
 

 

 

 

VEHICLE SUSPENSION OPTIMIZATION FOR  

STOCHASTIC INPUTS 

 

by 

 

KAILAS VIJAY INAMDAR 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2011 

 

 
 



 

|| ौी गणेशाय नमः || 



 

iii 
 

ACKNOWLEDGEMENTS 
 
 
 

 I am grateful to my thesis advisor Dr. D. A. Hullender for the confidence he showed in 

me and helping me in exploring the area of Dynamic Systems Modeling and Simulation. He has 

been a great source of inspiration and help in this thesis. 

 I am thankful to the University of Texas at Arlington for providing me with opportunity 

and excellent facilities to excel in my graduate studies. 

 I would like to thank Dr. Robert Woods for his valuable guidance during my thesis and 

also Dr. Kamesh Subbarao for being part of my thesis committee.  

 I would like to take this opportunity to thank my undergraduate professors, Prof. N. V. 

Sahasrabudhe, Prof. (Dr) G. R. Gogate and M. T. Puranik for motivating me in my decision to 

pursue master level studies. 

 I am thankful to all my friends in UTA for their encouragement and cooperation.  

 Finally I would like to express my gratitude to my parents my elder brother and sister-in-

law for their eternal belief in me. I would not be where I am today, if not for their support and 

encouragement. I am grateful to GOD for his blessings on all of us.  

  November 16, 2011 



 

iv 
 

ABSTRACT 

 
VEHICLE SUSPENSION OPTIMIZATION FOR  

STOACHASTIC INPUTS 

 

Kailas V. Inamdar, M.S. 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  David A. Hullender 

In the present thesis, a simulation based numerical method has been proposed for 

optimization of vehicle suspension system for stochastic inputs from random road surface 

profiles. Road surfaces are classified in based upon the power spectral density functions. The 

road surface is considered as a stationary stochastic process in time domain assuming constant 

vehicle speed. Using Fourier transforms, it is possible to generate the road surface elevations 

as a function of time.  

Time domain responses of the output of the suspension system are obtained using 

transfer function techniques. Optimum values of the damper constant are computed by 

simulation of the Quarter Car Model for generated stochastic inputs for good road holding and 

passenger ride comfort. A performance index minimization procedure is developed to find 

optimum damper constant value considering mutually conflicting requirements of ride comfort 

and road holding. The handling of the vehicle, cornering force, tractive force depends upon the 

road holding. The road holding capacity of the vehicle changes with change in vehicle speed as 

well as road roughness. A quantitative measure for deciding the road holding of the vehicle is 

defined.   
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CHAPTER 1 

INTRODUCTION 

1. Vehicle Suspension Modeling 

Modeling and simulation of the vehicle suspension system is required for predicting the 

performance and assuring the proper functioning of a system before spending time and money 

on producing it. A quantitative mathematical model used for the simulation, can accurately 

predict the performance of the system. If the input to the system is deterministic and can be 

computed by an explicit mathematical formula then, using the transfer function of the system, 

the response of the system can be determined.  

A vehicle suspension system is a complex vibration system having multiple degrees of 

freedom [2]. The purpose of the suspension system is to isolate the vehicle body from the road 

inputs. Various aspects of the dynamics associated with the vehicle put different requirements 

on the components of the suspension system. Passenger ride comfort requires that the 

acceleration of the sprung mass be relatively smaller whereas the lateral dynamic performance 

requires good road holding which needs consistent normal force between the road and the tires. 

This all has to work within the maximum allowed deflection of the suspension spring and 

limitations of the dynamic tire deflection [7].  

For analyzing the vibration characteristics of the vehicle, equations of motion have to be 

formulated. Various models from a single degree of freedom model to a complex model having 

multiple degrees of freedom have been developed for studying the suspension system 

performance. However, the system is simplified by considering some dominating modes and 

modal approximations. For instance, a ’Quarter Car Model’ has been extensively used to study 

the dynamic behavior of the vehicle suspension system [4]. This is basically a linear lumped 

mass parameter model with two degrees of freedom. This model is used to obtain a qualitative 
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insight into the performance of the suspension, in particular the effects of sprung mass and 

unsprung mass, stiffness of the suspension spring and tires, damping of the shock absorbers 

and tires on the vehicle vibration.  

 The inputs to the road surface are rough road irregularities. These irregularities range 

from potholes to random variations in the surface elevations along the length of the road. These 

act as a major source of excitation for the vehicle suspension system. When a vehicle traverses 

over such a road surface with a certain velocity, the irregularities on the road surface become 

an input with certain frequencies for the suspension system. Due to the mass imbalances and 

differences in the stiffness of the suspension and wheel assembly, these excitations from the 

ground are transmitted to the vehicle body. If the level of vibrations induced in the vehicle 

exceeds a certain threshold then it makes the ride uncomfortable for the passenger. Secondly, 

the suspension components are subjected to fluctuating loads due to these vibrations which 

cause fatigue in the springs and other components of the suspension. Another significant effect 

that the road excitations have is on the handling of the vehicle. If the amplitude of tire 

oscillations exceeds a maximum limit then, the vehicle loses its road holding capacity and 

adversely affects the handling of the vehicle.  

 All these effects arising from the random road irregularities can be formulated and 

analyzed using a simulation based approach for design and optimization of the vehicle 

suspension system [8]. The computer simulation consists of three stages. The first stage is 

generation of a random input with stochastic properties and characteristics of road profiles that 

the suspension system would encounter in practice. This input is used to excite the system. The 

second stage deals with the numerical solution of the differential equations representing the 

dynamics of the system. The numerical solution obtained by solving the differential equations, 

by numerical integration method, represents the output of the system.  The third stage of the 

computer simulation consists of processing the output data [3].  
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1.2 Mathematical Modeling of Road Surface 

 The road surface is conventionally modeled in the form of step input [7], sine waves or 

triangular waves with amplitude depending upon the surface elevations and the frequency 

depending upon the wavelengths of the surface irregularities. However, in practice the road 

surfaces are of irregular forms and the actual ride behavior of the vehicle cannot be studied 

considering these forms of input. Therefore, the simplified form of inputs can be used only for 

the comparative evaluation of different suspension designs [2].  

 To study the actual ride behavior of the vehicle and performance of the suspension 

system, the road surface should be modeled as a stochastic process. In practice, the road 

surface elevations are random in nature. The instantaneous value of the surface elevation at 

any point above some reference plane cannot be computed by an explicit mathematical 

relationship or as a function of the distance between the point of elevation and some fixed point 

of reference. As a consequence of this, when a vehicle is running over the road surface, the 

excitations imposed to the vehicle forms a set of random data. Therefore the road surface 

should be modeled as a stochastic process. A random process is the one in which there is no 

way to predict the exact value at a future instant of time [1]. However, if sufficient knowledge of 

the basic mechanisms producing the random data is available then, it is possible to describe 

process with exact mathematical relationships. In the following chapters we will see that by 

evaluating some fix statistical properties and average values, it is possible to define a stochastic 

process in deterministic manner. 

 

1.3 Outline of Thesis 

Chapter 2 discusses the frequency response characteristics of the quarter car model. 

These characteristics depend upon the fixed parameters of the system such as vehicle mass, 

suspension spring stiffness, shock absorber damper constant, mass and stiffness of the tires 

etc. While the vehicle is moving on a road surface, the input excitations consists of large 
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number of frequencies. So it is necessary to study the frequency response characteristics of the 

suspension system.   

In chapter 3, procedure for generating random time series with a specified spectral 

density function is explained. This used for creating road surface profiles.   

Chapter 4 gives procedures for finding an optimum value of shock absorber damper 

constant considering road holding and passenger ride comfort. A quantitative measure for 

deciding the road holding capacity of the vehicle at different speeds and for different types of 

the road surfaces is also explained in this chapter.  

Chapter 5 contains results and conclusion of the simulations.   
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CHAPTER 2 

 FREQUENCY RESPONSE CHARACTERISTICS OF QUARTER CAR MODEL  

 

Fig 2.1.    Two - degree of freedom Quarter Car Model for passenger car 
(Ms = 1814 kg,      Kus = 704 kN / m) 

 

 The 2-Degree-of-Freedom model shown in figure 2.1 includes an unsprung mass 

representing the wheels and associated components and a sprung mass representing the 

vehicle body [2]. At a particular point of time, let y and z are the vertical displacements of the 

sprung and unsprung mass respectively due to the excitation from the rough road surface. The 

displacements y and z are measured from the static equilibrium positions so that we can neglect 

the gravity term while writing the equation of motion for the masses. This model is referred as a 
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‘quarter car model’. Usually the vehicle mass and the tire stiffness are the fixed parameters for a 

given model and other parameters are decided base on the frequency response characteristics. 

In this chapter these characteristics are studied for different mass ratios, stiffness ratios and 

damper constants to select values of unsprung mass and suspension spring rate. 

