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ABSTRACT 

 

PLATE ANALYSIS WITH DIFFERENT GEOMETRIES AND ARBITARY BOUNDARY  

CONDITIONS 

 

Ashwin Balasubramanian, M.S. 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Seiichi Nomura 

This thesis work deals with the study of plates with various geometries and different boundary 

conditions. The method of study is carried out mainly using the Galerkin method combined with 

the help of the symbolic algebraic software, Mathematica. In this thesis, flat plates with 

rectangular and triangular geometries are subjected to uniform load acting normal to their 

surfaces. The lateral deflection of the plates is expressed in a series of polynomials which 

satisfy the homogenous boundary conditions. Mathematica is used in handling the algebraic 

operations to solve for the coefficients and generating the trial functions. The maximum 

deflection of the plate for various geometries and boundary conditions is determined. 

 Then the results obtained are compared with the exact solution which is carried out with 

the use of the finite element analysis software, Ansys. The results obtained from the present 

method show good agreement with those from Ansys. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Plates 

Plates are straight, flat and non-curved surface structures whose thickness is slight 

compared to their other dimensions. Generally plates are subjected to load conditions that 

cause deflections transverse to the plate. Geometrically they are bound either by straight or 

curved lines. Plates have free, simply supported or fixed boundary conditions. The static or 

dynamic loads carried by plates are predominantly perpendicular to the plate surface. The load 

carrying action of plates resembles that of beams or cables to a certain extent. Hence plates 

can be approximated by a grid work of beams or by a network of cables, depending on the 

flexural rigidity of the structures.  Plates are of wide use in engineering industry. Many 

structures such as ships and containers require complete enclosure of plates without use of 

additional covering which consequently saves the material and labor. Nowadays, plates are 

generally used in architectural structures, bridges, hydraulic structures, pavements, containers, 

airplanes, missiles, ships, instruments and machine parts. Plates are usually subdivided based 

on their structural action as 

1. Stiff Plates, which are thin plates with flexural rigidity and carry the loads two 

dimensionally. In engineering practice, a plate is understood as a stiff plate unless 

specified 

2. Membranes, which are thin plates without flexural rigidity and carry the lateral loads by 

axial shear forces. This load carrying action is approximated by a network of stressed 

cables since their moment resistance is of a negligible order of magnitude. 
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3. Flexible Plates, which represent a combination of stiff plates and membranes. They 

carry external loads by the combined action of internal moments and transverse shear 

forces. 

4. Thick Plates, whose internal stress condition resembles that of three dimensional 

structures. 

1.2 Introduction to Plate Analysis 

 The analysis of plates first started in the 1800s. Euler [1] was responsible for solving 

free vibrations of a flat plate using a mathematical approach for the first time. Then it was the 

German physicist Chladni [2] who discovered the various modes of free vibrations. Then later 

on the theory of elasticity was formulated. Navier [3] can be considered as the originator of the 

modern theory of elasticity. Navier’s numerous scientific activities included the solution of 

various plate problems. He was also responsible for deriving the exact differential equation for 

rectangular plates with flexural resistance. For the solution to certain boundary value problems 

Navier introduced exact methods which transformed differential equations to algebraic 

equations. Poisson in 1829 [4] extended the use of governing plate equation to lateral vibration 

of circular plates. 

Later, the theory of elasticity was extended as there were many researchers working on 

the plate and the extended plate theory was formulated. Kirchoff [5] is considered as the one 

who formulated the extended plate theory.  

In the late 1900s, the theory of finite elements was evolved which is the basis for all the 

analysis on complex structures. However the analyses using finite elements are now being 

carried out using comprehensive software which requires high CPU resources to compute the 

results. Another method for analysis of plates statically and dynamically was later developed for 

arbitrary shapes using advanced finite elements. Actually there was a method called the 

weighted residual method which was used in analysis of plate even before the finite element 

method of analyzing the plate was formulated. 
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1.3 Symbolic Software 

Symbolic software packages such as MATHEMATICA are useful for solving algebraic 

and symbolic systems. Most of the older symbolic packages which were previously developed 

were written in LISP but Mathematica is based on the C language to solve problems. 

Mathematica  was first released in 1988. It has had a profound effect on the way computers are 

used in technical and other fields. Mathematica uses a generic way of writing codes and 

thereby it is widely used in various fields. A program written in Mathematica is simple, robust 

and it can be easily understood thereby making it simple for anyone to use it. 

The framework of Mathematica is such that it is split into two parts, the kernel and 

the front end. The kernel interprets expressions (Mathematica code) and returns the result. The 

front end of Mathematica is Graphical User Interface (GUI) which allows us to create edit and 

format the notebook. More advanced features include 3D picturing, indexing and slide show 

creation. 

The advantage of using Mathematica lies in its built-in functions. It has the largest 

database of algorithms. It is also helpful in numerical computation, symbolic computation, data 

interpretation etc. Symbolic  software  also  addresses  the  finite  element method  and  is  

useful  in  finding shape  functions,  creating  different  types  of meshes  and  can  solve  

problems for different materials.    

1.4 Analysis Software 

Ansys Inc. has developed many different software packages and amongst those is the 

ANSYS workbench platform. It is the framework upon which advanced engineering simulations 

are built. It is the advanced version developed in recent years which has the schematic view 

and drag drop option thereby making the complex process of the user much simple. Ansys 

Workbench combines the strength of core problem solvers with project management tools 

necessary to manage project workflow. In Ansys, Workbench Analysis is built as systems which 
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can be combined together into a project. The project is driven by a schematic workflow that 

manages the connections between the systems. 

1.5 Galerkin Method 

The Galerkin method was invented by a Russian mathematician, Boris Grigoryevich 

Galerkin [5]. The Galerkin method can be used to approximate the solution to ordinary 

differential equations and partial differential equations. It is useful in solving almost all engineering 

problems with prescribed boundary conditions. The Galerkin method uses the governing 

equation of the system and boundary conditions to solve the problem. The Galerkin method 

uses trial functions with a number of unknown parameters. Then a polynomial formed as a trial 

function and the unknown parameters are determined. The Galerkin method is the one used 

widely in various fields such as heat and mass transfer, fluid flow and mechanics.  

 The objective of this thesis is to analyze various geometries (rectangular and 

triangular) of flat plates using the Galerkin method under arbitrary boundary conditions and then 

compare the results with the use of Ansys Workbench thereby validating the result derived 

analytically. In this thesis, three different cases are considered and analyzed. 

