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ABSTRACT

ENHANCEMENTS TO THE SAM-GRID INFRASTRUCTURE

Publication No.

Bimal Balan, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: David Levine

SAM-Grid is a grid computing infrastructure for high energy physics (HEP) exper-

iments in Fermilab. It is composed of data handling, job management and information

management components. There are several challenges when the number of sites par-

ticipating in the experiment increases. This thesis presents the enhancements made on

the SAM-Grid infrastructure. This includes scalability and performance related enhance-

ments.

The enhancements mainly affect the batch adapter, monitoring and security layers.

As a scalability aspect, Monitoring and Information services required changes to make

it easier for monitoring large number of jobs. SAM-Grid is integrated with Sun Grid

Engine (SGE). The batch adapter layer corresponding to SGE is different from that of

other batch systems like PBS. SGE is successfully being used for production in one of

the execution sites. Integration of MyProxy with SAM-Grid is one of the performance

related enhancements. SAM-Grid system performance will improve because job failures

due to proxy expiration are avoided.
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CHAPTER 1

Introduction

Grid computing is a way of harnessing the resources available from the different

clusters. Modern high energy physics experiments need an infrastructure capable of

seamlessly integrating computing centers around the world. SAM-Grid infrastructure

in Fermilab helps in solving the data challenges involved in the HEP experiments in

Fermilab. SAM-Grid integrates standard Grid middleware, such as Globus and Condor.

1.1 Grid Computing

In the last few years, a crucial gap has developed between the advance of networking

capability (the bits per second a network can handle) and microprocessor speed (based

on the number of transistors per integrated circuit). Networking capability essentially

doubles every nine months today, although historically this growth was much slower.

And Moore’s Law dictates that the number of transistors per integrated circuit still

doubles every 18 months. Therein lies the problem. Moore’s Law is slow compared with

the advancement in network capability. If you accept as a given that core networking

technology now accelerates at a much faster rate than advances in microprocessor speeds,

then it becomes apparent that in order to take advantage of the advances in networking,

a more efficient way of harnessing microprocessor capacity is required. This new point of

view changes the historical trade-off between networking and processing costs. Similar

arguments apply to bulk storage. Grid computing is the means to address this gap, this

change in the traditional trade-offs, by tying together distributed resources to form a

single virtual computer [1].

1
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1.1.1 What is Grid Computing?

Grid-computing principles focus on large-scale resource sharing in distributed sys-

tems in a flexible, secure, and coordinated fashion. This dynamic coordinated sharing

results in innovative applications making use of high-throughput computing for dynamic

problem solving. Grid computing uses the resources of many separate computers con-

nected by a network to solve large-scale computation problems. The SETI@home project,

launched in 1999, is a widely-known example of a very simple Grid computing project.

Most of these projects work by running as a screensaver on users’ personal computers,

which process small pieces of the overall data while the computer is either completely

idle or lightly used.

In 1998, it was stated that a computational Grid is a hardware and software in-

frastructure that provides dependable, consistent, pervasive, and inexpensive access to

high-end computational capabilities [2]. This definition was primarily centered on the

computational aspects of Grids. Later iterations broadened this definition with more

focus on coordinated resource sharing and problem solving in multi-institutional virtual

organizations. Grid computing differentiates itself from other distributed computing

technologies through an increased focus on resource sharing, co-ordination, manageabil-

ity, and high performance. The sharing of resources, ranging from simple file transfers

to complex and collaborative problem solving, is accomplished under controlled and

well-defined conditions and policies. In this context, the critical problems are resource

discovery, authentication, authorization, and access mechanisms.

Grid computing offers a model for solving massive computational problems by mak-

ing use of the unused resources (CPU cycles and/or disk storage) of large numbers of

disparate, often desktop, computers treated as a virtual cluster embedded in a distributed

telecommunications infrastructure. Grid computing’s focus on the ability to support com-

putation across administrative domains sets it apart from traditional computer clusters
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or traditional distributed computing. Grids offer a way to solve grand challenge problems

like protein folding, financial modeling, earthquake simulation, climate/weather model-

ing etc. Grids offer a way of using the information technology resources optimally inside

an organization. They also provide a means for offering information technology as a

utility bureau for clients, who pay only for what they use, as with electricity or water.

Grid computing has the design goal of solving problems too big for any single super-

computer, whilst retaining the flexibility to work on multiple smaller problems. Thus

Grid computing provides a multi-user environment. It involves sharing heterogeneous

resources (based on different platforms, hardware/software architectures, and computer

languages), located in different places belonging to different administrative domains over

a network using open standards. In short, it involves virtualizing computing resources.

The following are the characteristics of a Grid [2]:

1) Coordinates resources that are not under centralized control.

2) Uses standard, open, general-purpose protocols and interfaces.

3) Delivers non-trivial qualities of service.

The growing popularity of Grid computing has resulted in various kinds of Grids,

common ones being known as Data Grids, Computational Grids, Bio Grids, Cluster Grids

and Science Grids. Functionally, one can classify Grids into several types:

1) Computational Grids which focuses primarily on computationally-intensive op-

erations.

2) Data Grids, or the controlled sharing and management of large amounts of

distributed data.

3) Equipment Grids which have a primary piece of equipment e.g. a telescope, and

where the surrounding Grid is used to control the equipment remotely and to analyze

the data produced.
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1.1.2 Virtual Organization

A virtual organization (VO) is a dynamic group of individuals, groups, or organi-

zations who define the conditions and rules for sharing resources. The concept of the

VO is the key to Grid computing. These are some of the common characteristics that

typically exist among participants of a VO:

1. Concerns and requirements exist concerning resource sharing.

2. Resource sharing is conditional, time-bound, and rules-driven.

3. The collection of participating individuals and/or institutions is dynamic.

4. Sharing relationship among participants is peer-to-peer in nature.

5. Resource sharing is based on an open and well-defined set of interactions and

access rules.

All VOs share some characteristics and issues, including common concerns and re-

quirements that may vary in size, scope, duration, sociology, and structure. The members

of any VO negotiate the sharing of resources based upon the rules and conditions defined

by the VO, and the members then share the resources in the VO’s constructed resource

pool. Assigning users, resources, and organizations from different domains to a VO is one

of the key technical challenges in Grid computing. This task includes identification and

application of appropriate resource-sharing methods, rules and conditions for member

assignment, security delegation, and access control among the participants.

1.1.3 Comparison with other distributed computing technologies

Grid computing has recently enjoyed an increase in popularity as a distributed

computing architecture. As Grid computing matures, the application of the technology

in additional areas will increase. Grid computing can be differentiated from almost all

distributed computing paradigms by this defining characteristic: The essence of Grid

computing lies in the efficient and optimal utilization of a wide range of heterogeneous,
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loosely coupled resources in an organization tied to sophisticated workload management

capabilities or information virtualization [1].

1.1.3.1 Comparison with Cluster computing

Grid computing is often confused with cluster computing. The key difference is that

the resources which comprise the Grid are not all within the same administrative domain.

Grids consist of heterogeneous resources. Cluster computing is primarily concerned with

computational resources; Grid computing integrates storage, networking, and computa-

tion resources. Clusters usually contain a single type of processor and operating system;

Grids can contain machines from different vendors running various operating systems.

Grids are dynamic by their nature. Clusters typically contain a static number of proces-

sors and resources; resources come and go on the Grid. Resources are provisioned onto

and removed from the Grid on an ongoing basis. Grids are inherently distributed over

a local, metropolitan, or wide-area network. Usually, clusters are physically contained

in the same complex in a single location; Grids can be (and are) located everywhere.

Cluster interconnection technology delivers extremely low network latency, which can

cause problems if clusters are not close together. Grids offer increased scalability. Phys-

ical proximity and network latency limit the ability of clusters to scale out; due to their

dynamic nature, Grids offer the promise of high scalability.

Cluster and Grid computing are completely complementary; many Grids incorpo-

rate clusters among the resources they manage. Indeed, a Grid user may be unaware

that his workload is in fact being executed on a remote cluster. And while there are

differences between Grids and clusters, these differences afford them an important rela-

tionship because there would always be a place for clusters; certain problems will always

require a tight coupling of processors. However, as networking capability and bandwidth
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advances, problems that were previously the exclusive domain of cluster computing could

be solvable by Grid computing.

1.1.3.2 Comparison with CORBA

Of all distributed computing environments, CORBA probably shares more surface-

level similarities with Grid computing than the others. This is due to the strategic

relationship between Grid computing and Web services in the Open Grid Services Archi-

tecture (OGSA). Both are based on the concept of service-oriented architecture (SOA).

A key distinction between CORBA and Grid computing is that CORBA assumes

object orientation, but Grid computing does not. In CORBA, every entity is an object

and it supports mechanisms such as inheritance and polymorphism. In OGSA, there are

similarities to some object concepts, but there isn’t a presumption of object-oriented im-

plementation in the architecture. The architecture is message oriented; object orientation

is an implementation concept. However, the use of a formal definition language (such

as WSDL, Web Services Definition Language) in WSRF (Web Services Resource Frame-

work) means that interfaces and interactions are just as precisely defined as in CORBA,

sharing one of the major software engineering benefits also exhibited by object-oriented

design.