 By Newton’s second law of motion the equations of motion of the system are as 

follows:- 

For the sprung mass, 

Mୱ . yሷ ൅  b୭୮୲ . ሺyሶ െ  zሶሻ ൅ Kୱ . ሺy െ zሻ ൌ  0                                                 ሺ2.1ሻ     

For unsprung mass, 

M୳ୱ . zሷ ൅  b୭୮୲ . ሺzሶ െ  yሶ ሻ ൅ Kୱ . ሺz െ yሻ ൅ K୳ୱ . ሺz െ uሻ ൌ 0                                 ሺ2.2ሻ   

 

To determine natural frequency of the system:- 

Considering undamped frequency of the system, 

 Mୱ . yሷ ൅   Kୱ . ሺy െ zሻ ൌ  0                                                                  ሺ2.3ሻ  

  M୳ୱ . zሷ ൅  Kୱ . ሺz െ yሻ ൅ K୳ୱ . ሺzሻ ൌ 0                                                         ሺ2.4ሻ    

 Solutions can be assumed in the form, 

y ൌ Y . cosሼω୬. tሽ                                                                                           

z ൌ Z . cosሼω୬. tሽ                                                                                                

Substituting in above equations, 

ሺെMୱ ω୬
ଶ ൅ Kୱ ሻ y െ Kୱ. z ൌ   0                                                               ሺ2.5ሻ    

           

െ Kୱy ൅ ሺെM୳ୱ ω୬
ଶ ൅ Kୱ ൅ K୳ୱሻz ൌ 0                                                          ሺ2.6ሻ        

                                 

ω୬ can be found by solving following determinant:- 

 

ฬ
ሺെMୱ ω୬

ଶ ൅ Kୱ ሻ െ Kୱ

െ Kୱ െM୳ୱ ω୬
ଶ ൅ Kୱ ൅ K୳ୱ

ฬ  ൌ   0                                                
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 ω୬
ସ  ሺMୱ M୳ୱሻ ൅ ω୬

ଶ ሺെMୱKୱ  െ MୱK୳ୱ  െ M୳ୱKୱሻ ൅ KୱK୳ୱ ൌ 0                        ሺ2.7ሻ                                  

׵     ω୬ଵ
ଶ ൌ  

Bଵ െ ඥBଵ
ଶ െ  4 AଵCଵ

2 Aଵ
                                                                    ሺ2.8ሻ 

And 

       ω୬ଶ
ଶ ൌ  

Bଵ ൅ ඥBଵ
ଶ െ  4 AଵCଵ

2 Aଵ
                                                                    ሺ2.9ሻ 

Where,  

Aଵ  ൌ   Mୱ M୳ୱ                                                                                   

Bଵ ൌ  MୱKୱ ൅ MୱK୳ୱ ൅ M୳ୱKୱ                                                                                          

Cଵ ൌ  KୱK୳ୱ                                                                                        

Substituting the values for the quarter car model shown in figure 3.1, we get, 

ω୬ଵ ൌ 6.5626  rad secൗ                i. e.         f୬ଵ  ൌ   1.0445 Hz   

ω୬ଵ ൌ 66.19  rad secൗ                  i. e.         f୬ଵ  ൌ   10.53   Hz   

 For the passenger car, the mass of the vehicle body is much higher than the mass of 

the wheel (  Mୱ
M୳ୱ

ൗ ൌ   10.02  ) while the stiffness of the suspension spring Kୱ is much less than 

that of the wheel (Kୱ
K୳ୱ

ൗ ൌ   0.125). Considering this the above two natural frequencies of the 

sprung and unsprung masses can be determined by an approximate method and are expressed 

as follows; 

Undamped natural frequency of the sprung mass, 

f୬ଵ ൌ  
ଵ

ଶ ஠
   ඨ

ሺ୩౩୩౫౩ሻ
ሺ  ୩౩ା ୩౫౩ሻ  

൘

୫౩
                                                                 ሺ2.10ሻ       

  

f୬ଶ ൌ  
ଵ

ଶ ஠
   ට

  ୩౩ା ୩౫౩

୫౫౩
                                                                       ሺ2.11ሻ                                  

Using these approximate formulae, the same two natural frequencies are computed as, 
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f୬ଵ ൌ 1.045 Hz  

f୬ଶ ൌ   10.527 Hz  

Hence these values are practically identical with the actual undamped natural frequencies of the 

vehicle and wheels.   

The transfer function is computed using Matlab® as follows; 

HY_U ൌ  
ሺ5.336ൈ109ሻ s൅ሺ6.195 ൈ1010ሻ

ሺ328333ሻs4൅1995ሺbሻs3൅ሺ1.4526ൈ109ሻs2൅704000 ሺbሻs൅ሺ6.1925ൈ1010ሻ
 

From the eigenvalues of the characteristic equation, natural frequencies can be found 

>> damp(HY_U)                                                          

        Eigenvalue            Damping     Freq. (rad/s)                                

 -1.69e+000 + 6.46e+000i     2.54e-001      6.67e+000     

 -1.69e+000 - 6.46e+000i     2.54e-001      6.67e+000     

 -2.13e+001 + 6.15e+001i     3.28e-001      6.51e+001     

 -2.13e+001 - 6.15e+001i     3.28e-001      6.51e+001   

 

The eigenvalues are ሺെ1.69 േ j 6.46ሻ  and ሺെ21.3 േ j 61.5ሻ 

Natural frequencies of sprung and unsprung masses are  

f୬ଵ ൌ 1.028 Hz  

f୬ଶ ൌ 10.36 Hz  

The frequency values calculated by equations ሺ2.10ሻ and ሺ2.11ሻ closely match with the values 

computed using the transfer function using Matlab®.  

 Secondly, the natural frequency of the unsprung mass is higher than that of the sprung 

mass. For the passenger cars, the damping ratio ( ζ) provided by the shock absorbers is usually 

in the range of (0.2 – 0.4) and the damping ratio of the tires is comparatively less (~ 0.03) . As a 

consequence of this, the difference between the undamped and damped natural frequencies of 

the masses is negligible and the undamped natural frequencies are commonly used to 
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characterize the system. The ratio of the natural frequencies of the sprung and unsprung 

masses plays an important role in deciding the vibration isolation characteristics of the vehicle 

suspension. For example, consider a situation where the running vehicle hits a bump on the 

road. The bump on the road can be considered as an impulse input to the suspension system. 

As the vehicle crosses the bump, the wheel oscillates freely at its natural frequency which in this 

case is 10.53 Hz. For the sprung mass the natural frequency is 1.045 Hz and the excitation is 

the vibrations of the unsprung mass. Therefore, the ratio of frequency of excitation to the natural 

frequency of sprung mass is approximately 10. From the frequency response characteristics, 

when the ratio of the excitation frequency to the natural frequency is high, the gain of the 

transfer function is low. So, the amplitude of vibration of the vehicle body would be very low and 

good vibration isolation can be achieved. 

Random road surfaces consist of a wide range of wavelengths. When the vehicle rides 

over such a road surface at particular speed, the excitation to the vehicle consists of wide range 

of frequencies. From the transmissibility characteristics of the vehicle, it can be observed that 

the excitations due to shorter wavelengths of the road (i.e. high frequency inputs) can be 

isolated effectively since the natural frequency of the sprung mass is low. However, excitations 

from the larger wavelengths (i.e. the low frequency inputs) can be transmitted to the vehicle 

body unimpeded or even amplified since the gain of the transfer function is high when the 

frequency of excitation is close to the natural frequency of the vehicle body. 

  Evaluation of the overall performance of the suspension system is carried out by 

considering three main aspects as follows: 

 

1. Road holding 

2. Vibration isolation 

3. Suspension travel 
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2.1 Road Holding 

 The normal force between the road and the tire can be represented by relative 

displacement between unsprung mass and the road surface elevations, which is also called as 

the dynamic tire deflection. The dynamic tire deflection represents the normal force acting 

between the tire and road surface consider the damping of the tires negligible. 

 The ratio of the relative displacement between the unsprung mass and the road surface 

(z െ u) to the amplitude of the rough road surface is defined as the dynamic tire deflection ratio. 

The cornering force, tractive effort and braking effort developed by the tire are related to the 

normal force acting between the tire and the road surface. When the vehicle system vibrates, 

this normal force fluctuates and as a consequence, the road holding capacity of the vehicle is 

affected causing unfavorable effects on handling and performance of the vehicle. Therefore, it 

becomes necessary to study the effects of different parameters on the dynamic tire deflection 

ratio. 

 

2.1.1 Effect of ratio of unsprung mass to sprung mass on road holding:  

               Form figure 2.2, it can be observed that, below the natural frequency of the sprung 

mass, the ratio of the masses has very little effect on the dynamic tire deflection, in turn on the 

road holding. As the frequency increases from 1.045 Hz, initially the dynamic tire deflection 

increases with the lighter unsprung mass but then decreases in the mid-frequency range.  
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Figure 2.2 Frequency response of dynamic tire deflection for different mass ratios of a  quarter 
car model 

 

Above natural frequency of unsprung mass, the unsprung mass has insignificant effect on the 

roadholding. Consider that the vehicle is moving with speed ԢVԢ, on a road surface having 

wavelengths ԢlனԢ . So, the excitation frequency for the suspension system would be f ൌ V/lனHz 

If this frequency f, matches the frequency at which the positive value of dynamic tire deflection 

becomes equal to the static deflection of the tire due to the vehicle weight then, the tire is on the 

verge of bouncing off the ground. During this part of vibrations, the vehicle will not have any 

contact with ground. Such situation is very undesirable since it reduces the handling 

performance. 
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2.1.2 Effect of ratio of spring stiffness to tire stiffness on road holding:  

  

Figure 2.3  Frequency response of dynamic tire deflection ratio for different spring stiffness to 
tire stiffness ratios of a quarter car model 

 

Figure 2.3 shows that, in the low frequency range, below the natural frequency of the sprung 

mass and high frequency range, above the natural frequency of the unsprung mass, the effect 

of the suspension spring stiffness on the dynamic tire deflection ratio is insignificant. Between 

the natural frequency of sprung mass and the crossover frequency, the dynamic tire deflection 

ratio is lower with the softer suspension spring. Between the crossover frequency and the 

natural frequency of the unsprung mass, a stiffer suspension spring provides lower dynamic tire 

deflection ratio. 
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2.1.3 Effect of the damping ratio on road holding: 

  

Figure 2.4 Frequency response function of dynamic tire deflection ratio for different spring 
stiffness to tire stiffness ratios of a quarter car model 

 

From figure 2.4 below the natural frequency of the sprung mass and in the frequency range 

near the natural frequency of the unsprung mass, the dynamic tire deflection ratio is lower if the 

damping ratio is higher. However, in the mid-frequency range, lower the damping ratio, lower 

will be the dynamic tire deflection. 
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2.2 Vibration Isolation 

  Vibrations in the vehicle body are usually considered as the vertical displacement of 

the vehicle body due to elevations on the rough road. The vibration isolation characteristics can 

be studied using the transfer function between the vehicle displacement and the road input.  

 

2.2.1 Effect of ratio of unsprung mass to sprung mass on vibration isolation:   

Fig 2.5 shows the effect of ratio of unsprung mass to sprung mass on the transfer 

function for the quarter-car model. The mass of the wheel and unsprung parts has negligible 

effect on the vibration of the vehicle body in the frequency range below 1.045 Hz  (natural 

frequency of the sprung mass). If the frequency of excitation is nearer to 10.53 Hz  (natural 

frequency of the unsprung mass) the gain of the transfer function decreases with the decreasing 

unsprung mass. It means that, the vibration of the vehicle body is lower with the lighter wheel 

mass for the same level of excitation in the frequency range between  1.045 Hz  to 10.52 Hz. As 

the frequency becomes more than  10.52 Hz, a lighter mass leads to slightly higher 

transmissibility.  

