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ABSTRACT

ESTIMATING ABSOLUTE TRANSCRIPT CONCENTRATION FOR MICROARRAYS USING

LANGMUIR ADSORPTION THEORY

MIN MO, PhD.

The University of Texas at Arlington, 2008

Supervising Professor: Doyle L. Hawkins

This paper estimates the Langmuir parameters for probe on microarray then improves
estimation of absolute transcript concentration using Langmuir adsorption model. We use the
spike-in probes found on commercial microarrays, along with Langmuir adsorption model to
estimate Langmuir parameters for spike-in probes, then combine with an assumed log-linear
model for those Langmuir parameters in terms of the spike-in probe sequence features, to
estimate the assumed-invariant model coefficients. These estimated coefficients are then used,
along with the probe sequence features of the target probes, to estimate the Langmuir
parameters for each target probe. Finally, these estimated Langmuir parameters are combined
with the expression measurements to produce estimates of the absolute transcript concentrations.
The performance of this method, which amounts to extrapolation of a model fit over the space of
the spike-in probe features to the space of the target probe features, will depend on the extent of
this extrapolation. Simulation results will be presented to describe the performance of the method.

The optimal choice of spike-in probes is given to the chip design.
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CHAPTER 1
INTRODUCTION

Microarray technology has been widely used in determine thousands of genes
expression pattern in few hours; examining mRNA from different tissues in normal and abnormail;
determining which genes and environmental conditions can be lead to disease and identifying
protein binding site, etc. DNA microarray, such as cDNA spotted microarrays [Duggan, et. al,
1999] and in-situ oligonucleotide arrays (e.g., Affymetrix chips) [Lipshutz, et. al, 1999], have
orderly arrangements of nucleic acid spots at high density, provided high-throughput
measurements in molecular biology, yielded information for the reconstruction of complex gene
control networks [Lee, 2004]. Researcher can monitor expression level for thousands of genes

simultaneously. In this chapter, the problem, biological background and theory are introduced.

1.1 Biological Background

1.1.1 DNA and Central Dogma

A cell is the minimal unit of life. Deoxyribonucleic acid (DNA) carried the information
necessary for the functioning of cell. DNA is composed of four nucleotides, each nucleotide is
made up of three elements: a phosphate group, a deoxyribose sugar and one of four different
nitrogen bases: adenine (A), guanine (G), cytosine (C) and thymine (T). Watson and Crick
discovered the structure of DNA is a double helix, which is a chain of nucleotides, in 1953
[Watson, 1953 and 1997]. The pair principle is that G pairs only with C, and A pairs only with T.
DNA can be copied and pass out nucleus, the genetic information can also be copied as
ribonucleic acid (RNA) molecules, which is single-stranded and complementary to one of the two
DNA strands. This process is called transcription.

RNA has a pyrimidine base uracil (U) instead of T, with U always pairing with A. There are

two main classes of RNA: messenger RNA (mRNA) and functional RNA which including transfer
1



RNA (tRNA) and ribosomal RNA (rRNA). The RNA is transferred to machinery that synthesizes
protein molecules based on the information carried by the RNA, this process is called translation.

Gene is the segment of the DNA sequence that controls the identifiable hereditary traits
of an organism. The central dogma of molecular biology states that DNA is transcribed into
mRNA molecule in nucleus, which is then translated into a protein during synthesis (Figure 1.1
[Primer on Molecular Genetics, 1992]). The process of reading the mRNA sequence and
converting it into an amino acid sequence is called translation. The A, G, C and T is translated
into 20-amino-acid alphabet of proteins in ribosome which is big complex of several proteins and
ribosomal RNA. A gene determines when, what amount and what kind of protein will be
generated in the cell. The protein and its interaction with the environment then determine the

phenotypes of the cells and the organism.

ORML-D'WG 21617380

O

Free Amino Acids

NUCLEUS
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Amino Acid to
Ribosome
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RIBOSOME incorporating
amino acids into the
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Figure 1.1 Gene Expression. DNA is transcribed into mRNA molecule in nucleus, translation is
processed in ribosome.



1.1.2 Measuring Gene Expression

To understand the function of a gene, it is necessary to know which protein it encodes,
the condition which leads to its activation and the level of activity which these conditions induce.
Gene expression is the process by which mRNA and protein are synthesized from the DNA
template of each gene. The first stage of this process is called transcription, when one strand of
DNA is copied as RNA; the second stage of gene expression is translation of mMRNA into protein.
The gene expression can be measured at two levels: mRNA (what is transcribed) and protein
level (how much is made). Respite recent advances in the field of proteomics [Lewin, 1997], it is
difficult to measure a gene expression at protein level, an alternative definition of gene expression
can be obtained by mRNA level. Under the assumption that the presence of mMRNA indicate gene
expression and be used to control the protein for which gene encodes, a gene is referred to as
expressed if its DNA has been transcribed to RNA, then measure of gene expression is the
abundance of mMRNA (mRNA concentration). The DNA microarray measures gene expression at

mRNA level.
1.1.3 Microarray Technology

Microarray offers an efficient method of gathering data that can be used to determine the
expression patterns of tens of thousands of genes in only a few hours. Microarray methods allow
researchers to examine the mRNA from different tissues in normal and disease and determine
which genes and environmental conditions can be lead to disease. Similarly, microarray can be
used to determine which genes are expressed in which tissues and at which time during

embryonic development.

The first complementary DNA microarray was invented in 1995 at Stanford University, it
contained only 48 cDNAs, but today, there are tens of thousands of genes and even whole
genomes on an array.

The basic concept behind all microarrays is the precise positioning of DNA fragments at

high density on a solid support, and the natural affinity of single stranded DNA to bind with its

3



complementary sequence. There are two main microarray technologies: spotted microarray
(cDNA spotted microarray and oligonucleotide spotted microarray) and in-situ oligonucleotide
microarray (e.g. Affermetrix) [Lee, 2004]. We only discuss oligonucleotide microarray in this
dissertation.
1.1.4 Oligonucleotide Microarray

1.1.4.1 Construction of the Microarrays

In oligonucleotide arrays, each target gene is represented by a probe set containing 14
carefully selected perfect match probes (PM) and 14 mismatch probes. Each PM probe is a 25-
mer long (base sites) segment of the target gene. The set of PM probes is chosen to uniquely
identify the target gene. Each mismatch probe is same as one corresponding PM probe, except
the middle base (13" base) (Figure 1.2). The purpose of the MM probe design is to measure non-
specific binding (MRNA transcript not hybridizing to its complementary counterpart) and

background noise (unexpected noise, e.g. optical noise).

AATCCCAGTCTTCCTGAGGATACGC Perfect Match probe

AATCCCAGTCTTGCTGAGGATACGC MisMatch probe

Figure 1.2 Perfect Match and Mismatch Probes Construction

Affymetrix Genechip arrays, the focus of this dissertation, consist of a substrate onto
which short single strand DNA oligonucleotide probes have been synthesized using a
photolithographic process. A chip surface is divided into hundreds of thousands of regions

typically tens of microns in size (Figure 1.3 [Affymetrix.com]), each region for one probe.



1.28cm

.28 em

Actual size of
GeneChip® array

Millions of DNA strands built up in each location

500,000 locations on each GeneChip* array
Actual strand = 25 base pairs

Figure 1.3 Microarray Surface. A chip surface is divided into hundreds of thousands of regions
typically tens of microns in size.

1.1.4.2 Target versus Spike-in Probes

The probe sets on an array are of two types:

(1) So called ‘target’ probe sets, which are designed to detect the presence of the
mRNA of the target genes in the study sample.

(2) So called ‘spike-in’ probe sets, which are designed to detect the presence of ‘spike-
in” mMRNA in the study sample.

Spike-in mRNA is artificial (to the study organism) mRNA which has been mixed, at

known concentration, into the study RNA sample for the purpose of monitoring the validity of the

array expression measures.



1.1.4.3 How does a Microarray Work

The target mMRNA is collected from the study organism under the desired experimental
condition, and mixed with the spike-in mRNA to form the study sample. The individual stands of
mRNA are called transcripts. This mixture is labeled with fluorescent dye. Using a complex
process, the study sample is hybridized onto the array. If mRNA transcript in the study sample
finds its complementary counterpart among the probes on the array, it will hybridize (stick) to that
probe. If it does not find its counterpart, then hopefully it does not stick to any probe (Figure 1.4
[Affymetrix.com]). After hybridization, the array is exposed to a laser light, which causes the dye
to fluoresce. The fluorescence intensity is obtained by using a laser scanner. The more mRNA is

stuck on the probe, the higher is a probe’s fluorescence intensity (Figure 1.5 [Affymetrix.com]).

RNA fragments with fluorescent tags from sample to be tested

RMNA fragment hybridizes with DNA on GeneChip® array

Figure 1.4 RNA Fragment Hybridizes with DNA on GeneChip Array



Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

Hybridized DNA

Figure 1.5 Shinning a Laser Light at GeneChip Array Causes Tagged DNA Fragments that
Hybridized to Glow

1.2 Absolute Concentration VS Fluorescent Intensity

While gene expression is defined in term of absolute concentration of mMRNA (i.e. number
of corresponding mRNA transcripts per unit volume), absolute mRNA concentration cannot, at
present, be obtained directly. Thus, technological barriers limit researchers to using fluorescence
intensity as an indirect measure of gene expression (See e.g. Li et al, 2001, Gauiter et al, 2004,
Wu et al, 2004, Iriazrry et al, 2003 and Zhang et al, 2003). Early on, the justification for this
indirect measure was the belief (See e. g. www.Affymetri.com) that absolute mRNA concentration
is roughly linearly related to probe fluorescence intensity, so that measuring the latter suffices for

the former.