Another distinction is that OGSA Grid computing is built on a Web services foun-

dation. CORBA integrates with and interoperates with Web services. One of the prob-

lems with CORBA was that it assumed too much of the ”endpoints,” which are basically

all the machines (clients and servers) participating in a CORBA environment. There are

also issues of interoperability between vendors’ CORBA implementations, how CORBA

nodes are able to interoperate on the Internet, and how endpoints are named. This means

that all of the machines in the group had to conform to certain rules and to a certain way

of doing things (all assuming the same protocols like IDL, IOR, and IIOP) for CORBA
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to work. This is an appropriate approach when building high-reliability, tightly coupled,

pre-compiled systems.

Another important distinction between Grid computing and CORBA is that, OGSA

Grid computing defines the following three categories of services: Grid core services, Grid

data services and Grid program-execution services. CORBA does not pay specific at-

tention to data or program-execution services, because it is based on essentially remote

procedure call (RPC). An RPC is a protocol that one program can use to request a service

from a program located in another computer in a network without having to understand

network details. It is a synchronous operation that requires the requesting program to

be suspended until the remote procedure returns results. Many of the services specified

and implemented in Grid core services (as well as the WSRF) are similar to foundational

services found in CORBA. But data and program-execution services are unique to Grid

computing.

1.1.3.3 Comparison with P2P

The hallmark of a P2P system is that it lacks a central point of management; this

makes it ideal for providing anonymity and offers some protection from being traced.

Grid environments, on the other hand, usually have some form of centralized management

and security (for instance, in resource management or workload scheduling). This lack

of centralization in P2P environments carries two important consequences:

1) P2P systems are generally far more scalable than Grid computing systems.

Even when you strike a balance between control and distribution of responsibilities, Grid

computing systems are inherently not as scalable as P2P systems.

2) P2P systems are generally more tolerant of single-point failures than Grid com-

puting systems. Although Grids are much more resilient than tightly coupled distributed
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systems, a Grid inevitably includes some key elements that can become single points of

failure.

This means that the key to building Grid computing systems is finding a balance

between decentralization and manageability. Also, while an important characteristic

of Grid computing is that resources are dynamic; in P2P systems the resources are

much more dynamic in nature and generally are more fleeting than resources on a Grid.

For both P2P and Grid computing systems, utilization of the distributed resources is a

primary objective. Given a wealth of computing resources, both of these systems will try

to use them as much as possible.

A final distinction between the two systems is standards – the general lack of

standards in the P2P world contrasts with the host of standards in the Grid universe.

Entities like the Global Grid Forum, refine existing standards and create new ones.

1.2 HEP experiments and Grid Computing

DZero [3] and CDF [4] are high energy physics (HEP) experiments in Fermilab,

located at Batavia, IL. They use the SAM-Grid computing infrastructure. The experi-

ments are being conducted on Tevatron, which is currently the highest-energy particle

accelerator in the world. These experiments produce data in the order of TB/day. This

data is stored on a Mass Storage System based on tape archives called Enstore [5] devel-

oped at Fermilab. The Enstore provides a generic interface (an API) so experimenters

can use Mass Storage System as easily as if they were native file systems.

The computation for the DZero experiment involves mainly three categories.

1) Monte-Carlo Simulations of the physics events in the DZero Detector.

2) Conversion of raw detector data to a format that is ready for analysis. This

stage is also called reconstruction or data processing.

3) Analysis of the processed data.
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All the events that have been stored as detector data are occasionally subjected

to another round of processing called reprocessing. The entire dataset is reprocessed so

that we may obtain high quality of output.

Analyzing the data stored in the Mass Storage System requires a large amount of

computational resources. The computational resources of the experiments are distributed

across various institutions around the world. Thus there is a need to provide distributed

access to the data and also to the resources of the experiments so that the experimenters

can study the data irrespective of their geographic location.

HEP experiments resemble the Virtual Organization (VO) concept. In particular

the resources of a HEP experiment are owned by different institutions participating in

the experiment and there is a need to allow access to these resources to any individual

who is a part of the experiment. Thus Grid Computing presents itself as an ideal solution

for the computational requirements of HEP experiments such as DZero and CDF. The

SAM-Grid project [6] at Fermilab is focused towards providing Grid solution to these

two HEP experiments based at Fermilab. SAM-Grid infrastructure enables scientists to

access the resources belonging to the experiment as if they are local resources.

1.3 Goal of the thesis

The SAM-Grid infrastructure is composed of three major components: data han-

dling, job management and information management. The data handling layer is inter-

faced to the information systems for a number of services.

This thesis presents enhancements on the SAM-Grid infrastructure. This includes

scalability and performance related enhancements. The enhancements mainly affect the

batch adapter layer, the monitoring layer and the security layer. As a scalability aspect,

Monitoring and Information services required changes to make it easier for monitoring

large number of jobs. SAM-Grid is integrated with Sun Grid Engine (SGE) batch system.
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The batch adapter layer corresponding to SGE is different from that of other batch

systems like PBS. SGE is successfully being used for production in one of the execution

sites. Integration of MyProxy with SAM-Grid is a performance related enhancement.

SAM-Grid system performance improves because job failures due to proxy expiration are

avoided.

The rest of the thesis is organized as follows: Chapter 2 gives the background for

the SAM-Grid project. The architecture of SAM-Grid is described in Chapter 3. Details

about the integration with Sun Grid Engine are given in Chapter 4. In Chapter5, changes

to the SAM-Grid monitoring and information services are discussed. Chapter 6 handles

the integration of MyProxy with SAM-Grid. Chapter 7 gives conclusions and discusses

about future work.



CHAPTER 2

Background and Related Work

This chapter discusses the background materials for the SAM-Grid project. The

architecture of the SAM-Grid infrastructure is covered in the next chapter. Details about

LDAP Service, Globus, Condor, Condor-G and CORBA are given in the subsequent

sections.

2.1 LDAP Service

LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is

a lightweight protocol for accessing directory services, specifically X.500-based directory

services. LDAP runs over TCP/IP or other connection oriented transfer services [7].

The LDAP information model is based on entries. An entry is a collection of

attributes that has a globally-unique Distinguished Name (DN). The DN is used to refer

to the entry unambiguously. Each of the entry’s attributes has a type and one or more

values. The types are typically mnemonic strings, like ”cn” for common name, or ”mail”

for email address. The syntax of values depends on the attribute type. Directory entries

are arranged in a hierarchical tree-like structure. Traditionally, this structure reflected

the geographic and/or organizational boundaries. In addition, LDAP allows us to control

which attributes are required and allowed in an entry through the use of a special attribute

called objectClass. The values of the objectClass attribute determine the schema rules

the entry must obey.

An entry is referenced by its distinguished name, which is constructed by taking the

name of the entry itself (called the Relative Distinguished Name or RDN) and concate-

11
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nating the names of its ancestor entries. Operations are provided for adding and deleting

an entry from the directory, changing an existing entry, and changing the name of an

entry. Most of the time, though, LDAP is used to search for information in the directory.

The LDAP search operation allows some portion of the directory to be searched for en-

tries that match some criteria specified by a search filter. Information can be requested

from each entry that matches the criteria.

LDAP directory service is based on a client-server model. One or more LDAP

servers contain the data making up the directory information tree (DIT). The client

connects to servers and asks it a question. The server responds with an answer and/or

with a pointer to where the client can get additional information (typically, another

LDAP server). No matter which LDAP server a client connects to, it sees the same view

of the directory; a name presented to one LDAP server references the same entry it would

at another LDAP server. This is an important feature of a global directory service, like

LDAP. LDAP provides a mechanism for a client to authenticate, or prove its identity

to a directory server, paving the way for rich access control to protect the information

the server contains. LDAP also supports data security (integrity and confidentiality)

services.

2.2 Globus

The open source Globus Toolkit is a fundamental enabling technology for the

”Grid,” letting people share computing power, databases, and other tools securely on-

line across corporate, institutional, and geographic boundaries without sacrificing local

autonomy [8]. The toolkit includes software for security, information infrastructure, re-

source management, data management, communication, fault detection, and portability.

It is packaged as a set of components that can be used either independently or together

to develop applications. The Globus Toolkit was conceived to remove obstacles that
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Figure 2.1. Globus Architecture.

prevent seamless collaboration. Its core services, interfaces and protocols allow users to

access remote resources as if they were located within their own machine room while

simultaneously preserving local control over who can use resources and when.

Globus architecture is shown in figure 2.1 [8]. The toolkit has 3 components

known as pillars. These are: Resource Management, Information Services and Data

Management. The toolkit uses the GSI (Globus Security Infrastructure) to provide a

common security protocol for each of the pillars. GSI is based on public key encryption,

X.509 certificates and Secure Socket layer (SSL) protocol.
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2.2.1 GRAM (Globus Resource Allocation Manager)

The Globus Resource Allocation Manager provides a standard interface to all the

local resource management tools a site uses. The Globus resource management has the

high-level global resource management services layered on top of local resource-allocation

services. The GRAM service is provided by a combination of the gatekeeper and the

jobmanager. The gatekeeper performs the task of authenticating an inbound request

using GSI, and mapping the users global ID on the Grid to a local username. The

incoming request specifies a specific local service to be launched, the latter usually being a

jobmanager. The user needs to compose the request in a Resource Specification Language

(RSL) that is handed over to the jobmanager by the gatekeeper. After parsing the RSL,

the jobmanager translates it into the local schedulers language. The GRAM also provides

the capability to stage in executables or data files, using Global Access to Secondary

Storage (GASS).

