
DATA DISSEMINATION PROTOCOLS IN WIRELESS SENSOR NETWORKS :

DESIGN, MODELING AND SECURITY

by

PRADIP DE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2008



To my parents

and

Srirupa...



ACKNOWLEDGEMENTS

I am deeply indebted to my supervisors Prof. Sajal K. Das and Dr. Yonghe Liu

for their expertise, motivation, constant encouragement, advice and all the persistent

help and guidance that carved the path towards the completion of my dissertation. I

would also like to extend my heartfelt gratitude to Prof Kalyan Basu for his insightful

advice and suggestions. I acknowledge the support of my other committee members,

Dr. Mohan Kumar and Dr. Matthew Wright, for their interest in my research and

taking time to serve in my committee. Their invaluable comments and suggestions

helped improve my dissertation quality immensely.

I would also like to extend my appreciation to TxTec funding office, Nokia, the

Dean’s office, and the CSE department at UT Arlington for providing the necessary

financial support for my graduate studies. I am thankful to all the professors at UT

Arlington under whom I took various courses that helped me equip myself with the

much needed knowledge to pursue my doctoral studies.

Finally, I would like to express my deepest gratitude to my wife, Srirupa, whose

love, perseverence, and patience have been a constant source of sustenance and inspi-

ration for me. I am indebted to all my family members back in India for their enor-

mous support and love that went a long way in sustaining me through my doctoral

studies. Last, but definitely not the least, I thank my friends and fellow members at

CReWMaN for those unforgettable moments of fun and camaraderie that we shared.

April 9, 2008

iii



ABSTRACT

DATA DISSEMINATION PROTOCOLS IN WIRELESS SENSOR NETWORKS :

DESIGN, MODELING AND SECURITY

Pradip De, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professors : Sajal K. Das and Yonghe Liu

Wireless sensor and actuator networks have been one of the stepping stones to-

wards realizing a pervasive computing infrastructure. However, in a post-deployment

scenario, transferring critical updates and reconfigurations on a network-wide scale

is a non-trivial proposition. Wireless techniques provide the only means of com-

munication, and consequently, an in-depth study of the multihop broadcast based

communication paradigm and the design of efficient and reliable data dissemination

protocols for reprogramming a sensor network is of paramount importance.

In this dissertation, we initially focus on the formal modeling and performance

analysis of broadcast-based data dissemination protocols in wireless sensor networks.

The data propagating in the network could be either small configuration information

to be shared by all the nodes or a large code image required for reprogramming the

network. In order to better understand the propagation behavior, we construct a

mathematical model that allows us to compare different dissemination protocols in

terms of their speed of propagation and extent of network reachability.

Next, from a perspective of security, we investigate the potentially disastrous

threat of node compromise originating from a single node infected with a piece of

iv



malware, propagating to other nodes and gradually compromising the entire sen-

sor network. Focusing on the possible epidemic breakout of such a propagation, we

model and analyze this spreading process and identify key factors determining po-

tential outbreaks. More importantly, we compare the propagation process based on

different sensor deployment strategies, for instance, uniform and group-based deploy-

ment, thereby getting valuable insights for designing secure networks. Subsequently,

we delve onto a specific case of a malware spreading over existing data dissemination

protocols in sensor networks. In order to better understand these protocols’ vul-

nerability to piggybacked virus attacks, we construct a mathematical model for the

malware infection, incorporating important parameters derived from the communica-

tion patterns of the protocol under test. We further enrich our study by observing the

effects of a simultaneous recovery process on the infection propagation. The overall

result is an approximate but flexible framework to characterize a broadcast protocol

in terms of its vulnerability to malware propagation.

Having focused on analyzing data dissemination techniques in static sensor net-

works, we observe that existing data dissemination protocols are inefficient in a mobile

environment and require effective modifications to suit the uncertainties and demands

of network mobility. Thus, we propose a novel wireless multihop data dissemination

protocol, suitable to a mobile sensor network and evaluate it through extensive sim-

ulations as well as real testbed implementation on a network of SunSPOT devices.

Our results indicate an improved performance of our protocol over existing repro-

gramming protocols, both in terms of completion time and total number of messages

transmitted in the network.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks have gained immense popularity in the last few years

as arguably the first means of realizing a distributed and networked pervasive com-

puting environment. These networks, composed of compact, inexpensive, battery-

operated sensor units equipped with computational and wireless communication ca-

pabilities [38, 69] are the result of the symbiosis of ubiquitous RF-based wireless

networking [88] and recent advances in low-power analog and digital electronics. Due

to their increasingly favorable form and cost factors, it is feasible to connect together a

large number of such sensors in order to support fault-tolerant, fine-grained monitor-

ing of the physical environment and tracking applications [67]. Cheap and ubiquitous

platforms of networked sensors will be the key to real-time delivery of large volumes

of useful information and would support a variety of applications such as battlefield

monitoring, structural health monitoring, intrusion detection and physical environ-

ment monitoring.

1.1 Scope and Challenges

Many of these applications require sensors to be deployed in a large scale in

a fairly dense manner. Moreover, in most of these cases, the devices are deployed

in places which are seldom physically accessible and thus expensive and time con-

suming to be regularly monitored by humans. Thus, a post-deployment control and

management of the network as a whole is a critical issue. These networks require

suitable protocols that would achieve this remotely and in a reliable, scalable and

1



2

efficient manner. Also, one cannot overlook the security issue associated with such a

management and control method.

An important feature of a wireless sensor network is that the network is gen-

erally treated as a whole or as clusters of nodes. Individual nodes are relatively

insignificant, and this prompts redundant deployments in most applications. Conse-

quently, sensor nodes are seldom required to be individually addressible. Thus, the

most important data flows in sensor networks is generally of the form of converge-

cast towards the base station or broadcast/multicast to many or all the nodes of

the network. We thus observe that broadcast-based wireless multihop propagation

of information is a very important paradigm of communication in a sensor network.

Due to the necessity of wirelessly retasking or reprogramming the nodes of a sensor

network in the post-deployment phase, several over-the-air code update protcols have

been designed [36], [53], [49]. These protocols can be used to update all the nodes

of the network with newer versions of installed code or to share useful information

from a single node to the entire network in a wireless multihop manner. Not only are

these protocols useful for retasking the whole network, but they also help in remotely

debugging deployed nodes. Reliably disseminating a piece of data to every node is

a fundamental primitive in wireless sensor networks. Apart from reprogramming the

entire network, example uses include disseminating a pattern for in-network event de-

tection, a communication schedule for radio duty cycling, or configuration constants

for tuning operations.

Because wireless network-wide data dissemination is a critical requirement, se-

curity of this mode of communication in a sensor network is of prime concern. How-

ever, it remains as one of the most critical challenges yet to be fully addressed. Due to

the unique characteristics of wireless sensors, such as their scarce resources and hence

low defense capabilities, node compromises can be expected to be common phenomena

for wireless sensor networks in unattended and remote, hostile environments.
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Extensive research efforts have been conducted towards designing resilient net-

work security mechanisms [11], [26], [13], [54]. However, the compromise itself, and in

particular, the propagation of node compromise (possible epidemics) have attracted

little attention. While node compromise, thanks to physical capture and succeeding

analysis, is naturally constrained by the adversary’s capabilities, software-originated

compromises can be much more damaging. Recent emergence of viruses like Cabir1

that spread over wireless interfaces in cellular networks indicate that wireless sen-

sor networks are also extremely vulnerable to malware. It can be conjectured that,

wireless sensor networks, with their inherent properties of high densities, large-scale

deployments and data spreading nature, coupled with the fact that they are gener-

ally deployed in mostly unattended terrains, are undoubtedly vulnerable to possible

virus/malware outbreaks spreading over the 802.15.4 interface.

The fact that it would be difficult to continuously perform human monitoring

of a deployed network makes it even more vulnerable. Moreover, the hardware con-

straints could also restrict the use of sophisticated mechanisms like antivirus installa-

tions or complex cryptographic measures to fight virus attacks and, more disturbingly,

attacks which might seem apparently simple and harmless in a conventional network

might prove detrimental in the case of a sensor network. For instance, from the sensor

network’s standpoint, a piece of software that can spread across multiple nodes and

repeatedly perform complex operations that deplete battery, can be malicious.

In particular, the broadcast or code dissemination protocols proposed for wire-

lessly reprogramming a sensor network can easily serve as vehicles in transfering a

piece of malware across the whole network very quickly. Thus, malware that does not

have the ability to transfer itself to other nodes can exploit these protocols by pig-

gybacking atop them and transferring themselves to the whole network. The density

1http://www.f-secure.com/v-descs/cabir.shtml
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and large scale nature of wireless sensor networks would only make matters worse

and facilitate fast malware propagation over these protocols.

Malware spreading over the Internet has been widely studied, and notably by

means of epidemic theory [3]. However, the marked difference in the topological

aspects of the Internet with that of a sensor network often render existing models

for the former unusable in the latter. The Internet is typically characterized as a

scale free network showing the properties of preferential attachment and growth, both

of which are largely missing in wireless sensor networks. Although there are several

algorithms and protocols for data dissemination and routing in sensor network that

are based on epidemic principles [9], a consolidated formal model to quantify the

propagation rate and other important parameters is yet to be designed.

1.2 Contributions

A deep and insightful study of the behavior of the broadcast based communi-

cation paradigm in sensor networks is essential towards not only understanding the

information propagation processes, but also to assess their shortcomings and vulner-

abilities to different kinds of security breaches. This analytical study, as we perform

in this dissertation, would equip us with better insight into building efficient, robust

and secure data dissemination protocols for sensor networks.

This dissertation seeks to analyze broadcast based information propagation in

sensor networks under different application scenarios and different deployment strate-

gies, focusing on both static and mobile sensor networks. We construct models for

the propagation process under each scenario and analyze those models in the light of

the extent of coverage and the speed of propagation of the information, be it useful

data/code or harmful malware.

We now describe the contributions of this dissertation.
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1.2.1 Analytical Model for Performance Analyses of Data Dissemination
Protocols

Several protocols for code update or data dissemination in sensor networks have

been proposed in the recent literature including Trickle [53], Firecracker [52], Deluge

[36] or MNP [49]. We construct a mathematical model to analyze the performance

of different data dissemination protocols in sensor networks in terms of speed of

propagation and coverage of the network. Specifically, our contribution is a novel

framework based on epidemic theory [3], which serves as a common and flexible

platform for capturing and characterizing the spread of information over the different

protocols (e.g., Trickle, Deluge. etc.), thus facilitating a comparative analysis of their

performance. The results provide valuable insights toward designing better protocols

that can be used for disseminating executable code to the entire network and other

network management tasks. We construct our epidemic model for data propagation

based on the local spatial interaction of nodes in a neighborhood. Then we map each

broadcast protocol onto this model by expressing an important parameter of this

epidemic framework, viz., the infection rate, as a function of the communication rate

of the protocol under test after incorporating the physical communication constraints

of the wireless network. Subsequently, we use this rate in our epidemic model to

observe the dynamics of the information propagation over the particular protocol.

This framework, thus provides a flexible analytical tool by which we can assess, within

close approximations, the performance of different data dissemination protocols by

expressing their communication rates in terms of the infection rate of the underlying

epidemic framework. Our results indicate that our model can fairly approximate the

data propagation behavior of different broadcast protocols accounting for their speed

of transfer and network coverage.
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1.2.2 Analysis of Node Compromise Propagation

Having developed an epidemic model for wireless sensor networks performed a

performance analysis of different broadcast protocols, we next focus on an investiga-

tion of the spreading process of node compromise in a large scale sensor network [18].

We assume that the sensor network uses secure communications framework. Nodes

use pre-distributed shared secret keys to securely communicate among themselves.

Compromise of a node could veritably reveal all the keys used by that particular

node. Starting from a single compromised node, we assume that the adversary can

effectively compromise some of its neighboring nodes through wireless communica-

tion and thus can threat the whole network without engaging in large-scale physical

attacks. In particular, due to security schemes employed by the sensor networks,

we assume that communication can only be performed when neighboring nodes can

establish mutual trust by authenticating using a common key. Therefore, node com-

promise is not only determined by the deployment of sensor nodes which in turn

affects node density, but also determined by the pairwise key distribution scheme

employed therein.

By incorporating these factors of the networks, we propose an epidemiological

model to investigate the probability of a network-wide breakout (compromise of the

whole network) and if not, the sizes of the affected components (compromised clusters

of nodes). Furthermore, we analyze the effects of node recovery in an active infection

scenario and obtain critical values for these parameters that result in an outbreak. We

focus our analysis on two specific types of node deployment scenarios, namely uniform

random deployment and group-based deployment of nodes. In the latter, locations of

the nodes of a group are assumed to follow a particular spatial distribution about the

group deployment point.
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Through extensive simulations, we show that our analytical results can closely

capture the effects for a wide range of network setups. Our analysis also provides

deeper insights on the temporal dynamics of the epidemic process under each deploy-

ment scenario.

We, subsequently, move on to analyze the special case of the threat of node

compromise spreading over data dissemination protocols in sensor networks which

are particularly vulnerable. As much as these protocols provide reconfigurability

to the sensor network, they could also serve as easy vehicles for any malware to

propagate through the entire network. This way, the malware need not devise any

strategy to target any specific node based on some knowledge of the topology, but

simply rely on the dissemination protocol’s propagation mechanism to transport itself

to the entire network. In particular, we look at a scenario where a source node has

been compromised and is being used alongwith the communication mechanism of the

broadcast protocol to compromise the rest of the nodes by propagating a piece of

malware to the entire network.

A set of recent works have focused on authentication mechanisms for securing

broadcast protocols, particular for code-update [27, 24, 51], using a combination of

hash trees or hashchain based schemes and digital signatures. Generally, they require

the first packet of the data-stream to be digitally signed at the source and verified by

nodes along the propagation paths. The rest of the packets are either secured by a

hash chain or a hash tree over the entire set of subsequent packets.

However, the complexity of the security mechanism may increase significantly

in the presence of multiple sinks or base stations [78, 24] with hash trees being gen-

erated for each one. Moreover, if the source of a network-wide broadcast is a regular

sensor node, then it might be prohibitive to use digital signatures as it would have to

perform both signing and verification functions. More importantly, if a regular sensor

node indeed serves as a broadcast source using digital signatures for authentication,
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its undetected compromise could reveal all the security related information to the

attacker rendering the broadcast protocol vulnerable. Consequently, an adversary, on

capturing that node, can employ the protocol as a vehicle for propagating malicious

code.

We use an epidemic theoretic framework similar to the one used previously

for comparing the performance of these dissemination protocols, to analyze their

vulnerability [19, 20]. However, in addition, we also consider a simultaneous recovery

process that is active in the network and assess the comparative vulnerabilities of

each protocol even under the influence of a simultaneous recovery. We thus arrive

at critical values pointing at, not only the rate of infection of the network, but also

the maximum fraction of the network compromised under each protocol before the

recovery procedure is able to take over the malware breakout.

1.2.3 Design of a Reprogramming Protocol For Mobile Sensor Networks

Having analyzed the performance and security aspects of data dissemination

protocols in static sensor networks, we observe that there is no suitable protocol for

efficiently disseminating data in a mobile sensor network. Mobility of nodes in a

network presents significant uncertainty around critical factors like node locations

and neighborhood densities. Existing broadcast protocols, if used as-is in a mobile

environment, would function inefficiently in terms of both speed and energy savings.

We thus propose a new reprogramming protocol for mobile sensor networks.

Our dissemination mechanism primarily revolves around periodic advertise-

ments of code metadata in the neighborhood. When a conflict is discovered, the

code pages are propagated in an ordered manner across the network in a pipelined,

spatially multiplexed fashion. The reason behind maintaining page order during

pipelined transfer in a static network is the notion that the code is propagating from

a source in the form of a wave. Therefore, in the absence of any kind of unicast



9

routing, there is very low probability of pages arriving at a node out of order. Thus,

these protocols reduce the overhead of nodes contending for different pages by en-

forcing an ordered transfer. However, the random and continuous mobility of the

nodes could render the feature of acquiring pages in-order, as the existing protocols

for static sensor networks are designed, extremely inefficient. Furthermore, node mo-

bility causes considerable uncertainty on the location of a node at any given time.

Thus, a code update protocol running at a node should not only consider the issue of

optimally utilizing the node’s resources, but also engage in tackling the uncertainties

of neighboring nodes’ locations brought about by their mobility.

We introduce ReMo [21], a reprogramming protocol specifically designed for

mobile sensor networks. ReMo tries to infer relative distance with neighboring nodes

and the link qualities with them from parameters measured from received packets.

In contrast with previous reprogramming protocols, in ReMo, we relax the constraint

of in-order propagation of pages and try to take advantage of mobility by allowing

nodes to download pages out-of-order. We address two main issues for code exchange

between neighbors. First, nodes try to ascertain which neighbor has the best link

quality as well as a higher chance of staying within communication range for a suffi-

cient duration. Second, a node also tries to ascertain which neighbor has the highest

potential for providing pages for download. The primary local goals of ReMo running

at a node are to optimally choose a neighbor based on the above two requirements

while simultaneously trying to minimize its energy usage by intelligently limiting the

number of control messages transmitted in a neighborhood. Since each node takes

local decisions based only on neighborhood information, ReMo can scale to large

network sizes. Moreover, the optimal choice of a neighbor to exchange pages with,

based on link quality and potential for page exchange, helps it extract the most out

of the uncertain mobile environment. This means it is efficient in terms of speed of

propagation and energy savings. Furthermore, the epidemic style of page propagation
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automatically achieves the desired reliability to correctly disseminate the code to the

entire network.

We have conducted extensive simulations to evaluate ReMo against other ex-

isting protocols like ones proposed for static networks [36, 49]. Our results, under

different mobility scenarios, show significant improvement of ReMo both in terms of

time taken to reprogram the network and also the number of messages transmitted

to achieve the dissemination.

We have also implemented ReMo [22] on a testbed of SunSPOT sensors [86]

and evaluated its performance in comparison with Deluge [36].

1.3 Organization of Dissertation

In chapter 2, we review existing literature and provide some necessary back-

ground on a few related topics that have been used in this dissertation. In chapter 3,

we focus on a comparative performance analysis of different data dissemination pro-

tocols from a data propagation and network reachability standpoint. In chapter 4, we

delve into the analysis of node compromise propagation in a securely communicating

sensor network and model and study the effects of different deployment strategies on

this process. We further analyze the behavior of malware propagation over different

data dissemination protocols in chapter 5. In chapter 6, we identify the drawbacks

of existing dissemination protocols when applied in a mobile scenario and propose a

novel reprogramming protocol for mobile sensor networks and discuss its design. We

elaborate on the implementation of this protocol in chapter 7 and finally conclude

this dissertation in chapter 8.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we discuss existing works related to this dissertation. In chapter

3, we discuss the performance analysis of several dissemination protocols based on a

common framework of evaluation. Many dissemination protocols have been proposed

in the literature. Data dissemination protocols in sensor networks can be broadly

classified as the category of protocols that aid the process of data transfer from a

single or a small number of sensor nodes to the rest of the network or a significant

fraction of the network. These protocols are critical for various purposes where vari-

ous levels of control and management is necessary over a sensor network for operations

ranging from remotely upgrading software on the nodes to troubleshooting them and

fixing bugs. The necessity for this capability is primarily accentuated by the fact that

sensors in their post-deployment phase are generally assumed to be physically inacces-

sible. This assumption automatically applies to sensors deployed in irrigation fields,

military grounds, etc. However, they also apply to a pervasive computing environ-

ment where the sensors are embedded in our environment and, although accessible,

it is an extremely expensive proposition to uproot them from the environment for

purposes of upgrading them or changing applications running on them.

One of the prominent works of data dissemination in sensor networks is SPIN

[47, 46] where the authors proposed the concept of meta data or data descriptors

to eliminate the chance of redundant transmissions in sensor networks. Their main

contribution was based on the basic deficiencies of classic flooding, viz., Implosion,

Overlap, and Resource Blindness.

11
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For the reliable dissemination of data in sensor networks, the authors of Infuse

[48] proposed a TDMA based data dissemination protocol for sensor networks. Since

TDMA ensures a deterministic slot when a sensor node should transmit its packet, it

offers a degree of reliability which is used by the data dissemination strategy adopted

in Infuse. The authors tackle the problem of random message losses in the presence of

channel errors by considering recovery algorithms based on sliding window protocols,

modified to use implicit acknowledgments.

In [29], the authors performed an experimental and empirical study of the epi-

demic style algorithms in large scale multihop wireless networks.

Specifically, dissemination protocols for code update in sensor networks have

been given special focus in recent years. All these protocols have concentrated on

reprogramming a set of static nodes scattered in a terrain. Trickle [53] is a code

maintenace algorithm which works on a polite gossip based periodic advertisement of

metadata. Deluge [36] is based on Trickle and is meant for transferring bulk code by

dividing it into fixed size pages and pipelining the pages across the network. How-

ever, Deluge suffers from the hidden terminal problem in dense networks. MNP [49]

improves on Deluge’s hidden terminal problem by implementing a sender selection

algorithm in a neighborhood by which one single node would transmit data. It trans-

fers the whole image in a phase-by-phase manner across single hops. Although it

saves on energy, the code propagation process takes longer. An extension of MNP

was proposed in Gappa [77] where parts of a code can be communicated to a subset

of sensors on multiple channels.

We have, subsequently in section 2.1, dealt with some of these dissemination

protocols for code update in further detail as we have used them in our dissertation

for evaluating our framework.

Security of these protocols is an area of major concern and a few other works [27,

24, 51] have been proposed which try to secure the code transfer over these protocols.
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These protocols discuss authentication techniques for securing data dissemination in

sensor networks. However, they have a few drawbacks when these protocols are used

generically for disseminating data from any sensor node acting as a source. We discuss

this vulnerability of these protocols in chapter 5. Although most of these protocols

provide a reliable transfer of data across the network and can handle occasional

node failures, they are unsuitable or inefficient when used in a mobile sensor network

scenario where nodes are dynamic all the time. We have not come across any existing

work that proposes a protocol for disseminating data efficiently in a mobile sensor

network. This is the basis for our work in chapters 6 and 7.

