
VISUALIZATION OF MONITOR-BASED EXECUTIONS

by

KEERTHIKA KOTEESWARAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2008

To My Family.

ACKNOWLEDGEMENTS

I would like to thank Dr. Jeff Lei for trusting my abilities and giving me an

opportunity to work on this thesis. Working with him and his research has been

an excellent learning experience for me. I would also like to thank Dr. Bahram

Khalili and Dr. Gautam Das for accepting to serve on my thesis committee.

I would also like to thank Arun Ramani for being a great team member. His

cooperation and technical skills played a major role in this thesis work. I would

also like to acknowledge creator of JSWAT Mr. Nathan Fiedler for his valuable

inputs and his patience in answering my questions. I would also like to thank all

my friends and roommates for their constant support.

Most important of all, I would like to thank my parents G. Koteeswaran

and Vathsala Koteeswaran and my sister Kavitha for their complete belief in my

abilities and unwavering encouragement. They inculcated good values in me and

taught me to set high goals. They are my greatest strength.

March 7, 2008

iii

ABSTRACT

VISUALIZATION OF MONITOR-BASED EXECUTIONS

KEERTHIKA KOTEESWARAN, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Jeff Lei

Concurrent programs play a vital role in the world of software engineering.

Concurrent programs are used in various fields such as safety critical applications,

applications involving advanced graphical user interface, operating system imple-

mentation etc. Concurrent programs due to their inherent multi-threaded nature

pose a challenge to software engineers not only in coding but also in ensuring

data consistency and accuracy. One of the important software constructs used

by concurrent programmers to handle critical sections and data synchronization is

monitors. A monitor is an encapsulation of shared data, operations on the data

and any synchronization required to access the data [1]. Monitors are widely used

by concurrent programmers since it guarantees mutual exclusion and can be im-

plemented to ensure synchronization between all the threads in a multi-threaded

application.

All concurrent programs are unpredictable in nature since the output di-

rectly depends on the sequence of thread execution. This unpredictability poses a

great challenge to concurrent programmers. This thesis mainly proposes and im-

plements a method to visualize the working of monitors in concurrent programs.

This would facilitate concurrent programmers to view, understand, analyze and

test the monitor implemented in their program. The GUI application is incorpo-

iv

rated with JSWAT which is a open-source graphical debugger front end based on

Java Platform Debugger Architecture. The motive behind integrating the visu-

alization application and JSWAT is to provide useful features like sophisticated

breakpoints, colorized code display, panels displaying call stacks, visible variables

apart from visualization of monitor execution. The visualization application ana-

lyzes each statement in the code to capture data pertinent to visualization. This

data is communicated to the GUI which maps it to the appropriate visualization

rule. The visualization rules determine where each thread is to be positioned in the

GUI. When the concurrent program is executed in the debugger, the user would be

able to view the different threads in different positions in the GUI. The positions

would directly correspond to the states of the threads with respect to the monitor.

Visualizing the interaction of the different threads with each other and with

the monitor would facilitate a concurrent programmer to analyze the program and

ensure its accuracy and correctness. This tool can also be used as a teaching aid to

instruct software engineering students and novice concurrent programs by helping

them to visualize, understand and appreciate the working of concurrent programs

in general and monitors in particular. This tool aims to contribute towards eas-

ing the burden of concurrent programmers by enhancing their understanding of

monitor based executions.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . ix

