

AUTOMATIC DISCOVERY OF SIGNIFICANT EVENTS FROM DATABASES

By

AVINASH SHANKAR BHARADWAJ

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2011

Copyright © AVINASH SHANKAR BHARADWAJ 2011

All rights reserved

iii

ACKNOWLEDGEMENTS

It is always a pleasure to thank those people without whom it would have been impossible to

complete my thesis. First and foremost, I would like to express my deepest gratitude to my thesis

supervisor Dr. Chengkai Li for supporting me and guiding me throughout my research work. Without

his constant help and advice it wouldn’t be possible for me to finish my thesis.

I would also like to thank my committee members Dr. Fegaras and Dr. Elmasri for being on my

panel and giving me advice related to my thesis work.

I cannot end without thanking my parents, on whose constant support and encouragement I

have relied on throughout my time at the University of Texas at Arlington and also the constructive

advice received for the completion of my thesis.

I would like to greatly appreciate the help of my friends here in Arlington who has always been

providing me their helping hands whenever I need it.

August 7, 2011

 iv

ABSTRACT

AUTOMATIC DISCOVERY OF SIGNIFICANT EVENTS FROM DATABASES

Avinash Shankar Bharadwaj, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Dr. Chengkai Li

 The advent of the internet has caused enormous amounts of data available online causing

many significant facts to be hidden within this data. Searching for a significant fact within these large

datasets is a query intensive process involving large amounts of queries which needs to be executed

hence slowing the process of finding the significant facts from a large dataset. In this thesis, a novel

approach has been designed exploiting the statistical characteristics of the data present in the

dataset to reduce the number of queries on the dataset. A two phased approach is considered for

making fact finding more efficient. The approach consists of design and implementation of the

prediction and the decision making algorithm. The prediction algorithm predicts the time frame for a

significant event to happen and the decision algorithm uses the results from the prediction algorithm

to decide whether to check for a significant event or not. We compare our results obtained after the

implementation of the designed algorithms and found that queries are executed lesser number of

times compared to the other existing solutions to this problem.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS .. viii

LIST OF TABLES ... ix

Chapter Page

1. INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Challenges in finding significant events.. 2

1.3 Designed Approach .. 2

1.4 Overview of experiments .. 4

2. RELATED WORK ... 5

2.1 View Maintainance Problem ... 5

2.1.1 Unconditional refresh .. 6

2.1.2 Fast Refresh .. 7

2.1.3 Selective Manual Refresh: .. 7

2.2 Triggers ... 8

2.3 Computational Journalism .. 8

3. PROBLEM SPECIFICATION .. 10

3.1 Data model ... 10

 vi

3.2 Framework of the view update procedure .. 13

4. THE SOLUTION FRAMEWORK .. 17

4.1 System architecture .. 17

4.1.1 The Database: .. 18

4.1.2 The Algorithms ... 18

4.1.3 The Data Present in the Memory ... 18

5. ALGORITHM DESCRIPTION ... 20

5.1 Prediction algorithm .. 20

5.1.1 Predicting lower and upper limits of the prediction interval 20

5.1.2 Finding the number of points that each player

 has to score to reach a milestone ... 22

5.1.3 Predicting the number of games needed to reach a milestone 23

5.2 Decision Algorithm .. 24

6. EXPERIMENTAL RESULTS .. 28

6.1 Dataset for experiments ... 28

6.2 Experimental Results and Comparison .. 28

6.2.1 Benchmark test ... 28

6.2.2 Number of triggers invoked for different prediction intervals 29

6.2.3 Average difference in the number of

matches required to find the significant event .. 31

6.2.4 Comparison of results when a particular number of

 previous games of a player is considered ... 31

7. CONCLUSION .. 34

REFERENCES ... 35

 vii

BIOGRAPHICAL INFORMATION ... 38

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 - General SQL expression .. 10

3.2 - Example Query to obtain top - 100 scorers .. 11

4.1 - System architecture .. 17

5.1 - Pseudo code for prediction algorithm ... 23

5.2 - Pseudo code for decision algorithm ... 27

6.1 - Graph Number of times trigger invoked for different prediction intervals 30

6.2 - Graph average difference in matches .. 31

6.3 - Previous n games ... 32

 ix

LIST OF TABLES

Table Page

3.1 - Illustration of view .. 11

3.2 - Illustration of master table ... 12

3.3 - Illustrating view update showing records added to the database .. 13

3.4 - Illustrating view update showing updated view .. 14

3.5 - Prediction values before insert .. 15

3.6 - Prediction values after insert .. 15

5.1 - Mean and standard deviation values .. 21

5.2 - Standard score for different prediction intervals.. 21

5.3 - Prediction result ... 22

5.4 - Minimum and maximum score values ... 24

5.5 - Input data... 24

5.6 - Count values after one insert .. 25

5.7 - Prediction values when top-100 scorers

 view needs to be recalculated ... 25

5.8 - Updated data ... 26

5.9 - Count values after one insert .. 26

5.10 - Recalculated prediction score values .. 27

6.1 - Results of benchmark test .. 29

6.2 - Number of time trigger invoked for different prediction intervals .. 30

6.3 - Average difference in matches .. 31

 x

6.4 - Previous n games .. 32

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Significant fact finding is the process of finding important facts from a large dataset. If we

consider the sporting league NBA, then the significant facts are answers to questions such as (1)

Who are the top-100 scorers’? (2) Who have made the most number of assists? (3) Who are top

hundred three pointer scorers?

It is the job of sports journalists all over the world to follow different sports and provide information

to the fans of the sports whenever a particular player achieves a milestone. Consider basketball;

people all over the world want to know when their favorite players achieve milestones. A player

entering the list of top-100 scorers’ or entering the list of top-100 three pointer scores’ are some

examples of the milestones. If a player becomes one of the top-100 scorers’ in NBA history, then the

story is worth reporting. There are many such significant events mentioned in real world news

articles. Below is a list of such excerpts from several different news articles. Each excerpt shows how

a significant event can be reported as news.

• “Lebron James became only the second ever player to record a triple double in the All Star

game, Michael Jordan being the only previous player to manage that feat.”

• “Bryant had put up 21 points by half time. He was halfway to Wilt Chamberlain's record of 42

from 1962. Intriguingly, Wilt's 42 were 9 points below his average for that season which tells

you the kind of year that was.”