Moreover, the fundamental model on which our framework formulations are

based, relies heavily on a branch of mathematics for modeling the spread of an infec-

tion in a susceptible population, namely, Epidemic Theory. We have used this branch

of biologically inspired technique for solving our formulated problems.

Subsequently, we briefly discuss this subject in this chapter in section 2.2 before

embarking on using it to address the key problems discussed in this dissertation in

subsequent chapters.

In chapter 4, we delve into the threatening aspect of node compromise spreading

across a sensor network from a few initially compromised nodes. We have proposed

models to analyze and derive critical parameters to aid in the design of more ro-

bust and secure sensor networks. Node compromise in sensor networks and the need

for their security has received immense attention in the research community[34]. A

large portion of current research on security in sensor networks has been focused on

protocols and schemes for securing the communication between nodes [54, 28, 55].

In [28], the authors propose a random key distribution scheme for secure commu-

nication among sensor nodes. In [54], the authors improve on the work in [28] by

taking advantage of node location information to improve key connectivity. In [26],

the authors discuss a key management scheme based on node deployment knowledge.
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They consider a group based deployment where the resident points of nodes in each

group follow a two-dimensional gaussian distribution around the deployment point of

the group. In [65], the authors provide critical values of the size of the keyring and

the key pool such that the network is not only connected but also resilient against

the capture of a fixed fraction of the nodes and their keys. However, we consider a

dynamic process whereby the adversary acquires more keys by propagating the node

compromise process from a small set of nodes. Revocation of keys of compromised

nodes has been studied in [12] where the authors define basic properties that dis-

tributed sensor-node revocation protocols must satisfy and present such a protocol

that satisfies these properties under general assumptions and a standard attacker

model. In [34], the authors demonstrate the ease with which a sensor node can be

compromised and all its information extracted. Unfortunately, little work has been

done on the defense strategies when the compromise of a single node could be used to

compromise other nodes over the air. Our work takes the first step towards modeling

this potentially disastrous propagation[18].

2.1 Data Dissemination Protocols for Code Update in Wireless Sensor
Networks

Several data dissemination protocols in wireless sensor networks for purposes of

reprogramming and maintenance of code have been proposed in the recent literature.

We have adopted a few of them to showcase the models and associated analyses. In

this chapter, we would review some of the key protocols and briefly discuss them and

their mechanism of operation.

2.1.1 Trickle

Trickle [53] is one of the first protocols proposed for propagating and main-

taining code updates in wireless sensor networks. The basic algorithm of Trickle is
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based on a “polite gossip” policy where nodes periodically broadcast code summary

or metadata advertisements to local neighbors for maintenance. Trickle assumes that

nodes can describe their code with metadata in a concise manner and by comparing

two different pieces of metadata, can determine which node needs an update. In

Trickle, each node would periodically transmit its code metadata if it has not heard

a few of its neighbors transmit the same thing. However, a node would choose to

remain silent if it has recently heard a metadata identical to its own. When a node

hears old gossip, it triggers a code update, so that the gossiping node can be updated.

Trickle also regulates its rate of gossiping based on received gossip information. In

other words, a node will gradually reduce its gossip rate if it does not hear new infor-

mation. However, when it indeed overhears any new gossip, the rate will be increased

automatically.

Thus, the local and stateless feature of Trickle’s periodic maintenance mecha-

nism allows it to scale to thousands of nodes and different folds of network density,

quickly propagate updates, distribute transmission load evenly, be robust to transient

disconnections, handle network repopulations, and impose a maintenance overhead

on the order of a few packets per hour per node. Thus, the result of a metadata

broadcast could be either that every neighbor is up to date or a recipient node de-

tects the need for an upgrade. It does not matter who transmits first and as long

as there is some minimal communication in each neighborhood and the network is

connected, nodes will stay up to date. Formally speaking, Trickle divides time into

a series of rounds. Each node maintains a counter c, a threshold k, and a timer t

randomly chosen in the range [0, τ ], τ being a fixed time constant. k is a small fixed

integer. When a node hears metadata identical to its own, it increments c. At time

t, the node broadcasts its metadata if c < k. The random selection of t uniformly

distributes the choice of who broadcasts in a given interval. When the interval of size

τ completes, c is reset to zero and t is reset to a new random value in the range [0, τ ].
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Transmit (c < k) Suppress (c > k)Overheard Transmissions

Figure 2.1. Working Principle of Trickle.

If a node with code φx hears a metadata for φx−y, it broadcasts the code necessary to

bring φx−y up to φx. If it hears a summary for φx+y, it broadcasts its own summary,

triggering the node with φx+y to send updates. Fig. 2.1 shows a visual depiction of

the working principle of Trickle for two intervals of length τ with k = 1.

The random selection of t uniformly distributes the choice of who broadcasts in

a given interval. This evenly spreads the transmission energy load across the network.

If a node with n neighbors needs an update, the expected latency to discover this

from the beginning of the interval is τ
n+1

. Detection happens either because the node

transmits its metadata, which will cause others to send updates, or because another

node transmits a newer metadata. A large τ has a lower energy overhead (in terms

of packet send rate), but also has a higher discovery latency. Conversely, a small τ

sends more messages but discovers updates more quickly.

For further details, the reader is referred to the original paper [53].

2.1.2 Firecracker

Firecracker [52] is another data dissemination protocol in wireless sensor net-

works. In Firecracker, the authors have combined routing and local broadcast to

rapidly transfer a piece of data to all nodes of the network. Broadcasting is favorable

when a piece of data needs to be sent to all the nodes. However, it needs to be done in

an energy efficient way. In order to minimize the amount of energy spent in delivering

the data, nodes either reserve the channel or rebroadcast carefully such that collisions
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Figure 2.2. Working Principle of Firecracker: (a) Source initiation, (b) Routing to
Seeds, (c) Broadcast from Seeds, (d) Further Propagation.

are unlikely. Explicit reservation of channel requires additional energy in the form

of control messages, which further introduce latency. The latter technique requires

suppression timers, which imposes delay on each hop.

However, routing is favorable when the network needs to send data quickly to

a single destination. Nodes can forward data along the single path without having to

worry about suppression. Unfortunately, it is difficult to address each and every node

in a sensor network. Thus, although this technique is faster than broadcast, routing

to every node is less energy efficient. Firecracker combinines these two techniques

of routing and broadcast to achieve dissemination rates close to routing while still

maintaining the energy efficiency of broadcasting. To start the dissemination process,

the data source first routes data to certain distant points termed as seed points in the

network. Once the data reaches the respective destinations, broadcast-based dissemi-

nation begins along the path like a string of firecrackers. In other words, nodes along

the route also cache the data they forward and neighboring nodes along the route

who overhear can also do the same. The network can then start the broadcast based
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dissemination from each of the nodes that received the data. Thus, it is noteworthy

that the most efficient end-to-end route is not necessarily the best one. Taking a long

circuitous route along the network can possibly propagate data more quickly than a

purely broadcast based dissemination.

Thus, the first essential part of Firecracker is the seed selection. The farther

the seed points from the origin, the faster data can propagate. Moreover, these

seeds should also be distant from one another, or traffic along their routes would be

redundant.

The routing protocol must allow nodes to address arbitrary nodes in the net-

work. Since the purpose of the routing phase is to spread the data to distant points

in the network, a naming scheme that allows nodes to choose such points is helpful.

Random selection of seed points is beneficial provided the random points are far away

from the source. The routing mechanism can be any of the standard mechanisms for

routing in sensor networks[37], [16], [81], [47]. For instance, in a routing protocol such

as GPSR [40], this would involve routing to a geographic location well outside the

area of the network.

Fig. 2.2 shows the working principle of firecracker where the source seeks distant

seed points from where local broadcast based dissemination starts. Thus, with the

correct selection of seeds, Firecracker can speed up the data dissemination process

across the network. For further details, the reader is referred to [52].

2.1.3 Deluge

Deluge [36] is a reliable data dissemination protocol for propagating large data

objects from one or more source nodes to many other nodes. The density aware

epidemic properties makes it reliable against unpredictable wireless environments

and robustness against varying densities of nodes. The large data object that needs

to be transported is broken down into manageable chunks of fixed size called pages.
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Figure 2.3. Deluge Protocol.

This representation of the data object allows for spatial multiplexing and supports

efficient incremental upgrades. It also limits the state that a receiver must maintain

while receiving data.

Deluge utilizes Trickle as a basic maintenance mechanism. In Trickle, as ex-

plained earlier, nodes stay up-to-date by periodically broadcasting a code metadata

to their neighbors. A node suppresses its own broadcast if it recently overhears a

similar code metadata. When the nodes are not up-to-date, the broadcast rate is

reduced, but is otherwise increased upto a specified limit.

Deluge is an epidemic protocol operating as a state machine where each node

follows a set of strictly local rules to achieve the global goal of reliably disseminating

large data objects. A node operates in one of three states at any given time: MAIN-

TAIN, RX or TX. The set of local rules an individual node follows is a function of

its current state and specify what actions and state transitions to take in response

to events. A node in the MAINTAIN state is responsible for ensuring that all nodes

within communication range have (i) the newest version of the object profile and (ii)

all available data for the newest version. To maintain this property, each node uses

Trickle to periodically advertise a summary describing the current version of its ob-

ject profile and the set of pages from the object which are available for transmission.
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Trickle’s suppression mechanism helps to minimize the set of senders and sim-

plifies the decision making process of nodes at any given time. The only trigger that

causes a node R to request data from another node S is the receipt of an advertise-

ment stating the availability of a needed page. A significant contribution of Deluge

is its emphasis on spatial multiplexing. Deluge advertises the availability of received

pages even before all pages in the object are complete, allowing faster propagation of

the object. Consequently, overall throughput is increased by pipelining the transfer

of pages across the network. In order to realize the full benefit of spatial multiplexing,

Deluge takes special care to ensure that transfers of different pages do not interfere

with each other. First, Deluge constrains nodes by requesting pages in sequential

order, that is, a request for page i cannot be made unless data for all pages in the

range [0, i) are also up-to-date.

A node in the RX state is responsible for actively requesting the remaining

packets required to complete a page. Each request operates as a selective negative

acknowledgment (SNACK), where a bit-vector specifies which data packets in the

page are needed.

A node in TX is responsible for broadcasting all requested packets for a given

page (continuing to service any subsequent requests for data from the same page)

until all requested packets have been broadcast and then transition back to MAIN-

TAIN. Deluge services requests by taking the union of any new requests with previous

requests not yet serviced.

Deluge thus provides a reliable and scalable mechanism of propagating a set of

pages constituting an entire data object in a spatially multiplexed manner across the

whole network.
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2.1.4 MNP

MNP [49] is another broadcast-based multi-hop reprogramming protocol for

sensor networks. In particular, it addresses the issue of message collisions and hid-

den terminal problems in previous reprogramming protocols like Deluge. It is similar

to Deluge in that it uses periodic advertisement of metadata for maintaining code

synchronization with neighbors. However, it also implements a sender selection al-

gorithm which attempts to guarantee that, in a neighborhood, there is at most one

source transmitting the program at a time. Each source node competes with one

another based on the number of distinct requests they have received. Contrary to

Deluge, where the image is broken down into pages and pipelined across the network,

in MNP, the whole image is sent in a phase-by-phase approach across each hop.

Recognizing the importance of preserving energy in sensor networks, MNP in-

corporates some power saving techniques to do its reprogramming. It reduces radio

transmission by preventing too many source nodes from transmitting concurrently,

as such concurrent transmissions create excessive contention. MNP achieves this by

using a sender selection and suppression scheme.

The working principle of MNP is divided into 4 distinct phases, namely Ad-

vertisement/Request, Forward/Download, Query/Update and Reboot. In the Adver-

tisement/Request phase, sources advertise the new version of code they have, and all

interested nodes request the code. Depending on the requests it receives and adver-

tisement messages it overhears from other sources, a node decides whether it should

start forwarding code or go to “sleep”. In this stage, nodes apply the sender selection

algorithm. Based on a counter of the number of requests that a source node receives,

the sender is elected based on its potential to serve the highest number of requesters.

after the election is done, the nodes that yielded to the chosen sender go to sleep to

save energy.
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Once a source has been selected, it broadcasts a “StartDownload” message to

inform all the receivers in its neighborhood to get prepared for the arrival of new

code. The program image is divided into segments, each of which fits into a single

packet. The sender sends the program code packet by packet to the receivers. In the

Query/Update phase, once the new program code has been transmitted, the sender

broadcasts a “query” message to its receivers, which respond by requesting the packets

they are missing. The missing packets are retransmitted by the source node using

broadcast. In the Reboot phase, the node transfers downloaded code into program

memory and reboots with the new code. Thus, MNP succeeds in saving energy

by having only one sender per neighborhood transmitting its code. However, this

selection of a sender increases the overall latency of code transfer across the network.

2.2 Epidemic Theory and its Applications

In order to appreciate the epidemiological models applied in wireless sensor

networks, we need to first understand the concept of epidemic theory. In this section

we provide a terse description of the theory and its applications. Epidemic Theory

is the study of the dynamics of how contagious diseases spread in a population,

resulting in an epidemic and it is well documented [3, 56, 35, 4]. Primarily, the

theory mathematically models the propagation process of an infection and measures

its outcome in relation to a population at risk. The population at risk basically

comprises of the set of people who possess a susceptibility factor with respect to the

infection. This factor is dependent on several parameters like exposure, spreading

rate, previous frequency of occurrence, etc., which define the potential of the disease

causing the infection. Among the different models characterizing the infection spread,

two are quite popular. They are the Susceptible Infected Susceptible (S-I-S) Model

and the Susceptible Infected Recovered (S-I-R) Model. In the former, a susceptible
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individual acquires the infection and then, after an infectious period (i.e., the time

the infection persists), the individual becomes susceptible again. In the latter, the

individual recovers and becomes immune to further infections.

An approach to modeling the propagation of an infection is to assume that the

probability (per unit time) for a susceptible individual to acquire infection is equal

to the average rate at which new infective partners are acquired multiplied by the

probability of being infected by any one such partner. In the general deterministic

S-I-R model, if N(t), S(t), I(t) and R(t) denote the total population, the susceptible,

the infected and the recovered or immune individuals, respectively at time t, we can

say

N(t) = S(t) + I(t) + R(t) (2.1)

Let us assume that β denotes the infection rate and γ denotes the removal rate

of infected individuals. Assuming a homogeneous mixing model i.e., each of the

susceptibles can get in contact with any of the infectives, we can see that in time ∆t,

there are βSI∆t new infections and γI∆t removals. Therefore, the basic differential

equations that describe the rate of change of susceptible, infective and recovered

individuals are given by:

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t) .

The above equations can be solved either approximately or precisely based on some

boundary conditions. For example, at the start of the epidemic, when t = 0, (S, I, R)

can take the values (s0, i0, 0). Note that, in particular if i0 is very small, s0 is approx-
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imately equal to N . It also follows that only if the relative removal rate, µ = γ/β,

is greater than s0 can an epidemic start to build up as this condition will result in

[dI(t)/dt]t=0 > 0, i.e. I(t) will have a positive slope. Therefore, the relative removal

rate µ = s0 gives a threshold density of susceptible nodes.

On the other hand, the S-I-S model does not have the recovered subset Z(t) and

those who are infected fall back into the susceptible subset S(t) after their infectivity

duration.

Of particular interest in epidemiological studies is the phenomenon of phase

transition of the spreading process that is dependent on a threshold value of the epi-

demic parameter, i.e., if the epidemic parameter is above the threshold, the infection

will spread out and become persistent; on the contrary, if the parameter is below the

threshold, the infection will die out. Identification of this threshold value is critical

in the study of how an epidemic spreads and how it can be controlled.

Apart from the continuous differential rate equation based modeling technique,

the study of epidemics has often been performed by treating the population as a

network graph, with the nodes representing each individual and the edges their in-

teraction. This form of analysis [60] has mainly been used in scenarios where the end

result of the epidemic spread is more important than the temporal dynamics of the

propagation.

In our work in chapter 4, we adopted some of the directions presented in [60]

where the author proposes a percolation theory based evaluation of the spread of an

epidemic on graphs with given degree distributions. However, their work is a generic

analysis of epidemics in random graphs. In our work, we have considered the specific

characteristics of sensor networks including distance, deployment and key constrained

communication patterns.
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Connectivity issues in random ad hoc networks are extremely important as a

pre-requisite before any epidemic-like propagation process is analyzed. In [6, 63],

the authors derive threshold values of the transmission range of the nodes that ulti-

mately make the network k-connected with a given probability. The thresholds for

the monotone properties of random geometric graphs have also been dealt with in

[30].

In fact, visualizing the population as a complex network of interacting indi-

viduals has resulted in the analysis of epidemics from a network or graph theoretic

point of view[57, 61, 62]. Specifically, the scale free topology has been of keen interest

[61, 80, 5, 60] and this model has been the basis for the analysis and extensive study

of virus and worm spreading in the Internet [74, 44, 42, 43, 70, 32].

Several works have spawned [61], [62], [56], [23], [57], [31] where the spread of

infectious diseases in a human population have been studied by modeling the social

network of humans as a scale free topology.

Epidemic Theory has found special attention in the design and modeling of

several phenomena and protocols in sensor networks wherever there is a scope of

information distribution in a large scale preferably from a small number of sources

to a large number of recipients. Among the popular phenomena in sensor and ad-

hoc networks where this theory has been adopted are data dissemination, broadcast

protocols and routing.

Since data dissemination primarily deals with the transfer of messages from one

node to all nodes of a network, algorithms based on epidemiological formulations are a

perfect fit. Accordingly, these algorithms have been successfully used in disseminating

information in sensor networks and depending on the application, the dissemination

can start at a single node, such as a base station, or at multiple sensor nodes. The

decentralized and distributed nature of wireless sensor networks fits the context of

epidemic algorithms aptly.
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In general, epidemic algorithms for data dissemination follow the model of na-

ture to spread information and define simple rules for information to flow between

nodes of a network. The authors in [1] have done a comparative study of epidemic

algorithms for data dissemination based on the style of communication between neigh-

boring nodes, i.e., pull based, push based or both.

Although flooding has been used with some optimization to route packets in an

ad hoc network, many routing messages are propagated unnecessarily. The authors

in [33] have proposed a gossip-based approach where each node decides to forward

a message to another node based on some probability. The authors in Geographic

Gossip [25] propose an alternative gossiping scheme, thats exploits geographic infor-

mation and build a completely randomized and distributed algorithm that requires

substantially less communication. The idea is to include geographic routing to gossip

with random nodes far away in the network.

In a network of n sensors, a basic solution to the averaging problem, i.e., to

compute the average of all n sensor measurements, is based on the Gossip algorithms

where each node randomly picks a one-hop neighbor and exchange their current val-

ues. This is performed in an iterative fashion and ultimately all nodes converge to

the global average in a distributed manner. The key issue here is the number of

iterations it takes for such a gossip algorithm to converge to a sufficiently accurate

estimate. Recent works [7], [8], [14], [39], [41] have dealt with variants of this prob-

lem. The convergence time of this algorithm is closely linked with the mixing time of

the Markov Chain defined by a weighted random graph on the network. In [8], the

authors showed how to optimize the neighbor selection probabilities for each node in

order to find the fastest mixing Markov chain. However, for sensor network graphs,

even an optimized gossip algorithm can result in excess energy consumption.

The authors of Smart Gossip [50] propose an adaptive form of gossiping in

sensor networks. They propose techniques by which a gossip based protocol can au-
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tomatically and dynamically adapt to the network topology. Smart Gossip copes well

with wireless losses and unpredictable node failures that affect network connectivity.

In [45], the authors develop a topologically-aware worm propagation model(TWPM)

in wireless sensor networks where worms spread by localized scanning to select ran-

dom targets.

Probabilistic broadcasting in a mobile environment have been dealt with in

[76]. In [84], the authors proposed a dynamic scheme to change the rebroadcasting

probability based on node distribution and movement.

2.3 Summary

In this chapter, we have reviewed some of the associated topics which are perti-

nent to the research performed in this dissertation. In particular, we have delved into

various epidemiological models and protocols employed in wireless ad hoc and sensor

networks. Starting from data dissemination and gossip protocols to security issues in

sensor networks such as propagation of compromise of sensor nodes, we observe that

there have been several works inspired by this powerful concept of epidemic theory.

The density and scale of a sensor network coupled with the objective of a one-to-many

data transfer from a few nodes to the rest of the network, unleash the efficiency with

which this theory can effectively model and provide solutions to several problems in

ad hoc and sensor networks.

We have, specifically, provided an overview of each of the existing data dissem-

ination protocols that we have adopted for showcasing the working of our model. We

have also briefly explained Epidemic theory, which is a method for the mathematical

modeling of infectious diseases on which our framework is based.

In subsequent chapters, we discuss the usage of epidemic models to formulate

specific problems related to data dissemination and their solutions.



CHAPTER 3

PERFORMANCE ANALYSIS OF DATA DISSEMINATION
PROTOCOLS

Multihop broadcast based data dissemination protocols such as Trickle [53],

Firecracker [52], Deluge [36] and MNP [49] have emerged as convenient means for

distributing data and code to the entire sensor network. These protocols are essential

for remotely retasking or reprogramming large numbers of sensors, particularly when

deployed in inaccessible terrain.

In this chapter, we conduct a comparative analysis of the performance of data

transfer by these different broadcast-based dissemination protocols. We construct a

mathematical framework of these protocols wherein we focus on the speed of transfer

of information and coverage across the network. We are able to map different protocols

onto this framework so as to study their propagation behavior on a common platform.

Our analyses provide useful insights into the rate of propagation of data over these

protocols under given conditions of network connectivity.

This chapter is organized as follows : In section 3.1, we present the sensor

network topology model. In section 3.2, we present the epidemic theoretic analytical

framework. In section 3.3, we fit in each broadcast protocol into the framework. We

perform our simulation study in section 3.4 and summarize the chapter in section 3.5.