Chapter

1. INTRODUCTION . 1

1.1 Goal of this thesis . 1

1.2 Structure of this thesis . 3

2. RELATED WORK . 4

2.1 Dynamic Java Visualizer . 4

2.2 Visualization of Concurrent Program Executions 6

3. MONITORS . 9

3.1 Introduction to Monitors . 9

3.1.1 Mutual Exclusion . 9

3.1.2 Condition Variables . 10

3.2 Monitors in Java . 11

3.3 Signaling Disciplines . 11

3.3.1 Signal-and-Continue (SC) 11

3.3.2 Signal-and-Urgent-Wait (SU) 11

3.3.3 Signal-and-Exit (SE) . 12

3.3.4 Urgent-Signal-and-Continue (USC) 13

3.4 Monitor Toolbox . 13

3.5 Monitor-Based Solutions to Concurrent Programming Problems . . 14

3.5.1 Bounded Buffer Problem . 14

4. JSWAT . 19

vi

4.1 JSwat GUI . 22

4.2 Starting the debuggee . 22

4.3 Setting the classpath and sourcepath 23

4.4 Setting breakpoints . 24

4.5 Stepping through code . 24

4.6 Displaying variable values . 25

5. VISUALIZATION TOOL . 26

5.1 Parser . 27

5.1.1 Pattern . 27

5.1.2 Matcher . 28

5.1.3 Using Regular Expressions in Visualization Tool 30

5.2 Visualizer . 31

6. INTEGRATING JSWAT AND VISUALIZATION TOOL 33

6.1 Monitor Visualization . 34

6.2 Visualization Window . 35

6.3 Launch Debuggee Panel . 36

6.4 Visualizer and User Application Interface 37

6.5 Synchronous Queues . 39

7. EXPERIMENTAL RESULTS . 41

7.1 Use Case Diagram . 41

7.2 Sequence Diagram . 41

7.3 Sample Visualization Tool Execution With SU Monitor 41

7.3.1 Visualization of Bounded Buffer Problem 41

7.3.2 Synchronous Queue Implementation 51

7.3.3 Readers Writers Problem . 60

7.4 Execution Time Comparison . 74

8. CONCLUSIONS AND FUTURE WORK 80

8.1 Conclusions . 80

vii

8.2 Future Work . 81

REFERENCES . 82

BIOGRAPHICAL STATEMENT . 83

viii

LIST OF FIGURES

Figure Page

3.1 Producers and consumers competing to enter the monitor 14

3.2 C1 waiting in notEmpty queue for a producer to deposit 15

3.3 C1 withdrawing from buffer and P1 waiting in reentry queue. 15

3.4 P1 re-entering the monitor . 16

3.5 P2 depositing and C2 waiting in notEmpty conditional queue 16

3.6 P2 waiting in reentry queue and C2 withdrawing from buffer 17

3.7 P2 re-entering the monitor . 17

3.8 Monitor after P2 exits the monitor 17

4.1 Java Debugger Platform Architecture 20

4.2 JSwat Main Window . 20

4.3 JSwat Settings Dialog . 23

5.1 Regular Expressions Usage . 28

5.2 Regular Expression . 28

5.3 Sample block of code to illustrate pattern matching 29

5.4 Regular expression to identify a join() method 29

5.5 Pattern . 29

5.6 Matcher . 30

5.7 Group . 30

5.8 Components of Visualization Tool 31

6.1 Opening Visualization Window . 34

6.2 Visualization Window . 35

6.3 Visualization Window . 36

6.4 Parameters tab in Launch Debuggee Panel 37

ix

6.5 Classpath tab in Launch Debuggee Panel 37

7.1 Use Case Diagram . 42

7.2 Sequence Diagram . 42

7.3 Monitor Visualization menu . 43

7.4 Launch Debuggee Panel: Specifying classname 43

7.5 Launch Debuggee Panel: Specifying dependencies 44

7.6 Producers and consumers lined up in the entry queue. 44

7.7 P1 entering the monitor . 45

7.8 P1 exiting the monitor . 46

7.9 C2 has withdrawn from buffer. C3 waiting in notEmpty queue . . . 46

7.10 P3 entering the monitor.C1 and C3 wait in notEmpty queue 47

7.11 P3 waiting in reentry queue since notEmpty queue is not empty . . 48

7.12 P3 signalling C2 from conditional queue after depositing 48

7.13 C2 signalling P3 from reentry queue before exiting monitor 49

7.14 P2 entering the monitor . 49

7.15 P2 waiting in reentry queue since notEmpty queue is not empty . . 50

7.16 C1 entering the monitor after signalled by P2 50

7.17 P2 reenters the monitor after being signaled by C1 and P2 exits. . . 51

7.18 All threads wait in the entry queue 52

7.19 T3 waits in conditional queue. 53

7.20 T2 joins T3 in the conditional queue. 53

7.21 T1 waits in the conditional queue with T2 and T3. 54

7.22 P3 enters the monitor. 54

7.23 P3 awakens the threads from the conditional queue. 55

7.24 P2 enters the monitor. 56

7.25 P2 exits the monitor. 56

7.26 P1 waiting in conditional queue. 57

7.27 T3 enters the monitor. 57

x

7.28 P1 awakened from the conditional queue. 58

7.29 T3 exits the monitor. 58

7.30 T1 enters the monitor. 59

7.31 T1 exits the monitor. 59

7.32 T2 waits in the conditional queue. 60

7.33 P1 enters the monitor. 61

7.34 T2 awakened by P1 and enters the entry queue again. 61

7.35 P1 exits the monitor. 62

7.36 T2 enters the monitor. 62

7.37 T2 exits the monitor. 63

7.38 All readers and writers waiting in entry queue. 64

7.39 W1 enters the monitor before writing. 64

7.40 W1 exits the monitor. 65

7.41 R1 waits in readerQ. 65

7.42 R2 waits in readerQ. 66

7.43 R3 waits in readerQ. 66

7.44 W2 waits in writerQ. 67

7.45 W1 enters the monitor after writing. 67

7.46 W1 awakens all the threads in readerQ. 68

7.47 W1 exits the monitor. 69

7.48 R1 enters the monitor before reading. 69

7.49 R1 exits the monitor. 70

7.50 R2 enters the monitor before reading. 70

7.51 R2 exits the monitor. 71

7.52 R3 enters the monitor before reading. 71

7.53 R3 exits the monitor. 72

7.54 R1 enters the monitor after reading. 72

7.55 R2 enters the monitor after reading. 73

xi

7.56 R2 exits the monitor after reading. 73

7.57 R3 enters the monitor after reading. 74

7.58 R3 awakens writer thread from writerQ. 75

7.59 R3 exits the monitor after reading. 75

7.60 W2 enters the monitor before writing. 76

7.61 W2 exits the monitor before reading. 76

7.62 W2 enters the monitor after writing. 77

7.63 W2 signals the readerQ. 77

7.64 W2 exits the monitor after writing. 78

7.65 Comparision of average execution time in milliseconds. 79

xii

CHAPTER 1

INTRODUCTION

We are currently living in an era where computers have touched every aspect

of our lives. Behind every software that has enhanced our quality of life is an enor-

mous amount of effort contributed by software programmers. During the process

of creating a software, a major portion of time and effort is spent in testing the

debugging it. So it is necessary to explore new ways to minimize the time, effort

and other resources spent in testing and debugging a software application.

1.1 Goal of this thesis

In the current scenario where software is used to solve more and more com-

plex problems of mankind, concurrent programs have proved to be the solution.

Since they are inherently multi-threaded, concurrent programs can handle multi-

ple tasks in any given time. So they are used even in safety critical applications

like in a nuclear power station, space exploration probes, satellites etc. They

are also used in advanced graphical applications and animation. But concurrent

programs are even tougher to debug than sequential programs since there are mul-

tiple threads executing together. This may result in issues such as guaranteeing

mutual exclusion to protect shared data, avoiding deadlocks, ensuring progress,

non-determinism in execution, synchronization and communication between dif-

ferent threads etc. There are several constructs used in concurrent programs such

as locks, semaphores, monitors etc. Among these software constructs, monitors are

one of the most popular features used in programming concurrent applications.

For verifying and validating concurrent applications, it is absolutely essen-

tial to use a debugging environment aimed at addressing the issues involved in

1

2

programming them. This thesis work aims in narrowing the gap between the fea-

tures offered by a traditional debugging environment and the tools expected by a

concurrent programmer. This is the goal achieved by developing the visualization

tool in this work. The visualization tool focuses on monitors and an efficient way

to visualize the interaction of the various threads in a multi-threaded application

with the monitor in real-time. The tool aims to display graphically the status of

each thread with respect to the monitor in any given time. The tool also handles

different types of signaling disciplines such as Signal-and-Continue, Signal-and-

Urgent-Wait and Signal-and-Exit. The programmer also has the option to start,

pause and stop the visualization at any point of time and view the status of the

application. This gives the programmer control over the visualization process.

To further enhance the visualization tool, it is integrated with JSWAT which

is a proven advanced graphical Java debugger. JSWAT is based on the Netbeans

platform and offers extremely useful features such as colorized breakpoints, watch-

ing specific variables and methods, identifying syntax errors, stopping and starting

execution using appropriate buttons and view threads, call stacks and visible vari-

ables. The JSWAT and visualization tool integrated environment will alleviate the

problems concurrent programmers face during the process of testing and debug-

ging. This tool will also serve as an user-friendly teaching aid for instructors for

explaining advanced multi-threading concepts.

My contribution in this thesis work is to design and implement the visual-

ization panel. I implemented the communication interface between the user ap-

plication and the visualization tool. I also collaborated in the visualization rules

that decide what visualization steps are executed based on the monitor type and

messages.

3

1.2 Structure of this thesis

The thesis is structured as follows: Chapter 1 gives a brief overview of the

thesis work. Chapter 2 deals with the background and related work for concur-

rent program testing and debugging. Chapter 3 explains monitors and signaling

disciplines. Chapter 4 deals with JSWAT and Chapter 5 explains the working of

the visualization tool. Chapter 6 explains how JSWAT and the visualization tool

are synchronized. Chapter 7 includes use case diagram and sequence diagram and

sample executions. Lastly, Chapter 8 concludes with the goals achieved by this

work.

CHAPTER 2

RELATED WORK

2.1 Dynamic Java Visualizer

Dynamic Java Visualizer is the work of Steven P. Reiss and his research

group in Brown University. The aim of the visualizer is to display program-specific

information in real time with minimum overhead. The concept behind the tool is

to divide the execution of a Java program into intervals and display information

about what the program has done in terms of classes, memory and threads [7].

The information to be collected in each interval consists of:

• What is being executed. This data is grouped by classes, packages or collec-

tion of packages.

• How much time each threads spends in each class.

• How much time is spent in each class for synchronization.

• How many memory allocations occur for each class of object.

• How much memory is being deallocated.

• The current set of threads created or destroyed by the application.

• What is the current status of a particular thread. The thread might be active,

sleeping, blocked, doing I/O, executing in a synchronized region. Also the

time each thread spends in a particular state is displayed.

• Which thread is blocking which thread.

All the above information is obtained by inserting method calls wherever

there is a significant event. There is a vast amount of data to be collected during

the execution of a program. Therefore, to better manage the information, data is

segregated according to classes, packages and package hierarchy. For example, all

classes in java.io.* is represented by a single visualization construct.

4

5

The classes themselves are categorized into three categories.

• Detailed classes are those directly in the users application. Events are gen-

erated for all methods.

• Library classes are grouped into packages. Events are generated only for

initial entry into the library. Events are not generated for calls within the

library class.

• Classes that are neither detailed nor library are treated at an intermediate

level of granularity. Here nested classes are merged with their parent and

only public methods are counted.

Each event is then processed appropriately and sent to the visualizer. Method

entry and exit events are used to determine what was executing and the state

of each thread. To augment that, information about synchronization events are

collected by inserting calls immediately before and after synchronized entry. A

buffer stores all these data. A monitoring thread wakes up at the end of each

interval to generate a report which is in XML. The trace package sends this output

directly to the visualizer along with general information about the intervals such

as totals and the time represented by the interval.

Visualization is done using a box display. Each class or thread is represented

as a box in the display. Each property of the box denotes a characteristic of the

program. First, the height of the rectangle is used to indicate the number of calls.

Second the width of the rectangle is used to represent the number of allocations

by methods of the class. Third, the hue of the rectangle is used to represent the

number of allocations of objects of the given class. Fourth, the saturation of the

rectangle is used as a binary indicator as to whether the class was used at all during

the interval. Finally, the brightness of the box is used to represent the number of

synchronization events on objects of this class.

The front end is invoked by using the jive command in place of the standard

java command when running the application. This command starts the interface of

6

the visualizer and runs the application as well. The programmer can dynamically

specify what portions of the application should be viewed as detailed and library

classes. The front end interprets these selections and inserts the necessary method

calls. Finally, the front end provides separate windows for text input and output.

The dynamic java visualizer displays important statistics of the application

in real-time. It helps the programmer to understand what the application is doing

in a particular time interval. But the information collected by the visualizer might

not be sufficient to give a programmer a detailed insight into a multithreaded

application. This tool can only display states where a thread is waiting on a

monitor, running inside a monitor or releasing a monitor. The interaction among

the threads with respect to the monitor is not shown. Also, the visualizer displays

the events occurring during a time interval and not in real-time. This might lead

to some interactions being omitted from the visualization.

2.2 Visualization of Concurrent Program Executions

The authors of this research work are Cyrille Artho (Research Center for

Information Security, Japan), Klaus Havelund (NASA Jet Propulsion Laboratory,

USA) and Shinichi Honiden (National Institute of Informatics, Japan).

The authors have worked on a approach based on UML diagrams to visu-

alize concurrent programs [8]. They have extended UML sequence diagrams by

adding features to it that will help in visualizing concurrent programs. Traditional

sequence diagrams cannot illustrate the following:

• A Thread as a data structure and executable task.

• Context switches induced by the scheduler.

• Activations and suspensions of threads. Actions such as threads waiting on

events cannot be illustrated.

• Time-based suspension.

