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ABSTRACT 

 
BUCKLING ANALYSIS OF THIN PLATES WITH OR WITHOUT A HOLE 

UNDER ARBITRARY BOUNDARY CONDITIONS 

USING THE GALERKIN METHOD 

 

Srider Thirupachoor Comerica, M.S. 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Dr. Seiichi Nomura 

 This thesis demonstrates how to find the critical buckling load value of thin plates with 

or without a hole under different boundary conditions using the Galerkin method. The use of 

symbolic software is essential due to the lengthy computations involved because of the 

complexity of the problems. 

 Firstly, the lateral deflection of the plate is expressed in a series of polynomials each of 

which satisfies the given boundary conditions. Then by using the Galerkin method, the 

coefficients of these polynomials are found and with the help of symbolic algebra system, the 

matrices for the corresponding eigenvalue problem are built from which the buckling loads 

(eigenvalues) are determined. Since this analysis involves very complex calculations, it is 

almost impossible to carry out all the computations involved without the aid of symbolic 

software. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Elasticity is a captivating subject that deals with the determination of stresses and 

displacements in a body in the presence of external forces. Elasticity is governed by Hooke’s 

law i.e., the deformation is proportional to the load that produces them. The material exhibiting 

elasticity has the property for complete recovery to its natural shape upon the removal of the 

applied external load. 

It all began in the early 1800s when Cauchy, Poisson, Lagrange, Kirchhoff, and Navier 

did some significant research on the analysis of plates. Euler in 1766 was the first to define a 

mathematical approach to the membrane theory of plates by solving the problem of free 

vibrations of rectangular and circular elastic membranes using two systems of stretched strings 

normal to each other [1]. It can be said that Navier (1785-1836) was the founder of the modern 

theory of elasticity and his numerous research work includes solutions of various plate 

problems. It was Navier who derived the correct differential equation of rectangular plates with 

flexural resistance and later Poisson (1829) extended it to the lateral vibration of circular plates 

which was applicable only to thick plates. But it was Kirchhoff (1824-1887) whose intense 

research work on plate theory defines a method which takes into account the combined bending 

and stretching [2]. The great techniques defined by these engineers were very significant which 

are still used in most of the engineering analysis done today. 

Since the coming of the digital computer i.e., in the last 40 years other methods such as 

finite differences and finite elements have come into existence. It was Topp, Martin, Tuner, and 

Clough [3] in 1956 who introduced the concept of the finite element method to solve complex 
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plate and shell problems. The use of the finite element method required high speed computers 

with high storage capacity.  

1.2 Method of Weighted Residuals 

 The Method of Weighted Residual (MWR) is an approximation technique for solving 

differential equations and it’s been in use even before the finite element method came into 

existence. The basic idea of MWR is to drive a residual error to zero through a set of 

orthogonality conditions. The idea is to use a polynomial involving the parameters to 

approximate the differential equation that satisfies the boundary conditions involved. 

There are three different methods under MWR, 

1.2.1 Collocation Method 

Choose    so that the residual error vanishes at N selected points, i.e. 

  (  )                               (3.7) 

Although this method gives the exact values at the selected points, there is no guarantee that 

the approximation behaves nicely between the selected points. 

1.2.2 Least Square Method 

Choose    so that the magnitude of residual error becomes the minimum i.e. 

 ‖ ( )‖                   (3.8) 

The least square method is by far the oldest of the methods of weighted residuals. 

1.2.3 Galerkin Method 

 The Galerkin method is credited to the great Russian mathematician Boris Galerkin. 

This method can be applied in various areas of engineering and science such as acoustics, 

neutron transport, fluid mechanics, fracture mechanics, electromagnetics, and dynamics. The 

Galerkin method was introduced by Galerkin in 1915 and it was used extensively from 1950 

onwards for various mechanical and aerospace applications. 
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The Galerkin method can be used for converting a continuous operator problem such 

as a differential equation to a discrete problem. The concept of the Galerkin method is to apply  

the method of variation of parameters to a function space, by converting the equation to a weak 

formulation. The next step is to apply the boundary conditions on the function space to 

characterize the space with a finite set of base functions. The Galerkin method and the finite 

element method (which is a special case of Galerkin method) are currently the most commonly 

used numerical technique to solve various nonlinear problems. 

1.3 Use of Symbolic Algebra Software 

Since the development of hardware and software of computers many software 

packages such as MATHEMATICA and MAPLE has come into existence. During the 1970’s 

software packages such as MACSYMA and REDUCE were used which were written in LISP 

and it required high memory and processing capacity for performing routine mathematical 

calculations. Packages such as MATHEMATICA and MAPLE are written in the C language and 

its variations and are the most commonly used packages nowadays. 

The coming of MATHEMATICA in 1988 marked the beginning of the modern technical 

computing. But the visionary concept of MATHEMATICA was to create once and for all a single 

system that could handle all the various aspects of technical computing--and beyond--in a 

coherent and unified way. The key advancement that made this possible was the invention of a 

new kind of symbolic computer language that could, for the first time, manipulate the very wide 

range of objects needed to achieve the generality required for technical computing, using only a 

fairly small number of basic primitives. 