 First a flat rectangular plate is considered with arbitrary boundary conditions. It is 

clamped on all edges and it is subjected to uniform loading on the top and the maximum 

deformation is determined by considering trial functions and applying the boundary conditions. 

This is done using the symbolic algebraic software, Mathematica. The results are then 

compared for the same problem and the same boundary conditions using the analysis software, 

Ansys. Both of the results are compared and analyzed.  

In the next case the geometry of the plate is considered as being triangular such that 

the boundary conditions are arbitrarily chosen and satisfying the equation	� + � = 1. The plate is 

clamped on all sides and is subjected to uniform loading such that we get the maximum 

deflection by taking a trial function and analyzing it using Mathematica. Then the same case is 
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taken and the maximum deflection is calculated using Ansys. Then both the results are 

compared and studied.  

In the final case the geometry of the plate is considered triangular and the side of the 

triangle is expressed by	� + � = 1. The plate is clamped on two sides and simply supported on 

the other side. It is subjected to uniform loading and the maximum deflection is calculated both 

using Mathematica and Ansys. Then all the results are tabulated and conclusions and 

recommendations are arrived. 
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CHAPTER 2 

THEORY AND ANALYSIS OF PLATES 

2.1 Plate Equation 

There were many plate theories formulated after the Euler–Bernoulli beam theory was 

proposed. The Euler–Bernoulli beam theory also known as the engineer's beam theory
 
 is a 

simplification of the linear theory which provides a means of calculating the load-carrying 

and deflection characteristics of beams. Of the numerous plate theories that have been 

developed since the late 19th century, two are widely accepted and used in engineering. They 

are: 

� the Kirchhoff–Love theory of plates (classical plate theory) 

� The Mindlin–Reissner theory of plates (first-order shear plate theory) 

According to Kirchoff, the assumptions were made considering a mid-surface plane which 

helps in representing a three dimensional plate in two dimensional form. The basic assumptions 

according to Kirchoff are: 

1. The normal lines (straight lines perpendicular to the flat surface) remain straight after 

deformation. 

2. The normals remain the same length (unstretched). 

3. The normals always remain at right angles to the mid surface after deformation 

The plate equation is derived by assuming that plate is subjected to lateral forces and the 

following three equilibrium equations are used. 

 �M	 = 0 (2.1) 
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 �M� = 0 (2.2) 

 �P
 = 0 (2.3) 

where	M		and M� are the bending moments and ��is the external load. The external load �� is 

carried by the transverse shear forces  	�� , �� and bending moments	��, ��. The plates 

generally have significant deviation from the beams and it is due to the presence of twisting 

moment ���	. In general in the theory of plates it is necessary to deal with the internal forces 

and moments per unit length of the middle surface. The procedure involved in forming the 

differential equation of the plate in equilibrium is selecting the coordinate system and draw the 

sketch of the plate element and showing all the internal forces by positive and negative thereby 

expressing them in Taylor’s series. 

 

Figure 2.1 Differential Plate with Stress Resultants 
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 M	 = −D�����	� + ν �������  (2.4) 

 �� = −� ��  �! �� +  �! ���                                         (2.5) 

 ��� = ��� = −�(1 − �) ��  �! �	 �	�    (2.6) 

 Q�
	∗ = Q�
 + �&'(�� dy    (2.7) 

 Q	
	∗ = Q	
 + �&+(�	 dx                (2.8) 

 M�	∗ = M� + �-'�� ∂y   (2.9) 

 M		∗ = M	 + �-+�	 ∂x   (2.10) 

 M	�	∗ = M	� + �-+'�	 ∂x   (2.11) 

 M�		∗ = M�	 + �-�+�� ∂y     (2.12) 

 

The condition of a vanishing resultant force in the z direction results in the following equation 

 −Q	
 − Q�
+Q�
	∗+	Q	
	∗ + Pdxdy = 0  

 −Q�
dy − Q�
dx+�Q�
 + �&'(�� dy� dx+�Q	
 + �&+(�	 dx� dy + Pdxdy = 0  

 

 
∂Q	
∂x + ∂Q�
∂y + P
 = 0 (2.13) 

 
�&+(�	 + �&'(�� = −P
                     (2.14) 

                                                                    

If the resultant moment about an edge parallel to the / and 0 axes is set to zero then the 

resulting equation after neglecting the higher order terms gives 

    
�-+�	 + �-'+�� + Q	
 = 0         (2.15) 
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�-'�� + �-+'�	 + Q�
 = 0                                    (2.16) 

 
Substituting Eq. (2.15) and Eq. (2.16) in Eq. (2.14) gives 

                      
��-+�	� + 2 ��-+'�		 �� + ��-'��� = −P
(x, y)   (2.17) 

Now substituting Eq. (2.4), Eq. (2.5) and Eq. (2.6) in the above equation yields the differential 

equation of the plate subjected to lateral loads 

                      
�23	�	2 + 2 �23	�	� 	��� + �23	��2 = 4(5   (2.18) 

 ∇7w = 4	5                                                  (2.19) 

 

                                                                

where                                          ∇7= �2	�	2 + 2 �2	�	� 	��� + �2	��2                                             (2.20) 

and � = 	 9:;<=(<>?�) ,is called the flexural rigidity of the plate 

where E- Young’s modulus of the plate  

           h- Height of the plate 

           �- Poisson’s ratio  

2.2 Boundary Conditions 

 Generally, there are different types of boundaries considered for a plate in terms of 

lateral deflection of the middle surface of the plate and they are:  

1. Clamped edge Conditions 

2. Simply Supported edge Conditions 

3. Mixed edge Conditions 

4. Free edge Conditions 
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2.2.1 Clamped Edge Conditions 

If a plate is clamped at the boundary, then the deflection and the slope of the middle 

surface must vanish at the boundary. On a clamped edge parallel to the 0 axis at	/ = @, the 

boundary conditions are 

 A|	�BC = 0 (2.24) 

  ! D|	�BC = 0 (2.25) 

The boundary conditions on the clamped edge parallel to the	/ axis at 0 = E are 

 A|	�BF = 0           (2.26) 

 
 ! � |	�BF = 0           (2.27) 

 

2.2.2 Simply Supported Edge Conditions 

 A plate boundary that is prevented from deflecting but free to rotate about a line along 

the boundary edge, such as a hinge, is defined as a simply supported edge. The conditions on 

a simply supported edge parallel to the 0 axis at	/ = @ are  

 A|	�BC = 0            (2.28) 