• The happens-before relation.

7

• Locking, which is used to guarantee mutual exclusion and also to synchronize

different threads.

The visualization is based on the Java programming language but is also

applicable for other programming languages. This approach distinguishes between

the two roles of a Java thread as an executable task and a data structure. The

thread data structure holds information such as thread name and ID. A thread

as a task constitutes a light-weight process that shares the global heap with other

threads. The first extension of the UML sequence diagram is the visualization of

a thread as an executable task by a hexagon. A dashed arrow pointing to the

left symbolizes the thread scheduler running a thread(task). As in UML sequence

diagrams, solid arrows depict a method call or return, and solid squares show a

method being executed. Dotted lines show event dependencies according to the

happens-before relation. If there is a dotted line from a point p to a hexagon t,

then any events following an activation of thread t could have started right after

p.

The start of a thread is shown by a corresponding action in the thread

scheduler, using a dashed arrow pointing from a hexagon to the left. Thread

termination is not shown since there is no further action of that thread to be

visualized. But thread termination may trigger another threads action that is

depicted as a happens-before relationship. Thread notification is considered as re-

activation of the thread after suspension. Calls to wait and notify are illustrated

by a solid black box just like regular method calls. A notifyAll involves multiple

threads in a happens-before relation. Locks are not directly visualized but are

shown as secondary notations or annotations.

This approach visualizes a concurrent program in a slightly higher abstrac-

tion which improves scalability. Since this approach is an extension of UML se-

quence diagrams it is easily understandable but is restricted by the scope of UML

diagrams. Moreover, this approach requires thorough knowledge of UML diagrams

8

to interpret the visualization. Also, the visualization cannot be controlled by the

user.

CHAPTER 3

MONITORS

3.1 Introduction to Monitors

A monitor encapsulates shared data, all the operations on the data, and any

synchronization required for accessing the data [1]. Mutual exclusion is provided

automatically by the monitors implementation, freeing the programmer from the

burden of implementing critical sections. An object-oriented definition of a mon-

itor is that a monitor is a synchronization object that is an instance of a special

monitor class. A monitor class defines private variables and a set of public and

private access methods. The variables of a monitor represent shared data. Threads

communicate by calling monitor methods that access the shared variables. The

need to synchronize access to shared variables distinguishes monitor classes from

regular classes.

3.1.1 Mutual Exclusion

At most one thread is allowed to execute inside a monitor at any time.

However, it is not the programmers responsibility to provide mutual exclusion

for the methods in a monitor. Mutual exclusion is provided by the monitors

implementation. If a thread calls a monitor method but another thread is already

executing inside the monitor, the calling thread would wait outside the monitor.

A monitor has an entry queue to hold the calling threads that are waiting to enter

the monitor.

9

10

3.1.2 Condition Variables

Condition synchronization is achieved using condition variables and opera-

tions wait() and signal(). A condition variable denotes a queue of threads that are

waiting for a specific condition to become true. A condition variable cv is declared

as ConditionVariable cv. Operation cv.wait() is analogous to a P operation in that

it is used to block a thread. Operation cv.signal() unblocks a thread and is analo-

gous to a V operation. A monitor has one entry queue plus one queue associated

with each condition variable. A thread that is executing inside a monitor method

blocks itself on condition variable cv by executing cv.wait(). Executing a wait()

operation releases mutual exclusion (to allow another thread to enter the monitor)

and blocks the thread on the rear of the queue for cv. The threads blocked on a

condition variable are considered to be outside the monitor. If a thread that is

blocked on a condition variable is never awakened by another thread, a deadlock

occurs.

A thread blocked on condition variable cv is awakened by the execution

of cv.signal(). If there are no threads blocked on cv, the signal() operation has

no effects; otherwise, the signal() operation awakens the thread at the front of

the queue for cv. What happens next depends on the signaling discipline used.

Operation cv.signalAll() wakes up all the threads that are blocked on condition

variable cv.

A notify() operation notifies one of the waiting threads, but not necessarily

the one that has been waiting the longest or the one with the highest priority. If

no threads are waiting, a notify() does nothing. A notifyAll() operation awakens

all the waiting threads.

The synchronized modifier is one of Javas built-in synchronization constructs.

Each Java object is associated with a built-in lock. If a thread calls a method on

an object, and the method is declared with the synchronized modifier, the calling

thread must wait until it acquires the objects lock. Only one thread at a time

11

can execute in the synchronized method of an object. Java‘s implementation of

a synchronized method ensures that the objects lock is properly acquired and

released. If an object‘s data members are only accessed in synchronized methods,

the thread that owns the objects lock has exclusive access to the object‘s data

members.

3.2 Monitors in Java

There are significant differences between Java‘s monitor-like objects and gen-

eral monitors. First, adding synchronized to the methods of a Java class automat-

ically provides mutual exclusion for threads accessing the data members of an

instance of this class. The second major difference is that there are no explicit

condition variables in Java. When a thread executes a wait operation, it can

be viewed as waiting on a single, implicit condition variable associated with the

object.

3.3 Signaling Disciplines

3.3.1 Signal-and-Continue (SC)

After a thread executes an SC signal to awaken a waiting thread, the signaling

thread continues executing in the monitor and the awakened thread is moved to

the entry queue. That is, the awakened thread does not reenter the monitor

immediately; rather, it joins the entry queue and waits for its turn to enter. When

SC signals are used, signaled thread have the same priority as threads trying to

enter the monitor via public method calls.

3.3.2 Signal-and-Urgent-Wait (SU)

Behavior of wait and signal operations for an SU monitor are as follows:

When a thread executes cv.signal():

12

• If there are no threads waiting on condition variable cv, this operation has

no effect.

• Otherwise, the thread executing signal (which is called the signaler thread)

awakens one thread waiting on cv and blocks itself in a queue, called the

reentry queue. Threads blocked in the reentry queue are considered to be

outside the monitor. The signaled thread reenters the monitor immediately.

When a thread executes cv.wait():

• If the reentry queue is not empty, the thread awakens one signaler thread

from the reentry queue and then blocks itself on the queue for cv.

• Otherwise, the thread releases mutual exclusion (to allow a new thread to

enter the monitor) and then blocks itself on the queue for cv.

When a thread completes and exits a monitor method:

• If the reentry queue is not empty, it awakens one signaler thread from the

reentry queue.

• Otherwise, it releases mutual exclusion to allow a new thread to enter the

monitor.

In an SU monitor, the threads waiting to enter a monitor have three levels of

priority (from highest to lowest):

• The awakened thread (A), which is the thread awakened by a signal operation

• Signaler threads(S), which are the threads waiting in the reentry queue

• Calling threads (C), which are the threads that have called a monitor method

and are waiting in the entry queue.

In an SU monitor, the relative priority associated with the three sets of threads is

A > S > C.

3.3.3 Signal-and-Exit (SE)

Signal-and-Exit is a special case of signal-and-urgent-wait. When a thread

executes an SE signal operation it does not enter the reentry queue; rather, it

13

exits the monitor immediately. Thus, an SE signal statement is either the last

statement of a method or is followed immediately by a return statement. As with

SU signals, the thread awakened by a signal operation is always the next thread

to enter the monitor. In an SE monitor, since there are no signaling threads that

want to remain in or reenter the monitor, the relative priority associated with the

sets of awakened (A) and calling (C) threads is A > C.

3.3.4 Urgent-Signal-and-Continue (USC)

In the urgent-signal-and-continue (USC) discipline, a thread that executes a

signal operation continues to execute just as it would for an SC signal. But unlike

SC signals, a thread awakened by a signal operation has priority over threads

waiting in the entry queue. That is, a thread waiting in the entry queue is allowed

to enter a monitor only when no other threads are inside the monitor and no

signaled threads are waiting to reenter. When signal operations appear only at

the end of monitor methods, which is usually the case, this discipline is the same

as the SE discipline, which is a special case of the SU discipline.

3.4 Monitor Toolbox

A monitor toolbox is used to simulate the monitor construct. Using the

toolbox a regular Java class can be used to simulate a SC or SU monitor. This is

achieved as follows:

• Extend class monitorSC or monitorSU.

• Declare conditionVariables as required by the application.

• Use operations enterMonitor() and exitMonitor().

• Use operations waitC(), signal(), length(), empty() on the conditionVariables

as required by the application.

The advantages of using a monitor toolbox is that it can be used to simulate

monitors in languages that do not generally support monitors, such as C++. It

14

Figure 3.1 Producers and consumers competing to enter the monitor

can also be used to implement different signaling disciplines. Also, it offers greater

flexibility for testing and debugging.