The major features of symbolic algebra systems are performing integrations, 

differentiations, expansions, and solving equations exactly. The feature that makes this software 

stand out from the rest is its ability to deal with both symbolic formulae and numbers. 
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This research demonstrates how to find the critical buckling load value of a square plate 

with or without a hole under different boundary conditions using the Galerkin method. This 

research stands out from the rest as one of the unique method to have dealt with the buckling 

analysis of a plate with a hole using the Galerkin method. In this research work, a series of 

polynomial is assumed which represents the lateral deflection of the plate and each of these 

polynomials satisfies the associated boundary conditions. The Galerkin method is used to find 

the coefficients of these polynomials. The use of the symbolic software (MATHEMATICA) in this 

thesis is essential due to the rigorous calculations involved due to the complexity of the 

geometry. 
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CHAPTER 2 

 THEORY OF BUCKLING 

2.1 Definition of Buckling 

 When a thin structure is loaded in compression, for small loads it deforms with hardly 

any noticeable change in geometry and load carrying ability. Once it reaches a critical load 

value, the structure tends to suddenly experience a large deformation and it may lose its ability 

to carry the applied load. At this juncture, the structure is considered to have buckled. For 

example, when an axial compressive force is applied to a rod, it first shortens slightly but once it 

reaches the critical load the rod bows out, and it can be stated that the rod has buckled. 

 Buckling is also termed as structural instability and is classified into two categories: 

2.1.1 Bifurcation Buckling 

 Bifurcation buckling is the one in which the deflection under compressive load changes 

from one direction to a different direction i.e., from axial shortening to lateral deflection. 

2.1.2 Limit Load Buckling 

 Limit load buckling is the one in which the structure attains a maximum load without any 

previous bifurcation i.e., with only one mode of deflection. 

 Other classifications of buckling are made with respect to the displacement magnitude 

(i.e., small or large), or metal behavior such as elastic buckling or inelastic buckling, or static 

versus dynamic buckling. 

2.2 Governing Equation Derivation 

Here we consider the classical plate theory (CPT) which is based on the Kirchhoff hypothesis 

[4]: 
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(a) Straight lines perpendicular to the mid-surface (i.e., transverse normals) before deformation 

remain straight after deformation. 

(b) The transverse normals do not experience elongation (i.e., they are inextensible). 

(c) The transverse normals rotate such that they remain perpendicular to the mid-surface after 

deformation. 

 

Figure 2.1 Differential plate elements with stress resultants  

The equilibrium condition is satisfied by taking a rectangular differential element of dimensions 

dx, dy and h as shown in Figure 2.1. Only the middle surface of the plate is shown in the figure 

for simplicity.  

Considering that the sum of moments of all forces around the Y axis is zero we get, 

(   
   

  
  )        (    

    

  
  )         (   

   

  
  )   

  

 
 

    
  

 
               (2.1) 

After simplification Eq. (2.1) becomes, 

   

  
      

    

  
                      (2.2) 
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and, after division by      , we get  

   

  
 
    

  
            (2.3) 

Similarly the sum of moments around X axis is, 

   

  
 
    

  
           (2.4) 

The summation of all forces in the z direction yields the third equilibrium equation: 

   

  
      

   

  
                      (2.5) 

after division by      , we get 

   

  
 
   

  
             (2.6) 

Substituting Eqs. (2.3) and (2.4) into Eq. (2.6) and assuming        , we get 

    

   
  

     

     
 
    

   
    (   )      (2.7) 

The bending and twisting moments in Eq. (2.7) depends on the strains and the strains are 

functions of the displacement components. 

Now we have, 

   
 

    
(      )       (2.8) 

Similarly, 

   
 

    
(      )       (2.9) 

Next, we consider the geometry of the deflected plate to express strains in terms of 

displacement.  

        
   

   
        (2.10) 
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and 

     
   

   
      (2.11) 

The stress components    and    produce bending moments in the plate element in a manner 

similar to that in elementary beam theory. Hence, by integrating the normal stress components, 

the bending moments, acting on the plate element are obtained: 

   ∫   
    

    
         and      ∫   

    

    
           (2.12) 

Similarly, the twisting moments produced by the shear stresses           can be 

calculated from 

    ∫    
    

    
         and       ∫    

    

    
        (2.13) 

but          , and hence        . 

By substituting Eqs. (2.10) and (2.11) into Eqs. (2.8) and (2.9) we can express the stresses     

and    in terms of lateral deflection  . Hence we can write 

    
  

    
(
   

   
  

   

   
)      (2.14) 

and 

    
  

    
(
   

   
  

   

   
)       (2.15) 

Integrating Eq. (2.12) after substituting Eqs. (2.14) and (2.15), we get 

     = -D(
   

   
 +   

   

   
)     (2.16) 

                                                          = -D(  
   

   
  

   

   
)         (2.17) 

                                                           =     = D(1 -  )
   

    
     (2.18) 
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The stress resultant expressions acting on the transverse faces at (x+dx, y) and (x, y+dy) are 

determined by expanding each into a Taylor’ series about (x,y). The higher order terms can be 

neglected since dx and dy are infinitesimally small values. 

                                                          Qxz
*
 = Qxz + 

    

  
       (2.19) 

                                                          Qyz
*
 = Qyz + 

    

  
        (2.20) 

       mx
* =    + 

   

  
       (2.21) 

       my
*
=    + 

   

  
       (2.22) 

         mxy
*
        

    

  
        (2.23) 

         myx
*       

    

  
        (2.24) 

The condition of a vanishing resultant force in the 3-direction results in the equation 

            
    

  
 
    

  
                                                     (2.25) 

If the resultant moment about an edge parallel to the x-axis is set to zero and by neglecting 

higher order terms the resulting equation becomes 

        
    

  
 
   

  
                                                 (2.26) 

The equilibrium equation with respect to rotation about an edge parallel to the y-axis is  

                   
   

  
 
    

  
             (2.27) 

By substituting Eq. (2.26) and Eq. (2.27) into Eq. (2.25) we get the resulting equation as 

       
    

   
  

     

    
 
    

   
               (2.28) 

By substituting the Eqs. (2.16), (2.17) and (2.18) into Eqs. (2.26) and (2.27) we can get the 

expressions for Qxz and Qyz in terms of the deflection of the middle surface 
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       (
   

   
 

   

     
)    

 

  
(   )   (2.29) 

                  (
   

   
 

   

     
)    

 

  
(   )       (2.30) 

              
  

   
 

  

   
      (2.31) 

2.2.1 Governing Equation 

 2.2.1.1 Rectangular Coordinates 

  By substituting Eqs. (2.16), (2.17), and (2.18) into the equilibrium equation of 

(2.28) the governing partial differential equation defining the lateral deflection of the middle 

surface in terms of the applied transverse load is obtained.  