2.2.2 MDS (Monitoring and Discovery Service)

MDS stands for Monitoring and Discovery Service. MDS in GT2 was called Meta-

computing Directory Service. The features provided in GT2 by the Monitoring and Dis-

covery Service (MDS2) are now provided by the GT3 Information Services component,

which is now also known as MDS3. When used in conjunction with standard Open Grid

Services Infrastructure (OGSI) mechanisms that provide a consistent way of querying

any Grid service about its configuration and status information, these services provide

all of the capabilities of MDS2 and more, all within an OGSA-compliant environment

[8].

The main part of MDS is LDAP server. The information is gathered by information

repositories (GRIS - Grid Resource Information Service) and is organized in trees. The

composition of information is facilitated by registration service (GIIS - Grid Index In-
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formation Service). The information for each node is gathered by launching executables

called information providers.

MDS uses slapd as the LDAP directory server. It implements version 3 of Lightweight

Directory Access Protocol. It supports certificate-based authentication and data secu-

rity (integrity and confidentiality) services through the use of TLS (or SSL). slapd is

threaded for high performance. A single multi-threaded slapd process handles all in-

coming requests using a pool of threads. This reduces the amount of system overhead

required while providing high performance.

2.2.3 GridFTP

This is a data transfer protocol based on FTP, highly optimized to give secure and

reliable performance in a Grid. Among the various features it provides, the important

ones are GSI security, partial file transfers, authenticated data channels and third-party

(direct server-to-server) transfers. The protocol also allows developers to add plug-ins

for customized reliability and fault tolerance features.

2.3 Condor and Condor-G

Condor [9] provides an efficient job scheduling system for distributed computing

environments. It aids in harnessing idle CPU cycles of workstations in a transparent

manner to the owner of the idle workstation being utilized. Among other job-scheduling

functionalities, it implements check-pointing by saving the current state of a remotely

executing job, when it is suspended, to restart it from the same stage.

The Condor-G system integrates the two technologies: Globus and Condor. Condor-

G architecture is shown in figure 2.2 [10]. Condor-G incorporates features of distributed

resource access for multi-domain environments provided by Globus, and the benefits of
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Figure 2.2. Condor-G Architecture.

distributed resource scheduling for a single administrative domain offered by Condor.

Condor-G system utilizes various components, chiefly:

1) A Condor-G job scheduler at the submission end

2) A Condor-G Grid manager, that works together with GASS at the submission

end

3) A Globus gatekeeper and Globus jobmanager at the execution end.

The authentication and authorization are implemented using GSI mechanisms.

Condor-G gives highly reliable performance; it provides precise levels of check-pointing



17

to resume execution of the jobs from the stage of suspension in a highly transparent and

reliable manner.

2.4 CORBA (Common Object Request Broker Architecture)

CORBA, or Common Object Request Broker Architecture, is a standard architec-

ture for distributed object systems. Distributed object systems are distributed systems

in which all entities are modeled as objects. The basic CORBA paradigm is that of a

request for services of a distributed object. The services that an object provides are given

by its interface. Interfaces are defined in OMG’s Interface Definition Language (IDL).

Distributed objects are identified by object references, which are typed by IDL interfaces

[11].

The Object Request Broker (ORB) is the distributed service that implements the

request to the remote object [12]. It locates the remote object on the network, commu-

nicates the request to the object, waits for the results and when available communicates

those results back to the client. The ORB implements location transparency. Exactly

the same request mechanism is used by the client and the CORBA object regardless of

where the object is located. The ORB implements programming language independence

for the request. The client issuing the request can be written in a different programming

language from the implementation of the CORBA object. The ORB does the neces-

sary translation between programming languages. Language bindings are defined for all

popular programming languages.

The Object Management Group (OMG) is responsible for defining CORBA. CORBA

2.0 defines a network protocol, called IIOP (Internet Inter-ORB Protocol), that allows

clients using a CORBA product from any vendor to communicate with objects using a

CORBA product from any other vendor. IIOP works across any TCP/IP implementa-

tion.



CHAPTER 3

SAM-Grid Architecture

Details about the architecture of SAM-Grid [13] are discussed in this chapter.

SAM-Grid implementation includes technologies like Globus, Condor, Condor-G and

CORBA. The SAM-Grid infrastructure is composed of three major components: data

handling, job management and information management. Figure 3.1 [6] shows an ar-

chitectural diagram of the SAM-Grid in which each abstract service is shown with its

implementation next to it.

Figure 3.1. SAM-Grid Architecture..

18
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Figure 3.2. Services in SAM-Grid. Each site represents a job execution site.
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The data handling system is called SAM (Sequential Access to data via Metadata).

Information system uses the interfaces provided by the data handling system. The SAM-

Grid resource selection service is based on the information collection mechanisms of the

Condor MMS (Match Making Service). Figure 3.2 [16] shows details about various

services in the SAM-Grid.

3.1 Data Management component of SAM-Grid

SAM (Sequential Access to data via Metadata) [14] is the data management system

used for the experiments in Fermilab. It has the following functions:

1) Store the raw detector data and processed data

2) Maintain a catalog of all data that is present in the system

3) Deliver data to requesting processes

SAM is an acronym for Sequential Access to data via Metadata. The term sequen-

tial refers to the layout of physics events stored within files, which are in turn stored

sequentially on tapes within a Mass Storage System (MSS). SAM performs the task of

transparently delivering files and managing caches of data. It is the sole data man-

agement system of the DZero experiment; other major experiments like CDF (Collider

Detector at Fermilab) also use this system.

SAM has been designed as a distributed system, using CORBA (Common Object

Request Broker Architecture) as the underlying framework. The system relies on compute

systems and storage systems distributed over the world. Storage systems have disk

storage elements at all locations and robotic tape libraries at select locations. All the

storage elements support the basic functionalities of storing/retrieving a file.

Metadata catalogs, replica catalogs, data transformations, and databases of detec-

tor calibration and other parameters are implemented using Oracle relational databases.

The architecture is organized by physical groupings of compute, storage, network re-
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sources termed as Stations. Certain Stations can directly access the tape storage; others

utilize routes through the ones that provide caching and forwarding services. The disk

storage elements can be managed either by a Station or externally, those managed by

Stations together form logical disk caches which are administered for a particular group

of physicists.

In SAM, service registration and discovery has been implemented using CORBA

Naming Service, with namespace by Station Name. APIs to services in SAM are defined

using CORBA IDL (Interface Definition Language) and can have multiple language bind-

ings. UDP (User Datagram Protocol) is used for event logging services and for certain

Request Manager control messages. Each disk storage element has a stager associated

that serves to transfer or erase a file by using the appropriate protocol for the source and

destination storage elements. Rcp, kerberized rcp, bbftp, encp and gridftp are used as

the file transfer protocols.

Each Station has a Cache Manager and Job Manager implemented as a Station

Master server. The Cache Manager provides caching services and also the policies for

each group. The Job Manager provides services to execute a user application either

interactively or by using a supported batch system like LSF, FBS, PBS, and schedulers

like Condor. Request Managers, which are implemented as Project Master server, take

care of the pre-staging of file replicas and the book-keeping about the file consumption.

The project master executes for each dataset to be delivered and consumed by a user

job. Storage Manager services are provided by a Stations file storage server that lets a

user store files in tape and disk storage elements.
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Figure 3.3. Job Management.

3.2 Job Management component of SAM-Grid

The job management component of SAM-Grid handles all life stages of a Grid job,

including submission and execution. It is organized in a 3-tier architecture: 1) client site,

2) submission site and 3) execution site

Figure 3.3 [6] shows the architecture of the Job Management infrastructure. A

Grid job is submitted from client site using the user interface. Submission site accepts

this job and places it in the queuing system. Execution sites advertise themselves to the

resource selector. Submission site is responsible for matching the job with the appropriate

execution site. Condor MMS (Match Making Service) is used for this purpose. After

match making, the job is submitted to the matched execution site.
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3.3 Information Management component of SAM-Grid

Information management is composed of configuration, monitoring and logging

infrastructures. Information service deals with following types of information:

1) Static or semi-static: These are global parameters of the Grid or the setup of

services and resources at a site. Configuration infrastructure handles this.

2) Dynamic: Information associated with the behavior of the entities in the Grid

such as resources, services, jobs etc. These are associated with the monitoring infrastruc-

ture.

3) Historic: This type of information is handled by the logging infrastructure.

Configuration infrastructure is used for the configuration of the SAM-Grid products

and services for a site. It uses Xindice XML database [15]. Apache Xindice is a database

designed to store XML data or what is more commonly referred to as a native XML

database.

Monitoring infrastructure captures dynamic information. Events relevant to the

entities of the Grid are published to the information repositories. We use MDS from

Globus toolkit for this purpose. The main part of MDS is LDAP server. The information

is gathered by information repositories (GRIS - Grid Resource Information Service) and

is organized in trees. The composition of information is facilitated by registration service

(GIIS - Grid Index Information Service). The information for each node is gathered

by launching executables called information providers. Condor Class-Ads and Xindice

XML database are also used by the monitoring infrastructure. More details about the

monitoring system are given in chapter5.

Logging infrastructure consists of logging and bookkeeping services. The informa-

tion that is logged are of three types: data processing history, statuses of services and

jobs, and debugging messages [17].



CHAPTER 4

Sun Grid Engine integration

Sun Grid Engine (SGE) [18] is a resource management software for computing

clusters. It accepts jobs submitted by users and schedules them for execution on appro-

priate systems. In this chapter, we discuss about the integration of SAM-Grid with SGE

batch system. In the first section, details about Grid fabric interface are given. This

interface lies between batch system and the Grid layers outside the execution site.

