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ABSTRACT

ENHANCING JSWAT FOR MONITOR-BASED EXECUTIONS

ARUN RAMANI, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Jeff Lei

Concurrent programs contain more than one thread that execute concur-

rently to accomplish a particular task. Since the threads in a concurrent program

work together to accomplish a common goal, they share the data, code, resources

and address space of their process. This reduces the overhead involved in creating

and managing the threads but leads to side-effects like race conditions, critical sec-

tion problem and deadlocks. There are several operating system constructs to solve

these issues such as locks, semaphores, monitors etc. Locks are associated with

each object to control access of shared resources. Semaphores can be described

as counters used to control access to shared resources. A monitor by definition

encapsulates shared data, all the operations on the data and any synchronization

required for accessing the data.

JSwat is a stand-alone graphical Java debugger front-end that uses the Java

Platform Debugger Architecture. It has features including sophisticated break-

points, colorized source code display with code navigator, byte code viewer, mov-

able display panels showing threads, call stack, visible variables and loaded classes,

command interface for more advanced features, and Java-like expression evalua-

tion, including method invocation. These advanced features make JSWAT an ideal

debugger for a Java concurrent programmer. The main disadvantage of concurrent
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programs is that they are extremely difficult to test and debug. This is because

multiple executions of a concurrent program with the same input may produce dif-

ferent results. This nondeterministic execution behavior creates several problems

during the testing and debugging cycle of a concurrent program.

To alleviate this problem to a certain extent this thesis proposes integrating

a visualization tool with JSWAT for viewing the status of the monitor and the

different threads in a concurrent program during runtime. The visualization will

be viewed in a panel in the graphical user interface of JSWAT. When concurrent

programmers view the status of the threads with respect to the monitor at runtime,

they can understand the working of the program better. Hence, they can easily

identify, analyze and rectify bugs in the program.

The tool parses the program to identify data pertinent to visualization such

as number of condition variables involved in a concurrent program and their names,

sections where threads interact with the monitor and the condition queues. These

sections are then mapped to their corresponding visual interpretations or rules.

The visualization rules decide how each action of the thread is depicted in the

visualization panel. This depiction also depends on the signaling discipline of the

monitor. The signaling disciplines are Signal-and-Continue, Signal-and-Urgent-

wait and Signal-and-exit. Based on the method’s executed by the thread and

signaling discipline, the visualization panel decides if a particular thread has to

be placed at the entry queue, reentry queue, a condition queue or the monitor.

Therefore, the programmer can view the interaction among the threads and the

monitor in a particular execution and identify any bugs in the program easily. The

programmer can also set breakpoints in JSWAT and view the current status of the

threads at that point in the visualization panel.

This user-friendly visualization tool along with the feature-rich JSWAT de-

bugger aims to reduce the time and effort spent by Java programmers in testing

and debugging concurrent programs and hence increase their productivity.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Software testing and debugging are an integral part of the software develop-

ment life cycle. It is a well-known fact that in a project, more than half of time

and money is spent on testing and debugging. Even in a moderately sized software

development project involving sequential programming, programmers require de-

buggers with features such as line and method breakpoints, data tool tips, stop on

specific events etc.

Concurrent programs are much more complex to develop, test and debug

when compared to sequential programs. This is mainly due to the non-deterministic

execution behavior of concurrent programs. This nondeterminism is caused by un-

predictable rate of progress and sequence of execution of different threads. The

conventional testing and debugging practice is to repeatedly execute the program

to identify and fix programming errors. But in the case of concurrent program-

ming, repeated execution does not guarantee the same output for the same input.

This is because the sequence in which the threads interleave during execution may

not be the same.

Also, once an error is encountered, it is very difficult to reproduce the same

error again. This necessitates a debugger with special features catering to concur-

rent program developers. An important feature of such a debugger would be to

display graphically the status of threads during runtime.

Since concurrent programs are multithreaded in nature, it is necessary to

use software constructs to handle thread synchronization, communication, progress

and mutual exclusion. Some of the constructs are semaphores, locks and moni-

1
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tors. A monitor encapsulates shared data, all the operations on the data, and any

synchronization required to access the data. A monitor has separate constructs

for mutual exclusion and condition synchronization. In fact, mutual exclusion is

provided automatically by the monitors implementation, freeing the programmer

from the burden of implementing critical sections. Therefore, monitors are popular

among concurrent program developers. This thesis focuses on a visualization tool

to help developers in viewing how the different threads in their concurrent program

interact with the monitor and with each other. This would help the programmers

to understand the working of their program and to identify errors. At run time,

developers can view the threads present inside the monitor, entry queue, reentry

queue and condition queues. This visualization tool is integrated with a graphical

user interface Java debugger called as JSWAT [6]. So users can take advantage

of the various advanced features of the debugger apart from viewing the threads.

Using JSWAT, developers can set colorized breakpoints, watch specific variables

and methods, identify syntax errors, stop and start execution using appropriate

buttons and view threads, call stacks and visible variables. JSWAT uses Java

Platform Debugger Architecture [2] and is based on the Netbeans Platform.

1.2 Structure of the thesis

The thesis is structured as follows: Chapter 1 gives a brief overview of the

thesis work. Chapter 2 explains monitors and signaling disciplines. Chapter 3 deals

with JSWAT. Chapter 4 explains the Event Recognizer in detail. Chapter 5 deals

with the Visualizer and the Visualization Window. Chapter 6 explains about the

integrator that integrates the event recognizer and the visualizer. Chapter 7 deal

with the sequence of execution of the tool. Chapter 8 deals with the background

and related work for concurrent program testing and debugging. Lastly, Chapter

8 concludes with the goals achieved by this work.
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My contribution in this thesis work is to identify the conditional queues from

the user application. I also implemented a module to identity the events in the

user application that changes the state of the thread. These events are interpreted

by the visualization rules to visualize the threads. I helped in the design and

implementation of the visualization rules. Another important component that

I implemented is the synchronous queue [8]. This synchronous queue helps in

temporary storage of the events identified from the user program as well as in the

synchronization of the threads.



CHAPTER 2

MONITORS AND SIGNALING DISCIPLINES

2.1 Introduction to Monitors

In this chapter, the usage of monitors and signaling disciplines in concurrent

applications is explained. Concurrent applications [7] has multiple threads execut-

ing in parallel to accomplish a common goal. Since these threads share the CPU

and resources to achieve its goal, it becomes necesary to synchronize them.

Monitors act as a layer of abstraction, that encapsulates shared data, all

the operations on the data, and any synchronization required for accessing the

data. Monitors by default guarantee mutual exclusion, reducing the burden on the

programmers to implement critical sections and mutual exclusion.

2.2 Concurrent applications and use of monitors

A monitor is used for mutual exclusion and condition synchronization. An

object-oriented definition of a monitor is that a monitor is a synchronization object

that is an instance of a special monitor class. A monitor class defines private

variables and a set of public and private access methods. The variables of a monitor

represent shared data. Threads communicate by calling monitor methods that

access the shared variables. Monitors in general are associated with the following

to ensure mutual exclusion of critical section:

• Entry queue

• Critical section

• Conditional queues

4
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Figure 2.1 Monitor with entry queue and conditional queues

2.3 Mutual Exclusion

At any given time, only one thread can access the critical section. However,

the monitor itself provides this mutual exclusion. The entry queue and the condi-

tional queues are outside the critical section, and threads entering these queues do

not hold the critical section. When a thread intends to enter the critical section,

it first gets queued up in the entry queue. In the entry queue, all the threads

compete to enter the critical section. However, when there is already a thread in

the monitor accessing the critical section, other threads that are trying to enter the

monitor at that time are queued in a queue called conditional queue. The threads

in the entry queue execute a wait() method to wait on the conditional queue. The

threads that are waiting in the conditional queue are outside the critical section.

