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ABSTRACT 

 

INTELLIGENT CONTROL AND COOPERATION 

FOR MOBILE ROBOTS 

 

PETRU EMANUEL STINGU 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  FRANK L. LEWIS 

 The topic discussed in this work addresses the current research being conducted 

at the Automation & Robotics Research Institute in the areas of UAV quadrotor control 

and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by 

a robot under the following conditions: the robot has to be able to acquire knowledge 

about the environment and itself, and it also has to be able to reason under uncertainty. 

The control system must react quickly to immediate challenges, but also has to slowly 

adapt and improve based on accumulated knowledge.  

 The major contribution of this work is the transfer of the ADP algorithms from 

the purely theoretical environment to the complex real-world robotic platforms that 

work in real-time and in uncontrolled environments. Many solutions are adopted from 
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those present in nature because they have been proven to be close to optimal in very 

different settings. 

For the control of a single platform, reinforcement learning algorithms are used 

to design suboptimal controllers for a class of complex systems that can be conceptually 

split in local loops with simpler dynamics and relatively weak coupling to the rest of the 

system. Optimality is enforced by having a global critic but the curse of dimensionality 

is avoided by using local actors and intelligent pre-processing of the information used 

for learning the optimal controllers. The system model is used for constructing the 

structure of the control system, but on top of that the adaptive neural networks that form 

the actors use the knowledge acquired during normal operation to get closer to optimal 

control. In real-world experiments, efficient learning is a strong requirement for 

success. This is accomplished by using an approximation of the system model to focus 

the learning for equivalent configurations of the state space. Due to the availability of 

only local data for training, neural networks with local activation functions are 

implemented. 

For the control of a formation of robots subjected to dynamic communication 

constraints, game theory is used in addition to reinforcement learning. The nodes 

maintain an extra set of state variables about all the other nodes that they can 

communicate to. The more important are trust and predictability. They are a way to 

incorporate knowledge acquired in the past into the control decisions taken by each 

node. The trust variable provides a simple mechanism for the implementation of 

reinforcement learning. For robot formations, potential field based control algorithms 
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are used to generate the control commands. The formation structure changes due to the 

environment and due to the decisions of the nodes. It is a problem of building a graph 

and coalitions by having distributed decisions but still reaching an optimal behavior 

globally. 
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CHAPTER 1 

1. INTRODUCTION AND CONTRIBUTIONS 

 

1.1. Introduction 

 During recent years, the contributions of unmanned systems to military and 

civilian operations continue to increase, reducing the risk to human life. Unmanned 

aircraft vehicles (UAV) and unmanned ground vehicles (UGV) can play an important 

role in missions such as reconnaissance and surveillance, precision target location, 

signals intelligence, and digital mapping. Because of the miniaturization of sensors and 

communication equipment, smaller aircraft can now perform the same mission that 

would have required a bigger aircraft and in some cases a human pilot on-board a few 

years ago. This has obvious advantages in terms of costs and logistics, but also it 

enables completely new missions, such as operation at street level in urban 

environments. 

 Today the level of autonomy is generally small. Human pilots have to provide 

high-bandwidth commands to the vehicle they control and cannot maintain strict control 

of an entire formation of such vehicles. This work presents algorithms that can improve 

the autonomy of real robotic platforms that perform in an uncontrolled environment, 

individually or in a formation by using reinforcement learning. The intelligent vehicles 
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and formations require only high-level, low-bandwidth commands. This way, the pilot 

is not required to have special training and an in-depth knowledge about the internal 

structure of the robots it controls. 

 Chapter 2 gives a succinct description of the mechanisms used to store 

knowledge in general and the control structures that can make use of this knowledge. 

All these mechanisms are inspired from nature. The robots have to react quickly to 

external stimuli but also have to adapt to changes in the environment and in their own 

parameters. At a higher level they have to plan and accomplish a mission in a 

distributed manner. These processes happen at different time scales and are separated 

into different controllers organized hierarchically. 

 Chapter 3 develops the system models of a quadrotor and ground robots. These 

models are used in the following chapters for the development of adaptive controllers 

and for guiding and focusing the reinforcement learning process. 

 Chapter 4 proposes a new parameterization for the attitude error of the quadrotor 

that decouples tilt from yaw and allows two different controllers to act independently 

for closing the two loops. The attitude error is expressed in body coordinates and 

creates the possibility for a linear mapping between the error and the actuators. A 

certain amount of tilt is parameterized the same for any yaw angle. This aspect is 

important for focusing learning. Even more, the pilot commands are relative to his 

coordinates frame and not to those of the vehicle. 

 Chapter 5 applies the principles of approximate dynamic programming (ADP) to 

the control of a quadrotor helicopter platform flying in an uncontrolled environment and 
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subjected to various disturbances and model uncertainties. ADP is based on 

reinforcement learning using an actor-critic structure. Due to the complexity of the 

quadrotor system, the learning process has to use as much information as possible about 

the system and the environment. Various methods to improve the learning speed and 

efficiency are presented. Neural networks with local activation functions are used as 

function approximators because the state-space cannot be explored efficiently due to its 

size and the limited time available. The complex dynamics is controlled by a single 

critic and by multiple actors thus avoiding the curse of dimensionality. After a number 

of iterations, the overall actor-critic structure stores information (knowledge) about the 

system dynamics and the optimal controller that can accomplish the explicit or implicit 

goal specified in the cost function. 

 Chapter 6 describes an implementation of a distributed control algorithm using 

potential field methods to control a fleet of small nonholonomic ground vehicles. Each 

robot has limited communication resources and needs to play a network formation game 

in order to build a communication graph. This type of game is a hybrid between 

coalitional graph games and non-cooperative games where the player’s strategies are to 

select one or more links to form or break. A trust variable was introduced that 

eliminates the need of negotiation between nodes that would require extra 

communication resources and successive iterations. Trust is also used to control the 

behavior of the robots and to help them avoid misbehaving agents by using 

reinforcement learning. 
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1.2. Contributions 

 This work makes several contributions. 

 In the field of computational intelligence, it develops approximate dynamic 

programming algorithms for complex dynamical systems with a large number of 

discrete-time, continuous valued states by using multiple local actors and a single global 

critic. In the past, the high dimensionality of the state space for such systems made the 

problem intractable. 

 In the field of control engineering, it develops on-line, real-time, sub-optimal 

adaptive control algorithms. Generally, optimal control algorithms were developed off-

line, and adaptive control algorithms were not optimal. 

 In the field of machine learning, it develops various methods that focus learning 

for similar contexts to the same region in the neural network in order to improve the 

learning speed. This is accomplished by using knowledge about the system model in 

order to do some preprocessing of the neural network inputs. For the particular case of 

the quadrotor, it introduces a new parameterization of the attitude error in the body 

frame instead of using Euler angles. This parameterization provides a better decoupling 

of the control loops and focuses learning. 

 In the field of game theory it introduces the concept of trust and its 

implementation using reinforcement learning. 
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CHAPTER 2 

2. NATURE–INSPIRED CONTROL OF AUTONOMOUS ROBOTS 

 

 Autonomous robots are robots which can perform desired tasks in unstructured 

environments without requiring continuous human guidance. Most of the times, the 

dynamics of the robot itself can be described analytically. Unfortunately, in many 

robotic applications, it is difficult if not impossible to obtain a precise mathematical 

model of the environment and its interaction with the robot through actuators and 

sensors. The lack of complete and precise knowledge about the environment limits the 

applicability of conventional control system design to the domain of autonomous 

robotics. Some of the requirements for a robot to successfully achieve autonomy are the 

possibility to acquire knowledge about the environment and itself, to reason under 

uncertainty and to have learning capabilities in order to adapt to the environment based 

on accumulated experience.  

2.1. Neuro-Fuzzy Control 

Efficient control algorithms for autonomous robots should imitate the way 

humans are operating manned or similar vehicles. When making decisions, humans tend 

to work with vague or imprecise concepts that can often be expressed linguistically. 

Lotfi Zadeh has proposed one way to model this decision making process by 
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introducing the fuzzy set theory in the field of control [1]. Fuzzy logic is particularly 

suited for problems in which the data, the objectives and the constraints are too complex 

or too ill-defined to admit a precise mathematical analysis. 

Neural networks were developed as an attempt to realize mathematical models 

of brain-like systems. The key advantage is their ability to learn from examples instead 

of requiring an algorithmic development from the designer. They can generalize to new 

situations. Once a neural network has been trained for a set of data, it can interpolate 

and produce answers for the cases not present in the training set. 

While fuzzy logic can be used to represent knowledge in a human-readable form 

and to use it for reasoning, neural networks allow adaptation and learning in dynamic 

environments under varying conditions. Neuro-fuzzy techniques combine the 

advantages of both methods by having neural networks adapt the knowledge base of the 

fuzzy logic systems or fuzzy systems tune the weights of neural networks. These 

relatively simple control methods can be used to successfully implement complex 

intelligent autonomous robots, robust to uncertainties in their own model, in the 

environment and in the readings from the sensors. 

Despite the differences between neural networks and fuzzy logic systems, they 

can actually be unified at the level of the universal function approximator. Both of them 

define a nonlinear function ( )y f x=  from inputs to outputs and if designed properly 

satisfy the “universal approximation property” [2], [3]. Then, for any continuous 

function ( )xψ  defined on a closed and bounded set and an arbitrary number 0ε > , 

there exists a neural network or a fuzzy system ( )f x  such that 
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 sup ( ) ( )
x

f x xψ ε− < . (1) 

This property does not say how to build the neural net or the fuzzy system. It 

simply shows that with the proper structure and with enough tuning it is possible to 

approximate a continuous function with an error that can be made as small as desired. 

The multilayer perceptron should be viewed as a nonlinear network whose 

nonlinearity can be tuned by changing the weights, biases and the parameters of the 

activation functions. The fuzzy logic system is also a tunable nonlinearity whose shape 

can be tuned by changing the membership functions. In both cases, it is possible to use 

gradient methods for tuning. The back-propagation training method [4] is well-known 

from the neural networks field and inspired gradient training of fuzzy systems. 

 Some radial basis function neural networks are functionally equivalent to some 

standard fuzzy systems in the sense that given the same inputs, they will produce the 

same outputs. This can be shown on a normalized radial basis functions (RBF) neural 

net that has the same number of neurons on the hidden layer as the number of rules in 

the fuzzy system with product inference and centroid defuzzification. A simple example 

for a two-input fuzzy system is shown in Figure 1. A RBF neural net structure that can 

process the information in a similar way is shown in Figure 2.  
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Figure 1. Example of a two-variable fuzzy logic system 

 

 
Figure 2. Multi-layer neural network 
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The kth output of an unnormalized RBF neural network with hN  neurons on the hidden 

layer is  

 
1

( )
n

k ik i
i

y w ϕ
=

= ⋅∑ x  (3) 

while the output of a multi-layer neural network is  

 ( )T TW V=y φ x . (4) 

Because of their properties of learning, recall, function approximation, 

generalization, classification, association, pattern recognition and clustering, neural 

networks and fuzzy logic systems can be used to solve a large set of problems. They are 

successfully used in all types of autonomous robots. 

2.2. Control Hierarchy 

 We have seen that autonomous robots can borrow traits from humans. Fuzzy 

logic copies the way they represent knowledge and the mechanisms of logical reason. 

Neural networks implement a simple model for the low-level organization and the 

physiological mechanisms relating to information processing in the nervous system. It is 

a well-known fact that nature has found the optimal solutions for many problems, over 

thousands and thousands of years of refinements. Humans have become the most 

autonomous of all living beings. Such a successful model should also suggest the 

control hierarchy to be used on autonomous robots. The organization of the human 

nervous system involved in movement can provide invaluable information on how to 

design an efficient hierarchical control architecture. 
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Consideration of the vast and complex system of structures and pathways 

involved in movement will begin at its lowest end, the spinal cord, where more basic 

motor control is localized. The most important human interoceptive reflex is the 

myotatic reflex [5], which originates from the neuro-muscular fibers. Its principal 

function is maintaining the joint position fixed and compensating external noise. In 

Figure 3, suppose that a load is applied to the joint. This will flex the joint, causing the 

stretching of the extensor muscle and also stretching of the spindle. This will increase 

the output of the neural stretch receptor neuron, which increases the output of the local 

motor neuron (LMN). The resulting increase in the contraction force will compensate 

the load. This local feedback allows the higher system to ignore the fluctuation in 

contraction required to maintain a certain joint extension. On a robot, the similar 

function is done by the low-level controllers for the motors. For example, they receive a 

reference speed and they have to keep the output speed equal with the reference, 

independent of the torque disturbances. Neural nets and fuzzy logic speed regulators 

have been successfully applied for motor control, yielding better results than normally 

used PID controllers. 
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Figure 3. Joint with the principal neurons involved in reflex control 

The conventional hierarchical control architecture that has been extensively used 

for mobile robots is shown in Figure 4. The robot builds the model of itself using two 

types of sensors. The proprioceptive sensors, like shaft encoders, give information about 

the internal state of the robot. The exteroceptive sensors, like a sonar, provide 

information about the state of the environment. Using this information, a planning 

algorithm generates a plan that will perform the given task in the given environment. 

The instructions from the plan are blindly executed by the lower-level motor control 

layer. This layer uses proprioceptors for local feedback, but does not monitor the 

environment. If an obstacle is suddenly detected by the exteroceptors, it takes a long 

time for the robot to react. This happens because the stimulus has to pass through the 

higher layers first. Modeling and planning usually involve a lot of computation and take 

a long time. The response of the overall system to a new configuration of the 
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environment is very slow. That is why robots implemented using this control hierarchy 

have to move with a very low speed in order to be able to avoid obstacles. 