4.1 Grid Fabric interface in SAM-Grid

The local services and resources at the execution sites are called the Fabric. These

services are responsible for coordinating the local resources and executing the jobs that

are coming from the Grid. The lack of standard for the basic fabric services has led to

the development of ideal fabric services or idealizers. This is an intermediate layer which

acts as an interface between fabric and Grid services. This interface adapts the input and

the output between the Grid and the fabric in order to comply with the specifics of the

fabric. Also, it coordinates the usage of the local resources according to the specifications

of the Grid jobs and the local policies. SAM-Grid has a series of job management scripts

that use experiment specific interfaces. These scripts are invoked via standard Grid

mechanisms, such as the Globus gatekeeper. From these scripts, the invocation of the

local batch system commands is done via an intermediate layer which abstracts the basic

interactions with the batch system. This layer is called the batch system adapter layer

[19, 20].

24
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Figure 4.1. Grid to Fabric interface.

Figure 4.1 [17] illustrates the design of the Grid-to-Fabric interface in SAM-Grid

architecture. The Grid layer interfaces with the SAM-Grid job managers. SAM Batch

Adapters and Batch system idealizers completely abstract the underlying batch system

from the job managers. The XML based monitoring service lets the job manager collect

more information about the progress of a job.

4.1.1 SAM-Grid Job Managers

The SAM-Grid job managers handles Grid job instantiation at the execution site by

mapping a logical Grid job definition to a set of local jobs submitted to the batch system.
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The SAM-Grid job managers conform to the standard Globus GRAM protocol and hence

can be invoked through the gatekeeper running at the head node of the execution site.

Standard Grid tools like Condor-G have a different job manager for each batch system. In

SAM-Grid architecture, there is a single job manager for all the batch systems. Instead

of the job manager, the lower level components (particularly the batch adapters and

the batch idealizers) in the Grid-to-Fabric interface provide the logic to abstract the

underlying batch system.

During submission, a Grid job is defined logically as a set of parameters. When a

job is submitted to the execution site this set of input parameters is transferred to the

SAM-Grid job managers through the gatekeeper. Once invoked the job manager triggers

local job submission at the execution site. Firstly, the job manager processes the input

parameters and determines the number of jobs that need to be submitted to the local

batch system. Next, the job manager initializes a sandbox area for the Grid job using

the sandboxing interface. The sandbox area forms the working area for the job manager

and all the remaining processing takes place from under this area.

The SAM-Grid job managers depend on the lower layers in the Grid-to-Fabric

interface to provide an abstraction of the underlying batch system and its configuration.

They use the uniform interface provided by SAM Batch Adapters and the Batch System

Idealizers to

1) Submit jobs to any batch system specifying the executable, the input and the

directory path under which the output files produced by the local job should be returned

by the batch system.

2) Determine the current status of a Grid job. This means given a Grid id, the job

managers need to know the list of local jobs and their status, that were created as part

of the submission of the Grid job.

3) Kill either a single batch job or all the batch jobs belonging to a Grid job.
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In SAM-Grid, each job is categorized into a job type depending on the application

being run by the job. Some of the job types are DZero Monte Carlo and DZero Recon-

struction. The local job submission results in a set of operations being performed at the

head node that depends on the job type of the Grid job. In order to support different job

types, the SAM-Grid job managers support the concept of application adapters which

are application specific components and perform the pre-submission operations for the

application. For example applications such as Reconstruction require a SAM project

being started at the head node.

The job manager invokes the job submission process by using SAM batch adapters

and Batch System Idealizer. It is important to maintain a mapping between a Grid job

and the local jobs so that the status of a Grid job can be tracked. This mapping is

created by using the unique Grid id assigned to the Grid job. Essentially during job

submission, the job managers provide the id of the Grid job to the batch idealizers which

are responsible for creating the mapping. The batch idealizers in turn return to the job

manager the id of the local jobs submitted. In order to facilitate more precise monitoring,

the job manager creates an entry for each batch job in XML database.

Once the job submission is complete, the job manager is responsible for returning

the correct status of the Grid job to the Grid manager running at the submission site. The

Grid manager periodically sends a GRAM poll request to the execution site to determine

the status of the Grid job. This request is received by the job managers at the execution

site. A Grid job is considered to be active as long as there is at least one active or queued

local job belonging to the Grid job in the batch system. In order to determine the status

of the Grid job, the job manager invokes the batch idealizers supplying them the Grid

id. The batch idealizers return to the job manager the list of corresponding local jobs

and their batch system status. The job manager analyzes the batch idealizer output to

determine the Grid job status. The job manager also updates XML database with the
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current status of each local job. If it is determined that the Grid job has finished, the job

manager collects the output files and the log files from the sandbox area and transfers

them to the submission site using GRAM. It then triggers the cleanup of sandbox area for

the Grid job and finally returns the appropriate GRAM status back to the Grid manager.

The job manager also provides an interface to terminate a Grid job which when invoked

(through GRAM) results in the local jobs at the batch system level being terminated.

4.1.2 SAM Batch Adapters

This layer is configured to interpret the outputs of the batch system commands to

enable the extraction of relevant information such as local job id after submission, the

status of the job after lookup or the error messages after any command invocation. Figure

4.2 [16] shows the interaction between SAM-Grid jobmanager and batch adapters.

SAM Batch Adapters is a package that provides the job manager interfaces to

interact with the batch system. The interfaces themselves are implemented in the Batch

System Idealizers. The SAM Batch adapter package is implemented in Python. It has a

command line interface and also provides a Python API. The package is fully configurable

and does not make any assumptions about the underlying batch system. Thus it can

handle any batch system. The configuration of the package is stored in a local python

module which can be updated using an administrative interface the package provides.

Each command stored in the configuration has a command type associated with it. The

command types used are: job submit, job kill and job lookup. Each command has a

command string associated with it which may contain any number of predefined string

templates. String templates are used for plugging the user input into a command string,

which then gives a command that the user can execute to get the desired results. For

example, the command string for the job lookup command is q̀stat % BATCH JOB ID .́

The user or the client can read the command string giving its command type and then
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Figure 4.2. Batch Adapter interaction.

replace the template string which in this case is % BATCH JOB ID with the id of a

local job and then execute the resulting command to perform lookup on a single batch

job.

It is important to note that the SAM Batch Adapter itself does not execute the

commands to perform Batch System operations. It just provides a functionality to pre-

pare commands for execution. It is the responsibility of the API user to execute com-

mands and interpret their results. In SAM-Grid, the batch system functionalities are

provided within Batch System Idealizers. Thus in SAM-Grid, the command strings in

SAM Batch Adapter configuration contain the idealizer scripts rather than batch system

commands. For example the command string for a look up command looks something
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like sam sge handler.sh job lookup. The idealizer script in this case is sam sge handler.sh

which provides the interface to SGE batch system. Most of the batch adapters in SAM-

Grid are written in UNIX shell scripts and a few are written in Python. The batch

systems that are currently supported by SAM-Grid i.e. the batch systems for which an

idealizer exists are PBS, Condor, FBSNG, BQS and SGE.

4.1.3 Batch System Idealizers

There are mainly 3 types of idealizers in SAM-Grid:

1) Batch adapter: Uniform interface to any underlying local job scheduler.

2) Dynamic product installation: Used to recreate the job environment in the

worker nodes of a batch system.

3) Local sandbox management: Responsible for packaging and delivering within

the cluster, the software needed to run the job and for gathering the job’s output.

Batch System Idealizers together with SAM Batch Adapters provide a complete

abstraction of the underlying batch system to the job managers. Batch System Idealizers

implement the interfaces required to perform batch system operations such as submitting

jobs and checking the status of a job. SAM Batch Adapter is just an interface to invoke

the idealizer scripts. Batch System Idealizers as the name implies, idealize the batch

systems to make their interactions with the Grid machinery easier by mitigating any

imperfections and adding any missing features. The idealizer scripts are totally batch

system specific and a new batch system can be added to the Grid infrastructure by

writing an idealizer script for the batch system [19].

Different administrators configure the batch system differently because of local

constraints. Thus, the users have to submit the jobs using different formats. Submission

options are nonstandard and site specific [17]. Some times, special attributes have to be

used to adhere to the resource usage agreement. Otherwise, the jobs will not be executed
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by the batch system. Also, typical HEP applications are seldom submitted directly to

the batch system. They are submitted through experiment specific local interfaces that

take care of job preparation. Such preparation include triggering of the data handling

systems such as SAM, the use of local job sandboxing mechanisms and the decomposition

of job into smaller tasks which are submitted to the batch system.

We can use the interfaces provided by the batch system itself, along with SAM

Batch Adapters to provide an abstraction of the batch system. However there are lot

of problems that are exposed when the batch system interfaces are used in a Grid sce-

nario. One problem that almost all the batch systems suffer with is the transient failures

in executing some commands. While these transient failures may be acceptable to an

interactive user, in a Grid scenario they will cause the Grid job to fail. For example if

the execution of a batch system polling command fails due to a network glitch or the

command times out because of heavy load on the server, the job managers will fail to

report the correct status back to the Grid job manager at the submission site. Grid job

manager will falsely interpret the job as a failure and proceed with clean up operations.

In order to overcome the problems with transient failure in batch system commands,

retrials are incorporated with every batch system command in the batch idealizers.