 From the above discussion, it can be concluded that the ratio of the masses has little 

influence on the vibration of the vehicle body in the low frequency range.
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Figure 2.5 Frequency response for different ratios of unsprung mass to sprung mass of a 
quarter car model  

  

 In the mid-frequency range, a lighter wheel assembly will provide better vibration 

isolation and in the frequency range above the natural frequency of the unsprung mass, there is 

a slight increase in transmissibility with the lighter wheel assembly.  

  

2.2.2. Effect of ratio of suspension spring stiffness to tire stiffness on vibration isolation:   

 Figure 2.6 shows the effect of the equivalent tire stiffness K୳ୱ  on the suspension spring 

stiffness  Kୱ  on the transfer function for the vehicle vibrations. For a given tire stiffness, higher 

value of K୳ୱ/ Kୱ represents lower suspension spring stiffness. Form the frequency response 

function characteristics, it can be seen that, in the frequency range below 1.045 Hz, the gain of 

the transfer function decreases with lower ratio of  K୳ୱ/ Kୱ  in the frequency range between 

1.045 Hz  to 10.52 Hz , a higher ratio of K୳ୱ/ Kୱ  provides better vibration isolation. The effect of 

this ratio on vibration isolation becomes insignificant in the high frequency range. 



 

 16

 Figure 2.6 Frequency response for different ratios of tire stiffness to suspension spring stiffness 
of a quarter car model 

 

above 10.52 Hz .  

 From the discussion above, it can be concluded that a softer suspension spring 

provides better vibration isolation in mid- to high frequency range but with this there is some 

penalty in terms of transmissibility in lower frequency range, below the natural frequency of the 

sprung mass. 

  

2.2.3 Effect of damping ratio of suspension shock absorber on vibration isolation:  

 Figure 2.7 shows the effect of damping ratio (ߞ) on the transfer function of the vehicle 

vibration. In the frequency range close to1.045 Hz , the gain of the transfer function decreases 

with increase in the damping ratio. Whereas, in the frequency range between 1.045 Hz  to 

10.52 Hz the TF gain will be lower if the damping ratio is lower. Again near around 10.52 Hz the 

damping ration has not much effect on the vibration isolation. Above10.52 Hz, lower the 

damping ratio, lower is the transmissibility.  
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Figure 2.7  Frequency response for different damping ratios of shock absorber of a quarter car 
model 

 
 From this it can be concluded that in the frequency range close to the natural frequency 

of the vehicle body, a high damping ratio is required. However, lower damping ratio is required 

to provide better vibration isolation in the mid- to high frequency range.  

 

2.3 Suspension Travel 

 The relative displacement between sprung and unsprung mass is defined as the 

‘suspension travel’. The space required to accommodate the spring between road bumps and 

rebound stops is termed as ‘rattle space’.  

2.3.1 Effect of ratio of unsprung mass to sprung mass on suspension travel: 

 ‘Suspension travel ratio’ is defined as the ratio of maximum relative displacement 

between sprung and unsprung mass (y-z) to the amplitude of the road profile.  In the frequency 

range below 1.045 Hz  the ratio Mus /Ms has little effect on the transfer function. Between 

1.045 Hz  to 10.52 Hz  the gain of the transfer function increases with the increase in the mass 
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ratio. Whereas, above10.52 Hz , the suspension travel decreases with the increasing mass ratio 

of unsprung and sprung mass.  

 

Figure 2.8. Frequency response of suspension travel of a quarter car model for different ratios 
of unsprung mass to sprung mass  

 

 It can be concluded from the figure 2.8 that, the lower weight of the wheel assembly 

decreases suspension travel in the mid-frequency range but increases the suspension travel in 

the frequency range above the natural frequency of unsprung mass. However it does not have 

significant effect on the suspension travel in the low frequency range. 

 

2.3.2 Effect of ratio of suspension spring stiffness to tire stiffness on suspension travel: 

 From the figure 2.9, in the frequency range below 1.045 Hz , higher ratio of the tire 

stiffness to the suspension spring stiffness leads to a high value of suspension travel. 
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Figure 2.9  Frequency response of suspension travel for different ratios of suspension spring 
stiffness to tire stiffness of a quarter car model 

 

In the frequency range between 1.045 Hz to 10.52 Hz  , initially the suspension travel decreases 

with increasing ratio of K୳ୱ/ Kୱ  but then decreases with frequency approaching 10.52 Hz. The 

frequency at which this change takes place is called as the “crossover frequency” [2] and for 

this suspension system it is3 Hz. 

  Form this, it can be concluded that, in the low frequency range, the suspension travel is 

larger if the suspension spring is softer. In the mid-frequency range, from the natural frequency 

of the sprung mass to the crossover frequency, the softer spring leads to lower value of 

suspension travel and between crossover frequency and natural frequency of unsprung mass 

the suspension travel goes higher if the spring has lower stiffness. However the ratio K୳ୱ/ Kୱ  

has negligible effect on the suspension travel in the high frequency range.  
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2.3.3 Effect of damping ratio of the shock absorber on suspension travel:

Figure 2.9 Frequency response for different damping ratios of suspension travel of a quarter car 
model 

 

 From the Figure 2.9, it can be observed that over the entire frequency range , higher 

damping ratio (ߞ) provides lower suspension travel. So, to reduce the suspension travel higher 

damping ratio is required.  
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CHAPTER 3 

GENERATING RANDOM ROAD INPUTS 

 As seen previously, road surfaces are practically defined by random functions. Further, 

if the statistical properties of the road surface derived from one portion of the road can be used 

to define the properties of the entire section of the road then the road surface can be assumed 

to be a stationary stochastic process provided that the velocity of the vehicle is constant [2]. If 

the velocity is changing with time then the road surface becomes a non-stationary stochastic 

process [9].  

 

Figure 3.1 Road surface elevation as a random function 

 Consider figure 3.1.  If the statistical properties of the road profile on one plane such as 

AD are same as those on any other plane, such as A’D’ then the road surface is considered as 

an ergodic process.  

A stationary stochastic process is said to be ergodic if its mean value µ୶, and 

autocorrelation function Rxሺ τሻ  can be obtained by time averaging a single time record of the 

process instead of averaging an ensemble of time functions. Consider the k୲୦ sample function 
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of the stochastic process   xሺtሻ.  The mean value µ୶ ሺkሻ and the autocorrelation function  

R୶ ሺτ, kሻ of the k୲୦ sample function are given by, 

µ୶ ሺkሻ ൌ   lim
T՜ஶ

1
T

  න x୩ ሺtሻ. dt

T

଴

                                                          ሺ3.1ܽሻ 

 R୶ ሺτ, kሻ ൌ   limT՜ஶ
ଵ

T
׬   x୩ ሺtሻ. x୩ ሺt ൅ τሻ. dt 

T
଴                                            ሺ3.1bሻ 

If for a stationary stochastic process, µ୶ ሺkሻ  and  R୶ ሺτ, kሻ defined in equation ሺ3.1ሻ do not differ 

when computed over different sample functions, the stochastic process is said to be ‘ergodic’. 

 This assumption of the road surface being stationary ergodic process helps to simplify 

mathematical modeling of the road surfaces. When a surface profile is considered as a random 

function then, it can be characterized by power spectral density functions. The power spectral 

density of random road surfaces is determined using digital spectral density analyzers. These 

analyzers work on the principle of filtering-squaring-averaging technique. The input signal from 

the road surface is passed through a highly selective narrow band pass filter with a specific 

center frequency.  The instantaneous value of the filtered signal is squared and an average of 

this squared instantaneous value is obtained as the mean square value. The mean square 

value is divided by the bandwidth to get the average power spectral density at the specific 

center frequency as per equation  ሺ3.4ሻ. By varying the center frequency of the narrow band 

pass filter, power spectral densities at a series of center frequencies can be obtained and a 

graph of power spectral density versus frequency can be plotted.  

 Consider a harmonic component unሺxሻ with amplitude  Un  and wavelength   lωn .   

unሺxሻ ൌ  Un .sin  ሺ
2 π x
lωn

ሻ 

unሺxሻ   ൌ    Un  . sin ሺΩn . xሻ                                                          ሺ3.2ሻ 

Where,   Ωn   - circular spatial frequency of the harmonic component 

   Ωn ൌ   
2 π x
lωn

                                                                                      ሺ3.3ሻ 

Circular spatial frequency is expressed in  rad/m 
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Let, Gሺn Ω0ሻ  be the power spectral density at frequency nΩ0 in the frequency interval ΔΩ. 

׵   Gሺn Ω0ሻ .  ΔΩ ൌ  
Un

2

2
  ൌ  un

2                                                                     ሺ3.4ሻ 

Therefore, the discrete power spectral density becomes, 

Gሺn Ω0ሻ  ൌ    
U୬

ଶ

2 . ΔΩ
    ൌ     

u୬തതതଶ

Δ Ω
                                                               ሺ3.5ሻ 

 

3.1 Power spectral density (PSD) in terms of autocorrelation function 

 PSD functions are defined for frequencies ሺെ ∞, ∞ሻ and denoted by Gሺfሻ. 

Mathematically the PSD is Fourier transform of the autocorrelation function.  

׵    Gሺfሻ  ൌ   න Rሺτሻ  .   eି୨ ଶ ஠ ୤ த .  dτ
ஶ

ିஶ
                                                                  ሺ3.6ሻ 

Which will exist if Rሺτሻ exists and if,  

න |Rሺτሻ |
ஶ

ିஶ
  ݀߬ ൏   ∞     

The inverse Fourier transform of Sሺfሻ  gives, 

   Rሺτሻ  ൌ   න Gሺfሻ .   e୨ ଶ ஠ ୤ த .  df
ஶ

ିஶ
                                                                    ሺ3.7ሻ 

 This relationship between the PSD and autocorrelation function is very important and 

used for generating random time series with specific PSD.   

 

3.2 Road surface classification by ISO 

 Various organizations have characterized the road surface roughness over the years.  

