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ABSTRACT 

 

A RANDOM WALK APPROACH TO SAMPLING HIDDEN DATABASES 

 

Publication No. ______ 

 

Arjun Dasgupta, MS 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Gautam Das 

A large part of the data on the World Wide Web is hidden behind form-like 

interfaces. These interfaces interact with a hidden back-end database to provide answers 

to user queries. Generating a uniform random sample of this hidden database by using 

only the publicly available interface gives us access to the underlying data distribution. 

In this thesis, we propose a random walk scheme over the query space provided by the 

interface to sample such databases. We discuss variants where the query space is 

visualized as a fixed and random ordering of attributes. We also propose techniques to 

further improve the sample quality by using a probabilistic rejection based approach and 

conduct extensive experiments to illustrate the accuracy and efficiency of our 

techniques.  
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CHAPTER 1 

INTRODUCTION 

 
A large portion of data available on the web is present in the so called “deep 

web”. The deep web (or invisible web or hidden web) is the name given to pages on the 

World Wide Web that are not part of the surface web (pages indexed by common search 

engines). It consists of pages which are not linked to other pages (e.g., dynamic pages 

which are returned in response to a submitted query). The deep web is believed to contain 

500 times more data than the surface web [5]. A major part of data present on the hidden 

web lies behind form like interfaces. These form based interfaces are based on a back end 

proprietary database and a limited top-k query interface. The query interface is generally 

represented as a web form that takes input from users and translates them into SQL 

queries. These queries are then presented to the proprietary database and the top-k results 

provided to the user on the browser. Many online resource locater services are based on 

this model.  To illustrate this scenario let us consider the example of a generic restaurant 

finder service: 

Example 1: Consider a web based form which lets the user choose from a set of attributes 

{A1,A2,A3,...Am} where each attribute may be Boolean, categorical or numeric, e.g., 

cuisine, price, distance, etc. The user chooses desired values for one or more of the 

attributes presented (or ranges in the case of numeric attributes). This results in a query 

that is executed against a back-end restaurant database where each tuple represents a 
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restaurant. The top-k answers (according to a ranking function) returned from the 

database are then presented to the user. 

The principle problem that we consider in this thesis is: given such a restricted query 

interface, how can one efficiently obtain a uniform random sample of the backend 

database by only accessing the database via the public front end interface? 

Database Sampling is the process of randomly selecting tuples from a dataset. 

Database sampling has been used in the past to gather statistical information from 

databases. It has a wide range of applications for the owner of the database. Given 

complete and unrestricted access to the database, many methods have been developed for 

efficiently selecting a random sample of the tuples of the database [14, 17].  

However, in today's world where most databases are present behind a proprietary 

curtain, there needs to be some way to obtain statistical information about the underlying 

data with all these restrictions in place. This information can be then used to obtain 

insight into the data. Statistics about a third party database can be used to obtain quality, 

freshness and size information inside web sources. It can be used to identify uniformity 

or biases of topics. A typical example is as follows: Consider a web meta-service which 

retrieves data on restaurants in a city. It fetches information from two or more web 

sources which provide data on restaurants matching certain requirements. This service 

gets a query from the user and then feeds it to the two or more participating restaurant 

search engines. The final result is a combined mix of restaurant data from these 

underlying sources. Knowledge of the underlying databases would allow the makers of 
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our restaurant service to call the database with the best quality and data distribution (in 

relation to a specific query) preferentially over the other sources. 

However, generating random samples from hidden databases presents significant 

challenges. The only view available into these databases is via the proprietary interface 

that allows only limited access – e.g., the owner of the database may place limits on the 

type of queries that can be posed, or may limit the number of tuples that can be returned, 

or even charge access costs, and so on. The traditional random sampling techniques that 

have been developed cannot be easily applied as we do not have full access to the 

underlying tables. 

In this thesis, we initiate an investigation of this important problem. For 

simplicity, we consider mainly single-table databases with Boolean, categorical or 

numeric attributes, where the front end interface allows queries in which the user can 

specify values of ranges on a subset of the attributes, and the system returns a subset (top-

k) of the matching tuples, either according to a ranking function or arbitrarily, where k is 

a small constant such as 10 or 100. 

Our main result is an algorithm called HIDDEN-DB-SAMPLER, which is based 

on performing random walks over the space of queries, such that each execution of the 

algorithm returns a random tuple of the database. This algorithm needs to be run an 

appropriate number of times to collect a random sample of any desired size. Note that this 

process may repeat samples - i.e., we produce samples “with replacement”. There are two 

main objectives that our algorithm seeks to achieve: 
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• Quality of the sample: Due to the restricted nature of the interface, it is 

challenging to produce samples that are truly uniform. Consequently, the task 

is to produce samples that have small skew, i.e., samples that deviate as little 

as possible from the uniform distribution.  

• Efficiency of the sampling process: We measure efficiency of the 

sampling process by the number of queries that need to be executed via the 

interface in order to collect a sample of a desired size. The task is to design an 

efficient procedure that collects a sample of the desired size as efficiently as 

possible. 

Our algorithm is designed to achieve both goals - it is very efficient, and produces 

samples with small skew. The algorithm is based on three main ideas: (a) Early 

termination: Often, a random walk may not lead to a tuple. To prevent wasted queries, 

our algorithm is designed to detect such events as early as possible and restart a fresh 

random walk; (b) Ordering of attributes: The ordering of attributes that guides the 

random walk crucially impacts quality as well as efficiency – we show that for Boolean 

databases a random ordering of attributes is preferable over any fixed order, whereas for 

categorical databases with large variance among the domain sizes of the attributes, a 

fixed ordering of attributes (from small domains to large domains) is preferable for 

reducing skew; (c) Parameter to tradeoff skew versus efficiency: Since sample quality 

and sampling efficiency are contradictory goals, our algorithm is equipped with a 

parameter that can be tuned to provide tradeoffs between skew and efficiency. 
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A major contribution of this thesis is also a theoretical analysis of the quantitative 

impact of the above ideas on improving efficiency and reducing skew. We also describe a 

comprehensive set of experiments that demonstrate the effectiveness of our sampling 

approach. 