3.5 Monitor-Based Solutions to Concurrent Programming Problems

3.5.1 Bounded Buffer Problem

The bounded-buffer problem is a classical multithreaded synchronization

problem introduced by Dijkstra . A bounded buffer has n slots. Each slot is

used to store one item. Items are deposited into the buffer by a single producer

and withdrawn from the buffer by a single consumer. A producer is not permitted

to deposit an item when all the slots are full. A consumer is not permitted to

withdraw an item when all the slots are empty [6].

Let us consider a system with a SU monitor, two producers and two con-

sumers. The producers are denoted by P1and P2 respectively. The consumers

are denoted by C1 and C2 respectively. The conditional queues are notFull and

notEmpty. The buffer contains only one slot.

In Figure 3.1, the producer and consumer threads are lined in the entry queue

in the following order: C1, P1, C2, P2. The order in which the threads attempt

to enter the monitor is assumed to be first-come first-served.

15

Figure 3.2 C1 waiting in notEmpty queue for a producer to deposit

Figure 3.3 C1 withdrawing from buffer and P1 waiting in reentry queue.

In Figure 3.2, C1 first attempts to withdraw, but since the slot is empty, it

is made to wait in notEmpty conditional queue.

Next in Figure 3.3, P1 deposits and since it is a SU monitor, it is made to

wait in the reentry queue. Before, it waits in the reentry queue, it wakes up C1

from the conditional queue. C1 enters the monitor and withdraws from the slot.

Since the reentry queue is not empty, it wakes up P1 before exiting the monitor.

In Figure 3.4, P1 reenters the monitor and since it has already deposited, it

exits the monitor.

16

Figure 3.4 P1 re-entering the monitor

Figure 3.5 P2 depositing and C2 waiting in notEmpty conditional queue

In Figure 3.5, the next thread in the entry queue, C2, attempts to withdraw.

The buffer is empty so it is made to wait in the notEmpty conditional queue.

In Figure 3.6, the next thread, P2 enters the monitor, deposits in the buffer.

It wakes up C2 from the conditional queue and waits in the reentry queue. C2

enters the monitor and withdraws from the buffer. Since the reentry queue is not

empty, C2 wakes up P2 before exiting the monitor.

Next in Figure 3.7 P2 reenters the monitor but since it has already deposited,

it immediately exits the monitor.

17

Figure 3.6 P2 waiting in reentry queue and C2 withdrawing from buffer

Figure 3.7 P2 re-entering the monitor

Figure 3.8 Monitor after P2 exits the monitor

18

The above example illustrated how monitors can be used to solve the bounded

buffer problem as they inherently guarantee mutual exclusion.

CHAPTER 4

JSWAT

JSWAT is a standalone, graphical Java debugger developed by Nathan Fiedler.

It is based on the Netbeans Platform and its infrastructure is provided by Java

Platform Debugger Architecture(JPDA) [4]. It includes the following three-layered

APIs as in Figure. 4.1:

• Java Debug Interface (JDI), a high-level Java programming language inter-

face, including support for remote debugging. This interface facilitates the

integration of debugging capabilities into development environments.

• Java Debug Wire Protocol (JDWP), which defines the format of information

and requests transferred between the process being debugged and the debug-

ger front end. It does not define the transport mechanism. The specification

of the protocol allows the debuggee and debugger front-end to run under

separate VM implementations and/or on separate platforms. It also allows

the front-end to be written in a language other than Java, or the debuggee

to be non-native.

• The JVM Debugger Interface (JVMDI), a low-level native interface that de-

fines the services a Java virtual machine provides for tools such as debuggers

and profilers. It defines the services a VM must provide for debugging. It in-

cludes requests for information, actions, and notification. This is the source

of all debugger specific information. Specifying the VM interface allows any

VM implementor to plug easily into the debugging architecture.

JPDA provides a standard interface which allows Java programming lan-

guage debugging tools to be easily written without regard to platform specifics

such as hardware, operating system and virtual machine implementation. It de-

19

20

Figure 4.1 Java Debugger Platform Architecture

Figure 4.2 JSwat Main Window

scribes a complete architecture for implementing these interfaces, including remote

and cross-platform debugging. It also provides a reference implementation of this

architecture. It provides a highly modular architecture where the implementation

and client of an interface can be different than the reference implementation or

different from the JPDA component. The back-end of the debugger is responsi-

ble for communicating requests from the debugger front-end to the debuggee VM

and for communicating the response to these requests to the front-end. The back-

end communicated with the front-end over a communications channel using the

Java Debug Wire Protocol (JDWP). The transport mechanism used in the com-

21

munication channel is left unspecified; possible mechanisms include: sockets, serial

lines, and shared memory. However, the format and semantics of the serialized bit-

stream flowing over the channel is specified by the Java Debug Wire Protocol. The

back-end communicated with the debuggee VM using the Java Virtual Machine

Debug Interface (JVMDI). The debugger front-end implements the high-level Java

Debug Interface. JSwat is an open-source software and its binary as well as source

code are freely available here [2]. Its features include:

• Sophisticated breakpoints

• Colorized source code display with code navigator

• Byte code viewer

• Movable display panels showing threads

• Call stack

• Visible variables and loaded classes

• command interface for more advanced features

• Java-like expression evaluation; including method invocation

Since JSwat is a standalone application, it defines its own menu structure

and default window arrangement, as well as a splash screen and about dialog,

refer Figure. 4.2. It is also possible to build and run JSwat as a plugin for the

NetBeans IDE. The plugin form of JSwat is built by modifying a property file,

build.properties. The modifications are building.plugin = yes and test.user.dir =

buildideuserdir. The building.plugin property controls the building of the plugin

module itself. It also disables the product module, and the usual product branding.

Setting test.user.dir is optional, but highly recommended as it prevents polluting

the JSwat test userdir with files and settings pertinent only to the IDE binary.

After this preparation is complete, the entire JSwat module suite is cleaned and

built and the JSwat Plugin module is rebuilt. The plugin module is not a part of

the module suite because it has different module dependencies than the standalone

form of JSwat, so it is preferable to keep it separated logically.

22

4.1 JSwat GUI

The display areas within the main JSwat window are themselves called win-

dows. These windows display the variables, threads, classes, breakpoints, sessions,

and so on. Initially not all of the windows are visible, so the Window menu can be

perused to open other available windows. To arrange the windows within the main

window, the title bar of the window is clicked and dragged to a different location.

An outline indicates where the window will be displayed when the mouse button

is released. The size of the window can be changed in relation to one another by

dragging the dividers between the window areas.

4.2 Starting the debuggee

To start debugging code, the application is launched from the debugger, or

started separately and the debugger is connected as needed. The launching dialog

is appropriate for small applications with a simple launching mechanism, whereas

the attaching method is used if the application has a launcher of its own, or requires

significant setup. To launch the debuggee, Start is selected from the Session menu

or by clicking the corresponding toolbar button as in [3]. The dialog that appears

has a Help button that will display the help page to explain all of the input fields.

The name of the application’s main class as well as the classpath that is used to

launch the application must be provided. Once the debuggee is launched, it is in

a paused state, waiting for the signal to start. To start the debuggee, Continue is

selected from the Session menu or by clicking the corresponding toolbar button.

The debuggee will run until it hits a breakpoint, or it exits normally.

Attaching to a debugee after it has been launched requires that the debuggee

is launched with certain debugging flags. A different number can be chosen for

the address value as long as it is between 1024 and 65535, inclusive, and not

already in use by another program. If Microsoft Windows is being used, shared

memory transport can be used instead of the sockets transport. This can be done

23

Figure 4.3 JSwat Settings Dialog

by changing the dt socket to dt shmem and the address value to another name.

Once the debuggee has been launched with the flags, Attach is selected from the

Session menu. The host field can be left blank to default to the local machine,

otherwise a machine name or an IP address can be entered. If a name is entered,

the name must be resolvable by the networking interface on the local machine. For

the port number field, the number given as the address should be entered in the

debug flags (e.g. 5000). If the shared memory transport is used, then the shared

memory option is selected from the Transport field in the attach dialog, and the

name from the address option is entered in the debug flags. If the debuggee was

launched with suspend = y then the debuggee can be started by selecting Continue

from the Session menu (or by clicking on the corresponding toolbar button). The

debuggee will run until it hits a breakpoint, or it exits normally.

4.3 Setting the classpath and sourcepath

The classpath for the application can be already set when launching it, either

from the debugger or in a separate command window. In any case, the classpath

can be inspected via the Settings item in the Session menu. While the session is

connected to the debugee, the classpath is prevented from being modified, since it is

24

impossible to modify the classpath of a running JVM. In addition to the classpath,

the Settings dialog can be used to specify the directories and archives containing

the source code from the user’s application as in Figure. fig: JSwatSettings. This

is referred to as the sourcepath. The sourcepath has the same structure as the

classpath, except it refers to the location of source code, rather than the location

of class files. Thus, if there is a classpath that looks like /home/me/java/build,

which contains .class files such as org/mine/Widget.class, and the source code is

similarly located in a directory such as /home/me/project/src/, which contains

.java files such as org/mine/Widget.java, then the sourcepath would be set to

/home/me/project/src. It should be noted that the sourcepath can contain direc-

tories as well as archives, such as .jar and .zip files.

