
 

 

 

AUTOMATIC DISCOVERY OF SIGNIFICANT EVENTS FROM DATABASES 

By 

 

AVINASH SHANKAR BHARADWAJ 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

DECEMBER 2011 



 

 

Copyright © AVINASH SHANKAR BHARADWAJ 2011 

 

All rights reserved 



iii 

 

 

ACKNOWLEDGEMENTS 

 

It is always a pleasure to thank those people without whom it would have been impossible to 

complete my thesis. First and foremost, I would like to express my deepest gratitude to my thesis 

supervisor Dr. Chengkai Li for supporting me and guiding me throughout my research work. Without 

his constant help and advice it wouldn’t be possible for me to finish my thesis.  

I would also like to thank my committee members Dr. Fegaras and Dr. Elmasri for being on my 

panel and giving me advice related to my thesis work. 

I cannot end without thanking my parents, on whose constant support and encouragement I 

have relied on throughout my time at the University of Texas at Arlington and also the constructive 

advice received for the completion of my thesis. 

I would like to greatly appreciate the help of my friends here in Arlington who has always been 

providing me their helping hands whenever I need it. 

 

 

August 7, 2011 

  



 iv  

 

 

ABSTRACT 

AUTOMATIC DISCOVERY OF SIGNIFICANT EVENTS FROM DATABASES 

Avinash Shankar Bharadwaj, M.S. 

The University of Texas at Arlington, 2011 

 

Supervising Professor: Dr. Chengkai Li 

 The advent of the internet has caused enormous amounts of data available online causing 

many significant facts to be hidden within this data. Searching for a significant fact within these large 

datasets is a query intensive process involving large amounts of queries which needs to be executed 

hence slowing the process of finding the significant facts from a large dataset. In this thesis, a novel 

approach has been designed exploiting the statistical characteristics of the data present in the 

dataset to reduce the number of queries on the dataset. A two phased approach is considered for 

making fact finding more efficient. The approach consists of design and implementation of the 

prediction and the decision making algorithm. The prediction algorithm predicts the time frame for a 

significant event to happen and the decision algorithm uses the results from the prediction algorithm 

to decide whether to check for a significant event or not. We compare our results obtained after the 

implementation of the designed algorithms and found that queries are executed lesser number of 

times compared to the other existing solutions to this problem.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Significant fact finding is the process of finding important facts from a large dataset.  If we 

consider the sporting league NBA, then the significant facts are answers to questions such as (1) 

Who are the top-100 scorers’? (2) Who have made the most number of assists?  (3) Who are top 

hundred three pointer scorers?  

It is the job of sports journalists all over the world to follow different sports and provide information 

to the fans of the sports whenever a particular player achieves a milestone. Consider basketball; 

people all over the world want to know when their favorite players achieve milestones. A player 

entering the list of top-100 scorers’ or entering the list of top-100 three pointer scores’ are some 

examples of the milestones. If a player becomes one of the top-100 scorers’ in NBA history, then the 

story is worth reporting. There are many such significant events mentioned in real world news 

articles. Below is a list of such excerpts from several different news articles. Each excerpt shows how 

a significant event can be reported as news. 

• “Lebron James became only the second ever player to record a triple double in the All Star 

game, Michael Jordan being the only previous player to manage that feat.” 

• “Bryant had put up 21 points by half time. He was halfway to Wilt Chamberlain's record of 42 

from 1962. Intriguingly, Wilt's 42 were 9 points below his average for that season which tells 

you the kind of year that was.” 

• “Boston Celtics guard Ray Allen matched and eclipsed Reggie Miller's NBA record of 2,560 

career 3-pointers Thursday night against the Los Angeles Lakers.” 
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If a player achieves a milestone, then the achievement is reported by a journalist. However, the 

entire process can be automated using data mining technologies. 

1.2 Challenges in finding significant events 

This section discusses the various problems associated with solving the problem of significant 

fact finding. 

Views are extensively used to find significant facts. If the significant event is a player entering the 

list of top-100 scorers’ in NBA history, then the view will contain the top-100 players’ by total career 

points. If a player scores 20 points in a particular game, then total score of the player changes. Thus, 

the list of top-100 scorers’ may need to be updated. The straightforward method to update the view is 

to recalculate the view whenever there is an update on the data present in the database. The view 

can be recalculated by using a trigger. This method can be named as the absolute method. 

Consider an example where there are 250,000 records in the database. Each record contains 

various parameters recorded for a player per game. After each game is played, new records 

representing the performance of players in that game would be inserted into the database. Following 

the absolute method, the view must be recalculated after each new record is inserted. If there are 

200,000 records that have to be inserted into the database, then the view needs to be re-calculated 

200,000 times. This makes the usage of the absolute method for maintaining views query-intensive 

and inefficient.  

1.3 Designed Approach 

To overcome the drawback of the absolute method, a new approach is designed where the views 

are updated selectively. 

The designed approach predicts when the views have to be recalculated in order to find a 

significant event. Certain statistical parameters present in the data are used to predict when the views 

have to be recalculated. Consider that Kobe Bryant is currently not in the list of top-100 scorers. From 

the existing data, we can predict the number of games needed for Kobe Bryant to enter top-100 
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scorers list. If Kobe Bryant needs ten games to become one of the top-100 scorers, then the view is 

recalculated only after Kobe Bryant plays ten games. 

To achieve the aforementioned goal, a two-phased approach is taken. The two phases are the 

prediction phase and the decision phase, respectively.  