The output produced by a batch system command needs to be parsed by the job

managers to interpret the results. However the output produced by commands in different

batch systems differs from each other. Also the status of a batch job is represented in

different ways in different batch systems. For example some batch system represent the

status of a running job simply as running while some batch systems may call it active.

The batch idealizers convert the output of the batch system command to a uniform

format. They also perform a mapping of the batch system status to a set of status that

the job managers understand. The statuses that are currently supported are: active,
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failed, suspended, pending, and submitted. As an example if a batch system reports the

status of a job as queued the batch idealizers will report its status as pending.

There is a need to create a mapping between a Grid job and the local jobs that were

submitted as part of the Grid submission. This mapping is created in a totally batch

system specific way. In general, the way this mapping is created varies from one batch

system to another. There is a need to abstract the creation of this mapping from the

job managers. The Idealizers create a mapping between the Grid job and the local jobs

in the batch system. To create this mapping the idealizers accept a unique id associated

with the Grid job and associate it with local jobs in a batch system specific way.

In a cluster every worker node has a certain amount of scratch space reserved for

a local job that serves as its working area. This ensures mutual isolation between jobs

that get scheduled to the same node simultaneously. Not all the batch systems provide

support for scratch management at the worker nodes where the actual computation

takes place. For example some batch systems like Condor provide a full fledged scratch

management support while some other batch systems like PBS do not have any support

for scratch management. The batch idealizers provide scratch management support for

batch systems that do not already do so. This feature is provided by writing special

scratch management scripts that only the batch idealizers know about thus abstracting

this limitation from the job managers. The scratch management scripts are staged to the

worker nodes using the batch system and form the first stage of execution. The path of

the scratch area at worker nodes is read from configuration at the head node. The scratch

management scripts create a separate work area or directory for the local job under this

path. They then launch the user executable from this unique scratch area. After the job

finishes they clean up the directory associated with job and return the appropriate exit

status to the batch system.
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Another problem that is prevalent in cluster computing is what we term as the

Black Hole Effect. In a cluster if even a single node has a configuration problem or

hardware problems which results in jobs failing quickly, it reduces the turn around time

at that node. This results in the batch system scheduling more and more jobs to the

same node, not knowing that they will fail as well. This results in the faulty node acting

like a black hole and eating up a lot of jobs from the batch system queue. The batch

system idealizers provide a partial solution to the Black Hole Problem by maintaining a

neglect list, which contain the names of the nodes known to have such problems. While

job submission, they explicitly ask the batch system not to schedule jobs to nodes in the

neglect list.

The batch idealizers need not have the same interface because they are invoked

through SAM Batch Adapters. However a uniform interface makes configuration of SAM

Batch Adapter lot easier and hence it is desired. All the batch idealizers accept three

actions: job submit (To submit a job to the batch system), job lookup and job kill. The

arguments are supplied to the idealizers using the concept of template substitution.

4.2 Sun Grid Engine (SGE)

The Grid engine system is an advanced resource management tool for heterogeneous

distributed computing environments. Workload management is accomplished through

managing resources and administering policies. The use of shared resources is controlled

to best achieve an enterprise’s goals. Sites configure the system to maximize usage

and throughput, while the system supports varying levels of timeliness and importance.

Job deadlines are instances of timeliness. Job priority and user share are instances of

importance [21].

The Grid engine software provides advanced resource management and policy ad-

ministration for UNIX environments that are composed of multiple shared resources.
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The Grid engine system is better than standard load management tools with respect to

the following major capabilities:

1) Innovative dynamic scheduling and resource management that allows Grid engine

software to enforce site-specific management polices.

2) Dynamic collection of performance data to provide the scheduler with up-to-the-

minute job level resource consumption and system load information.

3) Availability of enhanced security by way of Certificate Security Protocol (CSP)-

based encryption. Instead of transferring messages in clear text, the messages in this

more secure system are encrypted with a secret key.

4) High-level policy administration for the definition and implementation of enter-

prise goals such as productivity, timeliness, and level-of-service.

The Grid engine software provides users with the means to submit computationally

demanding tasks to the Grid for transparent distribution of the associated workload.

Users can submit batch jobs, interactive jobs, and parallel jobs to the Grid. SGE system

accepts jobs submitted by users and puts them in holding area until they can be executed.

It manages the jobs during execution and logs the record of their execution. Four types

of hosts are fundamental to the Grid engine system: Master host, Execution hosts,

Administration hosts and Submit hosts. The master host is central for the overall cluster

activity. It runs the master daemon, sge qmaster, and the scheduler daemon, sge schedd.

Both daemons control all Sun Grid Engine components, such as queues and jobs, and

maintain tables about the status of the components, about user access permissions, and

the like. By default, the master host is also an administration host and submit host.

Execution hosts are nodes that have permission to execute Sun Grid Engine jobs.

Therefore, they are hosting Sun Grid Engine queues and run the Sun Grid Engine ex-

ecution daemon, sge execd. Permission can be given to hosts to carry out any kind of

administrative activity for the Sun Grid Engine system. Submit hosts allow for submit-
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ting and controlling batch jobs only. A user who is logged into a submit host can submit

jobs via qsub, can control the job status via qstat, and can use the Sun Grid Engine

user’s interface, QMON.

Four daemons provide the functionality of the Sun Grid Engine system. Master

Daemon is the center of the clusters management and scheduling activities, maintains

tables about hosts, queues, jobs, system load, and user permissions. It receives schedul-

ing decisions from sge schedd and requests actions from sge execd on the appropriate

execution hosts. The scheduling daemon maintains an up-to-date view of the cluster

status with the help of sge qmaster. It makes the scheduling decision of which jobs are

dispatched to which queues. It then forwards these decisions to sge qmaster, which ini-

tiates the required actions. The execution daemon is responsible for the queues on its

host and for the execution of jobs in these queues. Periodically, it forwards information

such as job status or load on its host to sge qmaster. Sge commd is the Communication

Daemon. The communication daemon communicates over a well-known TCP port. It is

used for all communication among Sun Grid Engine components.

A Sun Grid Engine queue is a container for a class of jobs allowed to execute on

a particular host concurrently. A queue determines certain job attributes; for example,

whether it may be migrated. Throughout their lifetimes, running jobs are associated

with their queue. Association with a queue affects some of the things that can happen to

a job. For example, if a queue is suspended, all the jobs associated with that queue are

also suspended. In the Sun Grid Engine system, there is no need to submit jobs directly

to a queue. You only need to specify the requirement profile of the job (e.g., memory,

operating system, available software, etc.) and Sun Grid Engine software will dispatch

the job to a suitable queue on a low-loaded host automatically. If a job is submitted to a

particular queue, the job will be bound to this queue and to its host, and thus Sun Grid

Engine daemons will be unable to select a lower-loaded or better-suited device.
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4.3 Result of Sun Grid Engine integration

SGE is different from the other batch systems. It does not do stage-in of input

files and stage-out of the outputfiles like PBS [22]. There are also differences in the

way the queues are configured. A batch adapter layer is designed to match the special

requirements of the SGE system. This layer uses the idealizer to submit jobs to the SGE

batch system and provide interface to monitor the job and terminate it.

The batch system idealizer for SGE is implemented as a UNIX shell script called

sam sge handler.sh. Job submission to SGE requires the creation of a job description file

(JDF). sam sge handler.sh script creates this JDF at the time of job submission before

invoking the batch system command. The mapping of the Grid-id and local jobs is

created in the JDF. When performing lookup, the batch system is asked for only those

jobs that were submitted with a specific mapping of the Grid job.

Scratch management for SGE is done by the sge scratch setup.sh script. This

scripts and the user executable are transported to the worker through the batch system.

Upon its execution the scratch management script creates a unique directory (based on

local job id) for the job and then launches the user executable. When the user executable

finishes, the scratch management script then cleans up the job area in the scratch disk. If

the job is deleted from the batch system, its scratch area is left dangling. This problem

is eliminated by having the scratch management script examine the scratch area and

cleaning up any directories belonging to jobs killed. Thus if the scratch directory for a

job is left dangling it could be cleaned when the next job is scheduled at that node.

Sun Grid Engine is now integrated with SAM-Grid and is used for production in

one of the execution sites. SAM-Grid uses SGE batch adapter and SGE idealizers while

interacting with the Grid Engine. Users are able to submit jobs to SGE and make use

of the Grid Engine features.



CHAPTER 5

Enhancement of Monitoring System

Monitoring is a very important part of Grid computing. It helps in the detection

of faults and failures of the system. Also, it helps in identifying various states of the

applications running in the system. SAM-Grid infrastructure now handles large number

of jobs submitted to various sites around the world. Users of SAM-Grid need monitoring

features which easily show the states of jobs and resources. An efficient monitoring system

is required for this purpose. For making monitoring easier for users of the SAM-Grid,

monitoring system has been enhanced with new features. Some of these new features

help to scale the monitoring system for monitoring large number of jobs. This chapter

presents the enhancements done on the monitoring infrastructure of SAM-Grid.

5.1 Overview of the SAM-Grid Monitoring System

SAM-Grid monitoring system [24] helps in monitoring a job from submission

through execution. This includes monitoring the submission site, tracking the progress

of the submitted job and reaching the unknown execution site from the known submis-

sion site. It is possible for the monitoring system to retrieve information from different

realms (e.g., Condor, Globus MDS, SAM) and perform integration over all these sets to

provide the user with meaningful and comprehensive monitoring data. Only the rele-

vant information is presented to the user, all the back-end mechanisms are transparently

abstracted from the front-end layer of the system (the only layer visible to the user) [23].