• “Boston Celtics guard Ray Allen matched and eclipsed Reggie Miller's NBA record of 2,560

career 3-pointers Thursday night against the Los Angeles Lakers.”

 2

If a player achieves a milestone, then the achievement is reported by a journalist. However, the

entire process can be automated using data mining technologies.

1.2 Challenges in finding significant events

This section discusses the various problems associated with solving the problem of significant

fact finding.

Views are extensively used to find significant facts. If the significant event is a player entering the

list of top-100 scorers’ in NBA history, then the view will contain the top-100 players’ by total career

points. If a player scores 20 points in a particular game, then total score of the player changes. Thus,

the list of top-100 scorers’ may need to be updated. The straightforward method to update the view is

to recalculate the view whenever there is an update on the data present in the database. The view

can be recalculated by using a trigger. This method can be named as the absolute method.

Consider an example where there are 250,000 records in the database. Each record contains

various parameters recorded for a player per game. After each game is played, new records

representing the performance of players in that game would be inserted into the database. Following

the absolute method, the view must be recalculated after each new record is inserted. If there are

200,000 records that have to be inserted into the database, then the view needs to be re-calculated

200,000 times. This makes the usage of the absolute method for maintaining views query-intensive

and inefficient.

1.3 Designed Approach

To overcome the drawback of the absolute method, a new approach is designed where the views

are updated selectively.

The designed approach predicts when the views have to be recalculated in order to find a

significant event. Certain statistical parameters present in the data are used to predict when the views

have to be recalculated. Consider that Kobe Bryant is currently not in the list of top-100 scorers. From

the existing data, we can predict the number of games needed for Kobe Bryant to enter top-100

 3

scorers list. If Kobe Bryant needs ten games to become one of the top-100 scorers, then the view is

recalculated only after Kobe Bryant plays ten games.

To achieve the aforementioned goal, a two-phased approach is taken. The two phases are the

prediction phase and the decision phase, respectively.

The prediction phase uses the statistics of certain attributes like points, total assist and total three

pointers scored to predict when a particular view has to be updated. Along with the statistical data,

the concept of prediction interval is also used. The prediction interval determines the range of values

in which future observations will fall with a certain probability, given existing observations. Once the

prediction interval is obtained, the minimum number of points that a player has to score to reach a

milestone is calculated. Using the number of points that a player has to score, and the minima of the

prediction interval, the number of matches can be calculated by dividing the minimum number of

matches required with the minima of the prediction interval.

Consider that Kobe Bryant has played 25 games previously. The average and the standard

deviation of the points scored by Kobe Bryant in the 25 games are calculated. Using the average

points and the standard deviation, the prediction interval can be calculated for Kobe Bryant with a

certain probability. If the prediction interval for Kobe Bryant is 15 to 25 points, then it means Kobe

Bryant will score between 15 to 25 points in the next match with a certain probability. After calculating

the prediction interval, the number of points needed for Kobe Bryant to reach top-100 scorers is

calculated. If Kobe Bryant has a score of 6000 points, and the player at the 100
th
 position in the top-

100 list has a score of 6149, then Kobe Bryant needs to score at least 150 points to get to the top-100

scorers list. If Kobe Bryant scores 25 points in every match, then he needs at least 6 more matches to

become one of the top-100 scorers.

The decision algorithm maintains a counter for number of games a particular player has played.

By comparing the counter against the results of the prediction algorithm, the decision algorithm

determines whether to recalculate the view or not. If the number of games played by the player is

equal to the number of games required to reach a milestone, then the view is recalculated.

 4

In the previous example it is mentioned that Kobe Bryant would need six games to reach the

milestone of top-100 players. So whenever Kobe Bryant plays a game, the decision algorithm

increments the counter associated with the player by one. If Kobe Bryant plays six games, then the

counter is incremented six times. Once the counter is incremented six times the prediction value and

the counter are equal. Hence, the view is recalculated.

Unlike the absolute method this method is designed to recalculate the view selectively. Hence, it

reduces the number of times the view is recalculated.

1.4 Overview of experiments

A set of experiments need to be conducted to verify the approach. We performed different

experiments to compare our results against that of the absolute method. In the experiments, certain

parameters are varied to measure the difference in performance.

The standard score determines the accuracy of the prediction algorithm. The accuracy value for

the standard score of 2.58 is 99%. We also compare the difference between the game at which the

designed algorithm captured the significant event, and the game at which the significant event was

actually generated. If an event was generated at say game 342, then the event was detected only at

game 345 then the difference between the numbers of games is 3.

From the results obtained by the above mentioned experiments, it can be verified that the

approach designed recalculates the view about 10% of the time. This is in comparison with the

absolute approach. The average difference between the games when the significant event is

captured, and the significant event is actually generated is 3, if the accuracy of the prediction

algorithm 99%.

Thus, this method for finding significant events can prove to be an efficient approach when

compared to the absolute method which recalculates the view whenever there is an update on the

database and without a large difference between when the significant event was actually generated

and is actually detected.

 5

CHAPTER 2

RELATED WORK

2.1 View Maintenance Problem

A view in a database contains the results of a query on a database table. Thus, any change to the

data in the table will cause the view to change.

The view update problem can be stated as follows. Consider a database ‘T’, a view definition ‘A’,

and an update operation ‘U’. The view can be defined as A(T). When there is the operation ‘U’ on T,

the changes in ‘T’ have to be propagated to the view A(T). The update operation ‘U’ can be an insert,

delete, or an update operation.

Ashish Gupta et al.
[14]
 describe the counting algorithm and the Delete and Re-derive algorithm

(DRed)
[14]

for efficiently maintaining the views. However, these algorithms can be used only when

there is a delete operation on the data.

The counting algorithm counts the number of multiple derivations for a tuple in the view.

Whenever a record in the database is deleted, the associated count value of the tuple is

decremented. If the count value for a particular tuple becomes zero, then the tuple is deleted.

In the DRed algorithm if a record in the master data is deleted, then all the tuples in the view

related to that record are deleted. Once the tuples in the view are deleted, alternative derivations for

each deleted tuple are found. If the tuple can be re-derived, then it is reinserted into the view.

Jose. A. Blakely et al.
[13]
 describe a differential update algorithm. The differential update

algorithm detects whether the insert operation causes the view to change or not. The algorithm works

by comparing the each insert operation against a set of rules, which determine whether the operation,

causes the view to change or not.