4.4 Setting breakpoints

To set breakpoints, the debugger is used to open the source file containing

the code in which it is to be stopped. The editor is scrolled to the desired line, then

the mouse is clicked in the gray margin on the left side of the editor view. Clicking

in the margin will create a line breakpoint, and clicking on the line breakpoint icon

will remove the breakpoint.

Additional types of breakpoints may be created from the Breakpoint menu,

including class, exception, method, thread, trace, and variable breakpoints. The

dialog for creating breakpoints has a Help button that displays a help topic ex-

plaining the various input fields.

4.5 Stepping through code

Once the debuggee has been launched and it hits a breakpoint, stepping

through the code can be begun. This is done by selecting one of the items in the

Stepping menu. The Step Into item will perform a single-step operation, stepping

into method calls, while Step Over will step through the method call in one action.

25

Step Out will finish the current method and stop at the calling method. Run to

Cursor will set a breakpoint at the current cursor location, the debuggee is resumed

so that it will hit the breakpoint, and then breakpoint is automatically deleted. As

with many of the other menu items, there are corresponding keyboard shortcuts.

4.6 Displaying variable values

There are three ways in which the value of variables can be viewed. The first

is with the Variables window, which shows all local variables, as well as the fields of

the current object. This display is automatically updated each time the debuggee

hits a breakpoint, as well as when the code is stepped through. In addition to

that view, there is the editor tooltip, whereby the value of the variable under the

mouse pointer will be displayed as tooltip in the source editor. This requires having

a source file open in the editor that contains references to the desired variables.

This also requires that the debuggee has stopped at a breakpoint in order for

the evaluator to have a current thread and stack frame from which to evaluate

the variable reference. The third option is to use the Evaluator view. Java-like

expression can be typed and it will be evaluated and the result is displayed in the

window. This requires that the debuggee has stopped at a breakpoint in order

to evaluate any variable references. When a flashing red icon is seen in the lower

right corner of the main window, it indicates that an unexpected error occurred.

The icon can be clicked to see an explanation, along with a stack trace.

CHAPTER 5

VISUALIZATION TOOL

This chapter explains the working of the visualization tool which forms the

crux of this thesis work. The goal of the visualization tool is to understand the

working of a concurrent program and display it in a graphical format for easy

understanding. So the first step in this task to be done by the tool is to find the

path where the application is located, the type of monitor used in the application

and the number and names of the conditional queues.

The next step would be to analyze the program and extract those events

which are to be displayed. Based on this analysis, the information to be gathered

will depend on the user input in the previous task. The events that have to be

identified are:

• Entry of a thread into a monitor.

• All the threads in the entry queue competing to enter the monitor. Inclusion

of a thread in this entry queue.

• A thread being moved from inside the monitor to a condition queue when a

condition is satisfied.

• A thread being moved to the entry monitor when a condition is satisfied and

if the monitor follows Signal and Urgent Wait signaling discipline.

• In the case of Signal and Continue signaling discipline, a thread being moved

to the entry queue from the condition queue when it is awakened.

• In the case of Signal and Urgent Wait, a thread being moved back to the

monitor from the reentry queue.

• A thread exiting the monitor.

26

27

The event recognizer initially detects the names of all the conditional queues that

are created in the application. The conditional queue display in the visualization

panel is labeled with the names of the conditional queues. Then probes are inserted

at strategic positions in the code. These probes generate messages according to

their position in the application. The messages are sent to the visualizer for display

in the visualization panel.

5.1 Parser

The parser is the component that gathers information from the application

and decides where the probes are inserted. To extract information from the ap-

plication, regular expressions are used. A regular expression is a string that is

used to describe or match a set of strings , according to certain syntax rules.

Regular expressions are a powerful concept which allows us to search for very com-

plex patterns. This strength of regular expressions is used to a great extent in

this thesis work to identify code corresponding to important events in the user’s

multithreaded application.

Regular expressions in Java require importing java.util.regex.Pattern and

java.util.Matcher. The application program is tokenized using String Tokenizer.

5.1.1 Pattern

The pattern object is used to identify the events in the application program

that have to be visualized. The steps involved in this process are:

• A regular expression is declared as a string.

• This string is compiled as an object of the Pattern class.

• Matcher class is used to search for the pattern in the program.

The snippet of code in Figure 5.1 shows how a pattern containing the se-

quence of words join and Monitor is searched in a string. First, a regular expression

containing the sequence is created. The character class [a-zA-Z] indicates a through

28

String ptnEntMtr = "([a-zA-Z]+[0-9]) (enterMonitor)

(Monitor [A-Z]+)";

Pattern patternEntMtr = Pattern.compile(ptnEntMtr);

Matcher matcherEntMtr = patternEntMtr.matcher(message);

boolean result = matcherEntMtr.matches();

Figure 5.1 Regular Expressions Usage

String ptnJoin = "([a-zA-Z]+[0-9]) (join) (Monitor [A-Z]+)";

Figure 5.2 Regular Expression

z and uppercase A through Z inclusive. The quantifier ’+’ indicates that the char-

acters from the character class can occur one or more times. The character class

[0-9] includes all natural numbers. Therefore, this regular expression looks for a

pattern containing words join and Monitor that may be preceded by alphanumeric

characters and followed by characters. The string containing this regular expres-

sion is compiled into a Pattern object. The matcher methods looks for this pattern

in the string message.

5.1.2 Matcher

The Matcher class checks to see if the pattern has occurred in a string. An

instance of the Pattern class is used to create a Matcher object. When initializing

the object, the string in which the pattern is to be searched is specified. The

matches() method finds if the pattern occurs in the string. If the pattern is present

it returns true otherwise it returns false. The messages matched are captured in

groups. Groups are numbered by counting their opening parenthesis from left to

right. For example, in Figure 5.2, there are three groups.

• Group 1: ([a-zA-Z]+[0-9])

• Group 2: (join)

• Group 3:(Monitor [A-Z]+)

Group 0 always contains the entire expression. Group 1 will contain the

name of the thread that calls the join() method. Group 2 contains the word join.

29

c1.join(); p1.join();

p2.join(); c2.join();

c3.join(); p3.join();

Figure 5.3 Sample block of code to illustrate pattern matching

String ptnJoin = "([a-zA-Z]+[0-9]) (join) (Monitor [A-Z]+)";

Figure 5.4 Regular expression to identify a join() method

Group 3 contains the monitor type chosen by the user. During a match, each

subsequence of the input sequence that matches a group is saved. The captured

subsequence may be used later in the expression, via back reference, and may also

be retrieved from the matcher once the match operation is complete. The usage

of groups can be further illustrated using the snippet of code in Figure 5.3

The entire block of code in Figure 5.3 is tokenized based on semi-colon.

Suppose each token is stored in a String array called message. Each element of the

array is then subjected to the regular expression as in Figure 5.4.

This expression looks for alphanumeric characters followed by the words join

and Monitor followed by arbitrary characters which would actually denote the

monitor type.

The statement in Figure 5.5 compiles the regular expression and initalizes

a Pattern object with it. The Matcher class looks for the pattern in the string

message like in Figure 5.6.

The result of the search is stored in the boolean variable matchJoin. If the

pattern is found in the string, the value true is returned and stored in matchJoin.

If the pattern is not found, the value false is stored in matchJoin.

If the pattern is found in the string, the name of the thread calling the join()

method is stored in group(1), which is displayed in a textbox in Figure 5.7. Thus,

Pattern patternJoin = Pattern.compile(ptnJoin);

Figure 5.5 Pattern

30

Matcher matcherJoin = patternJoin.matcher(message);

boolean matchJoin = matcherJoin.find();

Figure 5.6 Matcher

if(matchJoin) {

textbox.setText(matcherJoin.group(1));

}

Figure 5.7 Group

regular expressions can be used effectively to find pre-determined keywords in the

user’s application program that correspond to events that have to be displayed.

5.1.3 Using Regular Expressions in Visualization Tool

A crucial part of the visualization process is capturing events that are signif-

icant enough to be visualized in the application. These events are captured using

the corresponding keywords used in the source code. The keywords are located

using regular expressions as explained in the previous subsection. Important in-

formation like the name of the thread calling a specific method, the method being

called, type of monitor etc is collected using groups and are strung together to form

a message. These message are sent to the visualizer as soon as they are generated

using a communication channel such as a socket. As soon as the visualizer receives

the message, it makes changes in the visualization panel to reflect the latest event.