3.1 Sensor Network Model

In this section, we present our model of the physical topology of the sensor

network used for our analysis. We model a wireless sensor network as an undirected

geometric random graph Gp(duv)(N) [64] of N nodes, based on the unit disk model [17]

28
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where p(duv) is the probability of having a link between nodes u and v at a distance

duv from each other. The expected number of links in the network is then given by

Ed =
N∑

u=1

N∑
v=u+1

p(duv) (3.1)

Correspondingly, the mean degree, η, of a node is given as:

η =
2Ed

N
(3.2)

The link existence probability p(duv) is based on the transmission radius Rc of

each node, which is computed using suitable radio propagation models for wireless

sensor networks. For example, if the received power at distance r from the transmitter

is denoted by P(r), then in the log-normal shadowing model [68], the assumption is

that the logarithm of P(r) is normally distributed.

3.2 An Analytical Framework based on Epidemic Theory

In this section, we propose a novel framework based on epidemic theory for ana-

lyzing the propagation of information over a sensor network broadcast protocol. The

framework captures both the local spatial interaction in a static network scenario

and the temporal dynamics of the propagation process. Our idea is to model the

communication between a node having the information and the one requiring it, as

a contact between an infected individual and a susceptible one. Just as a susceptible

individual might get infected with a certain probability once it is in contact with an

infective one, the node requiring the information would get infected if it receives the

propagating piece of data through communication with an already infected node. In-

cidentally, we would denote a node that already contains the propagating information
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as an infected node and the node requiring the propagating piece of information as a

susceptible node.

Although it is a data spread across the whole network that we are focusing

on, for the sake of consistency, we have adhered to the same terminology as used in

epidemic theory, i.e., assigning the term infection to a data update.

3.2.1 System Model

The population in our model is the total number of nodes, N , in the sensor

network which are assumed to be stationary and uniformly randomly distributed

with the node density denoted by σ. The number of infected nodes I(t) at time t

are those that have been infected by the information spreading over the broadcast

protocol. Likewise, S(t), denotes the set of susceptible nodes at time t.

The rate of infection, β, represents the probabilistic rate at which an infective

node communicates with a susceptible one through a broadcast protocol, thus in-

fecting the latter. Here β depends on two factors: (i) probability ρ representing the

infectivity of the information which is a measure of how essential or critical it is, and

(ii) the rate of communication of the protocol. The degree of susceptibility of a node

depends on its average degree η, the rate of communication between nodes, and the

probability ρ.

Since the sensor nodes are assumed to be stationary, they cannot homogeneously

mix with any other node in the network. This implies that when all the neighboring

susceptible nodes around an infective node i acquire the infection, then i is rendered

inoperative and does not contribute further to the infection spread. Moreover, we

assume that an infected sensor node uses the normal operation of a broadcast protocol

to spread the information to its neighbors. Thus, the infection rate is dependent on

the communication rate of the broadcast protocol.
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Table 3.1. Performance Model Parameters

Model Parameter Description

N Total number of nodes

η Average node degree

σ Node density

Rc Communication radius of node

S(t) Susceptible nodes at time t

I(t) Infective nodes at time t

β Data infection rate

ρ Data infectivity potential

The working principle of a broadcast protocol states that once a node has new

data, it updates its surrounding neighbors by first sending an advertisement. This

implies that there is a circular region of infected nodes centered at the source node

which grows with time as the infection spreads outwards riding on top of the broadcast

protocol. We approximate this observation into our model by having nodes on the

periphery or wavefront of the infected circular region trying to infect their susceptible

neighboring nodes lying outside this circle. These susceptible neighbors reside in a

circular strip of width equivalent to a node’s communication radius Rc, outside the

infected circle as illustrated in Fig. 3.1.

We derive analytical expressions for each sub-population function S(t) and I(t)

for the information spread.

In our analytical study, we have made certain assumptions that we highlight in

this section. They are as follows :

• The model does not assume channel contention delay when an infective node is

communicating with a susceptible one.
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Figure 3.1. The Spreading Phenomenon in a Sensor Field.

• Packet loss is predominantly assumed to be caused by packet collisions. Existing

links between two nodes is assumed to be of fairly good quality so that packets

are negligibly lost due to a failing link.

3.2.2 Model Analysis

In this section, we present a detailed analysis of the propagation mechanism

by deriving the functions describing the dynamics of each sub-population with time.

The following lemma is used to calculate the number of nodes in a circular strip of

radius h hops where one hop length is dependent on the density of nodes.

Lemma 3.1. Given that sensor nodes are uniformly randomly distributed in a field,

the number of nodes which are h hops away from a source node is O(h).

Proof. As we assume N nodes to be uniformly randomly distributed in a square of

unit area, the number of nodes along each side of the unit square is O(
√
N) with an

average hop length of O(1). The average distance between a source and destination
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node in this square is O(
√
N). Thus, if the average distance between any two nodes is

O(N), then there are O(N2) nodes present in the unit square. With uniform random

deployment of nodes in a circle having a radius of h hops, the total number of nodes

present is O(h2). Thus, the number of nodes which are h hops away from a source

situated at the center, along the circumference, is ψπ(h2− (h− 1)2) = O(h) where ψ

is the node density.

We now present our model for the information propagation in the network.

For modeling information propagation using epidemic principles, we adopt the

formulation of infection spread where there is no infection recovery. Thus, R(t) = 0

and γ = 0 in Eqs. (4) and (5). Consequently, with time there is a gradual increase

in the number of infected nodes, ultimately reaching the whole network. In this case,

we have non-homogeneous mixing because only the infected nodes that lie within

distance Rc from the periphery of the circle of infected nodes can communicate with

the susceptible nodes, and thus have the potential to infect them. For instance, in Fig.

3.2 the infected node k cannot infect a susceptible node because all the susceptible

nodes fall outside its communication range. Thus, all the nodes, such as k, that lie in

the interior of the infected circle are essentially inoperative and do not spread further

infections. The number of infected nodes I ′(t) that lie in the circular strip of thickness

Rc from the circumference is given by:

I ′(t) ∼= I(t)− σπ(r(t)−Rc)
2,

where σ is the uniform density of nodes and r(t) is the radius of the circle that contains

the infected nodes. Note that, σπr(t)2 ∼= I(t). After simplification we obtain:

I ′(t) ∼= (2
√
σπRc)

√
I(t)− σπR2

c . (3.3)
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j

k

Figure 3.2. Circular strip of thickness Rc. Only a fraction of neighboring nodes of an
infected node are the potentially susceptible ones. .

We observe that I ′ is of the order of O(
√
I) as per Lemma 1 and hence can be

approximated as I ′ = c
√
I, where c = 2

√
σπRc is the proportionality constant. Now,

the set of susceptible nodes that are able to communicate with I ′ is a small fraction

of S(t). In particular, if η is the average degree of a node, then each node in I ′(t) is

able to communicate with only η neighbors on the average. The radio transmission

range, Rc, defines a node’s neighborhood and its degree η. However, not all of the η

neighbors of an infected node are susceptible. As illustrated in Fig. 3.2, for example,

only the susceptible nodes that lie within the circle of radius Rc can potentially be

infected by node j. As the data update propagates, we observe that for each infected

node j in the peripheral circular strip, it tries to infect the susceptible fraction of its

η neighbors. Thus, we can write the mass balance equation as:

N(t) = S(t) + I(t) (3.4)
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and the differential equations as:

dI

dt
= βc

√
I
(N − I)

N
η (3.5)

dS

dt
= −βc

√
I
(N − I)

N
η (3.6)

Substituting U = 1/
√
I, the first equation can be simplified into the following:

dU

U2 − 1/N
= −βcη

2
dt (3.7)

which after integration on both sides and applying the boundary condition I(0) = 1,

i.e., initially only one node was compromised, leads to the following:

I(t) = N


 2

1 + (
√

N−1√
N+1

) e
− βcη√

N
t
− 1




2

(3.8)

Note that in the above equation when t = ∞, I(t) = N , i.e., asymptotically

all the nodes will be compromised. Eq. (3.8) gives the rate at which the infection of

compromised nodes spreads across the network. For mapping a broadcast protocol

onto this model, we would derive β in terms of the communication rate of the protocol.

3.3 Analysis of Individual Broadcast Protocols

Given the above framework, in this section, we address each of the broadcast

protocols, Trickle, Firecracker, Deluge, and MNP. For details about the working mech-

anism of these protocols, the readers are referred to chapter 2. Our methodology is

to apply the derived framework by investigating the key parameters specific to each

of the protocols. Our goal is to derive the infection rate, β, for each of them.

Although there are possible similarities in the functional operation of these

protocols, they are fundamentally different in their design and target applications.
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While Trickle is mainly concerned with maintaining code and propagating small data

updates around the network with minimum overhead, Deluge focuses on propagating

large chunks of data in a pipelined fashion across the network. Firecracker, on the

other hand, combines routing and local broadcast for quickly transferring information

to different parts of the network. MNP propagates large data chunks like Deluge, as

well as employs a sender selection mechanism to enforce a single data source in a

neighborhood.

3.3.1 Trickle Protocol

In Trickle, we derive the probability of the periodic metadata broadcast and

then use it to compute the average rate of updating a neighbor with data.

Lemma 3.2. In the Trickle protocol, if the expected number of communication neigh-

bors of a node i is denoted by η, then the probability pk of i broadcasting metadata in

each time interval is given by pk = k
η+1

where k denotes the advertisement threshold.

Proof. A node broadcasts advertisements at most once per period Tp at a random

time t ∈ [0, Tp]. However, if the number of received advertisements is less than

the threshold k, it will choose to transmit its own advertisement or suppress it.

Assuming that t is uniformly randomly distributed in the interval [0, Tp], the expected

time between successive advertisements is Tp

η+1
. Thus, the expected time Ek, for k

advertisement transmissions, is k·Tp

η+1
. The probability pk for a node to transmit its

metadata is, therefore, directly proportional to Ek. Normalizing pk by dividing with

the period duration Tp, we have pk = k
η+1

Theorem 3.1. In Trickle, the expected time for a node to receive metadata is given

by E[Tadv] = Tp

2
·∑k

i=1

(
η+1

i

)
pk

i(1− pk)
η+1−i · 1

1−lr
where lr is the packet loss rate.

Proof. If the packet loss rate is denoted by lr then the expected number of transmis-

sions for a given packet is 1
1−lr

. Given that the expected number of neighbors of a
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node is η and the probability of a node in a neighborhood to transmit metadata is pk,

the probability that at least one node transmits metadata is given by the binomial ex-

pression
∑k

i=1

(
η+1

i

)
pk

i(1−pk)
η+1−i. Furthermore, since a node selects a random time

in the interval [0, Tp] to transmit metadata, the expected delay before transmitting a

metadata is Tp

2
. Thus the net expected delay to successfully transmit metadata in a

single hop neighborhood is given by E[Tadv] = Tp

2
·∑k

i=1

(
η+1

i

)
pk

i(1− pk)
η+1−i · 1

1−lr
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Figure 3.3. Firecracker Protocol Model : Voronoi Partitioning.

In Trickle, the moment that metadata has been transmitted in a neighbor-

hood, the nodes immediately update themselves by broadcasting the new code update

packet. If we denote Tpkt as the transmission time of the code update packet, then

the expected successful transmission time E[Ttx] is given by

E[Ttx] = Tpkt · 1

1− lr
(3.9)
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Thus the total expected delay for a code update is given by

E[TCU ] = E[Tadv] + E[Ttx] (3.10)

Apart from the rate of transfer established by the physical characteristics of the net-

work and the working principle of the broadcast protocol, there is another important

factor affecting the transfer rate of data. This is the inherent characteristic of the

piece of data propagating, its type and properties, i.e., how critical and necessary it is

for the other nodes to acquire it. We capture this property of the data parametrically

by a factor ρ, the infectivity of the data. This parameter ρ differentiates one kind

of data from another. Incorporating this factor into our model, the infection spread

rate over Trickle protocol is given by

β =
ρ

E[TCU ]
(3.11)

3.3.2 Firecracker Protocol

We recall that Firecracker first routes the data to distant points in the network

before starting the local broadcast based dissemination. In order to model the pro-

tocol from an epidemiological standpoint, we need to derive the spreading rate β of

the protocol. For this, we visualize the end of the routing phase as the beginning of

the epidemic process making each of the end nodes of the routing phase (seeds) to be

a source of a sub-infection process.

Thus, instead of a single node being the source of the infective spread, we

have a set of nodes initiating the process. Moreover, since the nodes are uniformly

randomly deployed, the spreading rate from each of the routing nodes is the same.

These sub-processes work in the same manner as the broadcast mechanism in Trickle.

The population of nodes for each of these sub-processes would be the nodes that are
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closer to each seed than to any other seed. Therefore, in our formulation, we divide

up the whole network into voronoi partitions where each voronoi cell corresponds to

each seed node, as shown in Fig. 3.3. At any given time, the total number of nodes

that have been infected is the sum of the number of nodes infected in each voronoi

partition.

If there are V seed points in the network which are the destination points of

the routing phase, then we have V corresponding voronoi regions with the voronoi

points at each seed point. Let ni denote the number of nodes in the ith region, where

i = 1, 2, . . . , S. The spreading in each of these regions is based on a local broadcast

method similar to Trickle. Therefore, if vi(t) denotes the set of infected nodes in

region i at time t, then the fraction f(t) of infected nodes at time t is given by

f(t) =
|⋃S

i vi(t)|
N

(3.12)

where N =
∑S

i ni.

3.3.3 Deluge Protocol

Deluge builds off Trickle, using suppression and dynamic adjustment of the

broadcast rate to limit transmissions among neighboring nodes. Similar to the pre-

vious two protocols, we identify the parameter in Deluge that allow it to be mapped

onto the proposed epidemic model framework. Since the basic unit of transfer in Del-

uge is a page, we approximate this page transfer rate as the rate at which infection

could spread over Deluge.

Given a lossy wireless environment with packet loss rate lr, the expected number

of transmissions for a packet is given by E[Npkt] = 1
1−lr

. We recall that each page is

composed of a constant number of P packets. Since Deluge uses the same maintenance

mechanism as Trickle for advertising pages, the expected backoff time is also the
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same and equal to Tp

2
. Similar to Trickle, a node in the MAINTAIN state suppresses

advertisements if it has already heard advertisements in its neighborhood for a number

of times larger than some constant k. As derived earlier, pk is the probability that a

node transmits advertisements in one time period Tp. Similar to the analysis done for

Trickle, the expected time that a node waits for an advertisement to be transmitted

in its neighborhood is given by

E[Tadv] =
Tp

2
·

k∑
i=1

(
η + 1

i

)
pk

i(1− pk)
η+1−i · 1

1− lr
(3.13)

Moreover, a node also does a random backoff in the RX state before sending

a request packet. If E[Nreq] is the expected number of requests made by a node for

acquiring a page, then the time spent for making the requests is given by

E[Treq] =
Tp

2
· E[Npkt] · E[Nreq] (3.14)

The transmission time of P packets of a page is given by

E[Ttx] = P · E[Npkt] · Tpkt (3.15)

where Tpkt is the transmission time for a single packet.

At the same time, when a node in the RX state exceeds its limit by λ requests,

it transits to the MAINTAIN state and thus has to wait for advertisements. This

time is denoted by E[Tfallback] and given by

E[Tfallback] = bE[Nreq]

λ
c · E[Tadv] (3.16)
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Thus, the expected time to transmit a page in a neighborhood is given by

E[Tpage] = E[Tadv] + E[Treq] + E[Ttx] + E[Tfallback] (3.17)

The average rate of page transfer is thus 1
E[Tpage]

. We assume a page transfer is enough

for a malware to compromise a node. Thus, if the infectivity of the malware is ρ,

then the average infection rate over the Deluge protocol is denoted by βD = ρ
E[Tpage]

.

3.3.4 MNP Protocol

The previous three protocols had similarities between them in parts of their

operational methodologies. The reason to choose such similar protocols was to see

how the model could capture the subtle differences between them. At the same

time, we are also interested in looking at a broadcast protocol (viz. MNP) which is

designed differently. This protocol also works to propagate code across the network

in a pipelined manner. Alongwith that, it employs a sender selection algorithm to

circumvent the hidden terminal problem faced by protocols like Deluge when the

network density increases.

Similar to previous analyses, we formulate the expression of the average page

transfer rate from a source node to recipients in a neighborhood. We argue that

the propagating piece of data uses the data transfer rate of the protocol to spread

itself. We assume the same lossy environment as in Deluge and assume that there is

a constant number P packets in a page. We simplify our analysis by considering only

the basic functioning of MNP without the query/update phase. This phase of MNP

generally accounts for lost packets. By already taking the lossy wireless characteris-

tics into consideration we can safely neglect this protocol feature of MNP. However,

contrary to Deluge, MNP does not use similar maintenance mechanisms as Trickle.

A node in the Advertise state broadcasts an advertisement message every random
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interval. It has a threshold value κ for the maximum number of advertisement mes-

sages before servicing requests made by neighbors. This duration of κ advertisement

messages is used by nodes in a neighborhood to select an appropriate sending source

and allow nodes not interested in the transmission to go to sleep.

We assume that the inter-arrival time of the advertisement messages is negative

exponentially distributed with average arrival rate δ. As defined in Deluge, if E[Npkt]

denotes the expected number of packets transmitted based on the error rate lr and

Tpkt denotes the transmission rate, then the time for a successful packet transmis-

sion is E[Npkt] · Tpkt. Thus, the effective expected inter-arrival time of successfully

transmitted advertisement messages is given by

T i
adv =

1

δ
+ E[Npkt] · Tpkt (3.18)

The effective advertisement arrival rate is then given by δeff = 1
T i

adv
.

Accordingly, the average duration for κ advertisement messages is given by

Eκ[Tadv] =
κ

δeff

(3.19)

We are analyzing the propagation rate that MNP offers to the data riding on it when

the protocol is disseminating new code. Therefore, similar to Deluge, we focus on

a situation when there is a new version of code propagating in the network. Sub-

sequently, during this interval Eκ[Tadv], the advertising node would have received at

least one request from a neighbor. Moreover, like Deluge, a requesting node might

have to make E[Nreq] requests to acquire a page. We make a simplifying assumption

that κ is chosen in a way such that during the interval Eκ[Tadv], the advertising node

has received at least E[Nreq] requests. This means that at the end of Eκ[Tadv], it is

ready to service a request.
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After Eκ[Tadv], the source sends the P packets of a page. It also sends a Start

Download and an End Download message signifying the start and end of each page.

Thus, the total expected time for a page transfer is given by

E[Tpg] = Eκ[Tadv] + E[Npkt] · Tpkt(P + 2) (3.20)

With ρ denoting the infectivity of the data, the infection rate over MNP is then given

by βM = ρ
E[Tpg]

.

3.3.5 Analysis Discussion

There are several important parameters in our model for the derivation of the

infection rate β that require careful evaluation for the propagation model to achieve

the desired accuracy. For MICA2 motes, the maximum packet transmission rate

is around 36 packets/sec with a packet size of 32 bytes. This results in a packet

transmission time of 0.027 sec. The average packet loss rate due to effects such as

packet collisions, etc., is assumed to lie between 0.1 and 0.2 which is the average value

derived from simulation data. Thus, in our formulation, lr = 0.1 and Tpkt = 0.027

sec. Simulation results of Deluge [36] have shown that the average number of requests

for acquiring a page E[Nreq] is approximately equal to 5.4.

Figures 3.4 illustrates the analytical plots depicting the propagation dynamics

for each protocol in a network of 1000 nodes. In Fig. 3.4, sub-figures (a) and (b)

show the dynamics of spread over Trickle, with varying infectivity, for average degrees

5 and 8 respectively. The value of the metadata advertisement bound k is equal to 2.

We observe that the change in degree from 5 to 8, even for the least infective data,

increases the speed of infection by more than 20%. The next two sub-figures depict

Firecracker’s performance. The source node is situated at the center and the routing

destinations are points situated close to the other corners of the field. The effect of
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Figure 3.4. Growth of infected nodes, I(t), with time for different values of ρ (data
infectivity) : (a) Trickle (avg degree = 5), (b) Trickle (avg degree = 8), (c) Firecracker
(avg degree = 5, Route to Opp Corners), (d) Firecracker (avg degree = 5, Route to
All Corners), (e) Deluge (avg degree = 5), (f) Deluge (avg degree = 8), (g) MNP (avg
degree = 5), (h) MNP (avg degree = 8).
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increasing the number of strategically placed source nodes to spread the infection, has

a significant impact on the subsequent rate of spread. We observe that routing the

data to three corners instead of just the opposite two almost halves the compromise

time of the whole network.

Deluge and MNP are meant for bulk transfer of data, and propagate one page

at a time. This makes its spreading rate slower than Trickle or Firecracker. This is

duly captured in our model as depicted in figs. 3.4 (e) and (f) for Deluge and figs.

3.4 (g) and (h) for MNP. From our model, we can get a fair picture of the temporal

propagation when we compare protocols falling in the same class. Thus, comparing

between Deluge and MNP, we observe how MNP’s propagation process is slowed down

by its sender selection algorithm. This is manifested in the fact that an advertising

node collects requests and waits for a threshold number of advertisements before

starting to service them. It is during this time that its sender selection procedure

chooses a particular node as a sender.

An important observation of our model is that, contrary to networks with homo-

geneous mixing, in a sensor network with limited spatial interactions between nodes,

there is no distinct phase transition point of the infection. This is probably because

the spread rides on top of a controlled broadcast protocol and the propagation hap-

pens along a circular front which is spatially bounded. This means that, contrary

to conventional epidemic flooding, the propagating data has to abide by the disci-

pline imposed by the communication pattern of these protocols which try to minimize

unnecessary transmissions to save energy.

As expected, our model captures the fact that Firecracker achieves the highest

propagation rate among the protocols discussed and thus poses a very high threat

for malware transfer in the event of an outbreak. Comparing figs. 3.4 (a) and (c),

we observe that even with a lower node degree, Firecracker, with route points as

opposite corners, achieves network compromise in about 25% to 40% of the time as
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Trickle. However, comparing figs. 3.4 (e) and (g), we observe that MNP with an

advertisement threshold of 4, takes almost 70% more time than taken by Deluge.

