving element (i.e. (NTA & LTA)). Mine

detection search logic and simple obstacle detection logic (this paper assumes that the

simulated vehicle carries a 100% perfect obstacle sensor) are also defined (an excerpt of

the code that is used to express the mine (obstacle) detection rule is shown in Table 3.3).

The mine detection vehicle will not be allowed to enter a minefield element, which is

defined as an obstacle (or landmine). It has to search another adjacent area. The other

four cycles represent the mine detection sensor(s) carried by vehicle. If a specific

sensor dwell time is longer or occurs after the vehicle motion has concluded, then

additional time is used in the processing time for that cycle. If a sensor can perform its

task in parallel with the vehicle motion, then no additional time is added for the current

cycle. In addition to representing processing time, stochastic logic associated with these

cycle constructs can determine, based on a given stochastic function, whether the sensor

will fail to detect a mine, if present, or will conclude that a mine is present when it, in

 31

fact, is not. If multiple sensors are present on the simulated vehicle, and because the

reliability and detection ability of any sensor is scenario-dependent (Milisavljevic and

Bloch 2003). A simple sensor fusion mechanism is used in this research to access the

vehicle’s belief that a mine is, or is not, present. Much more sophisticated sensor fusion

mechanisms are presented in the literature (Milisavljevic and Bloch 2003). The

structure of the MiCAT mine detection logic will support the integration of more

sophisticated sensor fusion mechanisms as needed in the future. The current MiCAT

implementation, each simulated mine detection sensor can be assigned a probability

value that indicates that the sensor will detect a mine if it is present in the simulated

minefield location. A similar probability value can also be assigned to determine if the

sensor will indicate that a mine is present, when in fact it is not present in a given

minefield location. During the execution of the simulation, random numbers will be

generated and compared with these positive and false positive detection performance

values for each sensor carried by the vehicle at each searched minefield location. This

process generates a belief value for each sensor, indicating the presence of a mine. The

sensor fusion mechanism will obtain a combination of the belief values of all sensors as

the vehicle’s belief. If this value is greater than a specified threshold, the vehicle will

believe there is a mine in that location and will continue searching adjacent cells to go

around. The Obj_Trap_Mine_Metal (3) attribute will be updated from 1 to 2 to

represent that the vehicle believes there is a mine at this location. At the same time and

the background of the machine element icon will be changed from black to green ().

If a belief value is less than the threshold, the vehicle believes there is no mine. If a

 32

mine is present and the vehicle fails to detect a mine that is present, the machine logic

will use a random distribution to determine if the search vehicle will be destroyed by

the mine or whether it will be left undetected in a patch of area marked as clear. If the

vehicle is destroyed, the mine detection logic marks that mine location as clear and

removes the vehicle from the minefield (symbolized as at that location). If it has been

defined as a non-mine element and the belief value is greater than the threshold, it will

cause a false positive alarm, and the vehicle will still be safe. The reason for simulating

the mine sensor’s detection process is that if the vehicle fails to detect a mine and is

destroyed by the mine, it will affect the subsequent mine detection activities. Other

minefield attributes have been defined to allow a mine detection vehicle to detect and

avoid cyclic search patterns that will entrap the vehicle. The Obj_Trap_Mine_Metal (2)

attribute of a minefield location element is assigned a value of “1”, signifying a Trap, if

it is revisited during a cyclic search. If the vehicle’s decision processor thinks the

current cell is a trap, that cell will be marked as a “Trap”(). This “Trap” cell will be

treated as a kind of obstacle in subsequent searches of that simulated minefield location.

Table 3.3 Obstacle and Mine Detection Algorithm
Algorithm: GetMaxMinLnEach

if MatrixMap(LTA,NTA) at 0:Obj_Trap_Mine_Metal (1)=1
 Obstcale_Flag 1
elseif MatrixMap(LTA,NTA) at 0:Obj_Trap_Mine_Metal (2)=1
 Obstcale_Flag 1
elseif MatrixMap(LTA,NTA) at 0:Obj_Trap_Mine_Metal (3)=2
 Obstcale_Flag 1
elseif MatrixMap(LTA,NTA) at 0:Obj_Trap_Mine_Metal (3)=1
 Minebelief 0
 if Random(1)<=0.9 then Minebelief Minebelief+1
 if Random(2)<=0.9 then Minebelief Minebelief+1
 if Random(3)<=0.9 then Minebelief Minebelief+1

 33

 Table 3.3 - Continued
if Random(4)<=0.9 then Minebelief Minebelief+1
if Minebelief >=2 then

 Obstcale_Flag 1
 MatrixMap(LTA,NTA) at 0:Obj_Trap_Mine_Metal (3)=2

 SET ICON of MatrixMap(i,j) to 104 /*Represented by a red box*/
else
 Explode 1

 MatrixMap(LTA,NTA) at 0:Obj_Trap_Mine_Metal (3)=0
 /*Used to erase the vehicle from the minefield after it has explode*/
 SET ICON of MatrixMap(i,j) to 33

 34

CHAPTER 4

MiCAT APPLICATION SCENARIOS

Chapter 3 has explained how to build a simulated minefield and a mine

detection vehicle within WITNESS®. This chapter will discuss the search algorithms

for each application.

4.1 Simulation of a Scout Vehicle

The role of the Scout Vehicle Wave within the Military minefield breaching

(MMB) scenario is to verify the feasibility of the breach path assigned by the MMB

engineer. The job of the scout vehicle is to make sure that the breach lane searched by

the autonomous vehicles is wide enough to support the size of troop formations or

vehicles that will be expected to pass. The Scout Vehicle Wave model assumes that the

scout vehicle will carry mine detection sensors capable of searching the ground directly

in front of itself. It also assumes that the scout vehicle carries obstacle detection sensors,

enabling it to identify and avoid obstacles out to the maximum desired breach lane

width.

Because the breach lane must accommodate vehicles that are much larger than

the scout vehicle, the obstacle detection algorithms must support a parametric breach

lane width and accommodate non-zero turning radius vehicles. To accomplish this, the

Scout Vehicle Wave search algorithm must support the searching of multiple minefield

 35

cells prior to each simulated vehicle move. Two searches are conducted for each move

of the simulated scout vehicle. First, the next cell to be occupied by the vehicle will be

searched for a mine. Second, a group of cells within the proposed breach path will be

searched to see if they contain obstacles that would block the path of the breach

formation.

In order to support this concept of a parametric breach lane width within the

MiCAT system, the tool’s user interface must allow user to specify the desired width of

the breach path. Within the current MiCAT prototype, the lane width is defined relative

to the size of the simulated scout vehicle. The current algorithms implemented within

the tool will allow a minimum lane width that is three times the width of the simulated

scout. The value entered by the user is used to determine the number of “scout vehicle

widths” that must be searched on either side of the simulated scout vehicle to ensure

that the desired breach lane width is obtained. The simulation logic variable

“int_CoveredL” has been defined to record this value. The width of the desired breach

path is then equal to “2*int_CoveredL+1”. In order to define a simulated breach path

that could accommodate non-turning radius vehicles we needed to search for obstacles

far enough ahead of the simulated scout vehicle so that the resulting searched area was

large enough to provide vehicles room to maneuver. In the current MiCAT

implementation this value is equal to “2*int_CoveredN”, where the variable

“int_CoveredN” is equal in size to the variable “2*int_CoveredL”.

The simulated scout vehicle has the ability to project a search area that is

“2*int_CoveredL+1” wide and “2*int_CoveredN” long in one of three potential

 36

directions within the simulated minefield grid. The search area can be projected in front

of the scout vehicle. The search area can also be projected at an angle of 45° to the left

of the scout vehicle or at an angle of 45° to the right of the scout vehicle. The direction

selected by the search algorithm is determined by the current location of the scout

vehicle with respect to its assigned breach path and the presence or absence of mines or

obstacles during previous search cycles.

The actual search algorithm implemented within MiCAT uses “FOR LOOP”

logic to check the state of all of the simulated minefield cells. The total number of cells

searched is equal to “2*int_CoveredL+1” X “2*int_CoveredN”. If the scout is on its

desired search path or does not need to go around an obstacle or mine, the searched area

forms a rectangle extending in front of the scout vehicle. If the scout needs to move out

of its current lane, the search area will form a parallelogram projected at an angle of 45°

to the left or right of the scout’s current location. The variable “int_L_Diff” is used to

project a diagonal line from the scout’s current position into the search space. If the

value of “in_L_Diff” is 1 then the search area will be projected at an angle of 45° to the

left of the scout. If the value of “in_L_Diff” is -1 then the search area will be projected

at an angle of 45° to the right of the scout.

For every cell within the search area, the algorithm will check the state of the

simulated minefield to see if it contains an obstacle. To accomplish this, the algorithm

will index through each of the cells in the search area using the “int_Ary_RX” and the

“int_Ary_RY” variables to define a relative grid location with respect to the scout’s

current position. If an obstacle is detected, the algorithm will next determine if it is

 37

closer to the left boundary or the right boundary of the search space. The algorithm will

use this information to determine if it will shift its current search direction to either the

left or the right in an effort to find a clear path around the obstacle. The logic used

within this scanning algorithm is summarized in Table 4.1.

Table 4.1 Scout Scanning Minefield Algorithm
Algorithm: ScanningAround()

for i 1 to (2 * int_CoveredN) do {
for j 1 to (2 * int_CoveredL + 1) do {

x int_Ary_RY – j + int_L_Diff /*Relative x*/
 y i - int_Ary_RX + int_N_Diff /*Relative y*/
 if LocationDetector(x ,y,1) = 1 then
 ObjDetecAry_R1 (i, j) 1
 Obj_Target_v (1,int_Target) LTA

Obj_Target_v (2,int_Target) NTA
int_Target int_Target + 1

 }
}
if int_Target > 1 then

upSpace Lane_Number + int_CoveredL - Obj_Target_v (1,1)
downSpace Obj_Target_v(1,int_Target-1) - (Lane_Number - int_CoveredL))
ObjDetecAry_R1_Space (i,1) upSpace
ObjDetecAry_R1_Space (i,2) downSpace

else /*Nothing occupied, means maintaining a required space */
ObjDetecAry_R1_Space (i,1) (2 * int_CoveredL + 1)
ObjDetecAry_R1_Space (i,2) (2 * int_CoveredL + 1)

if flag_int_L_Diff=0 then /*On the desired lane*/
/*Checking if it needs to scan diagonally to go around*/
if int_go_up = 1 then

int_L_Diff int_L_Diff + 1
if int_go_ down = 1 then

int_L_Diff int_L_Diff -1
else if flag_int_L_Diff>0 then /*Above the desired lane*/

int_L_Diff int_L_Diff – 1
else /*Below the desired lane*/

int_L_Diff int_L_Diff + 1

The Scout vehicle is being asked to find the lane that will allow it to move to the

target most quickly. Therefore, it is assumed there is a desired search direction or path.

 38

This desired path would be determined prior to the beginning of the breaching

maneuvers by an MMB engineer. If the above searches fail to detect obstacles or a mine,

the scout vehicle can occupy the searched minefield grid. If the searches detect an

obstacle or mine, it means the path width is less than the required breaching lane width.

Therefore the next most favorable potential motion will be chosen, and the Scout will

diverge from the desired search path. To accomplish this, each simulated vehicle entity

will carry a set of attributes to represent the current Yi, and desired path, etc. The

equation: “Lane_Number (i.e. Current Yi) - Lane_Assignment (i.e. desired path)” is used

to determine its relative position to see how far the vehicle is above or below its desired

path. If the Scout is beyond its desired path, it has to apply a search criterion to move

back. Five search criteria have been classified in Table 4.2 to make the Scout vehicle

able to stay on its desired path, or go around the obstacle. At the same time, an attribute

L_Diff is defined to make the Scout able to scan a diagonal line at 45° to the left or right,

if it has to find an alternative path.

Table 4.2 Scout Searching Desired Path Algorithm
Algorithm: PerformSearch()

/*pattern A- above the desired lane, perform downward algorithm */
if Current Yi > its desired lane and flag attributes are zero then

L_Diff 0
flag_L_Diff Lane_Number - Lane_Assignment
ScanningArround () to check downward path
flag_L_Diff 0
if it is clear then

moves downward () to return to its original lane
else

MoveForward() to go around
/*pattern B- below the desired lane, perform toward up algorithm */

else if Current Yi < its desired lane and flag attributes are zero then
L_Diff 0

 39

flag_L_Diff Lane_Number - Lane_Assignment
ScanningArround () to check upward path
flag_L_Diff 0
if it is clear then

moves upward () to return to its original lane
else

MoveForward() to go around
/*pattern C-prior move is beyond the desired lane and not able to go
around the obstacle */

else if flag_ObjDetec_up=1 then
make upward movement () to go around the obstacle

/*pattern D-prior move is beyond the desired lane and not able to
go around the obstacle */

else if flag_ObjDetec_down=1 then
make downward movement () to go around the obstacle

/*pattern E- maintain on current path to stay or find an alternative
path to bypass the obstacle*/

else then
MoveForward()

Table 4.2 - Continued

When the Scout has taken a new path to avoid an obstacle, it should stay on that

path, until it is able to return to the desired path. In Table 4.2, a search pattern is defined

to determine if the Scout has to stay on its current route, return to the desired path, or go

around an obstacle. The algorithm uses “FOR LOOP” logic to index from the nearest

cell to farthest cell to determine if the breach lane, scanned by the autonomou vehicles,

is wide enough to support the size of troop formations, in which, attributes

flag_ObjDetec_up and flag_ObjDetec_down are triggered to make the Scout bypass a

detected obstacle. The assignment flag_ObjDetec_up 1 makes the scout take an

alternative route in the upward direction. The assignment flag_ObjDetec_down 1

makes the scout move downward to go around the obstacles. Both attributes will be

reset to zero after the Scout has passed the obstacle location.