However, it was eventually realized (Hekstra et al. [2003], Abdueva et al [2006], Burden
et al. [2004] and Zhang et al [2006]) that this assumed linearity does not hold. Specifically, at high
levels of absolute concentration, the fluorescence intensity tends to reach an upper limit and
becomes insensitive to further increase in absolute concentration.

Recent technical advances hold promise for direct measurement of absolute
concentration, but at present are not practical. Hence, recent research, including the present, has

attempted estimation of absolute concentration from fluorescence intensity.

1.3 Attempting to Determine Absolute Concentration from Fluorescent Intensity:
A Literature review

1.3.1 Hekstra’s Discovery
Heskstra [2003] demonstrated, using spike-in experiments that the relationship

between fluorescence intensity and absolute mRNA concentration is not linear. Further, he
demonstrated that Genechip fluorescence intensity data follows Langmuir adsorption isotherms.

1.3.1.1 The Langmuir Adsorption Model in General

The Langmuir adsorption isotherm is a theory of physical chemistry, described by Atkins
as the most elementary model of surface adsorption [Atkins, 1994]. The theory was developed by
Irving Langmuir in 1916 to describe the dependence of the surface coverage of an adsorbed gas
on the pressure of the gas above the surface at a fixed temperature. It is assumed that gas
molecules striking the surface have a given probability of adsorbing. Molecules already adsorbed
similarly have a given probability of desorbing. At equilibrium, equal numbers of molecules
desorbs and adsorb at any time. The probabilities are related to the strength of the interaction
between the adsorbent surface and the adsorb gas.

The Langmuir model is usually expressed as:

Voo Cx

V. 1+Cx




where V= volume of gas adsorbed at pressure P; V, is volume of gas which could cover the

entire adsorbing surface with a monomolecular layer; V), is saturation pressure of the gas, i.e., the
pressure of the gas in an equilibrium with bulk liquid at the temperature of the measurement;
x = P/ P,is relative pressure (0 < x <1); Cis constant for the gas/solid combination.

1.3.1.2 The Langmuir Adsorption Model Applied to Microarray: Hekstra’s First Idea

Since microarray measurement involve adherence of particles (MRNA) to substrates
(probes), the Langmuir adsorption model can be applied to microarray data analysis.

Assuming the measured fluorescence intensity of a probe is proportional to the number

of mRNA transcripts stuck to the probe surface, the Langmuir model for the fluorescence

intensity, I, in terms of the absolute concentration x, is:

I=a

+d, 1.1
x+b 1.1l

where a,b and d are probe specific parameters. Specifically, a is proportionality constant, b is
the concentration at which the complementary RNA saturates half of the probe surface if there is
no non-specific hybridization, and d presents the contribution from non-specific hybridization ( i.e.
material stuck to the probe which the probe is not intended to hybridize) .

Hekstra used probe-level fluorescence intensity measures from spike-in experiments
(i.e. in which the absolute mRNA concentration were known) to estimate a,b and d for probe p,

by weighted least-squares fits of [1.1]. l.e. they minimized the sum of weighted square errors:

2] a,x,
S, =;]__[1,.p ~Cd,)T [1.2]

p P p

where i indexes arrays, pr is the fluorescence intensity measurement for probe p on array

I,and X, is the known absolute concentration corresponding to probe p on array i.They then



=

ip

produced the plots of Y, versus X, in Figure 1.6 (Heskstra [2003]], where X, =—
b

P

A

I
andY,, = ———"_ The clear adherence of these plots to the functional form ¥ =

(which
» 1+ X

is equivalent to [1.1]) shows the conformity of the fluorescence intensity and absolute

concentration relationship to the Langmuir model.
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Figure 1.6. Langmuir Isotherm Provide Accurate Description of GeneChip hybridization

1.3.1.3 Hekstra’s Second Idea: the Probe Parameters Depend on the Probe Structure
Researchers are interested in absolute concentration, but only obtain fluorescence
intensity from the array. By Hekstra’s Langmuir model [1.1], if @, b and d could be estimated, then
one could estimate absolute concentration from fluorescence intensity. Since the probe structures
are known, Hekstra proposed a statistical method for estimating the probe parameters in term of
probe features. Specifically, he proposed the linear model [1.3].
ln&p Yi Yo Yo Ny, B &

b, |=| 7, ve 7o |* ne, [+ B |+| &
Ind ?’j 7g 72 ng , Bs &3

[1.3]
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where ap,bp and dp are probe parameter estimates for probe p, Ny, lc, and ng , are the
number of A, C and G bases in probe p , the »'sand f's are unknown constants assumed to be

the same for all probes, and &'s are error terms. Hekstra obtained R* about 50% for each of the
three components, in model [1.3], suggesting some merit for the idea.

It is important to note that in his development of model [1.3], Hekstra used probe
parameter estimates obtained via least square, using intensity data from spike-in experiments (i.e.
with known absolute concentration). He did not, however, show how to apply his ideas to the

practical setting in which there is no spike-in data, so that [1.2] cannot be used to determine

A A

a,band d . We remark that, using only the fluorescence intensity data, the least squares
criterion cannot simultaneously identify all of&,l;, c;’ and X, in Equation [1.3].
But see section 1.3.3 below about the methods of Abdueva et al. [Abdueva, 2006].

Hekstra also proposed (assuming &,t;and dA could somehow be obtained) estimation of absolute

mRNA concentration of the target gene from probe p , via

>

$=bh —r P [1.4]

Since the absolute mRNA concentration is by definition, non-negative, there are two
necessary constraints: [/ >c;’ and &+c;’ > I . Hence he proposed excluding any probes with

1< c;’orl > &+c§. He proposed averaging the by-probe estimates over all probes p in the

probe set to obtain a single estimate of the target mMRNA concentration.

1.3.2 Other Proposals for Estimating Absolute Concentration from Fluorescence Intensity
Recently studies have begun to address these issues by appealing to models based on

principles of physical chemistry, such as Langmuir adsorption model, offer the possibility of

predicting absolute concentration.

There are some methods which estimate concentration by using Langmuir adsorption:
11



(1) Held et al. [Held, 2003] demonstrate a correlation between hybridization intensity
and calculated free energy of hybridization. Then combine hybridization rate quation,
calculated free energy of hybridization, and base on Langmuir adsorption model to
compute absolute transcript concentration for target gene.

(2) Burden et al. [Burden, 2004] develop several dynamic adsorption models, which
based on the Langmuir adsorption model, relating fluorescent intensity to target RNA
concentration, using an appropriately defined median over probes within probe set
rather than the mean to improve estimators of absolute concentration by reducing
bias, and enable to estimate confidence interval. They also mention the challenging
problem of establishing an algorithm for extracting Langmuir parameters from a
given probe sequence, a problem which Hekstra proposed to solve statistically ala
model [1.3].

(3) Binder et al. [Binder, 2006] predicted the parameters of the Langmuir adsorption
model in a sequence-specific fashion using a sum of positional-dependent and
based-specific nearest-neighbor free energy terms, they used both PM and MM
probes information, estimate absolute mMRNA concentration from the PM-MM probe
intensities difference using the Langmuir model.

(4) Abdueva et al. aimed at absolute concentration by using the Langmuir model, they
fitted Langmuir parameters within a single global fitting routine instead of estimating
the background before obtaining gene expression measure, and described a
logarithm in linear model of Langmuir parameters to estimate concentration
[Abdueva, 2006]. Abdueva used Heskira’s first idea, gave an initial estimation of

concentration, plus

log(PM ;) = concentration; + probeaffinity , + ¢ ,, [1.5]

Where pis probe index, ja condition index, /a replicate, PM is the fluorescence

intensity of perfect match probe, into

12



I=a ¢

c+b 1.2l

To estimate &,l;, c;’ then use [1.2] again to estimate initial concentration.The result
depends on the starting value they chose, so it would not be possible if the starting
value is randomly chosen. They can not estimate all a,b,d and ¢ simultaneously,
since all parameters are not identifiable.
We remark that none of those papers considers using spike-in probes, whether already
installed on arrays or perhaps to be designed estimate the absolute mMRNA concentration. There

are the ideas we study in this dissertation.

1.4 Motivation of Our Method

The motivation of this dissertation is, in brief, that Hekstra’s ideas to develop a practical
method for estimating absolute concentration from fluorescence intensity. Assuming that spike-in
probes-- either already installed on the arrays or perhaps specially designed - -are available on
the arrays and that the corresponding spike-in material is mixed into the target sample at known

concentration, then one should to be able to:
(1) Estimate d,l;and c;’ for each spike-in probe in model [1.2] using known florescence

intensity, concentration and the Langmuir model

a*c

b+c

I=( +d)*e [1.6]

(2) Estimate universal y'sand f'sin model [1.3] from such &,I;, d.

(3) Estimate &,l;and c;' for each target probe by using model [1.3] and universal
y'sand f's.

(4) Estimate absolute concentration for each target probe using d,l;and c? and model [1.6].