 ��|	�BC = −� �����	� + ν ������� 	�BC = 0             (2.29) 

 

Since the change of w with respect to the 0 coordinate vanishes along this edge, the conditions 

become 

 A|	�BC = 0 (2.30) 

 ����	� |	�BC = 0 (2.31) 

On a simply supported edge parallel to the	/ axis at	0 = E, the change of w with respect to the 

/	coordinate vanishes, thus the conditions along this boundary are  
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         A|	�BF = 0           (2.32) 

 ��|	�BF = −� �ν ����	� + ������� 	�BF = 0                  (2.33) 

 =−�	 ������ |	�BF = 0       (2.34) 

 

2.2.3 Mixed Edge Conditions 

Consider the plate to be simply supported on two opposite side and clamped on the 

other two sides at 0 = 0 and	0 = E. The boundary conditions for such a type of mixed edges is, 

 A|	�BF = 0 (2.35) 

  ! D|	�BF = 0 (2.36) 

 

On the simply supported edges parallel to the  0 axis the boundary condition at / = 0 and / = @ 

 A|	�BC = 0 (2.37) 

 �	|	�BC = −� �����	� + ν ������� 	�BC = 0 (2.38) 

2.2.4 Free Edge Conditions 

 In the most general case, a twisting moment, a bending moment, and a transverse 

shear force act on an edge of a plate. An edge with all three of these stress resultants vanishing 

is defined as a free edge. The boundary conditions on a free edge parallel to the / axis at 0 = E 

is 

 ��|	�BF = −� �ν ����	� + ������� 	�BF = 0 (2.39) 

 G��	|	�BF = −� ��;���; + (2 − ν) �;��	� ��� 	�BF = 0 (2.40) 

The boundary conditions on a free edge parallel to the y axis at / = @ 

 ��|	�BC = −� �����	� + ν ������� 	�BC = 0 (2.41) 



 

 G��	|	
 

                                                 

    

                     (a)                                                                                           (b)

                    (c)                           
 
                                       
 

Figure 2.2 Plate with different geometries and boundaries (a) Rectangular plate simply 
supported all sides, (b) Rectangular plate clamped all sides, (c

boundaries,

Prior to the development of the finite element method, there existed an approximation 

technique for solving differential equations called the Method of Weighted Residuals (MWR). 

The basic idea of the Method of the Weighted Res

of unknown parameters to approximate the solution. Then a weighted average 

boundary is set to zero. A polynomial with a

12 

 

	�BC = −� ��;��	; + (2 − ν) �;��	���� 	�BC = 0 

                                                  

(a)                                                                                           (b) 

                                    

)                                                                                             (d)            

 
2.2 Plate with different geometries and boundaries (a) Rectangular plate simply 

supported all sides, (b) Rectangular plate clamped all sides, (c) Rectangular plate wit
boundaries,(d) Triangular plate clamped all sides 

 

2.3 Method of Weighted Residuals 

Prior to the development of the finite element method, there existed an approximation 

erential equations called the Method of Weighted Residuals (MWR). 

Method of the Weighted Residuals is to use a trial function with a n

of unknown parameters to approximate the solution. Then a weighted average 

boundary is set to zero. A polynomial with a set of parameters is considered and the solution is 

(2.42) 

    

 

             

2.2 Plate with different geometries and boundaries (a) Rectangular plate simply 
plate with mixed 

Prior to the development of the finite element method, there existed an approximation 

erential equations called the Method of Weighted Residuals (MWR). 

is to use a trial function with a number 

of unknown parameters to approximate the solution. Then a weighted average over the 

set of parameters is considered and the solution is 
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approximated accordingly. The polynomial is made to satisfy the boundary conditions. Suppose we 

have a linear differential operator D acting on a function ‘u’ to produce a function ‘p’ then 

 D	(u(x)) 	= 	p(x)		 (2.43) 

The function u is approximated by considering it as a linear combination of trial functions ‘ữ’ 

 u = 	ữ	 = ∑ aMNMB< eM (2.43) 

When used into the differential operator, D, the result of the operations is not in general p(x) because 

an error residual will be imparted 

 E(x) 	= 	R(x) 	= 	D	(ữ	(x)) 	− 	p(x) 	≠ 0  (2.44) 

The Method of Weighted Residuals is where the residual over the domain is forced to be zero 

 SR(x)Widx	 = 	0	
V  (2.45) 

where Wi is equal to number of unknown constants aM. 
There are three types of Method of Weighted Residuals.  

1. Point Collocation Method 

2. Method of Least squares 

3. Galerkin Method 

2.3.1 Point Collocation Method 

The Point Collocation Method is one of the types of the Method of Weighted Residuals 

(MWR). In this method the weighting functions are taken from the Dirac delta function in the 

domain. That is 

 Wi(x) 	= 	δ(x−xM)  (2.46) 

 Hence the integration of the weighted residual results in forcing of the residual to zero at 

specific points in the domain. Therefore  

 R(xM) 	= 	0 (2.47) 
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2.3.2 Method of Least Squares 

The second method of the weighted residuals is called as the Method of Least Squares. 

 S	 = SR(x)R(x)dx		
V   

 =  Y R=(x)dx		V   (2.48) 

In order to achieve the minimum of this scalar function, the derivatives of S with respect to all 

the unknown parameters must be zero. Therefore the weight functions for the Least Square 

Method are just the derivatives of the residual with respect to the unknown constants. 

 Wi	 = 
Z[Z\     (2.49) 

2.3.3 Galerkin Method 

The next type of the weighted residuals is the Galerkin Method. 

 (], ^_) = 0 (2.50) 

   

where `	 = 	1,2, ……b and R is defined as the residual between the approximate solution and 

the exact solution. The Galerkin method is widely used in the field of engineering such as 

structural dynamics, acoustics and heat and mass transfer. 
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CHAPTER 3 

GALERKIN METHOD AND ITS APPLICATIONS 

3.1 Galerkin Method 

The Galerkin method is used in approximating the solutions of ordinary differential equations, 

partial differential equations and integral equations. The main aim of the Galerkin method is to 

solve the differential equations. Let us consider an equation of the form 

 cd = e (3.1) 

where c is the differential operator,	d is the unknown function and e is the given function. An 

approximate solution to Eq. (3.1) is given by a linear combination of N base functions in the 

form																																																																																	  
 ữ	(/, 0) = 	�uM	eM	(/, 0)N

MB<  (3.2) 

where uM is the unknown coefficient and eM	is the base function in the function space. 