 40

Table 4.3 Keeping The Scout Stay On Current Route Algorithm
Algorithm : MoveForward ()

ScanningArround()
Ary_i 2 * int_CoveredN
Ary_j 2 * int_CoveredL + 1
int_space_availble 1 /*Checking flag*/
for i 1 to Ary_i do {

if ObjDetecAry_R1_Space (i,1) <(Ary_j - i + 2) or ObjDetecAry_R1_Space (i,2)
< (Ary_j - i + 2) then
/*Has to re-define the path, if one of the front columns has no enough space*/
int_space_availble 0
/*Checking if upper path is wider or lower path is wider */
if ObjDetecAry_R1_Space (i,1) > ObjDetecAry_R1_Space (i,2) then
 int_go_up = 1

int_go_down = 0
else
 int_go_up = 0

int_go_down = 1
}
if int_space_availble = 1 then /*Moving path maintains a required space*/

get cell information & move forward ()
else /*Re-define the path and check if it is available*/

ScanningAround()
if int_go_up = 1 then

if int_ObjDetec_Ary_Sum = 0 then
flag_ObjDetec_up 1
flag_ObjDetec_down 0
get cell information & move upward ()

else
 int_go_up 0
int_go_down 1
ScanningArround()
if int_ObjDetec_Ary_Sum = 0 then

flag_ObjDetec_down 1
flag_ObjDetec_up 0
get cell information & move downward ()

 else if int_go_down = 1 then
/*Depends on how far the Scout needs to scan*/
……………………………
It is assumed that the scout vehicle can only detect mines in its immediate

vicinity, as a result only the next cell to be occupied by the vehicle will be searched for

 41

a mine. The Scout is not able to maintain a required turning radius prior to moving

forward to go around the detected mine. In order to enable the Scout vehicle go around

the landmine efficiently, the Scout Vehicle Wave simulation engine marks that detected

landmine as a kind of obstacle. Thus, the Scout can perform the obstacle algorithm to

go around the detected landmines. If the Scout detects a mine, the value of attribute

POS_Flag is set to “1” to ask the Scout to retreat. The value of attribute POS_Flag is

set to “0”, until the scout has retreated to a large enough distance to bypass the detected

landmines. The logic of the bypass algorithm is summarized in the Table 4.4.

Table 4.4 Scout Bypass Landmine Algorithms
Algorithm: ScanningWay ()

if POS_Flag=0 then
 PerformSearch
else

int_BackSteps int_BackSteps + N_Index /*Retreat space indicator*/
if int_BackSteps>0 then
/* Scout has to keep moving backward to retain a turning radius*/

POS_Flag 1
 else

POS_Flag 0

Within this simulation, the vehicle can negotiate the mines and obstacles, and

identify a breach path free of obstacles of a given width. The obstacle search algorithms

consider turning radius constraints in their search for a feasible path. Figure 4.1 shows

the above search procedures.

The simulation results have shown the behavior and performance of a single

vehicle moving through a minefield while attempting to locate a path, wide enough to

support a given breach formation (see figure 4.2).

 42

Figure 4.1 Breach lane identifying procedure for a Scout

 (A) (B)
Figure 4.2 Simulation of a Scout Vehicle searching for a breach lane (A) three units

wide and (B) five units wide

4.2 Simulation of a Coordinated Team of Mine Detection Vehicles

Robot or unmanned vehicle formation control has been an active area of

research for several years. Behavior-based techniques that simultaneously integrate

several goal-oriented behaviors have demonstrated the ability to navigate a team of

cooperative autonomous vehicles through a series of waypoints while maintaining

formation and avoiding obstacles (Balch and Arkin 1998). Examples of atomic goal-

oriented behaviors that can be integrated into more comprehensive behavior-based

 43

control mechanisms include inter-agent collision avoidance, velocity matching, and

flock centering behaviors (Balch and Arkin 1998). With a combination of these

separate behaviors, the individual robots within a team can be made to perform a

specific geometric movement. Several behavior motor schemas: move-to-goal, avoid-

static-obstacle, avoid-robot, and maintain formation are defined in (Arkin and Balch

1998; Balch and Arkin 1995; Balch and Arkin 1998) to make a team of robots maintain

formation, move to waypoints, and negotiate obstacles encountered along the team's

path. Formation control strategies that define the relative positions, or roles of vehicles

within a team have also been investigated (Hsu and Liu 2005b). The potential for using

multi-vehicle behavior-based formation control strategies for mine detection has also

been identified (Fruergaard-Pedersen 2006). This section will discuss two multi-vehicle

mine detection strategies: humanitarian minefield reclamation (HMR) and military

minefield breaching (MMB) operations.

4.2.1 Military minefield breaching (MMB)

Within our multi-wave MMB scenario, once the Scout Vehicle Wave has found

a feasible path wide enough to support the breach formation, the breach path must be

searched across its entire width for mines. A coordinated team of mine detection

vehicles works in a coordinated fashion in order to ensure that the entire breach path is

searched. The motion of the mine detection vehicle formation is coordinated within the

pre-plan lane to ensure that no gaps in the search area are created.

In order to maintain a line formation and make the vehicle able to determine its

relative formation position to the leader vehicle, vehicle identification numbers (ID)

 44

(Balch and Arkin 1998) are used. In addition, each robot can be directed to the correct

location within a team, based on leader's or other robots' location (Hsu and Liu 2005b).

In the simulation, an algorithm is used to make each vehicle check its surrounding

minefield status when it enters a new location. Each vehicle in the formation searches

for mines directly in front of itself. The vehicles on the end of the line are also required

to search the simulated minefield grid locations laterally beside and diagonally in front

of and away from the end of the line.

With the above algorithm, each cell status is posted to an array variable

“Status(i)” (“Status(i)” 0 represents that there is no mine or obstacle in that location,

and “Status(i)” 1 is the opposite). Letter i represents the lane relative position (where

i represents the vehicle's front cells from top to bottom). The central vehicle in the

coordinated team will perform an algorithm to pole the search results of all the members

of the team (i.e. Status(i)). To simulate this multi-vehicle search technique, “FOR

LOOP” logic is run for “2*int_CoveredL+1” times (depending on the size of the team)

to earn the value of StatusSum(i) (where i “1” represents the direction , “2”

represents the direction , and “3” represents the direction). Based on the search

results obtained from the team members and the relative location of the search team

compared to its desired path (by checking the available status of StatusSum(i)), the

center vehicle will move to the next location. An equation “Lane_Number -

Lane_Assignment” is defined in Table 4.5 to check the relative location of the search

team in order to determine if the team has moved beyond the pre-planned path or not.

When the landmines or obstacles block the path (if all the directions of , , and are

 45

not available), the center vehicle re-defines the breaching path by changing direction or

considering the turning radius to move several steps back to a place where the center

vehicle is able to lead the team to go around the obstacles. Then, the other vehicles can

move to the positions relative to the center vehicle to maintain a line formation. By

subtracting or adding to the center vehicle’s lane number (based on the R1_Position(i,j)

information in the command center), the intended moving location of the other vehicles

are obtained.

Table 4.5 Algorithms To Search The Breaching Path
Algorithm: ScaningWay ()
if BackSteps_Count <= 0 then
 for i 1 to 2* int_CoveredL+1 do {
 j i+2* int_CoveredL

for Status_i i to j do {
StatusSum (i) = StatusSum (i) + Status (Status_i)

}
 }

/*If Current Yi> its desired lane, it is above the desired lane, and so on*/
/*It represents “Lane_Number - Lane_Assignment >0“*/
if Current Yi < its desired lane and StatusSum (1)=0

 ToPosAssigned (1) (i.e. move to 315 degree direction)
elseif Current Yi > its desired lane and StatusSum (3)=0

ToPosAssigned (3) (i.e. move to 45 degree direction)
else

MoveForward ()
else
/*Have to move several steps back to go around the obstacles*/
 if Back_Alt_way =1 then
 direction_chk 1
 else

NTA Steps (2,BackSteps_Count)
LTA Steps (1,BackSteps_Count)

If the team does not need to move back to its desired path, an algorithm

MoveForward(defined in Table 4.6) is used to make the team move straight forward or

 46

to retreat to go around the obstacles or mines. In order to prevent the team from moving

in a back and forth cycle while moving backward (Dollarhidea and Agah 2003), the

team could move straight backward or follow the way it came from. If it needs to move

straight backward and does not follow the way it came from, “Back_Alt_way” is set to

“1”. At the time the team has to move backward to go around the obstacles, a distance

variable BackSteps will be posted to the command center to represent a moving

backward request. This distance is a function of the required width of the breach lane

and the turning radius capabilities of the breach formation. By checking the value of

BackSteps whenever the vehicle moves to the new location, the center vehicle can

determine how many grid locations the formation of vehicles must go back. The more

obstacles or mines occupying the front locations, the bigger the variable BackSteps is. A

two dimensional integer array named “Steps(i,j)” is used to store the last four locations

that the lead vehicle has just passed through. This two by four integer array is used to

represent the most recently swept steps. Letter “i” of Steps(i,j) has two values: 1 and 2.

“1” represents “Lane number (i.e. the Y-coordinate)” and “2” represents “N (i.e the X-

coordinate)”. Letter “j” of Steps(i,j) represents the index in Steps(i,j). The Steps(i,j)

array is used by the lead vehicle to guide the search formation backwards through a

series of the team previous moves. The variable “BackSteps_Count” is used to indicate

the number of steps the search team has retreated. In addition, the BackSteps_Count

variable increases by one whenever the team moves backwards one step. After that, if

“BackSteps = BackSteps_Count” and “Best_N > N”, the center vehicle knows that the

whole team has enough space to go around the obstacles. At the same time, the value of

 47

“BackSteps” and “BackSteps_Count” are reset. This means that whole team does not

need to move backward and the team can start to re-define the breaching path to go

around the obstacles.

The attributes “UP_FLAG” and “DOWN_FLAG” have been used as flags to

make the team able to scan the entire pre-planned path (at the same X-location).

Whenever the team has reached its lower boundary of the pre-planned path and is not

able to move further than current X, “UP_FLAG” is triggered. On the other hand, if the

vehicle searches in the other direction and is not able to move further, “DOWN_FLAG”

is triggered. By checking these two attributes, the team can skip moving downward (or

upward) to look for a feasible path without getting stuck.

Table 4.6 Algorithms To Stay On The Path For Breaching Team
Algorithm: MoveForward ()

if StatusSum (2) = 0 and N >= Best_N then
ToPosAssigned (2)
ToCell ()

else
/* Memorize the obstacle locations*/
R1_Position_Obj (1,1) R1_Position (1,1)
R1_Position_Obj (2,1) R1_Position (2,1) + 1
BackSteps_Count 0
BackSteps 0
if StatusSum (3) = 0 and UP_FLAG <> 1 then

ToPosAssigned (3) /*move downward ()*/
ToCell ()

elseif StatusSum (1) = 0 and DOWN_FLAG <> 1
ToPosAssigned (1) /*move upward ()*/
ToCell ()

else /*Retreated to hold a turning space*/
 if StatusSum (2) = 1 then

if Status (3) = 1 then
BackSteps BackSteps_Count + 1

 else
BackSteps BackSteps_Count + 2

 48

/*Flag triggered when reach the boundary*/
if Lane_Number = MinLane + 1 then

DOWN_FLAG = 0
UP_FLAG = 1

elseif Lane_Number = MaxLane – 1
DOWN_FLAG = 1
UP_FLAG = 0

elseif StatusSum (2) = 2 then
 BackSteps BackSteps_Count + 1

elseif StatusSum (2) = 3 then
 BackSteps BackSteps_Count + 2

BackSteps_Count BackSteps_Count + 1
LTA = Steps (1,BackSteps_Count)
NTA = Steps (2,BackSteps_Count)

 if LTA <> Lane_Number then
 direction_chk 1

Table 4.6 - Continued

The above breach lane identifying procedure of a coordinated team is shown in

figure 4.3. The simulation result (see figure 4.4) demonstrates that the above algorithms

and flag configurations of the team of mine detection vehicles enable them to maintain

an acceptable line width and turning radius of the search path, if an obstacle or mine is

encountered.

Figure 4.3 Breach lane identifying procedure of a coordinated team

 49

Figure 4.4 The three vehicle breaching team runs first providing 100% coverage for the

breach lane

4.2.2 Humanitarian Minefield Reclamation (HMR)

The objective of the HMR application is to remove 99% of all mines within a

given area. In order to search the entire minefield, the HMR scenario applies the

Boustrophedon path (mentioned in Section 1.3) to complete the mine detection

operation.

The HMR scenario assumes the HMR engineer has enough landform

information beforehand to define each transition point of the minefield in MiCAT. A

transition point is the location (highlighted in figure 4.5) where the size of search area is

changed. With that information this model is able to distribute the area search task

equally among the vehicles. In addition, the mine detection vehicle can change its

direction to fulfill its search task in its re-assigned search area. The landform

information is a list of the transition point information. The transition information

includes the number of transition points (“N_Transition”), the value of X-axis of the

right most transition point (“Last_Transition”), and a list of transition points

(“TransitionN(i,j)”. Letter “i” represents the transition points place in the order). Each

ith transition point lists the values of X-axis of ith transition point (TransionN(i,1)), and

the values of the bottom-most (TransionN(i,2) and the up-most (TransionN(i,3) lane of

 50

that point, which are used to make each mine detection vehicle able to change its

direction toward its own search area. In addition, the numbers of mine detection

vehicles (represented by the variable “TotalRob”) that will be used to sweep the

minefield are also needed. This information can be defined in the EXCEL interface.