The prediction phase uses the statistics of certain attributes like points, total assist and total three 

pointers scored to predict when a particular view has to be updated. Along with the statistical data, 

the concept of prediction interval is also used. The prediction interval determines the range of values 

in which future observations will fall with a certain probability, given existing observations. Once the 

prediction interval is obtained, the minimum number of points that a player has to score to reach a 

milestone is calculated. Using the number of points that a player has to score, and the minima of the 

prediction interval, the number of matches can be calculated by dividing the minimum number of 

matches required with the minima of the prediction interval. 

Consider that Kobe Bryant has played 25 games previously. The average and the standard 

deviation of the points scored by Kobe Bryant in the 25 games are calculated. Using the average 

points and the standard deviation, the prediction interval can be calculated for Kobe Bryant with a 

certain probability. If the prediction interval for Kobe Bryant is 15 to 25 points, then it means Kobe 

Bryant will score between 15 to 25 points in the next match with a certain probability. After calculating 

the prediction interval, the number of points needed for Kobe Bryant to reach top-100 scorers is 

calculated. If Kobe Bryant has a score of 6000 points, and the player at the 100
th
 position in the top-

100 list has a score of 6149, then Kobe Bryant needs to score at least 150 points to get to the top-100 

scorers list. If Kobe Bryant scores 25 points in every match, then he needs at least 6 more matches to 

become one of the top-100 scorers. 

The decision algorithm maintains a counter for number of games a particular player has played. 

By comparing the counter against the results of the prediction algorithm, the decision algorithm 

determines whether to recalculate the view or not. If the number of games played by the player is 

equal to the number of games required to reach a milestone, then the view is recalculated. 
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In the previous example it is mentioned that Kobe Bryant would need six games to reach the 

milestone of top-100 players. So whenever Kobe Bryant plays a game, the decision algorithm 

increments the counter associated with the player by one. If Kobe Bryant plays six games, then the 

counter is incremented six times. Once the counter is incremented six times the prediction value and 

the counter are equal. Hence, the view is recalculated. 

Unlike the absolute method this method is designed to recalculate the view selectively. Hence, it 

reduces the number of times the view is recalculated. 

1.4 Overview of experiments 

A set of experiments need to be conducted to verify the approach. We performed different 

experiments to compare our results against that of the absolute method. In the experiments, certain 

parameters are varied to measure the difference in performance.  

The standard score determines the accuracy of the prediction algorithm. The accuracy value for 

the standard score of 2.58 is 99%. We also compare the difference between the game at which the 

designed algorithm captured the significant event, and the game at which the significant event was 

actually generated. If an event was generated at say game 342, then the event was detected only at 

game 345 then the difference between the numbers of games is 3.    

From the results obtained by the above mentioned experiments, it can be verified that the 

approach designed recalculates the view about 10% of the time. This is in comparison with the 

absolute approach. The average difference between the games when the significant event is 

captured, and the significant event is actually generated is 3, if the accuracy of the prediction 

algorithm 99%.  

Thus, this method for finding significant events can prove to be an efficient approach when 

compared to the absolute method which recalculates the view whenever there is an update on the 

database and without a large difference between when the significant event was actually generated 

and is actually detected. 
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CHAPTER 2 

RELATED WORK 

2.1 View Maintenance Problem 

 
A view in a database contains the results of a query on a database table. Thus, any change to the 

data in the table will cause the view to change. 

The view update problem can be stated as follows. Consider a database ‘T’, a view definition ‘A’, 

and an update operation ‘U’. The view can be defined as A(T). When there is the operation ‘U’ on T, 

the changes in ‘T’ have to be propagated to the view A(T). The update operation ‘U’ can be an insert, 

delete, or an update operation. 

Ashish Gupta et al. 
[14]
 describe the counting algorithm and the Delete and Re-derive algorithm 

(DRed) 
[14] 

for efficiently maintaining the views. However, these algorithms can be used only when 

there is a delete operation on the data. 

The counting algorithm counts the number of multiple derivations for a tuple in the view. 

Whenever a record in the database is deleted, the associated count value of the tuple is 

decremented. If the count value for a particular tuple becomes zero, then the tuple is deleted. 

In the DRed algorithm if a record in the master data is deleted, then all the tuples in the view 

related to that record are deleted. Once the tuples in the view are deleted, alternative derivations for 

each deleted tuple are found. If the tuple can be re-derived, then it is reinserted into the view.  

Jose. A. Blakely et al. 
[13]
 describe a differential update algorithm. The differential update 

algorithm detects whether the insert operation causes the view to change or not. The algorithm works 

by comparing the each insert operation against a set of rules, which determine whether the operation, 

causes the view to change or not. 
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Eric N. Hanson et al. 
[15]
 describe two strategies, the immediate update strategy and the deferred 

view update strategy. In the immediate update strategy, the view is updated as soon as there is an 

update to the database. However, in the deferred view update the view is updated incrementally just 

before the data is retrieved from the view. Eric N. Hanson et al. 
[15] 

has found that the deferred view 

update strategy has a lesser cost, than the immediate update strategy. 

All the above mentioned strategies recalculate the view entirely, when there is an update. 

However in some conditions, the contents of the materialized view can be directly updated without 

accessing the base data. This strategy can be explained using the following example. 

Consider that a player within the top-100 scorers’ plays a match. The top-100 scorers’ view can 

be updated by adding the player’s new score, to the total score of the player. This update can be 

performed without accessing the database table. According to F. W. Tompa  et al. 
[17]
 views where the 

contents can be updated without accessing the base data are called as “conditionally autonomously 

computable” 
[17] 

views. 

The Oracle database system provides various update strategies, which allow the materialized 

views to be maintained accurately. Some of the major update strategies provided in Oracle are as 

follows. 