The residual between the exact and approximate solution can be defined as 

 ] = cữ − e (3.3) 

where  is the approximation of   . 

We know that ữ	 = 	∑ uMeMNMB< 		so substituting it in  Eq. (2.51) we get 

 ] = c�uMeMN
MB< − e  

 
= 		�uM	LeM	N

MB< − e 
 

(3.4) 

 

The quantity, R, is a function of position and hence the residual equation becomes 
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 R(x, y) = �uM	LeM	(/, 0)N
MB< − e(/, 0) (3.5) 

According to the Galerkin method the unknown coefficients are determined by   

   

 (], ^_) = 0 (3.6) 

which is computed as  

 g^_ 	]	hi = 0	
j  (3.7) 

 

3.1.1 Solving the plate equation using Galerkin Method 

Now the Galerkin method is extended to solving the plate equation. From Eq. (2.19) we get, 

 ∇7w = P	D  

The approximate solution is of the form                         

			 
 w(/, 0) = 	�aM	φM	(/, 0)N

MB<  (3.8) 

where the trial functions, φM‘s, are linearly independent and have the same boundary conditions 

as . 

The residual or error is in the form 

 R ≡ ∇7w− P	(x, y)D  (3.9) 

 R ≡�aM∇7	φM	(/, 0)N
MB< − P	(x, y)D  

 

(3.10) 

 

Then calculating the weighted integral, we get     
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 g	m�aM∇7	φM	N
MB< − P	(x, y)D n	φo		h/	h0 = 0	

	  (3.11) 

 

or it can be rewritten as  

 �aM	N
MB< g∇7φM	φo	h/	h0 = P	(x, y)D 			gφo			h/	h0	

	
	
	   

where the integral is carried out over the plate surface. 

Let  pq =  	∬ φo			h/	h0		  and    s_q =  	∬ ∇7φo	φM	h/	h0		  then the above equation can be expressed 

as                                                             

 �aM	N
MB< s_q = P	(x, y)D pq (3.12) 

 

3.2 Analysis of plates with different geometries 

The Galerkin method is used to solve differential equations and it can be extended to plates 

with different geometries and arbitrary boundary conditions. The three different examples taken 

and analyzed are  

i. Flat rectangular plate clamped on all sides 

ii. Flat triangular plate clamped on all sides 

iii. Flat triangular plate clamped on two sides and simply supported on the other side 

The analysis is made easy and faster only because of the use of the symbolic software, 

Mathematica which is used to solve all the complex polynomials and in evaluating the 

coefficients which is not feasible by hand. 

3.2.1 Numerical solution of a rectangular plate clamped on all sides  

 Consider a rectangular plate as in Figure 3.1 which is clamped on all the sides and it is 

subjected to uniform loading. 
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Figure 3.1 Flat rectangular plate clamped on all sides 

Let the dimensions of the plate be ‘a’ and ‘b’ respectively. The governing equation of a plate in 

the lateral displacement w is given, from Eq. (2.18)      

 
∂7W	∂x7 + 2 ∂7W	∂x= 	∂y= + ∂7W	∂y7 = P
D  (3.13) 

where P
 is the load acting on the surface of the plate and  is the flexural rigidity of the plate 

defined as � = 	 9:;<=(<>?�) 
where t is Young’s modulus of the plate and � 	is the Poisson ratio. The exact solution of the 

plate equation should satisfy all the boundary conditions of any plate problem. In the analysis, 

the values of a and b of the plate are taken as 1. If the plate is clamped on all the edges at  

/ = 0, / = @, 0 = 0 and 0 = E   then the boundary conditions are 

At / = 0, / = @   

 A = 0 (3.14) 

 
uAu/ = 0 (3.15) 

    



 

19 

 

At 0 = 0, 0 = E      

 A = 0 (3.16) 

 
uAu0 = 0 (3.16) 

 

In order to find the deflection of the plate using the Galerkin method, first we need to begin by 

considering the base function which satisfies the plate’s boundary conditions. The base function 

is represented in the general form as 

 w(/, 0) = 	�cM	φM	(/, 0)N
MB<  (3.17) 

The trial function for the rectangular plate is evaluated using the symbolic software, 

Mathematica. For  w = 8, it is given by 

 y(/, 0) = @[1] + /@[2] + 0@[3] + /=@[4] + /0@[5] + 0=@[6] + /�@[7]/=0@[8] +
/0=@[9] + 0�@[10]/7@[11] + /�0@[12] + /=0=@[13] + /0�@[14] + 07@[15] +
/�@[16] + /70@[17] + /�0=@[18] + /=0�@[19] + /07@[20] + 0�@[21] + /�@[22] +
/�0@[23] + /70=@[24] + /�0�@[25] + /=07@[26] + /0�@[27] + 0�@[28] + /�@[29] +
/�0@[30] + /�0=@[31] + /70�@[32] + /�07@[33] + /=0�@[34] + /0�@[35] + 0�@[36] +
/�@[37]/�0@[38] + /�0=@[39] + /�0�@[40] + /707@[41] + /�0�@[42] + /=0�@[43] +
/0�@[44] + 0�@[45]       

(3.18) 

 

It is found that the eighth order polynomial is the lowest possible polynomial to satisfy the 

boundary conditions. Once the general N
th 

order polynomial is defined as in Eq. (3.18), the 

boundary conditions are applied to solve for the unknown coefficients. This is done by 

generating eight equations for each boundary condition using Mathematica. In this analysis the 

value of ‘a’ and ‘b’ are considered to be @ = E = 1. 
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Table 3.1 Boundary conditions of flat rectangular plate clamped on all sides 

 

BC (1) / = 0 A(0, 0) = 0 

BC (2) / = 0 
uAu/ = 0 

BC (3) / = 1 A(1, 0) = 0 

BC (4) / = 1 
uAu/ = 0 

BC (5) 0 = 0 A(/, 0) = 0 

BC (6) 0 = 0 
uAu0 = 0 

BC (7) 0 = 1 A(/, 1) = 0 

BC (8) 0 = 1 
uAu0 = 0 

 

 

Having solved for all the boundary conditions and tabulating them using the Table[] command in 

Mathematica, we get the values of the coefficients a[i]. Substituting the values of the coefficients 

in the general polynomial we end up in the following trial functions, 

 

 y(/, 0) = {/=0= − 2/�0= + /70= − 2/=0� + 4/�0� − 2/70� + /=07 − 2/�07 + /707}      (3.19) 

 