Figure 4.5 A Turning Point that causes the HMR search area to be decreased

Each vehicle’s task is assigned at each transition point, along with the size between two

transition points (e.g. the first transition area is between TransionN(1,1) and

TransionN(2,1) and is defined as a transition area). Each transition area is divided into

“TotalRob” sections, with a width of “TransN” in each section. In order to obtain

“TransN”, “Trans_Cnt” is used to represent the index of the current transition point.

Equation (4.2) is used to obtain “TransN” when the mine detection has reached the right

most transition point. Otherwise, Equation (4.1) is used.

TransN=(TransitionN(Trans_Cnt+1,1)-TransitionN(Trans_Cnt,1))/TotalRob (4.1)

or

TransN=(Last_Transition-TransitionN(Trans_Cnt,1))/TotalRob (4.2)

We first use equations (4.3-5) to obtain the total number of lanes (“TotalLane”) in a

transition area, the quotient (“Ln_Rob”), and the remainder (“Ln_Rob_Remain”). Then,

a list of bottom most and up-most lane numbers (represented by the array variables:

 51

TransionList_Min and TransionList_Max) of each vehicle’s transition area, is obtained

by whichever vehicle reaches a transition point first.

TotalLane=TransitionN(i,3)- TransitionN (i,2)+1 (4.3)

Ln_Rob=TotalLane / TotalRob (4.4)

Ln_Rob_Remain= MOD (TotalLane,TotalRob) (4.5)

In order to equally divide the vehicles’ lane assignments, an algorithm is used to assign

at least “Ln_Rob” lanes and additionally portions of “Ln_Rob_Remain” lanes to each

vehicle in each transition area. This means that in each transition section,

Ln_Rob_Remain vehicles will scan “Ln_Rob+1” lanes. For example (see figure 4.6), if

four vehicles are used to completely search a transition area with thirteen lanes, this

transition are will be divided into four transition sections. In addition, each section is

divided into four parts, perpendicularly. Thus, each vehicle can scan three lanes in each

section and four lanes in one of the sections. This task procedure is shown in figure 4.7.

Figure 4.6 An example of HMR’s Lane Assignment for four vehicles

 52

Figure 4.7 A Task Assignment procedures for HMR search

Table 4.7 and Table 4.8 (are defined in algorithm GetMaxMinLn) express the

logic that is used to obtain a list of lanes that bind the vehicle’s search in an area for

each transition section. Table 4.7 uses “FOR LOOP” logic to run “TotalRob” times to

obtain the lane assignment list, the bottom most and up-most lane numbers of the fist

section: “TransitionLnList”, “TransionList_Min (1,i)” and “TransionList_Max(1,i)”

(“1” means the first section, and letter ”i” represents section order). “Ln_Rob_Remain”

is used to count the remainder of the lanes. Thus, the vehicle can be assigned one more

lane when the value of “Ln_Rob_Remain” does not run out during the assignment. This

algorithm is able to balance the task among the vehicles, by distributing the remainder

of the search lanes to different sections, even if the number of lanes is not divisible by

“TotalRob”. Next afterward, a bubble sort algorithm is used in Table 4.8 to rotate the

value of “TransitionLnList (i)” “TotalRob-1” times to distribute the lane assignment to

 53

the remaining sections. For example, the first rotation rotates the 2nd vehicle’s search

lanes as the 1st vehicle’s search lanes, and so on. Therefore, this algorithm can generate

a list of each transition area’s turning points.

Table 4.7 Algorithms To Get HMR’s First Lane Assignment
Algorithm: GetMaxMinLn-1

/*Ln_Rob_Remain_A as attribute of the temporary remainder holder*/
/*Ln_Rob_A stores the temporary accumulative lane assignment*/
/*Ln_Rob_B as the number of lane assignment */
/*TransionSecList used to store a list of turning points in a transition area*/
/*TransitionN (Trans_Cnt,2) this transition point’s bottom most lane*/
Ln_Rob_A 0
Ln_Rob_Remain_A MOD (TotalLane / TotalRob)
Ln_Rob TotalLane / TotalRob
TransionSecList(i) TransionN (Trans_Cnt,1)
for i 1 to TotalRob do {

L_Cnt 0 /*Used to determine the remainder’s value*/
if Ln_Rob_Remain_A > 0 then

L_Cnt 1
 Ln_Rob_Remain_A Ln_Rob_Remain_A -1
 Ln_Rob_B Ln_Rob+ L_Cnt
 MinLane TransitionN (Trans_Cnt,2)+ Ln_Rob_A
 MaxLane MinLane + Ln_Rob_B-1
 Ln_Rob_A Ln_Rob_A + Ln_Rob_B
 TransionLnList (i) Ln_Rob_B
 TransionList_Min (1,i) MinLane
 TransionList_Max (1,i) MaxLane
}

Table 4.8 Algorithms To Get HMR’s Lane Assignments

Algorithm: GetMaxMinLn-2

element_tmp 0
if Trans_Cnt=index of the last transition point then

TransN (TransitionN(Trans_Cnt+1,1)-TransitionN(Trans_Cnt,1))/TotalRob
else

TransN (Last_Transition-TransitionN(Trans_Cnt,1))/TotalRob
for i 2 to TotalRob do {

Ln_Rob_A 0
TransionSecList(i) TransionN (Trans_Cnt,1) + TransN * (i - 1)
for j 1 to TotalRob do {

 54

 Table 4.8 - Continued
if j=1 then
 Ln_Rob_B TransionLnList (TotalRob)
/*Used to get the last vehicle’s lane assignment in 1st section*/
else
 Ln_Rob_B element_tmp
MinLane TransitionN (Trans_Cnt,2)+ Ln_Rob_A
MaxLane MinLane + Ln_Rob_B -1
Ln_Rob_A Ln_Rob_A + Ln_Rob_B
element_tmp TransionLnList (j) /*Making a rotation*/
TransionLnList (j) Ln_Rob_B
TransionList_Min (i,j) MinLane
TransionList_Max (i,j) MaxLane

}
}

In order to reduce the occurrence of unsearched areas, an algorithm

“GetMaxMinLnEach (defined in Table 4.9)” is used to overlap the overlooked cells.

Overlooked cells usually occur at a turning point, when the current section has less

covered lanes than the previous section. Thus, the “GetMaxMinLnEach” algorithm is

used to obtain a new list of turning points (“TransitionList_Partial”), and the bottom-

most (“TransionList_Min_A”) and up-most (“TransionList_Max_A”) lane numbers to

make the original turning point move one step further (if there are more covered lanes

than in the previous section, then move one step backward) to the overlap the ignored

area.

Table 4.9 Algorithms To Get Lane Assignments For Each HMR Vehicle
Algorithm: GetMaxMinLnEach

for i 1 to TotalRob do { /*i is vehicle’s order */
if Robot_No=i then /*Robot_No used to represent a vehicle’s identification */
for j 1 to TotalRob do /*j is the order of each section*/

 TransitionList_Partial (j) TransitionSecList (j)
 if j >= 2 then

 if TransionList_Max(j - 1,i) > TransionList_Max (j,i)
 then TransitionList_Partial (j) TransitionSecList (j) + 1
 elseif TransitionList_Max (j,i) > TransitionList_Max (j - 1,i)

 55

 Table 4.9 - Continued
 then TransitionList_Partial (j) TransitionSecList(j) - 1

TransitionList_Min_A (j) TransitionList_Min (j,i)
TransitionList_Max_A (j) TransitionList_Max (j,i)

}

After performing the above algorithms, a list of the bottom-most and up-most

lane of each section within a transition area is obtained. By following a Boustrophedon

path, the mine detection vehicles start from the up-most lane, moving downward () to

the bottom-most lane, then moves forward () to next location, and moves upward ()

to its up-most lane, continuously. They do this until they reach the end of the transition

section, and then change their moving direction to the next up-most (or bottom-most)

lane, finishing their task inside a transition area.

Depending on the value of X-axis, the search patterns have been categorized into two

parts: D_Lane=1 and D_Lane=0. The attribute “D_Lane” is used to represent the status

of the X-axis. Equation (4.6) is used to obtain the value of “D_Lane”.

D_Lane MOD (N,2) (4.6)

“D_Lane” is either “1 (meaning ODD N)” or “0 (meaning EVEN N)”. Moving direction

“ ” is the first search priority, when N is ODD (or when N is EVEN). The relative

position between the current moving lane and their bottom-most and up-most lane are

divided into five relationships (see Table 4.10). Whenever a vehicle goes around the

obstacle (or mine), it has to move beyond (or behind) the current “N”. Under this

condition, a vehicle may have some cells go un-searched at current “N”, if the current

lane is not its boundary. Hence, the attribute Go_Further is defined to let a vehicle

know that it has not finished its task in order to prevent the problem of overlooked cells.

 56

As a result, each search pattern above is classified into three subdirectories, based on

the value of Go_Further. With this setting, whenever a vehicle moves beyond the

(defined as Go_Further >0 (or behind (Go_Further <0))) current “N” to skip the current

“N” search, it knows it has to move back to the original “N” to continue its task. The

relationship between location and moving status (Go_Further) is defined in Table 4.10.

Table 4.10 HMR Location Relationship
D Lane=1 D Lane=0
Go_Further Go_Further

Lane_Number = 0 < 0 > 0 = 0 < 0 > 0
Equal to MaxLane (1) (2) (3) (12) (12) (13)

Between MaxLane
and MinLane

(1) (15) (5) (14) (4) (11)

Equal to MinLane (6) (7) (8) (14) (15) (11)

Higher than (9) (2) (3) (4) (4) (16)

Lower than (10) (10) (17) (14) (15) (11)

The number defined for each relationship in Table 4.10 represents a searching pattern.

These search patterns are listed in Table 4.11.

Table 4.11 HMR Searching Patterns
Priority\Pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
2
3
4
5
6
7
8
9
10
11

 57

Algorithm ScanningWayNoChg(defined in Table 4.12) is defined to determine

the location relationship, in order to apply a search pattern to the vehicle. Algorithm

SearchPattern(defined in Table 4.13) is defined to obtain an available moving direction

for a vehicle. If the first direction of the search pattern contains an obstacle (or mine), it

scans the next direction to find a clear path to move further. Usually, if an obstacle (or

mine) is found when moving in direction, it scans either or to go around it. It

scans or , if it is moving . If a vehicle does not reach its target boundary, but has

to go around an obstacle (or mine) to next the “N”, the attribute “Go_Further” is

triggered. However, if this obstacle (or mine) is on its searching target boundary,

(attributes “Min_Reached” and “Max_Reached” are used to determine if the vehicle has

reached its bottom-most (or up-most) lane and obstacle (or mine) is also on this

boundary), the value of attribute “Go_Further” will be reset to zero. This situation

means the vehicle has finished its search task at current “N” and is able to move further

to the next “N”. Therefore, attribute “Go_Further_Chg=1” is triggered (in search

algorithm ScanningWayNoChg) to make the vehicle re-apply the search procedure and

move further (see the rules in Table 4.14).

Therefore, the vehicle can skip scanning backward directions, such as , and

, to the next available moving direction. Several directions have been highlighted in

red in Table 4.11 to indicate that they could be skipped in SearchPattern. However,

these directions have also been appended into Table 4.11(have been highlighted in blue)

in order to prevent the vehicle from becoming trapped inside the current cell, if this

skipped direction is the only way out of the current location.

 58

Table 4.12 Algorithm To Determine A HMR Search Pattern
Algorithm: ScanningWayNoChg

/* MinLane TransitionList_Min_A (Index_N_Sec)*/
/* MaxLane TransitionList_Max_A (Index_N_Sec)*/
if D_Lane = 1 then

if Lane_Number =MaxLane then
if Go_Further = 0
then SearchPattern (1)
else if Go_Further < 0
then SearchPattern (2)
else if ………..

else if Lane_Number < MaxLane AND Lane_Number > MinLane then
if Go_Further = 0
then SearchPattern (1)
 ………………

else if Lane_Number =MinLane then
………………

else if Lane_Number >MaxLane then
………………

else if Lane_Number <MinLane then
………………

else then
if Lane_Number =MaxLane then

if Go_Further = 0
then SearchPattern (12)
else if Go_Further < 0
then SearchPattern (12)
else if
………..

Table 4.13 Algorithm To Apply A HMR Search Pattern

Algorithm: SearchPattern (Pattern)

if Pattern= 1/*The order for each pattern is defined in Table 4.11*/
for a 1 to Search_No do {

if a=1 /*pos is the direction value that is defined in Table 3.1*/
then ToPosAssigned (pos)

 else if a=2
…..
…..

 else if a=3
…..

 59

 Table 4.13 - Continued
 MineSearching ()
returnPoint (NTA,LTA)

 elseif Pattern=2
 ……..