The rest of this thesis is organized as follows. In Chapter 2 we formally specify 

the problem and describe a simple but inefficient random-walk based strategy that forms 

the foundation of our eventual algorithm. Chapter 3 is devoted to the development of 

HIDDEN-DB-SAMPLER for the special case of Boolean databases. In Chapter 4 we 

extend the algorithm for other types of data as well as other query interfaces. Chapter 5 

discusses related work, and Chapter 6 contains a detailed experimental evaluation of our 

proposed approach. We conclude in Chapter 7. 
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CHAPTER 2 

PRELIMINARIES 

2.1 Problem Specification 

Throughout this thesis our discussion revolves around hidden databases and their 

public interfaces. We start by defining the simplest problem instance. Consider a database 

table D with n tuples {t1, …, tn} over a set of m attributes A = {A1, …, Am}. Let us assume 

that the attributes are Boolean – later in Chapter 4 we extend this scenario such that the 

attributes may be categorical or numeric. We also assume that duplicates do not exist, 

i.e., no two tuples are identical. This hidden backend database is accessible to the users 

through a public web-based interface. We assume a prototypical interface, where users 

can query the database by specifying the values of a subset of attributes they are 

interested in. Such queries are translated into SQL queries with conjunctive selection 

conditions of the form “SELECT * FROM D WHERE X1=x1 AND … AND Xs=xs”, 

where each Xi is an attribute from A and xi is either 0 or 1. The set of attributes X ={X1, 

…, Xs} ⊆ A is known as the set of attributes specified by the query, while the set Y = A – 

X is known as the set of unspecified attributes. 

Let Sel(Q) ⊆ {t1, …, tn} be the set of tuples that satisfy Q. Most web query 

interfaces are designed such that if Sel(Q) is very large, only the top-k tuples from the 

answer set are returned, where k is usually a fixed constant such as 10 or 100. The top-k 
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tuples are selected by a ranking function, which is either specified by the user or 

defined by the system (e.g., in home search websites, a popular ranking function is to 

order the matching homes by price). In some applications, there may not even be any 

ranking function, and the system simply returns an arbitrary set of k tuples from Sel(Q). 

These scenarios, where the answer set cannot be returned in its entirety, are called 

overflows. At the other extreme, if the system returns no results (e.g., the query is too 

specific) an underflow occurs. In all other cases, where the system returns k or less tuples, 

we have a valid query result.  

For the purpose of this thesis, we assume that when an overflow occurs, the user 

cannot get complete access to Sel(Q) simply by “scrolling through the rest of the answer 

list”. The user only gets to see the top-k results, and the website also notifies the user that 

there was an overflow. The user will then have to pose a new query, perhaps by 

reformulating the original with some additional conditions. For most of the thesis, for 

ease of exposition, we restrict our attention to the case when the front end interface 

restricts k = 1. I.e., for each query, either there is an overflow, or an underflow, or a 

single valid tuple is returned. The case of k > 1 is discussed in Chapter 4.  

The principal problem that we consider in this thesis is: given such a restricted 

query interface, how can one efficiently obtain a uniform random sample of the backend 

database by only accessing the database via the front end interface?   Essentially the task 

is to develop a “hidden database sampler” procedure, which when executed retrieves a 

random tuple from D. Thus, such a sampler can be repeatedly executed an appropriate 

number of times to get a random sample of any desired size. 
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Of course, since accessing the tuples of a hidden database uniformly at random is 

difficult, such database samplers may not be able to achieve perfect uniformity in the 

tuple selection process. To be able to measure the “quality” of the random samples 

obtained, we need to measure how deviant is the sample distribution from the uniform 

distribution. More precisely, let the p(t) be the selection probability of t, i.e., probability 

that the sampler selects tuple t from the database when executed once. We define the 

skew of the sample distribution as the standard deviation of these probabilities, i.e., 

n

ntp

skew ni

i∑
≤≤

−
= 1

2)1)((

 

Next, we define the notion of efficiency of the random sampler. We will measure 

efficiency by simply counting the total number of queries posed by the sampler to the 

front end interface in order to get a random sample of a desired size. Clearly, this notion 

of efficiency is rather simplistic – for instance it assumes that all queries take the same 

time/cost to execute. However, it is instructive to investigate sampling performance even 

with this simplistic measure – which we do in this thesis, and leave more robust 

efficiency measures for future work.  

Thus, our problem reduces to obtaining a random sample of a desired size with 

the least skew efficiently. As we shall see later, small skew and efficiency are conflicting 

goals – a very efficient sampler is likely to produce highly skewed samples and vice 

versa. Indeed, as we shall see later, the samplers that we design do exhibit these tradeoffs. 

In fact, the samplers that we develop have parameters that can smoothly tradeoff skew 

against efficiency. 
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2.2 Random Walks through Query Space 

In this sub-section, we develop a simple approach to sampling hidden databases. 

This approach is naïve and inefficient, but it provides the foundation for the actual 

algorithm.  

Brute Force Sampler: One extremely simple algorithm that will produce perfect 

uniform random samples is the BRUTE-FORCE-SAMPLER which does the following. 

Generate a random Boolean tuple of m-bit, and query the interface to determine whether 

such a tuple exists. I.e., the query will be a complete specification of all the tuple values, 

for which there are two possible outcomes: either the query underflows, or else it returns 

a valid result. The sampler repeats these randomly generate queries until a tuple is 

returned. 

  

Figure 2.1: Random walk through query space 
 

It is easy to see that this process will produce a perfect uniform random sample. 

However, this is an extremely inefficient process, especially when we realize that the size 

0 
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t3 0 1 1 

t4 1 1 0 
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1 1 1 
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of most databases is much smaller that the size of the space of all possible tuples (i.e., n 

<< 2m). Thus the success probability of BRUTE-FORCE-SAMPLER, i.e., the probability 

of reaching a valid tuple, is n /2m.To get a desired sample size of r, the expected number 

of queries that will be executed is r*(2m/n).  

Random Walk View of Brute Force Sampler: An alternative view of this simple 

algorithm – which lays the foundations for the more sophisticated algorithm later in the 

thesis – is to imagine a random walk through a binary tree in which the database tuples 

exist at some of the leaves. To make this more precise, assume a specific ordering of all 

attributes, e.g. [A1A2…Am]. Consider Figure 2.1 which shows a database with three 

attributes and four tuples, and a complete binary tree with 4 (= m+1) levels, where the ith 

level (i ≤ m) represents attribute Ai and the leaves represent possible tuples. The left (resp. 

right) edge leading out of any internal node is labeled 0 (resp. 1). Thus, each path from 

root to a leaf represents a specific assignment of Boolean values to attributes. Thus the 

leaves represent combinations of all possible assignments of values to the attributes. Note 

that only some of the leaves correspond to actual tuples in the database. In a real-world 

database only a small proportion of the leaves will correspond to actual tuples, and vast 

majority of the remainder will be empty. 