   

   
  

   

      
 
   

   
 
 

 

   

   
      (2.32) 

or         
 

 

   

   
       (2.33) 

or            
 

 

   

   
     (2.34) 

where,       
  

   
  

  

      
 

  

   
     (2.35) 

The fourth-order partial differential equation of (2.34) can be reduced to two separate second-

order partial differential equations which are preferred sometimes based upon the method of 

solution to be used and it’s done in the following way, 

Adding Eq. (2.18) and Eq. (2.19),              (   )( 
 
 
 

   
 +  

   

   
)              (2.36) 

or             
   

   
 +  

   

   
  

     

  (   )
     (2.37) 

or                  
 

 
     (2.38) 

where,         M =  
     

(   )
    (2.39) 
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Substituting Eq. (2.38) in Eq. (2.34) 

            (
 

 
)   

 

 
    (2.40) 

or                                 (2.41) 

Hence, the fourth order equation of (2.32) has been reduced to two separate second-

order equation of (2.38) and (2.41). The quantity m(x, y) can be found by solving Eq. (2.41) by 

using the proper boundary condition and by substituting a value for the transverse load p and 

Eq. (2.38) can be solved for w(x,y). 

2.2.1.2 Polar Coordinates 

The governing equations for circular plates can be determined by using the 

transformation relations (x = r cos  , y = r sin ) between the polar coordinates (r,  ) and the 

rectangular coordinates (x,y) (see Fig. 2.3). The equation of equilibrium is, 

     

   
  

     

    
 
     

   
 

 

  
(   

  

  
    

  

  
)  

 

  
(   

  

  
    

  

  
)  (2.42) 

where (Mxx,Myy) are the bending moments per unit length, Mxy is the twisting moment per unit 

length, and (Nxx, Nyy, Nxy) are the applied inplane compressive and shear forces measure per 

unit length(see Fig. 2.2) 

 

  Figure 2.2 Applied inplane forces and moments in a plate element [4] 



 

12 

 

 

By using the transformation relations one can write the equation of equilibrium (2.25) 

governing the buckling of a circular plate as 

                 
 

 
(
 

  
(   )  

   

  
 

 

  
(    

  

  
)  

 

 

 

  
(   

  

  
))       (2.43) 

where (Qr,  ) are the shear forces, (Mr,       ) are the bending moments, and (Nrr,        ) 

are the inplane compressive forces(see Fig. 4.3). 

                 
 

 
(
 

  
(    )  

 

  
       )     (2.44) 

                 
 

 
(
 

  
(    )  

 

  
       )     (2.45) 

 

 Figure 2.3 Transformation between rectangular and polar coordinate systems [4] 

     ( 
   

   
   

 

 
(
  

  
 
 

 

   

   
))     (2.46) 

        ( 
   

   
   

 

 
(
  

  
 
 

 

   

   
))     (2.47) 

        (   ) 
 

 
(
   

    
 
 

 

  

  
)     (2.48) 
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  Figure 2.4 Moments and shear forces on an element of a circular plate [4] 

The natural (force) boundary conditions can be written as 

    
     (   

  

  
   

 

 
   

  

  
      (

 

 

  

  
   

  

  
  ))  (2.49) 

where 

        
    

  
          

 

 

    

  
           

    

  
    (2.50) 

The boundary conditions for circular plates involve defining one quantity in each of the following 

pairs on positive r- and  - planes: 

At r = r
*
, constant: 

   w = w
*
  or   r

*
Vr = r

*
Vr

*
     (2.51) 

   
  

  
 
   

  
 or   r

*
Mrr = r

*
Mrr

*
     (2.52) 
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At     , constant: 

   w = w
*  

or         
      (2.53) 

           
 

 

  

  
 
 

 

   

  
 or           

      (2.54) 

where 

          
 

 

    

  
    

  

  
 
 

 
   

  

  
     (2.55) 

          
    

  
    

  

  
    

  

  
     (2.56) 

The moments are related to the deflection w by 

         (
   

   
 
 

 
(
  

  
 
 

 

   

   
))     (2.57) 

         ( 
   

   
 
 

 
(
  

  
 
 

 

   

   
))     (2.58) 

        (   ) 
 

 
(
   

    
 
 

 

  

  
)     (2.59) 

Now the equation of equilibrium for an isotropic plate can be written in terms of the 

displacement with the help of Eqs. (2.57), (2.58), (2.59) as 

 (
 

 

 

  
( 

 

  
)  

 

  

  

   
) (

 

 

 

  
( 

  

  
)  

 

  

   

   
)   

 

 

 

  
(    

  

  
)  

 

  

 

  
(   

  

  
)   (2.60) 

Using the Laplace operator, 

      
 

 

 

  
( 

 

  
)  

 

  
  

   
      (2.61) 

Equation (2.60) can be written simply as 

          
 

 

 

  
(    

  

  
)  

 

  
 

  
(   

  

  
)       (2.62) 

For axisymmetric case all variables are independent of the angular coordinate  , and they are 

functions of the radial coordinate r only. Hence the moment-deflection relationships for this case 

becomes, 
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          (
   

   
 
 

 

  

  
)     (2.63) 

          ( 
   

   
 
 

 

  

  
)     (2.64) 

         
 

  
(
 

 

 

  
( 

  

  
))     (2.65) 

and the equation of equilibrium simplifies to 

    
 

 

 

  
( 

 

  
(
 

 

 

  
( 

  

  
)))  

 

 

 

  
(    

  

  
)                 (2.66) 

2.3 Boundary Conditions 

 A complete solution of the governing equation (2.34) is based upon the knowledge of 

the conditions of the plate at the boundaries in terms of the lateral deflection of the middle 

surface w(x,y). Hence, expressions for these conditions must be developed. We consider three 

types of boundary conditions: clamped, simply supported, and free. 

