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ABSTRACT 

 

VOLTAGE PROFILE ESTIMATION AND REACTIVE POWER CONTROL 

OF DISTRIBUTION FEEDERS 

 

 

David Timothy Chessmore, Ph.D. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Wei-Jen Lee 

Distribution systems are important transportation links for the delivery of 

electric power.  Understanding the system conditions of distribution feeders is vital for 

controlling power systems and maintaining electricity flow on power grids.  With better 

knowledge of the system conditions on distribution feeders, a deliberate and systematic 

approach can be taken to achieve more efficient and reliable power delivery.  

Furthermore, better understanding of system conditions can be useful in reducing 

operation and maintenance costs in various power system applications such as voltage 

control and capacitor bank switching. 

This dissertation presents a novel method for estimating the voltage profile of a 

radial distribution feeder using forecasted load demands and a three-phase power flow 

program.  Additionally, using the forecasted system load and voltage estimations, an 
 iv



 v

efficient proactive capacitor bank switching algorithm has been developed to control the 

capacitor banks on distribution feeders. 

The results of a comprehensive study of the effects of the short-term load 

forecasting software, the voltage profile estimation algorithm, and the capacitor 

switching algorithm are displayed in this dissertation.  The topics presented in this 

dissertation include artificial neural networks for short-term feeder load forecasting, 

voltage profile estimation using three-phase power flows, capacitor bank switching for 

voltage improvement, and capacitor bank switching for switching reduction. 

A software package based on the dissertation’s research has been developed for 

electric delivery companies as a planning and operating tool for use in a distribution 

management system.  The software package offers the electric delivery company the 

ability to estimate system load and voltage conditions on distribution feeders as well as 

control the feeder’s capacitor banks in a more intelligent and coordinated manner.  

Future integration will allow the software to function as an autonomous component in 

the distribution management system. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The electric power system is one of the most important infrastructures in the 

modern era.  Industry, commerce, and residential life all depend on the reliable supply 

of electric power.  Efficiently managing the distribution systems that deliver power to 

the end user have grown in importance as more reliable and better quality of power are 

required for modern electrical devices.  As more electrical devices and end users of 

electricity are served from the electric power system, the complexity of managing the 

resources on the distribution system increases and more intelligent monitoring and 

control of the distribution system becomes necessary.  Furthermore, as experienced staff 

is retiring and comprehensive knowledge about asset management is decreasing, 

automation is becoming more important in the design and operation of future 

distribution systems. 

Effective automation and control of a distribution system requires knowledge of 

the distribution system’s load and voltage conditions.  Monitoring the voltages at each 

load location along a distribution feeder can ensure that the electric service quality and 

system reliability are maintained at acceptable levels.  However, at the present time, 

economic constraints limit widespread deployment of monitoring equipment on every 
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load bus.  Presently only a small number of voltage monitoring devices are available on 

the distribution lines.  In addition to the economic concerns, retrieving and storing large 

amounts of data through a power system’s communications network can be a 

technological challenge and in some situations a misuse of limited communication 

resources.  These economic and technological problems associated with monitoring the 

system conditions must be addressed in order to have a flexible, efficient, and 

economically feasible distribution management system. 

Another part of the distribution system where automation is desirable is in the 

area of capacitor bank switching.  Traditionally, fixed capacitor banks or switched 

capacitor banks that contain locally controllers have been the most commonly deployed 

reactive power compensators on distribution systems due to their low cost and ease of 

installation.  Most local controlled capacitor banks on the distribution system are 

switched online in a reactionary manner where the compensation is supplied only after 

the problem has occurred.  Since the locally controlled capacitor banks only monitor 

their immediate area, without proper coordination of other compensation resources, this 

reactionary behavior can lead to an improper amount of compensation being switched 

online.  The excessive compensation can lead to overvoltage on the distribution feeder 

as well as other power quality issues.  The capacitor banks must then readjust their 

settings until the desired voltage is attained.  This regular readjustment can lead to 

frequent switching of the capacitor banks than is necessary.  The more times the 

capacitor banks are switched online and offline means that more maintenance of the 

capacitor banks is necessary since the switching contacts and controller can degrade 
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with each operation.  A reduction in the amount of switching can save maintenance 

costs and extend the useful lifetime of the capacitor banks. 

At present, most utilities use predetermined switching sequences to connect and 

disconnect externally controlled capacitor banks along the distribution feeder.  

Although this scheme is straightforward, it has inherent drawbacks due to the lack of 

flexibility to accommodate dynamic load changes, long-term load growth, and possible 

feeder reconfigurations.  However, as the cost of remotely switched capacitor banks and 

their associated infrastructure becomes more competitive with fixed and locally 

controlled capacitor banks, more remote controllable capacitor banks will be deployed 

on the distribution system.  Through knowledge of the feeder’s voltage profile and 

loading conditions, a central distribution management system should be able to 

coordinate the switching of the capacitor banks to obtain an optimal switching scheme 

for the desired time horizon.  An optimal capacitor switching scheme can help increase 

the efficiency of the system and reduce the need for maintenance and upgrades for 

distribution equipment and lines. 

1.2 Objectives 

The main objective of this dissertation is to develop novel methods to increase 

the performance and reliability of the utility electrical system at the distribution feeder 

level.  More specifically, this dissertation has developed algorithms to resolve the 

voltage profile monitoring problem by accurately estimating the voltage profile of a 

radial distribution feeder using forecasted load demands and a limited number of 

monitoring points.  The algorithms can be executed with the information from the 
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monitoring equipment already typically installed at the substation and thus can 

minimize additional capital investment for the installation of monitoring equipment.  

Also, due to the small amount of monitoring information needed, the voltage profile 

estimation will not over burden the power system’s communication network.  As an 

additional benefit, the load demand forecasting offers more information for 

infrastructure decisions in utility planning and operation departments in various 

distribution management functions such as intelligent feeder reconfiguration.  The 

voltage profile estimation can also benefit utility operating departments and can be used 

in distribution system analysis. 

Another objective of this dissertation is to use the results of the load and voltage 

profile estimations to develop an algorithm to perform optimal capacitor bank switching 

for the available capacitor banks on distribution feeders.  The dissertation has integrated 

the voltage profile estimation and capacitor bank switching algorithms to create an 

intelligent centralized monitoring and control scheme for a radial distribution feeder.  

The day-ahead and hour-ahead forecasted load and voltage conditions allow the 

formation of a comprehensive and coordinated strategy of controlling reactive power 

compensation resources.  Switching transactions can be reduced by using the algorithm 

to plan a day-ahead schedule of the capacitor operations with desired switching 

objective functions. 

To achieve the dissertation objectives, the dissertation is organized into three 

main tasks.  The division of work, allowed the software to be modular and individual 

tasks can be easily upgraded when required.  The first task designed short-term load 
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forecasting software to perform load profile and customer load demand forecasting for 

distribution feeders.  The second task developed a voltage profile estimation algorithm 

for a distribution feeder with only a limited number of voltage monitoring points.  The 

third task constructed a proactive optimal capacitor bank switching algorithm for a 

feeder with a mixture of residential, commercial, and industrial loads.  The preceding 

tasks are developed in greater detail in Chapter 3. 

1.3 Contributions 

This dissertation offers several contributions to the field of power systems.  

First, the dissertation offers an innovative perspective on distribution system analysis.  

Whereas most distribution systems are designed to react quickly to problems and 

disregard upcoming challenges that are outside its decision time, this dissertation has 

adopted an extended time decision period.  Instead of reacting every moment in time 

and at times allowing the system to overcompensate, the system can adopt an extended 

time range approach and receive more input into the decision making process to create a 

more comprehensive solution.  The proactive approach also permits the distribution 

management system to have more decision time to coordinate resources and allows 

more automation on the distribution system. 

Second, the proposed algorithms offer a better prediction of localized customer 

energy demand at the distribution level through the use of an artificial neural network.  

Deployment of artificial neural network software on distribution systems is a relatively 

new application of the technology.  The dissertation solves the challenge of computing a 

short-term load forecast with limited historical information on the distribution feeder.  
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The local load forecasts can also be utilize in other distribution system functions such as 

load shedding, load growth studies, feeder upgrade studies, and distributed generation. 

Third, the dissertation offers an improved approach for the calculation of the 

voltage profiles of the distribution system.  The voltage profile estimation method gives 

an overall view of the voltage conditions along the entire feeder instead of only at the 

substation bus for the feeder.  It also requires a minimal amount of monitoring 

equipment to be deployed which can in turn reduce the capital investment for the 

monitoring equipment’s installation, operation, and maintenance.  The voltage profile 

estimation method is also useful in many other applications for the distribution system.  

For example, it can be utilized in areas such as stability analysis, voltage regulation, 

reactive power management, optimal capacitor placement, distributed generation 

placement, and optimal feeder reconfiguration. 

Finally, while capacitor control is not a new function to distribution systems, 

using the combination of neural network software and power flow software to set and 

update the capacitor switching policy has not been presented in the existing literature.  

By focusing on extended time periods that are ignored by local controllers, this new 

approach allows an optimal switching strategy to be determined before 

overcompensating switching occurs.  Using an extended time approach, an optimal 

solution for an entire day or week that minimizes the number of switching can be 

achieved to reduce maintenance costs.  In addition, the dissertation introduces a 

sensitivity method to expedite the calculation of the acceptable switching sequences. 
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1.4 Contents of Dissertation 

The contents of this dissertation are organized in four chapters.  A brief 

description of each chapter is presented in this section. 

Chapter 1 introduces the background and motivation of the dissertation.  Also, 

the objectives of the research and the contributions of the dissertation to the research 

community are given. 

Chapters 2 through 4 present the theory and application of the objectives 

developed for the dissertation.  The first objective was to develop an algorithm to 

perform load profile and customer load demand forecasting for a radial distribution 

feeder.  To accomplish this goal, a supervised learning Artificial Neural Network 

(ANN) was built to perform hour-ahead and day-ahead demand forecasting.  The load 

forecasting design considerations and program implementation are presented in Chapter 

2.  Chapter 3 details the second objective of the dissertation which was to combine the 

load forecasts from the first objective with a three-phase power flow program to 

produce a voltage profile estimation algorithm for a radial distribution feeder. 

Finally, the third objective used the load forecasts and voltage profile 

estimations to design optimal capacitor switching schemes for several objective 

functions.  Chapter 4 presents the algorithms designed to solve the distribution capacitor 

bank switching.  A sensitivity method for the capacitor switching algorithm is also 

included. 

The results of each part of the intelligent monitoring and control algorithms are 

presented in Chapter 5.  A real-world distribution feeder is described and the algorithms 
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are applied to demonstrate how the algorithms can benefit the feeder.  Final conclusions 

and discussion of future research that could enhance this dissertation’s work are 

included in Chapter 6.  Appendix A contains an index of the abbreviations used in the 

dissertation. 



 

 

 

CHAPTER 2 

LOAD PROFILE AND CUSTOMER DEMAND FORECASTING 

 
Chapter 2 describes the various issues associated with constructing a load 

profile and customer demand forecasting program for a radial distribution feeder.  

Topics in the chapter include the categories of load forecasting, time frame choices, the 

various load forecasting techniques, and load forecasting design considerations.  The 

software program structure and implementation are also presented in the chapter. 

2.1 Load Profile and Customer Demand Forecasting 

Customer load demand data is necessary to accurately study the behavior of 

electric distribution systems.  Since the beginning of the electric power industry, load 

forecasting has been an important task in the planning and operation of the power 

system.  The subject of load forecasting is a broad topic that encompasses many 

different types of techniques and objectives.  This section will consider some of the 

requirements for a suitable distribution load forecasting software program for an 

intelligent monitoring and control system. 

2.1.1 Categories of Load Forecasting 

Load forecasting can be classified by the objective of the prediction.  Two 

categories of forecasting are spatial load forecasting and operational load forecasting. 

Spatial load forecasting is defined as the prediction of future electric demand by 

location and is mainly used by distribution planning departments to appropriate funds 
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towards expansion of a power system.  Spatial load forecasting is concerned with the 

location, magnitude, and the temporal characteristics [1].  In spatial load forecasting it is 

important to find both the long-term size of the system load and the location of new 

load. 

Operational load forecasting is mainly concerned with the daily operations of 

the distribution system.  It rarely considers load growth as one of its priorities.  More 

interest is shown toward the magnitude prediction of established load buses.  System 

stability, real-time and near-real-time operation, and system automation are some of the 

functions better served by an operational load forecasting program. 

Since this dissertation is a study of short-range monitoring and control variables 

and because long-term load growth was not considered in the dissertation objectives, an 

operational approach was chosen due to its better correspondence with the monitoring 

and control objectives. 

2.1.2 Load Forecasting Time Range 

Load forecasts can also be classified into four categories by their time duration 

[2], [3].  The time categories are long-term load forecasting, medium-term load 

forecasting, short-term load forecasting, and very-short-term load forecasting. 

Long-term load forecasts are computed from several months to over 10 years 

ahead.  Medium-term load forecasts can be calculated from a few weeks to a few 

months.  Long-term and medium-term load forecasts are associated with system 

planning operations such as system upgrades, fuel requirements, and managing regional 

system load consumption and growth. 
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Short-term load forecasts have time durations from an hour ahead to a few days 

ahead.  Very-short-term load forecasts are load forecasts close to real-time operation 

that extend from one to a few minutes ahead of the forecast time [2].  Short-term load 

forecasts are concerned with the daily operation of the power system in such 

applications as unit commitment and contingency analysis.  Very-short-term load 

forecasting can be useful in applications such as energy pricing and fault analysis. 

Out of the four categories, this dissertation has focused on calculating short-

term load forecasts for a radial distribution feeder.  The short-term time duration is the 

most useful for intelligent monitoring and control functions such as optimal scheduling 

of reactive resources on the feeder. 

2.1.3 Load Forecasting Techniques 

There are different techniques to perform a short-term load forecast.  

Traditionally, load demand has been forecasted by several mathematical techniques, 

including regression analysis, time series analysis, general exponential smoothing, state 

space methods, and expert systems [4].  New methods such as statistical learning 

algorithms, fuzzy logic, and artificial neural networks have also been developed for 

short-term load forecasting.  The features of some of the most common load forecasting 

technique are described in the following sections. 

2.1.3.1 Regression Approach 

In general, regression approaches are statistical methods that compute the 

relationship between a dependent variable and a set of independent variables.  Many 

different types of regression have been applied to load forecasting.  Multiple linear 
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regression [4] and non-parametric regression [5] are two types of regression models that 

have been applied to load forecasting. 

The multiple linear regression approach is formulated based on a functional 

relationship between the energy consumption and variables such as weather, customer 

classification, and time of day.  The multiple linear regression equation is shown in 

Equation (2.1) [4], [6]. 

 

a(t)(t)xααy(t) i

n

1i
i0 +⋅+= ∑

=

     (2.1) 

 

where    is the electric load, y(t)

0α  and  are regression coefficients, iα

(t)x i  are the independent variables correlated with , y(t)

and  is a white noise variable. a(t)

 

The independent variables of the regression model are selected based on load 

studies or the experiences of the utility staff.  Due to the strong correlation between load 

and weather, most regression models include weather temperature as an independent 

variable.  The method of least squares is typically used to calculate the regression 

coefficients. 

One deficiency in the multiple linear regression approach is that identifying the 

correct model to represent the relationships between input and output variables is a 
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complex and protracted process.  In addition, if there are unexpected variations in the 

input values then high forecasting errors can occur. 

A further deficiency of the multiple linear regression approach is that the 

traditional regression approaches model the relationship between weather variables and 

load demands as a linear or piecewise-linear representation.  However, the relationship 

between the load forecast and weather variables such as temperature does not always 

correlate in a linear manner.  As a consequence, the traditional regression approaches do 

not have the adaptability to handle the non-linear temperature variation. 

Another regression method used for load forecasting is called non-parametric 

regression.  The benefit of non-parametric load forecasting is that the load model can be 

calculated from the input data instead of having to identify the model before the 

computation. 

In non-parametric regression load forecasting, the electric load is expressed in 

terms of a multivariate Probability Density Function (PDF) of load and load affecting 

variables [5].  An estimate of the PDF can be found using non-parametric density 

estimation on the historical load data.  The load forecast is calculated from a conditional 

expectation of the load using the PDF estimate.  One variation of the non-parametric 

load forecast using product kernel estimators is shown in Equation (2.2) [5]. 
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where    is the conditional expectation of the l

 is a vector of load affecting variables, 

 is an average hourly load, 

 is the number of sets of ( P ) in the historical data, 

P̂ oad, 

x

P

n i i, x

K  is a kernel, 

and  is a smoothing parameter. 

 

2.1.3.2 Similar-Day Approach 

The similar-day approach searches past load data for days with similar time and 

climate characteristics as the forecast date.  If similar time and climate characteristics 

are found in the historical data, then the matching day’s load is selected as the predicted 

energy demand for the forecast day [7].  The similar-day approach suffers from poor 

adaptability to changing load conditions. 

2.1.3.3 Time Series Approach 

Time series analysis has been used in many areas including economics, physics 

the main methods of load forecasting used in the electric power industry and several 

different time series methods have been developed over the years.  Some examples of 

the time series methods are Autoregressive Moving Average (ARMA), Autoregressive 

Integrated Moving Average (ARIMA), Autoregressive Moving Average with 

h

geology, and digital signal processing.  The time series approach has also been one of 

Exogenous Variables (ARMAX), and Autoregressive Integrated Moving Average with 
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Exogenous Variables (ARIMAX) [7].  An introduction to the equations involved in the 

common time series approaches is briefly presented. 