Abdueva’s method does not use any spike-in probe information, but her result depends

on a carefully chosen initial absolute concentration value. By comparing with Abdueva’s method,
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we use spike-in probe information, which is on array, to estimate absolute concentration of target

gene without depending on any other starting value selecting.
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CHAPTER 2

OUR PROPOSED METHOD FOR ESTIMATING ABSOLUTE CONCENTRATION WHEN SPIKE-
IN PROBES ARE GIVEN

In this chapter we assume that we have available identical arrays with spike-in probes
already installed. We make no particular assumption about the spike-in probe, except that it is
possible to mix the spike-in material into the target samples at known concentrations, which vary
across the arrays for a give experimental condition. In chapter 3, we take up the matter of

optional design of the spike-in probes, should this be possible.

2.1 Our Assumption

2.1.1 Practical Assumptions
(1) Given spike-in probes already on the arrays, with corresponding spike-in
material included in the target samples;
(2) The spike-in probe sequence and concentrations are known;
(3) For each experimental condition, we have multiple arrays with varying spike-in
concentrations across the arrays.
2.1.2 Theoretical Assumptions
(1) Hekstra’s model [1.3] holds for each probe.

(2) Hekstra’s empirical model [1.6] holds with normal error.

(3) ¥'s & f'sin [1.3] are the same for all probes.
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2.2 Proposed Method

For the spike-in probes, since the corresponding absolute concentrations are known, we
can estimate the Langmuir parameters a, b and d for each spike-in probe by extending model [1]
to the statistical model:
~ cs,i 3
]S,p,i = (aS,p A +ds,p)*gs,p,i [21]
S,0 + s,p

where s indicates spike-in probe, p =1,2....28 . indexes probes, i =1,2,...N indexes arrays for
the same experimental condition. logég ,, is assumed N(0,67) ; I, is the florescence

intensity measure for spike-in probe p on array i.c ; denotes the known absolute concentration
of spike-in transcripts corresponding to probe p on array i, which is assumed to vary across the

arrays i.a bs,p and ds,p are the unknown Langmuir parameters of spike-in probe p .

s,p?
1. For each spike-in probe, p , we can obtain

A

{dw ,b d ,se SI, p =1,2,...28} from model [1.4] by using nonlinear regression,

s,p> 7 s,p?
minimizing:
< &s,pcs,i % 2
S,, =2, logl, ,, ~log(—*"——+d, )] [2.2]

i=1 bs,p + cs,i

A A

b .,d , - Let ST denotes the set of spike-in probes, T denotes

$,p27s,

with respect tod, ,,

the set of probes corresponding to a particular target gene. Since there are 3

parameters (a,band d ), so N >3 is required.

A

2. Then use {&S’p ,5 d, ,seSI,p=12,..28}, to obtain the assumed universal

s,p> 7 s,p?

y's & ,B's(é) by applying model [1.3].
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Inb,, Ind,,)=X*B+e

5.0
Yi vi Vi
a« b d 12.3]
Ye Yo Ve
:(”s, 4 oo Ppe 1)* B +(51 & ‘93)
paeet e e ve Ve
s B B

A

In model [2.2], a b d, ,are known, n

a.p2Pg.p> ng,,cand n . arethe known

s,p,A°
nucleotide counts for spike-in probe p . We use OLS component wise in [2.3] to

estimate /3, one column at a time.
3. After obtaining the estimates of £, then use model [2.3] and the known nucleotide

A ~

counts for the target probes to estimate &T,p ,b; ,,d; ,for target probes p .

na oAb Ad
Ya Va4 74

na oAb ~d

A , 5 P Ye Ve 7
(lnaT,p lan,p lndT,p):X*g:(nT,p,A By pc Mrpe 1)* };S };i ];3 [24]

G G G

B B B

here n; , ,,n; ,c &n; , . are the known nucleotide counts for target probe p , so

A A

we predict @, ,,b; ,,d, for target genes.

A A

4. Finally, we plug &T,p,brﬂp,dr’p of target probes into:

CT ~
~ +dT,p)*gT,p,i [25]
Cr +

1

T,p.i = (&T,p
T.p

to estimate éT (concentration of target gene), by minimizing the sum of square error

with respect to éT :

ul a, ¢ n
S, = ZZ[log I, —log(—""—+d, I [2.6]

estimate one gene at a time.
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2.3 Simulation
In order to check whether our method works under the stated assumption and its
sensitivity to spike-in/target probes spacing, noise, etc. we did a simulation study.
2.3.1 Simulation Process
We use SAS program to simulate and analyze the data.
(1) Data set
We simulate 100 replicates, in each hypothetical experimental condition, there are:
a) Spike-in probes and target genes
There are 3*28 spike-in probes (3*14 PM and 3*14 MM probes) and 10 target
genes (10*14 PM and 10*14 MM probes), the difference between perfect match
probe and Mismatch probe is the 13" bite. Each probe is randomly selected, and
the numbers of nucleotides on the probe are independent identically distributed as

Multivariate Normal distribution.

T C

A G
Letn,,,n,,, n, and n. are the numberof A, T, C and G on the gene g, probe

pa

r.4 T c G _l
lgp _[ngp Mgy Mgy ngp]’ Zop =t P2 Tps sl
we assume:

2
X, ~MNQ25*z, .52 ).

- _gp’

The following logit model has been use to generate the probabilities:

log(@) =5, +06,+06, [2.7]

gp4

Where k =1,2,3, g is gene index and p is the probe index, 7 .,y indicates the

probabilities of nucleotide A on the gene g probe p, 7 ,indicates the

gr2

probabilities of nucleotide T on the gene g probe p, g3 indicates the

18



probabilities of nucleotide C on the gene g probe p .

7 gpk T
LetT,, =0, +5, +5,, ———=e ™, then
ﬂ-gp4
_ Tgpl
T TIIT ST 4T
gpl gr2 gp3
_ Tgp2
T TUT 4T 4T
gpl gp2 gp3
_ Tgp3
T TIT AT 4T
gpl gp2 gp3
1
T =
gr4
1+ Tgp1 + Tgp2 + Tgp3
They satisfy

The separation of spike-in probes and target genes depend on 5g and 5p, the more
difference on 5g and 5p , the father away between spike-in and target genes.

Examples 1: The probabilites 7,,,7,,,,7,; and 7,4 SPike-in probes and target

gpl> " gp2>

probes are equal. J,,0,and 5, are same for spike-in and target genes.
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Table 2.1 Separation between Spike-in and target probes with same §g

Probability Spike-in Target
7 gpi 0.1 0.1
T ep2 0.2 0.2
T ep3 0.4 0.4
T epa 0.3 0.3

We control spike-in and target probes separation by changing 5g .

Example 2: The probabilities 7 _ ., T g3 and T gpa spike-in probes and target

gpl> 7" gp2>

probes are separate, 5, =0.1, 5p = (.2 for both spike-in and target probes.

Table 2.2 Separation between Spike-in and target probes with different 5g

Spike-in Target

Probability 9, =0.1 5, =1
7 gp1 0.24124 0.27327

T epa 0.26661 0.30201

7T o3 0.29465 0.33377
T epa 0.19751 0.090962

b) Arrays
5 arrays was generated in each replicate, the transcript concentration on spike-in
probes were set vary across the arrays while the concentration of target genes

depend on gene, the transcript concentration belong to (2, 4, ..., 1024) PM.
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c) Universal f's
Under our assumption, ﬂ's in model [2.3] are the same for all probes, so we assign

value to ,B's . Then compute the Langmuir parameters (&,I;and d ) by using model

[1.3] for each probes with the noise.

(2) Varied factors
a) The separation between spike-in probes and target probes (5,{,5g and 5p in [2.7]).

b) The fluorescence intensity is computed by using model [1.4]

g,i

) c,. n
log(Z, ,,)=log(a, ,—~—+d, ,)+log(e
c,,+b

&l g.p

[2.8]

g,p,i)

The noise loge changes across array, gene and probe.

-y
(3) Program
We use SAS software for the whole simulation, PROC IML is used to generate the

data set, and PROC NLIN is used for the non-linear regression model.

2.3.2 Estimate Absolute mRNA Concentration

By using our proposed method, vary standard deviation of the noise (gs,p,,. ) in [2.8] and

separation between spike-in probes and target probes, which 5g is different between spike-in

probes and target probes, we estimate the absolute mRNA concentration of target genes, the

result is very good in term of relative bias, average of square standard error and variance of

estimate absolute mMRNA concentration in each scenarios. Where

1 R
bias =— Z ¢, —C,,. » Vindicate the number of replication.
R

r=1

. . bias
relative bias = ——
c

true
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var(¢) is the unconditional variance of estimate absolute concentration of target gene;

var(C | é) is variance of estimate absolute concentration of target gene under given

target probe information;

§sg is 5g for spike-in probes, §Tg is 5g for target probes.

Table 2.3: Scenario 1-- Standard Deviation of the Noise and Separation between Spike-in
Probe and Target Probes withe, ,, =0.33, 6, =6, =2.