 6

Eric N. Hanson et al.
[15]
 describe two strategies, the immediate update strategy and the deferred

view update strategy. In the immediate update strategy, the view is updated as soon as there is an

update to the database. However, in the deferred view update the view is updated incrementally just

before the data is retrieved from the view. Eric N. Hanson et al.
[15]

has found that the deferred view

update strategy has a lesser cost, than the immediate update strategy.

All the above mentioned strategies recalculate the view entirely, when there is an update.

However in some conditions, the contents of the materialized view can be directly updated without

accessing the base data. This strategy can be explained using the following example.

Consider that a player within the top-100 scorers’ plays a match. The top-100 scorers’ view can

be updated by adding the player’s new score, to the total score of the player. This update can be

performed without accessing the database table. According to F. W. Tompa et al.
[17]
 views where the

contents can be updated without accessing the base data are called as “conditionally autonomously

computable”
[17]

views.

The Oracle database system provides various update strategies, which allow the materialized

views to be maintained accurately. Some of the major update strategies provided in Oracle are as

follows.

• Unconditional refresh

• Fast refresh

• Selective manual refresh

2.1.1 Unconditional refresh
[12]

In the unconditional refresh, the contents of the view are unconditionally refreshed whenever the

data changes. An unconditional refresh does a “complete refresh” of the materialized view. A

complete refresh recalculates the materialized view using the view’s defining query. To recalculate

the view, the contents of the database have to be read. If the size of the data present in the table is

large, then the time taken to recalculate the view would be large.

 7

The method of unconditional refresh is used when the materialized view does not satisfy the

necessary conditions for either a fast refresh, or a selective manual refresh.

2.1.2 Fast Refresh
[12]

The concept of fast refresh is based on the theory of “conditionally autonomously computable”
[17]

views. In the fast refresh approach, the changes can be directly added to the existing data in the

view. Thus, the fast refresh approach results in a fast refresh time. The time taken to perform a fast

refresh is determined by the following factors.

• Whether the data in the materialized view container table are clustered by a time attribute.

• Whether a concatenated index is available on the materialized view keys.

These factors can be addressed by “partitioning the materialized view container by time, like the

fact tables, and by creating a local concatenated index on the materialized view keys”
[12]
.

A fast refresh can be conducted on the materialized views in most of the cases. However some of

the exceptional cases in which a fast refresh cannot be performed on the materialized view are listed.

• “When there is more than one table in an aggregated materialized view, and when any DML

on the fact tables, other than a direct load has occurred since the last full refresh was

performed”.

• When the materialized view contains detail relations that are views or snapshots.

• When the materialized view contains AVG(x) without COUNT(x).

• When the materialized view contains VARIANCE(x) without COUNT(x) and SUM(x).

• When the materialized view contains STDDEV(x) without COUNT(x) and SUM(x).”
[12]

2.1.3 Selective Manual Refresh
[12]

The on demand refresh or the manual refresh allows the user to decide when to recalculate the

views. In a manual refresh scenario, the fast refresh technique cannot be used and a complete

 8

refresh has to be performed on the view. However, since the view is selectively refreshed this method

can be more efficient when compared to the unconditional and the fast refresh strategies.

If a database contains more than one materialized view, then there are two different approaches

for a selective manual refresh. All the views in the database can be refreshed or a selected set of

views can be refreshed.

2.2 Triggers
[10]

The SQL trigger provides a way for the users of the database to actively manage a set of views.

Whenever there is an insert, update or a delete operation on the data triggers can be used to manage

the views. The statements defined within the trigger are invoked automatically whenever there is a

SQL insert, update or delete operation is performed. The SQL triggers can use stored procedures to

perform additional processing when the trigger is executed.

The SQL trigger cannot be directly called by an external application. The definition of the SQL

trigger is stored within the database management system. One of the main applications of triggers is

to maintain derived data.

2.3 Computational Journalism
[11]

Computational journalism is the study of how computational concepts can be used for journalism.

Various concepts of journalism can be benefited from the use of computational concepts. Some of the

fields of journalism that can benefit from the concepts of computational concepts are newsgathering,

investigative journalism, verification/fact finding, authoring/printing/publication/broadcasting of news,

sharing and distribution of news stories, editing and commenting on news, etc.

“The goal in this field of Computational Journalism is to study the overlapping interests between

computation and journalism to define how both of these can help with information gathering and

dissemination for and by citizens to achieve an engaged and more actively participating citizenry”.
[11]

 9

Since the concepts of journalism like fact finding and investigative journalism involves processing

huge amounts of data, the concepts of data mining can be effectively can be used in fact finding and

investigative journalism.

In this thesis we are exploring the possibility of using data mining concepts to solve some of the

problems associated with fact finding.

 10

CHAPTER 3

PROBLEM SPECIFICATION

This chapter provides the definition for the view update problem and the data model. A brief

description of the designed approach which is used to solve the view update problem is provided.

3.1 Data model

The views used are materialized and represent multiple significant facts. They are collated from

the data present in the different database tables. These views can be generated using a general SQL

expression as shown in the following figure.

The database consists of a master table and multiple views defined on the master table. The

schema for the master table is < ��, �1, �2, … . �
 >, where the field �� is used for identification of

subjects like NBA players. The fields �� … . . �
	reflect the different parameters recorded within the

database. Each view � in the database contains the data derived from �.	

Consider the example where a view for the top-100 scorers has to be obtained. This can be

obtained by using the following query on the master table.

������	(�����. ��,			���_��
 ��!
	(�����. �"##	
$�%&'	()	��	
%�*��	()	���_��
 ��!
(�����. �"#	

�+,+�	-	

Figure 3.1 - General SQL expression

 11

SELECT player_id, sum (points)
AS total_points
FROM player_stats
GROUP BY player_id
ORDER BY total_points DESC
LIMIT 100

The data in the table 3.2 acts as the master table, which contains the game data for each player.

The view for the top-100 scorers is shown in table 3.1, which is obtained by executing query in Figure

3.2 on the table 3.2. The table 3.2 contains just two unique players. Hence, the view contains just two

players and their total score arranged in ascending order. The view is illustrated in table 3.1.