Increasing the order of polynomial for better convergence, we get the ninth order polynomial for 

w = 9 
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 		y(/, 0) = 			@[1] + /@[2] + 0@[3] + /=@[4] + /0@[5] + 0=@[6] + /�@[7] + /=0@[8]
+ /0=@[9]0�@[10]/7@[11] + /�0@[12] + /=0=@[13] + /0�@[14]
+ 07@[15] + /�@[16] + /70@[17] + /�0=@[18] + /=0�@[19]
+ /07@[20] + 0�@[21] + /�@[22] + /�0@[23] + /70=@[24]
+ /�0�@[25] + /=07@[26] + /0�@[27] + 0�@[28] + /�@[29]
+ /�0@[30] + /�0=@[31] + /70�@[32] + /�07@[33] + /=0�@[34]
+ /0�@[35] + 0�@[36] + /�@[37] + /�0@[38] + /�0=@[39]
+ /�0�@[40] + /707@[41] + /�0�@[42] + /=0�@[43] + /0�@[44]
+ 0�@[45] + /�@[46] + /�0@[47] + /�0=@[48] + /�0�@[49]
+ /�07@[50] + /70�@[51] + /�0�@[52] + /=0�@[53] + /0�@[54]
+ 0�@[55] 

 

(3.20) 

Now applying the boundary conditions to the polynomial in Eq. (3.20) and solving for the 

unknown coefficients, we get the following trial functions 

 φ1(/, 0) = /=0= − 2/�0= + /70= − 2/=0� + 4/�0� − 2/70� + /=07 − 2/�07 + /707 (3.21) 

 y=(/, 0) = 2/=0= − 3/�0= + /�0= − 4/=0� + 6/�0� − 2/�0� + 2/=07 − 3/�07 + /�07 (3.22) 

 
			φ�(/, 0) = 2/=0= − 4/�0= + 2/70= − 3/=0� + 6/�0� − 3/70� + /=0� − 2/�0�

+ /70� 
(3.23) 

 

Having determined all the trial functions the next step is to find the residual function. From Eq. 

(3.5)     

 R(x, y) = �uM	LeM	(/, 0)N
MB< − e(/, 0)               (3.23 a) 

        

The residual function for these trial functions is determined using Mathematica.  
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 R ≡�cM∇7	φM	(/, 0)N
MB< − P	(x, y)D  (3.24) 

where cM is the unknown coefficient and φM	is the trial function. 

Here the value of P/D is considered to be 1 for convenience and it is later modified. Therefore 

the residual equation becomes    

 R ≡�cM∇7	φM	(/, 0)N
MB< − 1 (3.25) 

 Using Mathematica the residual for the order n=8 is determined as 

 
																		R = 					−1 + c1(24/= − 48/� + 24/7) + 2c1(4 − 24/ + 24/= − 240 + 144/0

− 144/=0 + 240= − 144/0= + 144/=0=) + c1(240= − 480� + 2407) (3.26) 

 

Using Mathematica the residual for the order n=9 is determined as 

 

																		R = 		−1 + c1(24/= − 48/� + 24/7) + c2(48/= − 72/� + 24/�)
+ c3(120/=0 − 240/�0 + 120/70) + c1(240= − 480� + 2407)
+ c2(120/0= − 240/0� + 120/07) + c3(480= − 720� + 240�)
+ 2(c1(4 − 24/ + 24/= − 240 + 144/0 − 144/=0 + 240= − 144/0=
+ 144/=0=) + c2(8 − 36/ + 40/� − 480 + 216/0 − 240/�0 + 480=
− 216/0= + 240/�0=) + c3(8 − 48/ + 48/= − 360 + 216/0
− 216/=0 + 400� − 240/0� + 240/=0�)) 

(3.27) 

 

Then the values of all the coefficients are found out by determining the weighted integral with 

Mathematica and the values are determined as 

c1 → 49144 

The deflection equation of the plates in the general form is 
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 A =�e_y_(/, 0)�
_B<  (3.26) 

where y_ 	is the trial function. 

In this case further computing the deflection equation we get  

 w = 49144 (/=0= − 2/�0= + /70= − 2/=0� + 4/�0� − 2/70� + /=07 − 2/�07 + /707) (3.27) 

 

Further plotting the values and generating a plot to determine the maximum value of deflection 

using Mathematica we get the plot as shown. 

 

Figure 3.2 3-D plot of maximum deflection of a rectangular plate clamped on all sides 

 

The maximum deflection A�C� is determined to be 0.0013 for a square plate clamped on all 

sides. This value of A�C� determined is for the equation  ∇7w = 1 assuming the flexural rigidity 

to be unity (P/D=1).But the classical plate equation is  ∇7w = 4	5 .Hence determining the value of 
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P/D, taking all the values to be arbitrary and calculating the value of D, using the formula  

� = 	 9:;<=(<>��) , we get the value of A�C� = 14.195 for a square plate clamped on all the sides. 

 

3.2.2 Numerical solution of a triangular plate clamped on all sides 

 

 

Figure 3.3 Triangular plate clamped on all sides 

 

The governing equation of a plate in the lateral displacement w is given as, from Eq. (2.18) 

 
∂7W	∂x7 + 2 ∂7W	∂x= 	∂y= + ∂7W	∂y7 = P
(x, y)D   

where P
 is the load acting on the surface of the plate and 

 D is the flexural rigidity of the plate. 

The plate is clamped on all the edges at  / = 0, 0 = 0	, 0 = 1 − / then the boundary conditions 

are  

At / = 0,	 
 A = 0 (3.28) 

 
uAu/ = 0 (3.29) 
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At	0 = 0, 

 A = 0 (3.30) 

 
uAu0 = 0 (3.31) 

At	0 = 1 − /, 

 
uAu/ + uAu0 = 0 (3.32) 

 

The trial function is represented in the general form as 

 w(/, 0) = 	�cM	φM	(/, 0)N
MB<  (3.27) 

 

The trial function for the plate is evaluated using the symbolic software, Mathematica.  