The International Organization for Standardization (ISO) has proposed road roughness 

classification based on the power spectral density, as shown in Figure 3.2 [2] 

The relationship between the road surface PSD and spatial frequency can be approximated as, 

 

Gu ሺΩሻ  ൌ  Csp  .  Ω‐N                                                                            ሺ3.8ሻ 
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Where, Gu ሺΩሻ is the power spectral density of the elevation of road surface profile and Csp and 

N are constants. Fitting the expression to the curves obtained by measured data produces the 

values of Csp and N as given in table 3.1 [2].  

 

 

 

 

 

 

 

Figure 3.2 Road roughness classification by ISO 
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Table 3.1 Values for constants Csp and N for different types of road surfaces  

Sr. No. Description N Csp C’sp 

1 Smooth Runway 3.8 4.3 X 10-11 1.6 X10-11 

2 Rough Runway 2.1 8.1 X 10-6 2.3 X 10-5 

3 Smooth Highway 2.1 4.8 X 10-7 1.2 X 10-6 

4 Highway with gravel 2.1 4.4 X 10-6 1.1 X 10-5 

5 Pasture 1.6 3.0 X 10-4 1.6 X 10-3 

6 Plowed Field 1.6 6.5 X 10-4 3.4 X 10-3 

  

 (Csp is used for calculating road surface PSD in m2/ cycles/ m whereas, C’sp is used  
   for calculating PSD in ft2/ cycles/ ft.) [2] 
 
 Since we are considering that the vehicle is moving at a constant speed and the road 

surface being an ergodic process, it is more convenient to express the PSD of the road surface 

in terms of temporal frequency rather than in terms of spatial frequency since the vehicle 

vibration is a function of time. 

 The relationship between spatial frequency and temporal frequency is given as follows; 

f ൌ   Ω  X  V                                                                                   ሺ3.9ሻ 

The transformation of the PSD of the road surface from space domain to the frequency domain 

considering the road surface as an ergodic process is given as, 

 

Gu ሺfሻ   ൌ   
Gu ሺΩሻ

V
                                                                            ሺ3.10ሻ 
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3.3 Generating random road profile using Fourier transforms 

 The procedure explained in the paper ‘Generation of random time series with a 

specified spectral density function’ by Dr. D. A. Hullender [3] is followed for creating rough road 

surfaces. By using the approach described in this paper, it is possible to generate a random 

sequence of numbers which already has the desired frequency characteristics. For using this 

method, the function need not be analytical and may be defined by simply a series of 

frequencies at each of the values. Random road surface should be generated such that it will 

have desired statistical properties. Otherwise, in evaluating the output characteristics of the 

vehicle suspension, it will be impossible to completely isolate and understand the performance 

characteristics of the system. In this section the procedure for this is explained. A Matlab® code 

is written for generating random road profile with specific PSD.  

 The first step of generating a random time series of road surface elevations, uሺtሻ  with a 

specific power spectral density, is to generate the discrete Fourier transform Uሺf୩ሻ of uሺtሻ based 

on the desired spectral density function. By taking inverse discrete Fourier transform of  Uሺf୩ሻ, 

the random sequence uሺtሻ is obtained. This can be done by generating random phase angles 

for each of the Fourier terms of  Uሺf୩ሻ .  

  Equations for Fourier and inverse Fourier transform are given as below, respectively,  

 

 Uሺfሻ ൌ ׬  u ሺtሻ .  eି ୨ ଶ ஠ ୤ ୲ାஶ
ିஶ  . dt                                                              ሺ3.11ሻ 

uሺtሻ ൌ   න Uሺfሻ .  e ୨ ଶ ஠ ୤ ୲

ାஶ

ିஶ

 . df                                                               ሺ3.12ሻ 

The respective discrete forms of these integrals are given by,  

Uሺf୩ሻ ൌ  h  .  ෍ uሺnhሻ .  eି ୨ ଶ ஠ ୤ౡ ୬୦ 

Nିଵ

୬ୀ଴

                                                             ሺ3.13ሻ 

uሺkhሻ ൌ  ∆f  .  ෍ Uሺn . ∆fሻ .  e ୨ ଶ ஠ ୬ ୩/ N 

Nିଵ

୬ୀ଴

                                                      ሺ3.14ሻ 
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Where, f୩  ൌ  
୩

N ୦ 
 ,  ∆f ൌ  

ଵ

N ୦
  and k ൌ 0, 1, 2, … . , ሺN െ 1ሻ 

The Fourier transform  Uሺf୩ሻ , is a complex number.  

׵  Uሺf୩ሻ ൌ   Rሺf୩ሻ  ൅   j . Iሺf୩ሻ                                                                      ሺ3.15ሻ 

The relationship for the estimator for the PSD [2], 

  G෡x ሺfkሻൌ 
2

N h 
  | U ሺfkሻ|ଶ                                                                          ሺ3.16ሻ 

Substituting equation ሺ3.14ሻ in equation ሺ3.15ሻ we get, 

G෡x ሺfkሻൌ 
2

N h 
   ሼRଶሺf୩ሻ  ൅  Iଶሺf୩ሻ ሽ                                                                  ሺ3.17ሻ 

Thus, the objective is to generate the real and imaginary parts for a Fourier transform which 

then substituted into the right side of the equation ሺ3.16ሻ gives the required spectral density 

function at each frequency fk . Let, 

Rሺf୩ሻ ൌ  ቈටG෡x ሺfkሻ  
N୦

ଶ
  . cos θ቉   

Iሺf୩ሻ   ൌ   ቎േ j.  ඨG෡x ሺfkሻ  
Nh
2

  . sin θ቏ 

It can be easily derived that substituting these values in equationሺ3.17ሻ, desired result is 

obtained independent of θ. By using the random values with uniform probability density between 

0 to 2 π , for angle θ, a random road surface elevations uሺkhሻ is obtained from inverse Fourier 

transform of  Uሺfkሻ.  

 

3.3.1 Generating road surfaces using Matlab®: 

 The Matlab® m-file ‘rough_road_input.m’ is used for generating road surface using 

Matlab. The Matlab command to generate a random road surface having specific PSD from the 

Table 3.1, is ‘[U,t] = rough_road_input(N,H)'. ‘N’ is the number of points to be 

generated to make up the random series. Since, discrete Fourier transform is used, N should be 

a power of 2. Time interval between the points is H. So, the total duration time for the simulation 
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is ሺNHሻ sec and the time increment is ሺHሻ sec. Thus, the highest frequency generated will 

be  
ଵ

ଶ H
  Hz.  The frequency resolution will be 

1

N H
  Hz.  

 

3.3.2 Computing PSD using Matlab®:  

 For example, if a road profile for a smooth highway is of interest for studying behavior of 

the suspension system then first the PSD for a smooth highway is required to be calculated 

using values in Table 4.1. Let, G୳ be the PSD of the smooth highway. From ሺ3.7ሻ 

    G୳  ൌ  
Cୱ୮ 

ΩN  

׵    G୳  ൌ  
4.8 ൈ   10ି଻

Ωଶ.ଵ  

The frequency response characteristics of the suspension systems are obtained in terms of 

temporal frequency. Therefore, it is convenient to compute the PSD of the road in terms of 

temporal frequency. By using relationships given by equations ሺ3.8ሻ and  ሺ3.9ሻ the PSD 

becomes, 

G୳  ൌ  
4.8 ൈ   10ି଻

V. ሺ f Vൗ ሻଶ.ଵ
 

This PSD is used for generating the road profile for smooth highway in 

‘rough_road_input.m’ file.   

 

3.3.3 Computing N and H for input to ‘rough_road_input.m’ file: 

 For computing the numbers N and H, the minimum and maximum frequencies of 

interest are required to be decided. This is done using the frequency response characteristics of 

the suspension as explained in chapter 2. The general procedure for deciding the time step 

increment (H) and the total number of time steps required (N) for the simulation of the 

suspension system for stochastic inputs is explained below with an example. 
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 Consider that effect of random vibrations on the vibration isolation is of interest. The 

frequency response characteristics are as shown in figure 2.5 for all the parameters of the 

suspension system fixed except the damper constant. Let the damper constant be equal to 

7580 Ns/ m (ζ ൌ 0.3 approx). The transfer function for this system is computed as, 

 

HY_Uൌ  
ሺ5.336 ൈ109ሻ s ൅ሺ6.195 ൈ1010ሻ

ሺ328333ሻs4൅ሺ5.041ൈ106ሻs3൅ሺ1.453ൈ 109ሻs2൅ሺ1.779 ൈ109ሻs൅ሺ6.195ൈ1010ሻ
 

 

Eigenvalues for this transfer function are obtained by using damp(HY_U)command in Matlab®. 

>> damp(HY_U)                                                          

        Eigenvalue            Damping     Freq. (rad/s)   

 -1.69e+000 + 6.46e+000i     2.54e-001      6.67e+000     

 -1.69e+000 - 6.46e+000i     2.54e-001      6.67e+000     

 -2.13e+001 + 6.15e+001i     3.28e-001      6.51e+001     

       -2.13e+001 - 6.15e+001i     3.28e-001      6.51e+001   

 

The eigenvalues are, ሺെ1.69 േ j 6.46 ሻ and  ሺെ21.3 േ j 61.5 ሻ. 

 As a rule of thumb, the time increment for each step of the simulation should be less 

than one tenth of the inverse of magnitude of the maximum eigenvalue. Thus, it is made sure 

that the higher frequency modes are taken care of during the simulation. This is particularly 

important in case of stiff systems where there is a large difference in the eigenvalues of the 

modes.   

  ሺHሻ ൏  ׵
1

10 ൈ |ሺെ21.3 േ j 61.5 ሻ| 
 

 ሺHሻ ൏  0.0015364 sec                                                               ሺ3.18ሻ   ׵



 

 30

 Secondly, the simulation should run at least for time duration equal to 5 times the 

maximum value of the time constant to get the steady state response. From the eigenvalues, 

the time constants are calculated as, 

τ1 ൌ  
1
r1

 ൌ  0.5917 sec 

τ2 ൌ  
1
r2

 ൌ  0.0469 sec 

 .ሺN ൈ Hሻ  ൐   5 τ1        i.e׵

׵ ሺN ൈ Hሻ  ൐ 2.9585 sec                                                              ሺ3.19ሻ 

Discrete Fourier transform is used in the algorithm for generating random time series with 

specific spectral density, it is necessary that N is in terms of 2n where, n is a positive integer.  