These threads should be woken up from the conditional queue to enter the moni-

tor. This is done by the thread that is currently accessing the critical section by

executing the methods notify() or notifyall().
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2.4 Monitor Toolbox for Java

Monitor toolbox [3] is a program that simulates the monitor construct. They

are classes that could be extended by regular Java classes. Once a regular java class

extends the monitor toolbox classes viz. monitorSC or monitor SU, the regular

class could act as a monitor class.

The regular class can act as a monitor class by doing the following;

• Extend class monitorSC or monitorSU

• Use operations enterMonitor() and exitMonitor() at the start and end of each

public method

• Declare as many conditionVariables as needed

• Use operations waitC(), signalC(), signalCall(), length(), and empty(), on

the conditionVariables

Though the simulated monitors are not easy to use or as efficient as the real

monitors, they have the following advantages:

• A monitor toolbox can be used to simulate monitors in languages that do

not support monitors directly. For example, as we show below, a monitor

toolbox allows monitors to be used in C++/Win32/Pthreads programs

• Different versions of the toolbox can be created for different types of signals.

Javas built-in monitors use SC signaling. An SU toolbox can be used to

allow SU signaling in Java

• The toolbox can be extended to support testing and debugging

It is because of the above three advantages, monitor toolbox is used to sim-

ulate the monitor class. The regular Java class extends monitorSC if the signaling

discipline adopted is Signal and Continue while it extends monitorSU if the sig-

naling discipline adopted is Signal and Urgent wait [1]. The signaling disciplines

are expained in details in the next section
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2.5 Condition Variables

Condition synchronization is achieved by conditional variable and methods

wait() and notify(). Condition variables are visualized as queue of threads waiting

for a condition to become true. Condition Variables are declared as

ConditionVariable cv;

A thread tries to enter monitor from the entry queue if the monitor is empty.

If the monitor is not empty, the thread executes cv.wait() to wait in the respective

condition queue.

2.6 Signaling Disciplines

Once a thread has been signalled from a conditional queue, the behavior of

the signaled thread depends on the signaling discipline chosen for the application.

This section explains the following signaling disciplines in detail:

• Signal and Continue

• Signal and Urgent Wait

• Signal and Exit

To understand the signaling disciplines, let us consider a classic example

of a multithreaded application Producer Consumer problem. Let us assume the

following:

• Buffer capacity is 1.

• Both the producer threads and consumer threads execute enterMonitor() [1]

method to enter the monitor.

• A producer can execute deposit() method and exit the monitor.

• A consumer can execute withdraw() method and exit the monitor.

• The condition variable associated with producers is notFull.

• The condition variable associated with consumers is notEmpty.

• Both the producer threads and consumer thread execute exitMonitor() method

to exit the monitor
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Figure 2.2 Entry queue with all threads populated

Let us assume that there are four threads P1, C1, C2 and P2 in the same

order in the entry queue. In the entry queue, these four threads compete to

enter the monitor. Since the monitor capacity is only 1, a deposit() method and

withdraw() method should alternate. The execution of the application is shown

below:

Now the buffer is empty and a producer is trying to enter the monitor. Since

the monitor is empty, a producer can enter the monitor and deposit.

Now P1 has entered the monitor and executed the deposit() method to make

the buffer value 1. After depositing, the thread P1 checks if the notEmpty condition

queue is empty or not. Since at this point, no consumer threads are waiting in

the notEmpty condition queue, the signalCall() method executed by P1 does not

have any effect. P1, then executes exitMonitor() method to exit the monitor. Now

C1 tries to enter the monitor. Since P1 has just deposited and made the buffer

value 1, the thread C1 can thus enter the monitor to execute withdraw() method

to make the buffer value 0 again.

After withdrawing, C1 checks if the notFull condition queue is empty or

not. Since, no producer is waiting at the notFull condition queue, the signal-
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Figure 2.3 Producer 1 deposited.

Call() method executed by C1 does not have any effect. Then C1 finally executes

exitMonitor() method to exit the monitor.

Now the buffer is empty again. Thread C2 tries to enter the monitor. Since

there is nothing to withdraw, C2 blocks itself in the notEmpty conditional queue.

Since the buffer is empty now and the monitor is empty, P2 enters the monitor

and deposits. Now P2 checks if the notEmpty condition queue is empty or not.

Since at this point, C2 is waiting in the notEmpty condition queue, P2 executes

notFull.signalCall() method to wake up C2.

Here is where signaling discipline comes into picture, the signalled thread

can either enter the monitor immediately or go to the entry queue to compete

again to enter the monitor. If the signaling discipline is Signal and Continue, the

signalled thread goes to the entry queue, or else the signalled thread enters the

monitor immediately. Each signaling discipline is explained in detail in the next

section.
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Figure 2.4 Consumer 1 deposited.

For now, let us assume that the signaling discipline is Signal and Continue.

So the signalled thread C2 joins the entry queue and then competes in the entry

queue to enter the monitor.

In this case, since there is no other thread in the entry queue and since a

producer just deposited into the buffer, C2 gets the chance to enter the monitor.

After withdrawing, the buffer will again be empty. Then C2 checks if notFull

condition queue is empty or not. Since no producer threads are waiting in the

notFull condition queue at this point, the notFull.signalCall() method executed by

C2 does not have any effect. Hence C2 then executes exitMonitor() to exit the

monitor.

In the following subsection, the SC, SU and SE signaling disciplines are

explained.

2.6.1 Signal and Continue

Signal and Continue is the default signaling discipline adopted by java mon-

itors. In this discipline, the thread waiting in the conditional queue, when awak-

ened, goes to the entry queue and competes in the entry queue to enter the monitor.

The above example adopts signal and continue signaling discipline. It is to be noted
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Figure 2.5 Consumer 2 executes wait() to wait in the conditional queue

that in the Fig. 2.6, the signalled thread C2 joins the entry queue and does not

immediately enter the monitor.

2.6.2 Signal and Urgent Wait

In this signaling discipline, the thread waiting in the condition queue, when

signalled, enters the monitor immediately. The signaler thread that wakes up

the thread goes to a special type of queue called re-entry queue and the signaled

thread enters the monitor immediately. After the signaled thread has completed

its operation, then it checks if the re-entry queue is empty or not. If the re-entry

queue is not empty then the thread in the re-entry queue gets more priority than

the threads competing in the entry queue and enters the monitor. When the re-

entry queue is empty, then the threads competing in the entry queue get the chance

to enter the monitor. This approach basically prevents thread barging.

Thread barging denotes the act of a thread trying to enter the monitor ahead

of the threads waiting before this thread to enter the monitor.
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Figure 2.6 Consumer 2 is signalled to enter the entry queue again

2.6.3 Signal and Exit

Signal and Exit is similar to that of Signal and Urgent Wait but for the fact

that when a thread executes the signal and exit() method, it does not go to the

re-entry queue. Instead, the signaling thread executing signal and exit() method

just exits the monitor. Hence the signal and exit() method is normally the last

line of code in the method. This Signal and Exit discipline could be imagined as

a special case of Signal and urgent wait.

2.7 Testing and debugging concurrent applications

Though multithreaded applications have considerable advantages, the most

important concern is testing and debugging them. Synchronization is the key

aspect of concurrent programming. Since monitors are used as one of the synchro-

nization constructs, monitors play an important role in concurrent programming.

Since a concurrent application is multithreaded, the output obtained during

one round of execution is not guaranteed for another round of execution with the

same set of inputs. Hence this makes testing concurrent applications even more

difficult. The basic approach of testing by running the application many times with
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Figure 2.7 Consumer 2 enters monitor

the same set of inputs to analyze a discrepancy does not work with multithreaded

applications.

Hence it becomes the responsibility of the programmers to write bug less code

when it comes to concurrent programming. Testing multithreaded applications can

thus becomes easier to an extent with the presence of a good debugger, which can

visualize the threads so that the user can understand the value and state of the

thread variables. JSWAT is one such Java debugger with lots of features explained

in detail in the next chapter.