 

		y(/, 0) = 							@[1] + /@[2] + 0@[3] + /=@[4] + /0@[5] + 0=@[6] + /�@[7] + /=0@[8]
+ /0=@[9] + 0�@[10] + /7@[11] + /�0@[12] + /=0=@[13] + /0�@[14]
+ 07@[15] + /�@[16] + /70@[17] + /�0=@[18] + /=0�@[19]
+ /07@[20] + 0�@[21] + /�@[22] + /�0@[23] + /70=@[24]
+ /�0�@[25] + /=07@[26] + /0�@[27] + 0�@[28] 

 

(3.28) 

 

It is found that the sixth order polynomial is the lowest possible polynomial to satisfy the 

boundary conditions. Once the general N
th 

order polynomial is defined, the boundary conditions 

are applied to solve the unknown coefficients. Having solved all the boundary conditions and 

tabulating them using the Table[ ] command in Mathematica, we get the values of the 

coefficients a[i]. Substituting the values of the coefficients in the general polynomial we end up 

with one trial function, 
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 y(/, 0) = 							 {/=0= − 2/�0= + /70= − 2/=0� + 2/�0� + /=07} (3.28) 

 

Increasing the order of polynomial to get the convergence and evaluating the ninth order 

polynomial,	w = 9 we get the following trial functions 

 y<(/, 0) = /=0= − 2/�0= + /70= − 2/=0� + 2/�0� + /=07 (3.29) 

 y=(/, 0) = /�0= − 2/70= + /�0= − 2/�0� + 2/70� + /�07 (3.30) 

 														y�(/, 0) = 2/=0= − 6/�0= + 6/70= − 2/�0= − 3/=0� + 6/�0� − 3/70� + /=0� (3.31) 

 y7(/, 0)/70= − 2/�0= + /�0= − 2/70� + 2/�0� + /707 (3.32) 

 y�(/, 0) = 2/�0= − 6/70= + 6/�0= − 2/�0= − 3/�0� + 6/70� − 3/�0� + /�0� (3.33) 

 
y�(/, 0) = 3/=0= − 12/�0= + 18/70= − 12/�0= + 3/�0= − 4/=0� + 12/�0� − 12/70�

+ 4/�0� + /=0� (3.34) 

 y�(/, 0) = /�0= − 2/�0= + /�0= − 2/�0� + 2/�0� + /�07 (3.35) 

 y�(/, 0) = 2/70= − 6/�0= + 6/�0= − 2/�0= − 3/70� + 6/�0� − 3/�0� + /70� (3.36) 

 
y�(/, 0) = 3/�0= − 12/70= + 18/�0= − 12/�0= + 3/�0= − 4/�0� + 12/70� − 12/�0�

+ 4/�0� + /�0�, (3.37) 

 
y<�(/, 0) = 4/=0= − 20/�0= + 40/70= − 40/�0= + 20/�0= − 4/�0= − 5/=0� + 20/�0�

− 30/70� + 20/�0� − 5/�0� + /=0�} (3.38) 

Having determined all the trial functions, the next step is to find the residual function. From Eq. 

(3.5) 

 R(x, y) = �uM	LeM	(/, 0)N
MB< − e(/, 0) (3.39) 

The residual function for these trial functions is determined using Mathematica as 

 R ≡ 	�cM∇7	φM	(/, 0)N
MB< − P	(x, y)D  (3.40) 

Here the value of P/D is considered to be 1 for convenience which can be later modified. 

Therefore the residual equation becomes       
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R ≡ 	�cM∇7	φM	(/, 0)N

MB< − 1 

 

(3.41) 

 Using Mathematica the residual for the order of polynomial w = 6 is determined as 

 R = −1 + 24c1/= + 24c10= + 2c1(4 − 24/ + 24/= − 240 + 72/0 + 240=) (3.42) 

Since w = 9 gives better convergence, the residual is given as 

R = −1 + 24c1/= + 24c2/� + 24c4/7 + 24c7/� + 120c3/=0 + 120c5/�0 + 120c8/70 + 24c10=
+ 360c6/=0= + 360c9/�0= + 840c10/=0� + c3(1440= − 240/0= − 720�)
+ c2(−480= + 120/0= + 480�) + c5(−1440= + 720/0= − 720/=0= + 1440�
− 360/0�) + c6(4320= − 1440/0= + 1080/=0= − 2880� + 480/0�) + c10(9600=
− 4800/0= + 7200/=0= − 3360/�0= − 7200� + 2400/0� − 1800/=0�)
+ c9(−2880= + 2160/0= − 4320/=0= + 2520/�0= + 2880� − 1440/0�
+ 1440/=0�) + c4(240= − 240/0= + 360/=0= − 480� + 240/0� + 2407)
+ c7(120/0= − 720/=0= + 840/�0= − 240/0� + 720/=0� + 120/07) + c8(480=
− 720/0= + 2160/=0= − 1680/�0= − 720� + 720/0� − 1080/=0� + 240�)
+ 2(c1(4 − 24/ + 24/= − 240 + 72/0 + 240=) + c2(12/ − 48/= + 40/� − 72/0
+ 144/=0 + 72/0=) + c4(24/= − 80/� + 60/7 − 144/=0 + 240/�0 + 144/=0=)
+ c7(40/� − 120/7 + 84/� − 240/�0 + 360/70 + 240/�0=) + c3(8 − 72/
+ 144/= − 80/� − 360 + 216/0 − 216/=0 + 400�) + c5(24/ − 144/= + 240/�
− 120/7 − 108/0 + 432/=0 − 360/�0 + 120/0�) + c8(48/= − 240/� + 360/7
− 168/� − 216/=0 + 720/�0 − 540/70 + 240/=0�) + c6(12 − 144/ + 432/=
− 480/� + 180/7 − 480 + 432/0 − 864/=0 + 480/�0 + 6007) + c9(36/ − 288/=
+ 720/� − 720/7 + 252/� − 144/0 + 864/=0 − 1440/�0 + 720/70 + 180/07)
+ c10(16 − 240/ + 960/= − 1600/� + 1200/7 − 336/� − 600 + 720/0
− 2160/=0 + 2400/�0 − 900/70 + 840�)) 
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According to the Galerkin method the unknown coefficient is determined by the inner product of the 

functions. Therefore, 

 (], ^_) = 0 (3.43) 

The unknown coefficients determined are as follows: 

e1 → 278531508849181 , c2 → −54300473553095086 , c3 → −152136535899454 , c4 → 1142864905106190172 , c5 → 34293431953095086 , 
c6 → 228872371212380344 , c7 → −9785921626547543 , c8 → −9785921626547543 , c9 → −12281687679642629 , c10 → −16638448849181 

We know the deflection equation of the plates in the general form is 

A =�e_y_(/, 0)�
_B<  

In this case, by further computing we get the deflection as 

 w = 548 (/=0= − 2/�0= + /70= − 2/=0� + 2/�0� + /=07)} (3.44) 

 

 

Figure 3.4 3-D plot of maximum deflection of a triangular plate clamped on all sides 
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The maximum deflection A�C� is determined to be 0.000185 for a triangular plate clamped on 

all sides. This value of A�C� determined is for the equation  ∇7w = 1 assuming the flexural 

rigidity to be unity (P/D=1).But the classical plate equation is  ∇7w = 4	5 .Hence determining the 

value of P/D, taking all the values to be arbitrary and calculating the value of D, using the 

formula  � = 	 9:;<=(<>��) , we get the value of A�C� = 2.132 for a triangular plate clamped on all the 

sides. 