Using the relationships in ሺ3.17ሻ and ሺ3.18ሻ and the necessary condition for N,  N and  H are 

calculated as follows; 

N  ൌ  2048     and    H  ൌ  0.0015 sec 

Total time of simulationൌ N ൈH ൌ 3.072 sec 

And, Frequency resolution ൌ 
1

N ൈH
  ൌ 0.3255 Hz 

 

 First natural frequency of the system is 1.69 Hz. With frequency resolution of 0.3255 Hz, 

we would get maximum 5 points in between the minimum generated frequency and first natural 

frequency of the system. Therefore the frequency resolution needs to be less. Let the frequency 

resolution be less than 0.05 Hz so that there are more than 25 points between the minimum 

generated frequency and the first natural frequency.  

׵  
1

N ൈH
  ൏ 0.05 Hz 

      N  ൐  1.3333 ൈ 10ସ  ׵

N  ൌ 2ଵସ  ׵ ൌ 16384 
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Thus with N ൌ16384 and H ൌ0.0015 the frequency resolution becomes 0.0407 Hz. The total time 

of the simulation becomes 24.5760 sec.  

These values are used to generate the PSD and the random road surface profile for a smooth 

highway. The Matlab command for this is,  

>> [U,t]=rough_road_input(16384,0.0015); 

 

 

 

 

Figure 3.3 PSD for a smooth highway 
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Figure 3.4 Road profile for a smooth highway 
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CHAPTER 4 

OPTIMIZATION OF DAMPER CONSTANT 

The performance characteristics which are of most interest while designing a vehicle 

suspension system are ride comfort, road holding and suspension travel [6]. Among the three 

characteristics, road holding and ride comfort are chosen for this study. All the suspension 

system parameters such as sprung mass, unsprung mass, suspension spring stiffness and tire 

stiffness are fixed depending upon the frequency response characteristics of the quarter car 

model as explained in chapter 2. So, the damper constant of the shock absorber is selected for 

optimization.   

 

4.1 Optimization for road holding 

Because of the vibrations in the vehicle suspension system while moving on a road 

surface, normal force between road and the tire fluctuates. This normal force is responsible for 

the road holding capacity of the vehicle. The tractive effort, braking effort and cornering force 

also depends upon the normal force between the road and tires. Therefore it necessary to 

maintain a minimum value of tire force for better handling of the vehicle.  

Since the damping ratio of the tire is very small compared to the damping ratio of the 

suspension system, it can be assumed that the normal force between the road and tire is 

directly proportional to the relative displacement between the two. Mathematically, for the 

quarter car model,  

Fୢ୲୧୰ୣ ൌ    Kୱ . ሺz െ yሻ                                                                          ሺ4.1ሻ 

Therefore, it is possible to evaluate the road holding of the vehicle using the dynamic tire 

deflection, ሺz െ yሻ. The values of the fixed parameters for the quarter car model are considered 

as shown in figure 2.1. Ratio of unsprung mass to sprung mass is considered as 0.1. Ratio of 
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tire stiffness to suspension spring stiffness is considered as 8. The values of these ratios are 

taken from the frequency response characteristics explained in chapter 2. 

 

4.1.1 Computation of transfer function for the Quarter Car Model: 

Matlab® is used for computing the dynamic tire deflection of the quarter-car model for 

different types of road surfaces given by table 3.1. First the equations of motions are derived for 

the model using D’Alembert’s principle. The free body diagram of the model shown in figure 2.1 

is as follows; 

 

Figure 4.1 Free body diagram of the quarter-car model 

Considering the displacements of the masses are measured from the static equilibrium 

position so that the weights of the masses can be excluded from the equations for simplicity. 

Equations of motion are  

Mୱ yሷ ൅  Fଵ ൅ Fଶ ൌ 0                                                                                   ሺ4.2ሻ 

Fଵ ൌ  Kଵ . ሺy െ zሻ                                                                                      ሺ4.3ሻ 

Fଶ ൌ  b୭୮୲ . ሺyሶ െ zሶሻ                                                                                   ሺ4.4ሻ 
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M୳ୱ zሷ ൅  Fଷ െ Fଵ െ Fଶ ൌ 0                                                                         ሺ4.5ሻ 

Fଷ ൌ  Kଶ . ሺz െ uሻ                                                                                     ሺ4.6ሻ 

dtr ൌ  ሺz െ uሻ                                                                                       ሺ4.7ሻ 

Thus 6 equations are available for finding 6 unknowns namely y, F1, F2,  F3, z  and  dtr 

By taking Laplace transform of above equations and using Matlab®, the transfer 

function between road elevations u and the dynamic tire deflection dtr is obtained as follows; 

Hdtr_U ൌ  
‐ ሼ328333 s4൅ 1995 ሺbሻs3൅ሺ1.7556ൈ108ሻs2ሽ

ሺ328333ሻs4൅1995ሺbሻs3൅ሺ1.4526ൈ109ሻs2൅704000 ሺbሻs൅ሺ6.1925ൈ1010ሻ
 

4.1.2 Time domain response of the quarter car model using Matlab®: 

 The time response of linear time invariant models for arbitrary inputs can be obtained 

using the Matlab command ’lsim(SYS_TF,U,t)’. Where, SYS_TF is the transfer function of 

the system, U is the generated input and t is the time vector having same dimensions as those 

og the generated input matrix U.  

 

4.2 Optimum damper constant for minimum dynamic tire deflection 

4.2.1 Optimization by simulation method:  

For simulating the dynamic tire deflection for the input from the rough road surface, the 

road surface is generated as per the procedure described in sections 3.4.1 and 3.4.2. A smooth 

highway is considered for this case. The optimum damper constant for the vehicle is to be 

computed such that the RMS value of the dynamic tire deflection is kept to the minimum. This 

way it can be ensured that the normal force between the road and the tires is kept to the 

minimum. So, the objective function is [6], 

min fሺdtrሻ ൌ  RMS ሺdtrሻ 

For optimizing the damper constant, the RMS value dynamic tire deflection is computed by 

running the simulation using above transfer function. Matlab® file 

‘DYN_TIRE_DEFLECTION_NUMERICAL.m’ is used for the simulation and calculation of the 

RMS value. A Matlab® file ‘rmsval.m’ is written for the calculation of RMS value using 
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equation 2.2. The damper constant is varied with a step of 450 Ns/ m from 5050 Ns/ m to 12700 

Ns/ m and for each value the RMS dynamic tire deflection is computed. Following figure 

illustrates some of the time history records of the output for the tire deflection for the smooth 

highway.  

Dynamic tire deflection for b = 5050 Ns/ m 
RMS (dtr) = 5.2 mm 

 
Dynamic tire deflection for b = 8200 Ns/ m 

RMS (dtr) = 2.9 mm 

Dynamic tire deflection for b = 10000 Ns/ m 
RMS (dtr) = 2.4 mm 

 
Dynamic tire deflection for b = 12700 Ns/ m 

RMS (dtr) = 3.4 mm 

 

Figure 4.2 Time responses for dynamic tire deflection for different damper constants 
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 To find the optimum value of the damper constant such that the minimum dynamic tire 

deflection, a graph of the tire deflection versus the damper constant is plotted. 

 

 

 

Figure 4.3 Optimization of the damper constant by simulation 

From the graph in the figure 4.3, the minimum RMS value of the dynamic tire deflection 

occurs at the damper constant of the shock absorber equal to 10000 Ns/ m. 

 Simulations are run number of times to observe the change in minimum value of RMS 

dynamic tire deflection and optimum damper constant for a smooth highway. Table 4.1 contains 

the results obtained from the simulation. 

 From the table, it can be concluded that the value of the optimum damper constant 

changes depending upon the RMS dynamic tire deflection when the vehicle is running over a 

smooth highway with a constant speed. Further, simulation results are obtained for different 

types of the road surfaces to find out the damper constant required for keeping the dynamic tire 
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deflection to the minimum. It is observed that the damper constant values for good road holding 

are in the same range as computed in the Table 5.1 

Table 4.1 Simulation results for optimum damper constant values for minimum  

dynamic tire deflection 

Simulation 

No. 

Minimum RMS Dynamic 

Tire Deflection (mm) 

Optimum Damper 

Constant (Ns/ m) 

1 2.311 10000 

2 2.133 9775 

3 2.234 9775 

4 2.18 9775 

5 2.414 10000 

6 2.273 10000 

7 2.375 10000 

8 2.378 10000 

9 2.168 10000 

10 2.178 10000 

 

4.2.2. Optimization by analytical method: 

 We are interested in computing the RMS value of the dynamic tire deflection. In terms 

of the power spectral density function, the mean square value of yሺtሻ is given by, 

 Ψ୷
ଶ   ൌ ׬    Gyሺfሻ

ஶ
଴  . df                                                                          

Thus, the mean square value is the total area under the plot of the power spectral density 

versus frequency. An important application of the power spectral density function is to 

determine the frequency composition of the physical data.  