The visualization panel will then indicate to the user the latest monitor event in

the application program such as a thread joining the entry queue, entering a mon-

itor or waiting in a conditional queue etc. In this way, the status of the threads

with respect to the monitor in the application program is converted to messages

and sent to the visualizer to be displayed in the visualization panel.

31

Figure 5.8 Components of Visualization Tool

5.2 Visualizer

The visualizer consists of the core logic that controls the visualization pro-

cess. The work of the visualizer is to read the messages sent from the user’s

application program and visualize it in the visualization panel. The visualization

is done according to the visualization rules. For each message, there is a corre-

sponding rule that governs how it is interpreted by the visualizer. Each thread is

represented by an abbreviation of its name in the visualization panel. The rules

are explained below:

• Join: When a join monitor message is received, the panel displays the thread

joining possible other threads in the entry queue. This message is treated in

the same way by monitors with SC, SU and SE signaling discipline.

• EnterMonitor: This message signifies the calling thread entering the monitor.

This message again is visualized in the same way regardless of the monitor

type.

• SignalCall: This message is typically generated by monitors of SC signaling

discipline. When the parser generates this message, it also includes informa-

tion such as the name of the conditional queue associated with the method

call. Since the conditional queue textboxes are pre-labeled with the names, a

thread name is moved from the appropriate conditional queue textbox to the

entry queue, where it will compete with other threads to enter the monitor.

32

• SignalC-and-exitMonitor: Monitors of type SU and SE generate this message.

The corresponding conditional queue name is included in the message. This

message indicates that the signaling thread will immediately exit the monitor

after calling this method. In the case of SU monitor, the signaling thread will

be moved to the reentry queue and if a thread is waiting on the corresponding

conditional queue it is moved to the monitor.

• WaitC: When this message is received the visualization depends on the type

of monitor. In the case of a SC monitor, the calling thread is moved from

the monitor to the appropriate conditional queue. In the case of SU and SE

monitor, if the reentry queue is not empty, the thread from it is moved to the

monitor, otherwise a thread from the entry queue is moved to the monitor.

The calling thread moves to the conditional queue.

• ExitMonitor: When this message is received, the name of the thread is re-

moved from the monitor textbox.

The visualization rules control the visualization process and they are sepa-

rated from the modules that create the messages and send them to the visualization

panel. This ensures scalability so that it is easier to add new rules or modify ex-

isting rules.

CHAPTER 6

INTEGRATING JSWAT AND VISUALIZATION TOOL

This chapter explains in detail how the visualization tool is integrated with

JSWAT. The first step in integration is to design and develop the graphical user

interface through which users can interact with the visualization tool. The output

that is conveyed to the users by the visualization tool is a graphical display of the

working of threads and monitor. JSWAT is implemented as an integration of the

following modules:

• JSwat BCEL Library

• JSwat Command

• JSwat Core

• JSwat Debugger

• JSwat Help

• JSwat Interface

• JSwat Java Parser

• JSwat Nodes

• JSwat Product Definition

• JSwat Views

Each module implements the corresponding feature of JSWAT. The visualization

tool is implemented by augmenting the files in com.bluemarsh.jswat.ui.components

package in JSwat Interface module. The visualization tool has been made available

as a feature of JSWAT. The visualizer is invoked by selecting Monitor Visualization

option in Window drop-down menu. The user then selects the option from the

menu to run the debugger or clicks the run button. This launches the Launch

Debugger Panel. This panel is used to capture the classpath, sourcepath and

33

34

Figure 6.1 Opening Visualization Window

related JARs and folders. JSWAT and the visualization tool are integrated in

such a way that when the JSWAT pauses at a breakpoint, the visualization tool

also pauses to display the status of the threads with respect to the monitor at

that point in the visualization panel. That is, it displays if the thread is inside the

monitor or in a queue.

6.1 Monitor Visualization

The user opts for the visualization tool by selecting Monitor Specification

from Windows menu in the menu bar, as in Figure 6.1. This action opens the

visualization window. The visualization window is a panel where the monitor

execution is visualized. The panel is initialized with graphical constructs depicting

an entry queue and monitor.

The Monitor Specification menu is added to the Windows menu by creating a

java file, NewVisualizationWinAction.java in com.bluemarsh.jswat.ui.components

package. The main class in this java file extends the CallableSystemAction class.

Using this class, the action to be performed when the menu is selected is specified.

35

Figure 6.2 Visualization Window

6.2 Visualization Window

The visualization window is a tabbed panel as seen in Figure 6.2 and 6.3.

Apart from the entry queue and the monitor, conditional queues and reentry queue

are also displayed here. The number of conditional queues is determined by the

tool itself. Based on this number, conditional queue text boxes are displayed. The

tool also identifies the names of the conditional queues. Each event in the monitor

execution is interpreted by the application and depicted in this panel. The event

that is being interpreted is displayed in a label in real time.

Each thread in the user’s multi-threaded application is represented by an

abbreviation of its name. For example, when a thread named Producer1 executes

a method to enter the monitor, the text P1 will be displayed inside the monitor

textbox. This will intuitively inform the user that the thread is inside the monitor

at that point of time.

The visualization window is implemented by creating a window component

in com.bluemarsh.jswat.ui.components package. The window component has both

source and design views. In the design view, the UI components are designed. In

the source view, the action to be performed by the UI components are specified.

36

Figure 6.3 Visualization Window

6.3 Launch Debuggee Panel

The Launch Debuggee panel is used to capture vital information for JSWAT

to run a program. In the Parameters tab of the panel, the user enters the JRE

runtime, JVM arguments, class name and class arguments if any, as seen in Figure

6.4. In the Classpath tab, the user enters JARs and folders that the application

requires to execute. It is necessary to list the dependencies in the right order for

correct execution, refer Figure 6.5. The visualizer uses this information to identify

the concurrent program that is to be visualized. When a user opts for visualization,

Launch Debuggee panel handles initialization of the visualization window with the

pertinent display structures. This panel is implemented in LaunchDebuggeeP-

anel.java file in com.bluemarsh.jswat.ui.components package. The file contains the

constructor for initializing the UI components of the panel. The input obtained by

the panel is set by loadParameters() . The session parameters are then attached

to each debugging session by saveParameters() using the PathManager. The sour-

cepath obtained in the launch debuggee panel is passed to the visualization panel

through the PathManager.

37

Figure 6.4 Parameters tab in Launch Debuggee Panel

Figure 6.5 Classpath tab in Launch Debuggee Panel

6.4 Visualizer and User Application Interface

A communication interface has to be constructed between the visualizer and

the user application so that events can be captured in the user application and

displayed in the visualizer. This communication is achieved using a client-server

paradigm. As soon as the visualizer is initialized, it creates a socket and waits for

data to arrive through the socket.

The user application acts as the client which sends information regarding

the events that have to be visualized by the visualizer. The visualizer contains

a multi-threaded server to handle the event messages from the user application.

38

This approach ensures that the visualizer is not tied up with the communication

process alone and can handle visualization tasks simultaneously. Once the user

application starts, the visualizer and the application are synched using a common

port number. The user application sends a request to connect to the server. The

server spawns a separate thread to handle this request. This child thread creates

a listen socket to communicate with the application.

Each event that has to be visualized is converted to a message and sent

through the socket to the server. Therefore, one thread is responsible for accept-

ing event messages and another thread interprets those messages and invokes the

corresponding graphical action.

Asynchronous sockets are used for communicating between the visualizer

server and the application client. Asynchronous sockets have been chosen for this

purpose due to several reasons. In the case of asynchronous sockets, the CPU or

other resources to be applied to each connection is cooperatively scheduled. This

is ideal in this situation since the connections do not require much state. An asyn-

chronous socket is more efficient and elegant. It scales better than a synchronous

socket. The server would be able to process multiple requests simultaneously which

will not be possible when using a synchronous socket. This type of socket is ideal

for graphical user interface applications since the server and the client are not

inhibited by each other.

The method to send and receive messages through the socket is synchronized

so that different threads in the user‘s multithreaded application do not overwrite

the data in the socket. Also the asynchronous socket is created as a static class

object. This ensures that all the threads send and receive only through a single,

common socket object. When the visualization is complete the sockets are closed

and the port numbers are reused for the next execution.

39

6.5 Synchronous Queues

One of the challenges faced during implementation was that since the socket

is a static object and is synchronized, only one thread can access the socket at any

given time. Also, the threads can access them only when their turn is assigned by

the scheduler. This led the threads to behave in a sequential fashion as opposed

to an inter-leaved way. The result of this was that all the messages from a thread

were sent in a batch through the socket. The solution to this issue is to queue

the messages in the order they are generated and send them across the socket one

after the other. This solution is implemented using synchronous queues.