We thus observe that our model can successfully capture the propagation pro-

cess and shed significant light on the temporal dynamics of how a piece of information

could spread over current broadcast protocols. However, at this point we would also

like to acknowledge a few limitations of our model. One of them is that our model

fails to capture border effects in the network. As a result, it generally performs better

when the spread is happening from the center outwards and loses accuracy when edge

effects become significant.

Our model also shows inaccuracies when the density of the network becomes

very high. Although, we have considered the physical effects of the network and

the packet loss due to collisions, at very high densities, the hidden terminal problem

becomes significant, especially in protocols like Deluge. Consequently, our model

cannot capture it effectively. For instance, when we increase the average degree of

the network from 5 to 8 our model observes an increase in the rate of propagation

of the malware. This is in accordance with the fact that an infected node gets more

susceptible nodes to infect. However, if the density and subsequently the node degree

becomes very high, then the spreading rate would decrease because of the increase

of the number of collisions. In such a scenario, our model would then require to be

adequately tuned with the correct packet loss probability in order to accurately model

the infection propagation.

Within its limitations, our model could be a handy tool to assess each broadcast

protocol quickly to gather approximate knowledge of its vulnerability to malwares of

different infectivity.
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3.4 Simulation Study

In this section, we outline the simulation setup and details to implement the

propagation process in each of the three broadcast protocols. The time dynamics

of the data propagation is captured with varying degrees of infectivity on the whole

network. We have used JProwler [89], a probabilistic, event-driven wireless network

simulator written in Java, for our experiments.

In the simulation experiments, we assume N = 1000 sensor nodes with uni-

form random deployment in the network. We have used the default radio model in

JProwler where all communication links in the network are symmetric and determin-

istic. Packets are lost only when there is a collision. The maximum data rate of

wireless links is set to be 32 Kbps. The maximum length of a packet is fixed at 40

bytes. The MAC protocol is based on a simple CSMA scheme like BMAC [66]. The

metrics for evaluating the proposed framework is the time it takes for a malware to

infect a given fraction of the network, spreading over each broadcast protocol. Each

reported result is averaged over twenty simulation runs.

Our simulation works in two phases. In the first phase, we form the network

where each node identifies its set of neighbors and entries are made into a neighbor

table. By randomly choosing links to keep or delete, we control the average degree of

the network. We perform this by modifying the transmit power of individual nodes

so as to change the average number of total links in the network.The entry for each

node in the neighborhood table can indicate whether a node is susceptible, infected

or recovered. The average node degree of the network is set to typical values of 5 and

8.

In the second phase, we simulate actual data propagation over each broadcast

protocol. Initially, at t = 0, the number of infected nodes, denoted by I(0) is set to

be 1. The initially infected node is selected as a corner node of the whole network.
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The time period Tp, of Trickle, has been assumed to be the unit and is equal to 1

second in our simulation.

First, we performed the simulation study for the case where there is no recov-

ery against different values of the malware infectivity, ρ. We simulate under different

network connectivities and study the time dynamics of the infected population. For

each susceptible neighbor of an infective node to which a data packet is to be trans-

mitted, malware transmission is done based on the probability ρ, independently for

each node. A node, once infected, stays infected for the rest of the simulation time.

Fig. 3.5 shows the simulation results for the propagation dynamics over each broad-

cast protocol against different values for the malware infectivity. We observe that the

nature of the curves closely match our analytical model.

We also observe some discrepancies between our simulation and analytical re-

sults as is evident from figs. 3.4 and 3.5. This is attributed to the fact that the

differential equation based approach approximates the process to be continuous in

time which is not the case in our simulation. Moreover, our model does not incorpo-

rate border or edge effects and the infection is assumed to propagate from the center

outwards. With a considerable increase in the density of the network, our simulation

results would deviate significantly from the analytical results. This is attributed to

the error in the packet loss probability that creeps in such scenarios. Our model would

then have to be tuned accordingly so that the packet loss probability can effectively

capture the impact of high density.

3.5 Summary

In this chapter, we provide a common mathematical model to analyze the pro-

cess of information propagation over different multihop broadcast protocols. Although

approximately, our model successfully captures the ripple based propagation behavior
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Figure 3.5. Growth of infected nodes, I(t), with time for different values of ρ (data
infectivity) : (a) Trickle (avg degree = 5), (b) Trickle (avg degree = 8), (c) Firecracker
(avg degree = 5, Route to Opp Corners), (d) Firecracker (avg degree = 5, Route to
All Corners), (e) Deluge (avg degree = 5), (f) Deluge (avg degree = 8), (g) MNP (avg
degree = 5), (h) MNP (avg degree = 8).
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of the wavefront of a broadcast protocol. Not only is the model capable of assessing

the performance of each protocol for disseminating data, but it also helps in com-

paring their performances against each other. Its generic and flexible nature allows

us to conveniently fit parameters of different broadcast protocols and analyze their

susceptibilities. Despite the similarities in operation between some of the protocols

discussed, the epidemic model successfully highlights their differences from a prop-

agation standpoint. The model can also be extended to other complex broadcast

protocols by successfully computing the infection rate β for that protocol. In other

words, in this chapter, we have computed a model for data propagation over broadcast

protocols and their temporal dynamics under different states of network connectivity.

In chapter 5, we investigate the vulnerability of these protocols against piggybacked

malware spread in a sensor network.



CHAPTER 4

MODELING OF NODE COMPROMISE PROPAGATION

In chapter 3, we discussed the data propagation behavior of broadcast based

dissemination protocols. Our model helped us capture the spreading characteristics

of each protocol in terms of spreading rate and network reachability by way of para-

metrically fitting the protocol’s communication behavior into the epidemic infection

spread model.

We now move on to consider the security aspects of this paradigm of communi-

cation and investigate different scenarios where the security of a sensor network could

be breached. Moreover, we also analyse the drastic repercussions of how a small

or negligible breach in security (compromise of a single node) could possibly spread

across the network and gain epidemic proportions.

In this chapter, we look into the propagation process of malware throughout a

sensor network where communication between the nodes is secure [18]. In particular,

communication is only performed among neighboring nodes when they have estab-

lished mutual trust by authenticating a common key. Starting from a single point

of failure of a compromised node, we investigate the potential of an adversary to

effectively compromise neighboring nodes through wireless communication and thus

threat the whole network without engaging in full scale physical attacks.

Here, we do not assume the malware to possess the advantage of piggybacking it-

self on a broadcast protocol, but rather have the necessary communication component

to infect a neighboring node. However, each link of communication is authenticated

by pre-distributed secret keys. In this study of propagation of node compromise,

we not only incorporate authenticated secure communication among the nodes but

51
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also the effects of different kinds of deployment strategies of the sensor nodes in the

terrain.

By incorporating these factors of the networks, we propose an epidemiological

model to investigate the probability of a breakout (compromise of the whole network)

and if not, the sizes of the affected components (compromised clusters of nodes).

Furthermore, we analyze the effect of node recovery in an active infection scenario

and obtain critical values for these parameters that result in an outbreak. We focus

our analysis on two specific types of node deployment scenarios, namely uniform

random deployment and group based deployment of nodes (where the actual resident

points of the nodes of a group are assumed to follow a particular spatial distribution

about the group deployment point).

This chapter is organized as follows : In section 4.1, we perform a preliminary

discussion about pairwise key distribution in sensor networks. In section 4.2, we

present our model and discuss it under different scenarios of with and without node

recovery as well as under different node deployment strategies. In section 4.3, we dis-

cuss about a critical parameter in Epidemic Theory, namely, the Basic Reproductive

Number. We discuss our simulation study in section 4.4 and summarize in section

4.5.

4.1 Pairwise Key Pre-distribution

In this section, we briefly overview the pairwise key scheme for securing the

communication between neighboring nodes in a sensor network based on key pre-

distribution. This shared secret key based secure communication is especially popular

in sensor networks owing to the prohibitive resource consumption of most public key

cryptographic techniques.
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Due to the severe resource constraint of wireless sensor networks and limited

networking bandwidth, proposed pairwise key schemes have commonly adopted the

pre-distribution approach instead of online key management schemes. The concept

of pre-distribution was originated from [28], where the authors propose to assign a

number of keys, termed key ring randomly drawn from a key pool. If two neighboring

nodes share a common key on their key rings, a shared pairwise key exists and a secure

communication can be established. An enhanced scheme termed Q-composite was

proposed in [13], where two neighboring nodes can establish secure communication

only if at least Q keys are shared on their key rings. Pre-distribution schemes that

rely on bivariate polynomials is discussed in [54]. In this scheme, each sensor node

is pre-distributed a set of polynomials. Two sensor nodes with the same polynomials

can respectively derive the same key.

Regardless of the specific key distribution scheme, a common parameter cap-

turing the performance is the probability that two neighbors can directly establish

a secure communication or, in other words, share at least one key. We denote this

key sharing probability by q. Thus, two physical neighbors can communicate securely

with probability q. The factors on which q depends, such as the key pool size or the

individual key ring sizes, have been studied in previous works [28, 13]. The value of

q is crucial in controlling the degree of connectivity of the securely communicating

sensor network. As we will reveal later, q plays an important role in the spreading of

node compromise, as direct communication (as explained subsequently, in the threat

model) can result in propagation of malicious code. A high value of q would make the

network highly connected while at the same time increase the network’s susceptibility

to compromise propagation.
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4.2 Modeling and Analysis of Compromise Propagation

In this section, we analyze the propagation of node compromise originating from

a single node that has been affected. Our focus is to study the outbreak point of the

epidemic effect where the whole network will fall victim to the compromise procedure.

Our key method is to characterize the sensor network, including its key distri-

bution, by mathematically formulating it as a random graph whose key parameters

are precisely determined by those of the sensor network. Therefore, the investigation

of epidemic phenomena can be performed on the random graph instead.

We perform our analysis on two types of sensor network topology models. In our

first model, we assume that the sensor nodes are uniformly randomly distributed. In

our second model, we assume a more realistic scenario where deployment knowledge

is incorporated in the analysis. We assume that nodes are deployed in groups and the

resident points of each node in a group follows a two dimensional gaussian distribution

about the deployment point. Subsequently, given these two deployment approaches,

we observe the epidemic process under two scenarios: without node recovery and with

node recovery, depending on whether infected nodes will be recovered by external

measures like key revocation, immunization, and so on.

Our goal is to analyze and compare epidemic spread progress and effect under

different topological scenarios of the sensor network. In the following two subsections,

we derive the degree distribution for the two random graph deployment models, viz.

uniform random distribution and groups of gaussian random distribution.

4.2.1 Network Model

In this section, we will model the network topology of the overlay key sharing

graph above the physical network. The outcome of our model is the degree distribu-

tion of the key sharing overlay topology. In our analytical derivation, we incorporate
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the deployment knowledge of the sensor nodes by using different deployment models

to finally derive the network degree distribution.

4.2.1.1 Uniform Random Distribution

Assume that sensor nodes are uniformly randomly deployed in a region with area

A. Let σ = N
A

denote the node density of the network where N is the total number

of the nodes. For a sensor node with communication range R, the probability that l

nodes are within its communication range is given by

p(l) =

(
N − 1

l

)
pl(1− p)N−1−l (4.1)

where p is defined by

p =
πR2

A
=
πR2σ

N
. (4.2)

Thus p is the probability of a link existing at the physical level, i.e., whether the two

nodes fall within their respective communication ranges.

We further assume that the probability that two neighboring nodes sharing

at least one key in the random pre-distribution pairwise key is q. Notice that q is

determined by the specific pairwise key scheme employed. For a particular node

having l neighboring nodes, the probability that there are k nodes, k ≤ l, sharing at

least one key with it is given by

p(k|l) =

(
l

k

)
qk(1− q)l−k (4.3)
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Therefore, with uniform random deployment, the probability of having k neighboring

nodes sharing at least one key is

pu(k) =
N−1∑

l=k

p(l)p(k|l) (4.4)

=
N−1∑

l=k

(
N − 1

l

)
pl(1− p)N−1−l

(
l

k

)
qk(1− q)l−k (4.5)

4.2.1.2 Group based Deployment Model : Two Dimensional
Gaussian Random Distribution

The other deployment model that we consider in this chapter is group based

deployment [26, 82]. In this model, sensors are divided into groups where each group

is deployed (e.g., dropped from an airplane) at a particular location. Due to the

uncertainty of the deployment procedure, sensor nodes within each group are often

randomly distributed around the targeted deployment point. Specifically, we make

the following assumptions about this model.

• N sensor nodes to be deployed are divided into t equal size groups each with n

nodes. Each group, Gi, for xi = 1, . . . , t and yi = 1, . . . , n, is deployed from the

deployment point (xi, yi).

• The deployment points are assumed to be arranged in a grid, which is commonly

assumed.

• During deployment, the resident points of the node k in group Gi with deploy-

ment point (xi, yi) follow probability distribution f i
k(x, y|k ∈ Gi). An example

of this distribution is a two-dimensional Gaussian distribution around the de-

ployment point.
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In other words, when the deployment point of group Gi is at (xi, yi), we have the

mean position µ = (xi, yi) and the pdf for node k in group Gi as

f i
k(x, y|k ∈ Gi) =

1

2πσd
2
e−[(x−xi)

2+(y−yi)
2]/2σd

2

, (4.6)

where σd denotes the standard deviation. Given such a group based Gaussian deploy-

ment model, we formulate the degree distribution of the key sharing graph based on

both the deployment and the key distribution mechanism.

Let us consider any node location H = (x, y) in the rectangular deployment

field. Therefore, the probability that a node ni from group i with deployment point

(xi, yi) resides within the rectangular area dxdy centered at point H is given by

1

2πσd
2

exp−(diH)2

2σd
2
· dxdy

where (diH)2 = (x− xi)
2 + (y − yi)

2. We denote

f(diH|ni ∈ i) =
1

2πσd
2
e
− (diH)2

2σd
2 (4.7)

and have the following result.

Lemma 4.1. If g(x, y|j) denotes the probability that a node nj from group j is within

transmission radius R of point H = (x, y), then g(x, y|j) = 1{h < R}
[
1− e

− (R−h)2

2σd
2

]
+

∫ h+R

|h−R| f(l|nj ∈ j) · 2lcos−1
(

l2+h2−R2

2lh

)
dl, where 1{·} is the set indicator function.

Proof. When a sensor node resides at the point H = (x, y) as shown in Fig. 4.1, the

probability that the sensor node nj from group j resides within the circle centered

at location H with radius R is defined as g(h|nj ∈ groupj), where h = djH, is the
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Figure 4.1. Deployment points and resident point distribution.

distance between H and the deployment point of group j. When h > R, as shown in

the first diagram of Fig. 4.1,

g(x, y|j) =

∫ h+R

|h−R|
f(l|nj ∈ j) · 2lcos−1

(
l2 + h2 −R2

2lh

)
dl,

where the length of arc of the ring centered at j is calculated and then integrated

over all possible values of l.

When h < R, as shown in the second diagram of Fig. 4.1,

g(x, y|j) =

∫ R−h

0

l · 2πf(l|nj ∈ j)dl +
∫ R+h

R−h

2lcos−1

(
l2 + h2 −R2

2lh

)
f(l|nj ∈ j)dl.

Thus,

g(x, y|j) = 1{h < R}
[
1− e

− (R−h)2

2σd
2

]
+

∫ h+R

|h−R| f(l|nj ∈ j) · 2lcos−1
(

l2+h2−R2

2lh

)
dl,

where 1{·} is the set indicator function whose value is 1 when the evaluated condition

is true and 0 otherwise, and f(l|nj ∈ j) is given by Eqn. 4.7.

Theorem 4.1. The probability distribution of the degree of the key sharing topology,

pg(k), assuming that the nodes are deployed in groups and reside according to a two

dimensional gaussian distribution around the deployment points, is given by pg(k) =
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∫ Y

0

∫ X

0

∑N
l=k

(
l
k

)
qk(1 − q)l−kNb(l, x, y) where Nb(l, x, y) is the probability that a node

is at point (x, y) and it has l neighboring nodes.

Proof. Let d = g(x, y) denote the probability that a node resides within a radius R

of point (x, y). Then from Lemma 1, we get

d = g(x, y) =
∑

j

g(x, y|j)Pr[j] (4.8)

where Pr[j] is the probability that a deployed node belongs to group j. We assume

that a sensor node is selected to be in each group with an equal probability and is

equal to 1
tn

.

Let p(l|x, y) be the probability that there are l nodes within radius R of (x,y).

Therefore,

p(l|x, y) =

(
N

l

)
dl(1− d)N−l (4.9)

where N is the total number of nodes deployed. The probability that a deployed node

is at point H = (x, y), is given by

∑
i

f(diH|ni ∈ i) · Pr[i]dxdy

Let Nb(l, x, y) be the probability that a node is at (x, y) and it has l neighboring

nodes. Thus,

Nb(l, x, y) = p(l|x, y)
∑

i

f(diH|ni ∈ i) · Pr[i]dxdy (4.10)
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Now, let pg(k|l, x, y) be the probability that a node which is located at (x, y) and has

l neighbors shares keys with exactly k neighbors. Hence,

pg(k|l, x, y) =

(
l

k

)
qk(1− q)l−k (4.11)

where q is the key sharing probability. Therefore,

pg(k, x, y) =
N∑

l=k

pg(k|l, x, y)Nb(l, x, y) (4.12)

Thus, integrating over the entire region, the degree distribution of a group based

deployed network with each group deployed in a gaussian manner, is given by

pg(k) =

∫ Y

0

∫ X

0

pg(k, x, y) =

∫ Y

0

∫ X

0

N∑

l=k

pg(k|l, x, y)Nb(l, x, y) (4.13)

Thus, based on both physical proximity and the probability of key sharing be-

tween neighbors, we get a degree distribution p(k) for each of the graphs representing

the two different deployment strategies. We will now perform our epidemic propaga-

tion analysis on these two types of random networks under the two scenarios of node

recovery and without node recovery. The random graph in our analysis is denoted

by G, and pu(k) (for uniform deployment) and pg(k) (for group based deployment)

characterize the degree distribution under the respective deployment strategies.

4.2.2 Network Connectivity

Before we consider our analysis of the epidemic processes on the overlay key

sharing graph of the sensor network, it is essential to ensure that the graph is con-

nected. We borrow the results from the works on connectivity in ad hoc networks
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presented in [6, 63]. From their results, a geometric random graph with N nodes is k-

connected with probability P (k-connected) =

(
1−∑k−1

i=0

(σπR2)
i

i!
· e−σπR2

)N

, where

σ is the network density and R is the transmission radius. Since we are considering

1-connectivity, the probability that the graph is connected is given by

P (connected) =
(
1− e−σπR2

)N

(4.14)

Our goal is to make this probability almost equal to 1.

Without loss of generality on the deployment strategy, let p(k) denote the degree

distribution of the key sharing topology. Thus, η =
∑N−1

k=1 kp(k) is the expected

degree of the network. We observe that, in the expression for the aforementioned

probability of connectivity of the network, σπR2 is the expected number of neighbors

that a node has. In other words, it can be interpreted as the expected number of

neighboring nodes that fall within the transmission range of a given node. Thus, for

our network with expected degree denoted by η, the probability that the network is

connected is given by

P (connected) =
(
1− e−η

)N
(4.15)

For our analysis, we consider the minimum value of the key sharing probability

q to be such that it is well above the threshold in order to keep the network connected

with very high probability.

4.2.3 Compromise Spread Without Node Recovery

Given the random graph construction based on the two deployment strategies,

we now analyze the case of compromise spread when no node recovery is performed.

In other words, a compromised sensor node will remain infectious indefinitely.



62

Let G0(x) be the generating function of the degree distribution p(k) of a ran-

domly chosen vertex in G and is defined by

G0(x) =
∞∑

k=0

p(k)xk (4.16)

The average degree z of G is denoted by

z =
∑

k

kp(k) = G′0(1) (4.17)

Similarly, G1(x) denotes the degree distribution of the vertices at the end of randomly

chosen edges. The distribution of degrees of vertices reached by following edges is

proportional to kp(k) and thus the generating function for those degrees is

∑
k kp(k)x

k

∑
k kp(k)

=
xG′0(x)
G′0(1)

(4.18)

To elucidate further G1(x) represents the distribution of the number of ways of leaving

these vertices excluding the edge we come along, which is the degree minus 1 and is

given by

G1(x) =
1

z
G′0(x) (4.19)
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If λ denotes the infection probability of a node being infected by communicating with

a compromised node, then the number c of compromised edges around a randomly

chosen vertex is generated by

G0(x;λ) =
∞∑

c=0

∞∑

k=c

p(k)

(
k

c

)
λc(1− λ)k−cxc

=
∞∑

k=0

p(k)
k∑

c=0

(
k

c

)
(xλ)c(1− λ)k−c =

∞∑

k=0

p(k)(1− λ+ xλ)k

= G0(1− λ+ xλ). (4.20)

Similarly, G1(x;λ) = G1(1− λ+ xλ).

Let H1(x;λ) be the generating function that denotes the distribution of the

sizes of the cluster of vertices or components reached by following a randomly chosen

edge that is compromised. The degree of such an end vertex can vary from 0 to N−1.

Moreover, if the degree is at least one, then following each edge out of that vertex

would lead to more vertices whose degree distribution is also H1(x;λ). If there are

k edges emanating from the vertex at the other end of the random edge, then the

distribution of the sum of the sizes of the k clusters that each edge from the end

vertex leads to, is given by H1(x;λ)k.

The generating function H1(x;λ) for the total number of nodes reachable or

compromised as a result of a single transmission along an edge of the network is,

thus, generated by a self consistency relation of the form [59, 60]

H1(x;λ) = xG1(H1(x;λ);λ). (4.21)

We are interested in the distribution of the size of the component to which a

randomly chosen vertex belongs. In other words, the distribution of the number of
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nodes affected by an outbreak when the infection starts at a single infective node is

generated by

H0(x;λ) = x

N−1∑

k=0

p(k)[H1(x;λ)]k = xG0(H1(x;λ);λ). (4.22)

The average size of the outbreak cluster is derived as s = H ′
0(1;λ) and is given by

s = 1 +
λG′0(1)

1− λG′1(1)
. (4.23)

Infection probability λ essentially captures the spreading capability of the virus that

could compromise the network: the larger it is, the stronger the virus is. We assume

that its value can be obtained by means of measurement or analysis.