CHAPTER 3

JSWAT

3.1 JPDA Architecture

JSwat [6] is a graphical Java debugger front-end, written to use the Java

Platform Debugger Architecture. JPDA [2] is a multi-tiered debugging architecture

that allows tools developers to easily create debugger applications. JPDA consists

of three layers:

• JVMDI - Java VM Debug Interface

• JDWP - Java Debug Wire Protocol

• JDI - Java Debug Interface

3.2 Components of JPDA Architecture

3.2.1 Debugee

The debuggee is the process being debugged, it consists of the application

being debugged.

3.2.2 Java Virtual Machine (VM)

This refers to the VM running the application being debugged. The VM

implements the Java Virtual Machine Debug Interface (JVMDI).

3.2.3 Back-end

The back-end of the debugger is responsible for communicating requests from

the debugger front-end to the debuggee VM and getting the response back. The

back-end communicates with the debuggee VM using the Java Virtual Machine

14
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Figure 3.1 JPDA Architecture

Debug Interface (JVMDI) and communicates with the front-end over a communi-

cations channel using the Java Debug Wire Protocol (JDWP).

3.2.4 Communications channel

The communications channel is the link between the front and back ends of

the debugger. The format and semantics of the serialized bit-stream flowing over

the channel is specified by the Java Debug Wire Protocol (JDWP).

3.2.5 Front-end

The debugger front-end implements the high-level Java Debug Interface

(JDI). The front-end uses the information from the low-level Java Debug Wire

Protocol (JDWP).

3.2.6 User Interface (UI)

The graphical user interface (GUI) provided serves as test harness and as a

starting point for the development of more complex GUIs. The example UIs are

clients of the Java Debug Interface (JDI).
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3.3 Debugger Interfaces

3.3.1 Java Virtual Machine Debugger Interface (JVMDI)

The JVMDI is a native interface implemented by the VM. It defines the

services a VM must provide for debugging including requests for information (for

example, current stack frame), actions (for example, set a breakpoint), and noti-

fication (for example, when a breakpoint has been hit). It also allows alternate

communication channel implementations.

3.3.2 Java Debug Wire Protocol (JDWP)

The JDWP defines the format of information and requests transferred be-

tween the debuggee process and the debugger front-end. It does not define the

transport mechanism. It allows the front-end to be written in a language other

than Java, or the debuggee to be non-native (e.g. Java).

3.3.3 Java Debug Interface (JDI)

The JDI is a java interface implemented by the front-end, that defines in-

formation and requests at a user code level. This interface greatly facilitates the

integration of debugging capabilities into development environments.

In this section, JSWAT debugger, its usage and its features are explained in

detail. Jswat is an open source graphical java debugger. It is based on the Java

Platform Debugger Architecture (JPDA). It is built in Netbeans Platform. Since

the Jswat debugger is a stand-alone debugger, it can be used without Netbeans as

well.

Some of the key features of JSWAT [6] are

• Sophisticated breakpoints

• Colorized source code display with code navigator

• Byte code viewer

• Movable display panels showing threads
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Figure 3.2 JSWAT GUI

• Call stack

• Visible variable and loaded classes

• Java-like expression evaluation, including method invocation.

The actual display areas within the main window are called as windows

themselves. These windows display the variables, threads, classes, breakpoints,

sessions, and so on. Most of the windows are not present by default. If we need

to see a specific display, then we need to drop down the Window menu and then

choose the window that we need to be displayed. Also, these windows are movable.

The user can have a window at any location within the main JSWAT window.

3.4 Usage and features of JSWAT

JSWAT could be used for any application with the following simple steps:

• Starting the Debuggee

• Setting the classpath and the sourcepath

• Setting breakpoints

• Stepping through code

• Display Variable values
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Figure 3.3 Launching JSWAT

3.4.1 Starting the Debuggee

To launch the debuggee, select Start from the Session menu (or click on

the corresponding toolbar button). The name of application’s main class and the

classpath that is normally used to launch your application should be provided to

launch the application. As soon as the debuggee is started, it goes to the pause

state for the user to signal it to start. To start the debuggee, the user should select

continue from the sessions menu. The debuggee will continue to run until it hits

a breakpoint or it exits normally.

3.4.2 Setting the classpath and the sourcepath

The classpath has to be set to run any application in JSWAT. This classpath

can either be set while launching the application or by selecting Settings from the

Settings menu.

While launching the application by clicking on the start button from the

Sessions menu or by clicking the start icon from the toolbar, it opens a dialog to

specify the main class name. There is also a tab in the dialog called classpath. We

can click that tab and load all the classes that are required to run the application.
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Figure 3.4 Setting classpath from the JSWAT GUI

The classpath can also be set by selecting Settings from the Sessions menu.

Doing so, will also result in the dialog to let the user to add all the classes required.

3.4.3 Setting Breakpoints

To set breakpoints, use the debugger to open the source file containing the

code in which you want to stop. Scroll the editor to the desired line, then click

the mouse in the gray margin on the left side of the editor view. Clicking in the

margin will create a line breakpoint and clicking on the line breakpoint icon will

remove the breakpoint.

Additional types of breakpoints may be created from the Breakpoint menu,

including class, exception, method, thread, trace, and variable breakpoints.

3.4.4 Stepping Through Code

Once the debuggee has been launched and it hits a breakpoint, we can begin

stepping through the code. We can do this by selecting one of the items in the

Stepping menu. The Step Into item will perform a single-step operation, stepping

into method calls, while Step Over will step through the method call in one action.

Step Out will execute the current method and stop at the calling method. Run to
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Cursor will set a breakpoint at the current cursor location, resume the debuggee

so that it will hit the breakpoint, and then automatically delete the breakpoint.

3.4.5 Displaying Variable Values

There are three ways in which to view the values of variables. The first is

with the Variables window, which shows all local variables, as well as the fields of

the current object. This display is automatically updated each time the debuggee

hits a breakpoint, as well as when you step through the code.

In addition to that view, there is the editor tooltip, whereby the value of the

variable under the mouse pointer will be displayed as a tooltip in the source editor.

This requires having a source file open in the editor that contains references to the

desired variables. This also requires that the debuggee is stopped at a breakpoint

in order for the evaluator to have a current thread and stack frame from which to

evaluate the variable reference.

The third option is to use the Evaluator view. The user can type any Java-

like expression and it will be evaluated and the result displayed in the window.

This requires that the debuggee be stopped at a breakpoint in order to evaluate

any variable references.

3.5 Enhancement in JSWAT

From the previous section, it could be inferred that there are lot of features

available in JSWAT, which makes it not only fully functional but also user friendly.

Inspite of all these features, there is one missing aspect in JSWAT, which this thesis

would like to add on to it.

There is no special feature in JSWAT to visually display Java threads at

run time. If there was a separate window, called as Visualization Window to

visualize java threads at run time depicting the threads state, it will be really

useful for concurrent programmers. It will help the concurrent programmers to
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better understand a multithreaded program thereby making the debugging phase

of software development easier.

3.5.1 Current modules of JSWAT

The JSWAT debugger has the following modules:

• JSwat BCEL Library

• JSwat Command

• JSwat Core

• JSwat Debugger

• JSwat Help

• JSwat Interface

• JSwat Java Parser

• JSwat Nodes

• JSwat Product Definition

• JSwat Views

Each of these modules implements a feature. The visualization feature is

added to the debugger by adding a file called VisualizationWinTopComponent.java

to the JSWAT Interface module. The first step in adding the visualization feature

to JSWAT is to create a visualization window. This visualization window is a user

interface built using java swing. It contains a list of text boxes to visualize threads.

This visualization window is created in the package com.bluemarsh.jswat.ui.components.

Then the next task is to pass the threads to be visualized to the visualization

window. This code is added to the action event of the OK button of the Launch

Debugee Panel. It gets all the useful information from the user program and passes

it on to the visualization window.

This thesis work adds value to JSWAT by adding the visualization window

to JSWAT and integrating it in a synchronous manner along with JSWAT. The
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process of integration of the visualization window and the JSWAT in a synchronous

manner is explained in the forthcoming chapters.