}

Table 4.14 HMR Search Algorithms
Algorithm: ScanningWay

Go_Further_Chg 0
ScanningWayNoChg()
if Go_Further_Chg = 1 then

if (D_Lane = 1 and Max_Reached = 1) or (D_Lane = 0 and Min_Reached = 1)
then
 ScanningWayNoChg()
Go_Further_Chg = 0

Beyond the search algorithms above, the following algorithms are defined to

cover the remaining task of a destroyed vehicle. The solution is to reassign their task, if

they are notified that one of the vehicles has been destroyed, by making the other

vehicles move to this location to complete the search. The lane reassignment procedure

(similar to GetMaxMinLn) is triggered to reassign the task, whenever one of the

vehicles is destroyed. At that location “N” where the vehicle is destroyed,

GetMaxMinLnEach procedure is performed to get a new assignment for all of the

surviving vehicles. Table 4.15 summarizes the reassigning procedure.

Table 4.15 HMR Reassign Search Task Algorithms
Algorithm: ReAssignSearchingArea

/* KeepRobNo is used to store # of vehicle before one of the vehicle destroyed*/
/* TotalRob is used to store # of vehicle before after one of the vehicle destroyed*/
if KeepRobNo <> TotalRob then

if Robot_No > Explode_NO then
Robot_No Robot_No – 1
/*Used to get a new ID if its ID is bigger than the destroyed one’s, in order to
get an appropriate assignment*/
GetMaxMinLnEach ()

 60

Index_N_Sec 1
if N >= TransitionList_Partial (Index_N_Sec) then
/*Here is used to determine if it is ahead than the vehicle destroyed location. If
it is ahead, then it has to move back to support the task*/

Back_Explode 1
MinLane TransitionList_Min_A (Index_N_Sec)
MaxLane TransitionList_Max_A (Index_N_Sec)
Index_N_Sec Index_N_Sec + 1

Table 4.15 - Continued

The above HMR search procedure for a Coordinated Team is shown in figure

4.8. The simulation result (see figure 4.9) shows that the above overlapping and

reassignment algorithms are effective in solving the un-searched problems and also

handling the allocation of multiple search vehicles to balance the search task of each

vehicle.

Figure 4.8 A HMR search procedure

 61

Figure 4.9 (A) A HMR overlap strategy improves the percentage of the area (B) The
survived vehicle supports the un-finished area that is left by the destroyed vehicle

 (A) (B)

4.3 Point-to-Point Wave

The concept of a point-to-point (P2P) sweep was to incorporate the use of

slower but more discriminating mine sensor technologies that might be too slow to

support 100% coverage in MMB or HMR scenarios, but would be highly effective at a

specific detection task, like the elimination of false positive mine detections.

(A)

(B)

Figure 4.10 (A) The three vehicle breaching team runs first providing 100% coverage
for the breach lane, (B) a two-vehicle P2P team starts to work right after the Multi-

Vehicle Wave begins its search.

The Multi-Vehicle Wave simulation (e.g. figure 4.10(A)) will determine the

locations that have a high probability of containing a mine. These locations will be

recorded within the larger mine detection system (this model is recorded in the variable

 62

Table MineTable). The P2P wave can then extract these locations from the system to

determine where more discriminating sensor reading should be taken.

In addition, the Multi-Vehicle Wave simulation will generate the boundary

information to make the Point-To-Point simulation restrict the motion of the point-to-

point vehicle(s) to within the marked boundary of the searched lane (figure 4.10(B)). It

will do this without crossing the boundary, even if there is a shorter path between two

points. A boundary table, BunTable, contains all the points of the boundaries that are

generated. In above waves, the top-most vehicle’s path will determine the upper

boundary, and bottom-most vehicle’s path will determine the lower boundary (e.g.

BunTable(1,N) bottom-most vehicle’s lane number and BunTable(3,N) top-most

vehicle’s path). Whenever the P2P vehicle moves, it can check BunTable to confirm if

the next moving location is beyond the boundary or not. If the vehicle tries to move

across the boundary, a warning will be given to ask it try another location.

The P2P wave can be modeled as a Vehicle Routing Problem (VRP) in which a

set of vehicles visit customers exactly once per service cycle (Shaw 1998). Within the

MiCAT tool, this research has modeled a number of vehicle/mine location allocation

strategies. The first one is to require that the previous mine detection waves complete

their searches before making the P2P vehicle assignments. A number of conventional

VRP analytical optimization techniques assume that the set of route locations have been

fully defined prior to the start of the assignment of these locations to the vehicle set.

The Variable Transation_Achieved_Rot is defined in both the Multi-Vehicle Wave and

the Point-To-Point wave. Whenever the previous mine detection waves complete their

 63

searches, Transation_Achieved_Rot is set to “one” and the P2P vehicle team is allowed

to start its searching.

The other strategy is to allow the P2P vehicle team to start working right after

the Multi-Vehicle Wave begins its search. Under this strategy, the P2P vehicle team

will only be a few steps behind the previous wave. Simple load balancing techniques

that handle the dynamic definition of route locations are defined in this strategy. When

the vehicles are allowed to start their search before the previous wave has completed,

the Transation_Achieved_Rot variable is set to “two” in order to release the vehicles in

the P2P wave. This setting will be made even if there is no potential mine found in the

prior wave. If the previous wave vehicles have found one potential mine, they reset

Transation_Achieved_Rot to “one” to make the P2P vehicle move further to the

potential landmine location, even if the distance between both waves is less than

required. If the P2P vehicle finds that its location is close enough to the previous wave

vehicle, the value of Transation_Achieved_Rot is set to “zero” and it stops.

If the P2P vehicle assignments have to be fully defined prior to the P2P vehicle

team is allowed to start its searching, the possible landmine locations, detected by the

previous wave, can be sorted in sequence by WITNESS® built-in function SortVar (see

Table 4.16). In order to equally allocate the possible landmine locations to

Rob_MineTable_i (a list of the next indented moving target for vehicle i), Table 4.16

divided the total number of vehicles to get an equal number of tasks. In order to obtain

the vehicle’s assignment, Table 4.16 assigns the vehicle’s identification number to

MineTable. If the remainder is greater than zero, the remaining landmines will be

 64

assigned to the preceding vehicles. After that, Table 4.17 uses this ID to allocate the

detection task to each P2P vehicle. It is used to check if that detected landmine is

assigned to that vehicle or not.

Table 4.16 Algorithms To Allocate The Potential Landmines
Algorithm: DivideArea_a()

SortVar (MineTable,2,1)
Mine_ind total number of potential landmines
TotalRob total number of P2P vehicles
Mine_Assignment ((Mine_ind - 1) / TotalRob) /*Get an equal detection task*/
Mine_Assignment01 Mine_Assignment
Mine_Assignment_Remain MOD (Mine_ind - 1,TotalRob) /*the remainder*/
Mine_ind01 1 /* Initialized by 1st vehicle’s ID*/
for K 1 to Mine_ind do {

if K< Mine_Assignment01 then
MineTable01 (3,K) Mine_ind01 /*To sort the landmine*/

K K+1
 else if K=Mine_Assignment01 then

MineTable01 (3,K) Mine_ind01
K K+1
if Mine_Assignment_Remain > 0
 MineTable01 (3,K) Mine_ind01
 K = K + 1
 Mine_Assignment_Remain Mine_Assignment_Remain - 1
 MineAsigRem_Ind 1
if MineAsigRem_Ind = 1
 Mine_Assignment01 Mine_Assignment01 + Mine_Assignment + 1
 else
 Mine_Assignment01 = Mine_Assignment01 + Mine_Assignment
/*Start to assign the task to the next vehicle*/
Mine_ind01 Mine_ind01 + 1

}

Table 4.17 Algorithms To Distribute The Potential Landmines To P2P Vehicles
Algorithm: DivideArea_b()

Mine_ind01 1 /* Initialized by 1st vehicle’s ID*/
QW1 1 /* Initialized by 1st mine for 1st vehicle, etc….*/

……
for K 1 to Mine_ind do {

if Mine_ind01 = 1

 65

Rob_MineTable_1 (1,QW1) MineTable01 (1,K)
Rob_MineTable_1 (2,QW1) MineTable01 (2,K)
if MineTable01 (3,K) <> MineTable01 (3,K + 1)
 /* The task for the next vehicle*/

Mine_ind01 Mine_ind01 + 1
else QW1 = QW1 + 1

elseif Mine_ind01 = 2
 ……….
K K + 1

}

Table 4.17 - Continued

Depending on the value of the X-axis of the vehicle’s location, the search

patterns have been categorized into three parts: A, B, and C. Each part is categorized

into three parts based on the value of the Y-axis of the vehicle’s location. The

relationship of the vehicle’s location is defined in Table 4.18. Each relationship is

defined as a searching pattern. An algorithm is used to get a relationship between the

current location and the next target location (i.e. Rob_MineTable_i). In Table 4.19, an

appropriate searching pattern is also applied, depending on the obtained relationship

(e.g.A-1, A-2,…etc.). The algorithm in Table 4.20 is used to obtain the next intended

moving step and is applied whenever the vehicle has been assigned a searching pattern.

It tries the first direction to see if it is available to move there. If the first location of the

search pattern contains an obstacle (or mine), it scans the next location to find a clear

path to move further. If it is clear, (NTA,LTA) will be returned as the moving location.

While the vehicle performs the mine or obstacle algorithm, it also checks to see if it

reaches its target or not. If it already reaches its current target, the next potential

landmine location in Rob_MineTable_i is assigned as its target. The above P2P mine

allocation and search procedures are defined in the flowchart (see figure 4.11).

 66

Table 4.18 Point To Point Searching Patterns
Interval A B C
Priority 1 2 3 1 2 1 2 3

1
2
3
4
5
6
7
8

Table 4.19 Algorithms To Obtain A P2P Searching Patterns

Algorithm: GetSearchPattern ()

if Current Xi < target Xj then
if Current Yi is > target Yj then

pattern A-1
else if Current Yi is < target Yj then

pattern A-2
else if Current Yi is = target Yj then

pattern A-3
else if Current Xi = target Xj then

if Current Yi is > target Yj then
pattern B-1

else if Current Yi is < target Yj then
pattern B-2

else if Current Xi > target Xj then
if Current Yi is > target Yj then

pattern C-1
else if Current Yi is < target Yj then

pattern C-2
else if Current Yi is = target Yj then

pattern C-3
return (pattern)

Table 4.20 Algorithms To Obtain P2P Next Step

Algorithm: performSearchPattern (searchPattern)

/*The order for each pattern is defined in Table 4.18*/
if searchPattern=A-1

for a 1 to 8 do {

 67

if a=1 then
ToPosAssigned (pos)

 else if a=2
…..
…..

 else if a=3
…..
…..

 MineSearching_P2P ()
returnPoint (NTA,LTA)
}

 elseif searchPattern=A-2
 ……..

Table 4.20 - Continued

Figure 4.11 The P2P search flowchart

 68

CHAPTER 5

DISCUSSION OF MODEL GENERALIZATION

 Up to this point, all the simulation models have been designed for a pre-

determined minefield size and specific number of search vehicles. The minefield itself

has been modeled as a pre-defined grid with the assumption that the search vehicle

occupies only one grid location at a given time. This chapter will evaluate the potential

of developing parameterized algorithms that will allow the MiCAT user to dynamically

specify the characteristics of a mine detection problem without having to modify the

underlying simulation code that will drive the MiCAT system. This paper will discuss

the relative feasibility of developing these parametric algorithms.

5.1 Adjustable Grid Scaling and Shifting The Orientation of The Search Grid

This section investigates the potential of supporting adjustable grid scaling and

the orientation shifting of the search grid to increase the flexibility of MiCAT system.

These features would enable better modeling of non-rectangular search areas and

greater flexibility in breach path direction control. The idea to model a non-rectangular

search area and to make the vehicle able to move in more than just a straightforward

direction is to make the adjustment of minefield orientation become more flexible. As

this paper mentioned earlier, this study assumes a non-rectangular search area that can

 69

be decomposed into lanes and cells. Therefore, if the minefield is adjusted with

different degree turns, it will look like a zigzag lane (see figure 5.1).

Figure 5.1 A ZigZag shape minefield area

 In order to support the capability of adjustable grid scaling and the orientation

shifting of the search grid, this study provides the users a input function to place the

minefield elements to the desired X-Y coordinate. MiCAT applies the SETPOSN

function of WITNESS® to specify the X and Y co-ordinates of the minefield elements.

The SET Icon function is then used to adjust the minefield element to its appropriate

size. Finally, the SET ICON action is used to reset the model. Therefore, MiCAT is able

to shift the orientation of the search grid automatically to correspond to the user’s

minefield specification.

Figure 5.2 An illustration of the shifting of minefield orientation

 70

 Figure 5.2 illustrates how to shift the minefield elements to represent the

orientation of the search grid at each minefield transition. In figure 5.2, the width of the

cell is defined as “Size” and “Size” is the same height of the lane. The degree shifting of

the orientation is defined as “Key_Degree”. In order to create a “Key_Degree”, a

distance of “Key_y” units is shifted along the Y-coordinates for one unit shifts in the X-

coordinate (Key_y_prev is defined to express this distance in the previous section). If

Key_Degree>90, the orientation shifts upward simultaneously. If Key_Degree<90, the

orientation shifts downward. Because the Y-coordinates in WITNESS® increases from

top to bottom and is opposite to the X-Y coordinates, the shifting direction is opposite

to “Key_y” (e.g. Key_Degree>90, Key_y <0). Because Size in the X-coordinate

direction is fixed, MiCAT utilizes it to estimate Key_y. Tangent and Key_Degree are

also used. Where WITNESS® does not support tangent, SIN and COS are used instead

(see equation 5.1). In addition, the specified angle of SIN and COS in WITNESS® must

be specified in radians (see equation 5.2). The SETPOSN function has to receive integer

X and Y parameters, thus the TRUNC function is used to truncate the real number to an

integer (see equation 5.3).