 
Figure 4. The low-level in the hierarchical architecture 

A solution to the above problem can be searched in the way humans react to 

some external stimuli, for example to pain. A simple spinal reflex can be traced in 

Figure 3. When the pain receptor in the skin is excited, it fires a neuron in the LMN 

system, which in turn fires the LMN driving the flexor muscle. This operation removes 

the respective part of the body from danger, in a very fast and straightforward manner. 

There is no reaction expected from the higher layers of the nervous system before the 

motor neurons are fired. Still, the information from the skin receptor reaches the higher 

layers and a more intelligent measure is taken after a certain delay. The overall system 

now has a fast response to the environment. Reasoning about the necessary action can 

still be done and the movement can be corrected by the central nervous system through 

the direct inputs to the motor neurons. On mobile robots, the same type of reaction can 

be achieved by using low-level behaviors implemented in the execution layer. A simple 
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but very important modification [6] has to be done to the structure in Figure 4. The 

execution layer will not follow the planner commands blindly anymore, but will also 

receive information about the environment from the exteroceptive sensors, as shown in 

Figure 5. The behaviors (that can be easily implemented using fuzzy logic) will have a 

fast reaction to the environment, because it is included now in the low-level feedback 

loop. The planner will only have to select the right behavior or to combine behaviors 

corresponding to the current goal and the current environment. The rapidity of decisions 

is not critical anymore for the higher levels. 

 
Figure 5. Implementation of behaviors based on the sensed environment 

 From the overall organization of the human motor nervous system [7], shown in 

Figure 6, and from the previous examples, a general principle can be extracted. First of 

all, (complete) sensorial data arrives to all the layers of control, starting from the lowest 

(the spinal cord) and up to the highest (the cerebral cortex). Each layer uses what 

information it needs and has certain autonomy in taking decisions, independent of the 

higher layer in the hierarchy. The latter will eventually correct or adjust the action 
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initiated by the lower layers. The reaction speed is the fastest for the simple layers close 

to the effectors (of the order of hundreds of milliseconds) and decreases as one rises 

through the hierarchy and where structures become more complex. 

 
Figure 6. Summary of motor control in the human nervous system 

In [8], Rodney A. Brooks has proposed a similar layered control architecture for 

mobile robots, organized into levels of competence. It is called the subsumption 

architecture and is based on incorporating lower levels of functionality into more 

general levels (Figure 7). Each level of competence includes as a subset each earlier 

level of competence. Practically the higher layers impose additional restrictions on the 

behaviors implemented in the lower layers. The lowest-level layer is layer 0. It is 

implemented and tested by its own. Layer 1 is then built on top of layer 0. It can read 
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information from layer 0 and can inject information into the internal interfaces of layer 

0, suppressing the normal data flow. Level 1 of competence is achieved using layer 1 

and the help of layer 0. The latter continues to run unaware of the fact that layer 1 

interferes with its data paths when it wants to take control. Many layers of competence 

can be added one on top of the other using this mechanism. The functionality of the 

different layers for a mobile robot spawns across three main levels, as stated by 

Stephanou in [9] and by Lefebvre and Saridis in [10]: organization, coordination and 

execution.  

The lower levels in the hierarchy have very fast reactions to sensor readings. 

They don’t usually do complex processing on this information. The higher levels 

usually do sensor fusion and apply special algorithms to extract more abstract 

information about the environment. The decisions are taken with longer delays and with 

a much lower rate. It can be observed that there is a transition between almost 

continuous-time control at the lower levels, with high sample rates, and relatively slow 

discrete events at the highest levels. This transition can be exemplified with the 

difference between a fast PI controller for the wheels motors, and a discrete event 

controller for the implementation of the main plan of action. 
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Figure 7. Subsumption architecture for robot control 

2.3. Navigation Using Artificial Potential Fields 

 Any approach to control a dynamic system needs to use a model of the system to 
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difficult to model or to quantify. The mapping problem is generally regarded as one of 

the most important problems in the pursuit of building truly autonomous mobile robots. 

Map-based navigation calls upon three processes: 

§ Map learning - the process of memorizing the data acquired by the robot 

during exploration in a suitable representation. 

§ Localization - the process of deriving the current position of the robot within 

the map. 

§ Path planning - the process of choosing a sequence of actions in order to 

reach a goal, starting from the current position.  

Map learning and localization are interdependent. Building a map requires the 

position of the robot to be estimated relative to the incomplete map while localization 

requires that the map exists. Path planning is rather independent of the other two and 

takes place once the map and the robot position are already available. 

Various map representations have been used in the robotics literature. They are 

adequate or not depending on the task and the characteristics of the robot and the 

environment.  

Artificial potential field methods for obstacle avoidance have gained increased 

popularity among researchers in the field of mobile robots. The idea of imaginary forces 

acting on a robot has been suggested by Andrews and Hogan [11] and Khatib [12]. The 

approach used to generate the artificial potential fields is to have obstacles exert 

repulsive forces onto the mobile robot, while the target applies an attractive force to it. 

The resultant force F
r

 determines the direction and speed of travel for the robot. The 
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method is simple and elegant, yielding acceptable results with simple and quick 

implementations and without requiring many refinements. The moving robot can come 

in a variety of shapes and sizes. To simplify the development of the solution, the robot 

can be represented as a point while the obstacles and physical workspace boundaries are 

transformed by increasing their size with a value related to the dimension of the robot. 

The potential is a scalar field whose negative gradient is a vector field of 

conservative forces. Any point of the force field will represent the resultant force 

obtained by summing the effects of the attraction force of the target and the repulsion 

forces of the obstacles: 

 
1

( ) ( ) ( ) ( )
i

n

target obs
i

V
=

= + = −∇∑F r F r F r r  (5) 

For mobile robots applications, the potential fields are usually used in a 2-

dimensional space: 

 

( , )( , )

( , )( , )

x

y

V x yF x y
x

V x yF x y
y

∂
= −

∂
∂

= −
∂

  (6) 

The trajectory is generated continuously for any position ( , )x y  of the robot 

following the direction of the steepest descent. It can be considered an optimization 

problem that searches for the point of minimum potential. 

Let’s consider the model of a car-like vehicle with no mass. It is a 

nonholonomic system, so it will most likely deviate from the ideal trajectory resulted 

from the potential field. However, the potential field implicitly provides a feedback 
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mechanism. The F  force is generated for any position of the robot in such a way that it 

will return close to the ideal trajectory.  

 
Figure 8. Model of a car-like robot 

The robot (Figure 8) has the following dynamics: 
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 (7) 

with ( , )x y  the position, θ  the heading angle, Tv  the wheel speed, L the wheel base, and 

φ  the steering angle. 

A potential field corresponding to the following environment is generated: 

§ Goal: a constant force will attract the robot to the target. 

 ( , ) (10,10)G Gx y =  

 2 2( ) ( )G Gr x x y y= − + −  (8) 

 ( , ) G
Gx G

x xF x y K
r
−

= , ( , ) G
Gy G

y yF x y K
r
−

=  (9) 

§ Circular obstacles: a force similar to the electrostatic force will repel the 

robot from the obstacles. 

vT 

φ v 

L 

y 

x θ 
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 1 1( , ) (3,3)x y =  for the first obstacle 

 2 2( , ) (7, 2)x y =  for the second obstacle 

 
{ }( )2( , )

max ( ),
i

ix i

i i

x xF x y K
r a b

−
= −

−
,    

{ }( )2( , )
max ( ),

i
iy i

i i

y yF x y K
r a b

−
= −

−
, (10) 

where r  is the distance between the robot and the goal or the obstacle, ia  is the radius 

of the obstacle and ib limits the relative height of the obstacle. The total force that acts 

on the robot is 

 1 2

1 2

x Gx x x

y Gy y y

F F F F
F F F F

= + +
= + +

 (11) 

and the angle of the force as seen from the robot is 

 1tan y

x

F
F

α −  
=  

 
 (12) 

with corrections for the correct quadrant. 

The initial position for the robot is 0 0( , ) (0,0)x y =  and the initial heading angle 

is 0 6
π

ϕ = . The speed Tv  is often kept constant. The steering angle may be generated by 

the controller based on the difference between the heading angle θ  and the angle α  of 

the resultant force acting on the robot (Figure 9). In this example, a proportional 

controller is implemented:  

 ( )Kϕ θ α= −  (13) 
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Figure 9. Closed-loop control based on the potential field 

 It can be seen from the potential field representation (Figure 10) that the robot 

will try to follow the direction of the steepest descent, which is the direction of the 

resultant force. There are a few issues that can prevent the robot to reach the target: 

§ trap situations due to local minima 

§ no passage between closely spaced obstacles 

§ oscillations in the presence of obstacles or narrow passages 

Some of the problems can be solved by modifying the height or dimension of 

the obstacles, by changing the type of force used to represent them or by using an 

intelligent controller in the structure from Figure 9. 
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Figure 10. The trajectory of the robot using the potential field 

 

2.4. Combination and Coordination of Behaviors 

 The operational characteristics of unmanned vehicles include the following: 

§ Perception: acquire knowledge about the environment using sensors and 

extracting meaningful information to be used in later tasks 

§ Intelligence: operate for a considerable amount of time without human 

intervention while accomplishing useful tasks 

§ Action: in general, move between certain points. 

 

One of the most common applications of fuzzy logic for autonomous robotics is 

to implement individual behaviors. Considering the environment uncertainty that is 

difficult if not impossible to model, effective control algorithms for autonomous 
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navigation should imitate the way humans are operating various vehicles. Fuzzy logic 

allows a suitable knowledge representation of inherently vague notions achieved 

through IF-THEN rules. These rules contain linguistic information that describes the 

problem in a simple and fast manner. In many applications of fuzzy logic, a 

mathematical model of the dynamics of the vehicle is not needed. The only requirement 

for the design of the inference engine is the heuristic control knowledge related to the 

specific problem, usually obtained from a human who knows how to handle the system. 

Tuning is done by trial and error methods. Because of their interpolative nature, fuzzy 

controllers generate smooth movement for the robots and provide robustness and a 

graceful degradation of performance when confronted with noise and other type of 

errors in the data obtained from the sensors. 

 Typically, fuzzy controllers consider a single goal. Isolated reactive behaviors 

are incapable of performing autonomous navigation in complex environments. 

However, more complex tasks can be accomplished through combination and 

cooperation of primitive behaviors. For the situations where there are two or more goals 

active simultaneously, there are two solutions: 

§ Build complex rules whose antecedents consider both goals at the same time. 

§ Write two sets of simple rules, each set specific to a single goal, and 

combine their output using some form of behavior arbitration or command 

fusion. 
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 Arbitration is the process that leads to the activation of a specific behavior or 

that generates weights for multiple simultaneous behaviors. It decides which behaviors 

should influence the operation of the robot and how much. 

The subsumption architecture implemented by Brooks in [8] is representative for 

fixed behavior arbitration. Because the robot was doing a single task, he used a fixed 

arbitration policy, built as a network of suppression and inhibition links. However, 

autonomous robots need to adapt to the environment and to perform multiple tasks. As a 

result, the arbitration strategies have to be dynamic, taking into consideration both the 

environment configuration and the current plan from the higher decisional levels. By 

using fuzzy logic to implement either fixed or dynamic arbitration, the transition 

between behaviors will be smooth and it will be possible to allow partial and concurrent 

activation of behaviors. 

 The most simple and obvious method used to fuse the commands coming from 

multiple behaviors consists in a switching scheme (Figure 11). The behaviors are 

activated only one at a time. The selected dominant behavior solely controls the robot 

until the next decision cycle, whereas the motor commands of the suppressed behaviors 

are completely ignored. The arbitration strategy determines which behavior is activated. 

This switching approach achieves a poor performance in the presence of multiple goals. 

A good example is the potential field navigation using a reactive behavior for the 

avoidance of obstacles that are not represented on the map. There are two goals: the 

global behavior tries to reach the target, while the reactive behavior has to avoid the 

obstacles. When the robot approaches an obstacle, the control is taken away from the 
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target-reaching behavior and given to the obstacle avoidance behavior. The latter can 

take the arbitrary decision of passing the obstacle through the left or through the right. 

Even if the goal of avoiding the obstacle is reached, the global solution to the navigation 

problem can suffer significantly if the wrong direction is chosen. 

 
Figure 11. Switching scheme for command fusion 

Parallel execution of multiple behaviors can overcome some of the limitations of 

the switching scheme. The final commands given to the robot can be calculated in two 

ways: by combining individual decisions (Figure 12) or by combining individual 

preferences (Figure 13). 

The vector summation scheme is a good example of combining individual 

decisions. Considering the previous problem relating to the potential field navigation, 

we can identify two behaviors. Each one provides a vector characterizing the desired 

velocity and direction of movement. By summing the two (weighted) vectors, it is 

possible to obtain an intermediate speed and direction in order to reach both goals. This 

approach does not necessarily need fuzzy logic, although it can be easily implemented 

using weighted singletons as fuzzy outputs and center-of-gravity defuzzification. 
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Figure 12. Command fusion by combining individual decisions 

The real advantage of using fuzzy logic for command fusion becomes evident 

when combining individual preferences. A preference can be represented as a 

probability density function or as a fuzzy set [13]. It provides more information than a 

decision, which is a single (crisp) value. It gives information about an entire range of 

possible values and about how desirable they are for accomplishing the required task. 

Fuzzy logic has many different operators to perform combination and many 

defuzzification functions to perform decision. If the behaviors are also implemented 

using fuzzy logic, it is easy to have them output a fuzzy set instead of a crisp value, by 

eliminating the defuzzification phase. Even behaviors implemented using a different 

mechanism, but that output a PDF, can be easily accommodated. 

 
Figure 13. Command fusion by combining individual preferences 
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All the previous methods of command fusion suffer in some way or another 

when they have to handle competing behaviors that issue conflicting control commands. 