3.2.3 Numerical solution of a triangular plate clamped on two sides and simply supported on the 
other side 

 

Figure 3.5 Triangular plate clamped on two sides and simply supported on the other side 

Now consider a triangular plate which is clamped on two sides and simply supported along the 

side	/ + 0 = 1 .The same procedure as the above two cases is adopted. First the plate equation 

is  

∂7W	∂x7 + 2 ∂7W	∂x= 	∂y= + ∂7W	∂y7 = P
D  

 

The plate is clamped on the edges at  / = 0, 0 = 0 and simply supported along		0 = 1 − / then 

the boundary conditions are  

At / = 0,	 
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 A = 0 (3.45) 

 
uAu/ = 0 (3.46) 

 

At	0 = 0, 

 A = 0 (3.47) 

 
uAu0 = 0 (3.48) 

At	0 = 1 − /, 

 (1 + ν) �����	� + ������ � − (1 − ν) ����	��	 = 0  (3.49) 

 

It is found that the eighth order polynomial is the lowest possible polynomial to satisfy the 

boundary conditions. Once the general N
th 

order polynomial is defined, the boundary conditions 

are applied to solve the unknown coefficients. Having solved all the boundary conditions and 

tabulating them using the Table[ ] command in Mathematica, we get the values of the 

coefficients a[i]. Substituting the values of the coefficients in the general polynomial we end up 

with the equation, 

 y<(/, 0) = −32 /=0= + 3/�0= − 3/70=2 + 3/=0� − 4/�0� + /70� − 3/=072 + /�07 (3.50) 

 y=(/, 0) = 7/=0=2 − 6/�0= + 3/70=2 + /�0= − 6/=0� + 6/�0� + 3/=072 + /=0� (3.51) 

 

y�(/, 0) = −2/=0= + 8/�0=3 + /70= − 2/�0= + /�0=3 + 4/=0� − 8/�0�3 − 8/70�3
+ 4/�0�3 − 2/=07 + /707, (3.52) 

 

Having determined all the trial functions the next step is to find the residual function. From Eq. 

(3.5) 
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 R(x, y) = �uM	LeM	(/, 0)N
MB< − e(/, 0)  

             

The residual function for these trial functions is determined using Mathematica 

 R ≡�cM∇7	φM	(/, 0)N
MB< − P	(x, y)D   

Here the value of P/D is considered to be 1 that can be modified. Therefore the residual 

equation becomes                 

 R ≡�cM∇7	φM	(/, 0)N
MB< − 1  

        

The residual for n=8 is evaluated as 

 

R = −1 + c1(−36/= + 24/�) + c3(−48/= + 24/7) + 360c5/=0= + c2(36/= + 120/=0)
+ c4(36/= + 120/�0) + c2(360= + 120/0=) + c5(1440= − 360/=0=
− 960�) + c1(−360= + 240�) + c4(−1080= + 360/0= + 1200�
− 120/0�) + c3(240= − 240/0= + 120/=0= − 640� + 160/0�
+ 2407) + 2(c1(−6 + 36/ − 36/= + 360 − 144/0 + 72/=0 − 360=
+ 72/0=) + c3(−8 + 32/ + 24/= − 80/� + 20/7 + 480 − 96/0
− 192/=0 + 160/�0 − 480= + 144/=0=) + c2(14 − 72/ + 36/=
+ 40/� − 720 + 216/0 + 360= + 400�) + c4(6 − 108/= + 120/�
− 360 − 36/0 + 360/=0 − 120/�0 + 360= + 120/0�) + c5(12 − 96/
+ 144/= − 60/7 − 480 + 288/0 − 288/=0 + 6007) 

(3.53) 

Then the values of all the coefficients are found out by determining the weighted integral. It is 

also carried out using Mathematica and the values are determined. 

c1 → −46333211614156 , c2 → −497981538052 , c3 → 717717538052 , c4 → 239239269026 , c5 → 2392391076104 
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In this case further computing the deflection equation we get w as 

 

w
= −4633321 �−32 /=0= + 3/�0= − 3/70=2 + 3/=0� − 4/�0� + /70� − 3/=072 + /�07�1614156

+
717717�−2/=0= + 8/�0=3 + /70= − 2/�0= + /�0=3 + 4/=0�

−8/�0�3 − 8/70�3 + 4/�0�3 − 2/=07 + /707 �
538052

− 497981 �7/=0=2 − 6/�0= + 3/70=2 + /�0= − 6/=0� + 6/�0� + 3/=072 + /=0��538052
+ 239239 �3/=0=2 − 9/70=2 + 3/�0= − 3/=0� − /�0� + 5/70� − /�0� + 3/=072 + /�0��269026
+ 239239(3/=0= − 8/�0= + 6/70= − /�0= − 4/=0� + 8/�0� − 4/70� + /=0�)1076104 	

(3.54) 

 

Further plotting the values using Mathematica and generating a plot we determine the maximum 

deflection of the plate. 
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Figure 3.6 3-D plot of maximum deflection of a triangular plate clamped on two sides and simply 
supported on the other side 

 

The maximum deflection A�C� is determined to be 0.00028 for a triangular plate clamped on 

two sides and simply supported on the other side. This value of A�C� determined is for the 

equation  ∇7w = 1 assuming the flexural rigidity to be unity (P/D=1).But the classical plate 

equation is  ∇7w = 4	5 .Hence determining the value of P/D, taking all the values to be arbitrary 

and calculating the value of D, using the formula  � = 	 9:;<=(<>��) , we get the value of A�C� = 

3.057 for a triangular plate clamped on two sides and simply supported on the other side. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

4.1 Analysis using Ansys 

 Ansys Workbench has native work spaces which include Project Schematic, 

Engineering Data and Design. The application of Ansys Workbench includes Mechanical APDL, 

Fluent, and CFX. A structural Ansys analysis is done by the following procedure. 