Figure 3.2 - Example Query to obtain top - 100 scorers

player_id Sum(Points)

WESTMA01 158

KITEGR01 87

Table 3.1 - Illustration of View

 12

player_id game_year game_dateopposition Points

WESTMA01 1983 Dec. 12 SEA 8

WESTMA01 1983 Dec. 14 POR 1

WESTMA01 1983 Dec. 16 IND 3

WESTMA01 1983 Dec. 17 LAC 2

WESTMA01 1983 Dec. 19 LAL 9

WESTMA01 1983 Dec. 21 HOU 2

WESTMA01 1983 Dec. 23 GSW 12

WESTMA01 1983 Dec. 26 BOS 1

WESTMA01 1983 Dec. 27 ATL 9

KITEGR01 1983 Dec. 29 NYK 8

WESTMA01 1983 Dec. 29 DAL 3

WESTMA01 1983 Dec. 30 LAL 2

KITEGR01 1983 Dec. 31 WA1 10

KITEGR01 1983 Feb. 1 SAC 0

WESTMA01 1983 Feb. 10 NYK 14

WESTMA01 1983 Feb. 11 DEN 2

KITEGR01 1983 Feb. 13 HOU 4

WESTMA01 1983 Feb. 17 ORL 8

KITEGR01 1983 Feb. 19 MIA 3

KITEGR01 1983 Feb. 2 GSW 4

WESTMA01 1983 Feb. 2 DAL 9

KITEGR01 1983 Feb. 20 DET 2

KITEGR01 1983 Feb. 22 SAS 2

KITEGR01 1983 Feb. 24 NJN 4

KITEGR01 1983 Feb. 26 DEN 4

KITEGR01 1983 Feb. 27 POR 7

KITEGR01 1983 Feb. 4 LAC 0

WESTMA01 1983 Feb. 4 DET 4

KITEGR01 1983 Feb. 6 BOS 4

WESTMA01 1983 Feb. 7 ATL 13

KITEGR01 1983 Feb. 8 MIL 1

WESTMA01 1983 Feb. 8 CHA 4

WESTMA01 1983 Jan. 10 CHA 6

KITEGR01 1983 Jan. 11 PHI 4

KITEGR01 1983 Jan. 12 NJN 2

WESTMA01 1983 Jan. 13 UTA 0

WESTMA01 1983 Jan. 15 PHO 4

KITEGR01 1983 Jan. 15 UTA 3

KITEGR01 1983 Jan. 16 SAC 5

WESTMA01 1983 Jan. 16 IND 5

WESTMA01 1983 Jan. 18 ORL 0

KITEGR01 1983 Jan. 19 LAL 2

WESTMA01 1983 Jan. 2 DEN 13

WESTMA01 1983 Jan. 20 MIA 6

KITEGR01 1983 Jan. 21 BOS 11

WESTMA01 1983 Jan. 23 DET 6

KITEGR01 1983 Jan. 23 CLE 7

WESTMA01 1983 Jan. 24 SAS 8

KITEGR01 1983 Jan. 25 MIA 0

WESTMA01 1983 Jan. 26 DEN 4

Table 3.2 - Illustration of Master table

 13

3.2 Framework of the view update procedure

The previous section describes how a view can be generated from the data present in the

database. If the data in the master table is updated, then the views also have to be updated. This

section gives the formal definition for the view update problem.

If a new tuple t/0� is inserted into the set �, then the corresponding view � changes. The problem

of maintaining the data within view � accurate, when the data in � changes is called as the view

update problem.

If the records in the table 3.3 are added to the records present in the table 3.2, then the data in

the view shown in table 3.1 changes. Thus, the view needs to be recalculated. The view is

recalculated by executing the same query which created the view. Once the view is recalculated, the

changes will be reflected in the view as shown in table 3.4.

Table 3.3 - Illustrating view update showing records added to the database

GRIFFAD01 2001 Jan. 1 SAS 0

AMAECJO01 2001 Jan. 1 SAS 0

WEATHCL01 2001 Jan. 1 PHI 4

ARMSTDA01 2001 Jan. 1 GSW 5

HAMILZE01 2001 Jan. 1 MIN 7

OVERTDO01 2001 Jan. 1 PHO 3

FISHEDE01 2001 Jan. 1 CHA 7

LARUERU01 2001 Jan. 1 TOR 7

GATLICH01 2001 Jan. 1 PHI 13

MURRALA01 2001 Jan. 1 SAS 22

 14

Table 3.4 - Illustrating view update showing updated view

There are many different strategies which can be used to update the view. Each update strategy

updates the view at different instances of time. A naïve approach for updating the view is the absolute

approach. In the absolute approach, if the data in the database is updated, then the view is

recalculated using a trigger. Thus, the number of queries executed to maintain the view accurate is

equivalent to the number of times the database is updated.

The number of times the view is updated can be considerably reduced if a selective update

mechanism is used. In this thesis, an approach has been designed where the view is updated

selectively based on the results of the prediction algorithm. Consider a set of tuples

{�
0�,, �
02, �
03, ……… �4} have been inserted into	�. A set of prediction values which estimates, the

time interval after which the view has to be updated. These prediction values are contained in the set

'.	 When a record �" is inserted into the set	�, the prediction value for the entity being inserted is

checked to find out whether the view needs to be updated or not. If the prediction value is zero, then

the view is recalculated. However, if the prediction value is not zero, then the prediction value is

decremented by one.

player_id Sum(Points)

WESTMA01 158

KITEGR01 87

MURRALA01 22

GATLICH01 13

HAMILZE01 7

FISHEDE01 7

LARUERU01 7

ARMSTDA01 5

WEATHCL01 4

OVERTDO01 3

GRIFFAD01 0

AMAECJO01 0

 15

The Table 3.5 contains the minimum number of games a player has to play before achieving a

milestone. From the table 3.5 we can see that the player ‘WEATHCL01’ has to play 11 more games

to reach the top-100 scorers list. The Table 3.5 contains the count value after the data is inserted.

Suppose say the player ‘GRIFFAD01’ plays a game and the data related to the game is entered into

the database, then the prediction values for the player ‘GRIFFAD01’ is decremented by 1. The results

of the operation are shown in the table 3.6. Suppose the player ‘WEATHCLO1’ has played 11 games,

then the minimum number of matches required to reach the top-100 point scorers list becomes zero.

Hence, the view top-100 scorers has to be recalculated.

Table 3.5 - Prediction values before insert

Table 3.6 - Prediction values after insert

Selective update procedure provides an efficient way of maintaining the data in the view

consistent. The number of queries executed to maintain the view efficient is lesser, when compared

to the absolute approach.