In this case, the resulting motor command from the compromise decision might be sub-

optimal or even worse than any of the individual commands. An example could be the 

situation where the defuzzification results in the selection of a value that lies between 

two peaks of the combined fuzzy set. For a robot that has to avoid an obstacle by going 

to the left or to the right, this would make it go forward, straight into it. There is a need 

for extensions to basic fuzzy command fusion schemes capable of resolving conflicts 

among contradicting actions. A simple example is given in [14], where Yen proposes a 

different defuzzification approach, by replacing the center of gravity with centroid of 

largest defuzzification.  This only considers the output fuzzy set with the largest area 

and completely ignores all the others, making the method similar to the majority voting 

schemes. 

Context-dependent blending of behaviors is the most general type of behavior 

combination that can be realized using fuzzy logic. The method was suggested by 

Ruspini in [15] for the Flakey robot and later by Saffiotti in [16]. They reintroduce 

some form of behavior arbitration into fusion by having a set of higher-level 

supervisory fuzzy rules to activate and deactivate the individual fuzzy behaviors. As a 

consequence, the hierarchical behavior architecture is composed of two distinct layers. 

On the higher level, behavior coordination is achieved by means of supervisory fuzzy 

rules of the form: 

 IF context THEN behavior 
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As seen in Figure 14 (Saffiotti, [17]), each behavior generates preferences in 

order to reach its goal. There is a context of activation for each behavior. It describes 

the applicability and desirability of that particular behavior and also reflects the needs 

of higher-level goals. The preferences of all behaviors, weighted by the truth value of 

their contexts, are combined to obtain the collective preference. The crisp value for the 

associated command is obtained after defuzzification.  

 
Figure 14. Context-dependent blending of behaviors 

The decisions can be event-driven or goal-driven. For example, in the potential 

field navigation problem with a reactive behavior for unknown obstacle avoidance, the 

following event-driven rules can apply: 

 IF obstacle-close THEN avoid-obstacle 

 IF not(obstacle-close) THEN go-to-target 

Depending on the value of the obstacle-close fuzzy variable, the behaviors are 

activated with various strengths: for extreme values, either avoid-obstacle or go-to-

target is fully enabled; for intermediate values, both behaviors are partially enabled. 

The goal-driven approach can be used, for example, to sequence behaviors. If the robot 

has to pass through a set of waypoints, these rules can be used: 

 IF W1 not reached THEN go-to-W1 

B1 

. . . . 

Defuzzify B2 

BN 

Context Rules 
.... 
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 IF W1 reached AND W2 not reached THEN go-to-W2 

 ... 

 IF WN-1 reached AND WN not reached THEN go-to-WN 

The path followed by the robot will be smooth due to fuzzy interpolation of 

behaviors. The direction of movement and the speed will not change suddenly when a 

waypoint is bypassed. The event-driven and the goal-driven blending of behaviors can 

be combined into an arbitrarily complex set of rules in order to represent a full plan of 

action. 

 Some standard algorithms used for mobile robot navigation can be improved or 

replaced by using neuro-fuzzy methods. While many implementations require the use of 

very precise sensors, full models of the systems and complicated mathematics, it can be 

observed in nature that the same actions can be realized by animals or humans using 

less precise sensorial information and without having access to or needing a 

mathematical model of the system or the environment. Fuzzy logic and neural networks 

can be used to implement a similar behavior for machines. Their full potential in this 

area has not been reached yet. 
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CHAPTER 3 

3. MODELING OF AIR AND GROUND VEHICLES 

 

 This chapter presents the hardware testbeds used to validate the algorithms form 

Chapters 4, 5 and 6. It also develops the models of the quadrotor and the ground 

vehicles used in Chapters 5 and 6. 

3.1. Hardware Implementation of the Quadrotor Platform 

 The testbed for the experiments consists in a quadrotor platform with on-board 

sensors and brushless motors, a ground computer with a radio basestation and a remote 

control (Figures 15–18). The mechanical platform is custom-built because the 

commercial versions available are either unreliable or too expensive. The outside 

perimeter is surrounded by carbon fiber rods to prevent damage to the rotors in case of 

collisions. 

The entire electronic system (e.g. circuit boards) and the software are developed 

and built by the author in order to allow maximum flexibility when needed. The control 

algorithms are implemented in Simulink on the ground computer and run directly in the 

Matlab environment in normal or accelerated mode, allowing an instant transition 

between design and experiments. A special S-function block was created to allow the 

Simulink model to receive sensor data from the quadrotor and to send back the motor 
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commands. The block communicates via USB with the base-station module connected 

to the computer. The sample rate is limited at 50 Hz by the speed of the wireless data 

link. All radio communication is done in short packets with minimum latency in such a 

way that during the sample period of 20 ms the sensors are sampled on the quadrotor, 

the data is sent over radio to the base-station and then through USB to the Simulink 

model, the results of the control algorithm are sent back to the base-station and from 

there through radio to the quadrotor to control the servomotors. 

The remote control uses the same two-way communication link to send 

commands to either the quadrotor or the computer (i.e. for reference inputs) and can 

also display important process variables to the pilot on the ground. Brushless DC 

motors with off the shelf speed controllers are used to improve the reliability and the 

repeatability of experiments. A remote-controlled safety switch was implemented in 

order to cut the power to the motors when the pilot is in the proximity of the unit and to 

prevent accidents due to faulty electronics, software or bad control algorithms. 
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Figure 15. The electronic system for the quadrotor helicopter 

 
Figure 16. Quadrotor platform 
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Figure 17. Quadrotor on-board autopilot 

 
Figure 18. Basestation 

The variables that can be measured by the on-board sensors are the following: 

§ angular velocities in body coordinates 

§ linear accelerations in the body coordinates 

§ the intensity of the Earth magnetic field in body coordinates 

§ position and velocities in Earth coordinates (GPS), 

§ the altitude using the ultrasound range sensor, 
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§ temperatures of the gyroscopes, accelerometers and magnetic field sensors 

for calibration, 

§ battery voltage and current, 

§ motor rotation speeds. 

3.2. Quadrotor Model 

 A quadrotor was selected as an implementation platform for the control 

algorithms. The quadrotor is unstable, and so makes an excellent platform for testing 

the suitability and effectiveness of control algorithms. Its dynamics are nonlinear, but 

relatively simple so that nonlinear control schemes can be designed and compared. Yet 

the quadrotor has enough nonlinearities to pose a meaningful challenge to controller 

design methods. Quadrotor is highly susceptible to wind gust disturbances, so that 

disturbance rejection capabilities of proposed controllers can be tested. 

 A good quadrotor model has to use theory usually applied for helicopters. 

Having four rotors in close proximity complicates the problem even further. There are 

interactions between the wakes produced by the rotors and the fuselage, and also 

between individual rotors. Except for hover, the expression for the rotor wash induced 

velocities cannot be obtained in closed-form, creating difficulties when the model is 

used to design certain types of controllers. 

The derivation of the nonlinear dynamics is performed in the North-East-Down 

(NED) inertial coordinates and in the x-y-z body-fixed coordinates (Figure 19). 

Variables resolved to the inertial axes are denoted by an e subscript and the ones 
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resolved to the body axes have the b subscript. The attitude is represented using 

quaternions. Most equations are derived from [20]. 

 The model has 17 states: body angular velocities, attitude quaternion, linear 

velocity, position, rotor speeds. 

 [ ]T
b eb=x q V Pω Ω  (14) 

The inputs into the model are the four motor voltages: 

 mot=u V  

 
Figure 19. The axes definitions for the quadrotor model 

 

Nomenclature 

bω  angular velocity resolved to body frame ( / )rad s  

q  attitude quaternion 

bV  velocity in body frame ( / )m s  

eP  position in the inertial frame ( m ) 

nbI  moment of inertia tensor 2( )kg m⋅  
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F  total force that acts at the center of gravity ( N ) 

M  total moment that acts at the center of gravity ( )N m⋅  

m  total mass of the quadrotor (kg) 

1F – 4F  thrust force for each rotor ( )N  

,mot rotτ τ  motor and rotor torques ( )N m⋅  

ROT CG−R  vector of rotor placement relative to the center of mass ( m ) 

iΩ  rotation speed of the rotors ( / )rad s  

R  rotor radius (m) 

b  number of blades for each rotor 

flapI  moment of inertia tensor for blade flapping 2( )kg m⋅  

motV  motor voltages (V) 

motR  winding resistance for the motors ( Ω ) 

,T VK K  mechanical and electrical constants of the motors 

ρ  air density ( 3/kg m ) 

c  rotor blade chord (m) 

0a  linear lift-curve slope 

LC  lift coefficient 

DC  drag coefficient 

d  rotor wash velocities ( / )m s  
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Short definition of quaternions 

The attitude is represented using quaternions. They parameterize the rotation 

from the inertial reference frame to the body frame using four values. The first is a 

scalar and the rest form a vector: 

 
( )

( )

0

1

2

3

cos 2
sin 2

q
q
q
q

α
α

 
    = =    ⋅  
 

q
r

, (15) 

where α  is the angle of rotation and r  is the axis around which the rotation is made, 

with the three components resolved to the inertial axes. Rotation quaternions have 

unitary norm and the vector r  is a unit vector also. Addition of rotation quaternions 

does not generally result in a rotation quaternion and has no physical meaning. A 

special non-commutative multiplication operation is defined for the quaternions, 

denoted with the ⊗  operator. Multiplying two or more rotation quaternions produces 

another rotation quaternion that represents the total rotation obtained by performing 

each individual rotation for each quaternion in reverse order, starting with the last term 

of the product. Vectors can be rotated from one axis system to another if they are first 

transformed in quaternions with a scalar part equal to zero. For example, the same 

vector r  can be resolved to the inertial frame as er  and to the body frame as br . The 

relationship between er  and br  is the following: 
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where  
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−
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is the conjugate of the rotation quaternion. More details about quaternions can be found 

in [21]. To simplify things, an abuse of notation will be used for rotations of vectors 

using quaternions. Instead of writing the augmented version of the vector as a 

quaternion with a zero scalar part, the normal vector will be used instead. It will be 

considered that the result is the rotated vector. 

Solid body dynamics 

The kinematic and dynamic equations model the vehicle as a rigid body under 

the influence of the Earth gravity and the thrust forces produced by the rotors. 
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 *
e b= ⊗ ⊗P q V q&  (21) 
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Motor and rotor rotation dynamics 
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Rotor aerodynamics 

The rotors are modeled as rigid propellers. Blade flapping and wake interaction 

are ignored. The a subscripts indicate aerodynamic velocities, w wash velocities and i 

inertial velocities. 
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The following variables are resolved in the wind-mast coordinates. This new 

reference system has the same vertical axis as the vehicle body, but it is rotated such 

that the new x coordinate points in the direction of the lateral aero velocity. All the 

aerodynamic expressions have a simpler form in this coordinate system. 

 2 2
|xa WM xa yaV V V= +  (37) 

The body angular velocities are also expressed in wind-mast coordinates: 
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The non-dimensional velocities are defined as 
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From the following expressions for the force and torque coefficients it can be 

seen that they strongly depend on the vertical ( λ ) and the longitudinal ( µ ) velocities. 

This creates a strong coupling between the inertial dynamics and the aerodynamics. 
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
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The following three equations may create an implicit dependence between the 

thrust force and the self-induced wash velocity. A dynamic model of the rotor wake is 

used. Normally the wake has its own dynamics and a good model has to consider it, but 

this adds extra states to the already complicated model, and even worse these states can 

not be measured in real applications. For precise simulations the dynamics can be kept 

and updated along with the main model. One of the advantages of the extra states is that 
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the relation between the thrust force and the wash velocity becomes explicit. For normal 

modeling it is simpler to iterate locally through equations (43)-(45) until steady-state is 

reached and use those values for zC  and wλ  for the rest of the model. 
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 (43) 

 2 2
3

24
3 w a w zCk

λ µ λ λ= − + −&  (44) 

The dimensionless aero velocity takes the self-induced rotor wash into account: 

 a i wλ λ λ= −  (45) 
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 3 2
rot Ta qR V Cτ ρπ=  (49) 

The x and y force and moment coefficients are resolved back to the body axes: 

 | |2 2 2 2

yaxa
x x WM y WM
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VVC C C
V V V V

= −
+ +

 (50) 
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 | |2 2 2 2

ya xa
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V VC C C
V V V V

= +
+ +

 (51) 

 | |2 2 2 2

yaxa
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VVC C C
V V V V

= −
+ +

 (52) 

 | |2 2 2 2

ya xa
my mxWM my WM

xa ya xa ya

V VC C C
V V V V

= +
+ +

 (53) 

 

Rotor forces and moments at the C.G. 

 2 2 ( 1)
x
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C
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Rotor self-induced velocity and wash interaction 

The Glauert model is used for the propellers seen as actuator disks. The induced 

wash velocity depends on the thrust force: 
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 (56) 

The only place where wind appears in the model is here. Wind is included in the 

wash velocity after it is resolved to body coordinates. Wash velocity affects the 

aerodynamic velocity, so wind appears in most aerodynamic equations implicitly. 
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 *
w wind= + ⊗ ⊗V d q V q  (57) 

There is no rotating wake modeled. 

 [ ]0 0 0 T
w =ω  (58) 

The variable i  is odd for clockwise rotor rotation and even for anti-clockwise 

rotation; motτ , rotτ , Ω  are always positive and independent of the direction of rotation. 

3.3. Dynamic Inversion of the Quadrotor Model 

The dynamic representation of the quadrotor system can be written as 
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 (59) 

 

 
Figure 20. The three subsystems of the quadrotor model 

 

From the equations of the quadrotor model it is possible to obtain some 

approximate inverse functions for fω , Vf  and fΩ . These functions are of interest: 
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The following steps are necessary in order to obtain the inverse functions: 

1. Solve for zF  and q  given Na , Ea , Da  and Ψ : 

Condition for having zF  parallel to the acceleration vector: 0, 0x yF F= = . 