In the ARMA method, an Autoregressive (AR) process and a Moving-Average 

(MA) process are combined.  If the present value of the time series is y(t) , then it can 

be composed in terms of its previous values and with the present and previous values of 

a white noise series to form the ARMA model.  Equation (2.3) shows the ARMA model 

with p a

 

where   is the electric load, 

utoregressive terms and q moving average terms. 

 

∑∑
==

−⋅+−⋅+=
q

1i

p

1i
   (2.3) ii i)e(tθi)y(te(t)y(t) ϕ

y(t)

iϕ  are the AR parameters of the model, 

 are the MA parameters of the model, 

and  is a white noise variable. 

 

The ARM pecified in terms of a backshift 

operator, also kn ift operator is multiplied by a 

present time el ement as illustrated in Equation (2.4). 

iθ

e(t)

A method in Equation (2.3) is often s
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where  

e element m, the backshift operator can be expressed by Equation (2.5). 

     (2.5)

 

Equation (2.6) shows the ARMA method in terms of the backshift operator and 

with p autoregressive terms and q moving average terms. 

 

   (2.6) 

where  

 B  is the backshift operator, 

and y(t) is the electric load. 

 

For tim

 

m)y(ty(t)Bm −=⋅  

e(t)Bθ1y(t)B1
q

i

i
i

p

1i

i
i ⎟⎟

⎞
⎜⎜
⎝

⎛
⋅+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅− ∑∑

==

ϕ
1 ⎠

 

 iϕ  are the AR parameters of the model, 

iB  are the backshift operators, 

y(t)  is the electric load, 

 are the MA parameters of the model, 

and  is a white noise variable. 

 

RMA method.  The 

ARIMA method considers both the autoregressive and moving average processes in 

iθ

e(t)

The ARIMA method is obtained by integrating the A
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addition to integ ing the backshift operator, the 

ARIMA model is mo uation (2.7) illustrates the ARIMA 

method in terms of the backshift operator. 

rating with difference variables.  Us

re easily determined.  Eq

 

( ) e(t)Bθ1y(t)B1B1
q

1i

i
i

d
p

1i

i
i ⎟⎟

⎞
⎜⎜
⎛

⋅+=−⎟⎟
⎞

⎜⎜
⎛

⋅− ∑∑
==

ϕ    (2.7) 

 

where   i

⎠⎝⎠⎝

ϕ  are the AR parameters of the model, 

 are the backshift operators, 

 is a positive integer, 

 is the electric load, 

 are the MA parameters of the model, 

an

 

Equation (2.8) shows the ARMAX model with p autoregressive terms, q 

moving average ter  input terms. 

 

  (2.8) 

 

where    is the electric load, 

iB

d

y(t)

iθ

d e(t)  is a white noise variable. 

ms, and b exogenous

∑
===

−⋅+−⋅=
b

1i
i

1i
i

1i
i i)d(tηi)e(t∑∑ +−⋅+

qp

θi)y(te(t)y(t) ϕ

y(t)

 are the AR parameters of the model, iϕ
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iθ  are the MA parameters of the model, 

 is a white noise variable, 

 are parameters of the exogenous inputs, 

and is a external time variable. 

 

Equation (2.9) displays the ARMAX method in terms of the backshift operator 

with p autoregressive terms, q moving average terms, and b exogenous input terms. 

 

  (2.9) 

 

where  

e(t)

iη

d(t)

d(t)Bηe(t)Bθ1y(t)B1
b

1i

i
i

i
i

1i

i
i ⎟

⎠
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⎜
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 iϕ  are the AR parameters of the model, 

iB  are the backshift operators, 

d  is a positive integer, 

 is the electric load, 

 are the MA parameters of the model, 

and  is a white noise variable. 

 

The ARI by integrating the ARMAX method.  

Equation (2.10) shows the ARIMAX method in terms of the backshift operator with p 

autoregressive term terms, and b exogenous input terms. 

y(t)

iθ

e(t)

MAX method is obtained 

s, q moving average 
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where   iϕ  are the AR parameters of the model, 

iB  are the backshift operators, 

d  is a positive integer, 

 is the electric load, 

 are the MA parameters of the model, 

and  is a white noise variable. 

One weak ach is that weather is not considered in 

the forecasting m important factor to load forecasting models since 

there is a strong correlation between power consumption and weather variables such as 

temperature [8], e series approach suffers from 

insufficient ad ilit ach can perform well under normal 

conditions, but unexpected changes in the environment can appreciably degrade the 

perform

ability to assign more weight to recent observations and exponentially less weight to 

y(t)

iθ

e(t)

 

ness of the time series appro

odel.  Weather is an 

[9].  Another weakness is that the tim

aptab y.  The time series appro

ance of the forecast. 

2.1.3.4 General Exponential Smoothing Approach 

General exponential smoothing is the application of discounted least squares to 

the fitting of certain functions to time series data [10].  Exponential smoothing has the 

 19



 

older observations.  In the general exponential smoothing approach, the forecasted load 

y(t) is modeled as a linear combination of the known load and a white noise component 

as shown in Equation (2.11) [4], [11]. 

and  is a white noise vector. 

 

The coefficients, in the coefficient vector , are required to slowly change.  If 

the change in the coefficients is gradual over a time span greater than or equal to the 

maximum lead time, then the coefficients can be considered constant.  The load 

forecasts can then be found by extrapolating Equation (2.11) using a fitting function and 

estimates of the co

Simila the  weakness of the general exponential 

smoothing approach is that it does not incorporate weather conditions into the 

forecas

 

ε(t)f(t)β(t)y(t) T +=      (2.11) 

 

where  y(t)  is the load at time t, 

β(t)  is the coefficient vector, 

f(t)  is the fitting function vector for the system, 

ε(t)

β(t)

efficients [4]. 

r to time series methods, a

ting model.  Future implementations of the general exponential smoothing 

approach should incorporate weather variables into the forecasting model in order to 

increase the forecast accuracy. 
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2.1.3.5 State Space Approach 

In the state space approach, the forecasted load is modeled as a state variable 

using state space formulation and a Kalman filter.  Two sets of equations govern the 

process; the system state equations and the measurement equations.  The system state 

space equations are shown in Equation (2.12) and the measurement equations are shown 

in Equation (2.13) [4], [12]. 

 

kkk1,k wx1k Fx      (2.12) = ++ +

 

vxHy kkkk +=      (2.13) 

 

where    is the system state vector at time k, kx

k1,k+F  is the state transition matrix taking the state rom time k to 

k+1, 

 is an independent, zero-mean, Gaussian noise vector with a known 

covariance matrixQ

 is the load measurement vector at time k, 

 is a time-varying observation matrix which maps the true state space 

into the observed space, 

and  is an independent, zero-mean, Gaussian noise vector with a 

known covariance matrix R

kx  f

kw

k , 

ky

H k

kv

k . 
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The Kalma ges f computation which are often called predict 

and update.  If there is no observed data then ated 

using Equation (2.14) and Equation (2.15).  The predict phase calculates a state estimate 

from the previous step to produce a new estimate of the state at the new step.  The 

predict phase is expressed in Equation (2.16) and Equation (2.17).  The update phase 

improves the estimate from the predict phase to obtain a more accurate state estimate.  

The update phase is written in equation form in Equation (2.18), Equation (2.19), and 

Equation (2.20) [12]. 

n filter has two sta  o

 an initialization stage can be estim

Initialization: If necessary, for k=0, set: 

 

]E[ˆ xx 00 =       (2.14) 

0

 

   (2.15) 

 

where    is the initial estimate of the state, 

 is the expected value of x

and  is the initial error c

 

Predict Stage: For k = 1, 2, …, compute: 

]])E[])(E[E[( T
00000 xxxxP −−=

x̂

0x  is the initial state, 

]E[ 0x 0 , 

0P ovariance matrix. 
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State estimate propagation 

2.16) 

 

Error covaria

2.17) 

 

where  tor, 

matrix taking the state estimate  from time k-1 

to k, 

 is an a posteriori state estimate vector, 

ance matrix, 

 is an a posteriori covariance matrix, 

and  is an a posteriori matrix of known covariance matrix kQ

 

Update stage

Kalman gai  

   (2.18) 

 

State estimate update 

    (2.19) 

−
−−

− = 1k1kk,k ˆˆ xFx      (

nce propagation 

1k
T

1kk,1k1kk,k −−−−
− += QFPFP     (

 −
kx̂  is an a priori state estimate vec

−
−1kx̂1kk, −F  is a transition 

−
−1kx̂

−
kP  is an a priori covari

1k−P

1k−Q . 

: For k = 1, 2, …, compute: 

n matrix

k
T
kkk

T
kkk ][ −−− += RHPHHPG 1

)ˆ(ˆˆ −− −+= xHyGxx kkkkkk
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Error covariance update 

−−= kkkk )( PHGIP      (2.20) 

 

where    is the Kalman gain matrix, 

i error covariance matrix 

 is a time-varying observation matrix, 

 is a known covariance matrix, 

ate vector, 

 is an a priori estimate vector, 

 is the load measurement vector at time k, 

and  is the error covariance matrix. 

 

In load forecasting, th tate estimate 

propagation and e determined.  The update stage is then 

executed where th ate vector 

and error covarian

repeated for each 

The identification of rameters is difficult in the state 

space approach for load forecasting.  For example, the estimates for the white noise 

covariance matrices Q R  are not easily obtained in this approach [4]. 

kG

−
kP  is an a prior

kH

kR

kx̂  is an state estim

−
kx̂

ky

kP

e predict stage is executed where the s

rror covariance propagation are 

e Kalman gain matrix is calculated and then the state estim

ce matrix are updated to improve their accuracy.  The process is then 

additional time step. 

 the system model and pa

k  and k
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2.1.3.6 Expert Systems 

Expert systems, also known as knowledge-based systems, were developed to 

apply the knowledge and reasoning of human experts to a specific task.  Expert systems 

have been applied to various power system functions, including short-term load 

forecasting [13]-[16]. 

In the area of short-term load forecasting, the hourly load is calculated using a 

knowledge base of time, economic, and weather data and a set of rules.  A reference day 

is selected which is then altered with additional rules to account for load and weather 

variatio  

rt systems.  First, expert systems must have included all rule 

based k

ion making steps are not always clear and if there are 

errors i

ns in the forecasted day.

Expert systems are beneficial for tasks that have repetitive decisions since 

expert systems have an ordered decision model that never forgets steps and can store 

significant amounts of decision making information.  However, there are several 

disadvantages of expe

nowledge for the forecast problem since they cannot create new responses for 

atypical events.  There is a lack of adaptability in expert systems, since adjusting the 

rules requires a modification of the knowledge base when there are changes in the 

environment.  In addition, decis

n the knowledge base then the output accuracy can be reduced.  With these 

disadvantages, expert systems were not considered an appropriate choice of short-term 

load forecasting for the distribution feeder. 
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2.1.3.7 Artificial Neural Network Load Forecasting 

Another method of predicting load demand is to use an artificial neural network 

(ANN) as a short-term load forecasting program.  In general, ANNs are mathematical 

models originally based on the theoretical operation of the human brain.  An ANN 

forms a parallel connection between parameter elements and processing elements called 

neurons.  The function of the ANN is established by the connection weights, the neuron 

processing unit, and the network configuration. 

NNs have been applied in areas such as pattern classification, function 

approx Ns have been used in the 

power i

in the weather [24].  Mapping the 

relation

 historical data without 

selectin

A

imation, regression analysis, and data filtering.  AN

ndustry for various functions such as fault classification, fault diagnosis, system 

protection, unit commitment, and economic dispatch [17]-[23]. 

One of the most important aspects of ANNs is their ability to learn from their 

environment.  An ANN can learn complex relationships between input data and output 

data through the adjustment of connection weights.  For example, it has been observed 

that load forecasts are sensitive to changes 

ship between the forecasted load and the weather conditions can be complex 

process.  However, ANNs can effectively discern the relationship internally and can 

determine how much weight to give the weather conditions on different types of days.  

The ability of ANNs to determine the variable relationships from

g an appropriate model is a significant advantage over traditional load 

forecasting techniques. 
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ANNs have several additional advantages over traditional methods of load 

forecasting.  One advantage is that ANNs can quickly solve large scale problems 

through the ANN’s parallel distributed structure that traditional methods cannot 

manage.  ANNs can also utilize nonlinear elements that create nonlinear computations 

in the neural network.  The support of nonlinearity in the network permits the ANN to 

perform nonlinear tasks such as load forecasting with more accuracy than through linear 

methods.  Another advantage is that ANNs have the ability to adapt to new changes in 

the neu

ion system environment, the 

challen n still be successfully applied for a 

radial d

ral network’s environment.  ANNs can be retrained with new training data as 

more data becomes available to the neural network [25]. 

2.1.4 Selected Load Forecasting Technique 

Most load forecasting methods produce acceptable results, however, ANNs 

have the ability to increase the accuracy of the short-term load forecasts and deliver 

improve reliability of the forecasted values.  ANNs provide the best method for 

estimating a short-term operational load forecast on the distribution feeder due to the 

ANN’s inherent ability to learn complex nonlinear relationships.  While there are some 

challenges for implementing an ANN in a distribut

ges are not insurmountable and the ANN ca

istribution feeder.  Consequently, the artificial neural network load forecasting 

technique was selected for the load customer demand forecasting in this dissertation. 

2.2 Artificial Neural Network for Customer Demand Forecasting 

The following sections describe the design considerations and implementation 

of an ANN to forecast the load of a radial distribution feeder. 
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There is no standard ANN Short Term Load Forecaster (ANNSTLF) that can be 

applied to every distribution feeder.  The fundamental structure and algorithms of the 

ANNSTLF can be designed in advance but the parameters must be customized for each 

implementation.  Some elements such as the number of hidden neurons and the 

selection of ata.  Since 

the inte

STLF technology become 

availab

 factors that have 

signific

day of the past energy consumption on the feeder.  

 activation functions are dependent on the system and available d

lligent monitoring and control software was designed to be modular, when 

changes to other techniques are required or advances to ANN

le the modifications can be easily substituted into the program. 

The procedure to design an ANNSTLF involves selecting the input variables, 

selecting the network structure, and for some types of ANNSTLFs preparing the 

network with an offline training procedure.  The following ANNSTLF was 

implemented for a distribution feeder from a utility company and the analysis is based 

on its performance.  The results are presented in Chapter 5. 

2.2.1 Selection of Input Variables 

The ANNSTLF input variables are selected from load affecting

ant impact on the system load variation.  Presently, the selection of input 

variables in most ANNSTLFs is done through heuristic experimentation where 

decisions are based on experience and knowledge of the system.  The most widely 

considered variables in short-term load forecasting can be classified into three groups: 

time, load, and weather [26].  Time variables consist of variables such as the hour and 

 the forecast.  Load variables are 
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Weather variables are variables representing the weather conditions near the feeder such 

as temperature, humidity, wind speed, and wind direction. 

The input variables that were chosen for the distribution system ANNSTLF in 

the dissertation were the hour of the load forecast, three previous total load values at the 

substation, and the forecasted temperature for the hour of the load forecast.  The hour of 

the forecast (h) is set to a bounded range as represented in Equation (2.21) [2].  The 

output of the ANN is the total load forecast for the distribution feeder. 

 

⎟
⎠⎝ 24

 

where   h  is the hour of the forecast. 

 

2.2.2 Standardization of Data 

⎞
⎜
⎛ ⋅

=
h2πcosH     (2.21) 

The training data and input data should be standardized before it is used in the

network.  Standardizing the data means that the input and output data is rescaled to a 

different range, often performed by subtracting a measure of location and dividing by a 

easure of scale.  Standardization of the input data is important because the range of 

s can di cess.  If the input variables are on different 

ranges, then the larger input values will have a more prominent contribution to the

output rror correction algorithm will focus on correcting 

the larger ranged variables and neglect the information from the smaller ranged 

 

m

the value srupt the error correcting pro

 

error.  As a consequence, the e
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variables.  Standardizing the input variables can also help avoid weight saturation.  Data 

standardization can reduce the estimation errors and calculation time of the ANN [27]. 

Equation (2.22) demonstrates the procedure to scale the input data [2].  

 

xσ
xxs −

=      (2.22) 

 

where   s  is the scaled input data, 

x  is the input data, 

x  is the mean of the input data x, 
n

x = , 
x

n

i∑
1i=

 is the number of data samples, 

and is the standard deviation of the input data 

n

xσ x , 
( )

n
σ 1i

x
== . 

After the A sfully calculated the forecast value, the output 

data must be converted back to the original data range.  Equation (2.23) shows the 

procedure to perf n the out t data [2].  

 

 

xx
n

2
i∑ −

 

NNSTLF has succes

orm the inverse standardization o pu

( )sσxx x ⋅+=      (2.23) 
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where    is the output data, x

x  is the mean of the input data x , 
n

x
x

n

1i
∑
== , 

n  is the number of data samples, 

i

is the standard deviation of the input data x , xσ
( )

n

xx
σ x

n

1i

2
i∑

=

−
= , 

and  is the scaled output data. 