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 783 467 616

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 11 178 1767

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2061

ARMSTDA01 167 26 24

FISHEDE01 567 143 183

GATLICH01 7 941 1084

GRIFFAD01 782 466 615

LARUERU01 873 647 272

MURRALA01 37 371 24

OVERTDO01 619 203 433

WEATHCL01 11 177 1767

 16

3.3 Triggers

A trigger is executed when the view needs to be recalculated. The trigger will contain the query

which is used to generate the view. If the trigger is executed, then the query present within the trigger

is executed causing the view to be recalculated.

If ‘WEATHCLO1’ plays the 11 games necessary to reach the top-100 scorers’ view, then the view

top-100 scorers has to be recalculated. The top-100 scorer’s view is recalculated by invoking a

trigger. The invoked trigger contains a set of queries for recalculating the top-100 scorer’s view.

 17

CHAPTER 4

THE SOLUTION FRAMEWORK

4.1 System architecture

The solution to the selective update problem is provided using two different algorithms, the

prediction algorithm and the decision algorithm, respectively. The entire system used for solving the

problem is illustrated in the following figure.

Figure 4.1 – System architecture

The system consists of three different parts.

• The database.

• The algorithms.

Prediction

Algorithm

Training

Data
Prediction

Results

Decision

Algorithm

Test Data

Views

Prediction

Results

Trigger

 18

• The data maintained in the program memory.

Each part is described as follows.

4.1.1 The Database

The database consists of the training data, test data and the views. The views are defined on the

training data. After the completion of the prediction phase, the prediction results table is added to the

database.

 The dataset contains NBA data from the year 1991 to 2009. NBA data from the year 1991 to

2000 is used as the training data. The data from the year 2001 to 2009 is used as the test data. The

views in the database represent different significant events like top-100 scorers’, top-100 total assists’

and top-100 three pointer scorers’. These views are derived by executing SQL queries on the test

data. The SQL queries are mentioned in the previous chapter.

4.1.2 The Algorithms

The prediction and the decision phases are implemented by the prediction and the decision

algorithms, respectively. The prediction algorithm takes training data as input. Using the training data,

the prediction algorithm computes the number of matches each player needs to reach a milestone.

The concept of prediction interval is used by the prediction algorithm.

The input for the decision algorithm, are the results from the prediction algorithm and the test

data. The decision algorithm then inserts each record from the test data one by one. The predicted

number of matches for each player is decremented, whenever a record pertaining to that player is

inserted into the database. If the record being inserted is Kobe Bryant then the count maintained

against Kobe Bryant is decremented. Once the predicted number of games becomes zero, the view

needs to be recalculated. The view is recalculated by invoking the trigger. If the view is recalculated,

then the prediction algorithm recalculates the prediction values. If Kobe Bryant plays the 10 games

needed to reach the top-100 scorers’ list, then the value in the prediction results table would now be

zero. Hence, the view is recalculated and the prediction value for Kobe Bryant is recalculated. All the

 19

records, which include the new 10 records inserted are used to calculate the new prediction value for

Kobe Bryant.

Different scenarios are encountered by the decision algorithm during execution. In one such

scenario, a player will not figure in the training data. This means that the prediction algorithm has not

predicted the number of games required for that particular player to achieve a milestone. In this

scenario the decision algorithm waits until the particular player plays a stipulated number of games

before updating the prediction values for that particular player. If Dirk Nowitzki has not played any

previous game but his record is encountered by the decision algorithm, then the decision algorithm

waits until Dirk plays 50 games before computing the prediction values for Dirk Nowitzki.

4.1.3 Data Present In Program Memory

To enable faster access of data, certain amount of data has to be stored in the program memory.

The test data and the prediction results are frequently accessed by the decision algorithm in this

approach. Hence, they are maintained in the program memory to enable faster access to the data.

The data maintained in the prediction results table also double as the counter. Hence, an additional

counter to count the number of games a player has played is not required.

If a particular player’s prediction results have to be updated, then the prediction results table

needs to be searched for the player’s records. Thus, a linear search mechanism is used to find the

player whose prediction values have to be updated.

 20

CHAPTER 5

ALGORITHM DESCRIPTION

To achieve the aim of selectively updating the views two algorithms were needed. The prediction

and the decision algorithms were developed to achieve the goal. This chapter provides the

description on the working of the designed algorithms.

5.1 Prediction algorithm

The prediction algorithm follows the following steps in predicting the number of games needed by

a particular player to reach a milestone.

a. Predict the lower and upper limits of the prediction interval for a particular player.

b. Find the number of points that a player has to score to reach a milestone.

c. Find the number of games needed by the player to achieve the milestone is calculated.

5.1.1 Predicting lower and upper limits of the prediction interval

Prediction interval estimates the interval in which future values may fall with a certain probability,

given the observed data. To use the concept of prediction interval the data is assumed to be in the

form of a normal distribution. The first step in determining the prediction interval is obtaining the

statistics of the data from the training data.

The Table 5.1 shows the statistical parameters like mean and standard deviation values for

different attributes like points, total assists made and total three pointers made.

 21

Table 5.1 - Mean and standard deviation values

Once the statistical data is obtained, then the lower limit and the upper limit of the prediction

interval are obtained. The lower limit of a prediction interval determines lowest possible score that a

player will obtain in the next match. The upper limit of prediction is the highest possible score that a

player will obtain. Equation 1 shows the calculation of the lower and upper limits of prediction interval.

Equation 1

Lower	limit	of	prediction	interval	(L# = 		μ − σz

Upper	limit	of	prediction	interval	(U# = 	μ + 	σz	

In the above equation, μ is the mean, σ is the standard deviation of the parameter considered and

z is the standard score. The standard score determines the probability with which the score will fall

within prediction interval. If the standard score is set to 2.58, then the probability of the player scoring

within the prediction interval in the next match is 99%. The table 5.2 shows the prediction interval and

the associated standard score.