The effect of the bb ×ω V  term is ignored. 
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q q  (62) 

 ( )22 2
z N E DF m a a a g= + + −  (63) 

The necessary attitude q  is obtained by calculating the yaw and the tilt 

configurations separately as rotations around the vertical (D) axis and around an axis in 

the horizontal plane that will make the z axis parallel to the desired acceleration vector: 
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 α Ψ= ⊗q q q  (68) 

 

2. Solve for 1 2 3 4, , ,Ω Ω Ω Ω  given , , ,x y z zVω ω ω& & & & : 

There is no closed-form solution to this problem because the thrust force and the 

induced velocity of the rotors depend on each other in equations (43)-(45). A Newton-

Raphson algorithm is used to trim the quadrotor model for the desired accelerations and 

to obtain the necessary rotor speeds. To calculate a starting value for Ω , hover 

conditions are assumed (i.e. no horizontal or vertical speed). Some terms cancel in 

equation (43) and for simplicity 1TB =  and 0ε = . Using the Glauert momentum model 

the relation between the induced velocity and thrust is 

 
2

w
V

T
Aρ

= . (69) 

Because at hover the total velocity V w=  and zF T= −  (by definition the thrust 

T points upwards, but zF  is positive downwards) it is easy to see that 
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2

z
hover

Fw
Aρ

−
=  (70) 

and aλ  can now be calculated from hoverw . In (43) startΩ  is the solution of a second-

order equation that depends on zF . The acceleration zV&  includes the effect of g (i.e. 

0zV =&  means hover) so 

 min ( ) ,0
4z z z
mF V g = − 

 
&  (71) 

where zg  is the projection of the gravitational acceleration on the z axis: 

 [ ] *

0
0 0 1 0zg

g

  
  = ⊗ ⊗  
    

q q  (72) 

The general form of the quadrotor model is 

 ( , )f=x x u& . (73) 

During the Newton-Raphson iterations, all the states x  are kept constant and equal to 

their values at the current operating point, except for the states 1 2 3 4, , ,Ω Ω Ω Ω  which are 

used as inputs. Only the , , ,x y z zVω ω ω& & & &  components of the function f  are considered as 

outputs. Instead of running the full model, from equation (59) it can be seen that fω  and 

Vf  are sufficient. Numerical perturbation on the Ω  inputs is used to construct the 

Jacobian matrix J . The solution for [ ]1 2 3 4
T= Ω Ω Ω ΩΩ  is found after a few 

iterations: 
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and 
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The inverse of kJ  can not be calculated when the rotors are in vortex ring state. The 

model is not valid for high descending velocities, comparable to the rotor wash velocity. 

 

3. Solve for 1 2 3 4, , ,mot mot mot motV V V V  given 1 2 3 4, , ,Ω Ω Ω Ω& & & & : 

The following equations are written without the motor index for simplicity. 

The electro-mechanical system is described by 

 T T
mot mot

V

K KV
R K R

τ = − Ω  (76) 

 1
mot mot

T V

RV
K K

τ= + Ω  (77) 

The inertial dynamics of the motor and propeller is 

 ( ) ( )1 1 i
mot rot

flap
bzbI

τ τ ωΩ = − + −& &  (78) 
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 ( )1 i
mot flap rot fla bp zbI bIτ τ ω+ − −= Ω& &  (79) 

Finally the motor voltage necessary to achieve a certain rotation acceleration is 

 ( ) 11 i
mot flap rot flap

V
bz

T

V bI bR
K

I
K

τ ω Ω + − − + Ω = & &  (80) 

 

3.4. Hardware Implementation of the Ground Robots 

Introduction 

Motion path planning is the process of finding a continuous path from an initial 

position to a prescribed final position (goal) without collision. Artificial potential field 

methods for obstacle avoidance have gained increased popularity among researchers in 

the field of mobile robots. It is generally easy to develop centralized algorithms that 

apply potential field methods for all robots based on complete information about their 

state variables. For many applications, distributed control algorithms are required to 

operate on each mobile robot under conditions of restricted communication channels 

between the robots. The ground robots testbed allows for testing of these algorithms for 

a formation of mobile robots that communicate over a graph structure. 

 

Mobile Robots Testbed 

The testbed for the experiments consists in a set of different mobile robot 

platforms with the model from Figure 23 but with different parameters that result in 

different dynamics. Currently there are three types of robots as shown in Figure 21.  
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Figure 21. Different types of mobile robots 

Each robot has on-board electronics that provides radio communication, controls 

the linear velocity and the heading rate using PID controllers and measures the linear 

acceleration, the wheels speed and the heading rate. Each robot can receive the sensor 

information from any other robot by radio. The same information can optionally be 

received by a computer that can implement centralized control or can simulate 

distributed control (Figure 22). The graph structure that describes the communication 

links between the robots can be the one dictated by the actual communication 

conditions where some robots are too far away from others and can not maintain a 

reliable link with all the members of the formation, or it can be manually set to a 
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specific configuration when the formation is not spread out too far and the 

communication is done reliably between all the members of the formation. The sample 

rate is 20 Hz. For ease of implementation and for testing various graph configurations, 

the formation is controlled by a computer that holds all the state information from all 

the robots but simulates local, distributed control algorithms. 

The sensors present on the robots do not provide absolute position information. 

A video camera is used for absolute localization. Each robot is equipped with a high-

intensity LED. The frame rate of the camera is synchronized with the sample rate of the 

robot sensors and of their actuators. Each LED is activated one at a time for a sample 

period. At each frame, the camera captures only one LED. The computer calculates the 

position of the brightest point in each video frame and based on this information the 

position of each robot within the testbed is obtained. 

 
Figure 22. Communication topology. 
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3.5. Ground Robots Model 

Nomenclature 

,L RΩ Ω  angular velocities of the wheels ( / )rad s  

d  wheels diameter (m) 

l  distance between wheels (m) 

,x y  position coordinates in the inertial frame (m) 

θ  heading angle (rad) 

V  velocity in the body frame ( / )m s  

ω  angular velocity ( / )rad s  

a  acceleration in the body frame 2( / )m s  

 

 
Figure 23. Mobile ground robot model. 

The robots (Figure 23) have two wheels powered by individual motors and 

optionally a caster wheel. The dynamics is described by the following equations: 

d 

l 

θ V

y 

x 
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 (81) 

The robots provide direct measurements for a  using accelerometers, ω  using 

gyroscopes, and indirect measurements for V  and ω  using wheel encoders: 

 
( )

( )
2 L R

L R

dV

d
l

ω

Ω + Ω

= Ω − Ω

=
. (82) 

The x  and y  measurements are provided by the video camera system for each robot. 

 

Kalman Filter 

A discrete-continuous extended Kalman filter (EKF) is used to estimate the 

states of each robot [19]. The model used for the system is 

 ( ) ( )( ) ( ), ( ) ( ) ( ),    ( ) 0, ( )x t f x t u t G t w t w t N Q t= +& ∼  (83) 

 ( )( ) ,    0,k k k k ky h x v v N R= +% ∼ . (84) 

The initialization is done as follows: 

 0 0ˆ ˆ( )x t x=  (85) 

 { }0 0 0( ) ( )TP E x t x t=  (86) 

The gain-update equations are 

 
1

ˆ ˆ ˆ( ) ( ) ( )T T
k k k k k k k k k kK P H x H x P H x R

−− − − − − = +   (87) 

where 
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ˆ

ˆ( )
k

k k
x

hH x
x −

− ∂
=

∂
 (88) 

and 

 ˆ( )k k k k kx x K y h x+ − − = + − %  (89) 

 ˆ( )k k k k kP I K H x P+ − − = −   (90) 

The time propagation equations are 

 ˆ ˆ( ) ( ( ), )kx t f x t u=&  (91) 

 ( ) ( )ˆ ˆ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )T TP t F x t t P t P t F x t t G t Q t G t= + +&  (92) 

where 

 ( )
ˆ( )

ˆ( ),
x t

fF x t t
x

∂
=

∂
. (93) 

The state vector used in the Kalman filter for each robot  has the following components: 

 [ ]Tx y Vθ ω=x . (94) 

The inputs ( )u t  used for the time propagation are the acceleration a  measured by the 

robots and a value of zero for ω& . We thus have 
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x . (95) 

The process noise covariance matrix is dependent on the state variable θ : 

 [ ])( ) cos( si )n(V V aQ t diag q q q q qω ωθ θ= & . (96) 

The available state measurements are 
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 [ ]R
T

k Ly x y ωΩ Ω=  (97) 

and the measurement model is  
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CHAPTER 4 

4. STRUCTURED FLIGHT CONTROLLER FOR A QUADROTOR 

 

4.1. Nomenclature 

bω  angular velocity resolved to body frame ( / )rad s  

q  attitude quaternion 

bV  velocity in body frame ( / )m s  

eR  position in the inertial frame (m) 

nbI  moment of inertia tensor 2( )kg m⋅  

zF  total force of the rotors on the z  axis (N) 

xM – zM  total rotor moments along each axis ( )N m⋅  

1F – 4F  thrust force for each rotor ( )N  

Q  rotor torque ( )N m⋅  

T  rotor thrust force ( )N  

D  rotor diameter (m) 

d  offset of each rotor from the center of mass (m) 

in  rotation frequency of the rotors (Hz) 

iΩ  rotation speed of the rotors ( / )rad s  
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4.2. Introduction 

 Quadrotor helicopters have become popular for research in UAV control due to 

their relatively simple model and the low-cost involved in operating the experimental 

platforms. Many groups were successful in developing autonomous quadrotor vehicles. 

Until only a few years ago, good results were obtained exclusively by using tethers or 

motion guides, or by having precise external sensors to track the attitude and position 

[22–24]. Today there are a few projects that are able to do autonomous indoor or 

outdoor flight using only on-board sensors for attitude estimation and without needing 

any motion-constraining device. The project in [25] uses a commercially-available 

remote-controlled vehicle on which an inertial measurement unit (IMU) and a digital 

signal processing board were installed. Only the attitude is controlled as there is no 

mechanism to measure the position of the quad-rotor. Quaternion representation is used 

for the attitude and backstepping techniques are applied to drive the error quaternion to 

zero. The OS4 project [26] uses integral backstepping for full control of attitude, 

altitude and position on a custom platform. The attitude is sensed using an IMU, the 

altitude using an ultrasound range sensor and the horizontal position using an external 

vision system. Finally, the vehicle developed by the STARMAC project [27] has the 

ability to fly outdoor. A comprehensive model was developed that includes the induced 

air velocity and the effects of blade flapping in translational flight. Unlike the OS4, a 

precise differential GPS unit can be optionally used as a replacement of the vision 

system to measure the position and the linear velocities. 
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This chapter presents a structured flight controller for the quadrotor platform 

developed at the Automation & Robotics Research Institute. A simplified model is 

developed and its parameters are identified. It is used to design a proportional controller 

for stabilizing the attitude and the altitude. Quaternion representation is employed. 

The testbed for the experiments consists in a quadrotor platform with on-board 

sensors and brushless motors, a ground computer and a remote control. The control 

algorithms are implemented in Simulink (Figure 24) on the ground computer and run 

directly in the Matlab environment in normal or accelerated mode, allowing an instant 

transition between design and experiments. 
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Figure 24. Top-level Simulink implementation of the control algorithm 

Instead of the joysticks on the remote control, a pilot can use a second quad-

rotor electronic board equipped with sensors to control the vehicle in a more intuitive 
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manner. By tilting the board in different directions the pilot gives a vector velocity 

reference to the quadrotor. The compass is used on both the pilot board and the vehicle 

board such that independent of the yaw angle, the quadrotor follows the commands 

given by the pilot in the correct direction in the inertial reference frame. This greatly 

simplifies the work of the pilot and allows persons that have no previous training to 

control the vehicle in a natural way. 

4.3. Simplified Quadrotor Model 

 Modeling quadrotors is not an easy task. A good model has to use theory usually 

applied for helicopters. Having four rotors in close proximity complicates the problem 

even further. There are interactions between the wakes produced by the rotors and the 

fuselage, and also between individual rotors. Because the propellers are made of plastic, 

they are quite flexible and present flapping at translational speeds. They can not be 

modeled precisely as propellers and require models similar to helicopter rotors. Except 

for hover, the expression for the rotor wash induced velocities can not be obtained in 

closed-form, creating difficulties when the model is used to design certain types of 

controllers. 

The approach taken in this chapter is to model only the most important elements 

of the quadrotor that define its behavior at hover and ignore the ones that have a 

significant effect only at high speeds. 

The derivation of the nonlinear dynamics is performed in the North-East-Down 

(NED) inertial coordinates and in the x-y-z body-fixed coordinates (Figure 25). 
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Variables resolved to the inertial axes will be denoted by an e subscript and the ones 

resolved to the body axes will have the b subscript. The attitude is represented using 

quaternions. 

 
Figure 25. Quadrotor model 

The kinematic and dynamic equations model the vehicle as a rigid body under 

the influence of the Earth gravity and the thrust forces produced by the rotors. Blade 

flapping, wake interaction and any other effects caused by the translational velocity are 

ignored. 
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where 

 
0

b
b

 
=  

 
ω

ω
. (103) 

The rotors are modeled as propellers in hover. The gyroscopic effect is ignored 

because the mass of all four propellers is only about 3% of the total mass of the vehicle. 

The thrust coefficient TK  and the torque coefficient QK were identified by measuring 

the forces and moments generated by the motors for given rotation speeds: 

 2 4T
TK

n Dρ
=  (104) 

 2 5Q
QK

n Dρ
= . (105) 

The rotation velocities of the rotors are taken in their absolute value and are 

always positive. The direction of rotation is accounted for in the matrix in equation 

(108). 