We remark here that in traditional epidemiology, the parameter λ, denoting

the infection probability, generally represents the portion of the population that is

susceptible to the infection. However, in a sensor network, it is typically assumed that

all the nodes are homogeneous and therefore equally susceptible. Thus, in this case,

instead of considering a fraction of the network as susceptible, we consider the whole

network to be susceptible and subsequently, at t=0, all N − 1 nodes are susceptible

with one node being infected. The parameter λ, in this case, tries to capture the

characteristic of the malware that is spreading and what technique it adopts, i.e.,

whether it has the properties of a worm, virus, or trojan, etc. In other words, using

the variable λ, we try to parametrically capture the infectivity of a malware or the

probability by which an infection spreads on a link between any pair of infected and

susceptible node.

Thus, λ succeeds in differentiating between different malwares and their prop-

agation characteristics and is assumed to be fixed for a particular spread but may
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Figure 4.2. Size of compromised node clusters with infection probability (λ) for
uniform random deployment: (a) depicts the average size of infected clusters when
there is no epidemic and (b) shows the epidemic size as the fraction of the entire
network. The point where non-zero value appears indicates the transition from non-
epidemic to epidemic.

vary from time to time based on the type of malware and what systemic technique it

adopts to spread.

We, thus, use λ to connect the infection probability of the malware to the

physical properties of the network (expressed in terms of p and q) and see if there is

a resultant epidemic.

Given the above result, we can see that the outbreak point for the network is

λ = 1/G′1(1) which marks the onset of an epidemic. For λ > 1/G′1(1) we have an

epidemic in the form of a giant component in the random network. We observe that

H0(1;λ) which is the distribution of the cluster formation is only valid below the

threshold point beyond which it becomes invalid because in a giant component there

could be loops and the recursive distribution of the end node degree of an edge as

stated by Eqn. 4.21 would not hold. Thus, beyond the threshold point, we define

H0(1;λ) to be the distribution of isolated clusters which do not have loop formations.
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Figure 4.3. Size of compromised node clusters for Gaussian Deployment: (a) depicts
the average size of infected clusters when there is no epidemic and (b) shows the
epidemic size as the fraction of the entire network. The point where non-zero value
appears indicates the transition from non-epidemic to epidemic.

If Ψm denotes the cluster size distribution of size m, then we observe that the fraction

of the network forming the giant component is given by S = 1−∑
m Ψm = 1−H0(1;λ).

Rearranging and substituting from Eqn 4.22, we have S = 1−G0(u;λ).

Here u is the root of the self-consistency relation

u = G1(u;λ).

Intuitively, the above conclusion reveals that if λ ≤ 1/G′1(1), the component of com-

promised nodes is finite in size regardless of the size of the network and each node’s

probability of being compromised is zero for large networks. On the contrary, if

λ > 1/G′1(1), there always exists a finite probability for a node to be compromised.

We plot the effect of different key sharing probabilities on the epidemic outbreak

on our two deployment strategies, viz uniform random and a collection of group based

deployment strategies. Fig. 4.2 depicts this effect for a uniform random network with
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N = 10000 nodes deployed in a 600× 600unit2 area with different key sharing prob-

abilities q. The underlying physical topology is determined by the communication

range of each node which is equal to 20 units. Given the physical deployment, we

vary the probability of direct pairwise key sharing (q) and study the point of outbreak.

As we can see in Fig. 4.2, while undoubtedly increasing q can facilitate communica-

tion in the network, the network also becomes more vulnerable to virus spreading.

Specifically, when q = 0.3, network wide breakout is only possible when a compro-

mised node has an infection probability (λ) larger than 0.15 to infect a neighbor. We

note that in this case, we have an expected node degree of 15. On the contrary, λ

only needs to be around 0.05 when q = 0.8 which subsequently makes the expected

node degree around 30. Fig. 4.2(b) illustrates the fraction of the network that is

ultimately infected as the infection probability is increased beyond the critical point

of the onset of outbreak. For instance, we observe that when key sharing probability

is high (q = 0.8), the whole network is compromised with a λ value of around 0.4. On

the contrary, with q = 0.3, the network could be compromised with only a high value

of λ = 0.7. Although Fig. 4.2 (b) is a continuation of Fig. 4.2 (a) when the epidemic

spreads to the entire network, a separate depiction provides a clear picture of the

extent to which the network is infected before and after an epidemic. In summary,

Fig. 4.2 clearly indicates the tradeoff between key sharing probability among sensor

nodes and the vulnerability of the network to compromise.

In Fig. 4.3, we depict the same process with the deployment scheme changed

to a group based one. The deployment points are arranged in a 10 × 10 grid with

100 nodes per group. The nodes in each group reside in a two-dimensional gaussian

manner about their mean deployment point with σd = 10. We observe that the po-

tency of the propagation process is affected by the change in deployment. The λ

values at which the epidemic starts to spread into the whole network has increased.



68

For instance, for q = 0.3, the transition point is around λ = 0.32 as compared to

be around 0.15 for the uniform deployment case. The reason for the decrease in the

epidemic effect is caused by the fact that the expected node degree of the network

is lowered when the nodes are deployed in groups distributed in a gaussian manner.

This, obviously, has a crippling effect on the propagation process and thus helps in

delaying the onset of the epidemic. However, this effect, as expected, slowly dimin-

ishes with increase in the variance of the gaussian distribution of each group, which

gradually pushes the distribution to a more uniform nature. Thus, when we increase

σd to around 40 in our deployment scenario with 10000 nodes, there is practically lit-

tle difference between the two deployment strategies. This analysis shows that tuning

the deployment parameters to a certain extent could result in making the network

robust against viral propagation without considerably hampering its connectivity.

4.2.4 Compromise Spread With Node Recovery

In this case, we assume that the network has the capability to recover some

of the compromised nodes by either immunization or removal from the network. To

capture this recovery effect, we assume that an infected node recovers or is removed

from the network after an average duration of infectivity τ . In other words, a node

in the sensor network remains infective for an average period τ after which it is

immunized. During this infective period, the node transmits the epidemic to its

neighbors with the infection rate β, denoting the probability of infection per unit

time. Evidently, the parameter τ is critical to the analysis as it measures how soon

a compromised node recovers. Naturally, we will perform our analysis following the

SIR model in epidemic theory [31, 60].

First, consider a pair of adjacent nodes where one is infected and the other

is susceptible. We define T as the compromise transmission probability, or in other

words, the transmissibility of the infection. Given the above definitions for β and
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τ , we can say that the probability that the disease will not be transmitted from the

infected to the susceptible is given by

1− T = lim
δt→0

(1− βδt)τ/δt = e−βτ . (4.24)

Subsequently, we have the transmission probability

T = 1− e−βτ .

In other words, the compromise propagation can be considered as a Poisson process,

with average βτ . The outcome of this process is the same as bond percolation and T is

basically analogous to the bond occupation probability on the graph representing the

key sharing network. Thus, the outbreak size would be precisely the size of the cluster

of vertices that can be reached from the initial vertex (infected node) by traversing

only occupied edges which are occupied with probability T . Notice that T explicitly

captures node recovery in terms of the parameter τ .

Replacing λ with T in Equation 4.23, and following similar steps, we get the

size of the average cluster as

s = 1 +
TG′0(1)

1− TG′1(1)
. (4.25)

and the epidemic size is obtained by

S = 1−G0(u;T ). (4.26)

where u is obtained by

u = 1−G1(u;T ), (4.27)
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and G0(u;T ) and G1(u;T ) are given respectively by

G0(u;T ) = G0(1 + (u− 1)T ), (4.28)

and

G1(u;T ) = G1(1 + (u− 1)T ). (4.29)
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Figure 4.4. Extent of Epidemic Size with Varying Infectivity Duration (Uniform
Deployment): (a) Pre-Epidemic Cluster Size with Low Infection Probability (b) Post-
Epidemic Infected Fraction with Low Infection Probability (c) Pre-Epidemic Cluster
Size with High Infection Probability (d) Post-Epidemic Infected Fraction with High
Infection Probability.
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Figure 4.5. Extent of Epidemic Size with Varying Infectivity Duration (Gaussian
Deployment): (a) Pre-Epidemic Cluster Size with Low Infection Probability (b) Post-
Epidemic Infected Fraction with Low Infection Probability (c) Pre-Epidemic Cluster
Size with High Infection Probability (d) Post-Epidemic Infected Fraction with High
Infection Probability.

Figs. 4.4 and 4.5 summarize this effect for the uniform and group based deploy-

ment respectively. They depict the epidemic outbreak against the average recovery

time τ for low and high infection rates β = 0.2 and β = 0.8. The network setup is

the same as before with N = 10000 and a 10 × 10 grid for the group deployment

scheme. For uniform deployment, Figs. 4.4(a) and (b) depict the pre-epidemic and

post-epidemic scenario when the infection rate is low (β = 0.2). In Figs. 4.4(c) and

(d), the infection rate is high (β = 0.8). The plots are for different values of the key

sharing probability q which governs the connectivity of the key sharing sensor topol-

ogy. Fig. 4.5 shows the plots when the nodes are deployed in groups. Comparing
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the plots in Figs. 4.4 and 4.5 we observe similar characteristics as observed in the

non-recovery case. Here, in the group based plots, the compromise process attains

epidemic proportions at higher values of the infectivity duration τ . For instance,

comparing Fig. 4.4(d) and Fig. 4.5(d), when q = 0.3 and β = 0.8, the epidemic

outbreak for the group deployment starts at around τ = 500, whereas in the uniform

deployment scenario, its onset is when τ is around 150. This indicates that the po-

tency of the compromise is reduced by the gaussian distribution deployment model.

In other words, the nodes in the group based deployment model would need to stay

infective for a larger average duration in order to spread to the entire network than

when uniformly deployed. The expected duration of a node’s infectivity could be a

possible measure of the degree of potency of the viral infection and this comparison is

indicative of which deployment scheme is better poised to resist against an outbreak.

In next section we will discuss about an important parameter in epidemic theory

whose value indicates whether an infection can potentially result in an epidemic. We

derive an expression for this parameter for our sensor network model and investigate

its behavior.

4.3 Basic Reproductive Number

In epidemiology, the Basic Reproductive Number R0 is defined as the expected

number of people that a single infective individual can infect in a pool of mostly sus-

ceptible candidates. Its importance lies in the fact that it characterizes the epidemic

growth at the start of an outbreak: the infection will eventually die out when R0 < 1

and when R0 > 1, the disease will spread exponentially and consequently may lead

to a large epidemic.

Since we have proposed an epidemic model for the spread of node compromise,

it is essential that we verify how our network parameters contribute to the derivation
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of the important epidemic parameter R0. We know that the epidemic threshold for

R0 is 1. Therefore, expressing R0 in terms of the relevant network parameters like

the key sharing probability q, the infection rate β, the infectivity duration τ , etc.,

would shed more light on what parameter to control in order to prevent an epidemic

outbreak. The resultant expression of the basic reproductive number would also be

indicative of the correctness of our epidemic model.

Theorem 4.2. If T denotes the transmissibility and u denotes the probability that

the vertex at the end of a randomly chosen edge remains uninfected during an epi-

demic, then the basic reproductive number R0 is given by R0 =
∑

j j
∑

k

(
k
j

)
T j(1 −

T )k−j (1−vk)p(k)P
k[(1−vk)p(k)]

, where v = 1− T + Tu.

Proof. Let I denote the set of infected nodes in the sensor network. Moreover, let ni

denote the number of nodes that are infected by node i and di represent the degree

of node i. We are interested in the probability Pr[ni = j|i ∈ I]. This can be written

as

Pr[ni = j|i ∈ I] = (4.30)

∑

k

Pr[ni = j|di = k, i ∈ I]Pr[di = k|i ∈ I]

From Equation (4.30), using Bayes’ Rule, we can write

Pr[di = k|i ∈ I] =
Pr[i ∈ I|di = k]p(k)

Pr[i ∈ I] . (4.31)

where p(k) is the degree distribution of the network. Given that β is the infection

probability per unit time and τ is the average recovery time of an infected node, we

have from Equation (4.24) the probability with which each link is occupied as

T = 1− e−βτ . (4.32)
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From Equation (4.26) and (4.27), we have the size of the epidemic as S and u is

simply the probability that the vertex at the end of a randomly chosen edge remains

uninfected during an epidemic. Thus, the probability that a vertex does not become

infected via one of its edges is

v = 1− T + Tu, (4.33)

where 1 − T is the probability that the edge is unoccupied, and Tu denotes that

probability that it is occupied but connects to an uninfected vertex. Consequently,

the total probability of being uninfected if a vertex has degree k is vk. This leads to

Pr[i ∈ I|di = k] = 1− vk. (4.34)

Hence, we have

Pr[i ∈ I] =
∑

k

(1− vk)p(k) (4.35)

Substituting this into Equation (4.31) gives

Pr[di = k|i ∈ I] =
(1− vk)p(k)∑
k(1− vk)p(k)

. (4.36)

Furthermore, we have

Pr[ni = j|di = k, i ∈ I] =

(
k

j

)
T j(1− T )k−j (4.37)

and substituting this into Equation (4.30) gives

Pr[ni = j|i ∈ I] =
∑

k

(
k

j

)
T j(1− T )k−j (1− vk)p(k)∑

k[(1− vk)p(k)]
. (4.38)
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Figure 4.6. Fraction of network infected vs. basic reproductive number R0 .

Finally, the basic reproductive number R0 is given by

R0 =
∑

j

jPr[ni = j|i ∈ I]. (4.39)

Equation (4.39) gives an expression where R0 is expressed in terms of the trans-

missibility T which is dependent on two factors, namely, the infection rate β and the

infective duration τ . Fig. 5 illustrates the epidemic size based on the basic reproduc-

tive number R0. As expected, we find that in our random graph based sensor network

model, the transition point of R0 is 1, above which an epidemic outbreak occurs. This

result further proves the correctness of the model for capturing the epidemic propa-

gation of a malware infection in a securely communicating sensor network.

4.4 Simulation Study

We employ a discrete-event dynamic system and therefore event-driven simu-

lation to accurately simulate the propagation of the infection spreading process. We
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have used JProwler [89], a probabilistic, event-driven wireless network simulator in

Java, for our experiments. JProwler, which is a java implementation of the Prowler

simulator is capable of simulating the non-deterministic nature of the communication

channel and the low-level communication protocol of wireless sensor nodes. A proba-

bilistic radio channel model is used with the received signal strength function defined

as

Prx =
Ptx

1 + dγ
· [1 + α(d)] · [1 + β(t)] (4.40)

where Ptx is the transmit power and d is the distance between two nodes. The param-

eters α and β are normal random variables and model the probabilistic nature of the

radio channel. A packet error rate perror simulates the effect of any unmodeled effects

on the transmission probability. In this section, we outline our discrete-event driven

simulation model setup for the gradual progress of the spread of node compromise.

We then use this model to capture the time dynamics of the spread of the compro-

mise which we have largely omitted in our random graph based epidemic model. In

our random graph analytical model, we obtained the static values of the maximum

fraction of the network that was compromised. Through our simulation, we aim to

capture the dynamics of the infection spread. This way, we not only concern the final

stable state results but also investigate the temporal effects of node recovery on the

extent of infection spread.

4.4.1 Simulation Setup

In our simulation, we assume the number of sensor nodes in the network to be

10000. The sensor network is produced by distributing the sensors in a 600 × 600

unit2 area. The communication range of each node is assumed to be 25 units. The

mean data rate of the wireless links is set to 40 Kbps with the packet length set to
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48 bytes. The mean packet transmission time is calculated accordingly. The MAC

layer is a simple CSMA based scheme modeling the Berkeley motes’ MAC layer. We

have used the default settings of JProwler for the standard deviations of α and β as

0.45 and 0.02, respectively and the packet loss rate is set to 0.1.

For the uniform random deployment, the location of each node is selected from

a uniform distribution within the region. For the group based gaussian deployment

scenario, the deployment points are arranged in a 10× 10 grid in the monitored area

and there are 100 nodes in each group. For each group, the location of a node is

selected from a two-dimensional gaussian distribution with the deployment point as

the mean and standard deviation σd = 10.

We employ the random key pre-distribution scheme described in [28] to establish

the pairwise shared keys among sensor nodes. For each pair of neighbors, a small

subset of keys are chosen randomly from a large pool such that they share at least

one key with probability q.

Our simulation works in two phases. In the first phase, we form the network

where each node identifies its set of neighbors and entries are made into a neighbor

table. Based on typical communication distances between nodes and their respective

locations, we derive the set of neighbors for each node. The degree of the key sharing

network is controlled by changing the value of the key sharing probability q between

neighbors. It is in the first phase that the key sharing topology for the epidemic

propagation is derived based on the value of q between each pair of neighboring

nodes and from the manner in which the nodes are deployed.

In the second phase, we simulate actual virus propagation. Initially, at t = 0,

the number of infected nodes, denoted by I(0) is set to be 1. At any time point t,

the population is divided into the group of susceptible nodes, S(t), and the group of

infected nodes, I(t). In the situation where we have nodes that are immunized and

thus recovered, we denote this set of recovered nodes by R(t). The timeline of these
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sub-populations is obtained by observing the population counts after fixed simulation

intervals of 1 time unit. The average incubation time at an infected node is assumed

to follow a poisson distribution with a considerably low mean of 1 unit. This denotes

the time period for a node to evolve from an infected state to an infective state. The

low average value essentially dictates that an infected node at simulation time t will

be ready to infect its neighbors at time (t+ 1) with a high probability. Furthermore,

when this incubation period is over, we assume that the time it takes for the infected

node to infect its susceptible neighbor is negative exponentially distributed with a

mean of 1 unit time.

There are two simulation scenarios corresponding to our analysis.

4.4.1.1 No Recovery

First we perform the simulation for the case where nodes once compromised are

not recovered. Here, the simulation is based primarily on one event - the Infection

Event which is an infected packet transmitted from an infected node to its susceptible

neighbor. Associated with each Infection event packet are the node ID of the source

and the ID of the destination node that has been infected by this source. The seed

for the simulation is a single Infection event with a randomly selected node ID from

among its neighbors as the infected destination and the source as null. The simulation

is started by inserting this event into the event priority queue with the prioritization

based on the event times. When an Infection Event is popped from the queue, the list

of its neighbors are looked up in the neighbor table. From its susceptible neighbors,

a node is selected randomly for infection, according to the infection probability β

and an Infected packet is transmitted to it. A packet transmission event takes into

consideration the physical characteristics of the network like transmission time and

packet collision rate. Upon being infected, a node generates a new infection event.
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4.4.1.2 With Recovery

In the case where infected nodes are recovered, we define a new Recovery Event

for our simulation model. Our aim is to keep the average recovery time constant and

study the time dynamics of the nodes in different groups based on different topology

structure and infection probabilities. We assume the recovery time for an infected

node to be negative exponentially distributed with a mean of τ0 units. The CDF of

the recovery time is represented by

Pr[t < T ] = 1− e−τ0T . (4.41)

When an Infection Event is popped from the queue, we obtain the difference of the

current simulation time and the time when the event was inserted into the queue.

Using this time difference in Equation (4.41), the probability of inserting a Recovery

Event or an Infection Event is calculated. However, when a Recovery Event is trig-

gered, no event is further inserted. The corresponding node is marked as recovered

and remains immune to further infections.

4.4.2 Simulation Results and Discussion

4.4.2.1 Simulation Results for No Recovery Case

The simulation results for the case without recovery are shown in Figs. 4.7

and 4.8. Fig. 4.7 represents the case for uniform random deployment while Fig. 4.8

shows the case for the group based deployment. The figures illustrate the compromise

dynamics under moderate and high infectivity β. We vary the key sharing probability

q between neighbors in each plot in order to simulate the variance of the degree

distribution of the key sharing topology under the two deployment scenarios. As

expected, the uniform random deployment curves are smoother than the group based
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Figure 4.7. Dynamics of the infective population ( Uniform Random Deployment
Without Node Recovery) : (a) Uniform Random Deployment and Moderate Infectiv-
ity, (b) Uniform Random Deployment and High Infectivity.
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Figure 4.8. Dynamics of the infective population ( Group Based Deployment Without
Node Recovery) : (a) Group based deployment and moderate infectivity, (b) Group
based deployment and high infectivity.
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Figure 4.9. Dynamics of the infective population for Uniform Random Deployment
(With Node Recovery and q = 0.5) : (a) Uniform Random Deployment and Low
Infectivity, (b) Uniform Random Deployment and High Infectivity.

deployment. In the latter, the slope is sharply affected by the density of nodes in

the region of the propagation spread. This varies regularly and we observe that this

variation of node density actually slows down the propagation dynamics. For instance,

comparing Fig. 4.8(b) with Fig. 4.7(b), we observe that for q = 0.5, the network

is compromised around time t = 1400 for the group deployment case, whereas for

uniform deployment, the network is compromised around time t = 900 for the same

value of q. A similar observation is made when comparing Figs. 4.7(a) and 4.8(a)

for a lower infectivity value of β = 0.5. The reason for the difference in time taken

for the infection to spread to the entire network is attributed to the difference of the

expected node degree in the different deployment cases. A group based deployment

with each group deployed in a two dimensional gaussian manner results in a lowering

of the expected node degree of the network at the physical level.
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Figure 4.10. Dynamics of the infective population for Uniform Random Deployment
(With Node Recovery and q = 0.8) : (a) Uniform Random Deployment and Low
Infectivity, (b) Uniform Random Deployment and High Infectivity.
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Figure 4.11. Dynamics of the infective population for Group based deployment (With
Node Recovery and q = 0.5) : (a) Group Deployment and Low Infectivity, (b) Group
Deployment and High Infectivity.
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Figure 4.12. Dynamics of the infective population for Group based deployment (With
Node Recovery and q = 0.8) : (a) Group Deployment and Low Infectivity, (b) Group
Deployment and High Infectivity.