2.3.1 Rectangular Coordinates 

 2.3.1.1 Clamped edge condition 

 A clamped edge is one which is geometrically fully restrained i.e., the deflection and the 

slope of the middle surface must vanish at the boundary. The boundary conditions on a 

clamped edge parallel to the y-axis at x=a are, 

   
   

       (2.67) 

  

  
  
   

        (2.68) 

The boundary conditions on a clamped edge parallel to the x-axis at y=b are 

   
   

       (2.69) 

  

  
  
   

        (2.70) 
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2.3.1.2 Simply supported edge condition 

 A simply supported edge is the one in which the transverse deflection and normal 

bending moment are zero. The conditions on a simply supported edge parallel to the y-axis at 

x=a are 

   
   

       (2.71) 

         (
   

   
   

   

   
)          (2.72) 

The boundary conditions on a simply supported edge parallel to the x-axis at y=b are 

       
   

       (2.73) 

         ( 
   

   
  

   

   
)          (2.74) 

2.3.1.3 Free edge Condition 

A free edge condition is defined as the one which is geometrically not restrained in any 

manner. Hence, we have 

            ( 
   

   
  

   

   
)          (2.75) 

            (
   

   
 (   )

   

     
)         (2.76) 

2.3.2 Polar Coordinates 

2.3.2.1 Clamped edge condition 

The boundary condition equations for a clamped edge condition in polar coordinates 

are 

  
   

        (2.77) 

  

  
 
   

        (2.78) 
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2.3.2.2 Simply Supported edge condition 

The boundary condition equations for a simply supported edge condition in polar 

coordinates are 

  
   

        (2.79) 

   

   
 
  

 
(
  

  
 
 

 

   

   
) 
   

      (2.80) 

2.3.2.3 Free edge condition 

 The boundary condition equations for a free edge condition in polar coordinates 

are 

   

   
 
  

 
(
  

  
 
 

 

   

   
) 
   

      (2.81) 

   

   
 
 

 

   

   
 

 

  
  

  
 
    

  
  

  

   

   
 
    

  
   

   
 
   

    (2.82) 

2.4 Galerkin Method 

 The Galerkin method is a member of the large class of methods known as the 

method of weighted residuals (MWR) and the concept of weighted residuals was introduced by 

Crandall. 

Consider a differential equation that can be represented in the following form 

                 (2.87) 

in a domain D(x,y), with boundary conditions is given as 

  ( )               (2.88) 

on    the boundary of D. The Galerkin method assumes that   can be accurately represented 

by an approximate solution  

  ̃  ∑    (   )

 

   

           (2.89) 
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where the      are known analytic functions, and       are coefficients to be determined. By 

substituting Eq. (2.89) into Eq. (2.87), we get a nonzero residual, R, given by 

  (                  )   ( ̃)    ∑   (  )   

 

   

           (2.90) 

If we can define an inner product (f, g) between two functions f(x, y) and g(x, y) as  

    (   )   ∬          
 

 
       (2.91) 

then the unknown coefficients aj can be determined by solving the following systems of equations, 

    (    )                     (2.92) 

where      are the same analytic functions. By solving the above equation we can find out aj 

and by substituting aj in Eq. (2.89) we can obtain  ̃(   ). 

The conditions that are required in implementing the Galerkin method are: 

(a) The functions    are chosen from the same set of trial functions   . 

(b) The trial functions should exactly satisfy the homogeneous boundary conditions. 

(c) The trial function must be linearly independent. 

The accuracy of the Galerkin method depends upon the selection of trial functions and the order 

of polynomials. 
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CHAPTER 3 

METHOD OF WEIGHTED RESIDUALS 

3.1 Introduction 

 Prior to the development of the finite element method, there existed an approximation 

technique for solving the differential equations called the method of weighted residuals (MWR). 

The basic idea of MWR is to use a trial function with a number of unknown parameters to 

approximate the solution. Then a weighted average over the interior and boundary is set to 

zero. The basic idea is to approximate the solution with a polynomial involving a set of 

parameters. The polynomial is chosen in such a way that it satisfies both the differential 

equation and the associated boundary conditions. 

The method of weighted residuals can be described in the following way. Let us assume a 

differential equation of the form 

                  (3.1) 

where L is a linear operator, u is the unknown function and c is a given function. 

An approximate solution to eq. (3.1) is derived by a linear combination of N base vectors in the 

linear space as 

    ∑    

 

   

              (3.2) 

where    is the unknown coefficient and    is the base function in a linear function space. 

The residual error, R, between the approximate solution and the exact solution is defined as 

                    (3.3) 

                    ∑      

 

   

             (3.4) 
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                                 ∑     ( )   ( )

 

   

             (3.5) 

Also for a function space, R is a function of the position, i.e. 