• Unconditional refresh 

• Fast refresh 

• Selective manual refresh 

2.1.1 Unconditional refresh 
[12]
 

In the unconditional refresh, the contents of the view are unconditionally refreshed whenever the 

data changes. An unconditional refresh does a “complete refresh” of the materialized view. A 

complete refresh recalculates the materialized view using the view’s defining query. To recalculate 

the view, the contents of the database have to be read. If the size of the data present in the table is 

large, then the time taken to recalculate the view would be large. 
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The method of unconditional refresh is used when the materialized view does not satisfy the 

necessary conditions for either a fast refresh, or a selective manual refresh. 

2.1.2 Fast Refresh 
[12] 

The concept of fast refresh is based on the theory of “conditionally autonomously computable” 
[17]
 

views. In the fast refresh approach, the changes can be directly added to the existing data in the 

view. Thus, the fast refresh approach results in a fast refresh time. The time taken to perform a fast 

refresh is determined by the following factors. 

• Whether the data in the materialized view container table are clustered by a time attribute.  

• Whether a concatenated index is available on the materialized view keys. 

  

These factors can be addressed by “partitioning the materialized view container by time, like the 

fact tables, and by creating a local concatenated index on the materialized view keys” 
[12]
. 

A fast refresh can be conducted on the materialized views in most of the cases. However some of 

the exceptional cases in which a fast refresh cannot be performed on the materialized view are listed. 

• “When there is more than one table in an aggregated materialized view, and when any DML 

on the fact tables, other than a direct load has occurred since the last full refresh was 

performed”.  

• When the materialized view contains detail relations that are views or snapshots.  

• When the materialized view contains AVG(x) without COUNT(x).  

• When the materialized view contains VARIANCE(x) without COUNT(x) and SUM(x).  

• When the materialized view contains STDDEV(x) without COUNT(x) and SUM(x).” 
[12]
 

2.1.3 Selective Manual Refresh 
[12] 

The on demand refresh or the manual refresh allows the user to decide when to recalculate the 

views. In a manual refresh scenario, the fast refresh technique cannot be used and a complete 
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refresh has to be performed on the view. However, since the view is selectively refreshed this method 

can be more efficient when compared to the unconditional and the fast refresh strategies.  

If a database contains more than one materialized view, then there are two different approaches 

for a selective manual refresh. All the views in the database can be refreshed or a selected set of 

views can be refreshed.  

2.2 Triggers 
[10]
 

The SQL trigger provides a way for the users of the database to actively manage a set of views. 

Whenever there is an insert, update or a delete operation on the data triggers can be used to manage 

the views. The statements defined within the trigger are invoked automatically whenever there is a 

SQL insert, update or delete operation is performed. The SQL triggers can use stored procedures to 

perform additional processing when the trigger is executed. 

The SQL trigger cannot be directly called by an external application. The definition of the SQL 

trigger is stored within the database management system. One of the main applications of triggers is 

to maintain derived data.  

2.3 Computational Journalism 
[11]
 

Computational journalism is the study of how computational concepts can be used for journalism. 

Various concepts of journalism can be benefited from the use of computational concepts. Some of the 

fields of journalism that can benefit from the concepts of computational concepts are newsgathering, 

investigative journalism, verification/fact finding, authoring/printing/publication/broadcasting of news, 

sharing and distribution of news stories, editing and commenting on news, etc.  

“The goal in this field of Computational Journalism is to study the overlapping interests between 

computation and journalism to define how both of these can help with information gathering and 

dissemination for and by citizens to achieve an engaged and more actively participating citizenry”. 
[11]
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Since the concepts of journalism like fact finding and investigative journalism involves processing 

huge amounts of data, the concepts of data mining can be effectively can be used in fact finding and 

investigative journalism. 

In this thesis we are exploring the possibility of using data mining concepts to solve some of the 

problems associated with fact finding. 
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CHAPTER 3 

PROBLEM SPECIFICATION 
 

This chapter provides the definition for the view update problem and the data model. A brief 

description of the designed approach which is used to solve the view update problem is provided.   

3.1 Data model 

The views used are materialized and represent multiple significant facts. They are collated from 

the data present in the different database tables. These views can be generated using a general SQL 

expression as shown in the following figure. 

 

 

 

The database consists of a master table and multiple views defined on the master table. The 

schema for the master table is < ��, �1, �2, … . �
 >, where the field �� is used for identification of 

subjects like NBA players. The fields �� … . . �
	reflect the different parameters recorded within the 

database. Each view � in the database contains the data derived from �.	 

Consider the example where a view for the top-100 scorers has to be obtained. This can be 

obtained by using the following query on the master table.  

 

 

 

������	(�����. ��,			���_��
 ��!
	(�����. �"##	
$�%&'	()	��	
%�*��	()	���_��
 ��!
(�����. �"#	

�+,+�	-	

 

Figure 3.1 - General SQL expression 
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SELECT player_id, sum (points) 
AS total_points 
FROM player_stats 
GROUP BY player_id 
ORDER BY total_points DESC 
LIMIT 100 

 

The data in the table 3.2 acts as the master table, which contains the game data for each player. 

The view for the top-100 scorers is shown in table 3.1, which is obtained by executing query in Figure 

3.2 on the table 3.2. The table 3.2 contains just two unique players. Hence, the view contains just two 

players and their total score arranged in ascending order. The view is illustrated in table 3.1. 