Separation

gs,p,i ﬂgpl ﬂ-gp2 ﬂ-gp3 4
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011
Target probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Table 2.4: Scenario 1-- Relative Bias, Average of Variance and Variance of Estimate Absolute

mRNA with &, . =033, 6, =06, =2.
Target gene True C é Relative bias var(¢) var(C | é)
1 2.05 0.02 1.03 0.10
2 4.07 0.02 2.05 0.21
3 8.04 0.01 3.58 0.61
4 16 15.85 -0.01 9.43 2.24
5 32 31.74 -0.01 57.65 8.23
6 64 62.39 -0.03 309.60 27.26
7 128 131.99 0.03 1608.52 160.77
8 256 261.97 0.02 6525.38 967.70
9 512 516.52 0.01 38161.93 5300.00
10 1024 1126.91 0.10 866320.93 120532.91
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Table 2.5: Scenario 2-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe ,, =0.33, 6, =2, 6, =4.

&, pi Separation 7 g 7 g2 7 3 .
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011
Target probe 0.28749 0.4739908 | 0.1743715 | 0.0641477

Table 2.6: Scenario 2-- Relative Bias, Average of Variance and Variance of Estimate Absolute
mRNA with &, = 0.33, 5Sg =2, 5Tg =4 .

Target gene

True C

A

Relative bias

C var(¢) var(é | 9)
1 2.04 0.02 1.03 0.10
2 4.08 0.02 2.01 0.29
3 8.02 0.01 2.65 0.70
4 16 15.82 -0.01 5.15 2.18
5 32 31.72 -0.01 19.22 7.27
6 64 62.64 -0.02 101.76 23.17
7 128 130.86 0.02 875.55 96.46
8 256 261.83 0.02 3645.89 567.67
9 512 512.16 0.01 10650.56 2087.48
10 1024 1057.09 0.03 84910.60 25927.06

23




Table 2.7: Scenario 3-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe ,, =0.33, 6, =1, J;, =5.

£, pi Separation 7 g1 7 ey T e
0.67 Spike-in probe 0.12925 | 0.2130973 | 0.0783941 | 0.5792585
Target probe 0.2996401 | 0.494023 | 0.1817409 | 0.024596

Table 2.8: Scenario 3-- Relative Bias, Average of Variance and Variance of Estimate Absolute
mRNA with &, = 0.33, 6sg =1, §Tg =5.

Target gene True C C”v Relative bias var(c) var(é | é)
1 2.05 0.02 4.39 0.07
2 4.08 0.02 9.68 0.31
3 8.01 0.01 12.37 0.71
4 16 15.82 -0.01 26.70 2.20
5 32 31.73 -0.01 86.09 7.28
6 64 62.69 -0.02 402.12 23.19
7 128 130.66 0.02 3021.57 90.19
8 256 261.54 0.02 12078.55 505.77
9 512 511.44 -0.01 39296.65 1876.18
10 1024 1050.95 0.03 227273.44 22374.79




Table 2.9: Scenario 4-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =0.33, 6, =1, 6,, =10.

£, pi Separation 7 g1 7 ey T e 7 e
0.67 Spike-in probe 0.12925 | 0.2130973 | 0.0783941 | 0.5792585
Target probe 0.3071437 | 0.5063944 | 0.1862921 | 0.0001699

Table 2.10: Scenario 4-- Relative Bias, Average of Variance and Variance of Estimate
Absolute mRNA with &, = 0.33, 5Sg =1, 5Tg =10.

A

Target gene True C C Relative bias var(c) var(é | é)

1 2.05 0.02 4.39 0.07

2 4.08 0.02 10.10 0.31

3 8.01 0.001 12.29 0.73

4 16 15.82 -0.01 25.98 2.22

5 32 31.73 -0.01 85.69 7.32

6 64 62.72 -0.02 372.73 22.88

7 128 130.68 0.02 2849.16 87.61

8 256 261.44 0.02 12043.91 493.15
9 512 511.23 -0.01 37583.94 1809.78
10 1024 1050.29 0.03 2072203.47 20752.00
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Table 2.11: Scenario 5-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =0.67, 6, =6, =2.

S i
gs,p,i eparation ﬂgpl ﬂgp2 ﬁgp3 ﬂgp4
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011
Target probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Table 2.12: Scenario 5-- Relative Bias, Average of Variance and Variance of Estimate Absolute
mRNA with &, = 0.67, §Sg = §Tg =2.

Target gene True C C”v Relative bias var(c) var(é | é)
1 212 0.06 0.44 0.36
2 418 0.05 0.91 0.58
3 8.14 0.02 257 1.14
4 16 15.82 -0.01 9.18 3.19
5 32 31.73 -0.01 34.01 17.86
6 64 61.18 -0.04 106.35 87.24
7 128 137.96 0.08 793.65 641.98
8 256 273.47 0.07 4601.23 2341.89
9 512 539.12 0.05 28777.39 15134.99
10 1024 1302.24 0.27 615064.02 919306.05
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Table 2.13: Scenario 6-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =0.67, 5, =2, &;, =4.

"
& pi Separation 7 g1 7 o 7 e
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Target probe 0.28749 | 0.4739908 | 0.1743715 | 0.0641477

Table 2.14: Scenario 6-- Relative Bias, Average of Variance and Variance of Estimate Absolute
mRNA with ¢, = 0.67, é‘sg =2, 5Tg =4,

Target gene True C C”v Relative bias var(c) var(é | é)

1 2.11 0.06 0.44 0.36

2 4.21 0.05 1.25 0.56

3 8.10 0.01 2,92 0.80

4 16 15.75 -0.02 8.91 1.75

5 32 31.64 -0.01 30.26 5.28

6 64 61.62 -0.04 91.70 27.07
7 128 134.73 0.05 428.93 311.68
8 256 270.84 0.06 2512.33 1136.04
9 512 518.42 0.01 9844.24 3791.40
10 1024 1138.54 0.11 154617.32 29456.11
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Table 2.15: Scenario 7-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes with ¢, ,; =0.67, 5Sg =1, 5Tg =5.

.
£, i Separation 7 g 7 g 7 g3
0.67 Spike-in probe 0.12925 | 0.2130973 | 0.0783941 | 0.5792585

Target probe 0.2996401 | 0.494023 | 0.1817409 | 0.024596

Table 2.16: Scenario 7-- Relative Bias, Average of Variance and Variance of Estimate

Absolute mMRNA withe ;= 0.67, 5Sg =1, 5Tg =35,

Target gene True C é Relative bias var(c) var(é | é)
1 2.1 0.06 2.14 0.30
2 4.25 0.05 4.91 1.30
3 8.09 0.01 5.69 2.98
4 16 15.76 -0.02 11.74 8.99
5 32 31.66 -0.01 35.60 30.29
6 64 61.72 -0.04 142.48 92.06
7 128 134.22 0.05 1068.80 391.77
8 256 269.86 0.05 4841.14 2215.72
9 512 516.27 0.01 15049.46 8875.46
10 1024 1117.67 0.09 130783.97 124893.34
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Table 2.17: Scenario 8-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =0.67, 6, =1, 6,, =10.

.
£, i Separation 7 g 7 g 7 g3
0.67 Spike-in probe 0.12925 | 0.2130973 | 0.0783941 | 0.5792585

Target probe 0.3071437 | 0.5063944 | 0.1862921 | 0.0001699

Table 2.18: Scenario 8-- Relative Bias, Average of Variance and Variance of Estimate Absolute
mRNA with &, . =0.67, 5, =1, &, =10.

Target gene True C é Relative bias Var(é) Var(é | é)
1 212 0.06 2.14 0.30
2 4.22 0.05 5.27 1.35
3 8.08 0.01 5.82 3.03
4 16 15.75 -0.02 11.45 9.10
5 32 31.65 -0.01 34.26 30.47
6 64 61.76 -0.03 135.09 91.09
7 128 134.23 0.05 1036.58 378.96
8 256 269.59 0.05 4780.34 2157.83
9 512 515.52 0.01 14029.73 8399.37
10 1024 1113.19 0.09 113620.56 116191.12

29




Table 2.19: Scenario 9-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe ,, =1.00, 6, =6, =2.

.
£, i Separation 7 g 7 g 7 g3
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Target probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Table 2.20: Scenario 9-- Relative Bias, Average of Variance and Variance of Estimate Absolute

mRNA with &, . =1.00, 6, =6

Tg:

Target gene True C é Relative bias Var(é) Var(é | é)
1 2.20 0.10 1.08 0.28
2 4 433 0.08 2.10 0.66
3 8.30 0.04 5.92 1.09
4 16 15.93 -0.001 20.74 2.65
5 32 31.95 -0.001 77.29 15.29
6 64 60.42 -0.06 227.83 73.15
7 128 146.45 0.14 2498.21 500.23
8 256 291.38 0.14 13048.81 3001.76
9 512 593.47 0.16 122128.82 16041.43
10 1024 1230.03 0.20 738286.86 274758.29
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Table 2.21: Scenario 10-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe ,, =1.00, 6, =2, 6,, =4.

S i
gs,p,i eparation ﬂgpl ”gp2 ﬁgp3 ”gp4
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011
Target probe 0.28749 0.4739908 | 0.1743715 | 0.0641477

Table 2.22: Scenario 10-- Relative Bias, Average of Variance and Variance of Estimate
Absolute mRNA with e, = 1.00, 5Sg =2, 5Tg =4.