 

2.2.3 ANNSTLF Architecture 

The choice of network architecture for the ANNSTLF is an important issue in 

the design of the neural network since the ANN structure affects the selection of the 

learning algorith

layers of artificial neurons.  Artificial neurons are processing units that normally contain 

a set of connectio v ion function.  Ther are 

different ways o rons and many ANN architectures have 

been studied over the years.  The three main categories of network structures are single-

layer fe er feedforward networks, and recurrent networks. 

s

m that trains the network.  ANN structures consist of one or more 

n weights, summing junction, and an acti at e 

 of c nnecting the artificial neu

edforward networks, multi-lay

A single-layer feedforward network is a network model where an input layer of 

source nodes is connected forward to an output layer of neurons through a series of 

weights.  Feedforward networks moves information in the direction from the input layer 

to the output layer.  Feedforward networks have no feedback loops or lateral 
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commo

 be connected either from layer to layer or a self-feedback manner.  Self-

feedbac

e 

intellige

connections within the layers.  Figure 2.1(a) illustrates a single-layer feedforward 

network. 

Multi-layer feedforward networks are ANNs that have an input layer of sources 

nodes, and output layer of neurons, and one or more hidden layers of neurons

nly called hidden neurons.  A common ANN in this category is the Multi-layer 

Perceptron (MLP) network which has been used in several load forecasting software 

programs [24], [28]-[31].  Figure 2.1(b) illustrates a multi-layer feedforward network. 

Recurrent networks are ANNs that have one or more feedback loops.  Recurrent 

networks can be single or multi-layered with one or more hidden layers.  The feedback 

loops can

k is when the neuron output is fed back into the input of the same neuron.  A 

well known recurrent ANN is the Hopfield Network.  Figure 2.1(c) illustrates a single-

layer recurrent network with self-feedback loops. 

Of the three fundamental ANN architectures, the most useful structure for load 

demand forecasting is multi-layer feedforward networks.  The ANN designed for th

nt monitoring and control software uses a multi-layer feedforward network with 

one hidden layer. 

 



 

 

Figure 2.1: Artificial Neural Network Structures.  (a) Single-Layer Feedforward 
Network.  (b) Multi-Layer Feedforward Network.  (c) Single-Layer Recurrent Network 

with Self-Feedback Loops. 
 

 

Input Layer Hidden Layer Output LayerOutput LayerInput Layer

Output LayerInput Layer

(a) (b)

(c)
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2.2.4 Load Patterns 

Different days of the week can produce different load patterns.  Saturday and 

Sunday generally have different load patterns than days in the business week since 

many people do not work on the weekend which in turn reduces the commercial and 

industrial electricity demands.  Similarly, the load patterns on Mondays and Fridays are 

different from other weekdays.  Normally, at the beginning of the business week on 

Monday mornings, commercial and industrial businesses resume production and the 

resulting startup loads contribute to the difference in load patterns.  On Fridays, 

commercial and industrial businesses may reduce production due to the proximity of the 

weekend.  In addition, there are different load patterns for the different hours of each 

day. 

To account for the daily load variations, the distribution system short-term load 

forecast software utilizes several neural networks for the different types of day and hour 

periods.  In addition, a moving data window collection is employed to account for the 

variations in seasonal load data.  These techniques allow the distribution system short-

term load forecast software to train each network with a comparable range of values to 

increase the accuracy of the ANNs for the different load patterns. 

For the distribution system short-term load forecast software, there are 20 

diff the 

. would have a network type of zero (0) while the load forecast for 

Friday at 10 p.m. would have a network type of fourteen (14). 

erent neural networks for one feeder.  Table 2.1 displays the network type and 

associated day and hours for each ANNSTLF.  For example, the load forecast for 

Monday at 2 a.m
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Additional customization of the MLP ANNSTLF requires that the number of 

hidden 

 

neurons be selected for each network type.  The number of hidden neurons is 

important because if there are too few neurons then there will not be enough 

computational capacity to learn the complex relationships of the data.  If there are too 

many neurons, the ANN will memorize the data instead of learning the complex 

relationships.  The number of hidden units depends on the distribution feeder and 

network type of the ANN and is experimentally chosen for each ANN network type. 

 

Table 2.1: Day Range and Hour Range for each Artificial Neural Network Type 

Network Type Day Range Hour Range 
0 Monday 1 a.m. - 5 a.m. 
1 Monday 6 a.m. - 8 a.m. 
2 Monday 9 a.m. - 4 p.m. 

11 Friday 6 a.m. - 8 a.m. 

13 Friday 5 p.m. - 9 p.m. 
idnight 

15 Saturday - Sunday 1 a.m. - 5 a.m. 

nto the ANN.  There are 

3 Monday 5 p.m. - 9 p.m. 
4 Monday 10 p.m. - Midnight 
5 Tuesday - Thursday 1 a.m. - 5 a.m. 
6 Tuesday - Thursday 6 a.m. - 8 a.m. 
7 Tuesday - Thursday 9 a.m. - 4 p.m. 
8 Tuesday - Thursday 5 p.m. - 9 p.m. 
9 Tuesday - Thursday 10 p.m. - Midnight 
10 Friday 1 a.m. - 5 a.m. 

12 Friday 9 a.m. - 4 p.m. 

14 Friday 10 p.m. - M

16 Saturday - Sunday 6 a.m. - 8 a.m. 
17 Saturday - Sunday 9 a.m. - 4 p.m. 
18 Saturday - Sunday 5 p.m. - 9 p.m. 
19 Saturday - Sunday 10 p.m. - Midnight 

 

Another important design decision is the choice of activation functions at each 

layer’s neurons.  Activation functions introduce nonlinearity i
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several 

put 

appings.  Within the subject of ANNs there are three fundamental learning models 

whi t a 

teacher. 

In the learning with a teacher lso called ning, the system 

is stimulated with a  of input-outp les in orde  weights within 

the network.  A set of inputs is ut la ut is calculated 

by the ANN.  The ou ut respon et is e desired output 

response and the ne rk weigh inim ce between the 

desired output and actual output response.  The trainin peated until the 

network weights are bilized.  Most g for supe NNs occurs as 

an offline process w  the netw re be

One problem th superv t it  historical data 

 order to train the network.  Incomplete and missing data must be corrected prior to 

training

types of activation functions used in ANNs including the Heaviside step, 

piecewise linear, and sigmoid functions such as the hyperbolic tangent.  A popular 

choice for an activation function for the MLP ANNSTLF is the hyperbolic tangent due 

to the ease of computing its first derivative for the back-propagation weight correction 

process [32]. 

2.2.5 Learning Algorithm and Training Process 

An important feature of ANNs is the ability to learn complex input and out

m

ch are called learning with a teacher, learning with a critic, and learning withou

model, a supervised lear

set ut examp r to modify the

 presented to the inp yer and an outp

tp se due to the input s compared to th

two ts are adjusted to m ize the differen

g process is re

 sta  trainin rvised learning A

here ork is trained befo ing employed. 

 wi ised learning is tha re equires complet

in

 the ANN. 
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Learning without a teacher, also known as unsupervised learning is a self 

organizing learning algorithm where patterns are found in the input data without a set of 

input and output examples.  Some unsupervised learning algorithms use a competitive 

learning rule where the artificial neurons located in a competition layer compete for a 

chance to control the neural network based on the input data.  Both online and offline 

implem NNs.  Statistical modeling, 

compre

here the network learns by interacting with the system to map data to actions 

in orde

 also exploring 

many n

 reward and improving the knowledge of the system data.  This 

exploitation and exploration process which is not present in most implementations of 

entations exist for unsupervised learning A

ssion, and data clustering are some of the areas that use ANNs with 

unsupervised learning. 

Learning with a critic, usually referred to as reinforcement learning, is an online 

process w

r to maximize a numerical reward signal.  Reinforcement learning does not 

present a set of input-output examples to the network to adjust the network weights but 

instead tries to discover which actions yield the most reward.  Reinforcement learning is 

often considered a type of learning without a teacher in some neural network texts [25]. 

A problem with utilizing reinforcement learning for load forecasting is that in 

order to reward the preferred values the reinforcement learning ANN must explore new 

values it has not selected before.  The ANN must gradually exploit the values that 

appear to give the maximum reward with the present knowledge while

ew values to increase knowledge of the system data.  Since it is not possible to 

both explore or exploit with any single data selection, the ANN must balance the need 

of maximizing the
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supervi

e is no available historical data.  If however historical data is 

present

sed learning leads to a longer training period with the reinforcement learning 

algorithm. 

In contrast, the supervised learning can be initially performed ahead of time in a 

batch offline process and then can be updated on a daily or hourly basis when new data 

is available using an incremental offline training procedure.  This incremental update 

approach can significantly reduce the required training time of the ANN. 

Both, reinforcement learning and unsupervised learning are attractive for 

applications where ther

, supervised learning can often perform faster and with a better accuracy at 

predicting future states.  In addition, there have been many implementations of ANN 

load forecasters that use supervised learning as the learning paradigm.  Consequently, 

due to the success of previous ANN implementations and the speed of training, this 

dissertation will focus on a supervised learning approach called back-propagation. 

2.2.5.1 Back-Propagation Algorithm 

The back-propagation algorithm is a popular and computationally efficient 

supervised learning algorithm for MLP ANNs which is based on error correction 

learning [25].  During training a forward pass and backward pass are applied to the 

ANN with each example data set.  The forward pass is presented at the input layer and 

is transmitted forward through the network of weighted connections and neurons until 

the output layer is computed. 

After the forward pass, the computed output is compared to desired output by 

computing the squared error between each output.  The backward pass is then 
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performed where the network weights are tuned by transmitting the error back through 

the ANN.  The standard back-propagation algorithm uses a gradient descent 

optimiz

ctions at each 

neuron 

 then 

an incr  from storage and then update the weights 

with a s

over the relationships between the load and different 

monthly

ation when adjusting the weights.  Also in the back-propagation algorithm, a 

parameter called the learning rate can be modified to raise or lower the speed of 

learning by adjusting the size of the weight changes.  Due to the gradient descent 

algorithm, for the standard back-propagation learning, the activation fun

must be differentiable.  A detailed derivation of the back-propagation algorithm 

can be found in the ANN literature [25], [33], [34]. 

2.2.5.2 Training and Validation of ANN 

At the beginning of the training process, the weights are initialized with random 

numbers or by recalling the previously trained weights.  If no training has previously 

occurred then a batch training process must be executed in which several months or 

years of data must be presented to the ANN.  If training has previously taken place

emental process can recall the weights

mall number of example patterns. 

As previously stated, training the ANN involves presenting example inputs to 

the input layer and comparing the computed output to the example’s desired output.  

Many examples are needed to train the network.  A good estimate of the required 

amount of hourly data is more than two years.  At least two years is required in order to 

allow the ANNSTLF to disc

 patterns and seasons.  On batch training, the training is stopped when the 

squared error is less than a specified minimum error and validation goal or if the 
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orma t in the 

training dation da  ANN 

instead 

iteration is greater than the maximum number of iterations.  For incremental training the 

training is performed for a specified number of iterations.  Figure 2.2 displays a 

flowchart of the ANN’s training procedure. 

Problems can occur if the ANN is under-trained or over-trained.  If the ANN is 

under-trained or over-trained then the weights may start to memorize the training data 

instead of learning the relationships between the output and inputs.  In this undesirable 

issue, commonly called overfitting, the ANN operates well with data that has been 

observed with the training data but has poor perf nce with new data no

ta set is applied to the data set.  To prevent overfitting, a vali

of the training data set for several iterations to determine when to stop training.  

If the training error decreases while the validation error increases then the training 

procedure should be stopped at that iteration.  Once the training of the ANN is 

completed and the network is validated, the neural network is ready to perform the load 

forecasting. 

 



 

 

Figure 2.2: Flowchart of the Artificial Neural Network Training Procedure. 
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2.2.6 Implemented ANNSTLF Design 

The implemented design of the distribution system ANNSTLF was a 

feedforward, supervised learning, multi-layer perceptron using back-propagation.  The 

ANNSTLF has one hidden layer and one output, the forecasted load.  This type of 

neural network has been successful in the past for predicting electric loads and provides 

a reasonable approximation of the feeder load [24], [28]-[31]. 

Figure 2.3 shows an overview of the artificial neural network design [2].  In 

Figure 2.3, L(d,h) is the output load forecast on day (d) and hour (h).  For the inputs, H 

is the hour calculation of the load forecast found using Equation (2.21).  L(d,h-1), 

L(d,h-2), and L(d,h-3) are the three previous load values at the feeder.  Temp(d,h) is the 

forecasted temperature.  Equations (2.24) and Equation (2.25) govern the ANN 

calculation process. 

 

…

 

Figure 2.3: Overview of the Artificial Neural Network Design. 
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where   jz  is the output at the hidden neuron j, 

h

jiijhj bxwz ϕ

ϕ  is the activation function at the hidden layer, 

and  are the input-hidden bias weights. 

 

    (2.25) 

 

where    is the output at the output neuron k, 

N  is the number of inputs, 

ijw  are the input-hidden weights, 

 is the input i, 

j
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ky

oϕ  is the activation function at the output layer, 

s the number of hidden neurons, 

 are the hidden-output weights, 

 is the output at the hidden neuron j, 

and  are the hidden-output bias weights. 
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For the Load Profile and Customer Demand For

ANNSTLF utilizes a hyperbolic tangent activation function at the hidden layer and a 

linear activation function at the output layer. 

The disse demand requires some 

information from er classification for load buses on the feeder 

is needed.  Each c er class that characterizes its demand 

usage.  Residential, residential multiple dwelling, commercial, and large industrial are 

examples of classification groups.  In addition, customer demand survey data is required 

for the load allocation method.  Customer demand survey data is data that is collected in 

order to determine customer classification categories and typical demand profiles for 

the customer class.  It consists of representative sample

a population of customers within a classification group.  Customer demand survey data 

for each customer class is required. 

Historical hourly temperature data is required for the training procedure and 

hourly forecasted  temperature forecasted 

data can be down ral weather forecasting sites.  Also 

needed is the histo watts at the substation for each hour 

of the day. 

 

 

ecasting (LPCDF) software, the 

2.2.7 Required Data 

rtation’s new method of forecasting load 

 the utility.  First, custom

ustomer must belong to a custom

s of time of day demand data for 

 data is required to run the ANNSTLF.  Hourly

loaded from the internet at seve

rical total energy demand in kilo
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2.3 Load Profile Forecasting 

 buses.  Obtaining the load profile of a 

distribution feeder is important for various areas in power system analysis such as 

plannin

 every load bus is not economically feasible since 

the mon

d the predicted load profile of the feeder using an ANN another solution is 

needed.

An estimate of the load profile permits observation of the entire feeder load 

demand and an overview of each load’s power requirements without installing any 

monitoring equipment at the individual load

g load growth, upgrading infrastructure, and load balancing. 

2.3.1 Load Allocation of the Artificial Neural Network Forecast 

One challenge with deploying an ANNSTLF to a distribution feeder is in the 

area of data collection.  Since the ANNSTLF uses a supervised learning algorithm for 

the training procedure, the ANN must be trained to perform the load forecast in an 

offline process using historical data obtained from the utility.  Unfortunately, most 

utilities normally do not collect and store historical hourly load data for each load bus 

on every distribution feeder.  Collecting load data at each load bus would require the 

utility to install and maintain monitoring equipment at each load bus.  Presently, 

installing monitoring equipment on

itoring equipment would involve a substantial capital investment.  Transmitting 

and storing large amounts of data through a power system’s communications network 

would also require upgrades to the communication and data storage infrastructure.  This 

means that training the ANN to forecast the load at each load bus is not practical.  In 

order to fin
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One solution to the da ain the ANN to calculate the 

total loa

the total load of 

the feed

ta collection challenge is to tr

d for the feeder at the substation and then allocate the total load to each load bus 

based on the load buses estimated percentage of the total.  Most utilities do collect and 

store hourly load data at the distribution feeder circuit breaker in the substation.  Figure 

2.4 shows a simplified view of a radial feeder showing the known and unknown 

historical values. 

As a result, this dissertation’s method uses an ANN to estimate 

er at the substation circuit breaker and then allocates a percentage of the total 

load to each load bus using an allocation procedure. 

Therefore, each bus’s load value must be estimated from the total load in order 

to find the feeder load profile.  The percentage of the total load of each load bus is 

obtained from typical 24 hour customer classification load curves compiled from 

previous load studies conducted by the utility. 

 

 

Figure 2.4: Known and Unknown Historical Values on the Feeder. 
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2.3.2 Load Profile Calculation 

The 24 hour customer classification load curves are acquired from load studies 

where the utility performs a statistical analysis of the load characterization of each load 

bus for each hour of the day.  To obtain the percentage of load at each bus, each load 

bus in the feeder w

 

ould have a classified load curve based on its customer classification.  

For exa

from the classification curves are 

summe

stimated load at the desired bus.  This 

procedure is presented in Equation (2.26) and Equation (2.27). 