                        ( )  ∑     ( )   ( )

 

   

             (3.6) 

The Method of Weighted Residual can be broadly classified into the following methods 

3.1.1 Collocation method 

 Choose    so that the residual error vanishes at N selected points, i.e. 

  (  )                               (3.7) 

Although this method gives the exact values at the selected points, there is no guarantee that 

the approximation behaves nicely between the selected points.  

3.1.2 Least Square method 

 Choose    so that the magnitude of residual error becomes the minimum i.e. 

 ‖ ( )‖                   (3.8) 

The least square method is by far the oldest of the methods of weighted residuals. This method 

has a natural appeal for steady problems, where it might be expected that a minimization of the 

square of the equation residual would imply a small value. This method is expected to give an 

overall well-behaved approximation. 

3.1.3 Galerkin method 

 Choose    such that R is orthogonal to N base functions (  ), i.e. 

 (    )                                     (3.9) 

The idea of the Galerkin’s method is that if      span the entire linear space, a vector that is 

perpendicular to all the base vectors must be a zero vector. 

 The Galerkin method has been used to solve many problems in structural mechanics, 

dynamics, fluid flow, hydrodynamic stability, magneto hydrodynamics, heat and mass transfer, 

acoustics, microwave theory, etc. Problems governed by ordinary differential equation, partial 
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differential equations, and integral equations have been investigated via the Galerkin 

formulation. Steady, unsteady, and eigen value problems have proved to be equally amenable 

to the Galerkin treatment. Most importantly, any problem whose governing equations can be 

written down is a candidate for the Galerkin method. 

3.2 Application of Galerkin method 

Most applications of the Galerkin method prior to 1972 were the traditional Galerkin 

method. In applying the Galerkin method, the trial functions must be chosen from a complete 

set to ensure convergence and from the lowest members of the complete set to achieve high 

accuracy with few terms in the trial solution. This aspect of the method highlights the need to 

choose the trial functions to take advantage of prior knowledge of the expected solution. 

Consider a rectangular plate as shown in the figure below with sides a and b. 

 

Figure 3.1 Rectangular plate 

The governing differential equation for a plate can be written as: 

 
   

   
  

   

      
 
   

   
 
  (   )

 

   

   
           (3.10) 

where    is the external load acting on the plate surface and D is the bending or flexural rigidity 

of the plate. For any given plate problem the exact solution of the governing equation (3.10) 

must simultaneously satisfy the differential equation and the boundary conditions. Since the 
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governing equation (3.10) is a fourth-order differential equation, two boundary conditions either 

for the displacements or for the internal forces are required at each boundary. 

 The displacements components to be used in development of the boundary conditions 

are lateral deflections and slope. For instance, at clamped edges the deflection and the slope of 

the deflected plate surface are zero. 

 ( )         (
  

  
)           (        )           (3.11) 

 ( )         (
  

  
)           (        )           (3.12) 

Using the two-dimensional Laplace operator (   
  

   
 

  

   
) equation (3.10) can be represented 

as 

       
  
 

   

   
           (3.13) 

Now, consider a differential operator L, 

   
  

   
 

  

      
 
  

   
           (3.14) 

Now Eq.(3.10) can be rewritten as 

    
  
 

           (3.15) 

First step in finding the eigenvalues is to select the base functions   (   ) properly such that it 

satisfies the boundary conditions and the above equation can be expressed in the following 

way. 

 ∑  
 

 

 

   (   )  ∑    
 

 

 

   (   )           (3.16) 

where   is the eigenvalue to be determined. 

Now multiplying the above eqn. with another base function   (   ) that also satisfies the 

boundary condition, we get 
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 ∑∑ 

 

 

  
 

 

 

   (   )  (   )  ∑∑ 

 

 

    
 

 

 

   (   )  (   )           (3.17) 

Now the above equation can be written as, 

                     (3.18) 

where, 

 

    ∫  

 

 

∫    

 

 

(   )  (   )      

    ∫  

 

 

∫   

 

 

(   )  (   )      

          (3.19) 

The quantities are A and B are N x N square matrices as shown below: 

  [

       
   
       

] 

 

  [
       
   
       

] 

where    is the eigenvalue and   is the corresponding eigenvectors. 

By solving as an eigenvalue problem we can determine the eigenvalues and eigenvectors for 

the given system.  

The definition of the eigenvalue method is the following. If A is any square matrix and 

                     (3.20) 

where   is the eigenvalue of A and   is the corresponding eigenvector. 

For our problem Eq. (3.20) is in the form 

 (     )              (3.21) 

 We can calculate the eigenvalues    and corresponding eigenvectors   with the aid of 

symbolic algebra software Mathematica. Eigenvalue method is a straight-forward and fast 

method to solve linear system equations. 
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For our perfect plate problem we will be considering only two types of boundary conditions – 

simply supported and free edge condition. 

3.2.1 Simply Supported Boundary Condition 

 We need to begin with the governing differential equation of the plate before we study 

each of the boundary conditions stated before. First, we consider the simply supported 

boundary condition for a square plate subjected to lateral loads. 