 

Figure 3.2 - Example Query to obtain top - 100 scorers 

player_id Sum(Points)

WESTMA01 158

KITEGR01 87

Table 3.1 - Illustration of View  
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player_id game_year game_dateopposition Points

WESTMA01 1983 Dec. 12  SEA 8

WESTMA01 1983 Dec. 14  POR 1

WESTMA01 1983 Dec. 16  IND 3

WESTMA01 1983 Dec. 17  LAC 2

WESTMA01 1983 Dec. 19  LAL 9

WESTMA01 1983 Dec. 21  HOU 2

WESTMA01 1983 Dec. 23  GSW 12

WESTMA01 1983 Dec. 26  BOS 1

WESTMA01 1983 Dec. 27  ATL 9

KITEGR01 1983 Dec. 29  NYK 8

WESTMA01 1983 Dec. 29  DAL 3

WESTMA01 1983 Dec. 30  LAL 2

KITEGR01 1983 Dec. 31  WA1 10

KITEGR01 1983 Feb. 1  SAC 0

WESTMA01 1983 Feb. 10  NYK 14

WESTMA01 1983 Feb. 11  DEN 2

KITEGR01 1983 Feb. 13  HOU 4

WESTMA01 1983 Feb. 17  ORL 8

KITEGR01 1983 Feb. 19  MIA 3

KITEGR01 1983 Feb. 2  GSW 4

WESTMA01 1983 Feb. 2  DAL 9

KITEGR01 1983 Feb. 20  DET 2

KITEGR01 1983 Feb. 22  SAS 2

KITEGR01 1983 Feb. 24  NJN 4

KITEGR01 1983 Feb. 26  DEN 4

KITEGR01 1983 Feb. 27  POR 7

KITEGR01 1983 Feb. 4  LAC 0

WESTMA01 1983 Feb. 4  DET 4

KITEGR01 1983 Feb. 6  BOS 4

WESTMA01 1983 Feb. 7  ATL 13

KITEGR01 1983 Feb. 8  MIL 1

WESTMA01 1983 Feb. 8  CHA 4

WESTMA01 1983 Jan. 10  CHA 6

KITEGR01 1983 Jan. 11  PHI 4

KITEGR01 1983 Jan. 12  NJN 2

WESTMA01 1983 Jan. 13  UTA 0

WESTMA01 1983 Jan. 15  PHO 4

KITEGR01 1983 Jan. 15  UTA 3

KITEGR01 1983 Jan. 16  SAC 5

WESTMA01 1983 Jan. 16  IND 5

WESTMA01 1983 Jan. 18  ORL 0

KITEGR01 1983 Jan. 19  LAL 2

WESTMA01 1983 Jan. 2  DEN 13

WESTMA01 1983 Jan. 20  MIA 6

KITEGR01 1983 Jan. 21  BOS 11

WESTMA01 1983 Jan. 23  DET 6

KITEGR01 1983 Jan. 23  CLE 7

WESTMA01 1983 Jan. 24  SAS 8

KITEGR01 1983 Jan. 25  MIA 0

WESTMA01 1983 Jan. 26  DEN 4

Table 3.2 - Illustration of Master table  
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3.2 Framework of the view update procedure 

The previous section describes how a view can be generated from the data present in the 

database. If the data in the master table is updated, then the views also have to be updated. This 

section gives the formal definition for the view update problem. 

If a new tuple t/0� is inserted into the set �, then the corresponding view � changes. The problem 

of maintaining the data within view � accurate, when the data in � changes is called as the view 

update problem.  

If the records in the table 3.3 are added to the records present in the table 3.2, then the data in 

the view shown in table 3.1 changes. Thus, the view needs to be recalculated. The view is 

recalculated by executing the same query which created the view. Once the view is recalculated, the 

changes will be reflected in the view as shown in table 3.4.  

Table 3.3 - Illustrating view update showing records added to the database  

 

 

 

 

 

 

 

 

GRIFFAD01 2001 Jan. 1  SAS 0

AMAECJO01 2001 Jan. 1  SAS 0

WEATHCL01 2001 Jan. 1  PHI 4

ARMSTDA01 2001 Jan. 1  GSW 5

HAMILZE01 2001 Jan. 1  MIN 7

OVERTDO01 2001 Jan. 1  PHO 3

FISHEDE01 2001 Jan. 1  CHA 7

LARUERU01 2001 Jan. 1  TOR 7

GATLICH01 2001 Jan. 1  PHI 13

MURRALA01 2001 Jan. 1  SAS 22
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Table 3.4 - Illustrating view update showing updated view 

 

There are many different strategies which can be used to update the view. Each update strategy 

updates the view at different instances of time. A naïve approach for updating the view is the absolute 

approach. In the absolute approach, if the data in the database is updated, then the view is 

recalculated using a trigger. Thus, the number of queries executed to maintain the view accurate is 

equivalent to the number of times the database is updated.  

The number of times the view is updated can be considerably reduced if a selective update 

mechanism is used. In this thesis, an approach has been designed where the view is updated 

selectively based on the results of the prediction algorithm. Consider a set of tuples 

{�
0�,, �
02, �
03, ……… �4} have been inserted into	�. A set of prediction values which estimates, the 

time interval after which the view has to be updated. These prediction values are contained in the set 

'.	 When a record �"  is inserted into the set	�, the prediction value for the entity being inserted is 

checked to find out whether the view needs to be updated or not. If the prediction value is zero, then 

the view is recalculated. However, if the prediction value is not zero, then the prediction value is 

decremented by one.  

player_id Sum(Points)

WESTMA01 158

KITEGR01 87

MURRALA01 22

GATLICH01 13

HAMILZE01 7

FISHEDE01 7

LARUERU01 7

ARMSTDA01 5

WEATHCL01 4

OVERTDO01 3

GRIFFAD01 0

AMAECJO01 0
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The Table 3.5 contains the minimum number of games a player has to play before achieving a 

milestone. From the table 3.5 we can see that the player ‘WEATHCL01’ has to play 11 more games 

to reach the top-100 scorers list.  The Table 3.5 contains the count value after the data is inserted. 