A synchronous queue is a Java blocking queue used for communication and

synchronization [5]. It is a blocking queue in which each put must wait for a take

and vice versa. A synchronous queue does not have any internal capacity. The

element that the first queued thread adds to the queue becomes the head of the

queue. If there are no queued threads, then there are no elements in the queue

and the head is null. The queue does not permit null elements though. They are

well suited for this design where an object running in one thread much sync up

with an object running in another thread in order to hand it some information.

The SynchronousQueue class is a member of the Java Collections Framework.

The data type of the elements that will be put in the queue must be specified when

initializing the queue. For example, if a synchronous queue sq is to be created which

accepts strings as its elements, then it should be specified as SynchronousQueue<

String >sq.

The method poll() in this class retrieves and removes the head of this queue,

if another thread is currently making an element available. It returns the datatype

specified when creating the queue. The method poll(long timeout, TimeUnit unit)

waits if necessary upto a specified time interval, if an element has not been inserted,

before it tries to retrieve the element from the queue. It returns the head of the

queue or null if an element has not been inserted before the time has elapsed.

40

The public method put() adds the specified element to this queue, waiting

if necessary for another thread to receive it. It throws InterruptedException if

interrupted while waiting and NullPointerException if a null value is tried to be

inserted. Method take() retrieves and removes the head of this queue, waiting if

necessary for another thread to insert it. It returns the head of the queue. Using

the put() method the user application places an event message in the synchronous

queue. It is then taken from the queue using take() as soon as it is inserted and

sent to the server through the socket for visualization.

CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Use Case Diagram

The use case diagram in Figure 7.1 illustrates the different actions the user

can peruse in the application.

7.2 Sequence Diagram

The sequence diagram in Figure 7.2 explains the sequence of steps followed

in the execution of the visualization tool.

7.3 Sample Visualization Tool Execution With SU Monitor

7.3.1 Visualization of Bounded Buffer Problem

Let us consider a Bounded Buffer implementation for illustrating the working

of the visualization tool (refer Figure 7.3). The solution employs a SU monitor for

solving the Bounded Buffer problem. The Buffer consists of two slots. There are

three producers and three consumers. The producer threads are P1, P2 and P3

respectively. The consumer threads are C1, C2 and C3 respectively.

The first step is to invoke the LaunchDebuggee panel by clicking the green

arrow button in the menu bar as in Figure 7.4. Then the main class name is

entered under the Parameters tab.

The next step is then to enter the classpath dependencies as in Figure. 7.5.

There are three producers and consumers created each. The producer and

consumer threads are queued in the entry queue as in Figure. 7.6.

41

42

Figure 7.1 Use Case Diagram

Figure 7.2 Sequence Diagram

43

Figure 7.3 Monitor Visualization menu

Figure 7.4 Launch Debuggee Panel: Specifying classname

44

Figure 7.5 Launch Debuggee Panel: Specifying dependencies

Figure 7.6 Producers and consumers lined up in the entry queue.

45

Figure 7.7 P1 entering the monitor

The first thread which is a producer thread enters the monitor. The producer

is denoted as P1 and it is depicted inside the monitor textbox as in Figure. 7.7.

P1 executes signal-and-exitMonitor() and exits the monitor as in Figure. 7.8.

There are no threads queued in the reentry queue so there are no threads awakened

from that queue. In the next step, the next thread which is C3 attempts to enter

the monitor. Since the previous thread P1 has deposited, the consumer is allowed

to enter the monitor. So C3 enters the monitor, consumes and exits the monitor.

The next thread C2 attempts to enter the monitor but it is not allowed to

enter the monitor since there are no full slots. So it is queued in the notEmpty

conditional queue. This is depicted by painting C2 in the notEmpty textbox as in

Figure. 7.9.

46

Figure 7.8 P1 exiting the monitor

Figure 7.9 C2 has withdrawn from buffer. C3 waiting in notEmpty queue

47

Figure 7.10 P3 entering the monitor.C1 and C3 wait in notEmpty queue

The next thread in the entry queue is C1. Since slots are still empty, C1 is

also queued in the notEmpty conditional queue along with C2. The next thread

in the entry queue, P3 enters the monitor as in Figure. 7.10.

P3 deposits in the monitor. Before P3 exits, it checks that the notEmpty

conditional queue is not empty and awakens one thread from that queue. P3 then

waits in the reentry queue as in Figure. 7.11.

C2 is awakened by P3 and enters the monitor as in Figure. 7.12.

C2 consumes and awakens P3 waiting in the reentry queue. It then exits the

monitor as in Figure. 7.13.

In the next step, a thread is awakened from the entry queue. Therefore, P2

enters the monitor as in Figure. 7.14.

In Figure. 7.15, P2 checks the notEmpty conditional queue and finds it not

empty. Therefore, it awakens C1 and waits in the reentry queue.

In Figure. 7.16, C1 enters the monitor, awakens the thread in the reentry

queue and exits.

48

Figure 7.11 P3 waiting in reentry queue since notEmpty queue is not empty

Figure 7.12 P3 signalling C2 from conditional queue after depositing

49

Figure 7.13 C2 signalling P3 from reentry queue before exiting monitor

Figure 7.14 P2 entering the monitor

50

Figure 7.15 P2 waiting in reentry queue since notEmpty queue is not empty

Figure 7.16 C1 entering the monitor after signalled by P2

51

Figure 7.17 P2 reenters the monitor after being signaled by C1 and P2 exits.

In Figure. 7.17, P2 is awakened from the monitor and it exits the monitor.

7.3.2 Synchronous Queue Implementation

A synchronous queue is a blocking queue construct implemented in the class

SynchronousQueue belonging to java.util.concurrent package. Since synchronous

queues have been extensively dealt with in Chapter 6, let us proceed to the im-

plementation. This synchronous queue implementation takes the Bounded Buffer

problem as the basic framework. There are three producers and consumers and

they enter and exit the monitor through the queue. A thread depicting a producer

is named as Putter and a thread depicting a consumer is named as Taker. The

threads are named after the frequently used SynchronousQueue operations - put()

and take(). A Putter thread deposits in the buffer using put() and a Taker thread

withdraws from the buffer using take(). The conditional queues are inCapacity

52

Figure 7.18 All threads wait in the entry queue

and outCapacity. In the first step, all the threads are queued in the entry queue

as in Figure. 7.18.

In Figure. 7.19, T3 attempts to enter the monitor but the it is not allowed to

consume since there are no full slots. Therefore, it waits in incapacity conditional

queue.

In the next step, T2 tries to enter the monitor from the entry queue and is

made to wait in the incapacity conditional queue as shown in Figure. 7.20.

In the next step, T1 tries to enter the monitor from the entry queue and is

made to wait in the incapacity conditional queue as shown in Figure. 7.21.

In Figure. 7.22, P3 is allowed to enter the monitor and deposit since there

are empty slots in the buffer.

After depositing, P3 checks the incapacity conditional queue and finds that

is not empty. Hence, it signals all the threads in the conditional queue. Therefore,

threads T1, T2 and T3 are moved to the entry queue as in Figure. 7.23. P3 then

exits the monitor.

53

Figure 7.19 T3 waits in conditional queue.

Figure 7.20 T2 joins T3 in the conditional queue.

54

Figure 7.21 T1 waits in the conditional queue with T2 and T3.

Figure 7.22 P3 enters the monitor.

55

Figure 7.23 P3 awakens the threads from the conditional queue.

In Figure. 7.24, it is shown that P2 is the next thread to enter the monitor.

After depositing, P2 checks the conditional queue and since it is empty, it

exits the monitor, as shown in Figure. 7.25.

The next thread in the entry queue, P1 attempts to enter the monitor. Since

all the slots in the buffer are full, P2 is made to wait in the outCapacity conditional

queue, as in Figure. 7.26.

The next thread T3 enters the monitor in Figure. 7.27.

After consuming, T3 signals the conditional queue in Figure. 7.28.

T3 then proceeds to exit the monitor in Figure. 7.29.

In Figure. 7.30, T1 enters the monitor from the entry queue.

After consuming, T1 signals the conditional queue and exits the monitor,

refer Figure. 7.31.

In Figure. 7.32, T2 tries to enter the monitor but since all the slots are

empty, it has to wait in the outCapacity conditional queue.

56

Figure 7.24 P2 enters the monitor.

Figure 7.25 P2 exits the monitor.

57

Figure 7.26 P1 waiting in conditional queue.

Figure 7.27 T3 enters the monitor.

58

Figure 7.28 P1 awakened from the conditional queue.

Figure 7.29 T3 exits the monitor.

59

Figure 7.30 T1 enters the monitor.

Figure 7.31 T1 exits the monitor.

60

Figure 7.32 T2 waits in the conditional queue.

P1 then enter the monitor and deposits in Figure. 7.33.

After depositing P1 signals the conditional queue and exits in Figure. 7.34.