 2i inπΩ =  (106) 

 ( ), ,     1,4i i i mot i batta f u V iτΩ + Ω = =&  (107) 

Equation (107) models the behavior of the brushless DC motors with the 

propellers attached. From experiments it was observed that the transfer function of the 

motors together with the speed controllers is of first order. The time constant τ  is 0.08 

seconds, ensuring a high enough bandwidth for proper control. The input to the speed 

controllers is a servo-type PWM signal where the command iu  is sent as a variable-

length rectangular pulse. The speed response of the motor is not linear and is 
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approximated by the motf  function that was identified experimentally. The battery 

voltage is measured online. To take into account the slightly different behavior of each 

motor, a gain ia close to one was included also. This gain is estimated during flight for 

each motor and the suitable command is calculated in order to cancel its effect and to 

obtain an identical behavior for all motors. 

The controllers used to stabilize the quadrotor generate a desired vertical force 

and desired moments about each axis in the body frame. The equation below maps the 

forces that are generated by each rotor to the vertical force and the moments. The 

controller will use the inverse of the matrix in equation (108) to obtain the rotor forces 

as a function of the commanded vertical force and moments: 
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 (108) 

where 

  Q

T

K D
c

K
= . (109) 

The inputs into the quadrotor model are the desired forces , 1, 4diF i = . The actual 

platform receives a servo-type PWM signal iu  as an input. Equation (110) calculates 

the desired rotor speed and equation (111) the corresponding command iu : 
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4.4. Attitude Estimation 

The attitude of the quadrotor is estimated using the readings from the on-board 

inertial and magnetic sensors in body coordinates. The angular velocity bω read using 

the gyroscopes is integrated to produce a high-bandwidth, low-noise estimate of the 

attitude quaternion (Figure 26). All sensors are temperature compensated and show no 

significant bias. Still, in the case of the gyroscopes, even small biases below the noise 

floor can cause significant drift if integrated. The accelerometer and the magnetometer 

readings are used together as inputs to the QUEST algorithm [28] to estimate the 

attitude quaternion also. In this case, because of vibrations and the body acceleration, 

the estimate is noisy. In the long term, it does not drift because it is based on absolute 

measurements. That’s why it is used to do slow corrections to the estimate from the 

gyroscopes. This way, the final estimate is almost free of noise, has high bandwidth and 

presents no significant drift. 

 
Figure 26. Attitude estimation 
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The error quaternion q% is defined as the rotation needed to go from the estimated 

orientation quaternion q̂  to the quaternion obtained from the QUEST algorithm QUESTq : 

 *ˆQUEST= ⊗q q q% . (112) 

There are two values possible for q% . Only one will do the rotation with a 

minimum angle. It corresponds to the case when the first component of the quaternion, 

0 cos( 2)q α=%  is positive. If q%  is obtained with 0 0q <%  then −q%  will be used instead. 

The error quaternion corrects the estimate by generating an extra angular 

velocity ω% in the body frame on top of the gyroscope measurements. In the next 

equation for the dynamics of the estimate of the attitude quaternion, ω%  is augmented to 

a quaternion ω% . 

 ( )1ˆ ˆ
2 b ω= ⊗ +q q ω& %  (113) 

To find ω% , q%  is written in the geometric form and its rotation axis is resolved to 

body coordinates: 
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with  

 *
b e= ⊗ ⊗r q r q . (115) 

It is reasonable to make a small-angle assumption about the rotation angle α  in 

the error quaternion. In this case equation (114) becomes 
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A proportional law is chosen to get ω% : 

 e bK α= ⋅ω r% , (117) 

where eK  is the time constant for the convergence of the estimate to the measured 

value. It is chosen to be small enough for noise rejection from measurements but large 

enough to allow for a good cancelation of the gyroscopes drift. Equation (113) 

becomes: 

 ( )*1 1ˆ ˆ ˆ ˆ ˆ
2 2b e eK α= ⊗ + ⊗ ⋅ ⊗ ⊗q q ω q q r q&  (118) 

and finally 
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. (119) 

Equation (119) is integrated using a method that maintains the unit norm of the 

rotation quaternion [29]. The integration over a sample period T  is given by: 

 
* ( ) ( )ˆ ˆ( ) ( )
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t T t e
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+
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q q
q q

&
. (120) 

In order to be able to do the above integration in Simulink, a special S-function 

block was created. It overrides the built-in integration algorithms and performs the 

quaternion integration separately. 
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4.5. Attitude Controller 

Motor Gain Estimation 

The identical behavior of the motors is very important to keep the quadrotor 

stable in hover. The gains ia  from equation (107) are estimated on-line by comparing 

the measurements of iΩ  with their expected value ˆ
iΩ obtained by integrating (107). The 

dynamics of the estimated gain is based on the estimation error: 

 ( ) 
ˆ

i g i meas ia K= Ω − Ω& . (121) 

To avoid adaptation in unwanted operating points, the gain gK is forced to zero 

at rotor speeds far from the nominal speed for hover. 

 

Yaw and Tilt Errors 

The quaternion formulation makes it easy to represent the orientation of a solid 

body relative to a reference axes system in a natural way by defining an axis of rotation 

r and an angle α  for the amount of rotation. The attitude controller receives a desired 

orientation dq  and has to generate the right moment commands to rotate the vehicle 

from the current orientation q to dq . The error quaternion q%  is defined below: 

 d = ⊗q q q%  (122) 

 *
d= ⊗q q q%  (123) 
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The rotation axis of the error quaternion is resolved to the inertial (reference) 

coordinate system. In order to see what rotations are necessary in the body coordinates, 

the error quaternion will also be expressed in body coordinates as bq% : 
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As opposed to the usual approach based on Euler angles (Figure 27) where yaw 

is an angle in the horizontal plane and tilt is expressed using the pitch and roll angles, 

the attitude controller presented in this chapter uses a different parameterization, 

relative to the body coordinate system.  

 
Figure 27. Attitude error representation using Euler angles 
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Figure 28. Attitude error representation in the body frame 

The yaw angle ψ  defines a rotation around the z axis and the tilt is defined by 

two angles with a different meaning: a tilt direction Hγ  in the x y−  plane and the tilt 

amount Hα  (Figure 28). This parameterization is now linear and independent of the 

orientation of the vehicle relative to the inertial frame. The yaw and the tilt errors are 

defined by Vq  and Hq : 

 b H V= ⊗q q q%  (127) 

or in the geometric representation: 
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. (128) 

The amount of tilt is positive by convention: 

 ( )2 2
1 2arccos  1 2  ,      0H Hq qα α π = − + ≤ <   (129) 

The function 2arctan ( , )a b  considers the sign of a  and b , and places the angle in the 

correct quadrant. 
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 2 3 02arctan ( , ) ,      -q qψ π ψ π= ≤ <  (130) 

The vehicle is tilted around the axis defined by xr  and yr : 
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( )
1 2cos 2 sin 2

sin 2x
H

q q
r

ψ ψ
α
−

= , (131) 
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= . (132) 

Hβ  is the direction of the tilt axis in the x y−  plane: 

 ( )2arctan ,H y xr rβ =  (133) 

and Hγ  is the direction of the tilt: 

 ( )2arctan ,H x yr rγ = − . (134) 

 

Attitude Stabilization 

The attitude is stabilized by a yaw controller and by a tilt controller. There are 

no separate controllers for the x and for the y  axes. The desired moments around each 

axis are 
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where 
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are the proportional controllers for tilt and yaw. The derivative action uses 

measurements directly from the gyroscopes: 

 
Dx DH x

Dy DH y

Dz Dz z

M K
M K
M K

ω
ω

ω

= −
= −

= −

 (137) 

The forces that go as commands to the motors are obtained by inverting 

equation (108) and the final PWM commands by using equations (110) and (111).  

4.6. Altitude Controller 

An ultrasound range sensor is used to measure altitude. The force necessary to 

cancel the weight of the quadrotor is generated by a feed-forward path. The vertical 

component of the zF  force (along the D axis) is commanded to be equal to the weight 

plus some contribution from the PID controller for the altitude: 

 PIDz
z

tilt

mg FF
K
+

=  (138) 

where 

 [ ] *

0
0 0 1 0

1
tiltK q q

  
  = ⋅ ⊗ ⊗  
  −  

 (139) 

4.7. Pilot Control 

The first objective of the actual implementation of the control system for the 

quadrotor is to allow an untrained person to fly it using a remote control unit. Usually 

the pilot commands are resolved to the body frame of the vehicle, making control very 
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difficult (Figure 29). It is much easier for a pilot to control the quadrotor if the 

commands are resolved to the pilot’s reference frame instead (Figure 30). The quadrotor 

is able to hover autonomously and to respond in an intuitive manner to the pilot 

commands. A second quadrotor electronic board was installed on the remote control 

(Figure 31). The pilot tilts the remote control in any direction and so generates a 

heading command. The amount of tilt is the velocity command.  

 

 
Figure 29. Pilot control in the vehicle body coordinates 

 
Figure 30. Pilot control in the pilot-referenced coordinates 
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Figure 31. A second quadrotor sensor board detects the pilot’s orientation 

Using the same development as in the case of the quadrotor error quaternion q% , 

the remote control has a tilt amount remα  and a tilt direction remγ  relative to the NED 

coordinate system. Using these angles, dq  for the quadrotor is generated in the 

following way: 
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where 
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and 

 ( )arcsin s remKθ α= . (142) 

The gain sK  determines the sensitivity of the pilot commands. 
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Independent of the yaw angle and independent of the orientation of the pilot, 

using this definition of the commanded quaternion ensures that the quadrotor is tilting 

in the same direction in which the pilot tilts the remote control. 

4.8. Experimental Data and Conclusion 

 The overall control structure is presented in Figure 32.  

 
Figure 32. Overall control structure for the quadrotor 

Experimental data for the attitude control with a horizontal reference is shown in 

Figure 33. The PD controller is able to keep the attitude close to horizontal within a 

tight margin. The small errors are not only a consequence of the controller performance, 

but also of that of the sensors. 
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Figure 33. Experimental data recorded for the pitch angle during hover 

This chapter presented the main components of a simple control system that was 

successful in stabilizing a custom-built quadrotor platform for hover. The most 

important issues were to estimate the attitude reliably and without significant noise 

using only the on-board sensors, to estimate the motor gains in order to ensure similar 

performance and to provide an intuitive control algorithm that can prove that the 

platform can be controlled satisfactory using simple PD controllers. The quaternion 

formulation allowed simple transformations from multiple coordinate systems and a 

natural representation of the controlled variables. The fact that the tilt was represented 

as a direction and the amount may prove useful for other types of controllers. An 

integral component could be added to compensate for the effects of the translational 

velocity. With this parameterization, the yaw motion would have little effect on the 

value of the integral term. 
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Figure 34. Experimental flight outside of the ARRI building 
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CHAPTER 5 

5. APPROXIMATE DYNAMIC PROGRAMMING APPLIED TO UAV 

 

5.1. Introduction 

 There is currently a dichotomy between optimal control and adaptive control. 

Adaptive Control algorithms learn online and give controllers with guaranteed 

performance for unknown systems. On the other hand, optimal control design is 

performed off line and requires full knowledge of the system dynamics. In this research 

we designed Optimal Adaptive Controllers, which learn online in real-time and 

converge to optimal control solutions. For linear time-invariant systems, these 

controllers solve the Riccati equation online in real-time by using data measured along 

the system trajectories. These results show how to approximately solve the optimal 

control problem for nonlinear systems online in real-time, while simultaneously 

guaranteeing that the closed-loop system is stable, i.e. that the state remains bounded. 

This solution requires knowledge of the plant dynamics, but in future work it is possible 

to implement algorithms that only know the structure of the system and not the exact 

dynamics. 

 The main focus of this chapter is to present different mechanisms for efficient 

learning by using as much information about the system and the environment as 
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possible. Learning speed is crucial for a real-time, real-life application that has to 

accomplish a useful task. The control algorithm isn’t usually allowed to generate the 

best commands suitable for exploration and for learning, because this would defeat the 

purpose of having the controller in the first place, which is to follow a designated 

trajectory. The information gathered along the trajectory has to be used efficiently to 

improve the control policy. There is a big amount of data that has to be stored for such a 

task. The system is complex and has a large number of continuous state variables. The 

value function and the policy that corresponds to the infinite number of combinations of 

state variable values and possible commands have to be stored using a finite number of 

parameters. The coding of these two functions is made using function approximation 

with a modified version of radial basis function neurons. Due to their local effect on the 

approximation, the RBF neurons are best suited to hold information that corresponds to 

training data generated only around the current operating point, which is what one can 

obtain by following a normal trajectory without exploration. The usual approach of 

using multilayer perceptrons that have a global effect suffers from having to do a 

compromise between learning speed and the dispersion of the training samples. For 

samples that are concentrated around the operating point, learning has to be very slow 

to avoid deteriorating the approximation precision for states that are far away. 

 Two very important characteristics of learning are generalization and 

classification. The amount of information gathered by the system corresponds only to 

particular state trajectories and particular commands. Still, the value of being in a 

certain state and of using a certain command has to be estimated over an infinite 
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continuous space. The RBF neurons are able to interpolate between the specific points 

where data samples are stored. They don’t provide a global solution, but they certainly 

cover the space around the states likely to be visited in normal conditions. The neural 

network structure is adaptive. Neurons are added or removed as needed. If for a specific 

operating point the existing neurons can’t provide enough accuracy to store a new 

sample, then a new neuron is added in that point. The modified RBF neurons are 

created initially with a global effect in all dimensions. It is only on the dimensions 

where there is a need to discern between different values of the state variable that the 

effect is local. This mechanism allows neurons to partition the state space very 

efficiently. If some state variables do not affect the value function or the control policy 

corresponding to a certain region of the state space, then the neurons in the vicinity of 

that region are global on those dimensions. This organization of the RBF network falls 

in line with the idea that if the function to be approximated is not very complicated, 

then a reasonably small number of parameters should be sufficient to achieve a small 

error even if the number of dimensions of the input space is large. This applies to 

smooth and nice behaving functions. In the worst case, the number of parameters 

needed grows exponentially with the number of inputs. For the current implementation, 

the total number of neurons is kept at a reasonable value by pruning the ones in regions 

that have been visited in the distant past and thus diluting the approximation precision 

in those regions. 
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5.2. Background 

 Neural networks were used to design an adaptive controller in [30] and to learn 

the complete dynamics of the quadrotor online and to stabilize the platform using output 

feedback in [31]. 