 

mple, a load bus could be classified as a 24 hour commercial business and 

would have a load pattern for the day based on a typical case developed in the load 

study.  At each hour of the day the load values 

d to obtain the total classification load.  The classification load curve value at the 

desired bus is then divided by the total classification load to obtain the load percentage 

of the desired load bus.  The load percentage is multiplied by the total forecasted load 

calculated by the ANNSTLF to obtain the e

100
(t)Γ

(t)Γ(t)L% n

1j
j

i
i ⋅=

∑
=

     (2.26) 

 

where    is the percentage of load at bus i at time t, 

 is the load classification value at bus i at time t, 

and is the number of load buses on the feeder. 

(t)L%i

(t)Γi

n
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(t)P
100 ⎠⎝

 

where   (t)LEi  is the load estimate at bus i at time t, 

L%(t)  is the percentage of load at bus i at time t, 

and (t)PANN  is the total load forecast calculated by the ANN at time t. 

 

2.3.3 Load Allocation Example 

This section presents an example of how the load allocation procedure is 

accomplished using the load classification curves.  Table 2.2 displays an abbreviated 

example of the classification curve data for a sample distribution feeder. 

 

Table 2.2: Load Classification Curve Data for a Sample D

(tL%
(t)LE i⎛=

)
ANNi ⋅⎟

⎞
⎜      (2.27) 

istribution Feeder 
 

Hour 1 2 3 4 5 6 … 24 
  kW kW kW kW kW kW … kW 
Bus 1 5.14 6.21 2.71 6.31 3.63 5.44 … 8.69 
Bus 2 1.19 0.42 0.03 1.40 0.04 1.33 … 2.22 
Bus 3 16.71 15.44 13.10 9.73 10.09 10.27 … 17.89 
Bus 4 18.95 14.92 13.14 14.65 12.50 11.99 … 22.98 
Bus 5 15.23 13.03 9.94 9.47 9.82 10.96 … 17.99
Bus 6 20.86 15.79 13.65 16.53 16.01 14.22 … 21.93
Bus 7 18.39 14.93 10.70 14.20 10.99 12.76 … 18.96 

5.33 5 … 5.17 
Bus 9 10.58 7.60 6.84 6.23 5.12 7.20 … 11.28 
Bus 10 6.44 … 8.65 
Total 118.82 99.97 78.42 86.62 77.59 80.77 … 135.76 

 
 

Bus 8 5.26 2.45 2.73 3.80 3.6

6.37 5.86 5.37 5.59 2.95 
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Equation (2.28) illustrates how to obtain the load percentage of bus 5 at hour 4

using Table 2.2. 

 

 

% 10.93100
86.62
9.47

)4(L%5 =⋅=     (2.28) 

 

If the total load forecast from the ANNSTLF is calculated to be 88 kW at hour 4 

then the forecasted load at bus is shown in Equation (2.29). 

 

kW 9.62kW 880.1093kW 88
100

)4(LE5 =⋅=⋅=   (2.29) 

 

These calculations are performed on every load bus to obtain t

% 10.93

he hourly load 

profile of the feeder. 

The load allocation algorithm uses custome oad pro e and ter data to 

e e hou erce d d tion g th der.  pro re ca  

i ed A d In ucture (AMI) is imp ented and 

c nica chn  su  Bro d o ow (BPL powe

carrier (PLC), or other comm on s are available.  BPL and PLC are 

communication technologies that transmi  ov sting tric p er lin  

reduce the cost of installing new communication lines and infrastructure for power 

system communication. 

2.3.4 Future Improvements to the Load Allocation Algorithm 

r l fil me

stimat rly p nt loa istribu  alon e fee  This cedu n be

mprov where dvance Meter frastr lem

ommu tion te ologies ch as adban ver P erline ), r line 

u inicat s myste

t data er exi  elec ow es to
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For buses that have installed meters with communication functions, the load 

profile and customer demand forecasting program can treat the metered locations as 

known load and voltage values.  Before the load allocation program is executed, it can

acquire the load and voltage data from the meters

calculated with better accuracy at the metered locations which will allow the load 

allocation program to improve the overall performance of the load profile estimate. 

 

.  The load profile then can be 

2.4 Chapter Conclusions 

Knowledge of the load demand and load profile of a distribution feeder is 

important for designing intelligent monitoring and control systems for distribution 

power systems.  Despite the obvious importance of load demand da ri

system analysis and optimization, few reliable methods are available to forecast the load

profiles

er including regression, time series, and artificial neural networks 

but few e feeder. 

ta for dist bution 

 

 of distribution feeders.  There are several methods of forecasting the total load 

on a distribution feed

 have been developed to reliably calculate the load profile of th

Of the load forecasting methods available, the artificial neural network approach 

provides the best opportunity to forecast the distributed load along the feeder due to its 

inherent ability to perform nonlinear calculations, adapt to new changes in the input 

data, and incorporate weather data into the forecast.  However, application of ANNs for 

load demand forecasting and load profile estimation at the distribution level of the 

power system has not been fully explored in the research literature.  Consequently, this 

chapter presented a novel method of forecasting the customer load demand and feeder 
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load pr

nted 

for a sample distribution feede forecasted load profile data to 

develop

ofile for a radial distribution feeder using an artificial neural network and a load 

allocation algorithm. 

Based on the design decisions described in this chapter, an artificial neural 

network software program was developed to forecast the total feeder load at the 

substation and a load algorithm function was created to find the load profile.  In Chapter 

5, the results of the load profile and customer demand forecasting program is prese

r.  Chapter 3 employs the 

 a method of estimating the voltage profile for radial distribution feeders. 



 

 

 

voltage profile estimation. 

3.1 Voltage Profile Estimation

CHAPTER 3 

VOLTAGE PROFILE ESTIMATION 

 
This chapter discusses the subject of voltage estimation on distribution systems 

and introduces a novel voltage profile estimation method using the load profile forecast 

developed in Chapter 2.  Topics in Chapter 3 include voltage estimation techniques for 

distribution systems, power flow techniques, and a description of the dissertation’s 

  

In power systems, voltages must be maintained within the desired range with 

respect to their rated values to ensure the quality of the electric power supply.  

Information on the voltage conditions at each load location along a distribution feeder 

can be a valuable component in distribution system operation, planning, and analysis.  

With comprehensive knowledge of the feeder voltage conditions, the electric service 

quality, system reliability, and control of the distribution system can be improved. 

Voltage issues can affect the quality of the electric supply and system reliability.  

When voltages shift beyond standard operating ranges, equipment can be tripped offline 

and cause significant economic expenses and customer frustration.  More serious 

overvoltage and undervoltage problems can cause interruptions of the power supply.  

Voltage profile estimation can help predicting voltage conditions on the distribution 

lines and let control systems correct the voltage to acceptable levels. 
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Better control of distribution system sources can be accomplished with more 

effective monitoring strategies.  For example, shunt capacitor banks must be switched 

online and offline based on the volta on the feeder.  When the voltage is 

low on the feeder, the line to provide voltage 

support.  Traditional switc

 

Even though voltage monitoring of the f

reliability a

 and 

estimating the voltage profile of the system

 re

ge conditions 

shunt capacitor banks are switched on

hing schemes based upon local information may turn on 

multiple capacitor banks that can create excessive voltage rise and voltage transients. 

Better knowledge of the voltage profile can improve the coordination of the voltage 

regulation resources and reduce the overvoltage conditions associated with the capital 

resources. 

eeder is beneficial for the overall 

nd control of the distribution system, utility capital constraints and 

communication infrastructure limits restrict the wide deployment and use of voltage 

monitoring equipment at the present time.  In most cases, only a limited number of 

voltage monitoring equipment is available on the distribution lines.  Consequently, this 

dissertation develops an algorithm to resolve the voltage profile monitoring problem by 

identifying the key locations for voltage measurement along the distribution system

 through software simulation. 

3.2 Voltage Estimation Techniques for Distribution Systems 

A distribution system is a division of the power system where electricity is 

transferred from the high voltage transmission system to the end user.  Distribution 

feeders are typically rated from 4.2 kV to 34.5 kV in the United States with 12.47 kV 
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being t

ons.  Radial distribution systems are configured to transfer electricity 

through

f the feeder is 

opened.  Also hich 

have m

he most common voltage rating [35].  Newer installations often use higher 

distribution voltages in the 25 kV voltage class. 

3.2.1 Voltage Estimation on Distribution Systems 

Distribution systems have different structures and operating conditions than 

transmission systems and thus require different voltage estimation methods.  The unique 

design and service requirements of distribution systems must be taken into account to 

effectively estimate the voltage and power conditions. 

Distribution systems are normally structured in radial, loop, or network 

configurati

 one path that travels from the substation to the electricity end user.  The radial 

structure is the most common design and is the simplest to analyze since the power 

flows in one direction. 

Loop distribution systems connect two paths between the substation and the 

electricity end user.  Loop structures are more reliable than radial systems since there 

are two paths for the power to flow to the load.  However, loop structures are more 

expensive to install compared to radial feeders as a result of the larger required 

conductors that must support the entire load on loop in case one end o

, additional protection devices are required to protect loop feeders w

ore complex protection schemes.  In some cases, loop feeders have a normally 

open switch on the loop; however, this normal operation is actually a radial feeder with 

a backup supply path. 
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In distribution networks, the buses are connected together by multiple paths and 

the network is supplied by multiple connections to the substation.  Distribution 

networ rs in densely populated urban 

settings

 

Also, d

nce between distribution systems and transmission systems is 

that unl

higher R/X ratios than transmission systems which can also 

introduce unbalanced conditions [36]. 

ks are often deployed using underground conducto

 and are often more reliable than radial and loop systems since the flow of 

electricity can be redirected along other routes in cases of line contingencies.  On the 

other hand, distribution networks are more expensive than radial and loop feeders 

because of the redundant infrastructure and the more complex protection schemes. 

istribution networks are more difficult to analyze due to the many available paths 

through which the electric power can flow [35]. 

Since the radial structure is the most common type of distribution feeder design, 

this dissertation focuses on the voltage profile estimation of radial distribution feeders. 

Another differe

ike most transmission power systems, distribution power systems can contain a 

large amount of unbalance in the line impedance and load.  Unbalanced conditions arise 

in normal operation when the three-phase buses have asymmetrical line current 

magnitudes and angles, often caused by unequal distribution of phase loads and line 

impedances.  The unbalanced loads may cause asymmetrical voltages; although utility 

planners attempt to maintain balance within the distribution, the line phase structure, 

location of the load, and the time of use of the load typically define whether the phases 

of the distribution system are in balance.  Many distribution lines segments are often not 

transposed and have 
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Distribution systems are commonly designed with three-phase, two-phase, and 

single-phase power lines.  It is impractical to connect every bus on the distribution 

system with three-phases since the additional conductors and associated infrastructure 

would significantly increase the installation and maintenance costs of the distribution 

system.  Therefore, two-phase and single-phase lines are often used for loads with 

reduced power requirements.  The use of two-phase and single-phase lines makes it 

more likely that unbalance conditions will occur on the distribution system because 

asymmetrical types of load will be connected to the different phases and the utility 

cannot control the electricity end user’s load distribution.  Similarly, it is impractical to 

use on

 

distribu

es based on measured system quantities.  A brief 

ly single-phase lines within the distribution system.  Balanced three-phase 

systems require less neutral conductors and deliver power with less voltage drop on the

tion lines than single-phase systems [37]. 

To obtain the most accurate estimation, this dissertation will use a voltage 

estimation technique that takes into account the unbalanced nature of the distribution 

system. 

3.2.2 Voltage Estimation Approaches for Distribution Systems 

Traditional approaches to voltage estimation have been to approximate the 

voltage drops within distribution feeder.  Approximate voltage drop calculations assume 

balanced three-phase systems where the load and line impedances are symmetrically 

distributed over all the phases.  More recent work on voltage estimation employs a state 

estimation approach where various algorithms are applied to determining the present 

states of the distribution system voltag
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review of some of the available voltage estimation methods is presented including the 

dissertation’s new method utilizing the load profile data obtained in Chapter 2. 

3.2.2.1 Distribution Voltage Estimation 

One method to estimate the voltage values of the three-phase distribution feeder 

are through simple voltage calculations.  K factors are an approximate method for 

finding the voltage drops and voltage rises along a line segment of the feeder.  The K 

drop factor is given by Equation (3.1) and the K rise factor is given by Equation (3.2).  

The K drop factor is the percent voltage drop for a one mile line serving a 1 kVA 

balanced three-phase load.  The K rise factor is the percent voltage rise for a one mile 

line serving a 1 kvar balanced three-phase load [38]. 

 

mi-kVA / dropunit per     
VLN

 

where   

 V
K drop=drop    (3.1) 

 is the K factor for the voltage drop, dropK

dropV  is the voltage drop on the line segment, 

and V  is the nominal line to neutral voltage of the line segment. 

 

LN

mi-kvar / riseunit per     
V

 V
K

LN
rise =    (3.2) 

 

where   riseK  is the K factor for the voltage rise, 

rise
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riseV  is the voltage rise on the line segment, 

and LNV  is the nominal line to neutral voltage of the line segment. 

 

Equation (3.3) displays how to compute the percent voltage drop. 

 

mikVAKV drop%drop ⋅⋅=     (3.3) 

%drop

dropK  is the K factor for the voltage drop,

 

where    is the percent voltage drop on the line segment, 

 

 is the complex power of the load, 

and  is length of the line segment in miles. 

 

Another way of approximating the voltage drop of the distribution lines is 

uniformly d istributed load approximation, 

the total load of the over a line segment where 

each modeled load is assumed to be identical with a constant current.  The general 

equation for the total voltage drop for the uniform distributed load method is shown in 

Equation (3.4) [38]. 

V

kVA

mi

through istributed loads.  In the uniformly d

 feeder is assumed to be equally spaced 
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⎭
⎬
⎫

⎨
⎧

⎟
⎞

⎜
⎛ +⋅⋅⋅⋅ℜ=

11Iz1Vdrop l
⎩ ⎠⎝ n2 Ttotal     (3.4) 

 

where    is the total voltage drop on the feeder, 

 is the impedance of the uniform line in Ω ile, 

 is the length of the feeder, 

 is the total current into the feeder, 

and  is number of nodes and number of line sections. 

 

When  goes to inf  general equation reduces to 

Equation (3.5) [38]. 

 

Vdroptotal

z /m

l

TI

n

n inity in Equation (3.4), the

⎭⎩
Ttotal 2

 

where   totalVdrop  is the total voltage drop on the feeder, 

Z  is the total impedance of the uniform line from the source to the end, 

and TI  is the total current into the feeder. 

 

⎬
⎫

⎨
⎧ ⋅⋅ℜ= IZ1Vdrop     (3.5) 

Another approximate method is geometric load lumping where the voltage drop

calculations use a constant load density distributed in various geometric patterns.  This

method is useful for distribution planning where determining the total load for a service 
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area is important.  Common geometric patterns include triangles, rectangles, and 

trapezoids [38]. 

The preceding approximate methods are useful for distribution planning but do

el the true sys re do not address the 

complex operat ate 

methods assum  power factors, and uniform loads and 

therefore cannot nced environment of distribution 

systems. 

3.2.2.2 State Estimation 

ower systems, state estimation is the process where the unknown 

system states, generally the steady state bus voltage phasors, are computed using 

measurements from the power system.  Measurements can include current flow in the 

system, voltage magnitudes, or power magnitudes.  The main advantage of the state 

estimation in power systems is that the state estimator can control and identify 

ent errors in m

The mos  

Weighted Lea u  algorithm computes the bus 

oltages states that minimize the sum of the squares of weighted deviations of estimated 

measur

 

not mod tem operation conditions and therefo

ional analysis needed for distribution systems.  The approxim

e balanced phases, known

take into account the true unbala

Another approach to compute the voltage conditions on the feeder is through 

state estimation.  In p

measurem etering equipment.   

t commonly used method of state estimation in power systems is the

st Sq ares (WLS) algorithm.  The WLS

v

ements from actual measurements.  Equation (3.6) displays the weighted least-

squares estimator [39]. 
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 is the measured quantity, 

 is the function relating the measurement i  to the states x , 

sadvantage of conventional WLS state 

estimat

 

 

where   ( )Ns21 x,,x,xJ L  is objective function for the states x , 

sN  is the number of unknown parameters, 

N  is the number of measurements, m

iz

f i

and iσ  is the variance. 

 

One disadvantage of the WLS state estimation for distribution systems is that 

several redundant measurements are necessary to receive an accurate assessment of the 

estimated voltages.  However, measurement equipment may not be available beyond the 

substation bus or on feeder laterals and installing additional measuring equipment can 

be economically impractical.  Another di

2

ion is that it assumes that the modeled system is three-phase and balanced and 

therefore uses only a single-phase positive sequence model [40].  There can also be 

problems with convergence of the state estimation for distribution systems without 

measurement redundancy [41]. 
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3.2.3 Proposed Voltage Estimation Technique Using ANN Approach 

This dissertation proposes a new approach to voltage estimation on a radial 

distribution feeder.  Essentially, forecasted load profile data is obtained from the 

d onditions known, 

the forecasted loa low program to calculate the 

voltages along the 

Although there will be some error in the load forecast computation, the ANN 

load profile forecast program offers a close approximation of the load conditions on the 

feeder.  With the load conditions and the feeder system characteristics, there is enough 

information to execute stribution power flow. 

he major benefit of this technique is that the distribution power flow software 

can tak

file Estimation Using Forecasted Data

ANNSTLF and load allocation software.  With the estimated loa  c

d profile data is inserted into a power f

feeder. 

 a three-phase di

T

e into account the voltage unbalance on the distribution feeder and give an 

accurate assessment of the voltage conditions.  In addition, the proposed voltage 

estimation method can be performed with Load Tap Changing transformers (LTC) and 

distribution transformers that are often difficult to model in other voltage estimation 

techniques.  This voltage estimation technique has not been presented before in the 

research literature, most likely due to the inadequate knowledge of the feeder load 

profile values.  With the more accurate load conditions developed in Chapter 2, this 

technique can effectively model the voltage and power flows on the feeder. 