The brute force sampler may be viewed as executing a random walk in this tree. 

We start with the first attribute A1 and pick either 0 or 1 with equal probability. Next we 

pick either 0 or 1 as A2's value and continue this walk till we reach a leaf. This random 

walk is essentially a random assignment of values to all attributes – i.e., it corresponds to 

the generation of a random query in the brute force sampler described above. This 
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randomly generated query is then fed to the interface, which then either answers with a 

valid query, or fails (i.e. underflows).   

2.3 Table of Notations 

Table 1 lists all the notations that are used throughout the thesis (some of these 

concepts will be introduced later in the thesis). 

Table 1: Notations used 

Notation Semantics 

N Number of tuples in the database 

M Number of attributes in the database 

Sel(Q) Answer set of query Q, i.e., tuples that satisfy selection 

condition of query 

A1…Am Attributes of the database 

p(t) Selection probability, i.e. the probability with which tuple t 

gets selected by a random sampler 

s(t) Access probability, i.e., the probability with which a tuple is 

reached via a random walk 

a(t) Acceptance probability, i.e., the probability with which a tuple 

gets accepted into the sample, once it has been reached by a random 

walk.  

d(t) Depth i.e. length of the shortest prefix of the path that leads to 

t such that the corresponding query returns the singleton tuple t 
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Table 1 - Continued 

F Failure probability, i.e. the probability that a random walk 

leads to an underflow and has to be aborted 

S Success probability, = 1 – F 

C Scaling factor used to boost acceptance probabilities of all 

tuples 
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CHAPTER 3 

RANDOM WALK BASED SAMPLING 

In this chapter we develop the main ideas behind HIDDEN-DB-SAMPLER, our 

algorithm for sampling the tuples of a database that is hidden behind a proprietary front 

end query interface. In this chapter we assume Boolean databases only. 

3.1 Improving Efficiency – Early Detection of Underflows and Valid Tuples 

We propose the following modification to BRUTE-FORCE-SAMPLER that 

significantly improves its efficiency. Assume that we have selected a fixed ordering of 

the attributes. Instead of taking the random walk all the way until we reach a leaf and 

then making a single query, what if we make queries while we are coming down the 

path? To make this more precise, suppose we have reached the ith level and the path thus 

far is A1=x1; A2=x2…Ai-1=xi-1. Before proceeding further, we can execute the query that 

corresponds to this prefix of the walk. If the outcome is an underflow, we can 

immediately abort the random walk. If the outcome is a single valid tuple, we can select 

that tuple into that sample. And only if the outcome is an overflow do we proceed further 

down the tree. This situation is described in Figure 2.1. Note that if the algorithm 

proceeded along the path [00], it will detect the valid tuple t1 and stop. Similarly, if it 

proceeded along the path [1], it will detect the valid tuple t4 and stop. However, to detect 

the valid tuple t3, it has to proceed along the path [011].
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We discuss the impact of this proposed modification to BRUTE-FORCE-

SAMPLER. Consider a tuple t in the database. Define the depth d(t) of t to be the length 

of the shortest prefix of the path that leads to t such that the corresponding query returns 

the singleton tuple t. Thus for the example in Figure 2.1, d(t1)=2, d(t2)=3, d(t3)=3 and 

d(t4)=1. For certain databases and for certain ordering of attributes, the following 

significant improvements can occur: 

• The average value of d(t) can be substantially smaller than m, i.e., we will 

rarely have to go all the way to the leaves. Likewise, the random walks that 

lead to underflows can be fairly short.  

• Moreover, the success probability (S) of a random walk leading to a valid 

tuple is substantially larger than the brute force sampler. 

For the example in Figure 2.1, the paths [00], [010], [011] and [1] lead to valid 

tuples t1, t2, t3 and t4 respectively, whereas no paths lead to failure. Thus the success 

probability is 1.  

Of course, one has to remember that in the brute force sampler, each random walk 

is associated with only one query that is executed at the end of the walk, whereas in the 

early detection approach we have to execute queries when visiting each node during a 

random walk. In spite of this, the aggregated number of queries executed (for obtaining 

the same sample size) in the latter is substantially smaller.  

We now provide some theoretical justification as to why the success probability 

may be substantially larger than that of the brute force sampler. Our theoretical results are 

limited to certain simple i.i.d generated datasets (deriving success/failure probabilities for 
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arbitrary datasets appears to be substantially harder), but nevertheless they provide the 

inspiration for our proposed algorithmic modification. Moreover, our experiments on a 

variety of real as well as synthetic datasets (Chapter 6) also reinforce the advantage of 

this early detection approach. 

Consider a dataset D with n tuples having i.i.d. binary attributes with the 

probability of a 1 being p. Assume any arbitrary ordering of attributes, and consider a 

random walk starting from the root of D. Let F(n, p) be the probability of a failure in the 

walk. We have the following boundary conditions and recurrence for F(n, p): 

Theorem 1: Given an i.i.d. Boolean dataset with probability of 1’s being p, and 

any ordering of attributes, we have 

),()1(),(

1),0(

0),1(

0

piFpp
i
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Clearly, in a tree with one tuple the query will return the tuple, and success is 

certain, while in a tree with no tuples failure is certain. For a tree with n rows with 

attribute values independent and identically distributed, with the probability of a 1 being 

p, the right branch (corresponding to the value 1) will have i nodes with the binomial 

probability ini pp
i

n −−







)1( , and the failure probability in the walk going to the right 

branch is F(i ,p). This concludes the proof of the theorem. 

Note that if we interchange the values for the boundary conditions, we get an 

expression for the success of a random walk. Figure 2.1 shows a MATLAB simulation of 
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F(n, p) as a function of n for various values of p. We observe that the failure probability 

is the smallest for p = 0.5, but even for other values of p the probability of success is 

reasonably high. The convergence of the curves for F(n, p) are to be expected: the third 

equation in Theorem 1 is satisfied by any function F(n, p) that is constant with respect to 

n. 