 All these projects and many others (as shown in section 4.2) use various 

techniques to stabilize the quadrotor, but they can’t reach optimal performance. On-line 

ADP has a great potential in this direction, while also maintaining the adaptability and 

robustness of other algorithms. Still, the scale of the problem seems too big for standard 

ADP algorithms that are usually applied to systems with two or three states. Even more, 

we try to solve a trajectory tracking problem, not the regulation problem. A compromise 

has to be made. Instead of having overall optimality, the control algorithm is split 

around three smaller loops with similar behavior: translation, attitude and 

motor/propeller control. A global critic is maintained, but the overall behavior only 

converges to some correlated local optimums. 

 Physical analysis of dynamical systems using Lagrangian mechanics, 

Hamiltonian mechanics, etc. produces system descriptions in terms of nonlinear 

ordinary differential equations. Particularly prevalent are nonlinear ODEs in the state-

space form 

 ( , )x f x u=&  (143) 

with the state ( ) nx t ∈ R  and control input ( ) mu t ∈ R  residing in continuous spaces. 

Many systems in aerospace, the automotive industry, process industry, robotics, and 
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elsewhere are conveniently put into this form. In addition to being continuous-state 

space and continuous-input space systems, in contrast to Markov decision processes 

(MDP) which have discrete states and actions, these dynamics are also continuous-time 

(CT) systems. For nonlinear systems, the policy iteration (PI) algorithm was first 

developed by Leake and Liu [32]. Three decades later it was introduced by Beard, 

Saridis, and Wen [33] as a feasible adaptive solution to the CT optimal control problem. 

The bulk of research in ADP has been conducted for systems that operate in 

discrete-time (DT). Although the quadrotor model is a continuous-time model, all other 

signals outside the robot are sampled in discrete time. Therefore, we develop DT ADP 

control algorithms. Some clarification is required regarding the indices used to show the 

current time step and the signals available at each time step. Some of the existing 

literature does not necessarily consider what happens on a real sampled system and 

ignores the fact that signal propagation through the system and the algorithm 

computation require a certain amount of time. For simulations this issue is not very 

important, but for real-time applications things have to be defined very clearly. 

 At time step k  the following two events take place at the dynamic system 

( , )x f x u=& : the state kx  is sampled, and the command ku  is presented to the system. 

There is a zero-order hold for the command, so ku  remains constant for the whole time 

interval [ , 1)k k + . Because ku  must be available concurrently with the sampling of kx , 

there is no time left for the control algorithm to calculate ku  as a function of kx . For a 
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practical sampled system subject to communication and data processing delays there is 

a delay of at least one sample period between the measurements and the commands. 

There are standard methods for sampling or discretizing nonlinear continuous-

time state space ODEs to obtain sampled data forms that are convenient for computer-

based control [34]. The resulting systems unfold in discrete time and are generally of 

the state-space form 

 1 ( , )k k kx F x u+ =  (144) 

with k  the discrete time index. These systems satisfy the 1-step Markov property since 

their state at time 1k +  only depends on the state and inputs at the previous time k . For 

good precision in estimating 1kx + , a Runge-Kutta algorithm can be used to find a 

solution to the ordinary differential equation ( , )x f x u=&  with initial condition kx  and 

constant input ku  for the time interval 1k kT t t+= − . If precision is not needed, the first-

order approximation may be preferred: 

 1 ( , )k k k kx x Tf x u+ = + . (145) 

5.3. Reference Model 

As shown in section 3.3 and in Figure 20, the quadrotor model can be split into 

three cascaded subsystems: translation, attitude and motors/propellers. For each 

subsystem, a reference model is introduced. The reference model generates reference 

accelerations ( refΩ& ,  b refω& ,  b refV& ) needed for tracking. A NN-based actor augments this 

signal and compensates for imprecision in the inverses of the fω , Vf  and fΩ  functions. 
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The reference models are similar for the three loops. The one for the translation 

subsystem is given by: 

 

( ) ( )   

 

  

c ref P c ref D e c e ref

e ref cref aw

e ref e ref
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V a a

P V
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 (146) 

 
Figure 35. Control structure for the translation subsystem 

The purpose of the awa  variable is to prevent the reference model from 

demanding tracking if the inner loop actuators are saturated or if the inner loop 

dynamics is too slow. The actor does not see refx  values that have no effect on the inner 

loop because of saturation or slow dynamics. The learning process can thus continue 

even during saturation. The gains in the reference model can be tuned manually in order 

to provide certain handling qualities to the vehicle, or can be obtained using an optimal 

algorithm. Saturation for the velocities can be introduced in the following manner: 

 ( ) ( ) max min   max min , ,P
c ref D c ref e c e ref

D

KK
K

   
= − + −        
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5.4. Approximate Dynamic Programming 

An actor-critic structure is used for implementing efficient reinforcement 

learning (Figure 36). 

 
Figure 36. Generic ADP structure 

Most ADP algorithms solve regulation problems. The quadrotor is designed to 

follow a certain trajectory and not just to hover. The ADP algorithm has to be modified 

to include an additional reference signal n
kη ∈ R  that is provided from outside the 

model. The tracking error is defined as 

 k k kz x η= − . (148) 

The actor, or the control policy, is 

 1 1( , )k k ku h x z− −= . (149) 

It is important to observe that the command u  can only be calculated as a 

function of previous states. This is a consequence of the fact that the sampling of the 

state variables and of the command is synchronous. Also note that ku  in this section 

represents a vector that contains the following signals: 
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The quadrotor has 17 states and only 4 control inputs ( mot=u V ), thus it is very 

under-actuated. Three control loops with dynamic inversion are used to generate the 4 

control signals. Some learning is forced to reside locally by splitting the actor into local 

actors for each of the three loops. Each actor works with a reduced set of states. The 

critic is global: 

 
Figure 37. Distributed ADP structure for the quadrotor 

The weights of the NN-based actors are set to generate known stable PD 

controllers at the initialization phase of the algorithm. They will depart from this 

configuration while training takes place. 

The control policy is distributed in the three subsystems of the quadrotor: 

translation, attitude and motor/propeller control (Figure 37): 
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 1 1 1 2 2 2 3 3 3( , ) ( , ), ( , ), ( , )
TT T T

k k k k k k k kh x z h x z h x z h x z =    (151) 

where the variables , ,i i ix z u  are subsets of the state vector, the tracking error vector and 

the command vector that are used for the control policies in each of the three loops. 

 The control structure from Figure 37 is inspired from the natural structures 

shown in Figures 5–6 and the subsumption architecture presented in Figure 7 in Chapter 

2. Each local actor reacts very fast to stimuli in the same way a reflex does in the 

nervous system. Each of the three loops sits at a different hierarchical level. The loops 

can work independently, but their behavior is changed by inputs coming from the higher 

level as in the subsumption architecture. The timing scale is also different. At the lowest 

level is the motor/propeller subsystem, with the fastest dynamics. The attitude 

subsystem has slower dynamics, and the translation is the slowest. The highest 

hierarchical level is the critic, which can take decisions about new control policies at a 

completely different time scale. The trajectory reference can be generated using fuzzy-

logic rules extracted from an experienced pilot or by using the formation control 

algorithm from Chapter 6. 

The key idea of reinforcement learning generally and of dynamic programming 

in particular is the use of value functions to organize and structure the search of good 

policies. The notion of goal-directed optimal behavior is captured by defining a 

performance measure or value function 

 ( )( , ) , ,j k
h k k j j j

j k
V x z r x z uγ

∞
−

=

= ∑  (152) 
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with 0 1γ< ≤  a discount factor and 1 1( , )k k ku h x z− −=  a prescribed feedback control 

policy. This is known as the cost-to-go associated to the policy h  and is a sum of 

discounted future costs from the current time k  into the infinite horizon future if the 

policy h  is used at every step. The discount factor reflects the fact that we are less 

concerned about costs acquired further into the future. 

Function ( , , )k k kr x z u  is known as the utility, and is a measure of the one-step cost of 

control. For the tracking problem it is defined in the following manner [35–37]: 

 ( ) ( ) ( ) ( ) ( )1 1, , T TT
k k k k k k k k k k ek k ekr x z u z Qz w w R w w u u S u u+ += + − − + − −  (153) 

where , ,Q R S  are positive definite matrices, kw  is the deviation from the expected 

control 

 k k ekw u u= −  (154) 

and the expected control eku  is the command given in optimal conditions with perfect 

tracking when the nominal subsystem in equation (145) is considered: 

 1 ( , )k k k ekTf uη η η+ = +  (155) 

 ( )1
1

1,k k keku f
T

η η η−
+

= − 
 
 

. (156) 

The objective of optimal control is to select the policy that minimizes the cost to 

obtain 

 ( )( )*
1 1( , ) min , , ,j k

k k j j j jh j k
V x z r x z h x zγ

∞
−

− −
=

 
=  

 
∑  (157) 

which is known as the optimal cost, or optimal value. Then, the optimal control policies 

are given by 
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 ( )( )*
1 1( , ) arg min , , ,j k

k k j j j j
h j k

h x z r x z h x zγ
∞

−
− −

=

 
=  

 
∑ . (158) 

By writing (152) as 

 ( )( )1 1 1 1( , ) , , , ( , ),    (0) 0h k k k k k k h k k hV x z r x z h x z V x z Vγ− − + += + =  (159) 

instead of evaluating the infinite sum (152), one can solve the difference equation to 

obtain the value of using the current policy 1 1( , )k k ku h x z− −= . This is a nonlinear 

Lyapunov equation known as the Bellman equation. Evaluating the value of a current 

policy using the Bellman equation is the first key concept in developing reinforcement 

learning techniques. Bellman’s optimality principle [38] states that “an optimal policy 

has the property that no matter what the previous decisions have been, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from those 

previous decisions”. This gives the Bellman optimality equation or the discrete-time 

Hamilton-Jacobi-Bellman (HJB) equation: 

 ( )( )( )* *
1 1 1 1( , ) min , , , ( , )k k k k k k k kh

V x z r x z h x z V x zγ− − + += + . (160) 

Determining optimal controllers using these equations is considerably easier since the 

optimum value is inside the minimization argument. 

 Since the optimal policy must be known at time 1k +  to use (160) to determine 

the optimal policy at time k , Bellman’s principle yields a backwards-in-time procedure 

for solving the optimal control problem. This is by nature an off-line planning method 

and full knowledge of the system dynamics ( , )k kf x u  is needed. We prefer to avoid 
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using the system dynamics whenever possible to allow for adaptation to changing 

dynamics, and we also need on-line methods. 

 ADP will be used to do on-line reinforcement learning in real-time for solving 

the optimal control problem by using data measured along system trajectories [39]. Q 

learning, introduced by Watkins [40, 41] provides an alternative path to take partial 

derivatives with respect to the control input that does not go through the system, 

allowing optimization without the knowledge of the system dynamics. The quality 

function Q  associated with the policy h  is defined as 

 ( ) ( ) ( )1 1, , , ,,h k k k k k h kk kQ x z u r x z u V x zγ + += + . (161) 

The policy ( )1 1,k k ku h x z− −=  has to be admissible, meaning that it must be 

stabilizing and it must yield a finite cost ( ),h k kV x z . That is why the RBF neural 

networks that approximate the policies 1 2 3, ,h h h  are initialized at the beginning with the 

necessary structure and the weights corresponding to known stabilizing PD controllers. 

The optimal Q  function is defined as 

 ( ) ( ) ( )**
1 1,, , , ,k k k k k k k kV xQ x z u r x u zz γ + += + . (162) 

In terms of *Q  the Bellman optimality equation can be written in the very simple form 

 ( ) ( )( )* *, min , ,k k k ku
V x z Q x z u=  (163) 

and the optimal control as 

 ( ) ( )( )* *, arg min , ,k k k k
u

h x z Q x z u= . (164) 

From the two equations above one can write the value function as 
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 ( ) ( )( )* * *, , , ,k k k k k kV x z Q x z h x z=  (165) 

which can be used to determine the fixed-point equation for *Q : 

 ( ) ( ) ( )*
1

* *
1 1 1, , , , , , ( , )k k k k kk k k k kQ x z h xQ x z u r x z u zγ + + + += + . (166) 

In the absence of control constraints, the control policy ( ),k ku h x z=  that 

generates the minimum of the value function is obtained by solving numerically 

 ( )* , , 0k kQ x z u
u
∂

=
∂

. (167) 

A RBF neural network is used to approximate the Q  function. It has the general form 

 ( , , ) ( , , )T
hQ x z u W x z uφ= . (168) 

Temporal-difference learning uses experience to solve the prediction problem. 