The governing differential equation of the plate is, 

 
   

   
  

   

      
 
   

   
 
  (   )

 

   

   
           (3.22) 

where,  

 
      is the lateral load being applied 

          is the bending or flexural rigidity of the plate 
           

A simply supported edge is the one in which the transverse deflection and normal bending 

moment are zero. The conditions on a simply supported edge parallel to the y-axis at x=a are 

                    (3.23) 

          (
   

   
   

   

   
)                  (3.24) 

Since the  change of w with respect to the y coordinate vanishes along the edge, the above 

conditions become 

                    (3.25) 

        
   

   
                 (3.26) 

Similarly on a simply supported edge parallel to the x-axis at y=a, the change of w with respect 

to the x-coordinate vanishes, thus the conditions become, 

                    (3.27) 

        
   

   
                 (3.28) 
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Now we assume a solution of the form 

  (   )  ∑    (   )

 

           (3.29) 

Substituting Eq. (3.29) into Eq. (3.22) and then we integrate it over the entire plate to produce 

the following eigenvalue problem 

 [ ]   [ ]            (3.30) 

Now we introduce the notation 

  ̅ (
 

  
 
 

  
)           (3.31) 

 

also,     ̅  ̅           (3.32) 

By using the Galerkin method, the elements of [A] and [B] matrices can be represented as, 

     ∫  

 

 

∫      

 

 

                (3.33) 

     ∫  

 

 

∫     

 

 

                (3.34) 

The above expressions can be solved by integration by parts in the following way, 

Distributing the operator over both    and    

     ∫  

 

 

∫      

 

 

                (3.35) 

                    ∫  

 

 

∫( ̅  ̅) ̅  ̅    

 

 

                (3.36) 

And by applying the surface integral over the entire surface of the plate the homogeneous 

boundary conditions     becomes, 

      ∫  

 

 

∫  ̅( ̅  ̅)   ̅  

 

 

                (3.37) 
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By using another homogeneous boundary condition yields the expression, 

     ∫  

 

 

∫( ̅  ̅)  ( ̅  ̅)  

 

 

                (3.38) 

By substituting eq. (3.31) into eq. (3.37),the final expression for elements     becomes, 

     ∫  

 

 

∫ [
    
   

 
    
   

] [
    

   
 
    

   
]

 

 

                (3.39) 

Similarly by deriving the expression for     in the same way by starting with equation (3.39) and 

by using integration by parts, we get 

      ∫  

 

 

∫     

 

 

                (3.40) 

The first important step in solving this problem is to choose a base function   that satisfies the 

boundary condition. A polynomial approximating function will be used to represent the lateral 

displacement of the plate. The trial function   (   )will be represented as, 

   (   )  ∑    (   )

 

   

           (3.41) 

where, 

   (   )   
              (3.42) 

g and h are positive integers and    are coefficients to be determined. 

For the simply supported boundary condition problem, it is found that an eight order 

polynomial is the lowest order possible to satisfy the boundary conditions. 

 
    [ ]   [ ]   [ ]   [ ]   

  [ ]             [  ]     [  ]   
          (3.43) 

where c[1] through c[45] are unknown coefficients of   . 
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 Once the eighth order polynomial is defined as mentioned in eq. (3.43), the next step is 

to apply the boundary conditions and solve for the unknown coefficients. This is done by 

developing eight new equations using Mathematica. 

Each equation represents a different boundary condition. 

For Deflection 

 BC-1:   (   )              (3.44) 

 BC-2:   (   )              (3.45) 

 BC-3:   (   )              (3.46) 

 BC-4:   (   )              (3.47) 

 

For Moments 

 BC-5:  (
   

   
  

   

   
)                  (3.48) 

 BC-6:  (
   

   
  

   

   
)                  (3.49) 

 BC-7:  ( 
   

   
 
   

   
)                  (3.50) 

 BC-8:  ( 
   

   
 
   

   
)                  (3.51) 

Once these boundary conditions are applied we get an undetermined system of 

equations with forty-five unknowns. The next step is to flatten out all the eight equations by 

using the Flatten[Table] command in Mathematica. By tabulating all the eight equations and 

solving the equations we get values for the coefficients cj. 

By substituting these values of the coefficients back into the eq. (3.43) yields one independent 

equation. 

   (   )  (    ) (      
 )(    ) (       )           (3.52) 
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 Using Mathematica the elements of matrices of [A] and [B] are found by performing 

integration over the polynomial. The eigenvalue and corresponding eigenvectors are 

determined by using the Eigensystem[] command in Mathematica. 

 In order to get a good convergence on the critical buckling load value   , a higher order 

approximating polynomial must be considered. A ninth order polynomial considered is of the 

following form: 

 

    [ ]   [ ]   [ ]   [ ] 
   [ ]    [ ]        

  [  ]      [  ]      [  ]     [  ]        

  [  ]      [  ]      [  ]      [  ]      [  ]    

  [  ]     [  ]   

          (3.53) 

Now by applying the boundary conditions on the ninth order polynomial equation and 

then solving for all the coefficients of the ninth order using Mathematica, we get a system of 

three independent trial functions   ,   , and    as shown below. 

 

   (    ) (      
 )(    ) (       ) 

   
 

 
(    ) (   )(      )(    ) (       ) 

   
 

 
(    ) (       )(    ) (   )(      ) 

          (3.54) 

 The first order eigenvalue system for the eighth order approximating polynomial was 

solved by simply multiplying the single element matrix [A] by the single element inverse matrix 

[B] but, this system of third order is solved using Mathematica. For the third order system the 

elements of the matrices [A] and [B] is found by integrating over the polynomial using the 

definite integral function in Mathematica and then using the eigensystem function we can 

evaluate the eigenvalues and corresponding eigenvectors. 

 One of the important properties of the Galerkin method is the convergence of the critical 

buckling load    from an overestimated value towards the exact value. This property occurs 

when the order of the approximating function is increased. We can observe that in the current 
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example    is the same for both eighth and ninth order polynomials. If not for this, the Galerkin 

system would not be satisfied and the calculated value    would be incorrect. 