3.3 Voltage Pro  

sing the load profile and customer demand forecast that was developed in 

Chapter 2, an estimate of the load profile can be obtained for the feeder.  Once the load 

U
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profile be inserted 

into th

er Flows 

e power system based on 

the syst

f the feeder 

in long range p ted to give the 

maximu

is found from the ANN and load allocation software, the values can 

e input file of a power flow program to obtain a complete description of the 

voltage conditions along the feeder.  Sufficient care should be selected when selecting 

the power flow program in order to get the most accurate results.  A brief discussion of 

the types of power flows is presented below. 

3.3.1 Types of Pow

A power flow program, also known as a load flow program, is a software 

program that is commonly used in power system analysis to compute the system 

conditions.  Power flow programs calculate the voltage magnitude and voltage angle at 

buses and the flow of the real power and reactive power of th

em constraints.  There are two main types of power flows in use, single-phase 

power flows and three-phase power flows. 

3.3.1.1 Single-phase Power Flow 

Single-phase power flows assume that the power system is in balanced 

operation.  As a result of this characteristic, single-phase power flows are often called 

balanced power flows.  Single-phase power flows are often used in planning 

applications where long range development of the feeder is the main concern.  The 

distribution feeder is assumed to be in balanced operation to simplify the calculations 

since it is difficult to predict the load makeup and unbalanced composition o

lanning.  Often, the load conditions are overestima

m flexibility in future feeder upgrades.  As a result, the voltage conditions do 

not reflect the true unbalanced, nonlinear environment. 
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In single-phase power flows, the power flow program models the positive 

sequence network of the distribution system through a single-phase equivalent of the 

system.  The load is aggregated into single-phase lumped loadings and a constant 

voltage source is assumed on the secondary side of the substation transformer.  An 

iterative procedure, such as using the bi-factored  admittance matrix, is then 

execute n currents and network voltages of the system [42]. 

power flow approach [43]. 

s overcome these disadvantages and thus can 

more a

lculation. 

 busY

d to calculate the bus injectio

3.3.1.2 Three-phase Power Flow 

The main disadvantage of single-phase power flow programs for power system 

operation is that the voltages on the single-phase and two-phase laterals cannot be 

computed.  Another disadvantage is that the single-phase power flow will not calculate 

the correct losses dissipated in the distribution system.  Also transformer losses cannot 

be calculated accurately in the single-phase 

Three-phase power flow program

ccurately represent the actual conditions and losses of the distribution system.  

Three-phase power flows calculate the voltage conditions and flow of power of the 

distribution system on an individual phase basis.  This allows the system conditions on 

unbalanced distribution systems to be calculated. 

The secondary side at the substation transformer is designated the swing bus and 

the admittance matrix of the feeder is built for phase buses down to the secondary of the 

distribution transformers.  Since the amount of line charging is not as significant in the 

distribution system as in the transmission system, the capacitance of the distribution 

lines is often neglected in the distribution power flow ca
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3.3.2 Selected Power Flow 

A three-phase power flow program was chosen for this dissertation due to its 

superior performance and ability to accurately solve unbalanced systems.  Three-phase 

power flows are more suitable for calculating the operating voltage conditions on 

distribution feeders. 

Given that the load profile and customer demand forecasting software is 

indepen ower flow software, a number of choices of 

comme

program called 

DLFLO

r of phase buses was extended for use 

on distr

swing bus are needed 

dent of the chosen three-phase p

rcial power flow software could be considered.  However, access to the software 

source code will be important for the optimal capacitor bank switching algorithm 

developed in Chapter 4.  Therefore, the dissertation has chosen a three-phase power 

flow software originally developed by the Energy Systems Research Center at the 

University of Texas at Arlington.  The three-phase power flow 

W, originally developed by Sun [43], is based on an iterative bi-factored 

admittance matrix approach using the Gauss algorithm of forward and backward 

substitution.  The program source code was translated from FORTRAN to the C 

programming language to facilitate any required modifications of the power flow 

program.  In addition, the limit of the total numbe

ibution systems with a large number of phase buses. 

3.3.3 Required Data 

The voltage estimation software developed in this dissertation requires input 

data about the distribution system.  First, system parameters such as the MVA base for 

the system, the nominal voltage value, and per-unit voltage of the 
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to execute the power flow program.  Second, the power flow program control 

parame

s voltage magnitude and angle, total power demand on the bus, 

total sh

 inputs in the power flow 

equatio eactive power and voltage angle. 

ters like the voltage tolerance of the convergence, real and imaginary 

acceleration factors, and maximum iterations must be specified.  Third, bus information 

is required.  The bus information includes the bus number, bus phase type, bus name, 

initial estimate of the bu

unt kilovars connected on the bus, and the percentage of the total demand that is 

on the A, B, and C phases.  Finally, the line branch information must be defined.  Line 

branch information includes the terminal bus numbers of the branch segment, branch 

phase type, segment line length, the line segment’s nominal phase to neutral voltage, 

and the branch impedance data. 

3.3.4 Meter Improvements to the Voltage Profile Algorithm 

Similar to the load profile and customer demand forecasting program, if PLC or 

BPL equipment is installed at buses on the feeder then the power flow program can treat 

the voltage magnitude and power as a known quantities at the metered bus location.  

This allows the voltage magnitude estimation to become more accurate at the meter bus 

and the surrounding buses.  Internally the power flow program converts the bus from a 

load bus (PQ bus) to a voltage controlled bus (PV bus).  The power flow program 

considers the real power and voltage at the metered bus as

ns and calculates the r

3.4 Chapter Conclusions 

Electric delivery companies must minimize the cost of installing and 

maintaining equipment on the distribution feeder by optimizing their system 
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 be used to provide better voltage regulation for 

distribu  of the distribution 

system.

ented for an example 

distribution feeder. 

performances with more intelligent monitoring and control schemes.  In addition, 

voltage profile estimation of distribution feeder voltage conditions is important for 

future operation and analysis of distribution systems. 

The voltage estimation algorithm discussed in this chapter is a systematic 

method of estimating the voltage profile of a distribution feeder with a minimum 

amount of monitoring equipment.  The new voltage profile estimation technique 

employs the more accurate load profile forecasting method introduced in Chapter 2 and 

a three-phase power flow program to construct a per phase representation of the 

voltages on the distribution feeder.  Using a small set of monitoring equipment, the 

voltage profile estimation can

tion feeders while minimizing the overall operating cost

  This voltage estimation method is suitable for unbalanced radial distribution 

feeders and can be used in applications requiring voltages at each phase bus. 

As described in this chapter, a three-phase software program was extended and 

deployed to estimate the voltage profile using the load profile forecast of Chapter 2.  

The voltage profile estimation software can be used in various distribution management 

functions.  An optimal capacitor bank switching algorithm will be developed in Chapter 

4 utilizing the voltage profile estimation developed in this chapter.  In Chapter 5 the 

results of the voltage profile estimation program is pres



 

 

 

CHAPTER 4 

OPTIMAL CAPACITOR BANK SWITCHING 

 
This chapter reviews the importance of distribution capacitor banks and past 

implementations of capacitor bank switching algorithms.  Also, this chapter develops an 

optimal capacitor bank switching algorithm using the load profile and voltage profile 

estimations developed in Chapter 2 and Chapter 3. 

4.1 Distribution System Shunt Capacitor Banks 

Shunt power capacitors are widely used in distribution systems among the 

electric power industry.  Banks of power capacitors are often used for voltage regulation 

and power factor correction in distribution systems.  Capacitor banks are popular 

because of their inexpensive installation costs compared to other reactive support 

techniques. 

 

C) transformers, step voltage regulators, line voltage regulators, 

and switched shunt capacitor banks.  Of these voltage regulation methods, switched 

shunt capacitor banks are of primary importance in this dissertation. 

4.1.1 Shunt Capacitor Banks for Voltage Regulation 

Voltage regulation is an essential topic in distribution system operation. 

Voltage regulation for distribution feeders is the process of controlling the primary 

feeder voltages in order to deliver an acceptable voltage to the electricity end user 

during varying load states. Voltage regulation can be accomplished using substation 

Load Tap Changing (LT
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The benefit of shunt capacitor banks compared to other voltage regulators is that 

reactive power is supplied to the feeder d ring the capacitor bank’s operation.  The 

voltage levels on the feeder are in nly by the amount of real power 

delivered but also 

reactive power de

e is not enough reactive power 

at the buses, the power f  state and reduce 

the efficiency of the system

th real and reactive power to operate.  While real power is useful for 

perform

the real po

u

fluenced not o

the amount of reactive power transferred.  For feeders with low 

mands, tap changing transformers can be used to regulate the feeder 

voltages without reactive power resources such as capacitor banks.  However, when the 

system is deficient in reactive power, tap changing transformers cannot control the 

voltages independent of reactive power support.  If ther

actor will decrease to an unacceptable lagging

. 

4.1.2 Shunt Capacitor Banks for Power Factor Correction 

In power factor correction, the efficiency of the power system is improved 

through control of local reactive power resources.  Most electric loads in an AC power 

system require bo

ing work and energy conversion, reactive power must be supplied in order for 

wer to be transported over the transmission and distribution systems.  To 

maximize the amount of real power that can be transported through the power lines, it is 

necessary to minimize the amount of reactive power in the transmission and distribution 

lines. 

Distribution capacitor banks are effective in power factor correction 

applications since the capacitors inject reactive power into the distribution system close 

to the load.  Generating the reactive power close to the load through the use of capacitor 

 69



 

banks h

pensators (SVC), switched shunt capacitor banks are more 

afforda acitor banks and the 

associa

Coordination between shunt capacitor banks and voltage regulators is an issue 

for swit

as been a common practice to reduce the amount of reactive current flowing 

through transmission and distribution lines.  Reducing the amount of reactive current in 

the transmission and distribution lines is desirable because it decreases the amount of 

power losses that dissipate from the lines in the form of heat.  This allows more real 

power capacity in existing power lines or permits the use of smaller, less inexpensive 

power lines and equipment for new installations. 

4.1.3 Issues with Deploying Capacitor Banks 

Maintenance costs can be a significant expense for electric utilities.  Although 

dynamic reactive power compensation can be accomplished though synchronous 

condensers or Static Var Com

ble in terms of installation and maintenance costs.  Yet, cap

ted protective and control equipment must still be inspected for any physical 

damage or operational problems.  One area where maintenance costs can be reduced is 

in the area of capacitor bank switching.  Repeated opening and closing of the switching 

contacts can wear components within the capacitor banks.  A more efficient capacitor 

bank switching schedule can increase the lifetime of the distribution system capacitor 

banks.  Since maintenance work is time consuming and labor intensive, any reduction 

of usage can be economically valuable. 

ched capacitors.  Capacitor banks upstream of voltage regulator do not generally 

require special switching designs.  However, downstream capacitor banks can interfere 

with upstream voltage regulators [44].  Therefore, the distribution capacitor switching 
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software should be able to monitor upstream voltage regulators to prevent excessive 

change of the tap setting on the voltage regulator. 

Many capacitor banks for distribution feeders are manufactured as three-phase 

units with single-phase capacitors connected in gounded-wye configuration for four-

wire line segments.  Capacitor banks are connected by either ungounded-wye or delta 

for three-wire line segments [44].  Three-phase capacitor banks are commonly used 

becaus  monitor and control [35].  Also, 

the cap

e single-phase capacitors are more difficult to

acity size of single-phase capacitors is often greater than the load on many 

single-phase lines.  Conversely, single-phase capacitor banks can establish more 

dynamic balancing of the distribution feeder.  If single-phase capacitors are present on a 

feeder, an accurate method of controlling the switching schedule is needed. 

4.2 Distribution System Capacitor Bank Switching 

Capacitor bank switching is an important topic within power systems.  Various 

algorithms have attempted to manage capacitor banks under a distribution management 

system.  An overview of some of the implemented capacitor switching algorithms is 

presented including a new method utilizing the load profile data and voltage profile 

estimation from Chapter 2 and Chapter 3. 

4.2.1 Capacitor Switching Methods 

Several capacitor switching algorithms have been proposed over the years for 

use in distribution management systems.  Older capacitor switching methods reduce the 

capacitor switching problem to a simplified model using uniformly distributed loads, 

uniform conductor sizes, modeling the distribution feeder as one branch, and other 
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generalizations [45], [46].  Some methods assume that the distribution network is 

represented by a single radial path [47], [48].  These methods are oversimplified and do 

not eff

al capacitor 

switching dispatch el unknown load 

values 

mum error at the load bus are known. The 

inexact ss accurate calculations. 

ectively model the capacitor switching problem.  Two methods of capacitor 

switching optimization that are presented in the literature are reviewed in this section. 

One method formulates an expression for the power losses for distribution 

systems with lateral and sublateral branches [49]-[51].  The method endeavors to 

control the capacitor output current to minimize the power loss caused by the feeder 

load current.  It determines the time variation of the capacitor output as loads are 

changing with time.  An iterative procedure is carried out until a converged solution is 

achieved. 

Another approach uses fuzzy set theory to construct an optim

 schedule [52], [53].  Fuzzy sets are used to mod

as trapezoidal fuzzy complex numbers.  A fuzzy power flow solution is created 

by replacing definite variables with fuzzy variables in a forward and backward sweep 

calculation.  A linearized programming model of the switching problem is then formed 

and it is solved by dual relaxation method.  A disadvantage to this approach is that it 

assumes that the average error and maxi

 load bus information could lead to le

4.2.2 Proposed Implementation 

A new method to capacitor bank management for radial distribution feeders is 

proposed in this dissertation.  With knowledge of the forecasted load profile, the voltage 

profiles of the distribution feeder with every possible capacitor bank configuration can 
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be estimated.  A table of possible voltage profile estimations based on all the 

combinations of capacitor banks can be established for each hour.  After the table is 

built, a function can iterate through the table to find the best voltage profile for the 

feeder based on a specified objective function. 

One advantage of this technique is that each capacitor bank can be coordinated 

with other capacitor banks on the feeder and with voltage regulators at the substation.  

Instead of capacitor banks which are controlled locally with limited knowledge of the 

total feeder conditions, a coordinated strategy can be achieved with the capacitor banks 

being switched based on knowledge of the entire load distribution of the feeder. 

Also, in situations where unbalanced conditions occur, the voltage profile 

estimat

ation

ion method developed in Chapter 3 can more efficiently monitor the capacitor 

banks by individually examining all three phases.  Another advantage of using the 

voltage estimation technique is that it can be used to decrease the amount of 

maintenance on the distribution system by minimizing the number of switching 

operations that occur on the feeder.  Switching operations can be planned over days 

based on the forecasted load.  As discussed in Chapter 5, objectives such as switching 

reduction can be achieved with this method. 

4.3 Optimal Capacitor Bank Switching Using Voltage Profile Estim  

hat was developed in Chapter 3 is the basis of 

the opt

The voltage profile estimation t

imal capacitor bank switching software.  As the first step, the optimal capacitor 

bank switching procedure incorporates a sensitivity analysis by using the impendence 

matrix ( busZ ) of the distribution feeder.  The sensitivity analysis presents a method of 
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observing the effects of the capacitor banks on the voltage profile and quickly creating a 

voltage profile table of the possible voltage solutions.  The sensitivity analysis is an 

offline procedure which will help decrease the computation time of the optimal 

capacitor switching algorithm.  The voltage profile table contains the possible solutions 

for eac

r; that 

distribu

tage regulators installed on the feeder. 

posed 

capacito

ntri

h possible capacitor configuration. 

After the voltage profile table is constructed, an iteration procedure is executed 

to examine all the possible capacitor configurations to find the best match based on the 

selected objective function.  Several objectives can be realized such as selecting the 

capacitor configurations that provides the best voltage profile for each hou

te the switching changes over all the capacitor banks; or switching a favored 

capacitor bank on as much as practical. 

Some advantages of this voltage profile estimation approach are that switching 

reduction can be accomplished; the capacitor banks can be better coordinated with the 

other capacitor banks on the feeder; and with projected voltage solutions the capacitor 

bank switching can be coordinated with other power system control devices.  For 

example, the capacitor bank switching software can also coordinate the capacitor 

switching with load tap changers or other vol

Additionally, if single-phase capacitor banks are available, the pro

r bank switching procedure can be performed on a per phase basis allowing 

single-phase capacitor banks to be deployed and controlled on the feeder.  With the 

voltage table, the capacitor banks can be studied to see how each phase of the capacitor 

banks co butes to the voltage profile, which is not easily done with the present 
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capacitor switching software.  The software also has the potential to examine how the 

loss of one phase of a three-phase capacitor bank will affect the voltage profile. 

4.3.1 Sensitivity Analysis 

The capacitor bank switching algorithm uses sensitivity analysis and the 

impedance matrix of the feeder to form an array of potential impact on the voltage 

profiles.  A brief explanation of the sensitivity analysis procedure is presented below. 