4.4.2.2 Simulation Results for Recovery Case

Figs. 4.9, 4.10, 4.11, and 4.12 show the simulation dynamics in the presence

of a recovery strategy. Figs. 4.9 and 4.10 depict the epidemic propagation under

a uniform random deployment of sensors, while Figs. 4.11 and 4.12 are depictions

of a group based deployment with the sensors in each group distributed in a two-

dimensional gaussian manner. For both types of deployment, we investigate two

scenarios, viz., one in which the infectivity of the compromise process is low and the

second where it is quite high. For each of the cases of infectivity, we also observe

the dynamics under different key sharing probabilities q. For a comparatively sparser

key sharing network (q = 0.5), as depicted in Figs. 4.9(a) and (b), we observe

that a higher infectivity duration is required to achieve similar levels of epidemic

propagation in the network as in Fig. 4.10. Comparing Figs. 4.9 (a) and 4.10

(a), we observe that increasing the node connectivity by increasing q from 0.5 to 0.8,

raises the infected population peak count from 40% to 80% for τ = 240. Trivially, we
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also observe that the peak count is achieved at a much faster rate with an increased

key sharing probability from q = 0.5 to q = 0.8.

The plots in Figs. 4.11 and 4.12 depict the same dynamics of epidemic propaga-

tion, but here the nodes are deployed in groups which are gaussian distributed about

the deployment point. In Fig 4.11, each group is composed of 10 nodes, whereas

in Fig 4.12, there are 50 nodes in each group. As in the case for no-recovery, we

observe that the temporal behavior of the infective population reflects the variability

of the node density at different regions of the network. As a result, the slope of the

infective curve changes depending on how close to the mean position the propagation

front of the compromise process is. In other words, we observe that when the curve is

rising, the slope decreases when the compromise process wavefront reaches a sparse

section of the network, i.e., an area farther away from any deployment points. On the

other hand, when the curve is decreasing, it falls steeply when the wavefront reaches a

sparse region because nodes are not infected as fast as they are recovering resulting in

a net decrease in infected population. This is the reason we also observe an increase

in the total infective percentage at certain phases of the process when the region

becomes very dense. In such a situation, the infection process suddenly accelerates

resulting in a net increase in the infective population percentage. Figs. 4.11 (a) and

(b) depict the process in a network of 10000 nodes under two levels of infectivity β

when the key sharing probability is 0.5, while Figs. 4.12 (a) and (b) depict the same

for a higher key sharing probability of q = 0.8. Apart from the periodic increase and

decrease in the propagation process for the gaussian distribution, we also observe an

important comparative result between the two types of deployment.

Comparing Figs. 4.9 and 4.10 with Figs. 4.11 and 4.12, we notice that similar

peak levels of infectivity are obtained for the group deployment at higher levels of the

infectivity duration τ . In other words, the nodes have to remain infective for a longer

duration in the group based deployment scenario than when uniformly deployed in
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order to infect the same fraction of the population. This is in tandem with what

we observed in our previous analytical derivations and simulations where epidemic

proportions are reached for larger values of the infectivity duration τ , than in the

situation when nodes are uniformly deployed. As mentioned earlier, the reason for

which we observe this difference is that the average node degree of the network is

reduced when the nodes are deployed in groups. The propagation progresses much

more smoothly when the connectivity is uniform in nature than when it varies every

now and then. In our simulations, we observed that the compromise process is more

adversely affected by regions of low connectivity than helped by regions of higher

connectivity. If the process dies out in a region of low density before it could reach

a region of higher density, then the nodes in these sparse areas become regions of

failure for the epidemic process.

4.4.3 Correlation between Analytical and Simulation Results

Although our analysis and simulation provide separate viewpoints of the epi-

demic process, they are correlated and a few observations connecting them reinforce

the results. As mentioned earlier, in our random graph analysis, we obtained a fi-

nal picture of the resulting epidemic fallout. However, our simulations captured the

temporal dynamics of how the ultimate results were obtained and how the process

evolved.

In this subsection, we observe some of the correlative aspects of our analytical

and simulation results by focusing on the points of the analytical curves that are

represented in our simulation results. For instance, we closely observe the peak values

of the curves in the simulation results for the recovery case of both the uniform and

group based deployment scenarios. These points represent the maximum fraction of

the network compromised before the recovery process caused the network to recover.

These points are represented in the analytical plots because the points of the curves
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represent the ultimate fraction of the network compromised given the values of the

parameters β and q. We find that the values are close to each other. For instance,

if we compare Fig. 11(b) with Fig. 5(d), we observe that the peak values of the

simulation curves in Fig. 11(b), are very close to the points in the analytical curve

for q = 0.5 in Fig. 5(d), with corresponding τ values. Similarly, for the analytical

curve with q = 0.8 in Fig. 5(d), we observe that the peak infective values match

closely with the simulation curves in Fig 12(b). Close correlation is also observed for

other pairs of simulation and analytical curves.

From our analysis and simulations, we therefore remark that both the analytical

and experimental results have significant implication for security scheme design in

terms of revoking/immunizing compromised nodes in wireless sensor networks. While

the simulation results dictate the speed at which the network must react in order to

contain/prevent the effect of network wide epidemic, the analytical plots indicate

what values of the key sharing probability should be, in a securely communicating

network using private keys, in order to contain an infection spread below the epidemic

threshold while still maintain connectivity to promote network-wide communications.

4.5 Summary

In this chapter, we investigate the potential threat for compromise propagation

in wireless sensor networks. Based on the principles of epidemic theory, we model

the process of compromise spreading from a single compromised node to the whole

network. In particular, we focus on the effects of the key factors of the network de-

termining a potential epidemic outbreak where the whole network will be affected.

Due to the unique distance and key sharing constrained communication pattern, we

resort to a random graph model which is precisely generated according to the param-

eters of the real sensor network and perform the study on the graph. We also ensure
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that the key sharing network generated is connected before performing our epidemic

propagation analyses. We, further, introduce the effect of node recovery after com-

promise and adapt our model to accommodate this effect. Moreover, we perform a

comparative study of the effect of two deployment strategies on the outcome of the

epidemic propagation. Our results indicate that a uniform random deployment is

more vulnerable to epidemic propagation than a group based deployment model and

reveal key parameters of the network in defending and containing potential epidemics.

In particular, with node recovery, the result provides benchmark time period for the

network to recover a node in order to defend against the epidemic spreading and also

critical values of the key sharing probability which characterize the transition from a

non-epidemic to an epidemic state of the network compromise. Our extensive simula-

tion results validate our analytical results and more importantly, provide insights into

the dynamics of the system in terms of temporal evolution of the infection process.



CHAPTER 5

MODELING MALWARE PROPAGATION OVER DISSEMINATION
PROTOCOLS

In chapter 3, we modeled the process of data propagation over the different

broadcast based data dissemination protocols in sensor networks and analyzed the

performances of each in terms of rate of information spread. In this chapter, we

highlight a corresponding negative aspect of the multihop data propagation over these

broadcast protocols.

Despite their critical usefulness in performing various network-wide tasks in

sensor networks, these protocols are also vulnerable if they are used by some malware

to to spread across the network. A compromised node could launch an attack on the

entire network by using these protocols to transport itself to all the nodes.

In the previous chapter we looked into a general scenario of node compromise

spreading across the whole network under some basic mode of secure communication.

The adversary uses the retrieved information from a few nodes that are captured and

uses that information to spread malicious code my misusing the mutual trust shared

between neighbors. We had observed the effects of different kinds of deployment

strategies on the outcome of node compromise propagation.

In this chapter, we continue our investigation on the spread of node compromise

by focussing on a scenario where a multihop broadcast protocol might be used as a

transport vehicle to propagate malicious code across the network [19, 20]. We focus

on the dynamics of the propagation process and how each of the different broadcast

protocols are vulnerable to the spread of malware over themselves. In other words,

we look into the rate of malware propagation and the extent of spread in the network.

88
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The analysis in 3 was a general performance analysis of the rate of information

propagation over each protocol. A similar analysis could also throw light on the

vulnerability of the protocols in terms of the speed of malware spread over each

protocol. In this chapter, we look into the dynamics of a malware spread under the

effects of a simultaneous recovery mechanism. Thus, each node can be recovered from

a possible infection within a certain mean recovery period. Our objective is to study

the dynamics of a malware compromising the network and the how a simultaneous

recovery process can prevent that. One of the most useful outcomes of this study

would be to identify the maximum fraction of the network thatwas compromised

before the network could recover itself.

This chapter is organized as follows : In section 5.1, we explain the system

model. In section 5.2, we discuss the attack model. We perform our model analysis

in section 5.3. Section 5.4 provides an analytical discussion of the model. We perform

our simulation study in section 5.5 and summarize in section 5.6.

5.1 System Model

The system model is the same as used in chapter 3. The population in our

model is the total number of nodes, N , in the sensor network which are assumed to

be stationary and uniformly randomly distributed with the node density denoted by σ.

The number of infected nodes I(t) at time t are those that have been compromised

by a malware spreading over the broadcast protocol. We have S(t) denoting the

number of susceptible nodes in the network. Moreover, we have R(t) denoting the

set of recovered nodes at time t.

The rate of malware infection, β, represents the probabilistic rate at which an

infective node communicates with a susceptible one through a broadcast protocol,

thus compromising the latter. Here β depends on two factors: (i) probability ρ
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representing the infectivity of the malware which is a measure of how contagious it

is, and (ii) the rate of communication of the protocol. The degree of susceptibility of

a node depends on its average degree η, the rate of communication between nodes,

and the probability ρ.

We use ρ as a parameterization of the different infectivity characteristics of

different malwares. In other words, we use this parameter to differentiate the threat

potentials of different malwares which is independent of the broadcast protocol. This

parameter, which is the probability of infection, is used as a weighting factor on

the communication rate to generate the infection rate β. The justification is that

malwares may use different schemes to use the broadcast protocols for compromising

the nodes. Moreover, depending on the scheme, the infection can be potent enough

to spread further, i.e., compromise the recipient susceptible node and further go on to

infect other susceptible nodes. The infection rate, β, is, thus, obtained by combining

the communication rate with ρ. The rate of removal, γ, represents the rate at which

nodes recover and lose their infectivity in the network. This recovery procedure, for

instance, is effected either by injection of an antivirus to disinfect the virus infected

nodes or revoking the compromised nodes.

5.2 Attack Model

In this subsection, we briefly present the possible attacks on the broadcast

protocols. A source node uses a broadcast protocol, e.g., Deluge, MNP, etc, to dis-

seminate a piece of information to the rest of the network. Firstly, under the absence

of any kind of authentication scheme, the compromise of any node can be a threat

to the entire network. In other words, if a compromised node running a malicious

software broadcasts a metadata advertising a higher version, other nodes would start

to download it. Secondly, in the presence of authentication techniques used by the
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source of the broadcast, we observe, that it may not always be the base-station that

is disseminating useful information to the entire network. In other words, we assume

that a regular sensor node can also be the source of such a broadcast where these pro-

tocols are employed. Possible authentication schemes include digital signatures and

hash chain based mechanisms [24], [27]. An attacker, who has compromised a source

node and retrieved the keys pertaining to the security functions of the protocol, can

then implant a piece of malware and use the protocol to transfer it to the rest of the

nodes. We characterize a malware [90] as being a piece of malicious software which

could include computer viruses, worms, trojan horses, spywares, etc. Since, the mal-

ware is now signed by the captured keys at the source, it would pass authentication

verification at the recipient nodes. The working mechanism of the broadcast protocol

allows an infected node to successfully pass on the malware in its neighborhood and

ultimately spread it to the whole network in a circular multihop rippled propagation.

Table 5.1. Malware Propagation Model Parameters

Model Parameter Description

N Total number of nodes

η Average node degree

σ Node density

Rc Communication radius of node

S(t) Susceptible nodes at time t

I(t) Infective nodes at time t

R(t) Recovered nodes at time t

β Malware infection rate

γ Malware removal rate

ρ Malware infectivity potential
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5.3 Model Analysis

In this section, we construct the formulation for the spread model of a malware

in the presence of a simultaneous recovery mechanism. We assume that the network

has the capability to recover some of the infected nodes that have been compromised.

Once a node gets compromised, there is a finite probability and duration within which

it can be recovered and lose its infectivity. This recovery mechanism could be effected

by injecting a disinfecting software into the network. Moreover, we assume that the

it is only possible to recover an infected node. In other words, it does not incorporate

immunization of susceptible nodes prior to infection.

Without any loss of generalization, let τ denote the expected duration that a

node stays infected. The expected recovery rate is thus given by γ = 1
τ
. Moreover,

from the attacker model’s perspective, we also assume that after a node has recovered,

it is immune to that particular malware which caused the infection. This may not hold

for other classes of malwares which might be currently active in the network. However,

it is a fair assumption because we are interested in evaluating the vulnerability of the

protocol from the perspective of how fast it takes for a particular malware with a

given infectivity to use it to infect the whole network.

Based on the circular strip model as depicted in chapter 3, the infected nodes

that lie within a circular strip of thickness Rc are able to interact with a fraction of

the susceptible nodes. However, simultaneously, a fraction of the infected nodes is

also being recovered. Therefore, with recovery, the mass balance equation takes the

form:

N(t) = S(t) + I(t) +R(t) (5.1)

Similar to Eq. (3.3), the number of infected nodes that lie in the circular

strip of thickness Rc is proportional to
√
I(t) +R(t) =

√
N − S(t). Moreover, based
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on similar analysis for the non-recovery case, each infected node interacts with the

susceptible fraction of its neighbors. Therefore, the non-linear ordinary differential

equations describing the process can be defined as:

dI

dt
= βc

√
N − S

S

N
η − γI (5.2)

dS

dt
= −βc

√
N − S

S

N
η (5.3)

dR

dt
= γI (5.4)

We derive the exact solutions of these equations to find out the growth of

infected and susceptible nodes with time. Then we solve for S(t) and after putting

the boundary condition i.e., at t = 0, S(t) = N − 1, we obtain:

S(t) = N −N


 2

1 + (
√

N−1√
N+1

) e
− βcη√

N
t
− 1




2

. (5.5)

Substituting this expression in the equation for dI/dt, and denoting the constants

C1 =
√

N−1√
N+1

and C2 = − βcη√
N

, we obtain:

dI

dt
=
βcη√
N

[{
N −N

(
2

1 + C1 eC2t
− 1

)2
}

(
2

1 + C1 eC2t
− 1

)]
− γI. (5.6)

After multiplying both sides by eγt, a little simplification leads to the form:
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d(Ieγt)

dt
= −C2N

[{
1−

(
2

1 + C1 eC2t
− 1

)2
}

(
2

1 + C1 eC2t
− 1

)]
eγI . (5.7)

We use the Gaussian Hypergeometric Function Hy2F1 [79] 1, to solve the above

equation and obtain a closed form expression for I(t). As with the non-recovery case,

we use the same boundary condition, i.e., at t = 0, I(t) = 1.

I(t) =
4C1C2Ne

C2t

(C2 + γ)(C2 + C1C2eC2t)2

[
A

]
+ e−C2t

− 4C1C2Ne
−γt

(C2 + γ)(C2 + C1C2)2

[
B

]
, (5.8)

where

A = (C2 + γ)(−C2 + γ + γC1e
C2t)− (γ + γC1e

C2t)2

Hy2F1
(
1, 1 + γ/C2, 2 + γ/C2,−C1e

C2t
)

B = (C2 + γ)(−C2 + γ + γC1)− (γ + γC1)
2

Hy2F1 (1, 1 + γ/C2, 2 + γ/C2,−C1) .

Eq. 5.8 gives the closed form expression for the number of infectives at time t in

the recovery case. Having proposed the epidemic model for the infection propagation

in a sensor network, we now look into how each broadcast protocol fits into the

1This function solves the Gaussian Hypergeometric differential equation: x(1 − x)y′′ +
c− (a + b + 1)xy′ − aby = 0
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model. In the following section we derive the infection rate β of our model in terms

of the communication rate of each protocol in order to effectively characterize the

propagation over them.

5.4 Analysis Discussion

As detailed in chapter 3, the infection rate for each of the broadcast protocols,

Trickle [53], Deluge [36], Firecracker[52] and MNP [49] are calculated based on the

corresponding communication rate of the protocol. This infection rate is then incor-

porated in the epidemic model to finally produce the formulation for the propagation

dynamics of the malware over each protocol.

Apart from the rate of transfer established by the physical characteristics of the

network and the working principle of the broadcast protocol, we also need to consider

the property of each malware. This property differentiates one malware from another.

This is the inherent characteristic of the malware, its type and what mechanism it

adopts to spread. We, thus, parametrically capture this aspect of a malware by ρ,

the infectivity potential of the malware. This parameter ρ differentiates one malware

from another.

Similar to the previous analytical derivation, as shown in chapter 3, the infection

rate β is calculated from each protocol’s communication paradigm.

Deluge and MNP are both bulk data transfer protocols and thus the rate of

transfer of a page is regarded as the communication rate of the protocol. We make

the assumption that a page of data is large enough to transfer a malware from one

node to its neighbor. This necessarily may not be true but gives us a worst case view

of the malware spread rate.

Based on this, we observe that MNP’s sender selection algorithm, makes it more

secure than Deluge because of the delay of MNP in servicing requests as it waits to
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Figure 5.1. Time Dynamics of infected nodes, I(t), for different values of τ (average
infectivity duration) : (a) Trickle (avg degree = 5), (b) Trickle (avg degree = 8),
(c) Firecracker (avg degree = 5), (d) Firecracker (avg degree = 8), (e) Deluge (avg
degree = 5), (f) Deluge (avg degree = 8), (g) MNP (avg degree = 5), (h) MNP (avg
degree = 8).
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select a particular sender in a neighborhood. From a vulnerability standpoint, this

feature slows down infectious malwares which might have spread deeper into the

network faster, had the requests been serviced immediately, as in Deluge. This is

valuable time for a recovery process to control the spread.

Fig. 5.1 illustrates the infection dynamics in the face of a simultaneous recovery

procedure in the network. Without making any assumptions on the recovery process

adopted, we have depicted the infection dynamics under different average rates for

recovery. As mentioned earlier, recovery could be achieved by injecting a piece of

disinfecting software, such as an antivirus, into the network. We observe the infection

dynamics based on different values for average infectivity duration depicted by the

parameter τ . We also assume the malware to have high infectivity of ρ = 0.8. From

the sub-figures in Fig. 5.1, we observe that the fraction of the network that gets

maximally infected is significantly lowered with a simultaneous recovery procedure.

This difference is even more significant in the case of a lower value of τ which further

weakens the potency of the infection. For instance, comparing figs. 5.1(f) and 3.4(f),

the peak of the infective curve, with average τ = 100, is lowered significantly and it

is also achieved at a time close to 200 seconds in the non-recovered case, while it

reaches a value close to 450 seconds with recovery. Similarly in MNP, comparison of

figs. 5.1(g) and 3.4(g) shows that a simultaneous recovery procedure not only lowers

the peak of the infection curve but also slows the time it is reached, considerably. For

the curves with lower infectivity duration (e.g., τ = 25), the difference in the peak

fraction infected is even larger. Thus, the introduction of the recovery process slows

down the infection considerably and in the case of Deluge and MNP, it is even more

conspicuous because the general speed of the protocol is slower. As an aside, the total

recovery time for Deluge takes almost twice the time taken by Firecracker.
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5.5 Simulation Study

The simulation setup is similar to the one chosen for chapter 3. The time

dynamics of the malware spread is captured with varying degrees of infectivity on

the whole network. We have used JProwler [89], a probabilistic, event-driven wireless

network simulator in Java, for our experiments.

We assume N = 1000 sensor nodes with uniform random deployment in the

network. We have used the default radio model in JProwler where all communication

links in the network are symmetric and deterministic. Packets are lost only when

there is a collision. Likewise, the maximum data rate of wireless links is set to be 32

Kbps. The maximum length of a packet is also fixed at 40 bytes. The MAC protocol

is based on a simple CSMA scheme like BMAC [66]. The metrics for evaluating the

proposed framework is the time it takes for a malware to infect a given fraction of the

network, spreading over each broadcast protocol. Each reported result is averaged

over twenty simulation runs.

Similar to the earlier setup in chapter 3, our simulation works in two phases. In

the first phase, we form the network where each node constructs the neighbor table.

The entry for each node in the neighborhood table can indicate whether a node is

susceptible, infected or recovered. The average node degree of the network is set to

typical values of 5 and 8.

In the second phase, we simulate actual virus propagation over each broadcast

protocol. Initially, at t = 0, the number of infected nodes, denoted by I(0) is set to

be 1. The time period Tp, of Trickle, has been assumed to be the unit and is equal

to 1 second in our simulation.

We simulate under different network connectivities and different values of the

malware infectivity, ρ, and subsequently, study the time dynamics of the infected

population. For each susceptible neighbor of an infective node to which a data packet
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Figure 5.2. Time Dynamics of infected nodes, I(t), for different values of τ (average
infectivity duration) : (a) Trickle (avg degree = 5), (b) Trickle (avg degree = 8),
(c) Firecracker (avg degree = 5), (d) Firecracker (avg degree = 8), (e) Deluge (avg
degree = 5), (f) Deluge (avg degree = 8), (g) MNP (avg degree = 5), (h) MNP (avg
degree = 8).
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is to be transmitted, malware transmission is done based on the probability ρ, inde-

pendently for each node.

In the case where there is no recovery, a node, once infected, stays infected

for the rest of the simulation time. The simulation results for such a case would be

similar to the results as shown in chapter 3 for data propagation.

However, with a simultaneous recovery mechanism, the simulation results are

depicted in Fig. 5.2. With predefined infection rates derived from the broadcast

protocols, we have simulated a simultaneous recovery process given that an infection

spread is active. We observe that the nature of the curves closely match our analytical

model.