Target gene True C é Relative bias var(c) var(C | é)

1 2.21 0.10 1.07 0.28

2 4.38 0.09 293 0.53

3 8.24 0.03 6.67 0.74

4 16 15.79 -0.01 20.01 1.33

5 32 31.77 -0.01 68.96 4.70

6 64 60.96 -0.05 198.44 25.77
7 128 139.60 0.09 1110.49 253.50
8 256 282.84 0.10 6188.39 1033.67
9 512 531.80 0.04 26880.12 2650.46
10 1024 1309.99 0.28 682290.18 75993.81
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Table 2.23: Scenario 11-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =1.00, 6, =1, 6,, =5.

S i
gs,p,i eparation ﬂgpl ﬂgp2 ﬁgp3 ﬂgp4
0.67 Spike-in probe 0.12925 0.2130973 | 0.0783941 | 0.5792585
Target probe 0.2996401 | 0.494023 | 0.1817409 | 0.024596

Table 2.24 Scenario 11-- Relative Bias, Average of Variance and Variance of Estimate Absolute
mRNA with &, . = 1.00, 5Sg =1, 5Tg =5.

Iy

Target gene True C C Relative bias var(c) var(é | é)
1 2.21 0.10 1.61 0.72
2 4.39 0.09 4.04 3.04
3 8.22 0.03 4.49 6.80
4 16 15.80 -0.01 9.62 20.19
5 32 31.80 -0.01 27.59 68.98
6 64 61.12 0.05 96.30 199.71
7 128 138.62 0.08 729.14 973.81
8 256 280.70 0.10 3487.17 5379.65
9 512 527.48 0.03 9517.49 24186.42
10 1024 1248.83 0.22 120064.07 474241.73
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Table 2.25: Scenario 12-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =1.00, 6, =1, 6, =10.

S i
gs,p,i eparation ﬂgpl ﬂgp2 ﬁgp3 ﬂgp4
0.67 Spike-in probe 0.12925 0.2130973 | 0.0783941 | 0.5792585
Target probe 0.3071437 | 0.5063944 | 0.1862921 | 0.0001699

Table 2.26: Scenario 12-- Relative Bias, Average of Variance and Variance of Estimate
Absolute mRNA withe, . =1.00, 5Sg =1, 5Tg =10.

Target gene True C C Relative bias var(c) var(é | é)
1 212 0.06 214 0.30
2 4.22 0.05 5.27 1.35
3 8.08 0.01 5.82 3.03
4 16 15.75 -0.02 11.45 9.10
5 32 31.65 -0.01 34.26 30.47
6 64 61.76 -0.03 135.09 91.09
7 128 134.23 0.05 1036.58 378.96
8 256 269.59 0.05 4780.34 2157.83
9 512 515.52 0.01 14029.73 8399.37
10 1024 1113.19 0.09 113620.56 116191.12
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Table 2.27: Scenario 13-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,, =1.33, 6, =6,, =2.
S ti
Espi eparation a7 T ep2 T e T epa
0.67 Spike-in probe | 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011
Target probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Table 2.28: Scenario 13-- Relative Bias, Average of Variance and Variance of Estimate
Absolute mMRNA with &, =1.33, 5Sg = 5Tg =2

Target gene True C é Relative bias var(c) var(é | é)
1 2.32 0.16 1.55 0.22
2 4.51 0.13 3.90 0.43
3 8.51 0.06 10.98 0.81
4 16 16.16 0.01 35.10 2.29
5 32 32.41 0.1 141.72 15.84
6 64 60.04 -0.06 392.70 52.20
7 128 159.84 0.25 2176.21 324.30
8 256 319.39 0.25 34028.99 1785.79
9 512 636.04 0.25 64720.63 6197.86
10 1024 1309.88 0.28 778270.11 225127.48
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Table 2.29: Scenario 14-- Standard Deviation of the Noise and Separation between Spike-in

Probe and Target Probes withe, ,; = 1.33, 5Sg =2, 5Tg =4,

.
& pi Separation . 7 g 7 g3
0.67 Spike-in probe 0.2039163 | 0.3362011 | 0.1236815 | 0.3362011

Target probe 0.28749 | 0.4739908 | 0.1743715 | 0.0641477

Table 2.30: Scenario 14-- Relative Bias, Average of Variance and Variance of Estimate

Absolute mMRNA with e, =1.33, b‘sg =2, 5Tg =4.

Target gene True C é Relative bias Var(é) Var(é | é)
1 2.33 0.16 2.04 0.22
2 4.60 0.15 5.51 0.43
3 8.43 0.05 12.24 0.75
4 16 15.95 -0.01 39.20 1.34
5 32 32.10 0.01 126.48 4.86
6 64 60.63 -0.05 344.32 18.60
7 128 145.98 0.14 2561.09 161.68
8 256 295.59 0.17 12503.20 644.65
9 512 555.24 0.08 63734.99 2058.49
10 1024 1477.71 0.53 7299997.89 687173.40
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Table 2.31: Scenario 15-- Standard Deviation of the Noise and Separation between Spike-in
Probe and Target Probes withe, ,, =1.33, 6, =1, 6,, =5.

S i
gs,p,i eparation ﬂgpl ”gp2 ﬁgp3 ”gp4
0.67 Spike-in probe 0.12925 0.2130973 | 0.0783941 | 0.5792585
Target probe 0.2996401 | 0.494023 | 0.1817409 | 0.024596

Table 2.32: Scenario 15 Relative Bias, Average of Variance and Variance of Estimate
Absolute mRNA withe, , =1.33, 5, =1, &, =5.

Target gene True C é Relative bias var(c) var(é | é)
1 2.32 0.16 1.40 0.81
2 4.62 0.15 5.95 2.46
3 8.39 0.05 12.64 2.63
4 16 15.94 -0.01 36.84 5.22
5 32 32.11 0.01 127.05 17.27
6 64 144.07 -0.05 344.56 50.46
7 128 144.07 0.13 1979.18 353.20
8 256 293.72 0.15 10329.43 2245.39
9 512 543.29 0.06 49803.55 8211.02
10 1024 1528.28 0.49 2332952.80 260826.03
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Table 2.33: Scenario 16-- Standard Deviation of the Noise and Separation between Spike-in
Probe and Target Probes withe, ,, = 1.33, 5Sg =1, 5Tg =10.

Separation
gs,p,i P ﬂ.gpl

”gzﬂ ﬂ.gzﬁ ”gp4

0.67 Spike-in probe 0.12925 | 0.2130973 | 0.0783941 | 0.5792585
Target probe 0.3071437 | 0.5063944 | 0.1862921 | 0.0001699

Table 2.34: Scenario 16-- Relative Bias, Average of Variance and Variance of Estimate
Absolute mMRNA withe ;= 1.33, 5Sg =1, 5Tg =10.

Target gene True C é Relative bias var(c) var(é | é)
1 2.32 0.16 1.39 0.81
2 4.62 0.15 5.96 2.46
3 8.39 0.05 12.64 2.63
4 16 15.94 -0.01 36.84 5.22
5 32 32.10 0.01 127.05 17.27
6 64 60.89 -0.05 344.56 50.46
7 128 144.07 0.13 1979.18 353.20
8 256 293.72 0.15 10329.43 2245.39
9 512 543.29 0.06 49803.55 8211.02
10 1024 1528.27 0.49 2321952.80 260826.03

From above tables, we can see that our method works very well based on the estimates,

relative bias and variance. The value of vary standard deviation of the noise (¢, ,.) in [2.8] is

smaller and the value of separation between spike-in probes and target probes is smaller, the

result is better!
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CHAPTER 3
OPTIMAL CHOICE FOR SPIKE-IN PROBES
3.1 Motivation

The question considered here is, given a set of known target probes and the opportunity
to design spike-in probes, how to choose spike-in probes to minimize the variance of our absolute
concentration estimator. This topic would be of interest in chip design.

Our simulations suggest, and theoretical results to be given here confirm, that under our
working assumptions, our absolute concentration estimates are approximately unbiased, and
approximately normal, with a sampling variance which depends, among other things, on the
spike-in or target probes reparative.

Assuming that target probes are given, we proceed by deriving the variance of our
absolute concentration estimator in terms of the spike-in probe feature. This is possible, using
standard variance probative results (delta method), since our procedure consists of consecutive
applications of well studied tools (non-linear least squares, linear least square):

1. Distribution of Langmuir parameters for spike-in probes;

2. OLS estimator of universal y's & C's ;

3. Distribution of Langmuir parameter for target probes;

4. Distribution of estimator of target absolute concentration.

Then, we minimize the variance of estimator of target absolute concentration, to get the
optimal choice of the probability of bite (probability of number of A, T, C and G on the spike-in
probe), we minimize the variance in two scenarios:

1. One gene a time;

2. More than one gene a time.
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3.2 Variance of ¢,,in Term of Spike-in Probe Features

3.2.1 Distribution of Langmuir Parameter Estimates for Spike-in Probes

The model we use for spike-in probe is Log Langmuir adsorption model

C..
]Y i :(aq = +dr )*85' i [31]
Sp: sp bxp +cSi sp sp

where i is array index. We do it one gene a time.

Rewrite the model [3.1] as:

Csi
log/,, =log(a,, bT +d,,)+loge,, [3.2]
sp csi
Assumeloge , ~ N(0, 0‘\‘2},) , Where Gfp is assumed unknown.
Let 0, = l:sp
d

Where s denotes spike-in, p is probe index, and &,l;and c? are Langmuir parameter
estimates.