 
Figure 3.1: Failure probability in i.i.d. databases as a function of the number of 

tuples. 
 

In contrast, note that the success probability of the brute force sampler (n/2m) is 

significantly smaller because it depends upon m. Thus, early detection of underflows is 

crucial in increasing the efficiency of the sampler. 

However, this increased efficiency comes at a price, as skew is introduced in the 

sample distribution. We discuss the issue of skew next, and how it can be controlled. 

Aside: There is one further issue that merits discussion. While a random walk is 

in progress and queries are leading to overflow, legitimate database tuples are being 

returned via the query interface (recall that for each overflowing query, the system 
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returns k tuples from Sel(Q)). However, these tuples are useless for assembling into a 

random sample because they have not been selected by a random procedure; they are 

either the top-k tuples with the highest scores (in case a ranking function is used), or may 

even have been arbitrarily picked by the system. Consequently they have to be ignored 

and the walk has to continue. 

3.2 Reducing Skew – Random Ordering of Attributes 

Early detection of underflows introduces skew into the sample. To see this, recall 

from Table 1 that that s(t) is the access probability of tuple t, i.e., the probability that 

tuple t is reached by a random walk (thus the selection probability, p(t) = s(t)/S where S is 

the success probability of a random walk reaching any valid tuple). It is easy to see that 

s(t) = 1/2d(t). But since there is variance among the depths at which the database tuples are 

detected, there is variance among the values of s(t), which contributes to the skew. The 

skew depends upon the specific database and the specific ordering of attributes used. For 

the example in Figure 2.1, s(t1) = 1/4, s(t2) = 1/8, s(t3)=1/8 and s(t4)=1/2.  

We first provide theoretical analysis that quantifies the skew for certain i.i.d. 

databases (as before, we point out that analytical derivations of skew for general 

databases appears to be extremely difficult). We follow this analysis with a discussion of 

techniques for reducing skew without adversely impacting efficiency.  

Quantifying Skew Let D be an i.i.d. 0-1 database with n rows where the 

probability of a 1 is 0.5. Assume any ordering of the attributes. For a tuple t, we shall 

refer to t(1…x) as the prefix corresponding to the first x values of the tuple according to 
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this order. Since skew is defined as the standard deviation of p(t), and p(t) = s(t)/S, we 

basically need to analytically derive the standard deviation of s(t). 

Theorem 2: Given an i.i.d. Boolean dataset with p=0.5 and any ordering of 

attributes, we have 

2ln2

1
][

n
sE ≈  

222 )2(ln4

1

)(2ln4

3
)(

nnn
sVar −

+
≈  

We prove this theorem and at the same time provide some intuition for the 

distribution of the probabilities Consider the distribution of the access probability of rows 

in the i.i.d. model. Consider a row t in the database. Recall that the depth d(t) of t is the 

length x of the shortest prefix t(1…x) of t such that the query corresponding to this prefix 

returns the singleton tuple t. Note that given the database D and an ordering of the 

attributes, the depth d(t) is a fixed quantity. We analyze next the distribution of the depths 

of rows in the tree. Let q(x) be the probability that a given tuple t in D has depth at most 

x. This happens if each of the other tuples u in D differs from t in at least one of the 

positions 1…x, i.e., if for each u it is not the case that u agrees with t on the x first 

positions, i.e., with probability )21( x−− . As the tuples are independent, the probability 

that this happens for each of the n - 1 other rows in D is 1)21()( −−−= nxxq . Thus the 

probability r(x) that the depth of a tuple t is exactly x is  

111 )21()21()1()()( −+−−− −−−=−−= nxnxxqxqxr  

Figure 3.2 shows a MATLAB simulation of the distribution of r(x) for different 

values of n. We see that while the depths of the nodes are strongly concentrated around 
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log(n), there still are a considerable number of rows for which d(t) differs a lot from the 

mean. As s(t) = 2-d(t), such differences translate to large differences in the sampling 

probabilities.  

The access probability s(t) = 2-d(t) is the probability of producing a query string 

that agrees with t for d(t) positions. 
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Figure 3.2: The probability r(x) of a random row having depth x in an i.i.d. 

database with n rows where p = 0.5 
 

Thus the probability that a tuple is selected depends very strongly on its depth, 

and the sampling procedure has a strong bias towards rows with small depth, i.e., towards 

tuples that are separated from others by short query prefixes. 

 

We now leverage the relationship between the aggregate of the access 

probabilities and the failure probability of the database. It is easy to see that 
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This is because the probability that the walk terminates one of the valid tuples is 

exactly 1 - F(n, p). Thus,  
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This gives a non-recursive expression for F(n, p).  The values computed from (1) 

correspond exactly to the values obtained from Theorem 1. An asymptotic analysis of (1) 

can be done by replacing sums with integrals; we thus obtain  
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This is in good agreement with Figure 2.1. Thus the expected value of the access 

probability is  
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The variance of s(t) can also be evaluated. After some simplifications we obtain 
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This concludes the proof of Theorem 2. The analysis shows that for i.i.d. data 

with p=0.5, and for any ordering of attributes, the deviation Std[s] of s is very close to 

E[s]. As a MATLAB simulation shows in Figure 3.3 , the “relative” skew is about 1.  

 

 

Figure 3.3 : The ratio Std[s]/E[s] as a function of the number of nodes 

 

Although Theorem 2 has been derived for specific i.i.d databases, the flavour of 

the result has been corroborated by our experiments on a variety of datasets. Samples 

collected by the random sampler modified with early underflow detection exhibit skew. 

Therefore the task ahead of us is to develop additional techniques that reduce the skew 

and yet do not adversely impact efficiency. We discuss these techniques next. 

Reducing Skew by Random Ordering of Attributes: In our efforts to reduce skew, 

we observe the importance of a having a favorable ordering of attributes that reduces the 

variance of s(t) (or equivalently, of p(t)). If the variance in the length of each walk is 

small, the skew will also be small. A very simple approach is to preface each random 

walk with a random ordering of the attributes, and use the resultant ordering to direct the 
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random walk. In our case, the intuition behind random orderings of attributes is as 

follows. For a fixed ordering, the depth of a tuple, d(t), is fixed. If d(t) is large, then s(t) is 

small, and therefore t is less likely to be reached by a random walk, whereas if d(t) is 

small, then s(t) is large, and t is more likely to be reached. With random orderings of 

attributes, the probability s(t) for a tuple t now becomes a random variable whose 

expected value is much closer to the average value of the access probabilities of all 

tuples. 