CHAPTER 4

EVENT RECOGNIZER

The Event recognizer collects the data required to visualize the java threads

involved in the user program. The visualization as such should capture the follow-

ing in order to be useful to the programmers:

• The threads competing in the entry queue

• The thread entering the monitor

• The thread that waits on the condition queue due to a failed condition

• The signaler thread that signals thread(s) in the conditional queue based on

the signaling discipline chosen

• The signaled threads behavior based on the signaling discipline

• The thread that exits the monitor

It comprises of three components and acts in a synchronized manner to collect

these data. This chapter intends to explain all the three layers in detail.

4.1 Components of the Event Recognizer

The Event Recognizer comprises of three components. They are Component

to intiate visualization, Component to capture the events from the user program and

Component to Synchronize the threads. The user application is a multithreaded

program which is loaded to the JSWAT debugger. It contains multiple threads that

are created on the fly to share a common resource and achieve the applications

requirement. The event recognizer captures the data required to visualize the

threads in the user application. To visualize the threads, we need to capture the

following:

23
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Figure 4.1 Components of the Visualization Tool

• To find the threads competing in the entry queue, we need to capture the

instance at which each thread executes its run() method.

• To find the thread that enters the monitor, we need to capture the instance

at which a thread executes the enterMonitor() method.

• To find the threads that enter the conditional queues, we need to capture

the instance at which a thread executes the wait() method.

• To find the threads that signal the thread in the conditional queue, we need

to capture the instance at which the thread executes the signalCall() method

depending on the user application.

• To find the threads that exits the monitor, we need to capture the instance

at which a thread executes the exit() method.

Though the event recognizer collects the information, it has to be invoked

by the component that initiates visualization. The next section explains about the

component that initiates visualization.
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Figure 4.2 Monitor Specification

4.2 Component to intiate visualization

In this section, we explain the role of the Component that intiates visualiza-

tion in the data collection process. It actually acts as an on / off switch for the

visualization. The Component thus has the following roles:

• Act as an on/off switch for the visualization

• Invoke the module to capture the data required for visualization

4.2.1 Initiating the visualization

This Component acts as a gateway to the monitor visualization. This is

controlled by a drop down menu in the JSWAT window. JSWAT has a menu

called Window. We need to drop down the window menu from JSWAT and select

Monitor Visualization to have the visualization.

If the user does not select this option, the user will not be able to see the

visualization of threads. The application is designed this way so that there is

no real compulsion on the users to use our enhancement along with the JSWAT

debugger. However, if they choose to use the visualization, they can by selecting

Monitor Visualization from the Window menu. Once the user selects the monitor
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Figure 4.3 Visualization Window

visualization, he or she can see the visualization window being docked to one of

the windows in the JSWAT user interface.

The visualization window is so designed that it will take a form based on

the user program. For example; the basic framework of the visualization window

consists of an entry queue, a monitor and the conditional queues. However, the

number of conditional queues and the presence or absence of a re-entry queue

depends on the user application and the signaling discipline adopted.

As you might see in the above figure, the visualization window may or may

not have the re-entry queue based on the signaling discipline adopted in the user

program. If the user application adopts Signal and Continue, there is no re-entry

queue. If the user application uses Signal and Urgent Wait or Signal and Exit

signaling discipline, the visualization window will have a re-entry queue. Also,

the conditional queues are not shown at this point. The condition variables are

computed in the next subsection after the component to capture the events from

the user application. Hence the Visualization window is dynamic when it comes

to choosing its components.
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Figure 4.4 Launch Debugee Panel

4.2.2 Invoking the Event Recognizer

The OK button in the Launch Debugee dialog acts as an Component that

intiates visualization. When the user clicks on the Ok button, the visualization

window is first altered based on the signaling discipline chosen and then the com-

ponent to capture the events from the user application is called to get the data

required to visualize the threads in the user application.

4.3 Component to capture the events from the user program

The Component that captures the events from the user program is the most

important component of the event recognizer. It is responsible for collecting the

data required to visualize the threads. In this application, this component is totally

based on the concepts of regular expressions. Regular expressions are so powerful

part of Java language that the component in this application has made the best

use of it.

Regular expressions are also very flexible. Since the user program can be any

multithreaded application, such a flexible base was required to rely upon to collect
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the data required. To use the regular expressions in java, java.util.regex.Pattern

and java.util.Matcher class are imported.

4.3.1 Pattern

The pattern class enables us to specify the pattern that we are looking for in

the user application. The steps involved in using the Pattern class are as follows:

• A regular expression is specified as a string

• This string is compiled as an instance of the Pattern class

Now the mentioned regular expression is compiled as an instance of the

Pattern class. Then the matcher class is used to match the pattern in the user

program. The matcher class is explained in the next section

4.3.2 Matcher

The matcher class enables us to check for a match of the pattern in the user

program. The pattern instance mentioned in the above section is used to create

a Matcher object that matches user program against the regular expression. The

matches method is then used to find if there is a match of the user program against

the regular expression. Here is where the flexibility of the regex class comes into

picture. The regular expressions can be a combination of characters, numbers,

special characters etc. The number of occurrences of a character or a sequence can

also be specified. All these features of the regex class made it an ideal base for this

thesis work.

String teststr = [a-z][0-9];

Pattern p = Pattern.compile(teststr);

Matcher m = p.matcher(String to match);

boolean b = m.matches();

Figure 4.5 Code Snippet to explain regular expressions
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Public void deposit(int value) {

enterMonitor("deposit");

while (fullSlots == capacity) {

notFull.waitC();

}

buffer[in] = value;

in = (in + 1)% capacity;

++fullSlots;

exerciseEvent("deposit");

notEmpty.signalCall();

exitMonitor();

}

Figure 4.6 Code Snippet to deposit using monitor

4.3.3 Capturing

Another important feature of the regex class is the capturing of matched

messages. The messages matched are captured as groups. This was very important

for this thesis work. For instance, a same word or sequence of characters can be

broken down into different groups of messages. This feature enables us to obtain

the needed information from the matched string.

Let us consider the following sample code snippet. This code snippet is a

method that is used to deposit some value into the monitor.

Several threads execute the above code snippet [1]. The following messages

are of importance from the above listing:

• notFull.waitC();

• enterMonitor

• exerciseEvent(deposit);

• notEmpty.signalCall();

• exitMonitor();

These messages are the events that cause the threads to navigate between

its different states. Hence it is not only important to find these messages in the

code but it is also important to know which thread executes this method at which
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String patterncondQueues = "([A-Za-z]+).(waitC\\(\\))";

String patternSigQueuesall = "\\b([A-za-z]+[0-9]?).

(signalCall\\(\\))";

Pattern pattern1 = Pattern.compile(patterncondQueues);

Pattern pattern2 = Pattern.compile(patternSigQueuesall);

Matcher matcher1 = pattern4.matcher(nextToken);

Matcher matcher2 = pattern5.matcher(nextToken);

boolean matchFoundCondQueues = matcher1.find();

boolean matchFoundSigQueuesall = matcher2.find();

Figure 4.7 Code Snippet to explain the use of regex in data gathering

instance. This is important to synchronize the visualization with the JSWAT

debugger.

Now, we let you consider that the code snippet mentioned above as a String

say InputString. The Inputstring is tokenized as individual lines and the follow-

ing code could be used to find the occurrence of the message noFull.waitC() and

notEmpty.SignalCall()

Since we do not know the conditional queue name before, we have a reg-

ular expression for the conditional queue name and the conditional queue name

from which the thread has to be signaled and the conditional queue name can

be captured using a method called group of the matcher class. For instance,

matcher1.group(1) would give the conditional queue name for the method waitC().