3.2.2 Plate with a hole 

 Here we consider a simply supported plate with a hole having the free edge boundary 

condition. The boundary conditions for the plate with simply supported edge parallel to the y-

axis at x=a are 

                    (3.55) 

          (
   

   
   

   

   
)                  (3.56) 

The boundary conditions for the hole with free edge are 

 
   

   
 
  

 
(
  

  
 
 

 

   

   
)                 (3.57) 

 
   

   
 
 

 

   

   
 
 

  
  

  
 
    

  
  

  

   

   
 
    

  
   

   
                  (3.58) 

We need to begin with the governing differential equation of a plate Eq. (3.22) in order 

to find the critical buckling load of a plate. Polynomial approximating functions will be used to 

represent the lateral displacement of the plate. The first step to solve this problem is to 

systematically choose a trial function that satisfies the plate’s boundary conditions. The trial 

function   (   )will be represented as, 

   (   )  ∑    (   )

 

   

           (3.59) 

where, 

   (   )   
              (3.60) 

g and h are positive integers and    are coefficients to be determined. 

For this problem it is found that a ninth order polynomial is the lowest order possible to 

satisfy the boundary conditions. 
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    [ ]   [ ]   [ ]   [ ] 
   [ ]    [ ]        

  [  ]      [  ]      [  ]     [  ]        

  [  ]      [  ]      [  ]      [  ]      [  ]    

  [  ]     [  ]   

          (3.61) 

Once we define the polynomial approximating function the next step is to apply the 

boundary conditions and solve for unknown coefficients. This is carried out by generating ten 

new equations using Mathematica. Each equation represents a different boundary condition. 

 BC-1:   (   )              (3.62) 

 BC-2:   (   )              (3.63) 

 BC-3:   (   )              (3.64) 

 BC-4:   (   )              (3.65) 

 BC-5:  (
   

   
  

   

   
)                  (3.66) 

 BC-6:  (
   

   
  

   

   
)                  (3.67) 

 BC-7:  ( 
   

   
 
   

   
)                  (3.68) 

 BC-8:  ( 
   

   
 
   

   
)                  (3.69) 

 BC-9:  
   

   
 
  

 
(
  

  
 
 

 

   

   
)                 (3.70) 

 BC-10:  
   

   
 
 

 

   

   
 

 

  

  

  
 
    

  

  

  

   

   
 
    

  

   

   
        

          (3.71) 

By solving all these ten boundary condition equations and tabulating them using the 

Table[] command in Mathematica, we get values of coefficients cij. Substituting these values 

back into eq. (3.61) we get one independent equation. 

    
 

 
(    ) (       )(    )(      )           (3.72) 

Then we determine the elements of matrices [A] and [B] and by using the Eigensystem 

command we can find the eigenvalue and corresponding eigenvectors using Mathematica. 
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In order to get a good convergence on the critical buckling load value   , a higher order 

approximating polynomial must be considered. A tenth order polynomial considered is of the 

following form: 

 

    [ ]   [ ]   [ ]   [ ] 
   [ ]    [ ]        

  [  ]      [  ]      [  ]     [  ]        

  [  ]      [  ]      [  ]           

  [  ]      [  ]     [  ]   [  ]     

  [  ]      [  ]     [  ]    

         (3.73) 

Now, by applying the boundary conditions to Eq. (3.73) and solving for all the 

coefficients using Mathematica and by substituting the coefficient values back in to Eq. (3.73) 

we get a system of three independent trial function equations    and   . 

    
 

 
(    ) (       )(    )(      )          (3.74) 

     ( 
   )(    )(     )(                  )          (3.75) 

The next step is to calculate the elements of matrices [A] and [B] by using the definite 

integral function in Mathematica and then applying Eigensystem command we can find the 

eigenvalues and eigensystem for this system. 
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CHAPTER 4 

NUMERICAL RESULTS 

 In this Chapter, the numerical results achieved for the problems discussed in Chapter 3 

are presented. All of the necessary computations was carried out with the help of a symbolic 

algebra software, Mathematica [14]. 

4.1 Simply Supported Plate 

 We calculate the buckling load of a square plate for the simply supported boundary 

condition. A simply supported edge is the one in which the transverse direction and normal 

bending moment are zero. 

 

Figure 4.1 Simply Supported Plate 
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A simply supported edge is the one in which the transverse deflection and normal 

bending moment are zero. The conditions on a simply supported edge parallel to y-axis at x=a 

are 

                      (4.1) 

          (
   

   
   

   

   
)                    (4.2) 

Similarly on a simply supported edge parallel to the x-axis at y=a, the change of w with 

respect to the x-coordinate vanishes, thus the conditions become, 

                      (4.3) 

        
   

   
                   (4.4) 

The first important step in solving this problem is to choose a trial function   that satisfies the 

boundary condition. A polynomial approximating function will be used to represent the lateral 

displacement of the plate. The trial function   (   )will be represented as, 

   (   )  ∑    (   )

 

   

             (4.5) 

where, 

   (   )   
                (4.6) 

g and h are positive integers and    are coefficients to be determined. 

For the simply supported boundary condition problem, it is found that an eighth order 

polynomial is the lowest order possible to satisfy the boundary conditions. 

 
    [ ]   [ ]   [ ]   [ ]   

  [ ]             [  ]     [  ]   
            (4.7) 

where c[1] through c[45] are unknown coefficients of   . 
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Table 4.1 Eigenvalues for simply supported plate 

Order Eigenvalues 

8 19.7533 

9 19.7533, 49.79 

10 19.7392, 49.79, 79.6 

11 19.7392, 49.3498, 79.6 

12 19.7392, 49.3498, 78.96 

 Once we define the polynomial approximating function as in Eq. (4.7), the next step is 

to apply the boundary conditions and solve for unknown coefficients The eigenvalues were 

obtained by forming the elements of matrices of [A] and [B] and then by using the Eigensystem 

command in Mathematica. 