The sensitivity equations are written in vector form in Equation (4.1). 

 

( ) 0,g =ux      (4.1) 

 

where   x  are the dependent variables, 

and u  are the independent or control variables. 

 

Let Δuuu +→ .  Since x  is dependent on the control variable u , x  must 

change into: Δxxx +→  to satisfy the equations: ( ) 0Δuu,Δxxg =++  [54]. 

 

In matrix format and solving for Δxx + : 
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where   ix  are the dependent variables, 

S  is the sensitivity matrix, 

and iu  are the independent or control variables. 

   (4.3) 

 

Isolating the delta change variables: 
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or 

[ ] uSx Δ⋅=Δ       (θ 4.4) 

 

The (i,j) element of , is the value of change in  when  increases its 

value by 1 p.u. with th rol variables unchanged.  If the sens ity matrix is 

, the depend
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e other con

ji,S )

t

ent variables are 

ix ju

itiv

busZS =θ vx Δ=Δ , and the independent variables are 

 then Equation (4.3) becom
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iu Δ=Δ es Equation (4.5). 
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or 

[ ] iZv Δ⋅=Δ bus       (4.6) 

 

he (i,j) element of ), is the value of change in the voltage  when 

the curr ith the other control variables unchanged.  

The elements of impedance matrix show the effect a change in the current at a bus has 

on the change in bus voltage. 

The effect of a capacitor bank on the change in the

observed by using Equation (4.5).  The change in current can be viewed as the capacitor 

bank injection current which is calculated from the rated kvar value of the capacitor

k and an assumed voltage reference.  Multiplying the capacitor bank injection 

current by the associated column in the bus 

oltage along the feeder. 

ce.  The ad

sensitivity method is that it increases the calculation speed of the capacitor bank 

combination table since only one power flow must be run for the hour.  Otherwise 

multiple power flows must be run to create the table for each hour.  The sensitivity table 

procedure significantly reduces the computation time of the different combinations of 

capacitor bank switching since it involves multiplying and adding arrays compared to 

iterating through many different power flow solutions.  This can save considerable time 

busZ , ( ji,Z  ivT

ent ji  increases its value by 1 p.u. w

 voltage profile can be 

 

ban

impedance matrix will give the change in 

v

Although the impedance sensitivity method is a linearized model and does not 

provide an exact solution, it does provide an immediate way of evaluating the effect of 

the voltage change within an acceptable toleran vantage of the impedance 
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especially when considering multiple feeders from a substation or controlling multiple 

capacitor banks. 

4.3.2 Voltage Profile Table 

pti  ca

hourly load forecasts for the feeder.  At a predetermined time of the day, the ANNSTLF 

will forecast the hourly load on the feeder for the entire day, resulting in 24 different 

hourly load values.  The power flow is then run for each hour with no capacitors online 

to obtain a base case for each hour.  After the base cases are calculated, the hourly base 

cases and each row in the change-of-voltage sensitivity table are added together.  

Equation (4.7) indicates this procedure.  This results in  (including the base case with 

no capacitors) different combinations of voltage estimation profiles for each hour of the 

day for  capacitor banks and two levels (ON/OFF). 

 

The next step in the o mal pacitor bank switching procedure is to obtain the 

n2

n

ΔVVV baseest +=      (4.7) 

the sensitivity matrix.  For example, a feeder with seven capacitor banks will have 128 

 

where   estV  is the voltage profile estimate, 

baseV  is the power flow solution with no capacitor banks online, 

and ΔV is the change in voltage due to the capacitor bank. 

 

The power flow software could be executed for each case of the voltage table; 

however, the computation time would be significantly higher than the calculation with 
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combinations of capacitor configurations for each hour when considering only ON/OFF 

states.  Every hour, 128 power flows would need to be executed to calculate the voltage 

table for the ON/OFF states.  For capacitor banks with different voltage settings, 

additional power flows would be required. 

 hen capacitor bank one is ON, 

capacitor bank four is ON, and the remaining capacitor banks are OFF. 

The system impedance matrix of the di

inverting the system  or by formation of the  one step at a time [37].  With the

omputing g the inverse of the  for a 

distribution feeder i figured, 

the system imp ce m

With the sensitivity matrix, only one power flow, the base case, is required to be 

executed.  The remaining configurations are calculated using Equation (4.5) and 

Equation (4.7).  The voltage table is calculated in an offline procedure and does not 

need to be recalculated unless the feeder is reconfigured or there is a change in the line 

impedance values. 

Table 4.1 displays an example voltage table of the switching possibilities of 

each capacitor configuration for a sample distribution feeder.  Each row in the table 

represents the switching configuration of the voltage estimate.  For example, row 9 

contains the change in voltage along the feeder w

stribution feeder can be built by either 

 busY busZ

kin

 

busYrise in c  power and system memory, ta

s not as impracticable as in years past.  If the feeder is recon

edan atrix must be rebuilt. 
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Table 4.1: Voltage Profiles for Each Switching Possibility 

Row Configuration Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 ··· Bus n
 

 
1 0000001 Vest Vest Vest Vest Vest ··· Vest 
2 0000010 Vest Vest Vest Vest Vest ··· Vest 
3 0000011 Vest Vest Vest Vest Vest ··· Vest 
4 0000100 Vest Vest Vest Vest Vest ··· Vest 
5 0000101 V  V  V  V  V  ··· Vest est est est est est 
6 0000110 Vest Vest Vest Vest Vest ··· Vest 
7 0000111 V  V  V  V  V  ··· Vest est est est est est 
8 0001000 Vest Vest Vest Vest Vest ··· Vest 
9 0001001 Vest Vest Vest Vest Vest ··· Vest 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

O  
127 1111111 Vest Vest Vest Vest Vest ··· Vest 

 

4.3.3 Switching Procedure 

With the different combinations of voltage estimation profiles calculated, the 

next step is to compute the occurrence of the number of hours each capacitor switching 

scheme has within the acceptable voltage profile band.  Profiles can be removed from a 

tracking

ltage band, the 

sequenc

sequences in the tracking array can be reprocessed with a different voltage band for less 

optimal solutions. 

 array if they do not conform to a specified voltage band.  If there are sequences 

that conform to the voltage band for all hours in the day, then one of these sequences 

can be chosen based on matching the previous day’s final sequence or based on a 

sequence with fewest capacitors online. 

For sequences with less than 24 hours that conform to the vo

es that retain the most hours of the day during the peak load time of the day are 

good selections for a base sequence.  The hours of the day that do not have any 
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The voltage band can be reduced to a narrower voltage profile band if there are 

too many acce  band can be 

increased to a wider voltage profile band if are luti at s sfy 

predefined conditions.  Sufficient care should ken sure the eptab

band does not exceed the m um voltage de ons a ed on feed  Oth

oper on req  such duced tage operation can also be accomm ted.

Once all hours of the day have sequences m

the acceptable voltage levels, the tracking arra ill no e severa

profiles for each hour.  There are different options available to select an appropriate 

capacit he tracking array based on different objectives. 

is switched online then its switching priority is 

reduced

s much as possible.  This option is the opposite of the second option 

ptable solutions for the entire day.  Similarly, the voltage

there  no so ons th ati the 

be ta to in that acc le 

axim viati llow  the er. er 

ati uirements as re  vol oda  

in the tracking array that confor  to 

y w rmally hav l voltage 

or bank configuration from t

The first option is to select capacitor configurations that reduce the amount of 

switching through the day.  This option finds capacitors sequences that have 

consecutive hours without a capacitor state change. 

A second option is to keep track of all switching operations and select capacitor 

configurations that distribute the switching over all capacitor banks.  This option 

attempts to reduce the amount of switching, but also evenly distributes the wear on the 

capacitor banks.  If one capacitor bank 

 in the selection process.  If more reactive support is required then a higher 

priority capacitor bank is chosen so that the switching operations are evenly distributed 

all over all capacitor banks. 

A third option is to select capacitor configurations that switch a favored 

capacitor bank on a
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and atte

d 

voltage

r an 

analysis

mpts to assign as much wear on one capacitor bank so that the utility only has to 

service the selected capacitor banks. 

The fourth option is to select the capacitor configurations that provide the best 

voltage profile for each hour.  In this method, reducing the amount of switching on the 

capacitor banks is not the main objective; instead the voltage profile that produces least 

change from the nominal voltage is selected.  This is an important feature for reduce

 operation for possible load reduction scenarios. 

The binary number of the chosen row number is the estimated switching 

sequence of capacitor banks.  As a final step, the power flow can be executed to confirm 

the chosen switching sequences conform to the voltage band.  Refer to Figure 4.1 fo

 flowchart. 



 

 

Figure 4.1: Capacitor Bank Switching Analysis Flowchart.
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4.3.4 Locating New Monitoring Equipment and Capacitor Banks 

In addition to the capacitor bank switching sequence, examining the elements of 

the impedance matrix with a load proportional change in current, the best locations for 

deploying new voltage monitoring equipment and capacitor banks can be determined.  

The bus that produces the largest change in voltage due to the impedance structure can 

be observed from the previously discussed sensitivity method.  Since the bus with the 

largest change in voltage will contain the largest uncertainty in the voltage estimation, a 

bus with a large voltage change due to the load will be a good location for new 

monitoring equipment in order to remove the voltage estimation’s uncertainty at that 

bus. 

An iteration procedure can be implemented to search through all the possible 

change in voltage arrays to find the largest uncertainty in the voltage profile estimation.  

Buses that already contain monitoring equipment or buses without adequate utility pole 

space can be excluded in the iteration procedure. 

Similarly, capacitor banks can be located using the impedance matrix by 

examining the voltage change in the sensitivity analysis.  Essentially, each column of 

the impedance matrix is compared to see which column number (bus location) produces 

the best change in the feeder voltage profile. 

4.3.5 Required Data 

The required data for the optimal capacitor bank switching algorithm includes

the size, locat feeder.  Also 

information on whether the capacitor banks are single-phase or three-phase controlled 

 

ion, and number of capacitor banks on the distribution 
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can be derground and 

overhea

useful in balancing the system voltages.  The locations of the un

d branches and buses are needed for the function of minimizing the switching 

on underground feeders. 

4.4 Minimize Switching and Installation of Underground Capacitors 

Most capacitor banks installed in distribution systems are pole mounted on 

overhead lines [44].  Less common in distribution systems are padmounted capacitors 

which can be used for underground conductors. 

While underground distribution systems are less common, the use of 

underground conductors for portions of the distribution system is growing.  More urban 

and suburban developments are requiring inconspicuous distribution lines for aesthetic 

reasons

te capacitor banks in the underground 

distribu

e reducing or even eliminating the need to 

install he underground portion of the feeder.  To accomplish this 

goal, th

 and at the same time there is less overhead space for distribution equipment.  

Reliability also can be increased with underground lines since fewer faults occur due to 

tree limbs, animals, or traffic accidents. 

Nevertheless, the cost to install and opera

tion system is higher than its counterpart in the overhead distribution system.  It 

is therefore useful to minimize the number of padmounted capacitor banks in mixed 

overhead and underground distribution systems.  The objective is to provide the 

necessary voltage support for the feeder whil

reactive resources in t

e capacitor bank switching algorithm can be expanded to include support for 

underground feeders. 
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Before running the optimal capacitor switching software, the underground and 

overhead buses are specified in an input file.  In the optimal capacitor bank switching 

algorithm’s iteration procedure preference to switching is given first to capacitor banks 

that are on

derground distribution systems.  The 

capacito

 the overhead portion of the feeder. 

Similar to specifying the location of new capacitor banks in Section 4.3.4, the 

sensitivity impedance matrix can be used to find locations suitable for new installations 

of capacitor banks in mixed overhead and un

r bank location function gives preference to buses on the overhead portion of 

the feeder that have the greatest effect on the voltages in the underground portion of the 

feeder. 

4.5 Chapter Conclusions 

Reactive power control is essential for improving the efficiency and reliability 

of distribution power systems.  Capacitor banks are often used to provide reactive 

power 

 capacitor management approach based on an estimate of the 

distribution system voltage profile.  Whereas local capacitor bank controllers switch 

near the load and for voltage regulation.  Electric delivery companies can 

minimize the cost of managing and maintaining capacitor banks on the distribution 

feeder by optimizing the switching schedule with more intelligent control software.  A 

more efficient method to switch the available capacitor banks onto the distribution 

power system can increase the system reliability. 

Instead of switching capacitor banks in a predefined order or using local 

controllers near the capacitor banks, the proposed capacitor switching algorithm 

develops a centralized
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based o

gorithm developed in Chapter 3, a table 

of the p

for each hour.  Also, the iteration function can minimize the switching on 

underground conductors to re the need to install reactive 

resourc

n their local conditions, the proposed capacitor switching scheme takes a 

proactive approach and considers the entire voltage profile throughout the day in order 

to coordinate all the capacitors to achieve the desired objective functions. 

Using the voltage profile estimation al

ossible voltage profiles is computed.  An iteration procedure is then applied to 

find the best capacitor configuration.  A sensitivity analysis is performed using the 

impedance matrix to improve the calculation speed of the iteration procedure.  Several 

objectives can be selected such as minimizing switching with evenly distributed wear; 

switching a favored capacitor bank online more often; or selecting the best voltage 

profile 

duce or even eliminate 

es in the underground portion of the feeder. 

This chapter presented a power system application using the distribution load 

forecasting software developed in Chapter 2 and the voltage estimation technique 

described in Chapter 3.  In Chapter 5, the results of the optimal capacitor bank 

switching software is demonstrated for a sample distribution feeder. 



 

 

 

CHAPTER 5 

ALGORITHM VALIDATION 

 
This chapter validates the proposed algorithms by applying the load profile and 

customer demand forecasting program, voltage estimation program, and capacitor bank 

switching program to a sample system from a local utility. 

5.1 Sample System 

A 12.47 kV radial feeder from a local utility with a combination of residential, 

commercial, and industrial loads was selected to demonstrate the effectiveness of the 

proposed algorithms.  Figure 5.1 displays the simplified one-line diagram of the feeder 

and the locations of the loads.  The feeder has a mixture of single-phase, two-phase, and 

three-phase buses with 343 num

 

The bus numbers do not always indicate a sequential location along the feeder.  After 

the original bus numbering was established, as new buses were added to the feeder, the 

new bus with the next sequential number could be placed at any location along the 

feeder.  Seven three-phase capacitor banks are located along the feeder.  A solid circle 

in Figure 5.1 denotes a capacitor bank location. 

bered buses or 766 phase-buses (187 three-phase buses, 

49 two-phase buses, and 107 single-phase buses).  For simplicity, some intermediate 

buses with no load were omitted in the one-line diagram. 

There are 83 load buses with single-phase, two-phase, and three-phase loads. 
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Figure 5.2 shows the hourly load from February 9, 2004 to August 1, 2006 for 

the sample feeder.  Temperature data in Celsius for each hour is display in Figure 5.3.  

Hours containing bad data were omi e 5.2 and Figure 5.3.  The feeder is 

located in the North Texas re

tted from Figur

gion.   

Figure 5.4 displays the hourly total load at the substation for a Thursday July 8, 

2004 and Monday January 10, 2005.  Figure 5.5 illustrates the hourly phase current at 

the substation for the same days as Figure 5.4. 



 

 

 

 

 

 

Figure 5.1: Sample 12.47 kV Radial Feeder Diagram. 
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Figure 5.2: Hourly Load at the Substation from February 9, 2004 to August 1, 2006. 

 

 

 

Figure 5.3: Hourly Temperature from February 9, 2004 to August 1, 2006. 
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Figure 5.4: Hourly Total Load at the Substation for a Day in Summer and a Day in 
Winter. 

 

 

 

Figure 5.5: Hourly Phase Current at the Substation for a Day in Summer and a Day in 
Winter. 

 

5.2 Load Profile and Customer Demand Forecasting Performance 

This section presents the performance of the load profile and customer demand 

forecasting software that was introduced in Chapter 2.  To begin, the ANNSTLF 

software was trained with two years of hist

ANNSTLF software contains twenty different neural networks and each neural network 

orical load and weather information.  The 
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was trained with data in the time range for that network type.  In the training procedure, 

incorrect and missing data were omitted from the training data set.  After training, the 

ANNSTLF weights were stored into a database for the testing stage. 

The ANNSTLF software was tested for two days with historical information 

that were not included in the training data set.  Hour ahead forecasts were executed for 

the two test days, Sunday June 11, 2006 and Wednesday June 21, 2006.  These are

su d 

forecast.  Table 5.1 and Table 5.2 display the results from the ANNSTLF for each test 

day. 