The next step is to have the captured messages in a temporary buffer storage

so that the Visualizer thread can use these messages to visualize the threads. If

we have this temporary buffer, then it should be synchronized as well. One such

synchronized storage is Synchronous Queue. The synchronous queue is used as a

temporary buffer and the captured messages are put in the synchronous queue as

and when the component finds the messages of interest. The usage of Synchronous

queue is explained in the next section.
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Figure 4.8 Synchronous Queue

4.4 Component to Synchronize the threads

In this section, the use of Synchronous queue and its importance in synchro-

nization is explained in detail. Synchronous queue is used as an intermediate layer

between the event recognizer and the visualizer.

4.4.1 Why do we need Synchronous queue?

Synchronous queue [8] is a blocking queue in which each take must wait

for a put, and vice versa. Hence, Synchronous queue does not only act as a

temporary storage between the event recognizer and the visualizer, but it also

helps in synchronizing the threads with respect to the messages inserted into the

queue i.e, Using Synchronous queue, we can guarantee that the message that is

inserted first into the queue is read first out of the queue. This feature enables

us to successfully integrate the visualization tool with the JSWAT debugger in

synchronous with each other as well.

4.4.2 Put()

Once the desired messages are captured from the user program, the next step

as mentioned would be to insert those messages in the synchronous queue. At this

point, care is taken to ensure the discovered statements and the inserts into the

synchronous queue as atomic statements. This will ensure the order of occurrence

of the events of the thread and the order of events pushed in the queue is always

same.
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4.4.3 Take()

As discussed earlier, the synchronous queue is a blocking queue in which

the put and take methods to and from the queue should alternate. Hence as

soon as a message is inserted into the queue, there has to be a take() method

from the queue to retrieve the inserted message and send it to the visualizer.

The relationship between the take method from the synchronous queue and the

visualizer is explained later.



CHAPTER 5

VISUALIZER

In this chapter, the visualization window and the visualizing rules are ex-

plained in detail. Once the event recognizer puts all the messages in the syn-

chronous queue, it is the responsibility of the visualizer to figure out some meaning

out of the messages and visualize them accordingly. This chapter deals with two

sections, viz. the visualizer and the visualization window.

5.1 Visualizer

The visualizer is the component that is responsible for deciding the following

from the messages obtained from the synchronous queue:

• Which thread to be focused on

• Where the thread should be displayed at this instance.

• What should be the state of other threads.

All the information required to decide on the above three criteria is obtained

from the synchronous queue. The event recognizer pushes the information to the

synchronous queue in a specific format which the visualizer understands. The

visualizer then reads from the queue and interprets the action to be performed

based on the messages. The visualizer has a set of actions to perform based on the

messages read. For instance, if the message read from the synchronous queue is

P1 notFull wait, it knows that the thread Producer 1 has executed the wait() on

the conditional queue notFull.
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public void deposit(int value)

{

enterMonitor("deposit");

while (fullSlots == capacity)

{

notFull.waitC();

}

buffer[in] = value;

in = (in + 1) % capacity;

++fullSlots;

exerciseEvent("deposit");

notEmpty.signalCall();

exitMonitor();

}

Figure 5.1 Code Snippet to show the visualizers role

The following would be the messages pushed into the synchronous queue

when a thread executes the above code snippet [1]:

• Thread Name waitC notFull MonitorSC

• Thread Name enterMonitor MonitorSC

• Thread Name signalCall notEmpty MonitorSC

• Thread Name exitMonitor MonitorSC

When the visualizer reads these messages from the Synchronous queue, it

will interpret these messages and will act as following:

• Thread Name waitC notFull MonitorSC − The visualizer will move the

thread that executed this method to the notFull conditional queue.

• Thread Name enterMonitor MonitorSC − The visualizer will move the thread

to the monitor.

• Thread Name signalCall notEmpty MonitorSC − The visualizer will move

all the threads in the notEmpty conditional queue to the entry queue. Note

that the signaling discipline is also sent to the queue. Since the visualizer

knows the signaling discipline, it knows what to do next. For instance, if

the signaling discipline was Signal and Urgent wait, then a signal message



35

will make the signaled thread to enter the monitor instantly and the signaler

thread waits in the re-entry queue whereas if the signaling discipline is Signal

and continue, when a thread executes the signalC, the signaler thread signals

a thread in the conditional queue and continues to remain in the monitor till

it exits. The signaled thread moves to the entry queue and competes to enter

the monitor after the signaler thread exits the monitor.

• Thread Name exitMonitor MonitorSC − The visualizer knows to remove the

thread from the monitor.

Similarly, the visualizer is coded to handle all other events that the thread

executes. Hence the visualizer can be visualized as a driver consists of set of rules

that assists in the actual visualization of thread.

5.2 Visualization Window

In this section, the actual display components are explained in detail. The

Visualization window is built using Java Swing. The visualization window is docked

in within the JSWAT debugger user interface and it has text boxes for the following:

• Entry Queue

• Monitor

• Conditional Queues (Number depends on the user application)

• Re-entry Queue (if the signaling discipline is Signal and Urgent Wait or

Signal and Exit.)

The visualization window displays the threads in the respective textboxes as

instructed by the Visualizer. Hence, this visualization window has to be integrated

with the JSWAT user interface in a synchronous manner so that when a user pauses

the execution or sets break points in the debugger, the visualization should also

halt at that point and show the current status of the threads in the visualization

window. When the user clicks on resume, the visualization should carry on from

that point.
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This aspect of integrating the visualization window with the JSWAT syn-

chronously requires the thread to be synchronized. This is where synchronous

queue comes into picture. Since the synchronous queue allows synchronized access

to it and also ensures that the data pushed in the queue is read first before the

next message is pushed in, the order of messages is maintained while reading the

messages from the queue and hence the display of the threads in the respective

text boxes in the visualization window is synchronized with the user application.

This approach of integrating the visualization window with the JSWAT in a

synchronized manner has a lot of advantages. The main advantage of this approach

is that the visualization window can be controlled in many different ways.

The user can set break points on those lines of code which he or she desires

to analyze in the user application before starting the execution and can start the

debugger. When the debugger encounters the line of code where the break point

is set, it stops the visualization too and the user can thus see the current status of

the threads in the respective text boxes. Then when the user clicks on resume in

the JSWAT debugger, the visualization and execution continues from that point.

Hence by this approach, the chance of finding a bug is more for a user and it also

enables the user to better understand the user application.

If the user does not set break points in the user application, the visualization

goes hand in hand with the user program such that the user can actually see the

application being executed by the debugger and also the visualized output of the

threads in the visualization window in parallel. This way, the visualization window

is dynamic and it is only because of this approach of synchronous integration,

that the visualization guarantees the order of execution of the threads in the user

program.

Another advantage of the synchronous integration of the visualization win-

dow with the JSWAT user interface is that it gives the user an option to pause

the execution at any point in time during the execution, where the threads are not
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visualized as expected. Doing so, will cause the visualization also to halt at that

point. Hence it will be easier for the user to trace till that point and fix any bug

that might persist or synchronize the threads in the user program.

Hence, the visualization window helps in debugging applications in the above-

mentioned three ways. Since multithreaded applications are difficult to debug, the

visualization window helps the user to better understand the program and debug

them.



CHAPTER 6

INTEGRATOR

In this chapter, the actual integration of the visualization window with the

JSWAT is explained. As explained in the previous chapter, the first task involved in

visualizing the threads is to collect the data required to visualize them from the user

program. Once this is done, the collected data are put in the synchronous queue.

The synchronous queue is used both for communication and synchronization. The

next step is to take the data from the synchronous queue and send it to the

visualizer which processes the data and visualizes accordingly.

Now, the problem involved in sending the data from the synchronous queue

to the visualizer is that they both are in different package altogether but still they

have to communicate with each other. The user application is a separate package

of its own and the visualizer resides in the package of JSWAT. Hence it was a

tough task in making them communicate with each other.