4.2 Plate with a hole 

 This example is the most important of all. Here we consider a simply supported plate 

with a hole having a free edge boundary condition as shown in Figure 4.2 

 

Figure 4.2 Plate with a hole 
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The boundary conditions for the plate with simply supported edge parallel to the y-axis at x=a 

are 

                     (4.8) 

          (
   

   
   

   

   
)                   (4.9) 

The boundary conditions for the hole with free edge are 

 
   

   
 
  

 
(
  

  
 
 

 

   

   
)                 (4.10) 

 
   

   
 
 

 

   

   
 
 

  
  

  
 
    

  
  

  

   

   
 
    

  
   

   
                  (4.11) 

The first step to solve this problem is to systematically choose a trial function that 

satisfies the plate’s boundary conditions. The trial function   (   )will be represented as, 

   (   )  ∑    (   )

 

   

           (4.12) 

where, 

   (   )   
              (4.13) 

g and h are positive integers and    are coefficients to be determined. 

For this problem it is found that a ninth order polynomial is the lowest order possible to 

satisfy the boundary conditions and for instance we assume an eleventh order polynomial 

 

    [ ]   [ ]   [ ]   [ ] 
   [ ]    [ ]        

  [  ]      [  ]      [  ]     [  ]        

  [  ]      [  ]      [  ]      [  ]          

  [  ]      [  ]      [  ]     [  ]        

   [  ]      [  ]      [  ]      [  ]      [  ]    

          (4.14) 

 Once the approximating function is defined as in Eq. (4.14) the next step is to apply the 

boundary conditions and solve for the unknown coefficients. This is done by generating ten new 

equations using Mathematica. Each equation represents a different boundary condition. 
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 BC-1:   (   )              (4.15) 

 BC-2:   (   )              (4.16) 

 BC-3:   (   )              (4.17) 

 BC-4:   (   )              (4.18) 

 BC-5:  (
   

   
  

   

   
)                  (4.19) 

 BC-6:  (
   

   
  

   

   
)                  (4.20) 

 BC-7:  ( 
   

   
 
   

   
)                  (4.21) 

 BC-8:  ( 
   

   
 
   

   
)                  (4.22) 

 BC-9:  
   

   
 
  

 
(
  

  
 
 

 

   

   
)                 (4.23) 

 BC-10:  
   

   
 
 

 

   

   
 

 

  

  

  
 
    

  

  

  

   

   
 
    

  

   

   
        

          (4.24) 

 By solving all these ten boundary condition equations and tabulating them using the 

Table command in Mathematica, we get the values of coefficients for a eleventh order 

approximating polynomial as 

 

 [ ]   
    

 
 [  ]         [  ]  

      

 
 [  ]      

 [ ]         [  ]  [ ]        [  ]  

   [ ]   
    

 
 [  ]       [  ]  

     

 
  [  ] 

 [ ]       [  ]       [  ]        [  ]  [  ]             

  [  ]        [  ]  [  ]      [  ]      [  ] 

 [  ]      [  ]       [  ]        [  ] 

 [  ]  
    

 
 [  ]       [  ] 

 [  ]      [  ]  [  ]       [  ]  [  ]      [  ] 

 [  ]     [  ]  [  ]     [  ]  [  ]      [  ]      [  ] 
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 [  ]   
  

 
 [  ]      [  ]  [  ]  

   

 
 [  ]  [  ]     [  ] 

 [  ]      [  ]  [  ]      [  ]  [  ]   
  

 
 [  ]   

 [  ]    [  ]  [ ]     [ ]     [ ]     [ ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]     [  ]     [  ]     [  ]     

 [  ]     [  ]     [  ]    

 By substituting all these values back into Eq. (4.21) we get four independent equations 

 

   
 

 
(    ) (       )(    )(      ) 

    ( 
   )(    )(     )(                  ) 

    ( 
   )(     )(     )(    )(      ) 

   
 

 
(    ) (       )(    )(           ) 

          (4.25) 

 Then by applying the Galerkin method and integrating over the polynomial using 

Mathematica, we can evaluate the elements of matrices [A] and [B]. Then by using the 

Eigensystem command in Mathematica we can find out the eigenvalues. The eigenvalues 

determined for various order of polynomials is tabulated in Table 4.2. 
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Table 4.2 Eigenvalues for a plate with a hole 

Order Eigenvalues 

9 3.11209 

10 3.11209, 6.38816 

11 3.08436, 6.38816, 11.3495 

12 3.08436, 6.17167, 11.3495 

 One of the important properties of the Galerkin method is the convergence of the critical 

buckling load    from an overestimated value towards the exact value. This property occurs 

when the order of the approximating function is increased. It was observed that for all the 

examples mentioned above    is the same for any order of approximating polynomial 

considered. If not for this property, the Galerkin system would not be satisfied and the 

calculated value    would be incorrect. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 The Galerkin method was used to solve the governing differential equation of the plate 

with or without a hole for different boundary conditions. The Galerkin method and the procedure 

used for solving for the coefficients of the approximating polynomials would be impossible if not 

for the use of symbolic software. Mathematica, a symbolic software was extensively used to 

achieve the desired results. 

 One of the biggest advantages of using this system is its ability to deal with both 

symbolic characters and numbers. It is this feature which makes it possible to solve both 

algebra and calculus. The approximating polynomial is chosen in such a way that it satisfies all 

the boundary conditions involved and hence the result obtained is very accurate and greater 

convergence can be achieved.  

Recommended future work on this thesis topic would be 

 Considering triangular plates with or without a hole. 

 Considering plates with more than one hole. 

 Considering plates with eccentric holes. 

 Considering the hole to be of elliptical geometry. 
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