 

Table 5.1: Actual and Forecasted MW Load Comparison for Sunday June 11, 2006 

 

mmer days where it is important to have a high degree of accuracy of the loa

Date Day Hour Network Type Actual Value Forecasted Value Difference Percent Difference
6/11/2006 Sunday 1 15 3.5406 3.7943 ‐0.2537 7.1655
6/11/2006 Sunday 2 15 3.4023 3.6379 ‐0.2356 6.9247
6/11/2006 Sunday 3 15 3.2030 3.4887 ‐0.2857 8.9198
6/11/2006 Sunday 4 15 3.2625 3.3602 ‐0.0977 2.9946
6/11/2006 Sunday 5 15 3.2671 3.2839 ‐0.0168 0.5142
6/11/2006 Sunday 6 16 3.1260 3.2150 ‐0.0890 2.8471
6/11/2006 Sunday 7 16 3.1043 3.1907 ‐0.0864 2.7832
6/11/2006 Sunday 8 16 3.2310 3.1855 0.0455 1.4082
6/11/2006 Sunday 9 17 3.5218 3.2537 0.2681 7.6126
6/11/2006 Sunday 10 17 3.7514 3.4071 0.3443 9.1779
6/11/2006 Sunday 11 17 3.7937 3.5737 0.2200 5.7991

6/11/2006 Sunday 14 17 4. 3.9650 0.1006 2.4744
6/11/2006 Sunday 15 17 3.9982 4.0162 ‐0.0180 0.4502
6/11/2006 Sunday 16 17 3.9895 4.0157 ‐0.0262 0.6567
6/11/2006 Sunday 17 18 4.1452 4.0495 0.0957 2.3087
6/1
6/1
6/11/2006 Sunday 20 18 3.9596 4.0220 ‐0.0624 1.5759
6/11/2006 Sunday 21 18 3.9650 3.9772 ‐0.0122 0.3077

MAPE 3.6438

6/11/2006 Sunday 12 17 3.9897 3.7642 0.2255 5.6521
6/11/2006 Sunday 13 17 4.0142 3.8890 0.1252 3.1189

0656

1/2006 Sunday 18 18 3.9531 4.0209 ‐0.0678 1.7151
1/2006 Sunday 19 18 4.0291 4.0299 ‐0.0008 0.0199

6/11/2006 Sunday 22 19 3.9175 3.9494 ‐0.0319 0.8139
6/11/2006 Sunday 23 19 3.7314 3.9215 ‐0.1901 5.0946
6/11/2006 Sunday 24 19 3.5483 3.8008 ‐0.2525 7.1161

Average Error 1.2578
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Table 5.2: Actual and Forecasted MW Load Comparison for Wednesday June 21, 2006 

Date Day Hour Network Type Actual Value Forecasted Value Difference Percent Difference

6/21/2006 Wednesday 2 5 3.0748 3.1497 ‐0.0749
6/21/2006 Wednesday 3 5 3.0706 3.0458 0.0248

6/21/2006 Wednesday 1 5 3.0909 3.3006 ‐0.2097 6.7844
2.4359
0.8077

6/21/2006 Wednesday 4 5 2.8713 3.0089 ‐0.1376 4.7923
6/21/2006 Wednesday 5 5 2.9112 2.9548 ‐0.0436 1.4977

6/21/2006 Wednesday 11 7 3.5256 3.5339 ‐0.0083 0.2354

6/21/2006 Wednesday 14 7 4.0123 3.8287 0.1836 4.5759

6/21/2006 Wednesday 17 8 4.0047 4.0330 ‐0.0283 0.7067

6/21/2006 Wednesday 20 8 3.8426 3.9291 ‐0.0865 2.2511
6/21/2006 Wednesday 21 8 3.9714 3.9131 0.0583 1.4680
6/21/2006 Wednesday 22 9 3.8054 3.8114 ‐0.0060 0.1577
6/21/2006 Wednesday 23 9 3.5048 3.7405 ‐0.2357 6.7251
6/21/2006 Wednesday 24 9 3.4080 3.6696 ‐0.2616 7.6761

Average Error 0.4712
MAPE 3.3704

6/21/2006 Wednesday 6 6 2.8995 2.9232 ‐0.0237 0.8174
6/21/2006 Wednesday 7 6 2.8925 2.9952 ‐0.1027 3.5506
6/21/2006 Wednesday 8 6 3.3863 3.1026 0.2837 8.3779
6/21/2006 Wednesday 9 7 3.4497 3.2265 0.2232 6.4701
6/21/2006 Wednesday 10 7 3.5426 3.3543 0.1883 5.3153

6/21/2006 Wednesday 12 7 3.7835 3.6015 0.1820 4.8104
6/21/2006 Wednesday 13 7 3.7189 3.7114 0.0075 0.2017

6/21/2006 Wednesday 15 7 4.1234 3.9527 0.1707 4.1398
6/21/2006 Wednesday 16 7 4.1461 3.9989 0.1472 3.5503

6/21/2006 Wednesday 18 8 3.8842 4.0195 ‐0.1353 3.4833
6/21/2006 Wednesday 19 8 3.9584 3.9607 ‐0.0023 0.0581

  

 

From the tables, the Mean Average Percent Error (MAPE) is low and the 

ANNSTLF performs well when forecasting the total load at the substation.  Typical 

MAPE values for load forecasting are within 1-8 %.  Figure 5.6 and Figure 5.7 compare 

the forecasted load to the actual load for each test day. 

After the forecasted load is calculated, the total load is allocated out to each load 

bus as described in Section 2.3.2.  The forecasted load profile of the load allocation 

software for the test day Sunday June 11, 2006 at hour 13 is shown in Figure 5.8.  

Figure 5.9 displays the forecasted load profile of the load allocation software for the test 

day Saturday June 21, 2006 at hour 21. 



 

 

 

Figure 5.6: Total Load Forecast Comparison for Sunday June 11, 2006. 

 

 

 

Figure 5.7: Total Load Forecast Comparison for Wednesday June 21, 2006.
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Figure 5.8: Load Profile for Sunday June 11, 2006 at Hour 13. 

 

 

 

Figure 5.9: Load Profile for Wednesday June 21, 2006 at Hour 21. 
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5.3 Voltage Profile Estimation Performance 

The voltage profile estimation method was described in Chapter 3.  This section 

displays the output of the voltage profile estimation software.  Figure 5.10 shows the 

estimated voltage profile of the feeder for Sunday June 11, 2006 at hour 13 which is the 

same test day selected for the load profile forecast example in Section 5.2.  Each 

voltage phase is plotted separately in Figure 5.10.  Figure 5.11 displays the estimated 

voltage profile of the feeder for Saturday June 21, 2006 at hour 21. 

 

 

Figure 5.10: Voltage Profile for Sunday June 11, 2006 at Hour 13. 

 97



 

 

 

Figure 5.11: Voltage Profile for Wednesday June 21, 2006 at Hour 21. 

 

There are 272 phase A buses, 244 phase B buses, and 250 phase C buses on the 

sample feeder which accounts for the different plot lengths in Figures 5.10 and Figure 

5.11.  The voltage increases at the end of the profiles because of the non-sequential bus 

numbering scheme used on the distribution feeder and the lateral structure of the feeder.  

The last few phase buses where the voltage appears to increase are located on lateral

segments n tion 5.1. 

 

ear the substation at the beginning of the feeder, as discussed in Sec
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5.4 Optimal Capacitor Bank Switching Performance 

A study of the benefit of capacitor bank switching scheme for the sample 

distribution system is presented in this section.  The optimal capacitor bank switching 

algorithm was discussed in Chapter 4.  To begin the switching study, first the  of 

the sample feeder was obtained and multiplied by the modeled capacitor in n 

current to determine a sensitivity matrix.  A change-in-voltage table was then crea

multiplying the associated  columns with all the possible comb

capacitor injection current. 

The next step was to execute the ANNSTLF to generate a day’s worth of hourly 

forecasted load values and then allocate out the forecasted load values to the buses for 

the hourly feeder load profiles. 

In order to show the performance to different objective functions, two examples 

of the capacitor switching algorithm are studied in Section 5.4.1 and Section 5.4.2.  

Section 5.4. ance 

where only one capacitor bank is needed for the entire day.  The algorithm will find the 

best capac

busZ

jectio

ted by 

inations of the busZ

1 will show a capacitor bank switching situation for voltage perform

itor bank on the feeder to switch online.  Section 5.4.2 will present a capacitor 

bank switching situation for switching reduction for a simulated extreme day where 

more capacitor bank switching is required on the feeder.  The capacitor bank switching 

sequence that provides the minimum number of switching changes for the day will be 

selected by the optimal capacitor bank switching algorithm.  For each case, the 

performance of the capacitor switching algorithm is compared to another method where 
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the capacitors a thout forecasted 

knowle

 all 

ogram.  As can be seen in Figure 5.12, the estimated 

voltage p

re switched online in a predetermined order wi

dge. 

For each section, several voltage profiles were generated using the hourly feeder 

load profiles and a three-phase power flow program.  These voltage profiles were 

considered base cases since no capacitors were switched online in the input files.  The 

base case voltage profiles were added to the change-in-voltage table to obtain the 

estimated voltage profiles for combinations of the capacitor banks. 

5.4.1 Capacitor Switching for Voltage Performance 

Figure 5.12 shows a comparison between the estimated voltage profile found 

using the change-in-voltage table plus a base case and another voltage profile calculated 

using the three-phase power flow pr

rofile has a similar curve to the power flow solution. 

 

 

Figure 5.12: Phase A Voltage Profile Comparison. 
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Again, the voltage increase at the end of the profile is due to the bus number 

scheme

4 hour curves in 

Figure s are online.  The upper 24 

hour cu

 too high. 

ith the estimated voltage profiles calculated from the change-in-voltage table, 

the next step was to apply an iteration procedure to find a suitable solution.  The 

algorithm’s objective was to select capacitor configurations for each hour of the day 

that provides the best voltage profile voltage while also ensuring that the voltage on 

each phase conforms to a voltage band of 0.97-1.03 p.u..  The sequence chosen by the 

capacitor switching algorithm was 00001002 (Configuration 4) in this study case for 

each hour of the day. 

 

 

, as discussed in Section 5.1.  Although it is not an exact match to the power 

flow solution, the estimated voltage profile does follow the power flow solution closely 

and offers a sufficient way of evaluating the effect of the capacitor banks. 

Figure 5.13 shows the 24 hour curves for two cases, without any capacitor 

banks online and with all the capacitor banks online.  The lower 2

5.13 are the base voltage profiles where no capacitor

rves in Figure 5.13 are the voltage profiles for the case with all seven of the 

capacitors online.  Together, Figure 5.13 illustrates the potential range of the voltages 

for each phase.  From the phase subplots, it appears that each phase’s voltage should be 

raised; however, using seven capacitors would raise the voltage

W
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Figure 5.13: Possible Voltage Range for Each Phase, Voltage Performance. 

 

In the study, the performance of the capacitor switching algorithm was 

compared to another method where the capacitors are switched online in a 

predetermined order with no forecasted knowledge.  Essentially, the ordered sequence 

method monitors the total load on the feeder and turns a capacitor bank online when the 

load increases through the day and removes a capacitor bank when the load reduces.  In 

is case the ordered sequence chosen was 00000012 (Configuration 1). 

 

th
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Figures 5.14 through 5.16 compare the 24 hour voltage profiles between the 

proposed algorithm and the predetermined ordered method for each voltage phase.  The 

dotted curves in the figures represent the voltage profiles for each hour of the day 

selected by the ordered method.  The continuous curves in the figures are the voltage 

profiles for each hour of the day selected by the dissertation’s algorithm. 

 

 

Figure 5.14: Comparison of Voltage Profile Methods, Phase A, Voltage Performance. 



 

 

 

Figure 5.15: Comparison of Voltage Profile Methods, Phase B, Voltage Performance. 

 

 

 

Figure 5.16: Comparison of Voltage Profile Methods, Phase C, Voltage Performance. 
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In this switching example, each switching sequence meets the voltage profile 

band requirement for each hour of the day.  The predetermined ordered method has no 

knowledge of the future conditions on the feeder therefore it will always turn on 

capacitor bank one (Configuration 1) along the feeder.  However, as shown in Figures 

5.14 through 5.16, the third capacitor bank (Configuration 4) selected by the 

dissertation’s algorithm is a better selection.  The third capacitor bank provides a 

voltage profile that is closer to the nominal voltage.  In order to match the performance 

of the dissertation’s switching algorithm, the ordered method would have to switch 

online another capacitor bank.  This example shows that the switching order of the

c

5.4.2 Capacitor Switching for Switching Reduction 

For the second capacitor bank switching study, the ANNSTLF total load values 

were increased to simulate an extreme summer day so that the capacitor bank switching 

algorithm could be evaluated on days when more than one capacitor bank is needed.  

Figure 5.17 displays the 24 hour curves for two cases, without any capacitor banks 

online and with all the capacitor banks online.  From the figure, the voltage profile of 

the case without any capacitor banks online is below the acceptable voltage band of 

0.97-1.03 p.u. which means that capacitor bank reactive power support must be 

switched online to increase the voltage profile of the feeder. 

 

 

apacitor banks makes a difference in providing the best voltage support for the feeder. 
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Figure 5.17: Possible Voltage Range for Each Phase, Switching Reduction. 

 

Table 5.3 shows the ordered method and the dissertation’s algorithm switching 

schedule for the day.  The ordered method without any forecasted knowledge of the 

feeder voltage profile must switch capacitor banks online and offline more than the 

dissertation’s method of computing the optimum switching schedule.  Figures 5.18 

through 5.20 show that both methods have similar performance on each phase where 

each method increased the voltage into the acceptable voltage band.  While both 
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methods produce results within the acceptable voltage band, the capacitor switching 

algorithm does so with less switching operations. 

 

Table 5.3: Switching Schedule Comparison 

Hour Switching By Order Switching By Algorithm 
1 00011112 (15) 10111102 (94) 
2 
3 
4 
5 
6 
7 
8 00111112 (31) 
9 
10 
11 
12 
13 
14 01111112 (63) 
15 
16 
17 

19 
20 00111112 (31) 
21 

23 

 

 

18 

22 

24 



 

 

 

Figure 5.18: Com rison of Voltage Profile Methods, Phase A, Switching Reduction. 

 

 

pa

 

Figure 5.19: Comparison of Voltage Profile Methods, Phase B, Switching Reduction. 
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Figure 5.20: Comparison of Voltage Profile Methods, Phase C, Switching Reduction. 

With forecasted knowledge of the voltage conditions, the capacitor switching 

algorithm can select the best capacitor bank to switch online for the desired switching 

objective.  Other switching objectives can also be considered such as distributing 

switching operations over all capacitor banks in order to assign wear evenly on all the 

capacitor banks.  The opposite objective can also be selected where a favored capacitor 

bank is switched online as much as possible. 

If a situation occurs where there is a severe imbalance on the feeder then the 

optimal capacitor bank switching algorithm examines each phase to insure the voltage 

buses are within the acceptable voltage limits.  For example, if phase B has a much 

lower voltage than phase A and phase C, then reactive compensation should be used to

im  

high on the other two phases.  The capacitor bank switching algorithm has the 

 

 

prove the voltage on phase B while care must be taken to not raise the voltage too
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capability to evaluate the change of voltage for each phase.  For a severe imbalance, 

better results can be found if the capacitors are controlled by individual phase.  

However, on feeders with only three-phase capacitor banks installed, the algorithm 

must respect the voltage band requirements for each phase and must attempt to balance 

the effects of the three-phase capacitor banks. 

5.5 Chapter Conclusions 

Knowledge of the load and voltage conditions on the distribution feeder is 

important for the comprehensive control of the distribution feeder.  Optimizing

d  

cost of installing and maintaining equipment on the distribution feeder and achieve 

better p

5.4, the capacitor switching algorithm can 

select t

 

istribution capacitor switching can also help electric delivery companies minimize the

erformance from the available capacitor banks.  This chapter explored the 

results from the software described in this dissertation.  A sample feeder was presented 

and results from each software task were investigated. 

The results show that the ANNSTLF performs well in predicting the load profile 

for a utility supplied sample feeder.  In addition, each phase of the voltage profile was 

calculated and plotted.  As shown in Section 

he best capacitor bank that provides the closest voltage profile to the nominal 

voltage and also that it can provide minimal switching for the day. 



 

 

 

CHAPTER 6 

DISSERTATION CONCLUSIONS 

 
This chapter presents the lessons learned through the research process and the 

overall benefits of the dissertation.  In ontains recommendations 

for future re

addition, the chapter c

search using the ideas presented in this dissertation. 

6.1 Dissertation Conclusions 

In the modern electric industry, electric power utilities must strive to obtain 

better performance from distribution lines and equipment while also reducing the 

installation and operating costs associated with the distribution system.  More effective 

monitoring and control schemes can help maintain higher efficiency and quality 

standards while also reducing the repair and maintenance costs associated with the 

distribution system

ge profile estimation 

software use a minimum number of monitoring equipment to calculate the feeder load 

and voltage conditions.  In addition, both the load profile forecasting and voltage profile 

estimation methods are designed for the unique characteristics of the distribution 

system. 

. 

This dissertation has sought to improve the monitoring and control methods 

along a distribution feeder by introducing techniques to estimate the load and voltage 

profiles and optimize the control sequence of capacitor banks along a distribution 

feeder.  Both the load profile forecasting software and the volta
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The load forecasting method de eloped in this dissertation has several 

advantages over traditional forecasting.  The ANNSTLF learns complex relationships 

between input data and output data a etermines the variable relationships 

without predetermining a s weather data into the 

forecast for a m

methods.  It can also adapt to new changes ’s environment, 

due to the A

s with unbalanced loads.  Moreover, the single-

phase, two-phase, and three-phase buses volta

f a local segment of the feeder.  Also, each capacitor bank can 

v

nd internally d

n appropriate model.  It incorporate

ore accurate forecast to increase the accuracy of the output.  The ANN 

software supports nonlinearity in the network and permits the ANNSTLF to perform 

nonlinear tasks such as load forecasting with more accuracy than through linear 

in the distribution system

NN’s intrinsic adaptability.  Together with the load allocation method, the 

load profile and customer demand software can provide an excellent forecast of the load 

demand at the load buses. 