180) / Key_Degree * (3.14157 COS / 180) / Key_Degree * (3.14157 SIN =Tan (5.1)

Tan / Size Key_y_real = (5.2)

l)(Key_y_rea TRUNC Key_y = (5.3)

 Different transitions’ orientations shifted make different inclinations and gaps

between transition points along the Y-coordinate (defined as Loc_Gap, see figure 5.2).

The Y-coordinate of a cell also depends on the order of its lane. In order to estimate the

 71

Y-coordinate, (Pos_X,Pos_Y) is used to represent the starting point of the minefield

coordinates. Loc_Y_df is then used to indicate the order of a lane, and Key_x is defined

to express the distance between the current and the last transition points (Key_x_prev is

defined to express this distance in the previous section). There are three possible cases

for the shifting orientations.

 Case 1: The previous transition is horizontal. In this case, there is no gap between

the current and the last transition points. Thus, the lane Y-coordinate can be

expressed as equation 5.4.

 Case 2: The previous transition is not horizontal but the current transition is

horizontal, therefore, a gap occurs. The gap depends on the width of the last

transition. Equation 5.5 expresses this gap. Thus, the Y-coordinate is estimated by

adding the gap height to the original Y-coordinate (see the expression in equation

5.6).

 Case 3: Both the previous and current transitions are not horizontal. The specific

Y-coordinate within a gradient transition depends on how far out it goes on the X-

coordinate. QW1 is used to indicate the cell order counting from the first cell of a

transition along the X-coordinate. Therefore, the Y-coordinate can be expressed in

equation 5.7.

Loc_Y_df * Size Pos_Y Loc_Y += (5.4)

)Key_x_Prev-(Key_x * Key_y_Prev + Loc_Gap = Loc_Gap (5.5)

Loc_Gap Loc_Y_df * Size Pos_Y Loc_Y ++= (5.6)

Loc_Gap QW1 *Key_y Loc_Y_df * Size Pos_Y Loc_Y +++= (5.7)

 72

Algorithm MapBuilder summarizes the above logic and is used to adjust the grid

scaling as well as the orientation shifting of the search grid. Algorithm MapResting

then places the minefield element to the specific location by using the functions

SETPOSN and SET ICON.

Table 5.1 Algorithms To Reset The Minefield
Algorithm: MapBuilder(Pos_X, Pos_Y,Size)

Loc_Y_df = 0
Loc_Lan = MaxLane
for i 1 to MaxLane do {
/*The map is built from the further most lane (top one) to nearest lane, because the
Y-coordinate is from top to bottom*/
 Key_x 1

ind 1
Key_x_Prev 0
Key_Degree_Prev 0
Key_QW_Prev 0
Loc_Gap 0
While Key_x > 0 /*This is used to stop the procedure*/{

Key_x Transition (ind,1)
Key_Degree Transition (ind,2)
if Key_Degree <> 0

Tan SIN(3.14*Key_Degree/180) / COS (3.14 * Key_Degree/180)
Key_y_real Size / Value_Tan
Key_y TRUNC (Key_y_real)

 Key_QW Key_x
 if Key_Degree_Prev <> 0

if Key_ind = 2
Loc_Gap Loc_Gap+Key_y_Prev* Key_x_Prev

else
Loc_Gap Loc_Gap+Key_y_Prev*(Key_x_Prev -Transition(ind-2 ,1))

 for QW 1 to Key_QW do {
 /*This loop is used to place the cells in an order*/

 Loc_X Pos_X + Size * QW
 if Key_Degree_Prev <> Key_Degree and Key_Degree <> 0
 /*Used to distinguish the transition degree between different transition*/

 QW1 QW - Key_QW_Prev
 Loc_Y Pos_Y + Size * Loc_Y_df + Key_y * QW1 + Loc_Gap

 else
 Loc_Y Pos_Y + Size * Loc_Y_df + Loc_Gap

 73

 MapResting (Loc_Lan,QW,Loc_X,Loc_Y,20)
 QW QW + 1

 }
 /*Save the current transition information for the comparison*/

Key_x_Prev Key_x
Key_y_Prev Key_y
Key_QW_Prev Key_QW
Key_Degree_Prev Key_Degree
ind ind + 1

 }
Loc_Lan Loc_Lan - 1
Loc_Y_df Loc_Y_df + 1

}

Table 5.1 - Continued

Above algorithms can represent the transition’s angle change for a small piece of a

simulated minefield. However, these algorithms still need improvements. For example,

when a transition slope gets steeper, the minefield representation becomes less accurate

and a sliding displacement (or fracture) will be produced (figure 5.3). The

Boustrophedon path search in the above search algorithms did not consider a turning

around radius that is able to expand the minefield search to a larger area, whenever the

vehicles finish one piece of small minefield and need to go around one piece to another

(see figure 5.5). The formal development and prototype implementation of simulation

models based on these problems are left as future work.

Figure 5.3 A steep slop produces a sliding displacement or a fracture

 74

Figure 5.4 The required turning around radius from going around one piece of the

minefield to get another

5.2 The Modeling of Vehicles of Different Sizes

 This section will investigate the modeling of vehicles of different sizes to

increase the flexibility of mine detection tasks. This section uses the SET ICON action

of WITNESS® as a virtual part of vehicle to resize the vehicle. At the beginning of the

model, Variable “int_CoveredL” is defined as the size measured from center to one

edge of the vehicle. With this information whenever the vehicle element moves to a

new minefield grid location, it draws “int_CoveredL” units on the minefield grid

locations laterally besides itself (Table 5.2 represents this drawing procedure).

 In addition, it has to verify its current minefield grid and the grids laterally

beside the center of the vehicle for an obstacle and a mine. The obstacle detection

algorithm that has been discussed in the previous section is able to detect an obstacle

out to the maximum permissible lane width. However, mine detection sensors only

search the ground directly in front of itself. An algorithm MineSearchingLoc is defined

to run MineSearching for (2*int_CoveredL + 1) times within the model, in order to

 75

verify a clear area in front of the vehicle itself. Furthermore, whenever the vehicle

element moves toward the next location, these virtual vehicle parts will be erased from

the simulated minefield. The ICON is rest to “one” and the matrix of minefield of the

virtual vehicle part locations are reset to “zero”. The above algorithms have appended to

the Scout model to make it able to specify a flexible size of a vehicle. Figure 5.5 shows

two independent vehicles of different size running on the minefield.

Table 5.2 Algorithms To Resize The Vehicle

Algorithm: DrawVirtualElements

Ary_j 2 * int_CoveredL + 1
/*The draw procedure depends on vehicle’s size which is 2*int_CoveredL+1*/
int_Ary_RY int_CoveredL + 1
/*Define the location of vehicle’s center part */
for i 1 to Ary_j do {

LTA_C Lane_Number + int_Ary_RY - i
/*LTA_C is to represent the relative location of vehicle’s center part */
NTA_C N
if LTA_C > 0 AND NTA_C > 0

SET ICON of MatrixMap (LTA_C, NTA_C) to ICON
MatrixMap (LTA_C, NTA_C) AT 0:Obj_Trap_Mine_Rob_VO_M_B (4) = 1

}

Table 5.3 Algorithms To Search The Entire Grids In Front of A Vehicle
Algorithm: MineSearchingLoc()

Count 0
Ary_j 2 * int_CoveredL + 1
/*The vehicle has to scan all of the minefield elements*/
int_Ary_RY int_CoveredL + 1
for i 1 to Ary_j do {

MineSearchCntTmp MineSearching (int_Ary_RY - i)
Count MineSearchCntTmp +Count

}
 Return Count

 76

(A)

(B)

Figure 5.5 Two independent vehicles of different sizes (A) three units size and (B)
seven units size

5.3 Alternative Vehicle Formations

 In reality, two vehicles traveling side-by-side in a non-contact formation leave

an unsearched gap between themselves. In order to cover the gap, this section

investigates an alternative staggered vehicle formation for military minefield breaching

(MMB). This staggered vehicle formation is to start the first two vehicles together

followed by a third one that moves behind on a path between these two vehicles (see

figure 5.6). Thus, the rear one can cover the unsearched gap.

Figure 5.6 A staggered vehicle formation

 Two types of vehicles are investigated in this section: independent and

dependent. The dependent vehicle team has to maintain the same moving direction to

 77

hold a breaching path, but the independent vehicle team will not need to follow the

other vehicles’ moving direction.

 Although the independent vehicle team does not to move in same direction, the

team’s formation is maintained by controlling the steps difference between the front

vehicles in one step and the steps differences between front and rear in less than five

steps. Variable MoveStatus_i(i stands for the vehicle’s number) is used to control

WITNESS®’s PUSH or WAIT action to make the vehicles perform the appropriate

movement (see Table 5.4). Whenever the vehicle moves apart from the others more

than the steps allowed, they will wait for the others until the ones behind have moved

ahead.

Table 5.4 Staggered Formation Movement Control Algorithms
Algorithm: VehicleMovementControl in “To” Action
i 1 to Number of Vehicles
 if RobotMoveStatus_i(1)= 1
 /*The vehicle has to wait if MoveStatus =1*/
 STOP RobotNameMoveStatus _i(2)
 if (N >=STOP and i <> last vehicle) or (N >= STOP + 5 and i = last vehicle)
 /*Reset MoveStatus_i(1) to zero if it has moved ahead the one waiting for it*/
 RobotNameMoveStatus_i(2) 0

The complexities increase for the dependent vehicle team to maintain the same

moving direction to hold a breaching path. This section reduces the complexities by

appending the virtual obstacle (or landmine) strategy to the above independent vehicle

obstacles (or landmine) avoiding algorithms. In order to express the virtual obstacle (or

landmine) in the system, attribute Virtual_No is used. It is represented as the vehicle’s

second id. Its value is equal to the vehicle’s assigned lane. When one of the vehicles

 78

find an obstacle (or landmine), it marks the locations that are related to the found

obstacle position as a virtual obstacle (or landmine) and updates their value with a

Virtual_No. For example, if the vehicle found an obstacle (or landmine) at (X,Y), it

marks and updates the values of location (X,Y-2) and (X,Y-4) with Virtual_No as virtual

obstacle locations (figure 5.7).

Team Separate while
meeting the obstacle

Virtual obstacles

Figure 5.7 Setting a virtual obstacle

 Whenever the obstacle blocks the path between the vehicle team, the vehicle

team members can make a turn at the virtual obstacle locations. However, the team

members shift in different directions (figure 5.7). The purpose of this section is to

maintain a path and cover that unsearched gap. The solution is to use various attributes

(or variables) to control the vehicle to move in the same direction. This section uses the

variable MidLaneAssign to let the vehicle determine its position that related to the

center vehicle. Whenever the vehicle finds a virtual obstacle on its path, it gets its

virtual obstacle value and posts this value to variable Obj_Target_v. Therefore, the

algorithms in Table 5.5 utilize this information to make the front vehicles go around the

obstacle on the same side of the obstacle. The rear one follows the same direction as the

 79

one that found the obstacle. The result is shown in figure 5.8 and it shows that the team

can hold a breaching path while avoiding an obstacle.

Table 5.5 Staggered Formation Moving Direction Control Algorithms
Algorithm: MovingDirectionControl

if Lane_Assignment> MidLaneAssign then
 if ObjDetecAry_R1_Space (i,1) < ObjDetecAry_R1_Space (i,2) then

 int_go_up 0
 int_go_down 1
 else

 int_go_up 1
int_go_down 0

elseif Lane_Assignment< MidLaneAssign then
 if ObjDetecAry_R1_Space (i,1) > ObjDetecAry_R1_Space (i,2) then

 int_go_up 1
int_go_down 0

 else
 int_go_up 0

int_go_down 1
else
 if Obj_Target_v <Virtual_No then

/*If the vehicle detects there is a virtual obstacle on its path and is smaller than its
Virtual_No, it means the virtual obstacle is post by the lower vehicle. In this case,
the vehicle will follow the same as the lower vehicle’s direction*/

 if ObjDetecAry_R1_Space (i,1) > ObjDetecAry_R1_Space (i,2) then

 int_go_up = 1
int_go_down = 0

else
 int_go_up = 0

int_go_down = 1
 else

if ObjDetecAry_R1_Space (i,1) < ObjDetecAry_R1_Space (i,2) then
 int_go_up = 0

int_go_down = 1
else

 int_go_up = 1
int_go_down = 0

 80

Team Avoid the
Obstacle in the Same
Direction Virtual obstacles

Figure 5.8 The vehicle team moves in the same direction to hold a breaching path

 Other than the above separating problems, the preliminary simulation result

shows that the team is not able to maintain a breaching path whenever the team found a

landmine (figure 5.9). The previous chapter has developed an algorithm that the center

vehicle will consider the turning radius to move several steps back to a place where it is

able to lead the team to go around the landmine. Whenever the vehicle needs to go

around the landmine it has to move several steps back. Thus, if the vehicle does not

know it has to go around a virtual landmine before the other one has found it, it will not

make a backward movement in the same direction as the one that found the landmine.

 This section has made the vehicle perform the detection procedure earlier than

the moving direction decision procedure. The previous ScanningWay algorithm in

section 4.2.1 has been expanded to two cycles, ScanningWay_cy1 and

ScanningWay_cy4, with different times. The first cycle makes the vehicle scan the

minefield. The second cycle makes the vehicle decides the movement. In first cycle, the

one that found a landmine will also post the virtual landmine information to the center.