Those estimates are obtained, one probe, p, at a time, by minimizing
S flog!,,, ~log(a, ——+d,)F,
i=1 ‘ bsp + Csi A

where the spike-in concentrations c¢_;,i = 1,...n are known for all the arrays. By well

known properties of non-linear least square estimators (Seber and Wild [1989]), we have

[SHY

sp

A

S

~ N(esp(le) 9§sp(3><3)) )

Qsp(3><1) = sp

>

sp

Where S . (3x3) — UYZP * [Q(Qsp )T * Q(QW )]_1

o

While
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¢,
My = log(asp ﬁ + ds,, )and

sp Si

_aluspl a/uspl aluspl ]
oa ob od

sp sp sp

Q(QS ) nx = : : :
re alu spn 8/” spn a/u spn
oa ob od

sp sp sp

Where nindexes the number of array.
3.2.2 OLS Estimator of Universal y's & C's

For each spike-in probe, let

QA_ =|b , and

ﬁ“ N = i =a,b&d,the universal parameters
pui— ) X

, is assumed same for all probes on the array,

£(12x1): T

= > [=
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* A

C G

and X .4 =[n, n, n

sp

sp sp

1], spis the index of spike-in probe, n

nf; are the number of A, C and G on the probe;

*

Xsp 0 0
Xopaany =| 0 X; 0 |, then for one gene
i 0 0 Xsp
_isl ]
XSZ
Xs(84><12) = : ,
_KXZS_

Model [3.2] can be applied to:

A

ansl(le) X
Iné X
ZLs2(3x1) | _ | =2
. = . é * € 8an)
In Qszs(m) X

where & g,.50) ~ N(0,L5(85)) .

By using 0 — method , let

[Olna, dlna, ola,]| [
éa,  0b,  dd, a,
; _|0mb, 8mb, omb, | |
I Y b od
sp sp sp
olnd, olnd, olnd, 0
| oa,, ob,, od, | |
then
Esp(3x3) = (Zsp (lnésp )T §sp Zsp (lnésp )) ’
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Where S . (3)(3) = 05'2]7 * [Q(Qsp )T * Q(QXP )]_1 '

o

By assuming each probe is independent, so for one spike-in gene (28 probes), we have

L, 0 0 0
F _ O £s2 O 0 [3 5]
— s5(84x84) — O 0 ., ) 0 ' '

0 0 0 I,

Since 3 = (XX )" X0,
by using OLS one gene a time

Var(f)=(X. X)X/ T X (X X) "=V . [3.6]

3.2.3 Distribution of Langmuir Parameters for Target Probes

Since [ is assumed universal for all probes on array,

Let
ar
le
0" dTl
ZT1 .
09, = =] is Langmuir parameters for TA probes, and let
84x1 .
QTZS d
T28
bT28
_drzs_

A B c
XTP—[”TP Npp Nyp 1]’
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X, 0 0] [Xm
Xp=| 0 X; 0 |=]Xgp,| whie
3x12 N

0 0 x| [Xm

pey

X

X
X, =
84x12

X2

Xy

| X725 |

_eXp(XTPl é)_ gu
exp(X 7p, é) gn
exp(X 7p3 é) &1

ér = exp(X; é) = =
8as1

823
| 8283 |

then we have

g, =X, B+e. 3.7]

The variance of éT is wanted, let
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Xpexp(Xyp) =

of the map from /3

J,(B)=

84x12

X gy exp(X 7y é)

X g3 exp(X 5 é)

to m, is:

i 0g,,
8ﬂ (1x12)

08,

08,

Let Cij(3><3) =M, 342 'Z(12x12) )

aﬂ (1x12)

ﬁé (1x12)

X7 eXp(anﬁ)
X eXp(irmﬁ)

Var(0,)~ J ,(B)-Var(B)- L (5)

m,

LUSH 84x12

T
m,

V.

(S}
12x12 m
—28 l12x84

N~

44

_XTII eXp(ané)_

X7y exp(X é) ]

Xy exp(X o, é)
X3 exp(X s é)

r . n
M, 15,3, then the variance of @, can be expressed as

-

my -V -my
T

My -V -myg

X 125 eXp(X 75 é)_

X, exp(X 7, B) | and m, = X ;; exp(X 1, f8) , the Jacobin Matrix

3x12

1 3x12

[3.8]



_Czs,l

Czs,z Czs,zs_

3.2.4 Distribution of C,

Log Langmuir model for Target probe

Logl

= log(AaTP—CT + ‘;,TP) +log &y,
wtCr

= f(0,,:C;) +loge,,

Since

Var(log &, | é,) = o, by assumption

Var(C, | 0,) = o2 *(f7 - ) [3.9]

where

f(éT)(Zle) =

=

i (é 0 )— Y N a,b,

aCT o fl(gn) aléT (bl + CAYT)"'dl (b1 +ér)2

o » a :b

f (CT’QTZS) _fzs(Qng)_ ~ _ 28728 —
| 0C, i | @y Cr(byg +Cr)+dyg(byy +Cr)™ |

Var(C,)=Var(E(C, |0,)+E, (Var(C; 16,))

Since E(éT |éT) is a constant, so Var(E(éT |éT )) =0, and combine with equation

[3.9], we rewrite the variance as
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Var(C,)=0+E; (Var(C, |6,))
=0+E[o7 -(f"(0r)-f (0,)]
Since oﬁ is a constant, so
var(C;)= o7 *E(f"(0,)- f (0,
By using the & — method

1

Ef" @) f @) r———, [3.10]
E(f"(6,)-f (6,))
and
ELf"0) FON=[Ef" @ NI*[E(f @, )]+ tr(var(f" (0,)) 311
~ f1(0,)* f(0,)+tr(var(f" (8,))
Combine [3.10] and [3.11], the variance can be rewritten as
Var(C,) = o7 (3.12]

1@ f @) +uVar(f"(@,))]

To evaluate the denominator of [3.12], we let B, = i = a—fl O_f, O_f, , then the
) 00, Oa, ©0b, aod,
Jacobin Matrix of the map from é, to B,is
i/ 0 0
06, B, 0 0 0
. o oo 0 B, 0 0
Jf (QT)(28><84) = 08, = 0o o0 0
0 0 0 '
0 0 0 Of 55 0 0 0 By
L 00, |

By O - Method, and substitute equation [3.8] into:
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Var(f () =J ;@) -Var(@,)-J" 7 (8;)

_Bl 0 O O Cl,l 01,2 te cl,28 BIT 0 O 0

_ 0 B, 0 0 ||coy €y n Cug || O BQT 0 0
0O 0 . 0 : R : 0O 0 . 0
10 0 0 By |Gy €y 0 Cxps |l O 0 O Bzrg
BICI,IBIT BICI,ZBZT Blcl,szsz

_ Bzcz,szT Bzcz,szT Bzcz,szsz

_BZSCZS,IBIT stczx,szsz

tr(var(f(QT))) = iBiCiiBiT

28
= ZBimiKm,-TBiT

i=1

Where B,,m depend on Target probes, only V' depends on spike-in probes.

2
Or

Var(¢,)=— [3.13]

D7 (@)+BmVm;B/]
i=1

where ﬁ(éT) =— < ab —is a scalar.
a,Cr (b, +Cy)+d (b, +C})’

Only ¥V depends on spike-in probes.
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3.3 Minimize Var(¢, ) Respect to Spike-in Probe Features

Since only ¥ depends on spike-in probes, so we only care about the denominator.
V=Var(f)=(X X )" XL X (X]X)" 36

3.3.1 Assumption

Assume XEP(M) iid over p =1,2....28.

= X ~ Mult(n,z),

Where =[x, 7, 7y 7, ], n=25. let

*
XSp(l)M) O O
*
X a2 = 0 D, Qo 0 , then for one gene
0 O XSp(1x4)

Xsl

X.ﬂ
Xs(smz) = :

_1.928_

3.3.2 One Gene a Time

Let
. 0 0 0
7 0 0
D(r) =
0 =, O
0 0 0 =,
E(Xy - Xg)=Var(Xy)+EX,,) E(XS,)
=25(D(z)+(25-Dzx' )= E
Where

48



sz(lxét) O O

*

XSp(3xl2) = 0 XSp(lx‘l) 0
0 0 X go1xa)
E 0 O
E(X$p -Xgp)=|0 E 0|=I0E
0 0 E
1 r 1 & 7 p T
2_8KSXS ZTSZKSPXS[?—)E(KSPXSP):I3 QF
=1

X X =28*,QF

Assume the variance matrix I is same for all probes, so

r
r Ly Iy Iy
I'g= . ,wherel' =T, I, I |, since XE;;(M) iid
Iy I Ty

L

over p =12...28.,s0 X, alsoiid over p =1,2...28., then

1 28
X TX, = 2—821§pmsp

p=l

~E(X o TXg,)
Fll 'lgp 'ls,; r21 'Kgp 'iSp r31 .lgp 'Xs,;
T * T T *
=E| I, 'KSP 'ls;; L), .KSp 'XSP Ly 'ls;; ‘KSp

*

I‘31 'Xgp ’KSP Fsz .lgp 'KSp 1—‘33 .Xgp ‘lSp

=[®E

49



Therefore
Z:(XTX )y (XD X )-(XTX )!
=2—8 (2—8 Xxo™t (— X T Xg) (— XX
=2—8-<13@E‘)-(E@E)-(@@E‘) [3.14]