Since there was not a direct means to make those two packages communicate

with each other, a common medium was necessary through which the messages can

be exchanged. This is where sockets helped. A socket acts as a communication

medium through which the data taken from the synchronous queue [8] can be sent

to the visualizer so that the visualization could happen from the package inside

JSWAT. Hence the data flow can be visualized as follows:

In the figure 6.2, the data flows from user program to the Visualization

window. The relevant data required to visualize the threads are collected from the

user program and is put in a synchronous queue. Then the data is taken out from

the synchronous queue and sent to the visualizer through sockets. The visualizer

drives the visualization and the threads are visualized in the visualization window.

38
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Figure 6.1 Integrator

The point to be noted here is that the user program is in a different package of its

own and the visualizer and the visualization window are in package with JSWAT.

The presence of a synchronous queue helps in synchronization and the sockets help

in actual data transfer from synchronous queue to the visualizer.

The next aspect to consider is that the sockets should be capable of handling

messages sent my multiple threads. Hence socket should be of asynchronous type to

help in this situation. Asynchronous socket programming has enabled the visualizer

to keep listening to the messages sent from the synchronous queue.

Asynchronous socket, by nature lets the server to keep listening to requests

sent by the client from the other end of the socket. To achieve this, the server

has to be multithreaded. Basically, there has to be a listener thread dedicated

to listening to requests from the client and worker threads or handler threads to

process the requests from the client. In this case, the handler threads are created

as and when the listener thread receives a request from the client. This concept is

incorporated in this thesis work as well.

The Visualizer here has a listener thread which keeps listening to the client

request. As soon as it receives a request, it creates a handler thread and goes back

to the listening mode to listen to the next request and this process goes on. It is
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Figure 6.2 Asynchronous Socket

because of this multithreaded socket programming approach, the visualization can

happen seamlessly as and when the events are executed.

As shown in the 6.2, the Visualizer actually consists of a listener thread

that keeps listening to the messages sent from the synchronous queue. As soon as

the listener thread receives a message, it creates a handler thread to process the

message and display the threads in the respective text boxes in the visualization

window.

One of the main advantages of having this asynchronous socket programming

approach is that since a thread is dedicated to listening to the messages from the

synchronous queue, it could be guaranteed that no message would be dropped.

Also, since the socket is of non-blocking type, the visualization is not blocked at

any point, waiting for messages from the client. Also, because a handler thread

is created whenever a message is received by the listener thread and the handler

thread handles the visualization of the threads, the messages are sent to the listener

thread immediately after the threads in the user program executes an event, the

visualization as such occurs seamlessly with respect to the execution of events in

the user application.
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Though the multithreaded socket programming approach has the above men-

tioned advantages, it leaves an overhead of synchronizing the threads. However,

since Java has very good support for multithreaded applications, it is not a consid-

erable overhead and hence can be managed well. Hence, this asynchronous socket

is an apt integrator for this situation. The messages could be transferred through

the socket as long as the messages are being pushed in the synchronous queue and

finally when the JSWAT window is closed, the connection also terminates.

This approach also provides a level of abstraction to the users. JSWAT

users can use the debugger in the normal way without having to do any special

operations to have the visualization. The user has to just choose to open the

monitor visualization window and run the debugger just the way he or she would

in the absence of the visualization window.



CHAPTER 7

USE CASES AND SEQUENCE DIAGRAM

7.1 Use Cases

In this section, the use cases involved with the application are explained.

The use case diagram for the application is shown in fig. 7.1.

7.2 Sequence Diagram

In this section, the sequence of execution is shown along with the screen

shots at different instances.

As seen in the Figure 7.2, the user will perform the following steps in order:

• Open the file using the File − > Open menu

• Optionally set or unset Break points

• Open Visualization Window

• Select Run to specify the main class name, classpath to the application and

the source path

• Optionally chooses pause, continue or stop while the application is running

or stopped.

• See the visualization in the Visualization Window.

7.3 Experimental Results

7.3.1 Producer-Consumer problem

Let us consider a producer - consumer problem. Producer - Consumer prob-

lem is a classic problem involving a list of producer threads trying to deposit on

to a bounded buffer and a list of consumer threads trying to withdraw from the

bounded buffer. In this experiment, let us visualize these producer and consumer

42
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Figure 7.1 Use Case diagram

Figure 7.2 Sequence diagram
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Figure 7.3 Producer - Consumer problem with SC Signaling discipline

threads. There are three Producer threads trying to deposit and three consumer

threads created as showin in Figure. 7.3.

In the next step, the visualization window is opened so as to visualize the

threads. It is to be noted that at this stage, the visualization window does not have

the condition queues. The condition queues are displayed dynamically based on

the application debugged. Hence the visualization window at this point will look as

shown in Figure. 7.4. The next step is to click the start icon to start the debugging

session. Once, the session is started, the condition queues are dynamically.

The next step is to specify the name of the class to be debugged. This is

done through the Launch Degbuggee panel as shown in Figure. 7.5. The Launch

Debuggee panel is also used to load any run time dependency like a class or a jar

file as shown in Figure. 7.6.
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Figure 7.4 Visualization Window

Figure 7.5 Specifying the main class name
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Figure 7.6 Specifying the classpath of the application

When the OK button is clicked, the visualization window is populated with

the condition queues. All the threads executed a join method to get queued up in

the entry queue as shown in the Figure. 7.7

Since, the buffer is empty, Consumer C1 cannot withdraw. Hence, it executes

the waitC() method to to the notEmpty condition queue as shown in the Figure.

7.8.

Since the producer thread P3 is the next thread and since the buffer is

empty, it gets the chance to enter the monitor to execute a deposit() method.

Hence thread P3 enters the monitor as shown in Figure. 7.9. Upon executing a

deposit() method, the thread P3 executes a signalCall() to signal the consumer

thread C1 from the notEmpty condition queue. The thread C1 then joins the

entry queue to compete with other threads to enter the monitor. The thread P3

then executes an exitMonitor() method to exit the monitor as shown in the Figure.

7.10.
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Figure 7.7 Execution of join() by all threads

Figure 7.8 Execution of wait() by C1
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Figure 7.9 Thread P3 enters the monitor

Figure 7.10 Execution of signalCall() and exit() by P3
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Figure 7.11 C2 enters the monitor, consumes, signals and exits the monitor

Now, the buffer is not empty. Hence the next thread C2 enters the monitor,

consumes, signals and exits the monitor as shown in Figure. 7.11. Since there is

no threads in the not Full condition queue, the signalCall() executed by the thread

C2 does not have any effect.

The buffer is now empty. Hence the next thread P1 get the chance to enter

the monitor as shown in Figure .7.12. The thread P1 then executes a signalCall()

and exits the monitor.

Now, the buffer is not empty. Hence the next thread C3 enters the monitor

as shown in Figure. 7.13. The thread C3 then executes a signalCall() and exits

the monitor.

The buffer is now empty. Hence the next thread P2 get the chance to enter

the monitor as shown in Figure .7.14. The thread P1 then executes a signalCall()

and exits the monitor.
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Figure 7.12 P1 enters the monitor, deposits, signals and exits the monitor

Figure 7.13 C3 enters the monitor, consumes, signals and exits the monitor
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Figure 7.14 P2 enters the monitor, deposits, signals and exits the monitor

Now the buffer is not empty. Hence the last consumer thread C1 gets a chance

to enter the monitor as shown in Figure. 7.15. The thread C1 then executes a

signalCall() and exits the monitor.

7.3.2 Synchronous Queue

A Synchronous Queue is a blocking queue in which each put must wait for a

take, and vice versa. It does not have any internal capacity [8]. This synchronous

queue implementation takes the Bounded Buffer problem as the basic framework.

There are three producers and consumers and they enter and exit the monitor

through the queue. A thread depicting a producer is named as Putter and a

thread depicting a consumer is named as Taker. The threads are named after the

frequently used SynchronousQueue operations - put() and take(). The condition

queues are inCapacity and outCapacity. In the first step, all the threads are queued

in the entry queue as in Figure. 7.16.
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Figure 7.15 C1 enters the monitor, consumes, signals and exits the monitor

In Figure. 7.17, T3 attempts to enter the monitor but the it is not allowed

to consume since there are no full slots. Therefore, it waits in incapacity condition

queue.