In fact, as we theoretically analyze below, it can be shown for i.i.d. datasets with 

p=0.5, if we employ random orderings before initiating random walks, there is no skew in 

the sampling process. We caution that this theoretical result does not extend to more 

general datasets (e.g., when p is different from 0.5, or correlated attributes), and thus only 

serves as supporting evidence  for adopting random orderings in our sampler. However 

our experiments (Chapter 6) on a variety of real and synthetic databases make it clear that 

random reordering does indeed reduce skew, sometimes dramatically so, without any 

appreciable decrease in performance. 

Consider a i.i.d Boolean dataset with p=0.5. Now consider the sampling 

algorithm in the case when the attributes are randomly reordered for each random walk. 

In this case the depth d(t) of a row t is a random variable, and the access probability s(t) 

for t is obtained by two randomizations: the first is the selection of the random ordering 

of the attributes, and the second is the random walk determined by the random selection 

of values in the query.  
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Theorem 3: Given an i.i.d. Boolean dataset with p=0.5 and a random sampler 

with random reordering of attributes as well as early termination, the resulting skew = 0. 

The key observation is the following. As in Theorem 2, denote by r(x) the 

probability that a random tuple has depth x in an i.i.d. database; earlier we derived a 

simple expression for r(x). Let then r’(x) be the probability that a fixed tuple has depth x, 

when the probability is taken over random re-orderings of the attributes. We have r(x) = 

r’(x) by the i.i.d. property: a fixed tuple t has depth in a random reordering of the 

attributes exactly with probability r(x).  (I.e., as functions from {0, 1, 2,…} to 

nonnegative reals, the functions r and r’ are identical.). 

In a random walk with a fixed ordering of the attributes the probability that a 

fixed tuple t will be reached is )(2 td− , which for most tuples is different from the uniform 

value of (1-F(n,p))/n. However, in a randomly reordered run the probability that the fixed 

tuple t is reached is  
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i.e., the randomly reordered random walk produces un-skewed results. This 

concludes the proof of Theorem 3. 

The result that random reordering leads to un-skewed sampling in the i.i.d. case 

does not hold for arbitrary databases. For example, suppose that there is a specific tuple t 

such that for half of the attributes t is the only tuple having a 1 in that attribute. Then any 

random ordering will, with high probability, include one of these attributes early on, and 



 24 

thus there is an overwhelming bias towards selecting row t. Thus, in general, we need the 

acceptance/rejection method that will be discussed next.  

3.3 Reducing Skew – Acceptance/Rejection Sampling 

In this chapter we consider another idea that serves to reduce skew. So far, we 

had assumed that whenever a tuple is reached via a random walk, it is accepted into the 

sample. But we know that the probability of reaching a tuple varies from tuple to tuple, 

depending on the depth at which the tuple is uniquely identified. 

We know that skew is the result of variance among the access probabilities. To 

counter this skew, we propose rejection sampling, a procedure by which tuples are 

probabilistically accepted or rejected once they have been reached by the random walk. 

In other words, rejection sampling is used to compensate for the deviation in the access 

probabilities.  

We make this idea precise as follows. Consider tuple t that is reached by a 

random walk. For that specific order of attributes, its access probability is s(t) = 1/2d(t). 

Let us define a(t) as the acceptance probability for tuple t, i.e., once t is reached, it is 

accepted with probability a(t). Thus, the overall probability of selecting tuple t (for that 

specific ordering of attributes) is )(2/)()()( td
tatats =× . 

So what is an appropriate value for a(t)? Since our goal is to make the probability 

of selecting a tuple the same for all tuples (i.e., skew = 0), this can be achieved if we 

make a(t) proportional to 2d(t). However, since a(t) is a probability, we have to ensure that 

it is between 0 and 1. 
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One seemingly reasonable setting is a(t)=2
d(t)

/2
m, which is guaranteed to be 

between 0 and 1 since 1 ≤ d(t) ≤ m. This way, we can ensure that the probability of 

selecting t is 1/2m, i.e., the same for all tuples. Clearly, we will now be able to produce a 

sample without any skew, since this probability is the same for all tuples. However, we 

have reintroduced inefficiency into the sampler, since even though our random walks 

stop early, most of the time the destination tuple gets rejected, leading to wasted walks. 

Fortunately, it is not necessary to set the acceptance probabilities to be that small. 

Consider Figure 3.4  which shows a binary tree for a specific ordering of attributes. 

Notice that tuples are reached or uniquely identified at different depths. 

 

 

 

 

Figure 3.4 : Different Depths of tuples in a Database 

 

Suppose we knew dmax, the largest value of d(t) over all possible trees 

(corresponding to all possible attribute orders) and all tuples. It is easy to see that setting 
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a(t) = 2d(t)/2dmax would also produce unbiased samples, but possibly more efficiently than 

described above, in case dmax is smaller than m. 

However, dmax may still be very large, rendering the approach inefficient. 

Moreover, it is unrealistic to assume that dmax is known (or can be easily computed) 

beforehand. To overcome these problems, we adopt the approach described next. 

Boosting Acceptance Probabilities by Scaling Factor 

 We adopt the compromise approach where we boost the acceptance probabilities 

of each tuple by a Scaling Factor C. Let C be a constant ≥>= 1/2m. We define a(t) as 

 }1,2min{)( )( tdCta =  

Let us discuss the impact of C on the sampling process. If C is ≤ 1/2dmax then we 

would still have un-skewed samples. However, if C is greater than 1/2dmax, then there is a 

chance that some tuples that get identified after very long walks will get accepted with 

probability 1 (the min operator is required in the definition of a(t) above to guarantee that 

it remains a probability), thus introducing skew into the sample. Larger the C, more the 

chances of such tuples entering the sample and thereby increasing skew. On the other 

hand, a large skew increases efficiency, as the acceptance probabilities are boosted by C. 

Thus we may regard C as a convenient parameter that provides tradeoffs between skew 

and efficiency. 

How do we estimate a suitable value for C? Recall that random ordering of 

attributes is the primary mechanism for reducing variance among the access probabilities. 