The voltage profile estimation method developed in this dissertation has benefits 

as well.  First, the dissertation’s voltage profile estimation method can estimate the 

feeder voltages on distribution system

ge buses can be estimated and plotted 

with this method.  The voltage profile estimation method’s main advantage is that it 

reduces capital expenditures by computing the voltage conditions on the feeder without 

installing monitoring equipment on every load bus. 

An optimal capacitor bank switching algorithm was introduced as an example of 

using the load forecasting and voltage estimation methods.  One benefit of the 

dissertation’s capacitor bank switching method is that the algorithm looks at the entire 

voltage profile instead o
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be coordinated with the other capacitor banks on the feeder and with voltage regulators.  

The capacitor bank switching algorithm can be used to decrease the amount of required 

maintenance on the distribution by minimizing the number of switching operations that 

occur on the feeder. 

The dissertation has applied electrical engineering principles in the areas of 

artificial neural networks, distribution load flow, voltage control, and capacitor 

operations.  It is believed that this dissertation can contribute a significant impact to 

utility distribution system operations. 

6.2 Future Work 

Future development based on this dissertation’s research is possible.  Because 

the software design for this project is modular, different parts of the research can be 

easily i

urban networks.  Capacitor bank 

placem

mproved or interchanged.  A few suggestions on areas where this dissertation’s 

research can be extended are presented in this section. 

First, different ANNSTLF designs can be explored to compare the performance 

of various ANN algorithms.  Another area would be to extend the load allocation 

algorithm to use BPL or other communication protocols to obtain more accuracy for the 

load profile.  The voltage profile estimation could also be expanded to work on 

distribution structures such as loop feeders and 

ent methods could also be explored using the sensitivity matrix described in 

Chapter 4. 

The dissertation limited the application of the estimated load and voltage 

profiles to one area of power system analysis, namely distribution system level optimal 
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oftware could be used in optimal feeder reconfiguration for 

increase

distribution systems that are located in different 

regions and climates.  For atypica ers, modifications to the software 

could b

oftware results. 

capacitor bank switching.  However, the load profile and customer demand forecasting 

algorithm and the voltage profile estimation algorithm can be applied toward many 

different areas in the power system.  For example, the load forecasting and voltage 

profile estimation s

d system security.  Other areas could include load shedding, contingency 

analysis, or distributed generation system protection. 

Finally, the software developed in the dissertation would benefit from a study of 

different types and configurations of 

l distribution feed

e required, since unusual systems are not addressed in the generalized approach 

described in this dissertation.  Also, it would be advantageous if the software were 

tested within or alongside a real-world distribution management system, in order to 

record long-term measurements for verification of the s
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Abbreviation Term 
 
AMI  Advanced Meter Infrastructure 
 
ANN  Artificial Neural Network 
 
ANNSTLF Artificial Neural Network Short Term Load Forecaster 
 
AR  Autoregressive 
 
ARMA Autoregressive Moving Average 
 
ARIMA Autoregressive Integrated Moving Average 
 
ARMAX Autoregressive Movi  Exogenous Variables 
 
ARIMAX Autoregressive Integrated M
 
BPL  Broadband over Powerline 
 
ESRC  Energy Systems Research Center 
 
LPCDF Load Profile and Customer Demand Forecasting 
 
LTC  Load Tap Changing transformers 
 
MA  Moving-Average 
 
MAPE  Mean Average Percent Error 
 
MLP  Multi-layer Perceptron 
 
PDF  Probability Density Function 
 
PLC  Power Line Carrier 
 
SVC  Static Var Compensators 
 
WLS  Weighted Least Squares 

ng Average with

oving Average with Exogenous Variables 

 116



  

 

 

REFERENCES 

 

W ork: Marcel 

rm Load Forecasting for 

al 

Engineering, University of Texas at Arlington, Arlington, TX, 2003. 

youmy, “Artificial Neural Network Based 

nference on Computation Cybernetics 

“Analysis and Evaluation of Five Short-Term Load 

actions on Power Systems, vol. 4, pp. 

1484-1491, Nov. 1989. 

etric Regression 

ecasting,” IEEE Transactions on Power Systems, 

[1] H. L. illis, Spatial Electric Load Forecasting, 2nd ed., New Y

Dekker, 2002. 

 

[2] K. Methaprayoon, “Neural Network-Based Short Te

Unit Commitment Scheduling,” M.S. Thesis, Department of Electric

 

[3] J. A. Momoh, Y. Wang, and M. Elfa

Load Forecasting,” IEEE International Co

and Simulation, vol. 4, pp. 3443-3451, Oct. 1997. 

 

[4] I. Moghram and S. Rahman, 

Forecasting Techniques,” IEEE Trans

 

[5] W. Charytoniuk, M. S. Chen, and P. Van Olinda, “Nonparam

Based Short-Term Load For

vol. 13, pp. 725-730, Aug. 1998. 

 

 117



  

[6] T. Haida and S. Muto, “Regression Based Peak Load Forecasting Using a 

Transformation Technique,” IEEE Transactions on Power Systems, vol. 9, pp. 

1788-1794, Nov. 1994. 

 

 the Third International IEEE Conference on Intelligent Systems, 

2006, pp. 800-806. 

[8] etween 

Transactions on Power Apparatus and Systems, vol. PAS-85, pp. 1144-1154, 

 

[9] g the Impact of Weather 

Variables on Monthly Electricity Demand,” IEEE Transactions on Power 

 

[10] sis of General Exponential Smoothing,” Operations 

Research, vol. 24, pp. 131-140, Jan. 1976. 

[11]  

n Power Apparatus and Systems, vol. PAS-90, 

pp. 900-911, Mar. 1971. 

 

[7] P. R. Campbell and K. Adamson, “Methodologies for Load Forecasting,” in 

Proceedings of

 

G. T. Heinemann, D. A. Nordman, and E. C. Plant, “The Relationship B

Summer Weather and Summer Loads - Regression Analysis,” IEEE 

Nov. 1966 . 

C.-L. Hor, S. J. Watson, and S. Majithia, “Analyzin

Systems, vol. 20, pp. 2078-2085, Nov. 2005. 

E. McKenzie, “An Analy

 

W. R. Christiaanse, “Short-Term Load Forecasting Using General Exponential

Smoothing,” IEEE Transactions o

 118



  

[12] S. Haykin, Kalman Filtering and Neural Networks, New York: John Wiley

Sons, 2001. 

 & 

 

3] S. Rahman and R. Bhatnagar, “An Expert System Based Algorithm for Short 

 

4] K.-J. Hwan and G.-W. Kim, “A Short-Term Load Forecasting Expert System,” 

 

 

[15] hen, and T. Li, “An Expert System for Short-Term Load 

Forecasting,” IEE International Conference on Advances in Power System 

 

[16] .-C. Liang, T.-S. Lai, and K.-K. 

Chen, “Short Term Load Forecasting of Taiwan Power System Using a 

. 

 and Distribution, vol. 147, 2000, pp. 361-366. 

[1

Term Load Forecast,” IEEE Transactions on Power Systems, vol. 3, pp. 392-

399, May 1988. 

[1

in Proceedings of the Fifth Russian-Korean International Symposium on Science

and Technology, 2001, pp. 112-116. 

D. Chen, B. C

Control, Operation and Management, vol. 1, pp. 330-334, Nov. 1991. 

K.-L. Ho, Y.-Y. Hsu, C.-F. Chen, T.-E. Lee, C

Knowledge-Based Expert System,” IEEE Transactions on Power Systems, vol

5, pp. 1214-1221, Nov. 1990. 

 

[17] W. L. Chan, A. T. P. So, and L. L. Lai, “Initial Applications of Complex 

Artificial Neural Networks to Load-Flow Analysis,” IEE Proceedings - 

Generation, Transmission

 

 119



  

[18] T. Dalstein and B. Kulicke, “Neural Network Approach to Fault Classification 

for High Speed Protective Relaying,” IEEE Transactions on Power Delivery, 

vol. 10, pp. 1002-1011, Apr. 1995. 

[19] l 

ault Classifiers for Complex Transmission Lines,” in 

Proceedings of the Canadian Conference on Electrical and Computer 

 

[20] . Izui, “Fault Diagnosis System for GIS 

Using an Artificial Neural Network,” in Proceedings of the First International 

. 112-

 

S. A. Khaparde, P. B. Kale, and S. H. Agarwal, “Application of Artificial Neural 

 

[22] isamy, “A New Dynamic Programming Based 

Hopfield Neural Network to Unit Commitment and Economic Dispatch,” in 

gy, 

 

 

Y. N. Song, Q. Y. Xuan, and A. T. Johns, “Comparison Studies of Five Neura

Network Based F

Engineering, 1996, pp. 745-749. 

H. Ogi, Y. Tanaka, Y. Akimoto, and Y

Forum on Applications of Neural Networks to Power Systems, 1991, pp

116. 

[21] 

Network in Protective Relaying of Transmission Lines,” in Proceedings of the 

Neural Networks to Power Systems, 1991, pp. 122-125. 

S. Senthil Kumar and V. Palan

Proceedings of the IEEE International Conference on Industrial Technolo

2006, pp. 887-892. 

 120



  

[23] T. Yalcinoz and M. J. Short, “Neural Networks Approach for Solving Economic

Dispatch Problem with Transmission Capacity Constraints,” IEEE Transaction

on Power Systems, vol. 13, pp. 307-

 

s 

313, May 1998. 

 

ont-End 

3, pp. 

 

[26] arytoniuk and M. S. Chen, “Neural Network Design for Short-Term Load 

Forecasting,” in Proceedings of the International Conference on Electric Utility 

 

[27] ization for the 

Application of Neural Networks to Complex Industrial Problems,” IEEE 

 

[28] 

ing: A Review and Evaluation,” IEEE Transactions on 

Power Systems, vol. 16, pp. 44-55, Feb. 2001. 

 

 

[24] K. Methaprayoon, W.J. Lee, S. Rasmiddatta, J. Liao, and R. Ross, “Multi-Stage

Artificial Neural Network Short-Term Load Forecasting Engine with Fr

Weather Forecast,” IEEE Transactions on Industry Applications, vol. 4

1410-1416, Nov.-Dec. 2007. 

 

[25] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., Upper 

Saddle River, N. J.: Prentice Hall, 1999. 

W. Ch

Deregulation and Restructuring and Power Technologies, 2000, pp. 554-561. 

J. Sola and J. Sevilla, “Importance of Input Data Normal

Transactions on Nuclear Science, vol. 44, pp. 1464-1468, Jun. 1997. 

H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural Networks for Short-

Term Load Forecast

 121



  

[29] A. Khotanzad, R. Afkhami-Rohani, T.-L. Lu, A. Abaye, M. Davis, and D. J. 

Maratukulam, “ANNSTLF - A Neural-Network-Based Electric Load 

Forecasting System,” IEEE Transactions on Neural Networks, vol. 8, pp. 835-

846, Jul. 1997. 

[30] 

ions on Industry Applications, vol. 36, pp. 893-

898, May-Jun. 2000. 

[31]  Dinh, C. Tong, A. Azeem, J. Farah, 

and C. Drake, “Practical Experience with an Adaptive Neural Network Short-

 

2] B. L. Kalman and S. C. Kwasny, “Why Tanh: Choosing a Sigmoidal Function,” 

ks, vol. 

 

3] C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 

 

[34] Neural Network Design, Boston: 

PWS Publishing Company, 1996. 

 

 

W. Charytoniuk, E. D. Box, W.-J. Lee, M.-S. Chen, P. Kotas, and P. Van 

Olinda, “Neural-Network-Based Demand Forecasting in a Deregulated 

Environment,” IEEE Transact

 

O. Mohammed, D. Park, R. Merchant, T.

Term Load Forecasting System,” IEEE Transactions on Power Systems, vol. 10, 

pp. 254-265, Feb. 1995. 

[3

in Proceedings of the International Joint Conference on Neural Networ

4, 1992, pp. 578-581. 

[3

2006. 

M. T. Hagan, H. B. Demuth, and M. H. Beale, 

 122



  

[35] H. L. Willis, Power Distribution Planning Reference Book, 2nd ed., New Yor

Marcel Dekker, 2004. 

M.E. Baran, “Ch

k: 

 

[36] allenges in State Estimation on Distribution Systems,” in IEEE 

Power Engineering Society Summer Meeting, vol. 1, Jul. 2001, pp. 429-433. 

[37] , 

 

8] W. H. Kersting, Distribution System Modeling and Analysis, 2nd ed., Boca 

 

[39] 

 Wiley & Sons, 1996. 

 

1] H. B. Sun and B. M. Zhang, “Distribution Matching Power Flow: A New 

, vol. 22, pp. 45-47, Jun. 2002. 

ng, University of Texas at Arlington, 

Arlington, TX, 1982. 

 

J. D. Glover and M. Sarma, Power System Analysis and Design, 2nd ed.

Boston: PWS Publishing Company, 1994. 

[3

Raton: CRC Press, 2007. 

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, 

2nd ed., New York: John

 

[40] A. Abur, A. G. Expósito, Power System State Estimation: Theory and 

Implementation, New York: Marcel Dekker, 2004. 

[4

Technique for Distribution System State Estimation,” IEEE Power Engineering 

Review

 

[42] S.-K. Chang, “Distribution Load Flow Automation,” Ph.D. Dissertation, 

Department of Electrical Engineeri

 123



  

 

D. I.-H. Sun, “Distribu[43] tion Loss Analysis and Optimal Planning,” Ph.D. 

Dissertation, Department of Electrical Engineering, University of Texas at 

 

4] T. A. Short, Electric Power Distribution Handbook, Boca Raton: CRC Press, 

 

5] R. F. Cook, “Calculating Loss Reduction Afforded by Shunt Capacitor 

 

tems, vol. 91, pp. 2189-2195, 

Nov. 1972. 

[47] urce of Reactive Power on 

Distribution System Primary Feeders,” IEEE Transactions on Power Apparatus 

 

[48] ariable Sources of Reactive Power on 

Distribution System Primary Feeders,” IEEE Transactions on Power Apparatus 

 

Arlington, Arlington, TX, 1982. 

[4

2004. 

[4

Application,” IEEE Transactions on Power Apparatus and Systems, vol. 83, pp. 

1227-1230, Dec. 1964. 

 

[46] N. E. Chang, “Generalized Equations on Loss Reduction with Shunt Capacitor,”

IEEE Transactions on Power Apparatus and Sys

 

D. R. Brown, “Performance Analysis of Variable So

and Systems, vol. PAS-100, pp. 4364-4372, Nov. 1981. 

K. Desai and D. R. Brown, “Multiple V

and Systems, vol.101, pp. 4674-4680, Dec. 1982. 

 124



 

 

 

125

J. J. Grainier, S. Civanlar, “Volt/Var Control on Distribution Systems with 

The 

l. 

985. 

 Branches Using Shunt Capacitors and Voltage Regulators Part II: The 

Solution Method,” IEEE Transactions on Power Apparatus and Systems, vol. 

 

[51] r, “Volt/Var Control on Distribution Systems with 

Lateral Branches Using Shunt Capacitors and Voltage Regulators Part III: The 

 

2] Y. M. Deng and X. J. Ren, “Fuzzy Modeling of Capacitor Switching for Radial 

. 

 

3] Y. M. Deng and X. J. Ren, “Optimal Capacitor Switching with Fuzzy Load 

 

4] “Sensitivity Analysis of Power Flow,” class notes for EE5367, Department of 

Electrical Engineering, University of Texas at Arlington, 1976. 

[49] 

Lateral Branches Using Shunt Capacitors and Voltage Regulators Part I: 

Overall Problem,” IEEE Transactions on Power Apparatus and Systems, vo

PAS-104, pp. 3278-3283, Nov. 1

 

[50] J. J. Grainier, S. Civanlar, “Volt/Var Control on Distribution Systems with 

Lateral

PAS-104, pp. 3284-3290, Nov. 1985. 

J. J. Grainier, S. Civanla

Numerical Results,” IEEE Transactions on Power Apparatus and Systems, vol. 

PAS-104, pp. 3291-3297, Nov. 1985. 

[5

Distribution Systems,” in IEEE Power Engineering Society Winter Meeting, vol

2, Jan.-Feb. 2001, pp. 830-834.  

[5

Model for Radial Distribution Systems,” in IEE Proceedings - Generation, 

Transmission and Distribution, vol. 150, 2003, pp. 190-194.  

[5



  

 

 

BIOGRAPHICAL INFORMATION 

 
David Timothy Chessmore received his Bachelor of Science Degree in 

 the 

Univer

been a 

Univer

 analysis, distribution system metering, and capacitor bank 

control. 

Electrical Engineering and Master of Science Degree in Electrical Engineering from

sity of Texas at Arlington.  A member of IEEE, HKN, and Tau Beta Pi, he has 

research assistant at the Energy Systems Research Center (ESRC) at the 

sity of Texas at Arlington since August 2005.  His research interests are in the 

areas of power system

 126