However, similar to the simulation performed in chapter 3, we also observe some

discrepancies between our simulation and analytical results as is evident from figs.

3.4 and 3.5. This is similarly attributed to the fact that the differential equation

based approach approximates the process to be continuous in time which is not the

case in our simulation. Moreover, the model does not incorporate border or edge

effects and the infection is assumed to propagate from the center outwards. With

a considerable increase in the density of the network, our simulation results would

deviate significantly from the analytical results. This is attributed to the error in the

packet loss probability that creeps in such scenarios. Our model would then have to

be tuned accordingly so that the packet loss probability can effectively capture the

impact of high density.

5.6 Summary

Broadcast protocols in sensor networks are vulnerable as potential carriers of

malwares/viruses that spread over air interfaces. In this chapter, we evaluated the

vulnerability of these protocols in sensor networks wherein they could be potential
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carriers of malwares/viruses that spread over air interfaces. We provided a common

mathematical model to analyze the process of malware propagation over different

multihop broadcast protocols. Although approximately, our model successfully cap-

tures the ripple based propagation behavior of the wavefront of a broadcast protocol.

Not only is the model capable of assessing the performance of each protocol in the

face of a virus outbreak, but it also helps in comparing their vulnerabilities against

each other. Its generic and flexible nature allows us to conveniently fit parameters

of different broadcast protocols and analyze their susceptibilities. Despite the sim-

ilarities in operation between some of the protocols discussed, the epidemic model

successfully highlights their differences from a propagation standpoint. The model

can also be extended to other complex broadcast protocols by successfully computing

the infection rate β for that protocol.



CHAPTER 6

REPROGRAMMING PROTOCOL DESIGN FOR MOBILE SENSOR
NETWORKS

In the previous chapters, we investigated the data propagation performance

of broadcast protocols and also studied the vulnerability aspects and how a minor

security breach could spread itself into the whole network, potentially exploiting the

working principle of the broadcast protocols. Our entire analysis was performed on

static sensor networks which are either deployed uniformly randomly onto a terrain

or deployed according to another special strategy.

We now shift our focus and consider sensor networks comprised of mobile nodes.

Several sensor network applications require the nodes to be mobile. Given such a

mobile scenario, we perform our analysis and characterization of a broadcast based

dissemination protocol.

In this chapter, we study the design of a broadcast based data dissemination

protocol specifically suited to mobile sensor networks. Although the mobility fac-

tor brings considerable uncertainty about a node’s location it also provides several

advantages. For instance, it increases the extent of coverage of the whole area. It

also increases the reliability of coverage of a given point in the area and more impor-

tantly, a lesser number of sensors can achieve the desired sensing performance. Thus,

compared to static sensors, a lesser number of mobile sensors could be sufficient for

a particular application. Consequently, reprogramming protocols for these mobile

sensors are necessary keeping such applications in mind.

However, current reprogramming protocols for sensor networks [36], [53], [49] are

unsuitable when applied in a mobile scenario. The random and continuous mobility

102
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of nodes, renders the feature of acquiring pages in-order of existing reprogramming

protocols, inefficient.

In this chapter, we present ReMo, a reprogramming protocol specifically de-

signed for mobile sensor networks.

The chapter is organized as follows : In section 6.1, we discuss about link

quality and signal strength metrics. In section 6.2, we depict the behavior of the

Deluge protocol in a mobile environment. We present ReMo in section 6.3. In section

6.4, we perfrom our simulation based performance evaluation of ReMo and summarize

the chapter in section 6.5.

6.1 Link Quality and Relative Distance Estimate

Since the mobile nodes are not assumed to know their own location, it is impor-

tant to determine not only the relative distance between two neighbors but also the

link quality between them in terms of the packet reception rate. These two parameters

would help a node to select the best neighbor for code download. We have performed

some outdoor experiments to characterize the link between two sensor nodes with

802.15.4 radios at varying distances. Our goal was to find out how the RSSI and LQI

values of a radio packet varied with distance and correlated with the packet reception

rate over the corresponding link.

For our experiments on link quality measurements, we used the Sun Small

Programmable Object Technology (SunSPOT) nodes [86]. A SunSPOT has a 180

Mhz 32 bit ARM920T processor with 512K RAM and 4M Flash. The radio chip is

the CC2420 [87].

As part of the ReMo protocol, each node would continuously snoop on all radio

packets transmitted in the neighborhood in order to construct important statistics

like relative distance and link quality with its neighbors. However, snooping is not
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Figure 6.1. Outdoor Measurements of LQI, RSSI and Packet Reception Rate with
Distance : (a) LQI with Distance, (b) RSSI with Distance, (c) Packet Reception Rate
with Distance.
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cheap since nodes have to listen for packets that are not necessarily addressed to itself.

Several low-power listening techniques exist[71] that would allow nodes to snoop at a

much lower cost. However, much of the traffic in the case of ReMo is broadcast and

thus nodes would not need to do any extra snooping in order to construct the link

characteristics with their neighbors.

As shown in Fig. 6.1, we measured the average RSSI and LQI values of 600

packets for a distance of 12 feet to 60 feet at steps of 4 ft in an open area. The nodes

were kept at a height of 3 ft above the ground. Our observations indicate that RSSI is

a good indicator of relative distance between two nodes but it is not correlated with

the packet reception rate as accurately as the average LQI values. Thus, ReMo uses

the average LQI values as an indicator of link quality and the RSSI measurements as

indicators of relative distance.

6.2 Deluge in a Mobile Sensor Network

In order to demonstrate the requirement of a suitable reprogramming protocol

for mobile sensor networks, we evaluated the performance of Deluge [36], a popular

reprogramming protocol, in a network with mobile nodes. Most other existing proto-

cols [49, 52, 53] follow a similar paradigm for code propagation. We have performed

simulation experiments under varying degrees of node mobility. Our primary goal

was to observe the completion time of the code update for the entire network under

varying average speeds for the mobile nodes. Our results indicate that Deluge shows

a significant increase in network programming time as the average speeds of the mo-

bile nodes are increased. One of the primary reasons behind this fall in performance

is that Deluge distributes pages strictly in order. This strict page-ordered download

makes sense in a static scenario where the new code propagates from a specific source

in a wave across the network. Thus, there is a very low probability of pages arriving
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at a given node out of order. However, in a mobile scenario, this constraint no longer

holds and a node might have neighbors potentially capable of providing arbitrary

pages for download.

Moreover, since Deluge has a simplistic rate control mechanism for its meta-

data advertisements, it is unsuitable to the dynamic changes in neighborhood density

brought about by the mobility of the nodes. Furthermore, it is very susceptible to

the hidden terminal problem when the neighborhood density increases.

Fig 6.2 (a) is a snapshot of a network running Deluge with adjacent nodes

connected by an edge. The first set of nodes shows the normal operation of Deluge

in a static network where the code update propagates in a particular direction. Each

node is marked with the page number it is advertising. Thus all the nodes having a

page number of 5 or lower can acquire missing pages from their neighbor nearer to

the source. The next array of nodes shows a mobile scenario where nodes have moved

into a new adjacency configuration. Thus, the number of nodes potentially able to

download new pages are less. This example proves that the regular paradigm of code

propagation in an increasing order of pages in unsuitable when the nodes are mobile.

Fig. 6.2 (b) shows the effect of mobility on the completion time taken by Deluge with

increasing image size in a 400 node network in a square of area 4000m2 . Each page

is of size 1 KB.

6.3 The ReMo Protocol

Mobility among nodes poses new challenges to the efficient design of a repro-

gramming protocol for sensor networks. Sensors, with their stringent resource con-

straints have more responsibility in not only tackling the uncertainty due to mobility,

but also minimizing the resource utilization in overcoming that overhead and prop-

agate the code throughout the network as fast as possible. In this section, we first
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Figure 6.2. Deluge in a Mobile Sensor Network : (a) Downloaded/Required Pages of
mobile nodes, (b) Completion time of Deluge in a mobile sensor network.

introduce a few assumptions and design directions of ReMo before describing the

working principle of the protocol.

6.3.1 Node Mobility Model

The most commonly used mobility model in ad hoc networks is the random

waypoint (RWP) model [10]. In this model, a node in a movement period i, randomly
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chooses a waypoint Pi, moves towards it at a velocity Vi chosen uniformly randomly,

and pauses at the waypoint Pi for a random period Ti. This process is repeated for

each subsequent movement period.

In our mobile sensor network, we assume that nodes move according to the

RWP model. Moreover, nodes are not required to be aware of their locations. We

do not make any assumptions on network connectivity being maintained at all times

but assume that the nodes move around within the confines of the region.

6.3.2 Data Representation

Similar to the data representation of Deluge [36], ReMo divides the code image

into fixed sized packets of size Spkt. The protocol uses a basic unit of transfer called a

page which is of size N.Spkt where N is a fixed number of packets. Breaking the code

image into pages enables pipelining the transfer of the file over multiple hops across

the network. A version number is used to distinguish between different code updates

and must be monotonically increasing to maintain an order for all updates. A node

needs to compare version numbers to decide on whether it requires an update.

6.3.3 Page Download Potential (PDP)

We define the page download potential (PDP) ωi
j of node i w.r.t node j as a

measure of the potential that j has in providing pages to i. Let the code image Cimg

consist of κ pages, such that Cimg = {P1, P2, . . . , Pκ} where Pl is the lth page. Let

Si and Sj denote the set of pages of node i and node j, respectively. Then the page

download potential ωi
j of i w.r.t j is denoted by

ωi
j =

|Sj − Si|
|Cimg| (6.1)
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where Sj−Si is the set difference between the page sets of node j with node i. Thus,

for each node i with σ neighbors, the page download potential vector Ω is denoted by

Ωi =
{
ωi

1, ω
i
2, . . . , ω

i
σ

}
(6.2)

6.3.4 Neighbor Link Profile (NLP)

Each node i snoops in its neighborhood for packets transmitted by other nodes

in order to build a Neighbor Link Profile (NLP) vector Φi. φ
i
j, which is an element of

Φi, represents an entry of the NLP of node i w.r.t. node j. It is a 2-tuple < lqi
j, dm

i
j >

where lqi
j is a normalized representation ∈ [0, 1] of the link quality with node j, and

dmi
j is a direction of motion indicator. lqi

j is calculated based on the average of the

LQI values of packets received from node j. The average LQI values, as depicted in

Fig 6.1, have been used for estimating the link quality with a given neighbor as they

have a better correlation with the packet reception rate of a link. The link quality

estimate is updated based on a window mean exponentially weighted moving average

(WMEWMA) of the LQI values in each slot of a neighbor node, the window being

the duration τ of each slot. Thus, the link quality update of node j is given by

lqi
j(t+ 1) = γlqi

j(t) + (1− γ)
lqavg

j (t)

lqmax

(6.3)

where lqavg
j (t) is the average of the LQI values of the packets received from node j in

the current slot. The weight factor γ decides the contribution of the previous estimate

of the link quality.

On the other hand, dmi
j is calculated based on RSSI values of multiple packets

from the same node. The RSSI values of the 802.15.4 packets from the CC2420

[87] radio chip have been confirmed to have shown an agile linear correlation with

the distance as depicted in Fig 6.1. Accordingly, consecutive values have been used
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to approximately indicate whether a neighboring node is approaching or departing.

Thus, dmi
j takes values −1(departing), 0(uncertain), and +1(approaching). However,

the measured RSSI values need to be sufficiently spaced in time in order to reflect

a change in position of the mobile node. Accordingly, RSSI values are taken from

packets that are at least spaced by a time duration of ∆
ϕ
. where ∆ is a constant

distance (say 8m) and ϕ is the average speed of a node.

If no packet is heard from an existing neighbor in the NLP in the last time slot,

it is marked as stale. Moreover, a stale neighbor is again made fresh when a packet

is received from it. After a maximum number of W slots with a neighbor remaining

stale, it is evicted from both the NLP and the PDP lists.

6.3.5 Probability of Metadata Broadcast

One of the central features on which ReMo is based is an adaptive metadata

advertisement scheme. This is a probabilistic technique for broadcasting metadata in

the neighborhood considering local node density and the presence of new metadata.

Time is divided into slots of fixed duration τ , and nodes essentially broadcast their

metadata at every slot t based on their current advertisement probability θt.

In this section, we formulate θt, which is the probability of metadata broadcast

by a node at each time slot t. Each node dynamically updates θt at each time slot

based on gathered observation at the previous time slot. Not only is the computation

of this transmission probability based on the presence of new code information in the

neighborhood, but also on the relative density of the current neighborhood. Thus,

each node tries to proactively ascertain if there is any neighbor with new code and

also control the level of gossip in order to avoid collisions and packet loss.

Let Nd
t and N s

t , respectively, denote the number of different and similar meta-

data advertisements heard by a node during slot t. Morever, let At denote the sum

of all advertisement messages heard by the node in slot t. Thus, At = Nd
t + N s

t .
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Algorithm 1 depicts the update of the broadcast probability θ at each time slot. The

notion is to allow a node to increase its broadcast probability whenever it senses

that there is new code in the neighborhood. This increase is inversely proportional

to the number of nodes advertising new code. In other words, nodes increase their

probability by a smaller amount when the number of neighbors advertising new code

is high and vice versa. Moreover, in order to avoid packet collisions, nodes decrease

their probability of transmission if Nd
t and θt cross a threshold value of NTh and θhigh,

respectively.

More importantly, nodes keep track of the number of neighbors that are adver-

tising the same metadata, N s
t . They, accordingly, decrease their transmission proba-

bility in order to minimize redundantly broadcast metadata in the neighborhood. δ

denotes a small step used to increase or decrease the probabilities.

Thus, for each slot t, nodes gather these information about their neighbors and

update their advertisement probability for the next slot t+ 1.

For the initial transmission probability θ0, each node is assigned a value of

θ0 = 1
η

where η = πR2N
D

denotes the average number of neighbors that a node has

within its transmission radius R. D denotes the area in which the nodes are deployed

and N is the total number of nodes..

We note that a node reacts by decreasing or increasing θ as described above,

based on corresponding advertisement counts received in the last time slot. When a

node does not receive any advertisements in a slot, it assumes that it is either alone

or in a very sparse location. In this case, it increases its probability of advertisement

transmission in order to reach out to any other node in the vicinity. However, after

trying for a threshold maxNoADV number of slots with no received advertisements,

the node sleeps for a short duration and then wakes up to broadcast at the initial

probability of θ0.
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Algorithm 1 TransmissionProb θt+1 for (t+ 1)th slot

Input: θt, N
d
t , N

s
t , δ, slotsNoADV ,maxNoADV ,

maxNbrs
Output: θt+1

1: Initialize slotsNoADV = 0;
2: At the Expiry of the (t + 1)th Timer
3: Set Nd

t+1 = 0;
4: Set , Ns

t+1 = 0;
5: if At > 0 then
6: if (Nd

t > NTh and θt > θhigh) then

7: θt+1 = Nd
t

At
θt

(
1− Nd

t

At
δ
)

+ Ns
t

At
θt (1− δ);

8: else
9: θt+1 = Nd

t

At
θt

(
1 + δ

Nd
t

)
+ Ns

t

At
θt (1− δ);

10: end if
11: else
12: slotsNoADV = slotsNoADV + 1;
13: if (slotsNoADV < maxNoADV ) then
14: θt+1 = θt (1 + δ);
15: else
16: Sleep for a short duration;
17: Set wakeup broadcast probability θ0 = D

πR2N ;
18: end if
19: end if
20: if (θt+1 > 1) then
21: θt+1 = 1;
22: end if
23: if (θt+1 < 0) then
24: θt+1 = 0;
25: end if

As shown in Algorithm 1, we note that, in the situation where a node re-

ceives advertisement packets in the last slot, its probability update is composed of a

weighted sum of two components. The first component is based on the contribution

of advertisements that contain new information, Nd
t , whereas the second one is for

advertisements with same metadata, N s
t . The weights of these two components are

based on the normalized counts of the corresponding types of advertisement messages.

Moreover, we note that decrease of θ is done more aggressively for the component

related to advertisements with same metadata. The obvious reason is that these ad-

vertisements pose as redundant transmissions in the neighborhood and could only

cause packet collisions without providing extra information. θ is only increased when
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the node hears new metadata and the number of neighbors are below a required

threshold. However, as mentioned before, θ is increased cautiously by setting the

increase factor inversely proportional to the count of new metadata advertisements

so that it does not result in a gossip storm and subsequent packet collisions.

6.3.6 Protocol Description

In ReMo, the goal of a node is to periodically keep its neighbors updated on the

version of its code and its location information. Whenever a new code is propagating

through the network, a mobile node needs to optimally choose a suitable neighbor to

download pages from, given the fact that the neighborhood is very dynamic as the

nodes are constantly mobile.

Broadly, each node lies in either of three major states, viz., Advertise (ADV),

Receive (RX), and Transmit(TX). Fig 6.3.6 shows the detailed state transition dia-

gram of the protocol.

In the ADV state, a node performs important functions like periodic adver-

tisement of code metadata, neighborhood assessment, and optimal decision making

for different actions like choosing an appropriate neighbor to download code from or

modifying its advertisement transmission rate based on dynamic information about

its current neighbors. In this state, a node broadcasts an advertisement message

Mdata containing some meta information in each slot t of duration τ with a given

probability θt. It selects a random time ∈ [ τ
2
, τ ] for transmitting Mdata to account

for the short listen problem [53]. Mdata is primarily comprised of two components :

1) Version Number, and 2) Downloadable data information which consists of a bit

vector < p0, p1, . . . , pk−1 > of the k pages of the object image. We also note that

the duration τ of each slot has an important role to play in the efficient working of

the protocol. The value of τ is generally based on the average velocity of the nodes

in the network. For instance, in a network where nodes move at very high speeds,
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τ is smaller because the neighborhood states change more frequently. Whereas, in

networks with relatively slower movement speeds, τ is of a longer duration. At each

timer expiry, a node updates its count variables Nd
t and N s

t and recalculates θt+1 for

the next slot as described in Algorithm 1.

The Request messages are of two types, 1) A Half Request (HReq) message,

and 2) A Full Request (FReq) message. Since nodes do not know their location, and

estimate their relative distance and link qualities with their neighbors from received

packets, ReMo uses these two types of Request messages. When a node is sure that

the destination neighbor is close enough for a reliable page download, it sends a FReq

message, whereas it sends a HReq message when it is unsure of the reliability. In the

latter case, it is upto the neighbor to respond with the requested page or ignore the

HReq message. Each Request message contains a bit vector indicating the required set

of pages. Since both the Advertisement and the Request packets from a neighboring

node contain the page information, the PDP is updated upon hearing any of these

packets from the neighbor.

The choice of a neighbor to transmit a Request message to, is based on which

neighbor has a high page download potential as well as a sufficiently good link quality.

Thus, a node i computes pi
j = ωi

j · lqi
j and selects a neighbor for sending a Request

message after transiting to the RX state. However, after selection of j, node i sends

a FReq message to j if lqi
j > lqthresh and dmi

j 6= −1. Otherwise, a HReq message is

transmitted. The Request message is also broadcast in the neighborhood with the

address of node j incorporated as one of the fields of the packet.

If a node in the ADV state finds that it has a non-empty PDP and NLP list

and it needs code to download, it would transit to the RX state at the next timer

expiry and send out an appropriate Request message targeted at the chosen neighbor

and wait for the requested data to be downloaded. For each Request message, a

node generates a random sequence number and includes it as a field in the message.
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However, if it also receives a Request message in this interim before the timer expires,

it would first service the arrived request provided the sequence number in the incoming

request message is higher than its own generated sequence number.

A node in the RX state would transmit a maximum of Rmax unserviced requests

before transiting back to the ADV state.

When a node receives a FReq message in the ADV state, it transits to the

TX state and transmits all the packets of the first page of the requested page vec-

tor. The recipient node sends a DataACK message for the page sent. On receiving

this acknowledgment, the sender transmits the data packets of the next page in the

requested vector provided the link quality of the destination node (as per the last

measured estimates) and the RSSI of the received DataACK packet is above the re-

quired threshold. However, if no acknowledgment arrives or, the sender transits to

the ADV state and starts broadcasting its metadata with probability θ0. A recipient

node transits to the REDEEM state to download missing packets of a page.

Upon receiving a HReq message, a sender node migrates to an intermediate

CHECK state to decide whether the recipient node is suitable for a page transfer by

evaluating the link quality and the RSSI of the received HReq packet. If the link

quality is satisfactory and the node is approaching, then the page is transmitted.

The protocol messages with their essential fields are defined as follows:

• Advertise Message: (a) ImageName (b) Version Number (c) Image Size (d)

Image Page Bit vector.

• HReq Message: (a) Requested Version (b) ImageName (c) Sequence Number

(d) Destination Address (e) RSSI of Recvd Adv (f) Requested Vector of Pages.

• FReq Message: (a) Requested Version (b) ImageName (c) Sequence Number

(d) Destination Address (e) Requested Vector of Pages.

• Data Message: (a) ImageName (b) Version Number (c) Page Number (d)

Packet Index (e) Data Size (f) Data.
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Figure 6.3. ReMo State Transition Diagram.

6.4 Performance Evaluation

We have evaluated the performance of ReMo in comparison with Deluge and

MNP using the packet level network simulator GloMoSim [83]. All the three protocols

have been implemented at the application layer of GloMoSim. The CSMA MAC
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protocol model was used with a communication range of 30m. The terrain is assumed

to be a rectangular area of 4000 sq. meters. We have used the Random Waypoint

mobility model [10] to evaluate the performance of the protocols with average speeds

ranging from 2 to 20 m/s with a maximum pause time of 100 ms. Nodes are initially

uniformly randomly deployed in the terrain. Network reprogramming time and the

total number of packets transmitted to achieve that were the primary metrics of

measurement for evaluating the protocols. Each simulation result was taken over

30 runs with a 95% confidence interval. Table 6.1 shows the values of the different

protocol parameters for our simulation.