Thus, the other vehicles have enough time and virtual landmine information to decide to

move back (figure 5.10) to go around the landmine in the second cycle. The simulation

 81

results (figure 5.11) shows the virtual obstacle (landmine) and time control algorithms

have made the vehicle team, retaining a staggered formation, able to maintain a

breaching path, and go around the virtual obstacle (or landmine).

The team separates
after meet a landmine

Figure 5.9 The vehicle team separates while meeting a landmine

The team moves
back and tries to
go around the
landmine (virtual
or not)

Figure 5.10 The time control algorithm has made the vehicle able to move back while
meeting a landmine

The team can move in
the same direction to go
around the landmine
(virtual or not)

Figure 5.11 The time control algorithm has made the vehicle able to go around the
virtual landmine

 82

CHAPTER 6

ANALYSIS OF EXPERIMENTAL RESULTS AND DISSCUSSION

This chapter will represent the experimental results of different scenarios of

Humanitarian Minefield Reclamation (HMR) and Military minefield breaching (MMB).

In particular, this chapter will illustrate how a MiCAT system is used to conduct a

meaningful analysis of the scenarios. All search scenarios that are mentioned in

previous chapters are integrated into an Excel application to provide MiCAT users a

friendly interface to select their intended minefield search scenario (figure 6.1).

The users can input the number of simulated landmines or obstacles to simulate

in order to obtain their desired complexity of the minefield. The other information like

number of lanes, number of simulated vehicles, or landform transition information can

also be specified in the Excel interface to a desired simulated minefield size (figure 6.2).

In addition, the users can also choose to design a simulated minefield with randomly

assigned landmine and obstacle locations by inputting the parameters of random seeds.

Alternatively, they can specify the value of the desired simulated object at the absolute

location of Excel interface (figure 6.3). Each desired simulated object is represented by

different values. The value of “1” represents a stone, “2” represents the tree, and “3”

represents a landmine. This interface also allows the users to generate a random and

desired simulated landform at the specified locations by selecting “Randomly” and

“Manually” options at the same time. In order to build a specified landform, the user

 83

may also need to specify a clear spot at an absolute position. The value of “5” is to

makes sure that a position has no landmine or obstacle. The information and data that

represents the intended simulated minefield search scenario will be loaded through

Excel VBA via WITNESS®WCL commands without having to modify the underlying

simulation code. Then the intended simulated minefield search scenario will be loaded

in WITNESS® for the user to simulate (figure 6.4). The simulation results are also

generated in Excel to produce the summary reports (figure 6.5). The findings of the

experiments will be analyzed and discussed in the following sections.

Figure 6.1 MiCAT selection interface

Figure 6.2 Parameters input interface

 84

Figure 6.3 Obstacle (or landmine) Locations Input Interface in Excel

Figure 6.4 The intended simulated minefield search scenario is loaded

Figure 6.5 Data summary report

 85

6.1 Examples of MiCAT Use Scenarios

This section will describe the simulation results by giving a specific

configuration of mine detection resources to determine the search time, number of mine

detection vehicles destroyed, and the amount of steps taken (includes the amount of

steps that each vehicle has taken and the amount of total searches taken) in the search

area. A series of HMR simulation cases are tested within a simulated minefield of 14

lanes with 100 cells in length.

6.1.1 Analysis of Mine Detection Sensor Effectiveness

Three UGVs are assigned to perform the mine detection task. A high

complexity minefield is simulated. This experiment assumes a high complexity

minefield contains about 10% of the obstacles and landmines, and 70% of them are

landmines. This experiment assumes that the total process of time to move from one

cell to the next is 0.5 minutes. The vehicle process time for each additional location

search is 0.5 minutes. This experiment also assumes the vehicle will use metal detector,

GPR, IR, and NQR sensors if needed. The process time of a metal detector is 0.5

minutes. The process time of a GPR sensor is 1 minutes. The process time of an IR

sensor is 2 minutes. The process time of a NQR sensor is 3 minutes. The mine sensor

detection probabilities of 85%, 90%, and 100% are then tested separately. The results

found when running the simulations based on these assumptions above are shown in

Table 6.1.

The comparison between the detection probability and the number of searches

taken is shown in Table 6.2. These experiments show that Robot2 is destroyed at the

 86

detection probability of 90%, and Robot1 and Robot2 are destroyed at the detection

probability of 85%. Because the surviving vehicles in the HMR model are designed to

assume the tasks of those that have been destroyed, the simulation results demonstrate

that the proportion of work required to complete the HMR task shifts to the remaining

vehicles. The mine detection tasks of Robot1 and Robot2 increase about 30% from the

detection probability of 100% to 90%. The mine detection tasks for Robot1 increase

about 50% and increases about 11% for Robot2 from the detection probability of 100%

to 85%. These experiments demonstrate that the total search time depends on how many

tasks that the survival vehicles have to preform. They show the total search time

increases 30% from the detection probability of 100% to 90%, and 50% from the

detection probability of 100% to 85%.

Table 6.1 The Amount of Searches and Time taken at Different Probabilities of Mine

Sensor Detection
Detection Probability 100% 90% 85%
Number of Destroyed Robot 0 1 2
Number of Undetected Mine 0 2 3
Robot Name\\ Researches
R1 521 713 990
R2 515 715 447
R3 514 220 220
Total Searches 1550 1648 1657
Search Time 658 925 1267

Table 6.2 The Running Results Comparison at Different Probabilities of Mine Detection

Sensor
Rob\Probability From 100% to 90% From 100% to 85%
R1 Searches Increases 30% Increases 50%
R2 Searches Increases 28% Increases 11%
R3 Searches Reduces 47% Reduces 47%
Total Searches Increases 4% Increases 5%
Finish Time Increases 30% Increases 50%

 87

Based on the above simulation results, figure 6.6 shows the search time has

significantly increases when the probability of mine sensor detection is low. As the total

mine detection task is fixed, these experiments show that the amount of total searches

taken using different detection probabilities of mine sensor has some differences (figure

6.7). The simulation representation results are shown in figure 6.8 (the different colors

represents the portions of the minefield searched by different vehicles). If the vehicles

have a detection probability of 100%, the mine detection vehicles will search equal

areas (figure 6.8(A)). If the detection probability is lower, the vehicles have a higher

probability of being destroyed earlier. The search tasks are then reassigned after one is

destroyed (figure 6.8(B)).

Figure 6.6 The search time increases when using lower mine detection sensor

Figure 6.7 The amount of total searches taken is a slight difference

 88

Figure 6.8 Simulation running results at detection probabilities of (A) 100% (B) 90%
 (A) (B)

6.1.2 The Impact of Minefield Complexity on Search Performance

This section also assigns three UGVs to perform the mine detection task. This

experiment assumes the vehicles have all the same configurations as shown in section

6.1.1. Different minefield complexities are tested: Normal, Medium, and Complex. This

experiment also assumes that a high complexity minefield contains about 3% obstacles

and 7% landmines. Medium complexity minefields contain 3% obstacles and 3%

landmines. While Low complexity minefields contain about 2.4% obstacles and 0.6%

landmines. The sensor detection probability of 85%, 90%, and 100% are tested

separately in the different types of minefields. The following graphs demonstrate the

simulation running results based on the assumptions above. Figure 6.9 shows the

comparison between using different probabilities of mine detection sensors to search the

same type of simulated minefield. Figure 6.10 shows the comparison results of using

the same mine detection sensor to search the different types of simulated minefields.

Figure 6.9 (A) and (B) shows that there is little difference in the amount of total

searches and time taken with different mine detection probabilities sensors within a low

complexity minefield. Figure 6.9 (A) shows the amount of total searches taken increases

from the detection probability of 100% to 85% when searching in all levels of minefield

complexity. This is because the surviving vehicles will move to the place where a

 89

vehicle is destroyed. This extra activity also causes the average search time to increase,

especially when the search is taken in the high complexity minefields (figure 6.9(B) and

6.10 (B)). This is because there are more landmines in the higher complexity minefields.

A vehicle can be destroyed quickly leaving a greater unsearched area. Figure 6.11

shows that as the sensor detection probability falls, the disparity in the amount of work

accomplished by each vehicle increases.

 (A) (B)

Figure 6.9 Simulation running results of (A) total searches (B) time taken at the
different types of mine sensor

 (A) (B)

Figure 6.10 Simulation running results of (A) total searches (B) time taken at the
different types of minefield

 90

 (A) (B)

Figure 6.11 Simulation running results for each vehicle when using different type of
mine sensors within (A) High (B) Medium complexity minefield

6.1.3 Impact of the Number of Mine Detection Vehicles Used on Search Time

 This section investigates the effects of different numbers of mine detection

vehicles have on the total time required to perform HMR activity. In order to reduce the

variation, the probability of detection is fixed at 100%. At the beginning of the

simulation, the desired number of simulated vehicles is specified in the Excel interface.

MiCAT can assign the desired number of simulated vehicles to the minefield

automatically. The results show that the difference in the number of total searches taken

in using a different number of mine detection vehicles on the mine detection task has

some differences (figure 6.12(A)). The total processing time taken is much less when

using more vehicles on the mine detection tasks (figure 6.12(B)). There is a small

increase in the total number of searches taken when using the same number of vehicles

to perform the search tasks in a higher complexity minefield. The reason is that the

simulated vehicle will need to search more times in order to go around more obstacles

and landmines in a higher complexity minefield than in a lower complexity minefield.

 91

 (A) (B)

Figure 6.12 (A) the amount of total searches (B) total search time taken, when using
different number of vehicles within different type of simulated minefield

6.2 The Use of MiCAT for HMR and MMB System Design

The purpose of this MiCAT application example is to demonstrate the use of the

tool to support HMR and MMB System Designs. This will demonstrate the potential for

this class of tool to determine the appropriate mine detection resources required to

accomplish a specific HMR or MMB task with a specific period of time.

For the purpose of this experiment we assume the mine detection vehicles are

operating with 100% accurate mine detection sensors within a medium complexity

minefield of 14 lanes; each lane is 100 cells in length. The process time to move from

one cell to the next is 0.5 minutes. The vehicle process time for each search is 0.5

minutes. This experiment also assumes the vehicle will use a metal detector, GPR, IR,

and NQR sensors. The process time of a metal detector is 0.5 minutes. The process time

of a GPR sensor is 1 minute. The process time of an IR sensor is 2 minutes. The process

time of a NQR sensor is 3 minutes. The total sensor process time is, therefore, 6.5

minutes if all of the sensors are used for each search. If only one vehicle is assigned to

the search, the estimated time taken is about 9100 (=14*100*6.5) minutes. Therefore, if

 92

three vehicles are assigned to search the minefield, the estimation of the time taken

would be about 3033 minutes. The simulation results show that the amount of total

searches and time taken are 1555 searches and 3882 minutes when three vehicles are

assigned.

The above simulation search time is greater than that provided by our simple

numeric estimation. This is because the vehicle will need to take more time to search if

it finds any obstacle or landmine. This discrepancy illustrates the potential limitations of

using simple calculations to predict the amount of resources required to accomplish a

given demining task within a specified time and the potential value of a simulation tool

like MiCAT to provide higher fidelity estimates of the resources required.

Since three vehicles were assigned in the previous test, total process time taken

when using only one vehicle is about 11649 (=3882*3). Therefore, if the search task has

to be finished in 2500 minutes, a prediction of the number of required mine detection

vehicles will be five vehicles (11649/2500=4.6). The simulation result (figure 6.13)

corresponds to this prediction and shows that the actual process time is 2221 minutes

when using five vehicles.

Figure 6.13 The trend line of the time taken

 93

6.3 The Use of MiCAT for the Comparison of HMR and MMB Strategies and
Technologies

6.3.1 Evaluation of Various Point-to-Point (P2P) Wave Deployment Strategies for HMR
Operations

This section will compare two multi-wave strategies for the Humanitarian

Minefield Reclamation (HMR) scenario that are mentioned in section 4.3. The two

strategies are listed below:

1. Wait for the Multi-Vehicle Wave to complete its search activities

2. Start working right after the Multi-Vehicle Wave begins its search

This section assumes the use of two separate waves of mine detection resources.

The first wave would consist of multiple mine detection resources performing an entire

sweep of the search area. It is envisioned that this first wave of mine detection resources

would be fast and relatively inexpensive. An example of this type of sensor might be the

conventional metal detector. When limited to the location of high metal content mines,

conventional metal detectors have good detection probabilities. These sensors, however,

suffer from a high probability of false-positive errors due to the fact that they are not

able to distinguish between a stray piece of metal debris and the metal contained in a

mine. To reduce the impact of these false-positive errors, a second wave of more

discriminating mine detection resources can be deployed to determine if the location

identified by the metal detector actually contains a mine or a random piece of metal.

This second wave of mine detection resources might utilize sensors that are slower and

are more costly. This second wave would not attempt to completely re-search the

minefield but would perform a point-to-point search, returning to the locations

 94

identified by the first wave of sensors and accessing whither or not the location actually

contains a mine.