Table 5.2 - Standard score values for different prediction intervals

Prediction Interval Standard Score

50% 0.67

90% 1.64

95% 1.96

99% 2.58

player_id avg(Points) avg(Total_Assists) avg(Three_Pointers_Made) stddev(Points) stddev(Total_Assists) Stddev(Three_Pointers_Made)

AMAECJO01 7.9141 0.9192 0.0202 6.4517 0.9231 0.2238

ARMSTDA01 12.1966 5.302 1.3077 7.2594 3.3282 1.3256

FISHEDE01 5.9906 3.0535 0.5912 5.2128 2.4675 0.9564

GATLICH01 10.6611 0.6779 0.0763 6.9527 0.8763 0.3179

GRIFFAD01 5.3923 1.7769 0.2154 4.787 1.8071 0.4801

LARUERU01 4.8493 1.274 0.5753 4.1303 1.5638 0.8588

MURRALA01 12.5736 1.4585 0.6755 7.1032 1.4404 0.8469

OVERTDO01 4.6896 2.09 0.2275 5.0147 2.297 0.5845

WEATHCL01 13.1614 1.6657 0.0231 6.7465 1.4566 0.2564

 22

The table 5.3 shows the lower and upper limit of prediction values, respectively for each player.

The values are obtained by using the formulae in Equation 1. The standard score of 1.96 for 95%

accuracy is used for this calculation. From the values in table 5.3, it can be inferred that ‘JORDAMI01’

will score between 13 to 47 points in the next game.

Table 5.3 - Prediction interval values

5.1.2 Finding the number of points that each player has to score to reach a milestone

To find the number of games that particular player has to play to reach a milestone, the number

of points that a player has to score to achieve a milestone has to be calculated. This can be done by

using the prediction interval values and the data present in the view.

Consider a player aspiring to enter the top-100 scorers list. The point difference between the

lowest scorer in the top-100 scorers list and the points of the player has to be found. A milestone can

also be achieved when a player within the top-100 scorers list changes rank position. If a player is

already in the top-100 scorers list, then the point difference between the player ranked above him and

the player in question is calculated.

Player ID Min Interval Max Interval

JORDAMI01 13.0446 47.1976

IVERSAL01 7.009276 45.334724

MALONKA01 12.84104 39.25596

WADEDW01 7.89506 41.69134

CARTEVI01 7.29218 41.75682

ONEASH01 6.52042 41.39078

ROBINDA01 5.135516 39.544884

WILKIDO01 1.552592 43.015608

OLAJUHA01 4.010888 40.259912

DUNCATI01 8.2569 35.8341

RICHMMI01 7.41486 36.67374

WEBBECH01 7.99238 35.58722

PETRODR01 8.148828 34.680172

ROBINGL01 7.171276 35.177324

 23

5.1.3 Predicting the number of games needed to reach a milestone

The minimum number of matches that a player will need to achieve a milestone can be defined

using the following equation.

Equation 2

Minimum	number	of	matches = 	
	(δ# − 	(Σ#

&

Where U is the upper limit of prediction interval Σ is the total score of the player δ is the minimum

score present in the view.

Consider a player like Kobe Bryant, suppose his total score achieved is 7000 points and the

prediction interval score is 15 to 25. If he still needs to get 150 points to reach the top-100 scorers list,

then he needs 6 matches scoring at the rate of 25 points each game to reach the top-100 players list.

The pseudo code for prediction algorithm is described as follows.

Figure 5.1 - Pseudo code for prediction algorithm

INPUT: a set R of all the records of each player present in the database.
OUTPUT: The set S containing tuples with the attributes player id and the number of
games needed to achieve each significant event

BEGIN

 C is a table which contains <player_id, stddev, mean, total_points>
 V is a view of top-100 scorers which contains <player_id, total_points>

 Foreach element in C

Let k be the element read from c;

Min Score = k.mean – k.stddev * z;

// Z is the prediction interval(Refer table 5.2)
//Find the minimum score with among all the records present in table V

Min View Score = Min(V.total_points);
Min Matches = (k.total_points - Min View Score)/Min Score;

End While
End

 24

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 783 467 616

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 11 178 1767

player_id game_year game_Date opposition Three_Pointers_Made Total_Assists Points

GRIFFAD01 2001 Jan. 1 SAS 0 2 0

AMAECJO01 2001 Jan. 1 SAS 0 2 0

WEATHCL01 2001 Jan. 1 PHI 0 2 4

ARMSTDA01 2001 Jan. 1 GSW 0 11 5

HAMILZE01 2001 Jan. 1 MIN 0 0 7

OVERTDO01 2001 Jan. 1 PHO 1 3 3

FISHEDE01 2001 Jan. 1 CHA 2 0 7

LARUERU01 2001 Jan. 1 TOR 1 2 7

GATLICH01 2001 Jan. 1 PHI 0 0 13

MURRALA01 2001 Jan. 1 SAS 3 4 22

The results of the prediction algorithm are described in the Table 5.4. The table contains the

minimum number of games needed by each player to enter into three different views.

Table 5.4 - Minimum and maximum score values

5.2 Decision Algorithm

The decision algorithm uses the results from the prediction algorithm to make decisions on when

to execute the trigger. If data is inserted into the database for a particular player, then the prediction

value for that particular player is decremented. If the value becomes zero for a particular player, then

the view is recalculated.

Now consider the input data which is illustrated by Table 5.5.

Table 5.5 - Input Data

 25

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 782 466 615

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 11 178 1767

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 782 466 615

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 0 156 1756

If the record for player “GRIFFAD01” is inserted into the database table, then the count values for

that player should be decremented. The count values after the insert is shown in Table 5.6.

Table 5.6 - Count Values after one insert

From Table 5.6 we can see that the minimum number of matches needed by “GRIFFAD01” is

decremented by 1 when compared to the values in Table 5.4. However, for the player ‘GRIFFADO1’

the value is not 0. Hence, the view is not recalculated.

If “WEATHCL01” plays 11 games, then after 11 records are inserted into the database. Thus, the

count value for ‘WEATHCL01’ becomes zero. This is illustrated in the Table 5.7. Hence, the view top-

100 scorers’ have to be recalculated.

Table 5.7 - Prediction values when top-100 scorers view needs to be recalculated

 26

If the trigger is invoked to recalculate the view, then the decision algorithm needs to recalculate

the prediction values for “WEATHCL01”. The prediction results can be recalculated by invoking the

prediction algorithm.

 The prediction values are recalculated by taking the updated values shown in table 5.8. The

prediction results after the values are recalculated are shown in Table 5.9.