Suppose say the player ‘GRIFFAD01’ plays a game and the data related to the game is entered into 

the database, then the prediction values for the player ‘GRIFFAD01’ is decremented by 1. The results 

of the operation are shown in the table 3.6. Suppose the player ‘WEATHCLO1’ has played 11 games, 

then the minimum number of matches required to reach the top-100 point scorers list becomes zero. 

Hence, the view top-100 scorers has to be recalculated. 

Table 3.5 - Prediction values before insert  

 

Table 3.6 - Prediction values after insert  

 

Selective update procedure provides an efficient way of maintaining the data in the view 

consistent. The number of queries executed to maintain the view efficient is lesser, when compared 

to the absolute approach. 

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 783 467 616

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 11 178 1767

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2061

ARMSTDA01 167 26 24

FISHEDE01 567 143 183

GATLICH01 7 941 1084

GRIFFAD01 782 466 615

LARUERU01 873 647 272

MURRALA01 37 371 24

OVERTDO01 619 203 433

WEATHCL01 11 177 1767
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3.3 Triggers 

A trigger is executed when the view needs to be recalculated. The trigger will contain the query 

which is used to generate the view. If the trigger is executed, then the query present within the trigger 

is executed causing the view to be recalculated. 

If ‘WEATHCLO1’ plays the 11 games necessary to reach the top-100 scorers’ view, then the view 

top-100 scorers has to be recalculated. The top-100 scorer’s view is recalculated by invoking a 

trigger. The invoked trigger contains a set of queries for recalculating the top-100 scorer’s view.  
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CHAPTER 4 

THE SOLUTION FRAMEWORK 
 

4.1 System architecture 

The solution to the selective update problem is provided using two different algorithms, the 

prediction algorithm and the decision algorithm, respectively. The entire system used for solving the 

problem is illustrated in the following figure.  

 

 

 

 

 

   

 

 

 

 

 

Figure 4.1 – System architecture 

 

 

The system consists of three different parts. 

• The database. 

• The algorithms. 

Prediction 

Algorithm 

Training 

Data 
Prediction 

Results 

Decision 

Algorithm 

Test Data 

Views 

Prediction 

Results 

Trigger 
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• The data maintained in the program memory. 

Each part is described as follows. 

4.1.1 The Database 

The database consists of the training data, test data and the views. The views are defined on the 

training data. After the completion of the prediction phase, the prediction results table is added to the 

database. 

 The dataset contains NBA data from the year 1991 to 2009. NBA data from the year 1991 to 

2000 is used as the training data. The data from the year 2001 to 2009 is used as the test data. The 

views in the database represent different significant events like top-100 scorers’, top-100 total assists’ 

and top-100 three pointer scorers’. These views are derived by executing SQL queries on the test 

data. The SQL queries are mentioned in the previous chapter. 

4.1.2 The Algorithms 

The prediction and the decision phases are implemented by the prediction and the decision 

algorithms, respectively. The prediction algorithm takes training data as input. Using the training data, 

the prediction algorithm computes the number of matches each player needs to reach a milestone. 

The concept of prediction interval is used by the prediction algorithm.  

The input for the decision algorithm, are the results from the prediction algorithm and the test 

data. The decision algorithm then inserts each record from the test data one by one. The predicted 

number of matches for each player is decremented, whenever a record pertaining to that player is 

inserted into the database. If the record being inserted is Kobe Bryant then the count maintained 

against Kobe Bryant is decremented. Once the predicted number of games becomes zero, the view 

needs to be recalculated. The view is recalculated by invoking the trigger. If the view is recalculated, 

then the prediction algorithm recalculates the prediction values. If Kobe Bryant plays the 10 games 

needed to reach the top-100 scorers’ list, then the value in the prediction results table would now be 

zero. Hence, the view is recalculated and the prediction value for Kobe Bryant is recalculated. All the 
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records, which include the new 10 records inserted are used to calculate the new prediction value for 

Kobe Bryant.  

Different scenarios are encountered by the decision algorithm during execution. In one such 

scenario, a player will not figure in the training data. This means that the prediction algorithm has not 

predicted the number of games required for that particular player to achieve a milestone. In this 

scenario the decision algorithm waits until the particular player plays a stipulated number of games 

before updating the prediction values for that particular player. If Dirk Nowitzki has not played any 

previous game but his record is encountered by the decision algorithm, then the decision algorithm 

waits until Dirk plays 50 games before computing the prediction values for Dirk Nowitzki. 

4.1.3 Data Present In Program Memory 

To enable faster access of data, certain amount of data has to be stored in the program memory. 

The test data and the prediction results are frequently accessed by the decision algorithm in this 

approach. Hence, they are maintained in the program memory to enable faster access to the data. 

The data maintained in the prediction results table also double as the counter. Hence, an additional 

counter to count the number of games a player has played is not required. 

If a particular player’s prediction results have to be updated, then the prediction results table 

needs to be searched for the player’s records. Thus, a linear search mechanism is used to find the 

player whose prediction values have to be updated. 
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CHAPTER 5 

ALGORITHM DESCRIPTION 
 

To achieve the aim of selectively updating the views two algorithms were needed. The prediction 

and the decision algorithms were developed to achieve the goal. This chapter provides the 

description on the working of the designed algorithms. 

5.1 Prediction algorithm 

The prediction algorithm follows the following steps in predicting the number of games needed by 

a particular player to reach a milestone. 

a. Predict the lower and upper limits of the prediction interval for a particular player. 

b. Find the number of points that a player has to score to reach a milestone. 

c. Find the number of games needed by the player to achieve the milestone is calculated. 