The study presented below assumes the vehicles in Multi-Vehicle Wave only

have a metal detector. The process time to move from one cell to the next is 0.5 minutes

in the Multi-Vehicle Wave. The process time of a metal detector is assumed to be 0.5

minutes. The P2P Wave vehicles will carry highly capable mine detectors. The process

time to move from one cell to the next is also 0.5 minutes, if the P2P Wave vehicle does

not need to use the highly capable detectors. Otherwise, the total process time is 6.5

minutes. In order to reduce the variation, 100% probability of detection sensor is

assumed in these experiments. A medium complexity minefield is also assumed. The

simulation results are generated to figure 6.14 (A) and (B) based on the above

assumptions. The finish time between the first and second strategies shows a great

difference. These preliminary experiments run within MiCAT indicate that the time lost

due to waiting for the completion of the previous wave more than consumes any

timesaving, by using optimal vehicle assignments that require a predefined set of route

locations. However, the simple load balancing strategies that handle the dynamic

definition of route locations permit the P2P wave to begin right after the previous wave

starts its search can save the waiting time than using an optimal vehicle assignment.

However, figure 6.14(B) shows that the number of search steps by both methods is very

similar because the minefield size is fixed.

 95

 (A) (B)

Figure 6.14 (A) The amount of time (B) searches taken, between different multi-wave
strategies

6.3.2 Evaluation of Various Point-to-Point (P2P) Wave Deployment Strategies for
MMB Operations

Section 6.3.1 has compared two multi-wave strategies for the Humanitarian

Minefield Reclamation (HMR) scenario. This section will make a comparison between

different strategies for the Military minefield breaching (MMB) scenario. This section

assumes only a metal detector is carried on the vehicles in the Multi-Vehicle Wave of

MMB scenario. The total processing time to move from one cell to the next is assumed

to be 0.5 minutes. This section also assumes the total process time to move from one

cell to the next is 0.5 minutes when the P2P Wave vehicle only uses a metal detector. If

the P2P Wave vehicle needs to use the highly capable detectors, the process time is 6.5

minutes. Two strategies are listed below:

1. Wait for a breaching path is to be completely determined

2. Start working right after the Multi-Vehicle Wave starts its search

The results show that there is a significant difference in the search time (figure 6.15 (A))

between the first and second strategies but not much difference in the number of

searches performed (figure 6.15 (B)). It also proves that the time consumed on the

 96

searching task can be reduced if the Point-to-Point Wave and the Multi-Vehicle Wave

can work simultaneously.

 (A) (B)

Figure 6.15 (A) The amount of time (B) searches taken, between different multi-wave
strategies of MMB scenario

6.3.3 Evaluation of the Deployment of a Single Wave of High Capable Vehicle or Using
Multiple Waves of Heterogeneous Vehicles

Single wave and multiple waves are addressed in this paper. The single wave

only uses highly developed vehicles to search the minefield. If the multiple-wave

strategy is used, the first wave will use simpler mine detection vehicles, and the second

wave will use highly developed vehicles to search for possible landmines. A simpler

mine detection vehicle only has a metal detector. This experiment assumes that each

highly capable mine detection vehicle has a metal detector, a GPR sensor, an IR

detector, and a NQR sensor. Different experiments are simulated for the Humanitarian

Minefield Reclamation (HMR) scenario. The process of time for each vehicle depends

on its carried sensors. It assumes the total time from moving one cell to the next cell is 1

minute when the vehicle uses only a metal detector. This section also assumes the

process time of these sensors is the same as mentioned in the section 6.1.1. Thus, if the

vehicle needs to use the highly capable detectors, the process time of one type of

vehicle is 6.5 minutes.

 97

Figure 6.16 The search time comparison between a single and multiple waves

The simulation results show that using the multiple-wave strategy is better than using a

single-wave strategy. This P2P strategy assumes that the vehicle starts working right

after the Multi-Vehicle Wave. A conclusion can be made from these observations; the

search time is saved because a multiple-wave strategy can distribute the workload more

efficiently.

6.4 The Use of MiCAT to verify HMR and MMB Simulation Algorithm

6.4.1 The Development of Multi-Vehicle Control Algorithm

This paper has mentioned two types of strategies to maintain the staggered

formation team: virtual and non-virtual. Virtual landmine (or obstacle) strategy will

make the dependent vehicle team follow the other team’s movement in order to

maintain a breaching path with no gaps. The Non-Virtual landmine strategy is used by

an independent vehicle team. They are independent and will not interact with other

vehicles.

Figure 6.17 (A) shows the simulation results for a vehicle team that uses a

virtual object strategy. It can hold a path width because the rear vehicle can cover the

 98

gap between front vehicles. However, without the coordination between the vehicle

members, the vehicles do not know where they have to cover the gap or move to the

same direction to maintain the breaching path width (figure 6.17 (B)). If the military

uses the Non-Virtual object strategy and expects to find a breaching path concerning the

path width, it will fail to meet the expectation. On the other hand, the independent

vehicle team can only carry a simpler and more cost effective arithmetic unit than the

dependent vehicle team because they do not need to coordinate with each other while

performing the obstacle avoiding behavior.

Breaching Path is maintained Breaching Path is not maintained

 (A) (B)
Figure 6.17 The Virtual (A) and Non- Virtual obstacle (B) strategy

6.4.2 The Development of Vehicle Re-Tasking Algorithm Response to Vehicle Loss

This research has developed an algorithm that is used to reassign the search task

whenever a vehicle is lost. This section proves that the supporting strategy increases the

percent of area coverage. The mine detection probability of 65% and 60% are assumed

in this section. The results show that the reassign task strategy could cover almost 100%

of the search task (figure 6.18 & 6.19 (B)). If the reassign task strategy is not used, there

are still 28% uncovered (figure 6.18(A)) at probability of 65% and 45% uncovered

(figure 6.19(A)) at probability of 60%. From these results, this paper found that when

the vehicle carries less capable detection sensors, it will be destroyed more quickly.

 99

Therefore, there is a significant difference in the coverage rate when using lower mine

detection probability.

About 28% of area is not covered The area is almost 100% covered

Figure 6.18 The complete coverage search task at detection probability of 65% (A)
Non- Support (B) Reassignment Support

 (A) (B)

About 45% of area is not covered The area is almost 100% covered

Figure 6.19 The complete coverage search task at detection probability of 60% (A)
Non- Support (B) Reassignment Support

 (A) (B)

 100

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation has presented several demining strategies. A Mine Clearing

Analysis Tool (MiCAT) is used to analyze of various automated mine clearing

technologies. The preliminary work on MiCAT, presented above, has allowed users to

dynamically specify the characteristics of the mine detection problem. Therefore,

through the EXCEL interface, one can use MiCAT to evaluate the potential of

developing parameterized algorithms.

The major approaches to demining strategies are:

 Breach Path Verification with a Scout Vehicle - The simulation prototype of a

scout vehicle can determine if a proposed breaching path is viable. This resource

can scan the surface of the minefield to detect physical obstacles and determine of

a breach path of the required width can be found. The breach path verification’s

search algorithm has been expanded to include the ability to identify simulated

surface obstacles out to the limits of the required breach lane width to support a

given breach formation.

 Humanitarian Minefield Reclamation (HMR) – As a part of this research, HMR

modeling and vehicle control algorithms have been developed that allow simulated

 101

search vehicles to behave in a way that is consistent with how we would like the

proposed autonomous mine detection vehicles to behave. The simulated vehicles

will now move back and search the areas of the simulated minefield that were

originally blocked by large formations of mines or obstacles. The HMR simulation

algorithms are expanded to handle the allocation of multiple search vehicles in a

manner that balances the search area assigned to each vehicle. The algorithms will

also re-balance the work load of the vehicle team if a vehicle in the team is

destroyed or malfunctions.

 Military Minefield Breaching (MMB) – Algorithms for the MMB simulation

prototype have been developed that model a team of search vehicles that work

together side-by-side, to search a breach lane of a specified width. We assume that

the vehicles that will be expected to follow this breach lane will not have a zero-

turn radius and consequently will not be able to turn instantaneously. To

accommodate this limitation, the MMB simulation logic was enhanced to increase

the search area evaluated by the team of robotic mine detection sensors when the

breach path changes directions.

 Point-to-Point (P2P) Multi-Pass Mine Detection Strategies - One of the objectives

of this research was to produce a tool that could evaluate different demining

strategies and technologies. One of the strategies of interest was the use of multiple

waves of mine detection resources that possess different capabilities. In this

scenario a second wave of vehicles would reevaluate locations that a previous

wave of vehicles has identified as having a significant probability of containing a

 102

mine. To support this scenario, this research has developed simulation logic that

models Point-to-Point search strategies. Different types of algorithms were

developed to allocate multiple mine detection vehicles to search a series of high-

probability mine locations. This work evaluated the application of optimized

search location assignment strategies that require a prior knowledge of the set of

desired search locations. This work also investigated the use of heuristics-based

assignment strategies that operate without a prior knowledge of the required search

locations. The implementation of the algorithms that model these two competing

Point-to-Point search location strategies within the MiCAT has also allowed the

performance of various mine detection systems using these two strategies to be

compared.

 A key feature of any simulation tool is its ability to be quickly modified to meet

the characteristics and constraints of multiple system scenarios. Over the course of

this work, considerable effort has been made to ensure the generality of the

proposed MiCAT system. The MiCAT prototype provides a form-based operator

interface that allows the user to select and parameterize the specific demining

scenario they wish to investigate without directly modifying any of the simulation

code. The MiCAT interface also allows the placement of mines and obstacles in

the simulated minefield to be determined randomly or to be specified explicitly by

the user. This work has also tackled additional problems that in the beginning of

this effort appeared to limit the generality of this work. In our earliest attempts to

simulate minefield demining operations, there was an implicit assumption that the

 103

smallest area of land that could be searched was the same size of the search vehicle.

This assumption greatly simplified the early simulation logic development effort

but would preclude our ability to compare systems that offered different physical

sizes of sensor arrays. We have expanded our algorithms to allow our search

vehicles to be a whole number of minefield “pixels” wide. Our early simulation

models assumed that our minefields were rectangular in shape that could be easily

represented as a matrix of minefield cells or pixels. The MiCAT prototype can now

vary the shape of the search area by shifting the location of the minefield cells

within the minefield display. This work has also investigated the modeling of

alternative search team configurations. Earlier work simply modeled a team of

search vehicles as a line of vehicles moving side-by-side across a search area. In

reality, however, vehicles searching in this manner will most likely leave a small

gap of unsearched ground between them due to their simple desire not to collide

into each other during search operations. An alternative search wave formation

would consist of two staggered lines of search vehicles, with the second line of

vehicles positioned in such a way as to cover the gaps between adjacent vehicles in

the first lane. Simple search vehicle formations like the staggered multi-line

formation described above have been simulated in MiCAT. This has been

challenging due to the coordination required of all the members of the simulated

search team. Team coordination strategies such as the “Virtual Obstacle” strategy

have been developed to ensure that the simulated search vehicles move as a

coordinated team.

 104

The primary objective of this research was to explore the feasibility of creating a

discrete-event simulation-based tool that could support the analysis and comparison of

various mine detection strategies and technologies. The MiCAT prototype system is

offered as an existence proof that this class of tool can be created and that the tool can

be flexible enough to support the meaningful analysis of alternate demining strategies

and technologies.

7.2 Future Work

This dissertation has developed a Mine Clearing Analysis Tool (MiCAT) to

determine if it is possible to represent or model the proposed demining strategies for

humanitarian minefield reclamation or military minefield breaching applications.

MiCAT has also supported the analysis of various mine detection strategies and

technologies. This research will continue to explore different implementations in mine

detection strategies and technologies.

In addition to exploring various strategy possibilities, some of the developing

parametric algorithms have to be optimized. The possibilities are listed below:

 The current HMR search algorithms have reduced the occurrence of unsearched

areas, not only at the time meets large obstacles (or clusters of mines) but also the

time one of the vehicles is destroyed. A parameter tuning of the HMR search

algorithms will be explored to make the vehicles able to achieve 100% search in

different minefield environments.

 105

 The current Scout and MMB search algorithms are able to support breach troop

formation. In order to maintain the minimum turning radius, the Scout search

algorithms have defined a scan distance parameter to support the searching of

multiple minefield cells prior to each vehicle move. In the MMB search algorithm,

a distance parameter is defined to make the vehicles go back to maintain the

minimum turning radius if a landmine or obstacle blocks the path. However, the

search algorithms limit the lane width parameter to an odd number of lanes. The

future work will explore the feasibility of developing an algorithm that allows a

flexible lane width parameter and an optimum distance parameter.

 In order to provide 100% coverage of the planned breach path, the current Scout

and MMB search algorithms will make the coordinated team of vehicles to re-

define a breach path if a mine or obstacle is detected. However, if it is not able to

re-define a breach path, the current Scout and MMB search algorithm will make

the vehicles stop to search. The future work will make the vehicles able to explore

an alternative breach path if a detected mine can be identified for removal or

destruction by subsequent MMB resources.

 The current P2P search algorithms are capable of allocating multiple mine

detection vehicles to the high-probability locations within the simulated minefield.

At this time, the P2P vehicles move within a limited area. The more complex work

assignment of vehicle routing optimization techniques will be investigated, in

order to optimize the problem of the increasing number of lanes of the simulated

minefield and mine detection vehicles.

 106

 This research has only represented a small patch of the simulated minefield. The

minefield extensions of a steeper slope of a minefield problem and a turning

around radius whenever the vehicle following the boustrophedon path from one

piece of the minefield to another will continue to be explored in future work.

 Currently, MiCAT uses simple sensor detection logic. More advanced sensor

fusion mechanisms (e.g. belief function or Dempster-Shafer theory) will be

investigated to determine how real-world mine detection activities affect the

minefield search.