Table 5.8 – Updated data

Table 5.9 –Updated view

player_id Sum(Points)

WESTMA01 158

KITEGR01 87

MURRALA01 22

GATLICH01 13

HAMILZE01 7

FISHEDE01 7

LARUERU01 7

ARMSTDA01 5

WEATHCL01 4

OVERTDO01 3

GRIFFAD01 0

AMAECJO01 0

GRIFFAD01 2001 Jan. 1 SAS 0

AMAECJO01 2001 Jan. 1 SAS 0

WEATHCL01 2001 Jan. 1 PHI 4

ARMSTDA01 2001 Jan. 1 GSW 5

HAMILZE01 2001 Jan. 1 MIN 7

OVERTDO01 2001 Jan. 1 PHO 3

FISHEDE01 2001 Jan. 1 CHA 7

LARUERU01 2001 Jan. 1 TOR 7

GATLICH01 2001 Jan. 1 PHI 13

MURRALA01 2001 Jan. 1 SAS 22

 27

INPUT: The set S contains the prediction results <player_id, min_matches>
 The table T contains all the player data <player_id, points>
 The table R contains data related to the new game played <player_id, points>
 The view V <player_id, total_points>

BEGIN

 Foreach element in R

 Let k be an element read from the set R;
 Let l be a record from S where l.player_id == k.player_id
 l.count --; // Decrement the value of count
 if (l.Count == 0) then
 Insert record k to the set T;
 Update set S with new prediction data;
 Recalculate the view V;
 else
 Insert record K to the set T;

 end if-else
 end While
END

Table 5.10 - Recalculated prediction score values

There will be scenarios where a new player enters the NBA league. If a new player enters, then

there will be no previous recorded history for a new player. The algorithm will wait for a stipulated

amount of time, so that adequate statistics can be calculated about the player before predicting the

number of matches the player will take to reach a milestone.

Figure 5.2 - Pseudo code for decision algorithm

player_id min_matches_total_points min_matches_total_assists min_matches_total_three_pointers

AMAECJO01 432 926 2062

ARMSTDA01 167 27 25

FISHEDE01 568 144 183

GATLICH01 7 942 1085

GRIFFAD01 782 466 615

LARUERU01 874 647 272

MURRALA01 38 372 25

OVERTDO01 619 203 433

WEATHCL01 3 165 1747

 28

CHAPTER 6

EXPERIMENTAL RESULTS

This chapter explains the different setups for the experiments performed and also describes the

results obtained from each experiment. These results are used to evaluate the performance of our

methods in different settings.

6.1 Dataset for experiments

For our experimental setup we use programs developed in Java. The dataset used is stored as

database tables in MySQL. Two datasets, the training and the test data, are used. Based on the

statistical characteristics of the training data, the prediction algorithm obtains a set of initial prediction

results. The test data is then used to insert the records and test the performance of the decision

algorithm.

To obtain the training data and the test data, the existing data was split into half. The training data

contains 218,219 player records from the year 1991 to 2000. The test data contains 211,188 records

from the year 2001 till the year 2009.

6.2 Experimental Results and Comparison

This section describes the various experiments, analysis of the experimental results and the

results of the experiments.

6.2.1 Benchmark test

The benchmark test is used to establish a benchmark against which our experiments can be

compared. In the benchmark test, if there is an update operation performed on the database, then the

trigger is invoked to recalculate the view. The update is also checked for a significant fact.

 29

In the benchmark test, if 10,000 records are inserted into the database, then the trigger is invoked

10,000 times. The table 6.1 shows some of the significant events captured by the benchmark test.

Table 6.1 - Results of benchmark test

player_id match_no comments

JONESED01 382 ADDITION TO TOP 100 ASSISTS

MURRALA01 1116 ADDITION TO TOP 100 THREE
POINTERS

PIERCPA01 1757 ADDITION TO TOP 100 THREE
POINTERS

DAVISDA01 1790 ADDITION TO TOP 100 POINTS

ROSEJA01 5297 ADDITION TO TOP 100 POINTS

NASHST01 6283 ADDITION TO TOP 100 ASSISTS

DUNCATI01 6595 ADDITION TO TOP 100 POINTS

NASHST01 7439 ADDITION TO TOP 100 THREE
POINTERS

MURRALA01 7617 ADDITION TO TOP 100 POINTS

STOJAPR01 8711 ADDITION TO TOP 100 THREE
POINTERS

BRYANKO01 8714 ADDITION TO TOP 100 POINTS

BARRYJO01 9604 ADDITION TO TOP 100 THREE
POINTERS

STOJAPR01 9694 ADDITION TO TOP 100 THREE
POINTERS

BARRYJO01 9872 ADDITION TO TOP 100 THREE
POINTERS

6.2.2 Number of triggers invoked for different prediction intervals

The prediction interval is a parameter which determines the accuracy of the predicted values. If

the prediction interval is 99%, then there is a 99% chance that the next possible value will appear

between the predicted values. Varying the prediction interval results in different accuracy, however

this also affects the number of times the trigger is invoked. This experiment illustrates the effect on

number of times a trigger is invoked when the accuracy is varied.

Four different settings for the prediction interval and three different views are used to evaluate the

algorithm. The results of the experiments are illustrated as follows.

 30

Table 6.2 - Number of time trigger invoked for different prediction intervals

Figure 6.1 - Graph Number of times trigger invoked for different prediction intervals

From the figure 6.1 it can be observed that if the prediction interval i.e. the accuracy increases,

then the number of times the trigger is invoked also increases.

Suppose a player achieves a milestone at the 382
nd
 match. If the algorithm is using a prediction

interval of 99%, then the significant event may be captured after the 385
th
 match the player plays. If

the prediction interval being used is 50%, then the significant event may be found after the 410
th

match the player plays. This example is illustrated in the following experiment.

Prediction Interval View_top_hundred View_total_assists View_total_three_pointers

50% 195 157 1002

90% 592 493 1352

95% 617 520 1399

99% 635 533 1447

0

500

1000

1500

2000

50% 90% 95% 99%

N
u

m
b

e
r

 o
f

ti
m

e
s

tr
ig

g
e

r
in

v
o

k
e

d

Prediction interval

Number of time triggers invoked for different

prediction intervals

View_top_hundred

View_total_assists

View_total_three_pointers

 31

6.2.3 Average difference in the number of matches required to find the significant event

This experiment is used to measure the difference in the number of matches required to find each

significant event, against the results of the benchmark test. The benchmark test has captured at

which match the significant event happens. Using the data from the benchmark test, and this

experiment, the difference in matches at which the significant event is captured for each player can

be calculated. Once the difference in matches for each player is calculated, the average difference in

matches is calculated and tabulated. The results can be illustrated by the following figure.

