Show simple item record

dc.contributor.authorSaptono, Rahmaten_US
dc.date.accessioned2014-07-14T20:34:31Z
dc.date.available2014-07-14T20:34:31Z
dc.date.issued2014-07-14
dc.date.submittedJanuary 2014en_US
dc.identifier.otherDISS-12726en_US
dc.identifier.urihttp://hdl.handle.net/10106/24506
dc.description.abstractEfforts have been made to develop a simple but physically sound model. The model was specifically proposed to capture, explain, and estimate the temperature sensitivity and strengthening mechanism phenomena in small volume material with particular reference to the roles grain boundary and surface. Model-inspired phenomenology approach was applied to reveal the key mechanisms and find directions for a more complete constitutive model. The model was developed in the limited space where diffusion is insignificant. It was assumed that the plastic flow was predominantly governed by the thermally-activated process of dislocation glide overcoming barriers. Simple mathematical functions were formulated and evaluated to model the behavior. The figures of merit functions were fitted into the experimental data to evaluate physical parameters. Normalization was performed prior to the regression analysis to extract real variables and allow global evaluation. Behavior of the small volume materials subjected to temperature variation within the range of argument can be generally condensed, described and predicted by an exponential decay model. In particular, the models are able to explain the responsible mechanism behind the observed phenomena. Important findings had been concluded through the model application along with simplified observation and analysis. Surface is not a part of main strengthening mechanism. Thin film exhibits atypical high flow stress because of high density grain boundary and dislocation density, which is a true effect of confinement. Grain boundary strengthening becomes weaker and mechanism becomes short-range in thin films with small grains. Exponential decay model explains the temperature-dependence of flow stress behavior in small volume metallic materials with physical validity. The validity is proven by finding a direct connection of the model to the established physical mechanistic model in the field. Despite of quite a few limitations, it provides directions for more complete and advanced constitutive equations and guidance for further investigations through physical experiment.en_US
dc.description.sponsorshipKim, Choong-Unen_US
dc.language.isoenen_US
dc.publisherMaterials Science & Engineeringen_US
dc.titleTemperature-dependence Of Stress-related Phenomenaen_US
dc.typePh.D.en_US
dc.contributor.committeeChairKim, Choong-Unen_US
dc.degree.departmentMaterials Science & Engineeringen_US
dc.degree.disciplineMaterials Science & Engineeringen_US
dc.degree.grantorUniversity of Texas at Arlingtonen_US
dc.degree.leveldoctoralen_US
dc.degree.namePh.D.en_US


Files in this item

Thumbnail


This item appears in the following Collection(s)

Show simple item record