1 71
=— . T®E
2 LOED)

E=25D(z)+(25-1)zzx")

£ =%[D_1@_ W25-1-D (@) m)(25-1-z -D (7)),

1+(25-)z' D' (z) &

1. 25-1)-(L-1"
— D (- 2L
1+(25- 1)2 T,
J=
L 0 0 0
257,
1
0 0 0
B 257, 25-1 T
= - LR TEY
0 0 1 0 25%25
257, [3.15]
0 0 !
i 257, |
Form equation [3.13]:
2 2
Var(¢,) = o1 i

28 28
Z[f @,)+B,mVm;B/] ZJ’,«Z(QT)+Z§,-m,~Zm,~T§,-T
i=1 i=1
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where

M =X ® exp(X ,; o é)

X;i et 0 0
= 0 X, e 0
0 0 X;l Xpep

Then combine with equation [3.14], we have

meT :LE@(K* .eKTi.é .E’l X*T .elﬁ
A RanLiy} 28 Ti Ti

E)
* X,.o — * X, e
Let O, ——Xn-e*T’E-E I-XT{-e*T’é

* 4
Where X ,, =[n; n$; nf 1],ny, ng and nj are the number of A, C and G on the

probe i;
X, 0 0| [Xy
)3(32 =l 0 X, 0 |=| X |
0 0 X5 | [Xop
Therefore
1 1 Ly -0 0 0
V = —0-" r ® . = 0 F * O
ml ml 28 Ql 28 11 Qz
0 0 rll 'Qz
of, of. of. Oof.
AndBi=i= i i i Z[Bil B, Bi3]v30
2706, |oa, ob, od,

1x3 d !

3
=== 28 ; AT
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3
where s; ZZB; 'Fij >0.
i=1

So the variance is

2
. o
Var(é,) =—; ~

> fA0,)+>.B.mVm, B
i=1

i=1

5 [3.16]
Or
Y » 28 0.
. + )y =t.5.
;f; (_T) ;28 Sl
a;b,

Since fi(éT) = does not respect to spike-in probes (7 ),

a,Cp (b, +Cp)+d, (b, +C,)

28
.. i e A~
only Q,depends on 7z, so we can maximize E == .5, to minimize Var(c;) .
i=1

* X e - * X, e
ToevaluateQ, = X, -e™" £ E™ -KT? el
* y c G
where X, =[ny; ny; ny 1]= [Xm Xnn X Xm]’

substitute [3.15]

: 0 0
257,
1
0 0 0
B - 257, ~25-1 L
0 0 1 0 | 25%25
257,
0 0 !
i 257, |
into Q;, then we have
1 o 0X7 24 S,
) Y et e
T (; w25 ; "

52



1

Let R >s Lt ﬂZXleanth 25-( 2 ﬁX,ik) then

Z“: 2
O, = L_Ri

k=1 7T}
Go back to
28 Q
Z% PT84 (Z

[3.17]
S, -1}
Z ki __Zsi 'R,'
i=l k=l 7Ty 283

Only the first part depends on to spike-in probes (7 ), so we just consider it.
Lethi =s, -t} then

1 & & s, o] D} D’ D2 D? D?
U:_ZZ ki ZZ ki — Z[ i3 + i4

28 i=1 k=1 T zlklﬂ'k T, 71'3 (1_7[1_”2_7[3)

In order to maximize U respect to 7, we take the partial differentiate of U and let them

equal to 0:
3 3
D: D:
aU __; il ; i4 _0 (1)
or, 72'12 (-7 -, _7[3)2
3 2
D; D:
aU __; i2 lz:ll i4 _O (2)
or, 72'22 (-7 -, _”3)2
B 3
D:; D:
aU o ; i3 ; i4 ~ O (3)
oy 73 (-7 —7, ~ )
Let G? = ZDU ,by (1), (2) and (3)
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%GIZ = 12 G22 =L2G32 ﬂ:izﬂ
T, 7T, 3 T T, T
By (1)=
Gl
=7 =
G +G,+G,+G,

By (2), B)=

G,
T, =

G +G,+G,+G,

G

T, 3

G +G,+G,+G,
T+, +ry o, =1

G,
7Z'4=G
+G,+G, +G,

3.3.3 More then One Gene a Time

The variance of absolute concentration of G target genes, with the weight W, for

genegis

G
Var(c) = ZWg var(c, ), using equation [3.16], we have
g=1

G
Var(c) = Z w, var(C,)
g=1

G w, -0,
:Z_I 28 ) 280
¢ f; (Qg)+z : .Sgi
P A

Form equation [3.17]
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28 1 B s, 1 1 28
ZQ Sei = 5o Z . ék Sgi Rgl
i 28 Ta 7w, 2811
1 28
—U ——— ) S, Ri
2811 ¢
Where
2 2 2 2
zz gz' i zz gkz =i§[Dgil +Dg:2 Dgi3 + Dgz4 ]
e 8T 289 7T, wy  (-m -7, —73)
We have
W '0'2
Var(c)= z P

T,

Z g
’f‘—Zf(@ )+ (U —stg, o)

g i=l

fi

2
o

2

721{ ( ngl gi

gll g gl

Only Ug depends on spike-in probes, so if want to minimize Var(c), then try to

U
maxmnzeZ—
g=1 W
o U
M=~

g=1 Wy

y L LD Do Do, D
aw, 28T 7 T, n, (-m —-m,—-m,)

2 2 2 2

=Lii(Digl/wg +Dlg2/w +Dig3/wg +D1g4/w )

2800 V2 5 T, T,

LetS; = _ZZ(ngk /w, ), we can minimize Var(c)by picking 7,

glll
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Sy

4
2.5

k=1

T, =

Detail:

2 2
%:—S—‘z+ S ~-=0
or, m (l=m—my—7my)

S; S;
6M :__22+ 4 - :0
o, y (=7 —7m,—m)

2 2
oM :_5_32+ S, 0
oy wy (-m -7 —m)

S50 8 S5

2 2 2
7T, 7T, 7T

Therefore
— Sl
'S 8, +8,+8,
— S2
2S4S, +8,+8,
— S3
S +S8,+8,+8,
S4
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To check M is a maximum, we look at the Hessian function:

oM M M |
on! orOr, Omor,
| M oM O'M
or,0m, Om,  Om,om,
oM O°’M o’M
| Om,0m,  Omy0r, orn;
282 282 282 28?
. -z -r,-1) (-7, -7, —1;)° (-7, -7, — 1)’
~ 28, 253 28, 28;
(1_771_772_773)3 7723 (1_71'1_772_71'3)3 (1_71'1_71'2_71'3)3
28; 28; 28; 2S;
(1_”1_”2_”3)3 (1_71'1_72'2_71'3)3 71'33 (1_771_”2_773)3_
28} |
S 0 0
2 7[1 2
2 2
= 5 R e U S; 0
(-7 —7my—7) 7T,
283
0 0 33
L 75
: 28; . . o .
Since 713,318 psd (positive semi-definite matrix), and
— T, =T, —TT3)
, -
2S3‘ 0 0
T
283 . . » . .
0 3 0 |is pd(positive definite matrix), so the result we got are minimum! It
7T,
2
0 0 2533
L 73

means that the variance is unbounded.
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3.4 Minimize Bias of ¢,,in Term of Spike-in Probe Features

Since the variance is unbounded, we consider minimizing the bias of ¢, in term of

spike-in probe features.

3.4.1 Conditional Bias of ¢,,

The Log Langmuir model for Target probe is

A

apCr

Logl,; = log(———+ C;,TP) +logéey,

= f(éTp; Cp) +logep,

where £(8;,:C,) = log(T 4 ).

TP+ T

T

Since Var(logeyy, | éT) = o, by assumption, so

Var(ér |QAT)=O-§ *(fT 'f)il

(See [3.9])
where
o
oc,
f(éT)(Zle) =
9
oc,

(C,.0,,)

 fi6,) ]

(Cr.0,5)

| fos @120
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a,b,
a,Cp (b +Cr)+d (b, +C, )’

Ayebyg

_azsér (by + ér) +d g (byg + ér)z |



The Hessian matrix of f(éTp;CT) is:

SN _
GC; (CT’QTI) Hl(QT])

H(, )(28><1) = =

. A. ) -
_é (CT > QTZS ) _H 28(QT23 )_

By using Box’s bias formula [Box, 1971]:

BLG - ) 071 == VarCy |8)- 77 JoH, VarC, 16,)) (i -Var(Cy 9,)]

:‘%(f’ i, van G, 180) - i VanCr16,))]

then we take the logarithm:

log{E[(¢ ¢, ) 10,1}

=log(f" - /)" + log{—%-ﬂ o, var€,16,)) - (i Var@, 16, )

Since

1 - A A N~ . .
log{—;fT-tr(Hl-Var(CTIQT)) tr(st-Var(CT!QT))]}<< log(f"- /)
So

log{E[(¢ - ¢,,.)| 0,1} = log(f" - /)
= E[(é-¢, )0, 1= (fT - /)7

Then the bias of ¢, is approximately
blaS(é) = EQ{ E[(é - ctrue) |QT]}

Using the 0 — method and [3.13], we obtain
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bias@=EGT - /)~ S [/70,) + Bm,Vm' BT]