The Ansys system has six different states 

1. Engineering Data 

2. Geometry 

3.  Model 

4. Setup 

5. Solution 

6. Results 

4.1.1 Engineering Data 

The Engineering Data cell gives access to the material models for the use in the 

analysis. A double click on the Engineering Data tab will take to a page where the Edit menu 

have to be chosen to define the Engineering Material data. 

4.1.2 Geometry 

The Geometry option is selected to import, create or update the geometry of the model 

used in the analysis. There are many different options under the geometry  

1. New Geometry 

2. Import Geometry 

3. Edit 

4. Replace Geometry 
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5. Update from CAD 

6. Refresh 

7. Properties 

The Properties option is used to select basic and advanced geometry properties 

4.1.3 Model 

 The Model feature in the Mechanical application systems or the Mechanical model 

component system is associated with the Model branch in the Mechanical application and 

affects the geometry, coordinate systems, connections and mesh branches of the model. The 

Mesh option is used to create a mesh either being coarse or fine so that the whole model is 

being meshed. 

4.1.4 Setup 

 The setup option is used to launch the appropriate application for the system. Here 

there is always necessity to define the boundary conditions and configure the analysis in the 

system. The data which are specified here will be incorporated in the project in Ansys 

Workbench.  

4.1.5 Solution 

 From the solution option we can access the branch of the application. The solution 

option actually solves for all possible results for the analysis and it is ready to be output. 

4.1.6 Results 

 The Results option is used to generate all the required outputs of the analysis for 

example the deformation, stress acting and various other output parameter. 

 

4.2 Rectangular plate clamped along all sides 

The first case that was considered is a flat rectangular plate clamped on all sides. The 

deflection is now evaluated using the finite element software, Ansys. First the model is 

generated with all the dimensions being unity. The generated model using Ansys is  
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Figure 4.1 Model of a flat rectangular plate 

Once the model is generated the next step is to mesh the whole geometry so that 

further loading and the boundary conditions are specified. The geometry after being meshed 

looks as in Figure 4.2  

 

Figure 4.2 Plate with mesh areas 
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Once the model is meshed, the next is specifying the boundary conditions. The displacements 

on all sides of the geometry are specified as zero since the plate is clamped on all edges. Then 

the pressure is given on the top surface of the plate and the value is 1 Pa. Once the boundary 

conditions are specified the model looks as in Figure 4.3. Once the boundary conditions are 

specified, the model is selected and the solution option solves for all possible results. Then all 

the results including the stresses and deformations are viewed along with the maximum 

deformation of the rectangular plate clamped on all the edges as in Figure 4.4.  

 

 

Figure 4.3 Plate with load and boundary conditions  

 

Thus the value of the maximum deflection of the flat rectangular plate is 14.384, which shows 

good agreement with the value determined by the analytical method. 
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Figure 4.4 Rectangular plate after deformation 

 

4.3 Triangular plate clamped on all sides 

The second case that was considered is a triangular plate clamped on all sides. First 

the model is generated with all the dimensions being unity. The generated model using Ansys is 

shown in Figure 4.5 .The geometry is created such that the length and breadth are unity. It is 

also made sure that the geometry satisfies the equation / + 0 = 1 
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Figure 4.5 Model of a flat triangular plate  

Once the model is generated the next step is to mesh the whole geometry so that 

further loading and the boundary conditions are specified. The geometry after being meshed is 

shown in Figure 4.6.  

 

 

Figure 4.6 Triangular plate with mesh areas 
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Once the model is meshed, the next step is to specify the boundary conditions. The 

displacements on all sides of the geometry are specified as zero since the plate is clamped on 

all the edges. Then the pressure is given on the top surface of the plate and the value is 1 Pa. 

Once the boundary conditions are specified, the model is selected and the solution option is 

used to solve for all possible results. Then all results including the stresses and deformations 

are viewed along with the maximum deformation of the triangular plate clamped on all the 

edges as in Figure 4.7.  

 

 Figure 4.7 Triangular plate with deformation   

 

Thus, the value of maximum deflection obtained using Ansys for a triangular plate clamped on 

all the edges is 2.3281, which shows good agreement with the value derived using the Galerkin 

method. 
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4.4 Triangular plate clamped on two sides and simply supported on the other side 

In the final case of analysis a flat triangular plate with mixed boundary conditions is 

considered. The triangular plate is clamped on two sides and it is simply supported on the third 

side. The analysis is repeated as it was done for the above two cases but the only difference is 

that the boundary condition on the third side is changed to simply-supported. The whole 

procedure is repeated to get the maximum deflection. The value of the maximum deflection is 

compared to the value determined using Galerkin Method and it is noted that the value shows 

good agreement with the analytical method. 

 

 

 

Figure 4.8 Triangular plate two sides clamped and other side simply supported with 
deformations 
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Thus, the value of the maximum deflection obtained using Ansys for a triangular plate clamped 

on two sides and simply supported on the other side is 3.201, which shows good agreement 

with the value derived using the Galerkin method. 

 

 

Table 4.1 Comparison of the deflection values in various cases 

Cases 
Maximum Deflection (A�C�) 

using Galerkin method 

Maximum Deflection (A�C�) 

using Ansys  

Rectangular plate clamped all 

sides 
14.195 14.384 

Triangular plate clamped all 

sides 
2.132 2.328 

Triangular plate clamped on 

two sides and simply 

supported on the third side 

3.057 3.201 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

The Galerkin method was used to solve the governing equation of the plate. 

Completing the involved algebra would have been impossible without the usage of the symbolic 

software, Mathematica. The use of symbolic software is useful for the study because it 

manipulates the given expressions and symbolically retains the variables. The method of 

selecting the polynomial which satisfies all the boundary conditions provides better accuracy 

and faster convergence. The use of the symbolic software provides much faster and accurate 

way of analyzing the engineering problems. With the examples illustrated in this thesis it is 

evident that the results generated by the symbolic software shows good agreement with those 

of the finite element software, Ansys. 

The effort taken in this thesis to solve and analyze different geometrical shapes other 

than regular geometries should pave a way for more research in the future. With much more 

attributes and realistic boundary conditions the triangular geometry could be modified into a 

shape of an aircraft wing. With the help of powerful routines such as Mathematica, the research 

should be feasible in the near future. Further applications of the symbolic software are 

encouraged and the applications will lead to a better understanding of the classical analytical 

procedures. More complex geometries can be taken for analysis and can be analyzed with the 

help of the Galerkin method and the symbolic software. The geometries to be analyzed can be 

selected in such a way that it could be used in real time engineering in the future. 
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