Prediction error is introduced in terms of the Bellman equation as 

 ( )( ) ( ) ( )1 1 1 2 2 1 1 1, , , , , , ,k k k k k k k k k k
T

ke r x z h x z x z u x zW Q uγ φ− − − − − − − −= + −   (169) 

If the Bellman equation holds, 1 0ke − =  and the equation above can be solved for 

the Q  function:  

 ( ) ( )( ) ( )1 1 1 1 1 2 2, , , , , , ,k k k k
T

k k k k k kx z u r x z h x z x uQ zWγ φ− − − − − − −= + . (170) 

Once the value of the Q  function at 1 1 1( , , )k k kx z u− − −  is known, a backup of it is 

made into the RBF neural network by adjusting the weights W  and/or by adding more 

neurons and by reconfiguring their other parameters. This is a separate process that just 

needs to know the ( ), ,x z u  coordinates and the new value to store. The method is 

available in [42]. 
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( ) ( )

( )( ) ( ) ( )
1 1 1 1 1 1

1 1 2 2 1 1 1

, , , ,

, , , , , , ,

T
k k k k k k

T
k k k k k k k

T
k k k

Q x z u W x z u

r x z h x z x z u W x zW u

φ

α γ φ φ

− − − − − −

− − − − − − −

= +

+ − 
 (171) 

which means ( )stored old new oldQ Q Q Qα+ −=  with 0 1α< < . As it can be seen, the update 

of the Q  value is not made completely towards the new value. This slows down the 

learning, but adds robustness. 

 The policy update step is done by solving 

 ( ), , 0k kQ x z u
u
∂

=
∂

 (172) 

after the new Q  value was stored using a gradient-descent numerical search algorithm. 

The value for ( , )k kh x z u=  is stored into the actor RBF neural network using the same 

mechanism as before: 

 ( ) ( ) ( ), , ,T T
k k k k k kh x z U x z u U x zσ β σ= +  −  . (173) 

Faster learning and improved robustness can be obtained by extending the 

learning process back in time and also into the future. Based on the new values for the 

Q  function, training can be done again for a list of previously visited states. The 

algorithm maintains a fixed-size buffer of past values for ( , , )x z u . Equations (171)-

(173) are applied in order for the time indices 2, 3,..., 1k k k d− − − −  where d  is the 

depth of the buffer. When this mechanism is used, the α  and β  constants must have 

lower values. Simulation into the future is made using the system model in equation 

(145) to obtain the future states likely to be reached. If the model is precise, a longer 

horizon can be chosen. Equations (171)-(173) are applied this time for the time indices 
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, 1, 2,...k k k+ + . This mechanism allows the pre-training of the ADP neural networks 

for states that have not been visited before. The system model might not be very 

precise, but it can still provide better information than a completely untrained neural 

network. To prevent the model from affecting data that was already learned well, only 

the neurons with an old update timestamp are trained. 

5.5. Global vs. Local Learning 

 At any moment in time, for the quadrotor in normal operating conditions only 

training data from near the operating point is available. There is no way of doing NN 

training based on samples from the entire state space because a very long time has to be 

spent collecting them. NN with global activation functions can only be trained reliably 

using batch methods with samples that cover the entire input domain. If training is 

attempted using samples concentrated into a specific region, the NN will adapt to that 

region and will forget what it has learned for the other regions of the input domain. That 

is why the learning algorithms for these networks either: 

§ Are very slow in order to do only small changes along the state-space trajectory, 

or 

§ Require very big amplitudes for the probing noise to guarantee that every region 

of the state space is visited often. 
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Figure 38. Local activation functions 

 

Sampling the entire state-space for learning can be computationally expensive 

and impossible to realize with a real system due to time and energy constraints and also 

because the system has to do something useful like following a designated trajectory. In 

the short term, sampling along the system trajectory generated by the policy focuses 

learning to the states that are actually commonly occurring. In the long term, learning 

can suffer because the value function for these states is already very close to the optimal 

value and further learning does not help, and on the other hand there is not enough 

information for less common states. In Figure 38 the state space is not fully explored 

and there are long periods of time when the velocity only resides in a limited zone of 

the state space. This behavior does not follow the two requirements above and neural 

networks with global activation functions can’t be trained with this data. 

One important requirement for efficient learning is the following: optimization 

for the current operating point should not lose information stored in the past for the 

other operating points. When the system reaches a previously visited operating point, it 
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should not have to re-learn everything again. RBF neural networks allow local training 

with data taken from a restricted region of the state space. Training can be done at every 

sample or in batches. Every time only a few neurons that have a significant output for 

the current operating point are affected by learning. Data learned in the past for other 

operating points is preserved and immediately available when needed. This is very 

useful for cases when the operating point has a sudden jump due to severe disturbances. 

An algorithm that only has information around the current operating point would fail 

immediately when such a situation occurs. 

5.6. The Curse of Dimensionality 

 The actor acts as a nonlinear function approximator. Normally we have 

 1 ( )k ku h x+ =  (174) 

In the quadrotor case, because the reference is not zero and the system is nonlinear, we 

need 

 1 ( , )k k ku h x z+ =  (175) 

or for better for learning the context and error can be used: 

 1 ( , )k k k ku h x z x+ = −  (176) 

For each of the position, attitude and motor/propeller loops the state vector 

includes the local states and the external states that have a big coupling effect on the 

loop performance. It is easy to see that this way the input space can easily have n=14 or 

more dimensions. A RBF neural network with the neurons placed on a grid with N 

elements in each dimension would require nN  neurons. For 5N =  and 14n = , 96 10⋅  
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are required. Placing neurons on a grid is no better than a look-up table. The solutions to 

reducing the number of neurons are the following: 

§ preprocess the states to provide signals with physical significance as inputs, 

§ combine multiple states into a lower dimension signal, or 

§ map multiple equivalent regions from the state-space into only one 

One simple example of removing a dimension is presented next. From the 

aerodynamic equations it can be seen that it is not the xV  and yV  velocities that directly 

affect the rotor forces, but their sum. If all the three velocities are inputs to the actor 

NN, the locus of a certain lateral velocity is a cylinder. Every time that specific velocity 

is reached, a different neuron close to the cylinder may be updated.  

 

 
Figure 39. Removing a dimension from the NN input 

Learning can be made much faster by concentrating it from a cylinder to a line. 

This way a dimension can be removed from the input space of the NN. 

 Input processing for the neural networks can also speed up and concentrate 

learning. The usual approach of expressing the attitude by using Euler angles implies 
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that yaw error is an angle in the Earth horizontal plane (around the Down axis) and tilt 

error is expressed as pitch and roll error angles. The errors are resolved to Earth 

coordinates and this adds nonlinearities and couplings. Furthermore, the errors are 

dependent on the attitude of the vehicle relative to the Earth. This is very bad for 

learning because a certain amount of tilt error can have an infinite number of 

parameterizations. 

In the current approach yaw error is an angle ψ  in the x-y plane of the vehicle 

(around the z axis) and tilt is expressed as a tilt direction Hγ  in the x-y plane and a tilt 

amount Hα . The attitude errors are resolved to body coordinates and this makes them 

independent of the attitude of the vehicle relative to the Earth. Learning can be much 

faster and focused because a certain amount of tilt error is always parameterized the 

same way. They also have better physical significance because they express directly 

what corrective movements the vehicle has to make in its own coordinate system, 

allowing for a direct mapping to the actuators. 
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Figure 40. Standard and new error parameterization 

5.7. Local Activation Basis Functions for Function Approximation 

The actor neural network starts with a low number of wide RBF neurons that 

model a PD controller. The neurons are set to have infinite width on the dimensions 

where the input does not influence the output. This makes the quadrotor able to fly 

without any initial learning. Every time a training procedure is started, for any operating 

point, the algorithm tries to tune only the neurons that are active for that operating 

point. Each neuron has a linked list with its neighbors for fast real-time searching. If 

tuning the existing neurons can’t offer enough precision, one more is added at the 

current operating point. 

Each neuron has a time value associated with it from when it was last updated. 

The ones with the oldest values are eliminated if by taking them out and retraining the 

neighbors the precision doesn’t go below a certain limit. This mechanism of adding 

neurons where needed and pruning the old ones without diluting the precision too much 
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allows good function approximation for recent data and reasonable approximation for 

old data that might be slightly outdated anyway. 

5.8. Efficient Learning – Exploration vs. Exploitation 

For a real-time system that can crash at the first mistake, learning has to be very 

efficient. For a practical system, there is a conflict between learning and doing a useful 

job (Figure 41). 

 
Figure 41. Exploitation versus exploration 

An algorithm that requires persistence of excitation is not exciting for people in 

the industry. They work hard to make things smooth and use minimum energy. Under 

these conditions learning has to use whatever data is available during the normal 

operation of the vehicle. Having limited information for learning and limited freedom in 

deviating from the prescribed trajectory means that some information has to be obtained 

from another source. The best one is the actual system model. This seems to exclude 

from the start the model-free ADP algorithms. Other reasons are that they need to 

explore the whole state space numerous times. This can be done with simple systems 

that have 2 or at most 3 states. For an under-actuated system with 17 states the problem 
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becomes intractable. It is true that only 14 that have to be explored because the North, 

East and sometimes the Down positions do not affect the dynamics, but it is still a large 

state space. 

Extensive exploration is time-consuming. Large deviations from the prescribed 

operating point are not desired or allowed. Unnecessary maneuvers increase energy 

consumption and chances of failure. Learning is also usually too slow for practical 

applications. There is another question: how does one place an under-actuated system 

that he doesn’t know yet how to control in different representative points of the state 

space? 

Model-based ADP algorithms can be made to only need local exploration 

around the nominal operating point. The exploration space is reduced by a few orders of 

magnitude. The amplitude of the probing noise can be smaller. Learning can be guided 

and it becomes much faster and more focused. Reasonable modeling errors can be also 

accommodated. 

5.9. Simulation Results 

The control algorithms are implemented in Simulink and run directly in the 

Matlab environment in normal or accelerated mode (Figure 42), allowing an instant 

transition between design and experiments. The same model can run a simulation or can 

control a real quadrotor. A special S-function block was created to allow the Simulink 

model to receive sensor data from the quadrotor and to send back the motor commands. 

The block communicates via USB with a base-station module connected to the 
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computer. Simulink generates and compiles C code for the model and is able to run it in 

real-time. 

 The simulation is done in the presence of either disturbing wind, weight 

imbalance or both at the same time. The quadrotor flies in a loop in the shape of a 10 x 

10 meters square two times for 160 seconds. The wind has 5 m/s in the North direction 

and 5 m/s in the East direction. The ideal trajectory is a square formed by the points 

(0,0)-(0,10)-(10,10)-(10,0) meters. In Figures 43 and 44 the trajectory is shown first 

without adaptation and then with adaptation. Only two or one dimension are selected for 

plotting for the NN weights. When both wind and weight imbalance are present, the 

quadrotor becomes unstable without adaptation. In Figure 43 it is easy to observe the 

consequences of poor exploration of the state space. The adaptation only affects a few 

neurons corresponding to the states and the references that have been visited or applied. 
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Figure 42. Simulink implementation for simulation and experiments 
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Figure 43. Wind disturbance 
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Figure 44. Weight imbalance 
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Figure 45. Adaptation to both wind and weight imbalance 

5.10. Flight Test 

A flight test was done in windy weather. The average wind speed was 12 km/h 

with wind gusts of 14 km/h. The Simulink model for the controller was the same as the 

one used for the simulations, but the main quadrotor model block was replaced by a 

block that communicates directly to the hardware in real-time. The neural network 

weights for the actors were initialized to known stable PD controllers used in the flight 

test from Chapter 4. The plots in the next figures show what has been learned in 

addition to the initial PD configuration. 

The reference flight trajectory was the same square with 10 meter sides. As seen 

in Figure 46, the pitch angle has strong oscillations immediately after take-off. The 

controller is able to adapt to the wind conditions in 40 seconds and the oscillations are 

reduced significantly. 
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Figure 46. Pitch angle during flight 

 Although the attitude subsystem has adapted properly (Figure 47), the 

translation subsystem failed completely. The trajectory of the quadrotor (Figure 48) did 

not follow the square-shaped reference but instead has followed the wind direction 

(blowing from N-NW). An explanation can be obtained by looking at the weights of the 

translation actors with projections for the North and the East directions (Figures 49–50). 

It can be seen that adaptation only took place at the edge of the intervals allowed for the 

translation velocities. The wind speed was much higher than the 1 m/s limits allowed 

for the quadrotor velocities. Once the quadrotor went out of those limits by being 

carried by the wind, the adaptation for the attitude actor became impossible. This shows 

take-off 
landing 
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the importance of designing the neural networks for the actors with an extended input 

range for robustness. 

 
Figure 47. Attitude actor weights 

 

 
Figure 48. Trajectory of the quadrotor 
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Figure 49. Translation actor weights for the North direction 

 
Figure 50. Translation actor weights for the East direction 
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5.11. Conclusion 

 Model-based ADP algorithms do not converge to the optimal solution when the 

model is not fully known or when its parameters deviate from the nominal values. In 

this case model-free algorithms are needed. Unfortunately, model-free ADP algorithms 

can not be used on complex systems directly. They can be considered only after enough 

information about the system and the environment has been acquired and stored in the 

neural networks using other methods. They can further refine the learning, but are not 

suitable for coarse learning from the beginning. A future implementation of a control 

algorithm for a quadrotor that allows the model to change and still converge to the 

optimum control policy would have to follow these steps: 

§ Model the system and the environment with what precision is possible. 

§ Use on-line or off-line model-based ADP to train the Actor and Critic NN. The 

NN should be able to store information for any operating point, not only for the 

nominal operating point. 

§ Use the on-line model-free ADP algorithm with the pre-trained NN. Only local 

exploration would be sufficient for reaching optimality even if the model starts 

departing from nominal values. 