 The frequency composition of the data bears important relationship with the basic 

characteristics of the physical system involved. For example, consider a system having transfer 



 

 39

function Hሺfሻ. Let Guሺfሻ be the power spectral density of the input stationary random signal to 

this system and Gyሺfሻ be the power spectral density of the output of interest. The relationship 

between these is given as [9], 

Gyሺfሻ  ൌ   |Hሺfሻ|2   ൈ   Guሺfሻ                                                                     

Let, 

GU  -   Input PSD of the road surface 

Hdtr_U  - Transfer function for the dynamic tire deflection 

Gd୲୧୰ୣ – Output PSD of dynamic tire deflection 

 

Using above results , the output PSD of the dynamic tire deflection can be expressed as,  

  

׵    Gd୲୧୰ୣሺsሻ ൌ   หHdtr_Uሺsሻ ห ൈ หHdtr_Uሺെsሻห ൈ   GU ሺsሻ                                    ሺ4.8ሻ 

 

Eሾdtrଶሺtሻሿ   -    mean square value of the dynamic tire deflection,  

 

׵  Eሾdtrଶሺtሻሿ   ൌ   
1

2 π j
න Gd୲୧୰ୣሺsሻ

୨୤ౣ౗౮

୨୤ౣ౟౤

 . ds                                                     ሺ4.9ሻ  

 

Substituting equation ሺ4.8ሻ  into equation ሺ4.9ሻ, 

 

׵  Eሾdtrଶሺtሻሿ   ൌ   
1

2 π j
න ሼหHdtr_Uሺsሻ ห ൈ  หHdtr_Uሺെsሻห  ൈ   GU ሺsሻሽ

୨୤ౣ౗౮

୨୤ౣ౟౤

 . ds  

 

Substituting   s ൌ 2 π j f   and using the frequency limits as, f୫୧୬ ൌ   0.5 Hz  and f୫ୟ୶ ൌ 300 Hz 

 

 The PSD of the road surface is given by, 

 

GU ൌ  
Cୱ୮ 

ΩN     

 

Where,  

Cୱ୮ ൌ 4.8 ൈ 10ି଻ 

N ൌ 2.1                                                                         ….  For smooth highway 
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Ω ൌ  
f
V

 

V ൌ  30 m/sec 

 

With these values, the road surface PSD is comes out to be, 

 

GUሺfሻ ൌ    
2.0234 ൈ 10ିହ

f ଶ.ଵ                                                                                                                                

 

For solving the integration analytically, the road PSD function is approximated as, 

 

GUሺfሻ ൎ    
2.0234 ൈ 10ିହ

f ଶ                                                                                                                                   ሺ4.10ሻ 

The transfer function for the dynamic tire deflection is, 

 

Hdtr_U ൌ  
‐ ሼ328333 s4൅ 1995 ሺbሻs3൅ሺ1.7556ൈ108ሻs2ሽ

ሺ328333ሻs4൅1995ሺbሻs3൅ሺ1.4526ൈ109ሻs2൅704000 ሺbሻs൅ሺ6.1925ൈ1010ሻ
        ሺ4.11ሻ 

                                                                                         

Where, b ൌ  b୭୮୲  (damper constant of the shock absorber to be optimized) 

Substituting equation ሺ4.10ሻ and ሺ4.11ሻ  in equation  ሺ4.8ሻ , we get the output PSD for the 

dynamic tire deflection. Then by substituting this value in equation ሺ4.8ሻ, the mean square value 

can be obtained.  

 The integration is solved using Matlab® symbolic math. ‘DYNAMIC_TIRE 

_DEFLECTION_ANALYTICAL.m’ file is used to plot the dynamic tire deflection against the 

damping ratio. From the graph the optimum value of the damper constant can be found as 

10000 Ns/ m. 
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Figure 4.4 Optimization of damper constant by analytical method 

 

 Comparing the results obtained by simulation of the quarter car model and by the 

integration of the output PSD over the frequency range of interest i.e. by analytical method, it 

can be concluded that the simulation method gives fairly accurate results and can be effectively 

used for design and optimization of the damper constant of the shock absorber.   

 

4.3 Optimization for Passenger Ride Comfort  

The objective is to formulate optimum value of damper constant such that the vertical 

acceleration of the vehicle body is kept to the minimum. This is important in deciding the 

passenger ride comfort.  The objective function is [6], 

min fሺyሷ ሻ ൌ  RMS ሺyሷ ሻ 

Using the equations of motions for the quarter car model, transfer function between the 

road inputs and the vertical acceleration of the vehicle body is computed as, 

HYdd_U ൌ  
704000 ሺbሻs3൅ሺ6.1925ൈ1010ሻ s2

ሺ328333ሻs4൅1995ሺbሻs3൅ሺ1.4526ൈ109ሻs2൅704000 ሺbሻs൅ሺ6.1925ൈ1010ሻ
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Eigenvalues of the transfer function are calculated using ’damp(HYddm_U)’ 

command in Matlab®. Eigenvalues are; 

>> damp(HYddm_U)                                                          

        Eigenvalue            Damping      Freq. (rad/s)                         

 -3.02e+000 + 6.22e+000i      4.37e-001      6.91e+000     

 -3.02e+000 - 6.22e+000i      4.37e-001      6.91e+000     

 -3.56e+001 + 5.18e+001i      5.66e-001      6.28e+001     

 -3.56e+001 - 5.18e+001i      5.66e-001      6.28e+001 

 

The eigenvalues are, ሺെ3.02 േ j 6.22 ሻ and  ሺെ35.6 േ j 51.8 ሻ 

From the eigenvalues, the same values of N and H can be used for the simulation. A 

smooth highway is considered for the simulation. Vehicle speed is assumed to be 30 m/ sec. To 

find the optimum value of the damper constant, the simulation is run by varying the damper 

constant between 2350 Ns/ m to 12700 Ns/m with an increment of 225 Ns/m. The Matlab file 

’VEH_ACCN_NUMERICAL.m’ is used for the simulation. Figure 4.6 illustrates the output 

acceleration. 

 

Figure 4.5 Vertical acceleration of the vehicle mass (RMS ሺyሻሷ ൌ 0.6115 m
sଶൗ ) 
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Figure 4.6 Optimum damper constant for vehicle body acceleration by numerical method 

 

A graph of the damper constant versus RMS acceleration is plotted as shown in figure 

4.6 to find the minimum value of the RMS vertical acceleration and the corresponding damper 

constant value. In this case the damping coefficient is 4825 Ns/ m. 

Similar results are obtained for different types of road surfaces. It is observed that with 

increase in the roughness of the road the RMS vertical acceleration of the vehicle mass 

increases but the optimum value of the damper constant is in the same range as in the table 

4.2.  

By following the same procedure as explained in section 4.2.2, the optimum value of 

damper constant for minimum RMS vehicle acceleration is computed by analytical method (by 

solving the integration for output PSD of vehicle acceleration). Following figure shows result of 

the analytical method  
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Figure 4.7  Optimum damper constant for vehicle body acceleration by analytical method 

 

4.4 Performance Index Minimization Procedure 

 From the results in section 4.2 and 4.3, it can be observed that the value of damper 

constant required to keep the tire deflections and vehicle mass acceleration to the minimum is 

not a constant.  Ranges of this value required for road holding and ride comfort are different. 

For good road holding the damper constant needs to be in a higher range equal to 10000 Ns/ m 

whereas to achieve good ride comfort the value should be in the range of 4825 Ns/ m..  

 These mutually conflicting conditions generate the need for evaluation of the 

performance index which would take into consideration the road holding of the vehicle as well 

as the passenger ride comfort at a time in optimization procedure.  

For specified values for the maximum allowed acceleration yሷ ୫ୟ୶ maximum allowed 

dynamic tire deflection dtr୫ୟ୶and by calculating the mean square values for acceleration (yሷ ms) 

and dynamic tire deflection (dtrms), the performance index is defined as,  

PIൌ ൤
yሷ ms

 yሷ max
൨  ൅ ൤

dtrms

dtr୫ୟ୶
൨                                                           ሺ4.12ሻ 

2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 4600
Y: 0.5326

DAMPER CONSTANT (b-opt)

V
E

H
IC

LE
 A

C
C

E
LE

R
A

T
IO

N
 B

Y
 A

N
A

LY
T
IC

A
L 

M
E

T
H

O
D

(m
/ 
s2 )



 

 45

Since the mean square values are divided by the respective maximum values, the performance 

index is a dimensionless quantity. However, the values in the denominator need not be the 

maximum values. These values can be used to normalize the dynamic tire deflection and 

sprung mass acceleration and hence can be selected conveniently.  

 A Matlab® code ‘PERFORMANCE_INDEX_MIN.m’ is written for computing the damper 

constant corresponding to the minimum value of performance index. In this m-file, basically the 

mean square values of the dynamic tire deflection and vehicle acceleration are computed by 

simulation. Values of maximum sprung mass acceleration and maximum dynamic tire deflection 

are selected as yሷ max ൌ 0.8 m 
sଶൗ   and dtr୫ୟ୶ ൌ 0.0278 m respectively. Then by calculating the 

performance index as defined by equation ሺ4.12ሻ, a graph of performance index versus damper 

constant is plotted. Figure 4.8 illustrates the simulation result for performance index 

minimization procedure.  

  

 

Figure 4.8 Performance Index Minimization Procedure 
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Table 4.2 Comparison of results for different optimization criteria 

Optimization Criterion  

Damper Constant by 

Simulation  

(Ns / m)  

Dynamic Tire Deflection  10000  

Vertical Acceleration of 

Sprung Mass  
4825  

Performance Index  7750  

 

 Table 4.2 shows comparison between the optimum damper constant values obtained 

using different optimization criteria. The values obtained using performance index are shifted in 

the range of the values obtained using the sprung mass acceleration. This is because the ratio 

ቂݕሷ௠௦
ሷ௠௔௫ݕ

ൗ ቃ has a higher value than ቂdtrms
dtr୫ୟ୶

ൗ ቃ . Therefore, more weight is given to sprung 

mass acceleration than tire deflection in the performance index. 

 

4.5 Computation of road holding of the vehicle 

 If the relative displacement between the tire and the road surface elevations during the 

random vibrations of the wheel is such that the positive value of dynamic tire deflection 

becomes equal to static tire deflection then, the normal force between the tire and the road 

becomes zero and the tire tends to jump of the ground. In such a situation the vehicle loses its 

road holding capacity to a great extent and in turn handling of the vehicle is affected badly. 

Therefore this is an unfavorable condition for the vehicle.  

 To obtain a quantitative insight in deciding the road holding of the vehicle the number of 

times the positive value of the dynamic tire deflection crosses the static tire deflection is 

calculated. This number gives the information about how many times the tire could lose contact 
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with the ground per second. This can be calculated using following equation [10]. Let, pୢ୲୧୰ୣ
ାbe 

the number of positive crossings of the static tire deflection by the dynamic tire deflection. 

׵    pୢ୲୧୰ୣ
ା ൌ  

1
2 π

 .
σሶ ୢ୲న୰ୣ ሶ

σୢ୲୧୰ୣ
  e

ሺ ି 
ୢ౩౪

ଶ ஢ౚ౪౟౨౛
మሻ

                                                  ሺ4.12ሻ 

  Where,  

σୢ୲୧୰ୣ  - Standard deviation of the dynamic tire deflection 

σୢ୲న୰ୣ ሶ   - First derivative of standard deviation of the dynamic tire deflection 

dୱ୲        - Static tire deflection 

Since all the equations of motion for the quarter car model are developed from the static 

equilibrium position, the tires lose contact with the ground when the positive value of the 

dynamic tire deflection becomes equal to the static tire deflection. The static deflection of the 

tire is calculated as, 

K୳ୱ . dୱ୲  ൌ ሺMୱ ൅  M୳ୱሻ. g 

 

׵  dୱ୲  ൌ   0.0278 m 

 The standard deviation of the dynamic tire deflection is computed by running the 

simulation for of the quarter car model for a smooth highway for different values of the damper 

constant.  Substituting these values in equation ሺ4.12ሻ  the number of positive crossings of the 

tire deflection per second is calculated for each damper constant.  