The monitoring system takes into account the demands of a distributed environ-

ment, and is tolerant of failures that may occur in parts of the Grid. The unavailable,
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unreachable or under-performing entities (for instance, can be an entire site) does not

interfere with the performance of the system. The system provides access to the largest

subset of information that can be made available to the user in the event of failure in

parts of the Grid.

The system facilitates scalability in increasing number of the entities of the Grid.

It is easy to configure and reconfigure it to reflect the new components of the Grid as

the need arises. There is a standard way of representing data related to the information

about the various entities of the Grid, viz., SAM-stations, SAM-projects, SAM-groups

and SAM-users. This standard representation, allows seamless retrieval of information

across the entire grid. Dynamic retrieval of information is possible. Ubiquitous presenta-

tion through the Internet is another feature of the system. The information is available

anytime, anywhere to anyone by means of web browsers using the Internet. The infor-

mation is generated and collected from the Grid, processed for integration, and finally

presented at a users browser.

The architecture of this Monitoring System partitions the components of the Grid

according to the functionality exhibited by them as submission sites, execution sites

and monitoring sites. Monitoring site collects information about submission sites and

execution sites. Submission sites are a subset of the schedulers on the Grid. The user

specifies the requirements of the job in the form of a Job Definition Language (JDL) that

is parsed and the job is passed on to the broker for match-making. After a successful

match according to the users requirements and the best available resource, the job is

finally routed to the appropriate execution site.

Information about execution site is retrieved using different Grid middleware than

the one used to retrieve information about submission sites. Globus MDS is used to mon-

itor the execution sites, whereas Condor-G is utilized for monitoring of the submission

sites. The SAM system is present beneath these Grid middleware realms. The monitor-
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ing system performs integration over information retrieved from these different software

domains to provide a coherent view of the Grid.

Grid sensor or information provider is a service that is used to access current in-

formation about the individual grid-entities, and to notify the monitoring system of the

availability of this information. Information providers need to be deployed at each mon-

itoring site. They have the capability to retrieve information from the Grid components

at various levels (monitoring site level, execution site level, and job level) and provide

it to the backend layers of the monitoring system. Information servers are distributed

over the Grid, and are responsible for retrieving monitoring information from the Grid

using the Grid sensors. The information servers serve as one of the backend layers to

the monitoring system. The system utilizes the slapd servers of OpenLDAP software

provided with the Globus MDS, as information servers.

5.2 Architecture of the Monitoring System

A collection of Linux Apache webserver (that has been configured to utilize dynam-

ically loaded modules) and a set of PHP (Hypertext Preprocessor) scripts bundled as a

software package serve as an engine to the monitoring system. These PHP scripts pro-

cess the information retrieved from the backend layers, and render dynamically produced

web pages. The integration of information is also largely performed by this engine.

The architecture of the system is of an on-demand nature for most of its compo-

nents. Hence for those components, only an information request leads to its retrieval

from the Grid. This makes the monitoring system incur less cost on the system-resources

being utilized for the information generation and processing. However, for monitoring

the information from the submission sites, the architecture relies on periodic generation

of data by Condors internal mechanisms. The Monitoring System utilizes Globus MDS



40

and Condor ClassAds for data representation. Condor ClassAds provide information

generated by Condor or Condor-G about the entities of the Grid.

5.2.1 Globus MDS

The MDS information model organizes related information into well-defined collec-

tions known as entries. MDS contains several entries; each represents an instance of a

type of object. Information about an entry is represented by attributes, with name-value

pairs. In order to identify an MDS entry uniquely, it needs to have a unique Distinguished

Name (DN). All the entries form a hierarchical name space called a Directory Informa-

tion Tree (DIT). The DIT provides a faster and simpler way to search for a particular

entry. The DN for a specific entry can be constructed using the entries on path from

the DIT root to the node of the entry. Within the DIT, each entry is associated with a

user-defined type, known as Object Class.

The Monitoring System uses the extensions to the MDS/LDAP-defined standard

object class definitions. A representation of the DIT designed for the system is available

in [23]. All the attributes of an entry are characterized in the object class definition. An

inheritance relation can also be made in this definition that extends an existing object

class definition. Each definition contains the attributes which must be always present in

the information, along with other optional attributes. More complex structures can be

defined using attribute names that are themselves Distinguished Names, to represent the

graphical nature of entities in a Grid environment.

5.2.2 Class-Ads from Condor

Condor and Condor-G have built-in mechanisms for representing resources, jobs,

and schedulers. This information is used for brokering and match-making of jobs sub-
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Figure 5.1. Resource Class-Ad.
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Figure 5.2. Job Class-Ad.
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mitted to the Grid. The monitoring system makes use of this information and integrates

it with the information received from other sources.

Resource Class-Ad is used for advertising a resource. Figure 5.1 shows the resource

Class-Ad of an execution site in SAM-Grid. As long as an Ad is alive, the resource is

considered available for brokering, match-making and execution purposes. Similar but

more complicated Ads are used for identifying Jobs and Schedulers on a grid. Figure 5.2

shows a Job Class-Ad.

The attributes uniquely identify this entity (resource or job) amongst others of

the same category. Class-Ads for jobs are designed with a more complex representation.

They are utilized to define the various requirements the job seeks to match with a resource

on the Grid, the files involved, various arguments to be passed, and other architecture

details.

5.2.3 Information Processing Layers of the System

The Monitoring System comprises of different layers that define the processing of

information. Following is a listing of these layers along with a brief description of the

configuration features and processing of information that takes place in the monitoring

system pertinent to the corresponding layer.

1) Information Generation: At an execution site, the information is configured in

XML at the initialization of the monitoring process. This XML formatted information

for each grid-component is then processed and configured into shell scripts to be used by

Information Services. At a submission site, similar shell scripts are used by Condor and

Condor-G Services.

2) Information Transformation: Grid sensors (information providers) utilize the

shell scripts to gather information about the state of the site. This information is then

delivered to the MDS/LDAP interface that provides a coherent view of the site in con-
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formance with the LDIF (LDAP Data Interchange Format) standard. Grid sensors also

provide data to Condor interface, that delivers information in the form of Class-Ads.

3) Information Integration & Filtering: All the information available to the Layer 3

is extracted from Layer 1 and Layer 2. Loaded with Apache web services, PHP (Hypertext

PreProcessor) scripts perform extensive processing of this data.

4) Information Presentation: After all processing, the information is prepared to

be served to a remote user. The user receives a coherent view of the entire grid, and can

navigate through the various grid-components using a web interface.

Layers 1 and 2 have two parallel streams of data flow and these are integrated in the

third layer. One stream builds upon the globally-distributed Information Servers, whereas

the other stream has the globally-distributed Condor Services as their foundation. Layer

3 plays an important role in extracting data from the lower layers. The information

is processed, filtered and integrated in this zone. Thereafter, the monitoring data is

prepared to be served to users in a dynamically rendered HTML format. The main

advantage of choosing HTML at a users end is that, it is widely adopted by most browsers.

It also eliminates the need to download plug-ins at the users end.

5.3 Enhancements in Monitoring

The Monitoring System works on logically-partitioned and distributed subsets of

the Grid. These subsets comprise of monitoring sites, submission sites and execution sites.

Some times, individual components may not be available to the Grid temporarily, due to

system or configuration problems; or an entire site may suffer network failure. Monitoring

System is robust enough to notice such temporary failures, provide information about

which parts of Grid have failed and provide the reasons of failure. Monitoring system

has been enhanced with new features to improve the monitoring capabilities. These new

features make monitoring easier for users of the SAM-Grid. Some of the features make
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Figure 5.3. SAM-Grid submission site.

it easier for monitoring large number of jobs. Also, monitoring is now possible for many

types of jobs including reconstruction.

The implementation of the System directly relies on Linux, Apache/PHP, Shell-

Awk scripts; and indirectly relies on C++, Python, XML, Condor, Globus-MDS, and

OpenLDAP among other technologies. Areas of monitoring system with enhanced fea-

tures are described below.

Monitoring of a submission site is the starting point for monitoring Grid jobs.

Figure 5.3 shows all the jobs submitted to the submission site on a given date. This
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Figure 5.4. Grid job Details.

interface has been enhanced to support monitoring of several new applications. There is

a batch system link to monitor the progress of batch jobs in the cluster. The status of a

Grid job (submitted, running or completed) is shown in this interface. Other details like

application type, owner, execution site and submission time are also shown here.

Monitoring of a job is possible at each stage as it moves through different layers of

SAM-Grid. Each job has a global job id associated with it. Once a Grid job reaches the

execution site, it might have several batch jobs created corresponding to that. Monitoring

system allows us to track the different stages of each batch job.

Next enhanced interface is the one used to view details of a Grid job. Figure 5.4

shows the details of a Grid job submitted to the SAM-Grid system. All the batch jobs
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Figure 5.5. Grid job Summary.

created for this job will be shown here. There is a summary of the Grid job, which

shows the number of batch jobs which are finished, running and queued. The status of

each batch job will be shown with its exit status. The sandbox used by the Grid job is

displayed here. This is useful for administrators of the local sites where the job runs. It

is also useful while debugging an issue. For reconstruction jobs, the dataset used by the

Grid job is shown here. There is a link to monitor the progress of individual batch job.