In Figure. 7.35, P1 exits the monitor.

T2 then enter the monitor and consumes in Figure. 7.36.

T2 signals the conditional queue and exits in Figure. 7.37. This example

showcases the visualization process for a bounded buffer problem implemented

using a synchronous queue.

7.3.3 Readers Writers Problem

This section deals with another classic multithreaded problem. It consists

of two types of threads: Readers and Writers. The actual reading and writing in

the shared section occurs outside the monitor. The monitor controls access to the

shared section. Multiple readers can read simultaneously but only one writer can

61

Figure 7.33 P1 enters the monitor.

Figure 7.34 T2 awakened by P1 and enters the entry queue again.

62

Figure 7.35 P1 exits the monitor.

Figure 7.36 T2 enters the monitor.

63

Figure 7.37 T2 exits the monitor.

write at any given time. Therefore, each thread enters and exits the monitor twice

once before reading or writing and after reading or writing.

There are three readers and two writers. All the threads wait in the entry

queue initially as in Figure. 7.38.

The first thread W1 enters the monitor before writing as in Figure. 7.39.

In Figure. 7.40, W1 then exits the monitor to write in the shared section.

R1 then attempts to enter the monitor but is made to wait in the reader

since W1 is currently writing as in Figure. 7.41.

The next thread R2 also tries to enter the monitor and is made to wait in

the readerQ as shown in Figure. 7.42.

R3 also waits in the readerQ as shown in Figure. 7.43.

W2 tries to enter the monitor from the entry queue and is made to wait in

the writerQ as in Figure. 7.44.

In Figure. 7.45, W1 enters the monitor again after it completes writing.

64

Figure 7.38 All readers and writers waiting in entry queue.

Figure 7.39 W1 enters the monitor before writing.

65

Figure 7.40 W1 exits the monitor.

Figure 7.41 R1 waits in readerQ.

66

Figure 7.42 R2 waits in readerQ.

Figure 7.43 R3 waits in readerQ.

67

Figure 7.44 W2 waits in writerQ.

Figure 7.45 W1 enters the monitor after writing.

68

Figure 7.46 W1 awakens all the threads in readerQ.

As shown in Figure. 7.46, W1 awakens all the reader threads in readerQ. All

the reader threads wait in the entry queue again.

W1 then exits the monitor as in Figure. 7.47.

R1 enters the monitor from the entry queue before reading, refer Figure.

7.48.

In Figure. 7.49, R1 exits the monitor to read in the shared section.

In Figure. 7.50, R2 enters the monitor before reading. Multiple readers are

allowed to read in the shared section at the same time.

In Figure. 7.51, R2 exits the monitor to enter the shared section.

In Figure. 7.52, R3 enters the monitor for the first time before reading.

R3 then exits the monitor to enter the shared section in Figure. 7.53.

R1 then enter the monitor again after it completes reading and then proceeds

to exit the monitor in Figure. 7.54.

In Figure. 7.55, R2 enters the monitor again after completing reading.

R2 then exits the monitor since it has completed reading in Figure. 7.56.

69

Figure 7.47 W1 exits the monitor.

Figure 7.48 R1 enters the monitor before reading.

70

Figure 7.49 R1 exits the monitor.

Figure 7.50 R2 enters the monitor before reading.

71

Figure 7.51 R2 exits the monitor.

Figure 7.52 R3 enters the monitor before reading.

72

Figure 7.53 R3 exits the monitor.

Figure 7.54 R1 enters the monitor after reading.

73

Figure 7.55 R2 enters the monitor after reading.

Figure 7.56 R2 exits the monitor after reading.

74

Figure 7.57 R3 enters the monitor after reading.

In Figure. 7.57, R3 enters the monitor again after it completes reading in

the shared section.

Since R3 is the last reader to exit the shared section, it signals a writer from

the writerQ as shown in Figure. 7.58. W2 then joins the entry queue.

R3 then exits the monitor in Figure. 7.59.

W2 enters the monitor from the entry queue as shown in Figure. 7.60.

In Figure. 7.61, W2 exits the monitor to write in the shared section.

In Figure. 7.62, W2 enters the monitor again after it completes writing.

In Figure. 7.63, W2 signals the readerQ since there are no writers waiting

in the writerQ. This has no effect since readerQ is empty.

In Figure. 7.64, W2 exits the monitor since it has completed writing.

7.4 Execution Time Comparison

To determine the overhead of the visualization tool, we compare the execu-

tion time taken by the visualization tool with the original JSWAT tool. The concur-

75

Figure 7.58 R3 awakens writer thread from writerQ.

Figure 7.59 R3 exits the monitor after reading.

76

Figure 7.60 W2 enters the monitor before writing.

Figure 7.61 W2 exits the monitor before reading.

77

Figure 7.62 W2 enters the monitor after writing.

Figure 7.63 W2 signals the readerQ.

78

Figure 7.64 W2 exits the monitor after writing.

rent programs taken into consideration for this measurement are BoundedBuffer-

MonitorSC.java, BoundedBufferMonitorSU.java, ReadersWritersMonitorSC.java,

ReadersWritersMonitorSU.java and SynchronousQueueImpl.java. The execution

time was measured by recording the system time before and after the main execu-

tion and calculating the difference. Ten such readings were taken for each program

and the average is calculated. This procedure is implemented for both original

JSWAT and the visualization tool. The readings are listed in Figure. 7.65. As we

can see, the visualization tool, on average, increases the execution time by order

of tens of milliseconds.

79

Figure 7.65 Comparision of average execution time in milliseconds.

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The goal of this thesis work is to build a testing and debugging environment

specially suited for concurrent applications. In this thesis work, we discussed

multi-threading concepts and the complexities involved in developing, testing and

debugging multi-threaded programs. We also discussed the contributions of other

researchers in the field of study related to this thesis work.

We described the concept of monitors in detail, including types of monitors,

their structure and their working. We further detailed this topic by exploring the

solution for bounded buffer problem using Signal-and-Urgent-Wait monitor. Next,

we presented the graphical Java debugger JSWAT. It offers advanced debugging

features which would facilitate a programmer to test and debug programs with ease.

We also discussed the problems the visualization tool aims to alleviate. The tool

identifies important events that have to be visualized in the concurrent application

using regular expressions and then visualizes those events. Visualization rules were

developed for this purpose, which operates according to the working of monitor

constructs and types. We also described the working of parser and visualizer.

Furthermore, the visualization tool and JSWAT are synchronized to present an

integrated testing and debugging environment for programmers.

My contribution in this thesis work is to design and implement the visual-

ization panel. I implemented the communication interface between the user ap-

plication and the visualization tool. I also collaborated in the visualization rules

that decide what visualization steps are executed based on the monitor type and

messages.

80

81

8.2 Future Work

The visualization tool can be extended to visualize other multi-threading con-

structs such as locks and semaphores and constructs from other programming lan-

guages. For large and complex applications, the different modules can be extended

to a distributed network to achieve higher efficiency. If this tool can be effectively

integrated with a Java profiling application, it can be researched upon.

REFERENCES

[1] R. H. Carver and K.C. Tai, Modern Multithreading Implementing, Testing,

and Debugging Multithreaded Java and C++ Pthreads Win32 Programs. New

Jersey, USA: Wiley, 2006.

[2] JSWAT Debugger. [Online]. Available: http://jswat.sourceforge.net/

[3] JSWAT User Guide. [Online]. Available: http://jswat.sourceforge.net/

[4] JSWAT User Guide. [Online]. Available:

http://java.sun.com/j2se/1.3/docs/guide/jpda/architecture.html

[5] Synchronous Queues in Java. [Online]. Avail-

able: http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ Syn-

chronousQueue .html

[6] V. Gupta, “Monitorexplorer: A state-space exploration based tool to test Java

monitors implementations,” Master’s thesis, University of Texas at Arlington,

Arlington, 2006.

[7] S.P. Reiss, “Visualizing Java in Action,” in Proceedings of the 2003 ACM

Symposium on Software Visualization, San Diego, California, pp. 57–ff.

[8] C. Artho, K. Havelund, S. Honiden, “Visualization of Concurrent Program

Executions, ” in COMPSAC 2007: 31st Annual International. 24-27 July

2007, pp. 541–546.

[9] Netbeans Platform. [Online]. Available: http://www.netbeans.org/

82

BIOGRAPHICAL STATEMENT

Keerthika Koteeswaran was born in Chennai, India, in 1983. She obtained

her B.Tech in Information Technology from Anna University in 2005. Her interest

in advanced education in Computer Science brought her to the University of Texas

at Arlington, where she obtained her M.S degree in Computer Science and Engi-

neering in 2008. She worked as a Software Engineer Intern with Cummins from

June to August of 2007. She is currently working as a QA Engineer with eBay,

Inc.

83