For example, consider the damper constant, b = 9550 Ns/ m 

The output dynamic tire deflection by simulation is as shown in figure 4.9 
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Figure 4.9 Dynamic tire deflection for b = 9550 Ns/m 

 

Standard deviation, σୢ୲୧୰ୣ  ൌ   0.002334 m 

First derivative of standard deviation, σሶ ୢ୲న୰ୣ ሶ  ൌ   0.0104 

By substituting these values in equation  ሺ5.12ሻ  , 

pୢ୲୧୰ୣ
ା ൌ  

1
2 π

 .
0.0104

0.002334
  e

൬ ି 
଴.଴ଶ଻଼

ଶ ሺ଴.଴଴ଶଷଷସሻమ൰
 

 

pୢ୲୧୰ୣ
ା ൌ    8.1736 ൈ 10ିଷ଻ 

 

This means that when the vehicle is running on a smooth highway at a speed of 30 m/sec, the 

positive value dynamic tire deflection ሺz‐uሻ crosses the static tire deflection dୱ୲   1.1884 ൈ 10ିଶଽ 

times per second. This number is too small which implies that the vehicle has good road 

holding.   

 

4.5.1 Effect of vehicle speed on road holding: 

The speed of the vehicle has significant effect on the road holding. To study the effect 

of the vehicle speed in road holding, the number pୢ୲୧୰ୣ
ା  is obtained for different speeds of the 

vehicle. The PSD of the smooth highway is computed at particular speeds and output is 

0 5 10 15 20 25
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01



 

 49

generated by simulation. The standard deviations for each output are then used for computing 

the value of pୢ୲୧୰ୣ
ା  by equation ሺ4.12ሻ . 

 

Table 4.3 Road Holding at Different Vehicle Speeds 

 

 

 

 

 

 

 

From table 4.3, it can be concluded that as speed of the vehicle increases, number of positive 

crossings of the static tire deflections by the dynamic tire deflections increases and in turn the 

road holding of the vehicle decreases.   

 

4.5.2 Effect of road surface on road holding: 

 The effect of different types of road surfaces on the road holding of the vehicle is 

presented in this section. PSD for different types of road surfaces is computed as per the values 

given by table 4.1. Using this PSD the corresponding road surfaces are generated and the by 

simulation in MATLAB®, the number of positive crossings of the dynamic tire deflection is 

computed for each of the road surfaces.  

 

 

 

 

 

Sr. No. Vehicle speed (m/sec) ܍ܚܑܜ܌ܘ
ା 

1 10  9.5453X10-91 

2 20 3.9972X10-44 

3 30 3.0218X10-30 

4 40 7.5786X10-24 

5 50 2.2385X10-18 

6 60 1.4390X10-15 
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Smooth Runway   RMS ( dtr ) = 0.1919 mm 

Smooth Highway   RMS ( dtr ) = 2.335 mm 

 

Figure 4.10 Dynamic tire deflection for smooth runway and smooth highway 

 

 Figure 4.10 illustrates the results of the simulations for different types of road surfaces 

classified by ISO. The speed of the vehicle is assumed to be 30 m/ sec for all the simulations 

and the optimum damper constant value is selected as obtained in section 4.2.1 

The value of   pୢ୲୧୰ୣ
ା  is computed for each type of road surface, using above values of vehicle 

speed and damper constant. Table 4.4 illustrates the same. 
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Highway with Gravel  RMS ( dtr ) =7.193 mm 

Pasture  RMS ( dtr ) = 45.22 mm 

 

Figure 4.11 Dynamic tire deflection for highway with gravel and pasture 

 

 

Table 4.4 Road Holding for different road surfaces 
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Sr. No. Type of Road ܍ܚܑܜ܌ܘ
ା 

1 Smooth Runway 0 

3 Smooth Highway 1.1884 X 10-29  

4 Highway with Gravel 4.7795 X 10-4 

5 Pasture 0.9131 
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From the table 4.4, it can be observed that as the roughness and irregularities of the 

road surface increases, the number of positive crossings of the static tire deflection by the 

positive value of the dynamic tire deflection increases. That is the tire tends to leave contact 

with the ground more times per second. As a result, the road holding of the vehicle decreases. 
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CHAPTER 5 

RESULTS AND CONCLUSION 

1) This thesis illustrates a computer simulation based method for optimizing the suspension 

system parameters for stationary stochastic inputs from uneven road surfaces. A computer 

program using Matlab® has been created for generating random road surfaces with a given 

power spectral density. Different performance characteristics of the suspension system 

such as vertical acceleration of vehicle body, dynamic tire deflection can be evaluated by 

numerical methods by exciting the system for generated random inputs.  

2) The output results for the dynamic tire deflection are computed by analytical method by 

integrating the PSD of the output between the limits of frequency range. The results 

obtained by analytical method closely match with the results of numerical method. So, it can 

be concluded that the numerical method of generating random time series can be 

effectively used for simulation of the suspension system considering a quarter car model. 

3) For good road holding of the vehicle, an optimum value of the damper constant is 

computed. Results are obtained for number of simulations and it is observed that the 

damper constant for good road holding is 10000 Ns/ m for the quarter car model under 

consideration running on a smooth highway. Therefore good road holding and handling 

requires a higher value of damping. 

4) For passenger ride comfort, the optimum value of the damper constant obtained by 

simulation results is 4825 Ns/ m over the entire frequency range. Therefore to achieve 

better passenger ride comfort, lower value of shock absorber damping is required.  

5) Optimization procedure by taking into consideration effect of vehicle mass acceleration and 

dynamic tire deflection at the same time is possible by defining the performance index ሺPIሻ 
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as per equation ሺ5.12ሻ. Performance Index is a dimensionless quantity and the optimum 

value of the damper constant can be found by minimizing the performance index.  

6) A quantitative measure for deciding the roadholding of the vehicle has been proposed. A 

number (pୢ୲୧୰ୣ
ା) defined by equation ሺ4.12ሻ gives the frequency of crossing the static tire 

deflection by the dynamic tire deflections per second and is used to evaluate the road 

holding of the vehicle 

7) Value of pୢ୲୧୰ୣ
ା is computed for different speeds of the vehicle for a smooth highway. It is 

observed that the road holding of the tires decrease with increase in the speed.  

8) Value of pୢ୲୧୰ୣ
ା is computed for different types of road surfaces such as smooth runway, 

smooth highway, highway with gravel and pasture. It is shown numerically that as the road 

roughness increases, the road holding of the tires decrease.  
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APPENDIX A 

 
 

MATLAB® FILES FOR USED FOR GENERATING STOCHASTIC  
INPUTS AND OUTPUT RESPONSES  

IN TIME DOMAIN 
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1.‘rough_road_input.m’ File for Generating Random Road Surfaces  

 
% function[U,t]=rough_road_input(N,H) 
% Generates N points in time U(t) at a time interval of H with zero 
mean. 
% N must be a power of 2! The N points will be generated 
% so as to have a desired one-sided PSD defined in the function 
% road_psd_smooth_highway(f). f is the frequency in Hertz. The 
frequency resolution will be 1/NH.  The smallest frequency will be 0 
Hz and the largest frequency will be 1/2H Hz.  Note, the frequency 
1/2H is referred to as the folding frequency. 
  
function[U,t]=rough_road_input(N,H) 
no2=N/2; 
% Step 1: Generate frequencies and PSD values at each frequency 
f=0:1/(N*H):1/(2*H); 
%Note, the first frequency is zero but we don't 
%compute GY at f=0 to avoid potential computational problems.  GY at 
f=0 
%should be zero for a zero mean process. 
GU(1)=0; 
% If the desired PSD is defined in road_psd_smooth_highway, then use 
the next 3 lines. 
for m1=2:no2+1 
% USE NEXT LINE IF SIMULTAION IS FOR SMOOTH RUNWAY     
    %GU(m1)=road_psd_smooth_runway(f(m1)); 
% USE NEXT LINE IF SIMULTAION IS FOR ROUGH RUNWAY 
    %GU(m1)=road_psd_rough_runway(f(m1)); 
% USE NEXT LINE IF SIMULTAION IS FOR SMOOTH HIGHWAY  
    GU(m1)=road_psd_smooth_highway(f(m1)); 
% USE NEXT LINE IF SIMULTAION IS FOR HIGHWAY WITH GRAVEL 
    %GU(m1)=road_psd_gravel_highway(f(m1)); 
% USE NEXT LINE IF SIMULTAION IS FOR PASTURE IN FIELD 
    %GU(m1)=road_psd_pasture(f(m1)); 
end 
% Step 1: Generate N/2 random phase angles with uniform denisty 
%         between 0 and 2pi 
TH=random('unif',0,2*pi,no2,1); 
% Step 2: Generate the appropriate amplitude at each frequency using 
% the random phase angles. 
for m=2:no2 
    C=sqrt(GU(m)*N*H/2); 
    CTH=cos(TH(m-1))*C; 
    STH=sin(TH(m-1))*C; 
    U(m)=CTH+j*STH; 
    k=N+2-m; 
    U(k)=CTH-j*STH; 
end 
% Step 3:  Make sure the N/2+1 value is real that the negative 
frequency values 
% will be the mirror image of the positive frequency values.   
no2p1=no2+1; 
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C=sqrt(GU(no2p1)*N*H/2); 
CTH=cos(TH(no2))*C; 
U(no2p1)=CTH+j*0.e0; 
% Make sure the zero frequency value is zero to achieve a zero mean 
time series. 
U(1)=0.e0+j*0.e0; 
% Generate Y(t), the inverse transform of the N Fourier Transform 
values Y(f). 
[U]=ifft(U); 
% Rescale to get the correct time series corresponding to this desired 
PSD. 
for m=1:N 
    U(m)=real(U(m)/H); 
end 
% Plot the PSD and time series 
%PLOT OF ROAD ELEVATIONS VS TIME 
t=0:H:(N-1)*H; 
t=t'; 
U=U'; 
figure 
plot(t,U); 
xlabel('Time (sec)') 
ylabel('Output Variable Corresponding to Desired PSD') 
grid on 
%PLOT OF ROAD ELEVATIONS VS DISTANCE 
%figure 
%dist=30.*t; 
%plot(dist,U); 
%xlabel('Distance (m)') 
%ylabel('Output Variable Corresponding to Desired PSD') 
grid on 
figure 
plot((f/30),GU,'r','LineWidth',2) 
xlabel('Spatial Frequency (cycles/m)') 
ylabel('Desired PSD (m^2/cycles/m)') 
grid on 
% AXIS COMMAND FOR SMOOTH RUNWAY 
%axis([0 0.02 0 4]) 
% AXIS COMMAND FOR ROUGH RUNWAY 
axis([0 0.02 0 2]) 
% AXIS COMMAND FOR SMOOTH HIGHWAY 
%axis([0 0.2 0 3e-4]) 
% AXIS COMMAND FOR HIGHWAY WITH GRAVEL 
%axis([0 0.02 0 1.2]) 
% AXIS COMMAND FOR PASTURE 
%axis([0 0.05 0 1.5]) 
  