Table 6.3 - Average difference in matches

Figure 6.2 – Graph average difference in matches

From the figure 6.2 we can understand that if the prediction interval decreases, then the

difference between the games also increases.

6.2.4 Comparison of results when a particular number of previous games of a player is considered

This experiment measures the number of times a trigger is invoked when the number of previous

games a player has played is considered for statistical evaluation. By altering the number of previous

Prediction Interval 99% 95% 90% 50%

Average Difference in Matches 3.727273 10.625 23 37.72727

0

5

10

15

20

25

30

35

40

99% 95% 90% 50%

Prediction Interval

Average Difference in Matches

Average Difference in

Matches

 32

games considered for making the prediction, the accuracy of the model can be altered. If a lesser

number of records are given to the prediction algorithm, then the algorithm has faster execution time.

However, the accuracy of the prediction algorithm reduces. Similarly, if a larger number of records are

provided to the prediction algorithm, then the accuracy of the prediction algorithm increases.

However, the execution time of the prediction algorithm also increases.

 The following result shows the effects of the different number of times a trigger is invoked when

the number of previous games considered is altered.

Table 6.4 - Previous n games

Figure 6.3 – Previous n games

Previous n games selected 10 50 100

View_top_hundred_points 145 189 195

view_total_assists 123 149 157

view_three_pointers_made 956 992 1002

0

200

400

600

800

1000

1200

1400

1600

10 50 100N
u

m
b

e
r

o
f

ti
m

e
s

tr
ig

g
e

r
in

v
o

k
e

d

Previous n games considered for prediction

Number of triggers for different number of games

considered for prediction

view_three_pointers_made

view_total_assists

View_top_hundred_points

 33

From the previous experiments it can be observed that for the accuracy to be high, the

triggers have to be invoked frequently. From the figure 6.3 it can be seen that if the previous n games

considered increases, then the number of times the trigger is invoked is also higher.

 34

CHAPTER 7

CONCLUSION

With the internet growing, large amounts of data are being added to the internet at a rapid pace.

Large datasets are becoming very common in real life. Analyzing this vast amount of data and finding

significant facts from these large datasets will be a necessity in the near future. Thus an efficient way

of finding significant facts from a large dataset is essential.

In this thesis we have designed a two phased approach for solving the problem of significant fact

finding from large datasets efficiently. For the implementation of the two phased approach, design

and implementation of two different algorithms were needed. Thus, the prediction algorithm and the

decision algorithm were designed and implemented.

The results of the approach have been compared with a benchmark test and it has been proven

that our approach is more efficient when compared to the benchmark test and it also achieves an

accuracy which is close to the accuracy achieved by the absolute method.

 35

REFERENCES

[1] http://en.wikipedia.org/wiki/Prediction_interval#cite_note-MedicalStatisticsA2-3.

[2] José G. Ramírez, W.L. Gore and Associates Statistical Intervals Confidence, Prediction,

Enclosure. SAS white paper pages Section 1 Pages 1-11.

[3] http://en.wikipedia.org/wiki/Relational_model.

[4] Jens Lechtenb¨orger. The Impact of the Constant Complement Approach Towards View

Updating. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems (PODS '03). ACM, New York, NY, USA, 49-55.

[5] Nabil I. Hachem, Ke Qiu, Michael A. Gennert & Matthew O. Ward Managing Derived Data In

The Gaea Scientific DBMS, VLDB 1993: 1- 12.

[6] Hegner, Stephen J., An order-based theory of updates for closed database views, Annals of

Mathematics and Artificial Intelligence, 1-2 (January 2004), 63-125.

[7] Hegner, Stephen J., Uniqueness of update strategies for database views, in Foundations of

Information and Knowledge Systems, Second International Symposium, FoIKS 2002, Salzau

Castle, Germany, February 20-23 2002, Proceedings, Thomas Eiter and Klaus-Dieter

Schewe, editors. Springer-Verlag Lecture Notes in Computer Science, Vol. 2284, 2002, pp.

230-249.

[8] Ashish Gupta and Inderpal Singh. Maintenance of Materialized Views: Problems Techniques,

and applications, MIT Press, Cambridge, MA, USA 145-157.

[9] John Grant, John Horty, Jorge Lobo, and Jack Minker. 1993. View updates in stratified

disjunctive databases. J. Autom. Reason. 11, October 1993 249-267.

[10] Rameez Elmasri, Shamakant B Navathe. Fundamentals of Database Systems. 5
t`h
edition.

2009. Part 2 Chapter 8 and Chapter 9.

 36

[11] Nick Diakopoulos, Brad Stenger. Presentation on computational journalism, 2009. Pages 1-

30.

[12] Oracle Corporation. Oracle8i Tuning Release 8.1.5 A67775-01. Chapter 32.

[13] Jose A. Blakeley , Per-Ake Larson , Frank Wm Tompa, Efficiently updating materialized

views, Proceedings of the 1986 ACM SIGMOD international conference on Management of

data, p.61-71, May 28-30, 1986, Washington, D.C., United States

[14] Ashish Gupta , Inderpal Singh Mumick , V. S. Subrahmanian, Maintaining views

incrementally, Proceedings of the 1993 ACM SIGMOD international conference on

Management of data, p.157-166, May 25-28, 1993, Washington, D.C., United States

[15] Eric N. Hanson, A performance analysis of view materialization strategies, Proceedings of the

1987 ACM SIGMOD international conference on Management of data, p.440-453, May 27-

29, 1987, San Francisco, California, United States

[16] Oded Shmueli , Alon Itai, Maintenance of views, Proceedings of the 1984 ACM SIGMOD

international conference on Management of data, June 18-21, 1984, Boston, Massachusetts

[17] F. W. Tompa , J. A. Blakeley, Maintaining materialized views without accessing base data,

Information Systems, v.13 n.4, p.393-406, Oct. 1, 1988

 37

BIOGRAPHICAL INFORMATION

Avinash S Bharadwaj completed his Bachelors in Computer Science and Engineering from

Visveswaraya Technological University (VTU) in July 2009. He worked as an intern at Sasken

Communication Technologies Pvt Ltd. He started his Masters in Computer Science at The University

of Texas at Arlington in fall 2009 and joined The Innovative Databases and Information Systems

Research (IDIR) Lab at UT Arlington in spring 2010. His research involves data mining, web data

management, and statistical analysis of data.