Table 6.1. ReMo Parameters and Value Settings

Model Parameter Value

τ 10
AvgNodeSpeed(m/s)

sec

γ 0.4

W 6

θhigh 0.9

NTh η

δ 0.1

Rmax 3

6.4.1 Reprogramming Completion Time

In this section, we focus on the completion time for transferring an image of

size 5 pages with each page of size 1 KB comprised of 16 packets of size 64 bytes

each. The initially uniformly randomly deployed nodes move with average speeds of

2, 5, 10, 15 and 20 meters per sec ± 10%. We also vary the number of nodes moving

in the fixed area of the terrain. This lets us study the effects of increasing average
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Figure 6.4. Completion Time of Deluge, MNP and ReMo in a Mobile Sensor Network
: (a) 120 and (b) 250 nodes).
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Figure 6.5. Completion Time of Deluge, MNP and ReMo in a Mobile Sensor Network
: (a) 500 and (b) 1000 nodes).
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node density on the performance of the protocol. Comparative results are shown in

Fig. 6.4 and Fig. 6.4 for 120, 250 and 500 nodes.

Fig. 6.4 (a) depicts the effects of a low average node density on the reprogram-

ming completion time. Without mobility, and at this low node density, we observe

that both ReMo and Deluge take almost the same time for propagating 5 pages

through the network. However, as the mobility of the nodes increases, ReMo outper-

forms Deluge. One of the primary reasons is Deluge’s constraint of downloading pages

in order. Moreover, ReMo adapts better to the dynamic changes in local node density

in curbing redundant transmissions of advertisement messages thus promoting faster

transfer of data.

MNP gets the most adversely affected by node mobility as the sender selec-

tion algorithm fails to optimally select a node in a neighborhood. As per the MNP

protocol, nodes wait to gather multiple request packets while having the sender se-

lection algorithm choose a particular sender and other competing advertising nodes

go to sleep. However, this delay in serving the requests proves useless because when

a sender is finally chosen and scheduled to transmit, it is in a different neighborhood.

Thus, certain nodes go to sleep when they do not have to, and some nodes end up

transmitting in a neighborhood where they are not required. Subsequently, nodes

end up sending more messages for a longer duration until the whole network is finally

updated. However, we also notice that the slope of the MNP curve decreases at higher

mobility. The possible reason is that the effect of mobility on the sender selection

mechanism becomes less dependent on the speed of the nodes after a certain value.

Fig. 6.4 (b) shows the effects of an increased level of average node density.

We observe that even at zero mobility, ReMo performs slightly better than Deluge.

The reason is that the hidden terminal problem becomes conspicuous and ReMo’s

probabilistic advertisement mechanism copes with it better than Deluge. However,

we observe that a slight increase in node mobility to 5 m/s helps Deluge cope with the



121

effects of the hidden terminal problem brought about by the increased average node

density. Thus, its completion time does not increase significantly and the two curves

stay close to each other. However, a further increase of node mobility to 10 m/s

and higher causes Deluge to degrade in performance and the difference in completion

time with ReMo becomes significant. In Fig. 6.4 (a) and (b), the average node

density is increased further and we observe that ReMo continues to show significant

improvements over Deluge and MNP. The flexible order for page download and the

smoothened probabilistic advertisement mechanism based on neighborhood density

helps ReMo overcome the effects of mobility and node density fluctuations better

than Deluge and MNP.

6.4.2 Number of Message Transmissions

We look into the number of messages transmitted by each protocol in fixed

sized time windows of 20 seconds for the entire duration of the code update. Fig 6.6

depicts the message transmission distribution for each protocol. There are 120 nodes

in a 4000m2 area and the nodes move with an average speed of 10 m/s ± 10%. In Fig

6.6 (a), the overall transmitted messages for Deluge are shown. Comparing with Fig

6.6 (b), we see that although the average number of messages sent in each 20 second

slot was less in MNP, the entire duration was much longer. However, in Fig 6.6 (c),

the number of messages transmitted by ReMo shows that both the average rate of

message transmission and the entire duration of update is less than both MNP and

Deluge.

In Fig. 6.7, we look at the number of message transmissions in a denser network

of 500 nodes moving at the same average speed of 10 m/s ± 10%. We observe that

Deluge is hit worst by the increase of node density and the number of messages trans-

mitted in each 20 second window is significantly more than the other two protocols.

MNP has more latency for the entire completion of code transfer but transmits less
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Figure 6.6. Number of Transmitted Messages (120 Nodes) : (a) Deluge, (b) MNP,
(c) ReMo.
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number of messages than Deluge in each 20 second window. ReMo completes the

transfer in lesser time and also transmits almost half the total number of messages

as Deluge does in each time window.

The lower average message transmission rate also indicates that ReMo is more

energy efficient than Deluge or MNP in a mobile environment.

6.5 Summary

In this paper, we presented ReMo, a reprogramming protocol specifically suited

for mobile sensor networks. We showed how the existing reprogramming paradigm for

static networks fails to adapt to a mobile scenario. The protocol takes advantage of

the mobility of the nodes by having them download pages out-of-order, thus expedit-

ing the download process. The protocol also smoothly adapts its periodic metadata

advertisements to cope with the constantly varying node density of the mobile envi-

ronment and suppress redundant transmissions as much as possible, thereby saving

valuable energy. Finally, ReMo selects neighbors for code exchange based on better

link quality and thus improves on the throughput of data transfer. Our comparative

results indicate significant improvements in completion time of reprogramming the

whole network and the number of messages transmitted over existing reprogramming

protocols like Deluge and MNP. The results are more pronounced as we increase the

average node speeds as well as the network size.

In the next chapter, we present our implementation of the ReMo protocol on a

testbed of SunSPOT devices.



CHAPTER 7

TESTBED IMPLEMENTATION OF REMO

In this chapter, we discuss the implementaiton of the ReMo [22] protocol which

we have implemented on a testbed of SunSPOTs (Sun’s Small Programmable Object

Technology) [86]. This chapter is organized as follows : In section 7.1, we provide

a brief overview of the SunSPOT. In section 7.2, we discuss our implementation

architecture. We provide details about our experiments in section 7.3 and summarize

the chapter in section 7.4.

7.1 Sun Small Programmable Object Technology (SunSPOT)

The SunSPOT is the new sensor device designed at Sun Microsystems Research

Laboratories. The unique feature of the SunSPOT is that it runs on Java and there

is no operating system. It is comprised of

• Sun SPOT Processor Board : The processor board consists of a 180 Mhz 32

bit ARM9OT core. It has 512 KB of RAM and 4 MB of flash memory. It also

runs on the CC2420 [87] radio chip having a 2.4 Ghz 802.15.4 radio and has an

integrated antenna. It uses a USB port for programming and provisioning and

runs on a 3.7V rechargeable 720 mAh lithium-ion battery. It also has a double

sided connector for stackable boards.

• General Purpose Sensor Board : The SunSPOT comes with a general purpose

sensor board which has a 2G/6G 3-axis accelerometer, a temperature sensor,

a light sensor, 8 tri-color LEDs and two momentary switches that can be pro-

grammed. It also has 6 analog inputs, 5 general purpose I/O pins and 4 high

current output pins.
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• Squawk Java Virtual Machine : The device uses a fully capable J2ME CLDC

1.1 Java Virtual Machine [72] with operating system functionalities. The VM

executes directly out of flash memory. Moreover, the device drivers are also

written in Java.

Protocol Execution Engine Persistent Store Manager

Neighbor Link Monitor
Network Stack

RadioPacket Dispatcher
Module

LowPAN Module

MAC layer Module

Protocol Events

Link Traffic 
Statistics

Neighbor Selector
PDP

Write
Read

Send Receive
Link Quality  Measures

Protocol Tester Module

Selected Nbr

Figure 7.1. ReMo : Protocol Architecture.

Further details are available at SunSPOTWorld [86].

7.2 Implementation Architecture

We have implemented a prototype of ReMo and its architecture as is depicted

in figure 7.1. Central to the architecture is the Protocol Execution Engine where

the protocol finite state machine executes. The architecture is implemented at the

application level and runs atop the network stack of the SunSPOT. A separate module
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called the Neighbor Link Monitor registers with the low-level Radio Packet Dispatcher

module of the network stack to be notified of packets transmitted and received. It

uses these notification events to build important statistics about the link quality with

each neighbor. A Neighbor Selector module combines the information about the link

quality information from the link monitor and the page download potential from the

protocol engine to select the best neighbor to download code from. A separate module

called the Persistent Store Manager controls and manages the operations of reading

and writing each page from the flash memory.

7.2.1 The Protocol Execution Engine

The Protocol Execution Engine is the core of the architecture and handles the

periodic broadcast paradigm of metadata and the transmission/reception of the data

and control packets. The entire state machine is implemented in this module. More-

over, this module maintains a runtime description of the image currently running

on the SPOT and also a persistent copy of the metadata that is being broadcast

periodically. A timer is also implemented in this module to help with the periodic

broadcasts of the metadata. The TransmissionProb algorithm for smoothly monitor-

ing the neighborhood density for modifying the broadcast probability is implemented

in this module as well.

ReMo initializes itself by populating fields to identify the proper locations of

the image in flash and constructing a metadata object for periodic broadcast. Then

it initializes the state machine engine and invokes the threads corresponding to the

transmitter, the receiver, and the timed task for broadcasting the metadata object.

It then initializes the Neighbor Link Monitor. A snippet of code depicting the initial-

ization of the protocol engine is depicted in Fig. 7.2.
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void in i tEng ine ( ) throws IOException {
/∗ I n s t a n t i a t e the s t a t e s ∗/
advState = new ADVState ( ) ;
r eqState = new REQUESTState ( ) ;
t ransmi tState = new TRANSMITState ( ) ;
downloadState = new DOWNLOADState ( ) ;
nodeDes = NodeDescr ipt ion . g e t In s tance ( ) ;
/∗ I n i t i a l i z e the s t a t e machine to the ADV State ∗/
fsmState = advState ;
nodeDes . setNodeFSMState ( fsmState ) ;
/∗ Setup Relevant Ports and Datagrams ∗/

. . .
/∗ Timed Task to schedu le r e gu l a r broadcast

t ransmi s s i on o f metadata ∗/
tauExpTask = new TauExpiredTask ( ) ;
startCommunicationThreads ( ) ;
/∗ Star t the l i n k monitor task ∗/
NodeLinkMonitor . g e t In s tance ( ) . i n i t i a l i z e ( ) ;

}

Figure 7.2. Protocol Engine initialization code snippet.

7.2.2 Neighbor Link Monitor

The Neighbor Link Monitor initializes the task for the periodic listening of

the neighborhood and constructing relevant link quality statistics. As neighbors are

discovered they are stored in a table and their normalized link quality metric dynam-

ically updated. A neighbor is marked as stale in the table and subsequently flushed

if it is detected as inactive for a threshold time window. This module is implemented

at the level of the LowPAN layer of the network stack, receiving notification from the

RadioPacketDispatcher layer on any packet received. In other words, the statistics

is built based on the reception of any packet by the node and is independent of the

messages of the protocol itself.

The Neighbor Selector Module is very closely associated with the Neighbor Link

Monitor and it uses the link statistics from the latter and using the page download
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potential weights calculated with each neighbor, returns the best neighbor to send a

request packet to.

7.2.3 Persistent Store Manager

The persistent store manager maintains persistent storage of the currently re-

ceived code image, the metadata that is being currently used for periodic broadcast

and the dynamic bit vector used to signify the current status of the code pages that

have been downloaded. We have used the Record Management Store implementation

on the SunSPOT for the flash storage of the code pages. The persistent store man-

ager is closely coupled with the execution engine and performs the relevant storage

and retrieval of page and metadata information at different states of execution of the

protocol. For instance, when it hears a new metadata in the Advertisement state

it stores the new metadata in the flash and transits to the Request state to request

data packets from potential senders. Moreover, methods of the store manager are

invoked in the Transmit and Download states, for reading and writing pages to the

flash, respectively.

7.2.4 Protocol Tester Module

This module is a test application that we wrote to test the working of our proto-

col. This test module uses the Manifest file with each J2ME midlet application to set

some manifest properties which could be used to set up the functioning and testing of

ReMo. For instance, we had an image version number, an image identification string,

etc. set as configurable parameters in the manifest file. The image version number

is a red-green-blue identifier string giving a color combination which is representative

of the code version executing on the current SunSPOT. We have used the first six

from the array of eight LEDs on the SunSPOT to reflect the image version of the

code executing on it. More specifically, we have used these LEDs as a progress bar to
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(a)

(b)

(c)

Figure 7.3. Snapshots of new image propagation from source : (a) Propagation
Initiation, (b) Propagation Progress, (c) Further Progress.
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pub l i c boolean startApp ( ) {
. . .
S t r ing imageName = Ut i l s . getMani fe s tProperty (

”MIDlet−Name” , ”NULL” ) ;
S t r ing imageVersion = Ut i l s . getMani fe s tProperty (

” ImageVersion ” , ”0” ) ;
S t r ing imageId = Ut i l s . getMani fe s tProperty (

”ImageID” , ”255−255−255”);
. . .
/∗ Star t ReMo ∗/
ReMo. ge t In s tance ( ) . startReMo ( imageName , imageVersion ,

imageId , imageSize ) ;
/∗ Reg i s t e r f o r Events from ReMo ∗/
ReMo. ge t In s tance ( ) . registerForReMoEvents (

new ReMoEventListener ( imageId ) ) ;
. . .

}

Figure 7.4. Testing module code snippet.

show the code download process at a SunSPOT. This module implements an event

listener and upon notification of appropriate events lights up the corresponding LED

to show the protocol operation. In Fig. 7.3, we observe two snapshots of ReMo

executing in a small experimental testbed. In Fig. 7.3 (a), if we observe closely,

we find that the array of LEDs in the nearest node is red, while the rest is yellow.

This is the beginning of the reprogramming phase. The red version is a more recent

one and is about to replace the yellow version in the rest of the SunSPOTs. in Fig.

7.3 (b), we observe the reprogramming in progress, where part of the red code has

been downloaded in the nodes. However, if we observe closely, the first LED is still

yellow signifying that the entire red code has not been downloaded and the previous

code was yellow. When the complete red code version is downloaded, the entire array

would turn red signifying the completion of the process. The code snippet from this

module is depicted in Fig. 7.4.
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Figure 7.5. Transfer Completion Times for different data sizes : (a) 10 KB Transfer,
(b) 20 KB Transfer.
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Figure 7.6. Transfer Completion Times for different data sizes : (a) 30 KB Transfer,
(b) 40 KB Transfer.
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7.3 Experimental Results

In this section, we discuss the results of the testbed experiments we have per-

formed for evaluating the efficacy of ReMo. We evaluate our implementation by

transferring different code sizes over ReMo and Deluge in a network of at most 15

SunSPOTs. We manually move the SunSPOTs around randomly during the code

transfer duration at an average speed of 5 − 10m/s. The transmit power of each

SunSPOT has been reduced to −29dB so that the transmission range for each of them

is approximately between 1 to 1.5 feet, thus helping us in performing the experiment

in a limited area and forcing multihop propagation. We have considered executable

image sizes of the order of typical sample demo applications that are shipped with

the SunSPOT software development kit. For instance, the Airtext demo application’s

binary suite file that gets deployed onto a SunSPOT is around 9 KB. Similarly, the

BounceDemo application is around 33 KB. In Figs. 7.5 and 7.6, we depict the plots

for the completion time of ReMo in comparison with Deluge for different image sizes.

We observe in Fig. 7.5 (a), that at smaller image sizes and also with considerably

small size of the network, the curves depict a linear nature of code transfer time.

However, mobility still affects the transfer time , as we see that in comparison to a

static scenario, ReMo and Deluge take longer time. As expected, ReMo outperforms

Deluge because it chooses better links and downloads pages as they arrive without

explicitly maintaining the order. We observe the effects of pipelining the transfer in

Fig. 7.5 (b), where the slope of the curves dip slightly when the network is around

15 SunSPOTs. This is also an expected result and we further observe that Deluge

takes performs worse than ReMo when the nodes are mobile with an average speed

of 5− 10m/s.

However, as we increase the image size further to around 40 KB, as depicted in

Fig 7.6 (b), we notice that the performance of Deluge worsens further in the face of
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Figure 7.7. Number of Messages Transmitted under Deluge (5-10 m/s) : (a) 20 KB
Transfer, (b) 30 KB Transfer, (c) 40 KB Transfer.
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Figure 7.8. Number of Messages Transmitted under ReMo (5-10 m/s) : (a) 20 KB
Transfer, (b) 30 KB Transfer, (c) 40 KB Transfer.
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mobility. Constrained under the restriction of maintaining page order and also not

choosing neighbors based on better link qualities, Deluge suffers due to more packet

losses and longer wait times due to the order restriction. ReMo, on the other hand,

adjusts to the mobility and thus takes full advantage of the pipelined page transfer in

the network, allowing nodes to download pages as and when they are available from

the neighbors.

In Figs. 7.7 and 7.8, we depict the number of message transfers done by both

Deluge and ReMo in a mobile environment where nodes are moving roughly at an

average speed of 5 − 10 m/s. The results were based on a network size of 15 nodes.

We observe that even in a comparatively small network size and moderate speed,

ReMo still fares significantly better than Deluge in terms of the number of messages

transmitted. As depicted by our earlier simulation study, we expect this difference in

performance to get magnified as the network and data object size increases. The rea-

sons, as stated earlier, are primarily due to the ordered page download of Deluge,the

choice of neighbors made by ReMo based on link quality and the better management

of metadata broadcasts based on neighborhood density. ReMo thus saves significantly

in the number of messages transmitted making it more energy efficient in a mobile

environment. In particular, the total number of messages transmitted in ReMo is

32% less than Deluge for 20KB transfer which increases to around 46% less messages

for transferring 40KB.

7.4 Summary

In this chapter, we have discussed the implementation of ReMo, a reprogram-

ming protocol for mobile sensor networks, on a testbed of SunSPOTs, which is a new

class of wireless sensor devices made by Sun Research Laboratories. We have tested

our protocol on a maximum network size of 15 SunSPOTs, emulating a multihop net-
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work by reducing the transmit power of the nodes sufficiently to generate a network

diameter of 3-4 hops. Our implementation was in the Java language executed on the

Squawk Java Virtual Machine running on the SunSPOT. The protocol was imple-

mented at the application layer with callback hooks established with the lower layers

of network stack for obtaining link quality information with surrounding neighbors.

We have compared ReMo with an implementation of Deluge under different mobil-

ity scenarios and network size. Although small in comparison to the network sizes

used in our simulation, our results are in tandem with the effects we perceive in our

simulation, i.e., ReMo showing pronounced performance benefits as the average node

speeds, the network size and the transferred code size increases.



CHAPTER 8

CONCLUSIONS

In this chapter we summarize our work in this dissertation. Having asserted the

importance of the broadcast based communication paradigm in wireless sensor net-

works, we have focused on the construction of mathematical models for performance

and security analyses of data dissemination in sensor networks. Our performance

model provides a convenient tool for analysis of different data dissemination proto-

cols in terms of their data propagation rate and network reachability. The model has

the flexibility to allow different protocols to be plugged into it by expressing one if its

key parameters, namely the infection rate, in terms of the communication rate of the

particular protocol. On the other hand, our security models expose the comparative

vulnerabilities of these protocols to piggybacked malware. As much as these protocols

are useful in transporting bulk data throughout the network, they are equally sus-

ceptible to compromise when an adversary could use them for propagating harmful

code. Although some of the existing works deal with authenticating the source, there

are shortcomings when used under different application scenarios. In our study, we

try to use our model to make this assertion, and capture the comparative vulnerabil-

ities of the protocols in spreading the malware. Specifically, we look into the aspect

of how the malware would behave in the face of a simultaneously working recovery

procedure.

Our work also throws significant light on how different sensor node deployment

strategies would react to the propagation of node compromise within a network and

the dynamics of how a simultaneous recovery procedure can contain such a malicious

process under the different deployment strategies. In particular, we have assumed the

139
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network to be already securely communicating by way of shared secret keys which are

randomly pre-distributed at deployment time. Our assertion is that in such a scenario,

owing to the probabilities of overlap of key rings between neighbors, a malware which

is residing in a few compromised nodes, can exploit this aspect and gradually infect

more nodes and eventually the entire network. In our study, we have identified the

key network parametric points that define an epidemic breakout of the compromise

under separate network deployment types.

Finally, we have appreciated and presented the performance drawbacks faced

by existing data dissemination protocols when applied to a mobile scenario. Sev-

eral characteristics of the previous protocols rendered them inefficient in a mobile

environment. Subsequently, we have proposed a novel protocol, ReMo, suitable for

reprogramming a mobile sensor network. The features of ReMo that make it per-

form better than existing protocols are the relaxation of strict ordered download of

pages, the incorporation of measured link qualities in the selection of neighbors for

data exchange, and the smoothly varying broadcast rate based on the highly dynamic

node density in the mobile environment. We have implemented ReMo in a testbed of

sensor devices called SunSPOTs.

In essence, in this dissertation, we have focused on a comprehensive study

of broadcast based data propation over dissemination protocols in sensor networks

and looked at the subject not only from the angle of performance measures and

security aspects in a formal manner, but also presented the shortcomings of existing

dissemination protocols when used in a mobile scenario and went on to propose a new

protocol for a mobile network.
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8.1 Future Work

As part of our future work, we are extending our model and formal analysis on

data propagation and vulnerability study on the dissemination protocols to encompass

network mobility. The primary modification required by the model is the fact that,

in a mobile scenario, the restricted interactions between the infective and susceptible

nodes would be relaxed and nodes would be able to homogeneously mix. This actually

would simplify the model to a certain extent. Apart from that, we would still be able

to plugin the individual infection rates of each protocol to bring out their behavior.

Since security of these protocols is a critical issue owing to the very nature

of their operation, we are extending our design and trying to incorporate security

features into ReMo. The security feature would provide authentication of the source

of the data disseminated and preserve the integrity of the same. Existing hash chain

based mechanisms would fail in the case of ReMo owing to its unordered dissemination

approach. As a result, we require efficient mechanims which would not assume any

particular page order of download and be lightweight enough to be supported by

sensor devices.
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