Based on our experimental evidence, it appears that setting C to be 1/2d’, where d’ is 

somewhat smaller than the the average depth at which tuples get uniquely identified, will 
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work well. This can be done adaptively where the average tuple depth is learned as more 

and more random walks are accomplished.   

3.4 Algorithm HIDDEN-DB-SAMPLER 

In summary, we have suggested three ideas that can improve the performance of 

BRUTE-FORCE-SAMPLER, and which we adopt in our HIDDEN-DB-SAMPLER: 

These ideas are (a) early detections of underflow and valid tuples, (b) random reordering 

of attributes, and (c) boosting acceptance probabilities via a scaling factor C. Thus, three 

random procedures must be followed, in sequence, before a tuple get accepted into the 

sample. 

Figure 3.5 gives the pseudo-code of HIDDEN-DB-SAMPLER for Boolean  

databases.

Figure 3.5: Algorithm for Random Sampling from Hidden 
Boolean Database 

 

 

 Algorithm HIDDEN-DB-SAMPLER  

           for Boolean databases 

 

  1. Generate random permutation [A1A2…Am]  

  2. Q = {} 

  3. for i = 1 to m  

  4.      xi = random bit 0 or 1 

  5.      Q = Q AND (Ai = xi) 

  6.      Execute Q 

  7.      if underflow  

  8.           go to 1 

  9.      else if overflow 

 10.           continue 

 11.     else  {   t = Sel(Q)  

                      //when k=1, Sel(Q)  

                      // has one tuple 

 12.               Toss coin with bias  

  min{C*2i, 1} 

 13.               if head return t 

 14.               else start again from 1 } 
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CHAPTER 4 

EXTENSIONS 

The algorithm we developed in Chapter 3 was for the simplest scenario, where 

the database was Boolean and the number of returned tuples was at most 1. In this 

chapter we extend the algorithm to work for more general scenarios. 

4.1 Generalizing for k > 1 

Most front end interfaces return more than one tuple, and k is usually in the range 

of 10-100. It is fairly straightforward to extend HIDDEN-DB-SAMPLER for more 

general values of k. In fact, when k is large, the efficiency of the algorithm actually 

increases. 

Essentially, the algorithm is the same as before, but the random walk terminates 

either when there is an underflow, or when a valid result set is returned (say k’ ≤ k 

tuples). One can see that in the latter case the termination is at least log(k’) levels higher. 

Once these k’ tuples are returned, the algorithm picks one of the k’ tuples with probability 

1/k’. I.e., the access probability of the tuple that gets picked is therefore 

1)(2'

1
)(

−
=

tdk
ts   

Then, the tuple is accepted with probability a(t) where }1,2'min{)( 1)( −= tdCkta where C is a 

scale factor that boosts the selection probabilities to make the algorithm efficient. 
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4.2 Categorical Databases 

We define a categorical database to be one where each attribute Ai can take one 

of several values from a multi-valued categorical domain Domi. Many real-world 

databases have categorical attributes, and most front end interfaces reveal the domains of 

each attribute – usually via drop down lists in query forms. Most of the algorithmic ideas 

remain the same as for the Boolean database, the only difference being that the fan out at 

a node at the ith level of the tree is equal to the size of Domi. The random walk selects 

one of the |Domi| edges at random. The access probability for tuple t is therefore defined 

as  

∏
≤≤
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tdi
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The rest of the extensions to the algorithm are straightforward. However, a crucial 

point is worth discussing here. If the domain sizes of the attributes are more or less the 

same, then the random ordering of attributes plays an important role in reducing skew. 

However, if there is large variance among the domain sizes – e.g., in a restaurants 

database for a city, there may be attributes with large domains such as “zipcode”, along 

with a attributes with small domains such as “cuisine” – the fixed order of sorting the 

attributes from smallest to largest domains produces smaller skew compared to random 

orderings. This is because most of the small domain values have numerous representative 

tuples, and hence for this fixed order most of the walks proceed almost to the bottom of 

the tree before the walk can uniquely identify a tuple. Hence the variation in depth is 

small. In contrast, if a large domain attribute such as zipcode appears near the top of the 
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tree in a random order, the walk will quite early encounter subtrees that contain few 

tuples. Thus some of the walks will terminate much faster and the depths will have more 

variance. Likewise, the inverse argument says that ordering the attributes from largest to 

smallest domains will be more efficient but will produce larger skew. In our experiments 

(Chapter 6) we include some results involving real-world categorical databases. 

4.3 Numerical Databases 

Real-world databases often have numerical attributes. Most query interfaces 

reveal the domain of such attributes and allow users to specify numeric ranges that they 

desire (e.g., a “Price” column in a homes database may restrict users to specifying price 

ranges between $0 and $1M).  

If we can partition each numeric domain into suitable discrete ranges, our random 

sampler can work for such databases by treating each discrete range as a categorical 

value. However, there is a subtle problem that must be overcome: the discretization 

should be such that that each tuple in the database is unique in the resulting categorical 

version of the database. If the discretization is too coarse such that more than k tuples 

have identical representations in the categorical version, then we cannot guarantee a 

random sample because some of these tuples may be permanently hidden from users by 

an adversarial interface.   

An alternate approach is to not discretize numeric columns in advance, but to 

repeatedly keep narrowing the specified range in the query during the random walk. We 

make this more precise as follows. For simplicity, consider a one-column database that 

has just one numeric attribute, A. We can divide the domain of A into two halves, 
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randomly select one of the halves, and pose a query using this range. If there is an 

overflow, we can further divide this range into two, and select one at random to query 

again. This way we will eventually find a valid tuple. This approach can be easily 

extended to a multiple numeric attributes as follows. While the walk is progressing, a 

random attribute is selected, including attributes already selected earlier.  If we select an 

attribute selected earlier, then we split its most recent queried range into two and pick one 

of the halves at random to query. 

This approach has the following drawback. Note that if the numeric data 

distribution is spatially skewed (e.g, for a numeric attribute with domain [0, 1], the value 

of one tuple may be 0, and the values of the remaining n-1 tuples may be 1, 1- ε, 1 – 2ε 

…), then the first tuple will be selected for the sample with much higher probability than 

the remaining tuples. One way of compensating for this effect is to dynamically partition 

the most recent queried range into several ranges instead of just two halves, and then pick 

one of the ranges at random. In general, an interesting open problem is how many queries 

in this query model are needed to obtain an approximation to the probability density 

function of a real-valued attribute. 