3.4.2 Minimize Bias Respect to Spike-in Probe

Since only V depends on spike-in probes, so we have

V=Var(f)=(X,X)"' X[ X (X X))

1 i
-— (CQE
28 CeLY)
(see [3.6])
1—‘11 1—‘21 FBI
wherel' =|T,, I,, I, |and
I_‘31 1—‘32 F33
e Lipip G210 @ n(25-1-2 D (x),
2 1+25-Dz" D (n)-z
1 25-1)-(L-1"
— D7 (- 2
1+(25—1)Z;;zj
=
! 0 0 0
257,
0 ! 0 0
~ 257, 25-1 y
= - L))
0 0 1 0 25%25
257,
0 0 0 !
L 257, |
. 0 0 0
7, 0 0
Where D(7x) =
0 =, O
0 0 0 =,

Form equation [3.13]:
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28 28
bias(¢;) = Zfzz @;)+ ZE,mIV_mITEzT .
i=1 i=1
where

My =Xg ® exp(X ;o é)

X;i et 0 0
= 0 X; ettt 0
0 0 X, e

Then combine with equation [3.14], we have
1 * 7i'® - * . ®
mVm =— T®X, -2 E'. xT .2ty
28
Let O, =X, "2 . E" . X .M

. 4
Where X ,, =[n;i ny, ny 11,15, nS and nj are the number of A, C and G on the

probe i;

X, 0 0| [Xp

%175 =1 0 lrp 0 |= Xips |-
0 0 X, Xips
Therefore
1 1 I‘11 ‘Qi 0
mVm =—-1T®0 =— 0 I
i i 28 Ql 28 11 Ql
0 0 TI,-0

-4~ 00, |6a, ob, od,

1x3

AndB:%{% 9. %}z[&l B, B.] so
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3
where s, :ZB5 -I';, >0.

i=1

So the bias is

28 28
bias(;)=>. f7(0,)+ Y. B,m,Vm, B;
i=1 i=1

28 5 28 Q
DI ACBED Nt}
i=l1 i=1

(see [3.16])

since f,(0;) =

aibi

a,Cp (b, +Cp)+d, (b, +C,)

does not depends on spike-in probes

28

(), only Q,depends on s, sowe can minimize Z—i-si to minimize bias(¢, ) . Now

Qi :Xri

* A
where X ;, =[ny, ng ng 1]

i=1

Xpe —-1 *T Xye
P ET X e

substitute [3.15]

into Q;, then we have

1

1
257,

1
_ 257,
0 0

0 0

2X5 B S XTZ"tk
e

k=1 k

[XTil XTiZ XTi3 XTi4]’

0 0
0
25-1 It
1 o | 25725 4
257,
0 1
257, |

24 ¢
Rl ¢
25 — Tzk)
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1
Lt ﬁZXle and ¢, =2—5-( o ﬁX,ik) then
4 t2
Qi: L_Ri
Go back to

28Qi‘
Z% T8 (Z

i=1 =

S, t,a__ )
>3- r, 28;Si R

llkl

(see [3.17])

Only the first part depends on to spike-in probes (7 ), so we just consider it.

LetD2 = , then
1 & & D? D2 D2 D.2 D?
U:_Zz z ki _ Z[ £ i4
2850 P/ T, 7r3 -7 -n,—rm;)

In order to minimize U respect to i, we take the partial differentiate of U and set them

equal to O:
28 , 28 ,
D: D:
aU __iZ]: il ; i4 _O (l)
or, 7712 (-7 -, _773)2
% 2
D; D;
8U ; i2 ; i4 _0 (2)
o, 7, (-7 7, ~7,)’
28 , 28 ,
D; D:
aU B lz:ll i3 ; i4 B 0 (3)
or, 7 (-7, —7,—7;)°

28
Let G2 => D; by (1), (2) and (3)

i=1
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Gl lgLG GG
7T 7T 7Ty T, 7,
By (1) =>
G,
:>7Z'1 =

G, +G,+G,+G,

By (2), 3)=
G,
T, =
G +G,+G,+G,
G
T, 3

G +G,+G,+G,
oA,y =1

G4
7Z'4=G
+G,+G, +G,

To check U is a minimum, we look at the Hessian function:
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U U U ]
o} or0r, OrOr,
o°'U o°U o°U
om,om,  om;  Orm,0m,
o’U o*U o'U
| Om,0m,  Om,07, on;
[2G? . 2G? 2G? 2G?
o (-m -7, —m) (-7 -7, 7))’ (-7 -7, -7,
_ 2G; 2G; 2G; 2G;
(-7 —7, ~ )’ (-7 -7, —-m) (-7 —7, —7,)°
2G; 2G; 2G; N 2G;
(1_71'1_71'2_71'3)3 (1_751_71'2_72'3)3 71'33 (1_”1_”2_”3)3_
2G} |
31 O
2 ﬂ-l
2G
= ! Lo | 0 0
(-7 —7m, —75)
2
0 2G,
3
L 75
. 2G; . " L ,
Since 1 3,3,is psd (positive semi-definite matrix), and
— Ty — 7y —7T3)
2G} |
o 0 0
Ty
2G;
0 S 0
7T,
2G;
0 0 2
L T3]

is pd(positive definite matrix), so the result we obtained is the minimum bias!
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CHAPTER 4

SUMMARY AND FUTURE WORK

Microarray technology has been widely used in biological researche and medical studies
since its invention in 1995. It allows one to monitor tens of thousands genes, or over all genes in
a genome, simultaneously. The absolute mRNA concentration, which is defined as gene
expression, can not be measured directly. The focus of this dissertation is using Langmuir
adsorption model to estimate the absolute mMRNA concentration while the fluorescence intensity is
obtained.

In chapter 1 of this dissertation, the biological background of microarray is given,
including: how to measure gene expression, construction of microarray and how does a
microarray work. The difference of target probes and spike-in probes are mentioned. Heskstra’s
ideas are the main point in this chapter, Heskstra’s first idea is that the Langmuir model, which is
a model of physical chemistry, can be applied to microarray data analysis, the relationship
between the fluorescence intensity and absolute mMRNA concentration can be expressed by the
Langmuir model. Hekstra used the real Affymetrix data set: HG-U95A to show that the
relationship between the fluorescence intensity and absolute mRNA concentration is not linear
and follow the Langmuir model, he estimated three Langmuir parameters for each spike-in probe
by minimizing the sum of weighted square errors. Hekstra’'s second idea is that the probe

parameters depend on the probe structure. He proposed a statistical linear model for estimating

the probe parameters in term of probe feature, and obtained R?of about 50% for each of the
three parameters.

There are some methods which estimate concentration by using Langmuir adsorption,
especially, Abdueva et al. [2006] used the same model as ours, but they did not use spike-in

information. They gave an initial value of concentration to model [1.3], then estimated probe
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parameters. The concentration estimates are optimized based on those new probe parameters,
the iterative scheme continues until converge obtained. The result depends on the starting value
of concentration which they chose.

In chapter 2, we proposed our method for estimating absolute concentration when spike-
in probes are given. The proposed method is under practical and theoretical assumptions: we
assume that the spike-in probes, which sequence and concentration are known and vary across

the array for a given experimental condition, are already installed on the array. Hekstra’s model

ln&p 7; }/g' 72 nA,p Cl 6‘1
lnbp = 73 }/g 7/2 * ne, |+ C, |[+] & [1.3]
Ind, | \ry 7é vs) |ne,| \C) &

holds for each probe, Hekstra’s empirical model

C A
T" +dT,p) *gT,p,i [28]

IT,p,i = (aT,p
Cr +

T.p
holds with normal error, y's & C's in [1.3] are the same for all probes.

Our method is made in 4 steps:
1. Obtain Langmuir parameters of each spike-in probe from model [2.8] by using
nonlinear regression.
2. Use Langmuir parameters of spike-in probes to obtain assumed universal
y's & C's(é) parameters by applying model [1.3].
3. Estimate Langmuir parameters of each target probe from model [1.3] by using

assumed universal ¥'s & C's(/3) parameters and target probe’s feature vector.

4 Estimate absolute concentration of target gene by using target Langmuir
parameters and model [2.8].
We did a simulation study to check our proposed method by using SAS program. We
simulate 100 replicates, in each hypothetical experimental condition, those are:

a) Spike-in probes and target genes,
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b) 5 arrays,

c) Assumed universal S s ,

d) Different value of the standard deviation of the noise (gs,p,,. )in [2.8] and the

separation between spike-in probes and target probes are used.

Our method works very well based on the estimates, relative bias and variance. The

result is best for small value of standard deviation of the noise (55’17’1.) in [2.8] and small value

separation between spike-in probes and target probes.

We tried to find the optimal choice of spike-in probes by assuming that target probes are
given, we proceed by the variance of deriving of our absolute concentration estimator in terms of
the spike-in probe feature in chapter 3. We minimize the variance of estimator of target absolute
concentration, to get the optimal choice of the probability of bite (probability of number of A, T, C
and G on the spike-in probe), we minimize the variance in two scenarios:

1. One gene at a time;

2. More than one gene at a time.

Since the variance is unbounded, we tried to minimize the bias of absolute concentration
under the given target Langmuir parameters with respect to spike-in probe feature, the optimal

choice of the spike-in probe feature is obtained. It is a very useful for the chip design in practices.
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