In the next step, T2 tries to enter the monitor from the entry queue and is

made to wait in the incapacity condition queue as shown in Figure. 7.18.

In the next step, T1 tries to enter the monitor from the entry queue and is

made to wait in the incapacity condition queue as shown in Figure. 7.19.

In Figure. 7.20, P3 is allowed to enter the monitor and deposit since there

are empty slots in the buffer.

After depositing, P3 checks the incapacity condition queue and finds that is

not empty. Hence, it signals all the threads in the condition queue. Therefore,

threads T1, T2, T3 are moved to the entry queue as in Figure. 7.21. P3 then exits

the monitor.
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Figure 7.16 Threads waiting in entry queue

Figure 7.17 T3 waits in condition queue.
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Figure 7.18 T2 joins T3 in the condition queue.

Figure 7.19 T1 waits in the condition queue with T2 and T3.
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Figure 7.20 P3 enters the monitor.

Figure 7.21 P3 awakens the threads from the condition queue.
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Figure 7.22 P2 enters the monitor.

In Figure. 7.22, it is shown that P2 is the next thread to enter the monitor.

After depositing, P2 checks the condition queue and since it is empty, it exits

the monitor, as shown in Figure. 7.23.

The next thread in the entry queue, P1 attempts to enter the monitor. Since

all the slots in the buffer are full, P2 is made to wait in the outCapacity condition

queue, as in Figure. 7.24.

The next thread T3 enters the monitor in Figure. 7.25.

After consuming, T3 signals the condition queue in Figure. 7.26.

T3 then proceeds to exit the monitor in Figure. 7.27.

In Figure. 7.28, T1 enters the monitor from the entry queue.

After consuming, T1 signals a thread in the condition queue and exits the

monitor, refer Fig. 7.29.



57

Figure 7.23 P2 exits the monitor.

Figure 7.24 P1 waiting in condition queue.
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Figure 7.25 T3 enters the monitor.

Figure 7.26 P1 awakened from the condition queue.
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Figure 7.27 T3 exits the monitor.

Figure 7.28 T1 enters the monitor.
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Figure 7.29 T1 exits the monitor.

In Figure. 7.30, T2 tries to enter the monitor but since all the slots are

empty, it has to wait in the outCapacity condition queue.

P1 then enter the monitor and deposits in Figure. 7.31.

After depositing P1 signals the condition queue and exits in Figure. 7.32.

In Figure. 7.33, P1 exits the monitor.

T2 then enter the monitor and consumes in Figure. 7.34.

T2 signals the condition queue and exits in Figure. 7.35. This example

showcases the visualization process for a bounded buffer problem implemented

using a synchronous queue.

7.3.3 Readers - Writers problem

Let us consider a Readers - Writers problem. Readers - Writers problem is

a classic problem involving a list of Reader threads trying to read from a buffer

and a list of Writer threads trying to write to the buffer. In this experiment, let

us visualize these reader and writer threads. There are three reader threads and
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Figure 7.30 T2 waits in the condition queue.

Figure 7.31 P1 enters the monitor.
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Figure 7.32 T2 awakened by P1 and enters the entry queue again.

Figure 7.33 P1 exits the monitor.
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Figure 7.34 T2 enters the monitor.

Figure 7.35 T2 exits the monitor.
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Figure 7.36 Example Readers - Writers problem with SU Signaling discipline

two writer threads. These threads execute join method to get queued up in the

entry queue as shown in the Fig. 7.36. The presence of the re-entry queue in Fig.

7.36 is to be noted. This is because, we adopt Signal and Urgent wait signalling

discipline for this experiment to solve the Readers - Writers problem.

Readers - Writers problem is different from Producer - Consumer problem

because, in the Readers - Writers problem, the actual reading and writing happens

outside the monitor as oppossed to Producer - Consumer problem where the actual

deposit and withdraw happens inside the monitor. Hence in this experiment, the

reader and the writer threads, enter monitor to get to read or write respectively

while the actual reading and writing happens outside the monitor.

Now,since there is no writer in the monitor, the reader thread R2 gets the

chance to enter the monito as shown in the Fig. 7.37.

As mentioned above, the reader thread R2 executes Signal and exitto exit

the monitor after entering the monitor as shown in the Fig. 7.38. The Signal and
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Figure 7.37 R2 enters the monitor

exit monitor signal call does not signal any writer thread as there is no writer

threads waiting in the writer queue at this point.

After the Signal and exit monitor signal, the reader thread R2 exits the

monitor to start reading. Now, since multiple readers are permitted to read at the

same time, the next thread R3 gets the chance to enter monitor as shown in Fig.

7.39. While the thread R3 enter the monitor, thread R2 would have been reading.

Then, The thread executes Signal and exit monitor to exit the monitor as shown

in the Fig. 7.39.and Fig. 7.40.

Similarly, the reader thread R1 joins the monitor by execute the enterMon-

itor() as shown in the Fig. 7.41. The thread R1 then executes Signal and exit

monitor call and exits the monitor

Now, at this point, all the three readers are busy reading. Then, the writer

thread W2 waits in the condition till it is signalled off. This is shown in the Fig.

7.42



66

Figure 7.38 R2 exits the monitor

Figure 7.39 R3 enters the monitor
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Figure 7.40 R3 enters the monitor

Figure 7.41 R1 enters the monitor
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Figure 7.42 W2 waits in the condition queue Writer Q

Now the thread W1 tries to enter the monitor but since the readers are still

reading, W1 goes to the writersQ. This is shown in the Fig. 7.43.

Now, these threads in the writer queue would be signalled by the readers

while exiting the monitor. Now, the thread R2 enters the monitor to exit as

shown in the Fig. 7.44.

Since, there are two more readers waiting to exit the monitor after reading

and since readers have more priority than writers, the thread R2 does not execute

a SignalC and Urgent wait signal. Instead, it executes an exit monitor call to exit

and let the other reader threads to enter the monitor. This is shown in the Fig.

7.45.

Similarly, reader 2 executes and exit Monitor method as there is one more

reader availble. Hence the thread R1 then enters the monitor as shown in Fig.

7.46.
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Figure 7.43 W1 waits in the condition queue Writer Q

Figure 7.44 R2 enters the monitor to indicate its completion
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Figure 7.45 R3 enters the monitor to indicate its completion

Figure 7.46 R1 enters the monitor to indicate its completion
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Figure 7.47 R1 enters the re-entry queue

Now, since there were readers reading all these times, the writer threads in

the writer queue is not signalled. Now, since there are no more reader threads, the

thread R1 executes a Signale and Urgent wait call. Upon executing this command,

the current thread would go to the re-entry queue and one of the threads in the

writer queue would be signalled to enter the monitor. In this case, the writer

thread W2 gets a chance to write and exit. These are shown in the Fig. 7.47 and

Fig. 7.48

Now, the writer thread W2 enters again to exit the monitor after writing.

This is shown in Fig. 7.49 and Fig. 7.50

Now the final thread enters the monitor and executes a signal and exit mon-

itor call. After finishing writing, it once again enters the monitor and exits the

monitor. These are shown in the Fig. 7.51 and Fig. 7.52
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Figure 7.48 W2 exits monitor

Figure 7.49 W2 enters monitor again to exit
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Figure 7.50 W2 executes Signal and exit monitor to exit the monitor

Figure 7.51 W1 enters monitor again to exit



74

Figure 7.52 W2 executes Signal and exit monitor to exit the monitor

7.4 Execution Time Comparison

To determine the overhead of the visualization tool, we compared the exe-

cution time taken by the visualization tool with that of the original JSWAT. The

concurrent programs taken into consideration for this measurement are Bounded-

BufferMonitorSC.java, BoundedBufferMonitorSU.java, ReadersWritersMonitorSC.java,

ReadersWritersMonitorSU.java and SynchronousQueueImpl.java. The following

are the list of facts about the test programs considered.