4.4 Interfaces that Return Result Counts 

Some query interfaces return to the user the top-k results, and in addition the total 

count of all tuples that satisfy the query condition, |Sel(Q)|. E.g., most web search engines 

will return the top-k web pages, but also the size of the result set. We show how random 

sampling via such an interface can be done optimally without introducing skew. For 

simplicity, assume a Boolean database. Assume any ordering of the attributes. For each 
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node u of the tree, let n(u) represent the number of leaves in the sub-tree rooted at u that 

correspond to actual tuples. In this scenario, a weighted random walk can be performed 

which is guaranteed to reach an actual leaf tuples on every attempt. Starting from the 

root, and at every node u, we select either the left or right branch with probability 

n(left(u))/n(u) and n(right(u))/n(u) respectively. These cardinalities can be retrieved by 

making appropriate queries via front end interface, At every node, edges are given 

weights to represent the density of their underlying subtree. Moreover, n(left(u))/n(u)  +  

n(right(x))/n(x) = 1. It is thus not hard to see that the selection probability of each tuple is 

1/n, thus guaranteeing no skew. 

4.5 Interfaces that only Allow “Positive” Values to be Specified 

Some web query interfaces only allow the user to select “positive” Boolean 

values. For example, a database of homes typically has a set of Boolean attributes such as 

“Swimming Pool”, “3-Car Garage” and so on, and the user can only select a subset of 

these features to query. Thus, there is no way a user can request for houses that do not 

have swimming pools be retrieved. 

While such interfaces are quite common, it is not always possible to collect a 

uniform random sample from such databases. Consider a tuple t1 that “dominates” 

another tuple t2, in the sense that for attributes that have value 1 in t2, the corresponding 

attributes in t1 are also 1. If k=1, then t2 can be permanently hidden from the user by an 

adversarial interface that always prefers to return t1 instead of t2. The only way to solve 

this problem is to assume that no tuple dominates more than k other tuples. 
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CHAPTER 5 

RELATED WORK 

Traditionally database sampling has been used to reduce the cost of retrieving 

data from a DBMS. Random sampling mechanisms have been studied in great detail e.g., 

[4, 8, 14, 15 and 17]. Applications of random sampling include estimation methodologies 

for histograms and approximate query processing using techniques (see tutorial in [6]).  

However, these techniques do not apply to a scenario where there is an absence of 

direct access to the underlying database. A closely related area of sampling from a search 

engines index using a public interface has been addressed in [2] and more recently [1]. 

The technique proposed by [1], introduces the concept of a random walk on the 

documents on the World Wide Web using the top-k results from a search engine. 

However, this document based model is not directly applicable to hidden databases. In 

contrast to the database scenario, the document space is not available as a direct input in 

the web model. This leads to the use of estimation techniques which work on 

assumptions of uniformity of common words across documents. Random sampling 

techniques on graphs have been implemented using Markov Chain Monte Carlo 

techniques, e.g., Metropolis Hastings [12, 7] techniques and Acceptance/Rejection 

technique [13].  

Hidden databases represent a major part of the World Wide Web and are 

commonly referred to as the hidden web. The size and nature of the hidden web has been 
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addressed in [5], [9], [10] and [11]. Probing and classification techniques on textual 

hidden models have been addressed by [3] while techniques on crawling the hidden web 

were studied by [16].  
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CHAPTER 6 

EXPERIMENTATION AND RESULTS 

In this chapter we describe our experimental setup, our results using the 

HIDDEN-DB-SAMPLER, and draw conclusions on the quality and performance of our 

technique. The results from a related model proposed by Bar-Yossef et. al. [1] for 

sampling web pages are also compared with our approach.  

Hardware All experiments were run on a machine having 1.8 Ghz P4 processor 

with 1.5 GB RAM running Fedora Core 3. All our algorithms were implemented using 

C++ and Perl. 

Implementation and Setup We ran our algorithm on two major groups of 

databases. The first group comprised of a set of small Boolean datasets with 500 tuples 

and 15 attributes each. (Small datasets makes it relatively easy to measure skew, because 

we can run the sampler millions of times, and measure the frequencies with which each 

tuple gets selected.) Several such datasets with varying proportions of 1 and 0 were 

synthetically generated. We defined p as the ratio of 1’s in a Boolean set. For brevity, we 

have focused on i.i.d. data with p=0.5 and p=0.3 in addition to a mixed dataset with 

varying proportions of 1’s (p=0.5, 0.3 and 0.2) combined vertically and horizontally with 

varied proportions. 
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A real dataset of 500 tuples manufactured using real data crawled from the Yahoo 

Autos website was also used. This was used to demonstrate the effectiveness of our 

methods for non-i.i.d. (i.e., correlated) data.  

The other group comprised of large datasets of sizes between 300,000 to 500,000 

each. These datasets were primarily used for performance experiments. Some of them 

were synthetically generated in a similar manner, with the exception of a real world 

dataset on restaurants information collected from www.yellowpages.com. The real 

dataset consisted of information on various restaurants with 10 attributes like price, 

cuisine, distance, ratings, etc having varying number of possible values (largest=25, 

smallest=5). All numerical attributes were grouped into finite ranges and categorized. To 

speed up execution, we simulated the interface and database retrieval by storing the data 

in main memory. The interface was used to look up top-k matches to a specific query. 

Different top-k values were also used to measure the change in performance. All 

execution and retrieval were done from main memory. These datasets with their 

associated interfaces were used to run experiments on the quality and performance of our 

technique.  

Parameters We had defined skew as the standard deviation over the selection 

probabilities in Chapter 2.1. In all the experimental results described below, we actually 

discuss relative skew, which is skew times the size of the dataset. As discussed above, 

this measure is easily verifiable for small datasets. Unfortunately, it is not practical to 

measure skew for large datasets, because that would require running the sampler many 

times more than the size of the large datasets. Thus, for large datasets, we define a new 
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variant of skew where we compared the marginal frequencies of a few selected attribute 

values in the original dataset and in the sample:  

Marginal Skew
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Here V is a set of values with each attribute contributing a representative value, 

and pS(v) (resp. pD(v)) is the relative frequency of value v in the sample (resp. dataset). 