5.1.1 Predicting lower and upper limits of the prediction interval 

 
Prediction interval estimates the interval in which future values may fall with a certain probability, 

given the observed data. To use the concept of prediction interval the data is assumed to be in the 

form of a normal distribution. The first step in determining the prediction interval is obtaining the 

statistics of the data from the training data. 

The Table 5.1 shows the statistical parameters like mean and standard deviation values for 

different attributes like points, total assists made and total three pointers made. 
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Table 5.1 - Mean and standard deviation values 

 

Once the statistical data is obtained, then the lower limit and the upper limit of the prediction 

interval are obtained. The lower limit of a prediction interval determines lowest possible score that a 

player will obtain in the next match. The upper limit of prediction is the highest possible score that a 

player will obtain. Equation 1 shows the calculation of the lower and upper limits of prediction interval. 

Equation 1 

Lower	limit	of	prediction	interval	(L# = 		μ − σz 

Upper	limit	of	prediction	interval	(U# = 	μ + 	σz	 

In the above equation, μ is the mean, σ is the standard deviation of the parameter considered and 

z is the standard score. The standard score determines the probability with which the score will fall 

within prediction interval. If the standard score is set to 2.58, then the probability of the player scoring 

within the prediction interval in the next match is 99%. The table 5.2 shows the prediction interval and 

the associated standard score. 

Table 5.2 - Standard score values for different prediction intervals 

Prediction Interval Standard Score 

50% 0.67 

90% 1.64 

95% 1.96 

99% 2.58 

 

player_id avg(Points) avg(Total_Assists) avg(Three_Pointers_Made) stddev(Points) stddev(Total_Assists) Stddev(Three_Pointers_Made)

AMAECJO01 7.9141 0.9192 0.0202 6.4517 0.9231 0.2238

ARMSTDA01 12.1966 5.302 1.3077 7.2594 3.3282 1.3256

FISHEDE01 5.9906 3.0535 0.5912 5.2128 2.4675 0.9564

GATLICH01 10.6611 0.6779 0.0763 6.9527 0.8763 0.3179

GRIFFAD01 5.3923 1.7769 0.2154 4.787 1.8071 0.4801

LARUERU01 4.8493 1.274 0.5753 4.1303 1.5638 0.8588

MURRALA01 12.5736 1.4585 0.6755 7.1032 1.4404 0.8469

OVERTDO01 4.6896 2.09 0.2275 5.0147 2.297 0.5845

WEATHCL01 13.1614 1.6657 0.0231 6.7465 1.4566 0.2564
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The table 5.3 shows the lower and upper limit of prediction values, respectively for each player. 

The values are obtained by using the formulae in Equation 1. The standard score of 1.96 for 95% 

accuracy is used for this calculation. From the values in table 5.3, it can be inferred that ‘JORDAMI01’ 

will score between 13 to 47 points in the next game.  

Table 5.3 - Prediction interval values 

 

5.1.2 Finding the number of points that each player has to score to reach a milestone 

To find the number of games that particular player has to play to reach a milestone, the number 

of points that a player has to score to achieve a milestone has to be calculated. This can be done by 

using the prediction interval values and the data present in the view.  

Consider a player aspiring to enter the top-100 scorers list. The point difference between the 

lowest scorer in the top-100 scorers list and the points of the player has to be found. A milestone can 

also be achieved when a player within the top-100 scorers list changes rank position. If a player is 

already in the top-100 scorers list, then the point difference between the player ranked above him and 

the player in question is calculated. 

Player ID Min Interval Max Interval

JORDAMI01 13.0446 47.1976

IVERSAL01 7.009276 45.334724

MALONKA01 12.84104 39.25596

WADEDW01 7.89506 41.69134

CARTEVI01 7.29218 41.75682

ONEASH01 6.52042 41.39078

ROBINDA01 5.135516 39.544884

WILKIDO01 1.552592 43.015608

OLAJUHA01 4.010888 40.259912

DUNCATI01 8.2569 35.8341

RICHMMI01 7.41486 36.67374

WEBBECH01 7.99238 35.58722

PETRODR01 8.148828 34.680172

ROBINGL01 7.171276 35.177324
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5.1.3 Predicting the number of games needed to reach a milestone 

The minimum number of matches that a player will need to achieve a milestone can be defined 

using the following equation. 

Equation 2 

Minimum	number	of	matches = 	
	(δ# − 	(Σ#

&
 

Where U is the upper limit of prediction interval Σ is the total score of the player δ is the minimum 

score present in the view. 

Consider a player like Kobe Bryant, suppose his total score achieved is 7000 points and the 

prediction interval score is 15 to 25. If he still needs to get 150 points to reach the top-100 scorers list, 

then he needs 6 matches scoring at the rate of 25 points each game to reach the top-100 players list. 

The pseudo code for prediction algorithm is described as follows. 