• Each of the concurrent programs had about 150 lines of code with six threads

• Each of the concurrent programs had two condition variables

• Monitor events considered to visualize are enterMonitor(), exitMonitor(),

waitC(), signalC(), signalCall(), signalC and exitMonitor()

The execution time was measured by recording the system time before and

after the main execution and calculating the difference. Ten such readings were

taken for each program and the average is calculated. This procedure is imple-
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Figure 7.53 Average execution time

mented for both original JSWAT and the visualization tool. The readings are listed

in Figure. 7.53. As we can see, the visualization tool, on average, increases the

execution time by order of tens of milliseconds.



CHAPTER 8

RELATED WORK

8.1 Jitan

Jitan [4] is a visualization environment for concurrent, object-oriented pro-

gramming, developed in the INRIA(France’s national computer science research

institute) Oasis project. Jitan provides both textual and graphical visualization of

objects and thread activities at execution. It displays information such as object

graph’s topology, thread activities and status, locks and synchronizations. Jitan

is derived from Java’s syntactic specifications and an operational semantics of the

language based on Natural Semantics and Structural Operational Semantics. The

specifications were written within Centaur, a generic programming environment.

In Jitan, Java’s syntactical specification is used to derive a parser that trans-

forms a program’s textual form into a structural representation. Jitan represents

every structures object as an abstract syntax tree. Natural Semantics style is

used to describe object-oriented features and Structural Operational Semantics to

specify the mulththreading semantics. The operational semantics simulates con-

currency with a deterministic thread interleaving. Currently, programmers cannot

choose a particular interleaving or act on the scheduler. Here, Java operational

semantics in terms of a transition system, modeling possible transitions from one

configuration to another. Objects, threads and configurations are modeled as se-

mantic structures. Any activity consists of a status and a continuation. A continu-

ation consists of a thread identifier, the name of the current method, and execution

environment composed of parameters(name-value pairs) and local variables (name-

value pairs), and an instruction list. Centuar automatically generates a simulator

that takes as input a syntactically correct Java program and outputs a list of ob-
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jects and threads denoting the program’s behavior. Jitan shows the object list

using two visualization engines, both based on the semantic structure modeling

the object list. The textual view is a direct printing of the list of objects and

threads. To generate the graphical view, which shows the object graph’s complete

topology, Centaur’s graph server is used. It builds the graph’s nodes and edges by

traversing the abstract syntax tree representing the object list. For each object,

it creates a node representing the object, and for each attribute or local variable

value that is a reference, it creates an edge between the two involved objects.

The semantic interpreter’s duty is to notify the visualization engines of im-

portant events. Notification is done by calling highlighting primitives with the

entity which has changes passed as a parameter. The semantics is equipped with

notifications. Notifications tell the engines to change a field’s value or a thread’s

status or to add or remove a lock on a given object or an arc between two objects.

In the graphical visualization, elliptical nodes stand for objects or classes, and

black arrows symbolize references between objects. Threads are distinguished by

a rectangle around thread names. The visualization highlights references (arrows)

between objects and object types (labels). Different colors make thread status

visible. By clicking on an object, the programmer can use a zooming process

to examine the object’s references-that is, fields and local variable values. In this

mode, variable names (field or local variable) appear in a rectangular node attached

to the corresponding arrows. A smaller font and a dark blue frame distinguish local

variables.

Jitan helps in identifying data access problems, that is one thread might call a

method that modifies data that is being read by another thread. Using the zooming

feature of the graphical visualization, the programmer will be able to see that

several threads can access an object. This indicates the need for synchronization

to protect the object’s fields. Users can abstract an object graph that represents

a Java program’s execution. An abstraction lets programmers consider real Java
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programs with a large number of objects and threads. It also provides a clearer

view of a selected part of the constructed graph. An abstraction can focus on an

object subgraph-for example, by graying out the other parts of the global graph

without changing shapes. An abstract view also can visualize only this subgraph

and what happens to it during program execution.

The advantages of Jitan are:

• No instrumentation is required at the source level.

• Because interpretation takes place at the source level, developers have a bet-

ter understanding of program behavior, thanks to the link between execution

and source code.

• The effects of program execution are shown on the fly, via visualization and

animation of the program interpretation.

• Jitan can complement traditional debugging tools.

Jitan displays the visualization in a graphical manner where each construct

is displayed as a node of a graph. This necessitates the user to be well-versed with

graphical notations.

8.2 Visualizing Java in Action

[5] This research work has been conducted in Brown University by Steven

P. Reiss and his research team. The goal of the research is to build a visualiza-

tion system with minimum overhead, maximum information and show what the

program is doing in real-time. The system should also maximize the amount of in-

formation that was collected. The visualization system displays information about

what classes were currently executing, what was happening to memory, and what

the various threads were doing.

The entire program execution is split into time intervals and then the sum-

mary of what the program did in each interval is displayed. This is achieved by

classifying classes into three categories. Detailed classes are those directly in the
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user’s application. Library classes are grouped into packages and only the initial

entry into the library is visualized in the system. Classes that are neither detailed

classes nor library are treated at an intermediate level of granularity. To identify

which threads are executing and the state of each thread, entry and exit events

are used. This should be augmented with information about synchronization and

synchronized methods and blocks. This information is collected by inserting calls

immediately before and after each synchronized entry and a call immediately before

a synchronized exit. This helps in identifying states where the thread is waiting

on a monitor, running inside a monitored region, or releasing a monitor. Finally,

event calls are inserted on each allocation, noting the type of object being allo-

cated for each. Also, information about the total number of objects of each class

allocated and the class or package that is the source of the allocation is gathered.

The visualization shows a large number of objects and several pieces of in-

formation about each object such as the number of entries, the number of syn-

chronization calls, the number of allocations, and the number of allocations by

methods for a class; the time spent in each of the possible states for a thread. For

displaying this large amount of data box display visualization is used. Each class

or thread is represented as a box on the display. The height of the rectangle is used

to represent the number of calls, the width represents the number of allocations by

methods of the class. The hue of the rectangle represents the number of allocations

of objects of the given class. The saturation of the rectangle is used as a binary

indicator if the class has been used in the interval. The brightness of the box is

used to represent the number of synchronization events on objects of the present

class.

This visualization system displays to the user the number of threads execut-

ing at any given time and their states, number of allocations, memory used etc.

But the interaction among the different threads is not displayed and the support

extended to multi-threaded applications is limited.



CHAPTER 9

CONCLUSION

We conclude that visualization of threads is an essential feature of debuggers

for testing and debugging multithreaded applications. Though there are a lot of

debuggers that shows the thread values at various instance of time during execu-

tion, it is often very difficult to test and debug multithreaded applications in those

debuggers as they dont visualize the threads at run time.

JSWAT is an open source debugger that has most of the features that makes

it easier for the programmers to debug software but also for visualization of threads.

Hence we decided to add this enhancement to this debugger.

The GUI for the Visualization of threads, called Visualization Window is

built in such a way that it accommodates the threads at run time. Hence the

visualization happens on the fly, which makes it easier for the programmer to better

understand the program to debug. Also the visualization window is integrated

in a synchronous manner with the JSWAT UI so that if JSWAT encounters a

breakpoint, then the visualization is also stopped at that point. Later, it is resumed

from there on. This helps in understanding the program and tracing bugs in the

code.

Since the GUI is capable of handling multiple threads at the same time, the

visualization does not get blocked at any point in time. Overall, the design of the

visualization window and the integration is such that it requires very few skills to

operate it.

My contribution in this thesis work is to identify the conditional queues from

the user application. I also implemented a module to identity the events in the

user application that changes the state of the thread. These events are interpreted
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by the visualization rules to visualize the threads. I helped in the design and

implementation of the visualization rules. Another important component that I

implemented is the synchronous queue. This synchronous queue helps in tem-

porary storage of the events identified from the user program as well as in the

synchronization of the threads.
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