Other details like number of output files created by each batch job are shown here.
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Figure 5.6. Progress details of an individual batch system job.

Figure 5.5 shows the summary of a Grid job. Details like submission time, current

status, output machine and output directory are available here. There is a link to monitor

the status of individual batch jobs as in figure 5.4. Once the Grid job is completed, an

output file can be downloaded from this interface. This file has log files created by

individual batch jobs. This is really useful for site administrators and for debugging.

Another enhancement was on the interface which shows the progress details of an

individual batch system job created for a Grid job. Figure 5.6 illustrates this. Global

id of the Grid job is shown along with batch job id. Job progress is obtained from the

XML database. Each event is shown with its time stamp. If the batch job successfully

completes, there will be one or more output files created depending on the application
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Figure 5.7. Output Files created by a batch job.

type. Each output file produced by the job is shown along with other details like creation

time. There is a link to the interface which will show more details about the output file.

This interface uses SAM web query with results as shown in figure 5.8.

A new interface is now available for viewing job output files. The figure 5.7 lists

all output files created by a Grid job, which are logged in XML database. All the batch

jobs which have produced an output are shown here, along with their output files. Thus

it is very easy to find out the individual batch job corresponding to an output file and

vice versa. The batch jobs are shown in ascending order. From this interface, it is easy

to find out the batch jobs which have failed to produce outputs. Here also, there is a

link to the interface which will show more details about the output file.
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Figure 5.8. SAM Web query of an output file.

The figure 5.8 gives the details of an output file created by the batch job. This

is using SAM web query interface. All the output files shown in figures 5.6 and 5.7

are linked to this interface. Using this interface, all the details of an output file can be

obtained from SAM. These include creation date, application and number of events.

5.3.1 Result of Monitoring Enhancements

SAM-Grid monitoring system is now able to handle numerous jobs submitted by

users. These jobs run on execution sites which are part of SAM-Grid. Because of the

enhancements in monitoring, users of SAM-Grid are able to easily track the progress

of these jobs. They are also able to easily monitor the batch system jobs created for

each Grid job. Using new monitoring features, it is now possible to distinguish between
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batch system jobs which produced output files and remaining batch jobs. It is also

possible to find out whether output files have been stored in Mass Storage System [5] and

find out details of output files. Monitoring system support is now available for running

applications like DZero reconstruction. Right now, users of SAM-Grid are making use of

the monitoring features extensively.



CHAPTER 6

Integration of MyProxy with SAM-Grid

MyProxy [25] is a credential management system. Integration of MyProxy with

SAM-Grid is one of the performance related enhancements to the SAM-Grid infrastruc-

ture. SAM-Grid system performance improves because job failures due to proxy expi-

ration are avoided. At this point, there is no statistics available about the percentage

of job failures due to proxy expiration. Still, users of SAM-Grid have identified proxy

expiration as a reason for some of the job failures. This motivates the integration of

MyProxy with SAM-Grid. In the first section, an overview of Grid security is given.

Next section discusses security features in SAM-Grid. After this, details about the in-

tegration of MyProxy with SAM-Grid are covered. Status of the integration is given in

the last section.

6.1 Overview of Grid security

Grid computing has emerged as a common approach to constructing dynamic,

inter-domain, distributed computing and data collaborations. The X.509 Public Key

Infrastructure is the basis for Grid security. The open source Globus Toolkit [8] middle-

ware has been developed to support Grid environments, and is used in Grid deployments

worldwide. The Grid Security Infrastructure (GSI) is the portion of the Globus Toolkit

that provides the fundamental security services needed to support Grids. The primary

motivations behind GSI are:

1) The need for secure communication (authenticated and perhaps confidential)

between elements of a computational Grid.
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2) The need to support security across organizational boundaries, thus prohibiting

a centrally-managed security system.

3) The need to support ”single sign-on” for users of the Grid, including delegation

of credentials for computations that involve multiple resources and/or sites.

GSI uses public key cryptography (also known as asymmetric cryptography) as the

basis for its functionality. Public key cryptography, unlike other cryptographic systems,

relies not on a single key (a password or a secret ”code”), but on two keys. These keys

are numbers that are mathematically related in such a way that if either key is used to

encrypt a message, the other key must be used to decrypt it. By making one of the

keys available publicly (a public key) and keeping the other key private (a private key),

a person can prove that he or she holds the private key simply by encrypting a message.

If the message can be decrypted using the public key, the person must have used the

private key to encrypt the message.

A central concept in GSI authentication is the certificate. Every user and service on

the Grid is identified via a certificate, which contains information vital to identifying and

authenticating the user or service. GSI certificates are encoded in the X.509 certificate

format, a standard data format for certificates established by the Internet Engineering

Task Force (IETF).

A GSI certificate includes four primary pieces of information:

1) A subject name, which identifies the person or object that the certificate repre-

sents.

2) The public key belonging to the subject.

3) The identity of a Certificate Authority (CA) that has signed the certificate to

certify that the public key and the identity both belong to the subject.

4) The digital signature of the named CA.
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A third party (a CA) is used to certify the link between the public key and the

subject in the certificate. In order to trust the certificate and its contents, the CA’s

certificate must be trusted. The link between the CA and its certificate is established

via some non-cryptographic means, so that the system is trustworthy.

6.1.1 Proxy

GSI provides delegation capability: an extension of the standard SSL protocol

which reduces the number of times the user must enter his passphrase. If a Grid com-

putation requires that several Grid resources be used (each requiring mutual authentica-

tion), or if there is a need to have agents (local or remote) requesting services on behalf

of a user, the need to re-enter the user’s passphrase can be avoided by creating a proxy.

A proxy consists of a new certificate and a private key. The key pair that is used

for the proxy, i.e. the public key embedded in the certificate and the private key, may

either be regenerated for each proxy or obtained by other means. The new certificate

contains the owner’s identity, modified slightly to indicate that it is a proxy. The new

certificate is signed by the owner, rather than a CA. The certificate also includes a time

notation after which the proxy should no longer be accepted by others. Proxies have

limited lifetimes.

The proxy’s private key must be kept secure, but because the proxy isn’t valid for

very long, it doesn’t have to be kept quite as secure as the owner’s private key. It is

thus possible to store the proxy’s private key in a local storage system without being

encrypted, as long as the permissions on the file prevent anyone else from looking at

them easily. Once a proxy is created and stored, the user can use the proxy certificate

and private key for mutual authentication without entering a password.

When proxies are used, the mutual authentication process differs slightly. The

remote party receives not only the proxy’s certificate (signed by the owner), but also the
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owner’s certificate. During mutual authentication, the owner’s public key (obtained from

his certificate) is used to validate the signature on the proxy certificate. The CA’s public

key is then used to validate the signature on the owner’s certificate. This establishes a

chain of trust from the CA to the proxy through the owner.

6.1.2 Security in SAM-Grid

The SAM-Grid integrates several standard Grid components, such as the Globus

Toolkit and Condor-G: the SAM-Grid therefore inherently uses X509 certificates as the

primary way for authentication. SAM-Grid distinguishes between certificates issued to

people and to services. GSI allows mutual client-server authentication and authoriza-

tion. For authentication, certificates are checked against the list of trusted CA where the

client/server run. For authorization, the certificate subject is checked against an identity

list or map of certificate subject to local UID (grid-mapfile). Clients do not use identity

lists i.e. there is no client side authorization policy on the interaction with an authen-

ticated server. Identity lists, used on the server side for authorization, are maintained

centrally and can be pulled periodically at the required sites [17].

The client software is used to submit the users job to a submission site, monitor

its status, modify its description or cancel it. The client expects the submission site to

allocate and maintain the amount of disk space necessary to hold the compressed input

sandbox of the job and the delegated users proxy. It also expects the submission site to

act on the users behalf when submitting the job to the execution site and when retrieving

its status, stdout and stderr. The client expects the submission site to protect the input

sandbox against alteration and the delegated user proxy against disclosure. The client

contacts the submission site to delegate the job submission. The client needs to trust the

CA that signed the certificate of this service.
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The submission site is responsible for accepting a job from a client, for keeping a

queue of the jobs and for reliably submitting each of them to the execution site selected

by the resource selector. The job submission fails if the execution site not trusted by

the submission site. The submission site expects the execution site to locally queue the

job, execute it, and report its status and output/error streams. It expects the execution

site to guard the job and the output/error streams from alteration and the delegated

user proxy from disclosure. The submission site needs to trust the CA that signed the

service certificate of the resource selector, the execution site gateway (globus gatekeeper)

and the CA that signed the user certificate used by the client. It also needs to main-

tain an authorization list for such users, since they are the primary beneficiaries of its

services/resources. The submission site daemon is called condor schedd.

The execution site is responsible for accepting jobs from the submission site; for

advertising itself to the resource selector and for transferring the input files required by

the jobs. The servers running at the execution site do the following:

1) Globus Gatekeeper: It is the server that receives the requests for scheduling a

job by a submission site on behalf of the user. It needs to trust the CA that signed

the users certificate and it needs to keep an authorization list (grid-mapfile) of the users

authorized to run at the local resource. The server runs as root and its identity can be

the host certificate.

2) gridftpd: We run the Gridftpd daemon to enable external access to the files

cached by the local SAM station. The daemon runs under a service certificate, whose

subject contains the machine node name. Each gridftpd has access to the list of subjects

that are part of the SAM Grid. This mechanism protects against unauthorized use of

the local disk space.