  

Figure 5.1 - Pseudo code for prediction algorithm 

 

INPUT: a set R of all the records of each player present in the database. 
OUTPUT: The set S containing tuples with the attributes player id and the number of 
games needed to achieve each significant event 
 
BEGIN 
  
 
 C is a table which contains <player_id, stddev, mean, total_points> 
 V is a view of top-100 scorers which contains <player_id, total_points> 
  
 
 Foreach element in C 
 

Let k be the element read from c; 
 
Min Score = k.mean – k.stddev * z; 
 
// Z is the prediction interval(Refer table 5.2) 
//Find the minimum score with among all the records present in table V 
 
Min View Score = Min(V.total_points);  
Min Matches = (k.total_points - Min View Score)/Min Score; 
 

End While 
End 
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player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 783 467 616

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 11 178 1767

player_id game_year game_Date opposition Three_Pointers_Made Total_Assists Points

GRIFFAD01 2001 Jan. 1  SAS 0 2 0

AMAECJO01 2001 Jan. 1  SAS 0 2 0

WEATHCL01 2001 Jan. 1  PHI 0 2 4

ARMSTDA01 2001 Jan. 1  GSW 0 11 5

HAMILZE01 2001 Jan. 1  MIN 0 0 7

OVERTDO01 2001 Jan. 1  PHO 1 3 3

FISHEDE01 2001 Jan. 1  CHA 2 0 7

LARUERU01 2001 Jan. 1  TOR 1 2 7

GATLICH01 2001 Jan. 1  PHI 0 0 13

MURRALA01 2001 Jan. 1  SAS 3 4 22

The results of the prediction algorithm are described in the Table 5.4. The table contains the 

minimum number of games needed by each player to enter into three different views. 

Table 5.4 - Minimum and maximum score values 

 

5.2 Decision Algorithm 

The decision algorithm uses the results from the prediction algorithm to make decisions on when 

to execute the trigger. If data is inserted into the database for a particular player, then the prediction 

value for that particular player is decremented. If the value becomes zero for a particular player, then 

the view is recalculated. 

Now consider the input data which is illustrated by Table 5.5. 

Table 5.5 - Input Data 
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player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 782 466 615

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 11 178 1767

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 782 466 615

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 0 156 1756

 

If the record for player “GRIFFAD01” is inserted into the database table, then the count values for 

that player should be decremented. The count values after the insert is shown in Table 5.6. 

Table 5.6 - Count Values after one insert 

 

From Table 5.6 we can see that the minimum number of matches needed by “GRIFFAD01” is 

decremented by 1 when compared to the values in Table 5.4. However, for the player ‘GRIFFADO1’ 

the value is not 0. Hence, the view is not recalculated.  

If “WEATHCL01” plays 11 games, then after 11 records are inserted into the database. Thus, the 

count value for ‘WEATHCL01’ becomes zero. This is illustrated in the Table 5.7. Hence, the view top-

100 scorers’ have to be recalculated. 

Table 5.7 - Prediction values when top-100 scorers view needs to be recalculated 
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If the trigger is invoked to recalculate the view, then the decision algorithm needs to recalculate 

the prediction values for “WEATHCL01”. The prediction results can be recalculated by invoking the 

prediction algorithm. 

 The prediction values are recalculated by taking the updated values shown in table 5.8. The 

prediction results after the values are recalculated are shown in Table 5.9. 

Table 5.8 – Updated data  

 

Table 5.9 –Updated view 

 

 

 

 

 

 

 

 

player_id Sum(Points)

WESTMA01 158

KITEGR01 87

MURRALA01 22

GATLICH01 13

HAMILZE01 7

FISHEDE01 7

LARUERU01 7

ARMSTDA01 5

WEATHCL01 4

OVERTDO01 3

GRIFFAD01 0

AMAECJO01 0

GRIFFAD01 2001 Jan. 1  SAS 0

AMAECJO01 2001 Jan. 1  SAS 0

WEATHCL01 2001 Jan. 1  PHI 4

ARMSTDA01 2001 Jan. 1  GSW 5

HAMILZE01 2001 Jan. 1  MIN 7

OVERTDO01 2001 Jan. 1  PHO 3

FISHEDE01 2001 Jan. 1  CHA 7

LARUERU01 2001 Jan. 1  TOR 7

GATLICH01 2001 Jan. 1  PHI 13

MURRALA01 2001 Jan. 1  SAS 22
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INPUT: The set S contains the prediction results <player_id, min_matches> 
 The table T contains all the player data <player_id, points> 
 The table R contains data related to the new game played <player_id, points> 
 The view V <player_id, total_points> 
 
BEGIN 
   
 Foreach element in R 
 
  Let k be an element read from the set R; 
  Let l be a record from S where l.player_id == k.player_id 
  l.count --; // Decrement the value of count 
  if (l.Count == 0) then 
   Insert record k to the set T; 
   Update set S with new prediction data; 
   Recalculate the view V; 
  else 
   Insert record K to the set T; 
 
  end if-else 
 end While 
END 
  

Table 5.10 - Recalculated prediction score values 

 

There will be scenarios where a new player enters the NBA league. If a new player enters, then 

there will be no previous recorded history for a new player. The algorithm will wait for a stipulated 

amount of time, so that adequate statistics can be calculated about the player before predicting the 

number of matches the player will take to reach a milestone. 

Figure 5.2 - Pseudo code for decision algorithm 

 

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 782 466 615

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 3 165 1747
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CHAPTER 6 

EXPERIMENTAL RESULTS 
 

This chapter explains the different setups for the experiments performed and also describes the 

results obtained from each experiment. These results are used to evaluate the performance of our 

methods in different settings. 

6.1 Dataset for experiments 

For our experimental setup we use programs developed in Java. The dataset used is stored as 

database tables in MySQL. Two datasets, the training and the test data, are used. Based on the 

statistical characteristics of the training data, the prediction algorithm obtains a set of initial prediction 

results. The test data is then used to insert the records and test the performance of the decision 

algorithm.  

To obtain the training data and the test data, the existing data was split into half. The training data 

contains 218,219 player records from the year 1991 to 2000. The test data contains 211,188 records 

from the year 2001 till the year 2009. 

6.2 Experimental Results and Comparison 

This section describes the various experiments, analysis of the experimental results and the 

results of the experiments. 