This chapter presented the development of on-line ADP reinforcement learning 

algorithms in suitable format for implementation on a quadrotor platform. A 

formulation for reinforcement learning was developed that consists of focused learning 

on subsystems of the quadrotor, with each subsystem having its own control actor yet 

all subsystems having a globally defined utility function. An objective was to formulate 
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a realistic structure for ADP for practical implementation that also relates to standard 

control system structures such as PID and nonlinear algorithms. 
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CHAPTER 6 

6. DISTRIBUTED CONTROL OF MOBILE ROBOTS 

 

6.1. Nomenclature 

,L RΩ Ω  angular velocities of the wheels ( / )rad s  

d  wheels diameter (m) 

l  distance between wheels (m) 

,x y  position coordinates in the inertial frame (m) 

θ  heading angle (rad) 

V  velocity in the body frame ( / )m s  

ω  angular velocity ( / )rad s  

( , )G V E  communication graph 

id  in-degree 

o
id  out-degree 

ijt  trust of node i  about node j  

ijp  predictability by node i  of  the node j behavior 

ijx  state info about node j  held by node i  
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ih  number of hops from node i to the leader 

iR  set of nodes that request connectivity to node i  

6.2. Introduction 

 Motion path planning is the process of finding a continuous path from an initial 

position to a prescribed final position (goal) without collision. Artificial potential field 

methods for obstacle avoidance have gained increased popularity among researchers in 

the field of mobile robots. The idea of imaginary forces acting on a robot has been 

suggested by Andrews and Hogan [11] and Khatib [12]. It is generally easy to develop 

centralized algorithms that apply potential field methods for all robots based on 

complete information about their state variables. This requirement is not usually 

achieved in practice. For many applications, distributed control algorithms are required 

to operate on each mobile robot under conditions of restricted communication channels 

between the robots. This chapter explains the basic idea behind the potential field path 

planning for a formation of mobile robots that communicate over a graph structure. Due 

to the dynamic environment and the limited communication resources, the robots play a 

network formation game [43] in order to be able to collect information from the most 

trusted nodes and to avoid un-trusted agents. 

The communication graph structure switches at every sample step in order to 

maximize a utility function for each node. This switching behavior guarantees that 

information is obtained from most neighbors at successive moments in time because the 

resources don’t allow for it to be obtained all at once. Estimation of the behavior of the 
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neighbors done by each node compensates somehow for the lack of very recent 

information. 

Although the algorithm is developed for ground robots, the same ideas can be 

used to control a formation of quadrotors in two or in three dimensions. 

6.3. Graph Building Algorithm 

The structure of the communication links between the robots is described by 

using a directed graph (Figure 51). A graph is a pair ( , )G V E=  with V a nonempty set 

of M nodes and a set of edges E V V⊆ × . The edges are represented by an adjacency 

matrix [ ]ijA a=  with 1ija =  if the node j  is outgoing and the node i  is accepting data 

from node j , and 0a =  otherwise. The in-degree id of a node i  is the number of edges 

that have node i  as a destination. The out-degree o
id  is the number of edges that have 

node i  as a source. The in and out-degree are restricted to have the maximum values 

maxd  and respectively max
od . In addition, for each node i  a set of visible nodes is 

defined: 

 ( ) ( )2 2
,  V

i i j i j visV j x x y y r j i = − + − < ≠ 
 

  (177) 
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Leader

Visibility for node i

i

 
Figure 51. Graph structure for the robot formation 

 
The graph building algorithm and the control algorithm work in discrete time. 

The node dynamics in discrete time is 

 ( )( 1) ( ) ( ), ( )i i i i ik k Tf k k+ = +x x x u  (178) 

In addition, each node maintains a list of extra states relative to the other nodes: 

trust, predictability, and number of hops to the formation leader. Their dynamics is 

given below: 

For every (1,..., )p M∈ we have 
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where 1 1ijt− < < , ()δ  is the Heaviside step function and ( )sat x  clips x  between 1−  

and 1 which means complete distrust, and complete trust respectively. The trust 

propagation algorithm uses a voting mechanism. The votes for node p coming from the 

connected neighbors are weighted through the trust value that node i  has for those 

neighbors. Trust from other nodes j  is considered only if node i  has a positive trust 

about them ( 0ijt > ). The 1λ  constant causes the trust to slowly increase over time if no 

incidents take place regarding the minimum distance between nodes. 

The predictability is also limited to the [ 1,1]−  interval. 

 3( 1) ( )ip ipp k sat p k λ + = −   if ip N∉  (180) 

and 

 4 5( 1) ( ˆ ( ) () )ip ip ip ipp k sat k kp kλ λ− + = + − x x   (181) 

if the data from node p  is available at the current time step. 

If no data is available from node p , the value associated to its predictability 

decreases linearly until it hits 1−  or new data becomes available. The 4λ constant 

causes the predictability to increase if there are only small differences between the 

behavior of node p  and its estimate made by node i . A negative value for the 

predictability decreases the trust in that node until trust becomes strongly negative. This 

causes the utility function to ask for data from unpredictable nodes periodically. 

The information about the number of hops from the current node i  to the 

formation leader helps in building networks with a better connectivity and shorter links: 
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 { }min 1
i

i jj N
h h

∈
= + . (182) 

Node i  keeps an estimate for the states of all the other nodes. The control law is 

generated using potential fields: 

 ( )ˆ ˆ ˆ( 1) ( ) ( ), ( )ip ip p ip ipk k Tf k k+ = +x x x u  if ip N∉  (183) 

and 

 ( )ˆ ( 1) ( ) ( ), ( )ip ip p ip ipk k Tf k k+ = +x x x u  if ip N∈  (184) 

where 
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 ( ) ( )2 2
ˆ ˆ ˆ ˆpj ip ij ip ijr x x y y= − + −  (187) 

 ( ), ,,ip y ip x ipatan2 F Fα =  (188) 
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The attraction term from the potential field forces depends on the trust values. If 

there is complete distrust, the attractive potential disappears and the repulsive potential 

is the strongest. That way, nodes stay away from un-trusted elements and can get closer 

to the ones that are trusted. 
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The core of the distributed graph construction consists of the definition of two 

utility functions that capture the benefits and costs for a given strategy is . One utility 

function corresponds to the incoming connection and the other corresponds to the 

outgoing connections. The set of possible strategies is 

 { } { }{ }V
i i iS ji j R ij j V i= ∈ × ∈ −  (190) 

The algorithm searches for the strategy 

 ( )* * *,i i i is a b S= ∈  (191) 

that generates the highest value for the utility functions. The set *
ia  represents the best 

choice of nodes to whom to send data and *
ib  represents the best choice of nodes to be 

asked to provide data. 

The utility functions for node i  are 
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and 
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are log barrier functions. 

The first term in the utility functions penalizes a large number of incoming or 

outgoing connections. It also guarantees that there are no connections beyond the 

allowed maximum number maxd  and max
od . The second term in ( )a

iU G  gives priority to 

the acceptance of outgoing connections to nodes that have a small number of inputs. 

This behavior is included to prevent letting nodes without any input at all. The iβ  

constant can be thought of as a value describing the altruism of node i . The second 

term in ( )b
iU G  adds a preference for receiving connections from nodes that are either 

trusted more or distrusted more. The latter case is needed because nodes that are 

distrusted have to be closely monitored to prevent collisions. The third term discourages 

the creation of links to nodes that are both trusted and predictable. The states of these 

nodes should already be well estimated locally and there is no need to ask for 

information from them too often. The last term penalizes long graph structures that can 

have nodes far away from the leader. Such structures would introduce long propagation 

delays and would not provide an adequate behavior for the formation. 

The ,  ,  , ,  ,  o ec c c α β γ  and ρ  constants are carefully chosen in order to make 

the utility function feasible.  

The graph formation and the control algorithm is the following (Figure 52): 
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Initial State 

All the nodes start connected in a tree structure with the formation leader at the 

root. All the nodes are initialized with trust values 1ijt =  for all the other agents. The 

number of hops to the leader is calculated for each node. The leader receives a value of 

0 . The predictability values are set to zero. 

Discrete-time loop. At time k, each node: 

Receives data on the incoming links and sends data on the outgoing links. The 

variables that are transferred by node i  are the following: ( ),  ( ),  ( )i ij ik t k h kx  with 

(1,..., )j M∈ . 

Calculates ˆ ( 1)ij k +x , ( 1)ijt k +  and ( 1)ih k +  based on the data it has received at 

time k . 

Calculates its node visibility vector based on ˆ ( 1)ij k +x . 

Finds the best nodes *
ia  to receive data from. Makes a request to the nodes in *

ib  

to provide data to it at the next time step 1k +  and provides them with id . The data 

requests that are received are stored in iR . Decides to which nodes *
ia  to send data to at 

time step 1k + . 

The loop repeats at every sample time. 
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Figure 52. Data flow within the graph building algorithm 

6.4. Implementation Results 

 The potential field used to generate commands for the robots is designed using 

the 2 3 4, ,K K K  and robotr  parameters in equations 185–186. 2K  controls the strength of 

the attractive field. 3K  determines the height of the repulsive field. 4K  controls how 

wide the repulsive field becomes when there is no trust. The next figures show the 

configuration of the potential field for three levels of trust in a robot. 
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Figure 53. Potential field for a node that is completely trusted 

 
Figure 54. Potential field for a node that has zero trust 
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Figure 55. Potential field for a node that is completely distrusted 

Robot 1 is forced to travel diagonally from the lower-left to the upper-right 

corner. The other robots are placed in its path. The initial configuration is shown in 

Figure 56. When robot 1 gets too close to robot 2, the trust that robot 2 has about robot 

1 decreases (Figure 59). The collision is avoided and robot 1 continues its path. Since 

there is no danger of a collision to robot 2, the trust that robot 2 has about robot 1 starts 

to increase again. During all this time, robot 2 communicates with various neighbors 

and with robot 1. Robot 2 asks for messages from robot 1 more often when the trust is 

smaller. 
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Figure 56. Initial configuration of the robots 

 
Figure 57. Node 1 gets too close to node 2 
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Figure 58. Final configuration of the robots 

 
Figure 59. The trust that robot 2 has in robot 1 

Robot 1 gets too close 

Trust increases if proper 
distance is maintained 
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6.5. Conclusion 

This chapter presented an online, real-time, decentralized algorithm for graph 

building for a formation of mobile robots with limited communication resources. The 

algorithm uses additional state variables such as trust and predictability stored by every 

node in order to compensate for the lack of communication links between all the robots. 

The communication graph structure switches at every sample step in order to maximize 

a utility function for each node. This switching behavior guarantees that information is 

obtained from most neighbors at successive moments in time because the resources 

don’t allow for it to be obtained all at once. Estimation of the behavior of the neighbors 

done by each node compensates for the lack of very recent information. The algorithm 

is very well suited to real-world applications in hostile environments where the amount 

of information that can be exchanged between nodes has to be severely restricted. 

Future research is needed to find ways to automatically optimize the tuning 

parameters in the utility function for different formation configurations and different 

communication parameters. 
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CHAPTER 7 

7. CONCLUSION 

 

7.1. Conclusion 

There is currently a dichotomy between optimal control and adaptive control. 

Adaptive control algorithms learn online and give controllers with guaranteed 

performance for unknown systems. On the other hand, optimal control design is 

performed off line and requires full knowledge of the system dynamics. The current 

work develops an optimal adaptive controller that solves approximately the optimal 

control problem for nonlinear systems online in real-time. This solution requires some 

knowledge of the plant structure and dynamics. 

 Research topics in UAV control become more and more complex. The industry 

and the Armed Forces are reluctant to accept complicated theoretical solutions without a 

practical implementation to prove their applicability. The previous chapters have 

presented the control structures, the models and some algorithms that can be used to 

make the robots autonomous, to allow the human pilots to provide only low-bandwidth, 

high-level commands without worrying about the internal dynamics of the vehicles they 

control, and to allow the robots to adapt to and to gather knowledge about the 

environment. 
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 The major contribution of this work is the application of ADP algorithms to 

complex robotic platforms that have to accomplish their missions in unstructured 

environments where their success depends on their ability to learn and to adapt to 

unforeseen conditions. 

 The scale of the problem seems too big for standard ADP algorithms that are 

usually applied to systems with two or three states. Even more, we try to solve a 

trajectory tracking problem, not the regulation problem. A compromise had to be made. 

Instead of having overall optimality, the control algorithm is split around three smaller 

loops with similar behavior: translation, attitude and motor/propeller control. A global 

critic is maintained, but the overall behavior only converges to some local optimum. 

 Learning is focused by pre-processing the inputs to the neural networks in order 

to reduce the number of input dimensions and to provide significant and meaningful 

data that is stored in the same place for equivalent contexts. The value function and the 

policy that correspond to the infinite number of combinations of state variable values 

and possible commands have to be stored using a finite number of parameters. The 

coding of these two functions is made using function approximation with a modified 

version of RBF neurons. Due to their local effect on the approximation, the RBF 

neurons are best suited to hold information that corresponds to training data generated 

only around the current operating point, which is what one can obtain by following a 

normal trajectory without extensive exploration. 

Autonomy of a single robotic platform is usually not enough for the complex 

missions that involve a large number of robots. Intelligent, distributed formation control 
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over graph structures when limited communication resources are available is a 

requirement in such cases. Inspired by nature, a trust variable is introduced. It stores 

information about the other nodes that can be used in place of costly negotiations 

between them. The control algorithm uses trust to generate the commands in order to 

avoid misbehaving nodes and to maintain a formation. At the same time the trust 

dynamics is affected by the behavior of the neighboring nodes and by their own 

estimation of trust through a local voting protocol. 

7.2. Future Research Directions 

 During the 20th century, control theory has played a major role in Engineering 

and Technology. The 21st century will certainly see major advancements in this field. 

Classical control will be replaced with theory that can be applied not only to relatively 

simple, conventional installations, but also to more general systems from Biology, 

Sociology, Economy, Internet and many others. A list of nature-inspired concepts from 

the present work can be easily enumerated: neural networks, fuzzy logic, the 

subsumption architecture, potential fields, reinforcement learning, focalization and 

localization of learning, restricted communication, trust. The next major development in 

control theory will be based on the way the information is processed to produce 

knowledge. ADP is a first step in this direction. Data mining algorithms can make it 

more efficient and more robust to the various sources of noise found in the real-world 

environment. 
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