The intuition is that if the sample is a true uniform random sample, then the relative 

frequencies of any value will be the same as in the original dataset. Quality 

measurements for a small number of samples generated from a large dataset were done 

using this measure. Efficiency (or performance) was measured by counting the number of 

queries that were executed by the sample to reach a certain desired sample size. 

6.1 Quality of the samples 

6.1.1 Small Databases 

The HIDDEN-DB-SAMPLER was first run on the small datasets to generate a 

very large number of samples (around 300,000 samples were collected from the 500 tuple 

datasets). Two types of experiments were run here. First, we considered fixed ordering of 

the attributes in our datasets. We tried out several fixed orderings. Next, a random 

ordering was used for selecting attributes at every level in the walk. Next the idea of 

acceptance/rejection sampling was introduced. We begin by using the best value of the 

path that corresponds to the longest walk on the query space to accept tuples. Since a 

very large number walk are run for a small dataset, we could find the depth of the longest 
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walk. The scaling factor C was then introduced. C was varied starting from the value 

corresponding to the longest walk and then progressively increased till we reached a 

point where the impact of C became ineffective and all tuples that were reached by the 

walks were getting accepted.  
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Figure 6.1: Effect of Scaling Constant C on Skew for small datasets 

 

Figure 6.1 shows the results of these experiments. We observed that the random 

ordering of attributes does much better than any of the fixed orderings that we tried. This 

corroborates our previous analysis on the effectiveness of random ordering to improve 

quality. Moreover, for all cases as C was increased the value of skew got larger. This 

indicates the tradeoff in terms of skew while estimating C. Finally, the algorithm 

produced smaller skew in the case of p=0.5 compared to the dataset with p=0.3. (The 

theoretical skew for p=0.5 should be zero, but the non-zero skew that was observed was 
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an artifact of the sampling process). Figures 6.2 and 6.3 shows similar behavior for mixed 

data and correlated data. 
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Figure 6.2: Effect of Scaling Constant C on Skew for Mixed Data 
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Figure 6.3: Effect of C on skew for Correlated data 
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6.1.2 Large Databases 

We ran our experiments on synthetic large databases. In this scenario we limited 

our random walks to collect 5000 samples. Marginal Skew was used to measure quality. 

Marginal frequencies over all the “1” values of the attributes were collected in both the 

sample as well as the dataset. Figure 6.4 (p=0.3) represents the change in marginal skew 

for various values of the scaling constant C, for random ordering and a specific fixed 

ordering. As C increases, the marginal skew increases for both fixed and randomly 

ordered attributes with random ordering producing better results compared to any fixed 

ordering that we tried. We observe a similar trend as in small datasets. In contrast to these 

Boolean scenarios, the quality results from our experiments on the real world categorical 

database indicate lower marginal skews for the fixed order of attributes from (smallest 

domains to largest domains).  
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Figure 6.4: Marginal Skew v/s C for synthetic large data 
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Quality Measure over Real Large Database
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Figure 6.5:  Marginal Skew based measure for real large data 

 

In the categorical scenario, most of the attributes have small domains, and only 

very few have large domains. Thus, most of the walks proceed almost to the bottom of 

the tree since most of the small domain values have numerous representative tuples. 

6.2 Performance of the Methods 

6.2.1 Small Databases 

We measure performance as the amount of work done, i.e.,  with the number of 

queries compared with the number of samples retrieved. This metric is used over all our 

performance experiments. Figure 6.6 indicates the queries versus sample size tradeoffs 

for a small mixed dataset. This experiment shows that the performance of fixed ordering 

is dependent on the specific ordering used (sometimes it performs better and sometimes 

worse w.r.t. random ordering).   
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Figure 6.7 indicates the increase in efficiency of our random order random walks 

when k in top-k is increased from a restrictive top-1 scenario. By increasing k we allow 

the random walks to terminate at a comparatively higher level in the query tree. Thus, 

performance improves as k is increased. 

6.2.2 Large Databases 

Figure 6.8 shows the number of queries v/s sample size for a 500,000 tuple 

database with p=0.3. As with the small datasets the performance of fixed order depends 

on the specific order used and was often worse than randomly ordered attributes. The 

situation for our categorical large dataset is however different (Figure 6.9). Performance 

is optimal for a fixed ordering of attributes in this scenario where the attributes with the 

largest domains are placed before the smaller ones. If the variance of attribute states is 

high as is in our case, the very first step of the random walk may reach sub-trees that 

contain very few tuples, and thus some of the walks will terminate much faster compared 

to other orders. Thus, when the variance in attribute states is high this type of an 

arrangement yields better performance. 
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Performance (Number of Queries required for varying sample size
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Figure 6.6: Performance of HIDDEN-DB-SAMPLER for a top-1 query interface 
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Figure 6.7: Effect of varying (top-) k on performance 
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Performance for Synthetic dataset
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Figure 6.8: Performance for synthetic dataset with p=0.3 

Performance for Real Dataset
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Figure 6.9: Performance on real large dataset with differing orders 
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Performance V/S Quality  

Figure 6.10 depicts a comparative view of skew versus number of queries for 

various values of C. The best performance and quality yield is when C is estimated 

without any error. As the estimation of C looses its accuracy, performance and quality 

goes down. 
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Figure 6.10:  Performance versus Quality measure 

 

HIDDEN-DB-SAMPLER versus Metropolis-Hastings Sampler  

A comparative scenario between the HIDDEN-DB-SAMPLER and a competitor 

suggested by [1] for sampling the index of search engines using Metropolis Hastings 

technique was evaluated (Figure 6.11). We implemented this technique on a small mixed 

Boolean dataset with a top-50 interface. A burn in period of 10 hops was used. The 

Random Walk based sampler suffered from an inherent skew in that it estimates a 
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rejection sampling phase on the basis of the number of queries that it can form of a single 

document (our equivalent to a tuple). However, this approach does not work well for the 

hidden database model since unlike the document model; the space of queries does not 

differ for individual tuples in the database.  
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Figure 6.11: Quality Comparisons 
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CHAPTER 7 

CONCLUSION 

In this thesis we have initiated an investigation of the problem of random 

sampling of hidden databases on the web. We propose random walk schemes over the 

query space provided by the interface to sample such databases. We gave simple methods 

for the sampling and provided some theoretical analysis of the quantitative impact of the 

ideas on improving efficiency and quality of the resultant samples. We also described a 

comprehensive set of experiments that demonstrate the effectiveness of our sampling 

approach. 
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