3) jim advertise: It is the service that advertises resources to the Resource Selector.

The resource description does not need a high level of protection, since the resource
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selector uses it only to recommend an execution site. Administrators can choose to run

jim adverise under a dedicated service identity or the same certificate used by gridftpd.

Resource Selector is responsible to match jobs with resources. It maintains a list

of submission and execution sites authorized to register with it, to avoid information

flooding from unauthorized services. Resource Selector runs under a service certificate.

6.2 MyProxy - Credential management system

MyProxy is an online credential management system. It is used to store the proxy

information at a centralized location. MyProxy server can be installed in a machine which

is accessible to all the client programs running on other machines. While executing jobs,

we can check the proxy life time and renew their proxy whenever they are about to expire.

6.2.1 MyProxy Server

MyProxy server has to be running on a machine which is highly secured. All the

client proxies are stored by the server in a secure location. We should choose a well-

protected host to run the server; a host that is secured to the level of a Kerberos KDC,

that has limited user access, runs limited services, and is well monitored and maintained

in terms of security patches. MyProxy server requires a secure filesystem on which to

store credentials. By default, it tries to use /var/myproxy and if that fails, it uses

$GLOBUS LOCATION/var/myproxy [25].

For a typical myproxy-server installation, the host on which the myproxy-server

is running must have a host certificate installed. In this case, the myproxy-server will

run as root so it can access the host certificate and key. The default configuration does

not enable any myproxy-server features to provide the greatest security until we have

configured the server. To enable all myproxy-server features, we should provide the details
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about accepted credentials, authorized retrievers, default retrievers,authorized renewers

and default renewers in myproxy-server.config file.

For running the server, we have to make sure that Globus environment is setup

in the shell. It accepts connections on TCP port 7512, forking off a separate child to

handle each incoming connection. It logs information via the syslog service under the

daemon facility. MyProxy Server can be run as a system service. Alternatively, to run

the myproxy server out of inetd or xinetd, we need to reactivate the inetd (or xinetd).

6.2.2 MyProxy Repository

Rather than storing the Grid credentials on each machine we use to access the

Grid, we can store them in a MyProxy repository and retrieve a proxy credential from

the MyProxy repository when needed. To store a credential in the MyProxy repository,

myproxy-init command is run on a computer where the users Grid credentials are lo-

cated. By default, myproxy-init will use credentials in $HOME/.globus/usercert.pem

and $HOME/.globus/userkey.pem. To upload credentials from a different location to the

Myproxy server, the X509 USER KEY and X509 USER CERT environment variables

could be set.

MyProxy supports credential renewal, so that long-running tasks don’t fail because

of an expired credential. An authorized Grid service can renew credentials on the user’s

behalf, or the user can renew credentials manually as needed. MyProxy server must be

configured to allow credential renewal in the authorized renewers and default renewers

policies in the myproxy-server.config file. To store a renewable credential in the MyProxy

repository, we can run the myproxy-init command with the -R or -A option on a computer

where Grid credentials are located. For example:

myproxy-init -R ’condorg/samgrid.fnal.gov’ -k renewable
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This example authorizes the Condor-G service on samgrid.fnal.gov to renew cre-

dentials with the -R option, and uses the -k option to specify a name for the credential

to distinguish this renewable credential from other credentials we may have in the repos-

itory. To renew credentials, we can run the myproxy-get-delegation command with the

-a option specifying the filename of the credential we want to renew. For example:

myproxy-get-delegation -a /tmp/x509up UID -k renewable

If the renewable credential was stored with the myproxy-init -R option, the renewer

must have a valid credential matching the -R policy to successfully renew a credential.

If, instead, the credential was stored with myproxy-init -A, no additional credential is

required.

We can use the globusrun command to update the credentials of submitted Globus

GRAM jobs (eg. globusrun -refresh-proxy job-ID). Condor-G version 6.7 also supports

renewing credentials via MyProxy.

6.3 Integration of MyProxy with SAM-Grid

In this section, details about the integration of MyProxy with SAM-Grid are given.

By using MyProxy, we will be able to avoid the issue of proxy expiring in the middle of

the job execution. When the jobs are submitted, there will be a proxy that is associated

with them. This proxy has a limited life time. There are two places where the proxy

will have to be renewed. One is the submission site and the other is the execution site.

Services running in client, submission and execution sites of the SAM-Grid, need changes

to use MyProxy.

In figure 6.1, MyProxy service is intergrated with SAM-Grid services. Proxy is

stored in the MyProxy repository by the user interface which handles job submission.

The jobs are submitted to Condor-G, which queues them before submitting to gate

keeper. Condor-G renews the proxy if it expires at this stage. Once the job is submitted
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Figure 6.1. MyProxy with SAM-Grid.

to the gatekeeper, the SAM-Grid jobmanager is instantiated. It renews the proxy if it

expires before job completion.

6.3.1 Client site

SAM-Grid uses jim client as the user interface for job submission. While submitting

the job, the RSL should have extra parameters related to MyProxy. For example, the

RSL could be like this.

MyProxyHost=samgrid.fnal:7512

MyProxyServerDN=/O=DoeGrid/....
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MyProxyCredentialName=job1

This requires changes to submission scripts in jim client. To make it more secure,

we can make the credential job specific. The user can store his credential at the beginning

of the job submission command from the client site. Using myproxy-init command, the

credential can be stored in MyProxy server. It can be deleted from the server once the

job completes.

6.3.2 Submission site

Condor-G version 6.7 supports MyProxy. When a job is submitted, the Grid-

jobmanager running in the submission site will look at the parameters corresponding to

MyProxy. The parameters include MyProxy server and proxy details. When the proxy

is about to expire, grid-jobmanager will contact the server and renew it. Schedd would

n’t need any changes. VDT 1.3 includes Condor/Condor-G v6.7 and MyProxy.

6.3.3 Execution site

In the execution site, job managers can renew the proxy when it is about to expire.

This is possible by invoking get delegation command and connecting to the MyProxy

Server. The server name and other parameters should be available in the environment.

We can use the SAM-Grid job manager to replace the user proxy when it is about to

expire. This will be placed in the sandbox so that the batch jobs will get it, when they

transfer the sandbox.

Once the jobs start running in the worker nodes, there is only one way to deal with

proxy renewal. Each job will have to renew it by pulling it from the sandbox area in

headnode or from the MyProxyServer directly. When the job is waiting in the queue,

the proxy might expire. It would be a good idea to make sure that many jobs are not
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submitted to the batch system at the same time. If many jobs are submitted, we have

to make sure that the proxy of the jobs waiting in the queue is long enough.

Proxy might expire, if the batch job is forced to wait for a long time during the

file transfer. In this case, each batch job can renew the proxy by connecting to the

MyProxy Server. Transferring renewed proxy from the head-node is another solution, if

job-manager will renew the proxy and put it in the head-node.

A job can check the proxy when it is about to use it in the Grid. In sandbox

manager script, we are exporting the X509 USR PROXY. This is used in all the Gridftp

transfers later on. Before doing a gridftp, we can execute a script which will check the

remaining time for the proxy. If it is not sufficient for the predicted run time of the job,

it can be renewed using the myproxy-get-delegation command. This command will use

the current proxy, while authenticating to the MyProxy server.

6.4 Status of MyProxy Integration

At this time, SAM-Grid team is evaluating the integration of SAM-Grid with

VOMS(Virtual Organization Membership Service). MyProxy integration was tried only

in a test environment and would require integration with the production environment for

the SAM-Grid. Statistics about the job failures in SAM-Grid due to expired credentials,

are to be gathered. The future work might include a tighter integration of VOMS and

MyProxy with SAM-Grid. This depends on the requirements of the experiments utilizing

the SAM-Grid infrastructure.



CHAPTER 7

Conclusions

SAM-Grid is being used as the Grid computing infrastructure for many of the HEP

experiments. This thesis is part of an effort to enhance the capabilities of the SAM-grid

infrastructure. SAM-Grid has been scaled to handle large number of jobs submitted to

various sites around the world. Monitoring system has been enhanced with new features.

These new features are used extensively by the users of SAM-Grid. Sun Grid Engine

has been integrated with the SAM-Grid and MyProxy integration has been tried on a

test-bed. It is also integrated with components for running experiments like DZero data

reprocessing.

7.1 Current utilization of SAM-Grid

Figure 7.1. Throughput of SAM-Grid.
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Figure 7.2. Production in SAM-Grid.

Figure 7.1 shows the throughput of SAM-Grid during October 2005. This is the

combined output of all applications including DZero reconstruction. There are around 5

million events getting processed every day which corresponds to around 300 Giga Bytes

of data.

The SAM-Grid system is being heavily used for running the DZero experiments.

Figure 7.2 shows there has been a steady increase in the usage of the system from the

year 2001 onwards. Combined total of all simulated data is around 120 Tera Bytes. This

includes digitized and reconstructed data. As seen in the figure, from the middle of 2004,

there has been much more data produced by the experiments running in SAM-Grid. This
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is because SAM-Grid now has more execution sites running jobs and the enhancements

done on the infrastructure improved the job and data handling capability of the SAM-

Grid. From 2004 onwards, jobs running in SAM-Grid have processed more than 60 Tera

Bytes of data.

At this point, Dzero and CDF are the HEP experiments using the SAM-Grid

infrastructure. Also, there are new experiments which are being analyzed for using the

SAM-grid.
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