 

 
 
 
 

2. Matlab® file for Computing PSD at Each Sampled Frequency for a Smooth Runway  
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%PSD for SMOOTH RUNWAY AT VELOCITY = 30 m /sec 
function[GU]=road_psd_smooth_runway(f) 
N=3.8; 
Csp=4.3e-11; 
GU=(Csp)./(30.*(f/30).^N); 

 
 

3. Matlab® file for Computing PSD at Each Sampled Frequency for a Smooth Highway 
 

%PSD for SMOOTH HIGHWAY AT VELOCITY = 34 m /sec 
function[GU]=road_psd_smooth_highway(f) 
N=2.1; 
Csp=4.8e-07; 
GU=(Csp)./(30.*(f/30).^N); 
 

 
 4. Matlab® file for Computing PSD at Each Sampled Frequency for a Highway with Gravel 

 
%PSD for HIGHWAY WITH GRAVEL AT VELOCITY = 30 m /sec 
function[GU]=road_psd_gravel_highway(f) 
N=2.1; 
Csp=4.4e-6; 
GU=(Csp)./(30.*(f/30).^N); 
 

 
5. Matlab® file for Computing PSD at Each Sampled Frequency for a Pasture 

 
%PSD for SMOOTH HIGHWAY AT VELOCITY = 34 m /sec 
function[GU]=road_psd_pasture(f) 
N=1.6; 
Csp=3.0e-04; 
GU=(Csp)./(30.*(f/30).^N); 
 
 
6. Matlab® file for Computing Transfer Function for Dynamic Tire Deflection, Generating Output 
    in Time Domain and Computing pୢ୲୧୰ୣ

ା 
 
% m-file for suspension optimization problem 
% Quarter car model with two degrees of freedom is considered.  
% sprung mass (vehicle mass)= 1814 kg 
% ratio of unsprung mass to sprung mass = 0.1 (unsprung mass=181 kg) 
% shock absorber damper constant= b (to be optimized) 
% equivalent tire stiffness (K2) = 704 kN/m 
% ratio of Spring stiffness to tire stiffness = 8  
%(suspension spring stiffness (K1)= 88 kN/m) 
% input road PSD (Upsd)= Gu=Csp/(f/V).^N; 
  
clear 
clc 
syms Ms b K1 K2 Mus U s 
digits(5) 
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H=solve('Ms*s^2*Y+F1+F2=0','F1=K1*(Y-Z)','F2=s*b*(Y-Z)','Mus*s^2*Z+F3-
F1-F2=0','F3=K2*(Z-U)','dtr=(Z-U)','Y,Z,F1,F2,F3,dtr'); 
  
%T.F BETWEEN DYNAMIC TIRE DEFLECTION AND ROAD INPUT 
Hdtr=collect(H.dtr,s); 
Hdtr_U=collect(Hdtr,U); 
Hdtr_U=vpa(subs(Hdtr_U,[Ms K1 Mus K2],[1814 88000 181 704000])); 
pretty(Hdtr_U); 
  
% GENARATING RANDOM INPUT Y FOR SPECIFIC ROAD ROUGHNESS PSD 
[U,t]=rough_road_input(2048,0.0015); 
  
  
% T.F. FOR OPTIMUM DAMPER CONSTANT 
b=9550; 
NUM=[-328333,-1995*b,-1.7556e8,0,0]; 
DEN=[328333,1995*b,1.4526e9,704000*b,6.1952e10]; 
Hdtr_U=tf(NUM,DEN) 
figure 
bode(Hdtr_U) 
grid on 
  
% SIMULATION OF DYNAMIC TIRE DEFLECTION (Z-U) 
figure 
t=0:0.0015:3.0705; 
D_tire_dyn=lsim(Hdtr_U,U,t'); 
plot(t,D_tire_dyn,'r','LineWidth',1.1); 
%axis([0.15 3.5 -0.01 0.01]) 
grid on 
D_tire_dyn_rms=rmsval(D_tire_dyn) 
  
  
% PROBABILITY OF THAT THE RANDOM TIRE DEFLECTION CROSSES A CERTAIN 
MAXIMUM 
% VALUE 
d=0.0278; 
mv=mean(D_tire_dyn(5:2048)) % SELECT THE M.V. FROM THE DATA STATSTICS 
OF OUTPUT 
sdv=std(D_tire_dyn(5:2048)) % SELECT THE S.DV. FROM THE DATA STATSTICS 
OF OUTPUT 
npd=((sdv*(2*pi)/0.0104)^-1)*(exp(-(d^2)/(2*sdv^2))) 
 
 
 

 
 
 
 
 
 
7. Matlab® file for Performance Index Minimization Procedure: 
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%% OPTIMIZING THE DAMPER CONSTNT CONSIDERING BOTH OF THE VEHICLE 
%% ACCELERATION AS WELL AS DYNAMIC TIRE DEFLECTION BY DEFINING A COST 
%% FUNCTION 
  
clear 
clc 
% GENARATING RANDOM INPUT Y FOR SPECIFIC ROAD ROUGHNESS PSD 
[U,t]=rough_road_input(16384,0.0015); 
n=1; 
  
% MAXIMUM ALLOWED TIRE DEFLECTION AND VEH ACCN 
  
dtr_max= 0.002; 
ydd_max=0.80; 
  
%RMS VEHICLE ACCELERATION 
for b1=2800:225:12700 
    NUM1=[704000*b1,6.1952e10,0,0]; 
    DEN1=[328333,1995*b1,1.4526e9,704000*b1,6.1952e10]; 
    HYddm_U=tf(NUM1,DEN1); 
  
    % SIMULATION OF VEHICLE ACCELERATION 
    %figure 
    t=0:0.0015:24.5745; 
    VEH_ACCN=lsim(HYddm_U,U,t'); 
    VEH_ACCN_rms_numerical(:,n)=rmsval(VEH_ACCN); 
    if n<45 
    n=n+1; 
    end 
end 
  
  
% PLOT OF RMS VALUE OF THE VEHICLE ACCELERATION VS DAMPER CONSTANT 
%b=2800:225:12700; 
%figure 
%plot(b,VEH_ACCN_rms_numerical,'k','LineWidth',2); 
%xlabel('DAMPER CONSTANT (b-opt)') 
%ylabel('VEHICLE FORCE BY SIMULATION(m)') 
%grid on 
  
  
% RMS DYNAMIC TIRE DEFLECTI0N 
m=1; 
  
for b=2800:225:12700 
    NUM=[-328333,-1995*b,-1.7556e8,0,0]; 
    DEN=[328333,1995*b,1.4526e9,704000*b,6.1952e10]; 
    HRH_U=tf(NUM,DEN); 
  
    % SIMULATION OF DYNAMIC TIRE DEFLECTION 
    %figure 
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    t=0:0.0015:24.5745; 
    TIRE_DFLN=lsim(HRH_U,U,t'); 
    TIRE_DFLN_rms_numerical(:,m)=rmsval(TIRE_DFLN); 
    if m<45 
    m=m+1; 
    end 
end 
  
  
% PLOT OF RMS VALUE OF THE DYNAMIC TIRE DEFLECTION VS DAMPER CONSTANT 
%b=2800:225:12700; 
%figure 
%plot(b,TIRE_DFLN_rms_numerical,'k','LineWidth',2); 
%xlabel('DAMPER CONSTANT (b-opt)') 
%ylabel('DYNAMIC TIRE DEFLECTION BY SIMULATION(m)') 
%grid on 
  
% COST FUNCTION 
mstd=TIRE_DFLN_rms_numerical.^2; 
msydd=VEH_ACCN_rms_numerical.^2; 
  
CF=(mstd./(dtr_max^2))+(msydd./(ydd_max)^2); 
  
%PI=(ydd_max^2/dtr_max^2).*(mstd)+msydd 
  
b=2800:225:12700; 
figure 
plot(b,PI,'b','LineWidth',1.5); 
xlabel('DAMPER CONSTANT (b-opt)') 
ylabel('COST FUNCTION') 
grid on 
 
 
 
8. Matlab® file for Calculating First Derivative of Standard Deviation of Dynamic tire Deflection 
    (σሶ ୢ୲న୰ୣ ሶ ): 
 
syms s 
TF=(-328333*s^5-1.905e7*s^4-
1.756e8*s^3)/(328333*s^4+1.905e7*s^4+1.453e9*s^2+6.723e9*s+6.195e10); 
syms  f 
%SMOOTH RUNWAY 
GUU=5.8804e-7/f^4; 
msval=msv(TF,GUU,0.5,300); 
sigma_dot=sqrt(real(msval)) 
%SMOOTH HIGHWAY 
GUU=2.0234e-5/f^2; 
msval=msv(TF,GUU,0.5,300); 
sigma_dot=sqrt(real(msval)) 
%GRAVEL HIGHWAY 
GUU=1.8547e-4/f^2; 
msval=msv(TF,GUU,0.5,300); 
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sigma_dot=sqrt(real(msval)) 
%SMOOTH HIGHWAY 
GUU=2.3088e-3/f^1.5; 
msval=msv(TF,GUU,0.5,300); 
sigma_dot=sqrt(real(msval)) 
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