 To identify and work with experts in the HMR community and the MMB

community to obtain realistic performance information of actual mine detection

equipment, so that we can validate the MiCAT tool.

 Plan to apply MiCAT of other applications, like: Military Convoy Risk

Assessments for Improvised Explosive Devices.

 107

REFERENCES

Acar, E. U., Choset, H., Zhang, Y., et al. (2003). “Path Planning for Robotic De-mining:
Robust Sensor-based Coverage of Unstructured Environments and Probabilistic
Methods.” The International Journal of Robotics Research, 22(7-8), 441-466.

Alvarenga, G. B., Mateus, G. R., and de Tomi, G. (2007). “A genetic and set
partitioning two-phase approach for the vehicle routing problem with time
windows.” Computers & Operations Research, 34(6), 1561-1584.

Arkin, R. C., and Balch, T. (1998). “Cooperative Multiagent Robotic Systems.”
Artificial Intelligence and Mobile Robots, D.Kortenkamp, R.P. Bonasso, and R.
Murphy, eds., MIT/AAAI Press, Cambridge,MA.

Balch, T., and Arkin, R. C. (1995). “Motor Schema-based Formation Control for
Multiagent Robot Teams.” Proceedings of the First International Conference on
Multiagent Systems, San Francisco.

Balch, T., and Arkin, R. C. (1998). “Behavior-based formation control for multirobot
teams.” Robotics and Automation, IEEE Transactions on, 14(6), 926-939.

Balch, T., and Hybinette, M. (2000). “Social potentials for scalable multi-robot
formations.” Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE
International Conference on, ,San Francisco, CA, 1, 73-80.

Berger, J., Barkaoui, M., and Boukhtouta, A. (2007). “A hybrid genetic approach for
airborne sensor vehicle routing in real-time reconnaissance missions.”
Aerospace Science and Technology, 11, 317-326.

Bonabeau, E. (1999). Swarm intelligence : from natural to artificial systems / Eric
Bonabeau, Marco Dorigo, Guy Theraulaz., New York ; Oxford : Oxford
University Press.

Bräysy, O. (2001). “Genetic Algorithms for the Vehicle Routing Problem with Time
Windows.” Internal Report STF42 A01021, SINTEF Applied
Mathematics,Department of Optimization, Norway.

Bräysy, O., and Gendreau, M. (2002). “Tabu Search heuristics for the Vehicle Routing
Problem with Time Windows ” Sociedad de Estadistica e Investigaci6n
Operativa,TOP, 10(2), 211-237.

Brown, D. T. (2001). “Routing unmanned aerial vehicles while considering general
restricted operating zones,” Air Force Institute of Technology, Wright-Patterson
Air Force Base, Ohio.

Canada, F. A. (2005). “Canadian Landmine Fund Annual Report 2003-2004 ”, Canada's
Mine Action Archived Publications.

Cao, Y. U., Fukunaga, A. S., and Kahng, A. (1997). “Cooperative mobile
robotics:Antecedents and directions.” Autonomous Robots, 4, 7-27.

 108

Cassinis, R., Bianco, G., Cavagnini, A., et al. (1999). “Strategies for navigation of robot
swarms to be used in landmines detection.” Advanced Mobile Robots, 1999.
(Eurobot '99) 1999 Third European Workshop on,211-218.

Chapman, E., and Sahin, F. (2004). “Application of swarm intelligence to the mine
detection problem.” Systems, Man and Cybernetics, 2004 IEEE International
Conference on, 6, 5429-5434.

Chen, Q., and Luh, J. Y. S. (1994). “Coordination and control of a group of small
mobile robots.” Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on ,San Diego, CA, 3, 2315-2320.

Choi, E., and Tcha, D.-W. (2007). “A column generation approach to the heterogeneous
fleet vehicle routing problem.” Computers & Operations Research, 34(7), 2080-
2095.

Choset., H., and Pignon, P. (1997). “Coverage path planning: The boustrophedon
cellular decomposition.” Proceedings. International Conference on Field and
Service Robotics, Canberra, Australia.

Colon, E., Cubber, G. D., Ping, H., et al. (2007). “Integrated robotic systems
forHumanitarian Demining.” International Journal of Advanced Robotic
Systems, 4(2), 219-228.

Cook, D. J., Gmytrasiewicz, P., and Holder, L. B. (1996). “Decision-theoretic
cooperative sensor planning.” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 18(10), 1013-1023.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). “A unifid tabu search heuristic for
vehicle routing problems with time windows.” Journal of the Operational
Research Society, 52, 928-936.

Debenest, P., Fukushima, E. F., and Hirose, S. (2003). “Proposal for automation of
humanitarian demining with buggy robots.” IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1, 329-334.

Dollarhidea, R. L., and Agah, A. (2003). “Simulation and control of distributed robot
search teams.” Computers and Electrical Engineering, 29, 625-642.

Fruergaard-Pedersen, R. (2006). “Optimal demining using a swarm of low-cost robotic
units,” University of Arhus,Denmark.

Gelenbe, E., and Cao, Y. (1998). “Autonomous search for mines.” European Journal of
Operational Research, 108(2), 319-333.

Gooneratne, C. P., Mukhopahyay, S. C., and Gupta, G. S. (2004). “A Review of
Sensing Technologies for Landmine Detection: Unmanned Vehicle Based
Approach.” 2nd International Conference on Autonomous Robots and Agents,
Palmerston North, New Zealand.

Gribkovskaia, I., Halskau, s. O., Laporte, G., et al. (2007). “General solutions to the
single vehicle routing problem with pickups and deliveries.” European Journal
of Operational Research, 180(2), 568-584.

Habib, M. K. (2001). “Mine detection and sensing technologies-new development
potentials in the context of humanitarian demining.” The 27th Annual
Conference of the IEEE in Industrial Electronics Society, Denver,CO, USA, 3,
1612-1621.

 109

Habib, M. K. (2007). “Humanitarian Demining: Reality and the Challenge of
Technology -The State of the Arts.” International Journal of Advanced Robotic
Systems, 4(2), 151-172.

Harder, R. W. (2000). “A Java Universal Vehicle Router in Support of Routing
Unmanned Aerial Vehicles,” Air Force Institute of Technology, Wright-
Patterson Air Force Base, Ohio.

Healey, A. J. (2001). “Application of formation control for multi-vehicle robotic
minesweeping.” Decision and Control, 2001. Proceedings of the 40th IEEE
Conference on, 2, 1497-1502.

Hsu, H. C.-H. (2005). “Multi-Teams Formation Control for mobile robot ”, National
Chung Cheng University, Chia-Yi,Taiwan.

Hsu, H. C.-H., and Liu, A. (2005a). “Multiagent-Based Multi-team Formation Control
for Mobile Robots ” Journal of Intelligent and Robotic Systems, 42(4), 337-360.

Hsu, H. C., and Liu, A. (2005b). “Applying a Taxonomy of Formation Control in
Developing a Robotic System.” Tools with Artificial Intelligence, 2005. ICTAI
05. 17th IEEE International Conference on,3-10.

Hsu, H. C. H., and Liu, A. (2004). “Multiple teams for mobile robot formation control.”
Intelligent Control, 2004. Proceedings of the 2004 IEEE International
Symposium on, 168-173.

Hu, H., and Brady, M. (1997). “Dynamic global path planning with uncertainty for
mobile robots in manufacturing.” Robotics and Automation, IEEE Transactions
on, 13(5), 760-767.

Huang, W. H. (2000). “The minimal sum of altitudes decomposition for Coverage
algorithms.” Rensselaer Polytechnic Institute Computer Science Technical
Report, New York.

Kinney, G. W., Jr. (2000). “A Hybrid Jump Search and Tabu Search Metaheuristic for
the Unmanned Aerial Vehicle (UAV) Routing Problem,” Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio.

Kruusmaa, M. (2003). “Global Navigation in Dynamic Environments Using Case-
Based Reasoning.” Autonomous Robots, 14(1), 71-91.

Kumar, V., and Sahin, F. (2003). “Cognitive maps in swarm robots for the mine
detection application.” Systems, Man and Cybernetics, 2003. IEEE International
Conference on, 4, 3364-3369.

Li, F., Golden, B., and Wasil, E. (2006). “The open vehicle routing problem:
Algorithms, large-scale test problems, and computational results ” Computers
and Operations Research, , 34(10), 2918-2930

Liu, B., Zhang, R., and Shi, C. (2006). “Formation Control of Multiple Behavior-based
robots.” Computational Intelligence and Security, 2006 International
Conference on ,Guangzhou , 1, 544-547.

Ludwig, P. M. (2000). “Formation Control For Multi-Vehicle Robotic Minesweeeping,”
NAVAL POSTGRADUATE SCHOOL MONTEREY CA.

Milisavljevic, N., and Bloch, I. (2003). “Sensor fusion in anti-personnel mine detection
using a two-level belief function model.” Systems, Man and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, 33(2), 269-283.

 110

Milisavljevic, N., Bloch, I., and Acheroy, M. (2000). “Characterization of mine
detection sensors in terms of belief functions and their fusion, first results.”
Information Fusion, Proceedings of the Third International Conference on, 2,
THC3/15-THC3/22.

Mudigonda, N. R., Kacelenga, R., and Erickson, D. (2003). “The application of
Dempster-Shafer theory for landmine detection.” Proceedings of SPIE, 5099(1),
103-112.

Munirajan, V. K., Sahin, F., and Cole, E. (2004). “Ant colony optimization based
swarms: implementation for the mine detection application.” Systems, Man and
Cybernetics, 2004 IEEE International Conference on, 1, 716-721.

O'Rourke, K. P., Bailey, T. G., Hill, R., et al. (1999). “Dynamic Routing of Unmanned
Aerial Vehicles Using Reactive Tabu Search.” AIR FORCE INST OF TECH
WRIGHT-PATTERSONAFB OH.

Potvin, J.-Y., and Bengio, S. (1996). “The Vehicle Routing Problem with Time
Windows-- Part II: Genetic Search.” INFORMS Journal on Computing, 8(2),
165-172.

Potvin, J.-Y., Garcia, B.-L., and Rousseau, J.-M. (1996). “The Vehicle Routing Problem
with Time Windows -- Part I: Tabu Search.” INFORMS Journal on Computing,
8(2), 158-164.

Prins, C. (2004). “A simple and effective evolutionary algorithm for the vehicle routing
problem.” Computers and Operations Research,, 31(12), 1985-2002.

Rajasekharan, S., and Kambhampati, C. (2003). “The current opinion on the use of
robots for landmine detection.” Robotics and Automation, Proceedings. IEEE
International Conference on, 3, 4252-4257.

Ramaswamy, K., Agarwal, S., and Rao, V. S. (2000). “Data fusion and evidence
accumulation for land mine detection using the Dempster-Shafer algorithm.”
Proceedings of SPIE, 4038(1), 865-876.

Russell, M. A., and Lamont, G. B. (2005). “A Genetic Algorithm for Unmanned Aerial
Vehicle Routing.” Proceedings of the 2005 conference on Genetic and
evolutionary computation, , Washington DC,1523 - 1530

Ryan, J. L. (1998). “Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial
Vehicle Simulation,” Air Force Institute of Technology (AU), Wright-Patterson
Air Force Base, Ohio.

Rybski, P. E., Papanikolopoulos, N. P., Stoeter, S. A., et al. (2000). “Enlisting rangers
and scouts for reconnaissance and surveillance.” Robotics & Automation
Magazine, IEEE, 7(4), 14-24.

Shafer, G. (1990). Readings in Uncertain Reasoning, Morgan Kaufmann
Shaw, P. (1998). “Using Constraint Programming and Local Search Methods to Solve

Vehicle Routing Problems ” Proceedings of the 4th International Conference on
Principles and Practice of Constraint Programming 417 - 431

Tavakkoli-Moghaddam, R., Safaei, N., Kah, M. M. O., et al. (2007). “A New
Capacitated Vehicle Routing Problem with Split Service for Minimizing Fleet
Cost by Simulated Annealing.” Journal of the Franklin Institute, 344(5), 406-
425.

 111

Wong, S. C., and MacDonald, B. A. (2003). “A topological coverage algorithm for
mobile robots.” Intelligent Robots and Systems, Proceedings. IEEE/RSJ
International Conference on, 2, 1685-1690.

Zhang, Y. (2004). “Hierarchical spatial model and Monte Carlo Analysis of mine
locations in robotic land-mine search,” Carnegie Mellon University,
Pennsylvania.

Zhang, Y., Schervish, M., Acar, E. U., et al. (2001). “Probabilistic methods for robotic
landmine search.” Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on, 3, 1525-1532.

Zhang, Y., Schervish, M., and Choset, H. (2002). “Probabilistic hierarchical spatial
model for mine locations and its application in robotic landmine search.”
Intelligent Robots and System, 2002. IEEE/RSJ International Conference on, 1,
681-689.

 112

BIOGRAPHICAL INFORMATION

The author received her doctorate in Industrial Engineering from The University

of Texas at Arlington. She received her M.S degree in Logistics from The University of

Texas at Arlington and B.S. degree from National Cheng Kung University.

The author has participated in several software applications when she worked as

a software engineer. These projects include: Airline Timetable Management System,

Air Traffic Flow Statistic/ Analysis System, and Over flight charging system for Civil

Aeronautic Administration, Taiwan, and Land Administration System for Dept of Land

administration, Taiwan. The author is currently interested in acquiring knowledge of

applied statistics, applied operation research and logistics to the area of simulation,

software engineering, and system and data analysis.

 113