6.2.1 Benchmark test 

The benchmark test is used to establish a benchmark against which our experiments can be 

compared. In the benchmark test, if there is an update operation performed on the database, then the 

trigger is invoked to recalculate the view. The update is also checked for a significant fact. 
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In the benchmark test, if 10,000 records are inserted into the database, then the trigger is invoked 

10,000 times. The table 6.1 shows some of the significant events captured by the benchmark test.  

Table 6.1 - Results of benchmark test 

player_id match_no comments 

JONESED01 382 ADDITION TO TOP 100 ASSISTS 

MURRALA01 1116 ADDITION TO TOP 100 THREE 
POINTERS 

PIERCPA01 1757 ADDITION TO TOP 100 THREE 
POINTERS 

DAVISDA01 1790 ADDITION TO TOP 100 POINTS 

ROSEJA01 5297 ADDITION TO TOP 100 POINTS 

NASHST01 6283 ADDITION TO TOP 100 ASSISTS 

DUNCATI01 6595 ADDITION TO TOP 100 POINTS 

NASHST01 7439 ADDITION TO TOP 100 THREE 
POINTERS 

MURRALA01 7617 ADDITION TO TOP 100 POINTS 

STOJAPR01 8711 ADDITION TO TOP 100 THREE 
POINTERS 

BRYANKO01 8714 ADDITION TO TOP 100 POINTS 

BARRYJO01 9604 ADDITION TO TOP 100 THREE 
POINTERS 

STOJAPR01 9694 ADDITION TO TOP 100 THREE 
POINTERS 

BARRYJO01 9872 ADDITION TO TOP 100 THREE 
POINTERS 

 

6.2.2 Number of triggers invoked for different prediction intervals 

The prediction interval is a parameter which determines the accuracy of the predicted values. If 

the prediction interval is 99%, then there is a 99% chance that the next possible value will appear 

between the predicted values. Varying the prediction interval results in different accuracy, however 

this also affects the number of times the trigger is invoked. This experiment illustrates the effect on 

number of times a trigger is invoked when the accuracy is varied. 

Four different settings for the prediction interval and three different views are used to evaluate the 

algorithm. The results of the experiments are illustrated as follows. 
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Table 6.2 - Number of time trigger invoked for different prediction intervals 

  

 

  

Figure 6.1 - Graph Number of times trigger invoked for different prediction intervals 

 

From the figure 6.1 it can be observed that if the prediction interval i.e. the accuracy increases, 

then the number of times the trigger is invoked also increases.  

Suppose a player achieves a milestone at the 382
nd
 match. If the algorithm is using a prediction 

interval of 99%, then the significant event may be captured after the 385
th
 match the player plays. If 

the prediction interval being used is 50%, then the significant event may be found after the 410
th
 

match the player plays. This example is illustrated in the following experiment. 

Prediction Interval View_top_hundred View_total_assists View_total_three_pointers 

50% 195 157 1002 

90% 592 493 1352 

95% 617 520 1399 

99% 635 533 1447 
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6.2.3 Average difference in the number of matches required to find the significant event 

This experiment is used to measure the difference in the number of matches required to find each 

significant event, against the results of the benchmark test. The benchmark test has captured at 

which match the significant event happens. Using the data from the benchmark test, and this 

experiment, the difference in matches at which the significant event is captured for each player can 

be calculated. Once the difference in matches for each player is calculated, the average difference in 

matches is calculated and tabulated. The results can be illustrated by the following figure. 

Table 6.3 - Average difference in matches 

 

 

 

Figure 6.2 – Graph average difference in matches 

From the figure 6.2 we can understand that if the prediction interval decreases, then the 

difference between the games also increases. 

6.2.4 Comparison of results when a particular number of previous games of a player is considered 

This experiment measures the number of times a trigger is invoked when the number of previous 

games a player has played is considered for statistical evaluation. By altering the number of previous 

Prediction Interval 99% 95% 90% 50% 

Average Difference in Matches 3.727273 10.625 23 37.72727 
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games considered for making the prediction, the accuracy of the model can be altered. If a lesser 

number of records are given to the prediction algorithm, then the algorithm has faster execution time. 

However, the accuracy of the prediction algorithm reduces. Similarly, if a larger number of records are 

provided to the prediction algorithm, then the accuracy of the prediction algorithm increases. 

However, the execution time of the prediction algorithm also increases. 

 The following result shows the effects of the different number of times a trigger is invoked when 

the number of previous games considered is altered. 

Table 6.4 - Previous n games 

 

 

 

 

Figure 6.3 – Previous n games 

 

Previous n games selected 10 50 100 

View_top_hundred_points 145 189 195 

view_total_assists 123 149 157 

view_three_pointers_made 956 992 1002 
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From the previous experiments it can be observed that for the accuracy to be high, the 

triggers have to be invoked frequently. From the figure 6.3 it can be seen that if the previous n games 

considered increases, then the number of times the trigger is invoked is also higher.  
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CHAPTER 7 

CONCLUSION 

 

With the internet growing, large amounts of data are being added to the internet at a rapid pace. 

Large datasets are becoming very common in real life. Analyzing this vast amount of data and finding 

significant facts from these large datasets will be a necessity in the near future. Thus an efficient way 

of finding significant facts from a large dataset is essential.  

In this thesis we have designed a two phased approach for solving the problem of significant fact 

finding from large datasets efficiently. For the implementation of the two phased approach, design 

and implementation of two different algorithms were needed. Thus, the prediction algorithm and the 

decision algorithm were designed and implemented. 

The results of the approach have been compared with a benchmark test and it has been proven 

that our approach is more efficient when compared to the benchmark test and it also achieves an 

accuracy which is close to the accuracy achieved by the absolute method. 
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